Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <trace/events/qdisc.h>
135#include <linux/inetdevice.h>
136#include <linux/cpu_rmap.h>
137#include <linux/static_key.h>
138#include <linux/hashtable.h>
139#include <linux/vmalloc.h>
140#include <linux/if_macvlan.h>
141#include <linux/errqueue.h>
142#include <linux/hrtimer.h>
143#include <linux/netfilter_netdev.h>
144#include <linux/crash_dump.h>
145#include <linux/sctp.h>
146#include <net/udp_tunnel.h>
147#include <linux/net_namespace.h>
148#include <linux/indirect_call_wrapper.h>
149#include <net/devlink.h>
150#include <linux/pm_runtime.h>
151#include <linux/prandom.h>
152#include <linux/once_lite.h>
153
154#include "dev.h"
155#include "net-sysfs.h"
156
157
158static DEFINE_SPINLOCK(ptype_lock);
159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160struct list_head ptype_all __read_mostly; /* Taps */
161
162static int netif_rx_internal(struct sk_buff *skb);
163static int call_netdevice_notifiers_info(unsigned long val,
164 struct netdev_notifier_info *info);
165static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
168static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170/*
171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172 * semaphore.
173 *
174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175 *
176 * Writers must hold the rtnl semaphore while they loop through the
177 * dev_base_head list, and hold dev_base_lock for writing when they do the
178 * actual updates. This allows pure readers to access the list even
179 * while a writer is preparing to update it.
180 *
181 * To put it another way, dev_base_lock is held for writing only to
182 * protect against pure readers; the rtnl semaphore provides the
183 * protection against other writers.
184 *
185 * See, for example usages, register_netdevice() and
186 * unregister_netdevice(), which must be called with the rtnl
187 * semaphore held.
188 */
189DEFINE_RWLOCK(dev_base_lock);
190EXPORT_SYMBOL(dev_base_lock);
191
192static DEFINE_MUTEX(ifalias_mutex);
193
194/* protects napi_hash addition/deletion and napi_gen_id */
195static DEFINE_SPINLOCK(napi_hash_lock);
196
197static unsigned int napi_gen_id = NR_CPUS;
198static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200static DECLARE_RWSEM(devnet_rename_sem);
201
202static inline void dev_base_seq_inc(struct net *net)
203{
204 while (++net->dev_base_seq == 0)
205 ;
206}
207
208static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209{
210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213}
214
215static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216{
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218}
219
220static inline void rps_lock_irqsave(struct softnet_data *sd,
221 unsigned long *flags)
222{
223 if (IS_ENABLED(CONFIG_RPS))
224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 local_irq_save(*flags);
227}
228
229static inline void rps_lock_irq_disable(struct softnet_data *sd)
230{
231 if (IS_ENABLED(CONFIG_RPS))
232 spin_lock_irq(&sd->input_pkt_queue.lock);
233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 local_irq_disable();
235}
236
237static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 unsigned long *flags)
239{
240 if (IS_ENABLED(CONFIG_RPS))
241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 local_irq_restore(*flags);
244}
245
246static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247{
248 if (IS_ENABLED(CONFIG_RPS))
249 spin_unlock_irq(&sd->input_pkt_queue.lock);
250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 local_irq_enable();
252}
253
254static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 const char *name)
256{
257 struct netdev_name_node *name_node;
258
259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 if (!name_node)
261 return NULL;
262 INIT_HLIST_NODE(&name_node->hlist);
263 name_node->dev = dev;
264 name_node->name = name;
265 return name_node;
266}
267
268static struct netdev_name_node *
269netdev_name_node_head_alloc(struct net_device *dev)
270{
271 struct netdev_name_node *name_node;
272
273 name_node = netdev_name_node_alloc(dev, dev->name);
274 if (!name_node)
275 return NULL;
276 INIT_LIST_HEAD(&name_node->list);
277 return name_node;
278}
279
280static void netdev_name_node_free(struct netdev_name_node *name_node)
281{
282 kfree(name_node);
283}
284
285static void netdev_name_node_add(struct net *net,
286 struct netdev_name_node *name_node)
287{
288 hlist_add_head_rcu(&name_node->hlist,
289 dev_name_hash(net, name_node->name));
290}
291
292static void netdev_name_node_del(struct netdev_name_node *name_node)
293{
294 hlist_del_rcu(&name_node->hlist);
295}
296
297static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 const char *name)
299{
300 struct hlist_head *head = dev_name_hash(net, name);
301 struct netdev_name_node *name_node;
302
303 hlist_for_each_entry(name_node, head, hlist)
304 if (!strcmp(name_node->name, name))
305 return name_node;
306 return NULL;
307}
308
309static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 const char *name)
311{
312 struct hlist_head *head = dev_name_hash(net, name);
313 struct netdev_name_node *name_node;
314
315 hlist_for_each_entry_rcu(name_node, head, hlist)
316 if (!strcmp(name_node->name, name))
317 return name_node;
318 return NULL;
319}
320
321bool netdev_name_in_use(struct net *net, const char *name)
322{
323 return netdev_name_node_lookup(net, name);
324}
325EXPORT_SYMBOL(netdev_name_in_use);
326
327int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328{
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
331
332 name_node = netdev_name_node_lookup(net, name);
333 if (name_node)
334 return -EEXIST;
335 name_node = netdev_name_node_alloc(dev, name);
336 if (!name_node)
337 return -ENOMEM;
338 netdev_name_node_add(net, name_node);
339 /* The node that holds dev->name acts as a head of per-device list. */
340 list_add_tail(&name_node->list, &dev->name_node->list);
341
342 return 0;
343}
344
345static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346{
347 list_del(&name_node->list);
348 netdev_name_node_del(name_node);
349 kfree(name_node->name);
350 netdev_name_node_free(name_node);
351}
352
353int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354{
355 struct netdev_name_node *name_node;
356 struct net *net = dev_net(dev);
357
358 name_node = netdev_name_node_lookup(net, name);
359 if (!name_node)
360 return -ENOENT;
361 /* lookup might have found our primary name or a name belonging
362 * to another device.
363 */
364 if (name_node == dev->name_node || name_node->dev != dev)
365 return -EINVAL;
366
367 __netdev_name_node_alt_destroy(name_node);
368
369 return 0;
370}
371
372static void netdev_name_node_alt_flush(struct net_device *dev)
373{
374 struct netdev_name_node *name_node, *tmp;
375
376 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 __netdev_name_node_alt_destroy(name_node);
378}
379
380/* Device list insertion */
381static void list_netdevice(struct net_device *dev)
382{
383 struct net *net = dev_net(dev);
384
385 ASSERT_RTNL();
386
387 write_lock(&dev_base_lock);
388 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389 netdev_name_node_add(net, dev->name_node);
390 hlist_add_head_rcu(&dev->index_hlist,
391 dev_index_hash(net, dev->ifindex));
392 write_unlock(&dev_base_lock);
393
394 dev_base_seq_inc(net);
395}
396
397/* Device list removal
398 * caller must respect a RCU grace period before freeing/reusing dev
399 */
400static void unlist_netdevice(struct net_device *dev)
401{
402 ASSERT_RTNL();
403
404 /* Unlink dev from the device chain */
405 write_lock(&dev_base_lock);
406 list_del_rcu(&dev->dev_list);
407 netdev_name_node_del(dev->name_node);
408 hlist_del_rcu(&dev->index_hlist);
409 write_unlock(&dev_base_lock);
410
411 dev_base_seq_inc(dev_net(dev));
412}
413
414/*
415 * Our notifier list
416 */
417
418static RAW_NOTIFIER_HEAD(netdev_chain);
419
420/*
421 * Device drivers call our routines to queue packets here. We empty the
422 * queue in the local softnet handler.
423 */
424
425DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
426EXPORT_PER_CPU_SYMBOL(softnet_data);
427
428#ifdef CONFIG_LOCKDEP
429/*
430 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
431 * according to dev->type
432 */
433static const unsigned short netdev_lock_type[] = {
434 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
435 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
436 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
437 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
438 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
439 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
440 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
441 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
442 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
443 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
444 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
445 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
446 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
447 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
448 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
449
450static const char *const netdev_lock_name[] = {
451 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
452 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
453 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
454 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
455 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
456 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
457 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
458 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
459 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
460 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
461 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
462 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
463 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
464 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
465 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
466
467static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
468static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
469
470static inline unsigned short netdev_lock_pos(unsigned short dev_type)
471{
472 int i;
473
474 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
475 if (netdev_lock_type[i] == dev_type)
476 return i;
477 /* the last key is used by default */
478 return ARRAY_SIZE(netdev_lock_type) - 1;
479}
480
481static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
482 unsigned short dev_type)
483{
484 int i;
485
486 i = netdev_lock_pos(dev_type);
487 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
488 netdev_lock_name[i]);
489}
490
491static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
492{
493 int i;
494
495 i = netdev_lock_pos(dev->type);
496 lockdep_set_class_and_name(&dev->addr_list_lock,
497 &netdev_addr_lock_key[i],
498 netdev_lock_name[i]);
499}
500#else
501static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
502 unsigned short dev_type)
503{
504}
505
506static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
507{
508}
509#endif
510
511/*******************************************************************************
512 *
513 * Protocol management and registration routines
514 *
515 *******************************************************************************/
516
517
518/*
519 * Add a protocol ID to the list. Now that the input handler is
520 * smarter we can dispense with all the messy stuff that used to be
521 * here.
522 *
523 * BEWARE!!! Protocol handlers, mangling input packets,
524 * MUST BE last in hash buckets and checking protocol handlers
525 * MUST start from promiscuous ptype_all chain in net_bh.
526 * It is true now, do not change it.
527 * Explanation follows: if protocol handler, mangling packet, will
528 * be the first on list, it is not able to sense, that packet
529 * is cloned and should be copied-on-write, so that it will
530 * change it and subsequent readers will get broken packet.
531 * --ANK (980803)
532 */
533
534static inline struct list_head *ptype_head(const struct packet_type *pt)
535{
536 if (pt->type == htons(ETH_P_ALL))
537 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
538 else
539 return pt->dev ? &pt->dev->ptype_specific :
540 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
541}
542
543/**
544 * dev_add_pack - add packet handler
545 * @pt: packet type declaration
546 *
547 * Add a protocol handler to the networking stack. The passed &packet_type
548 * is linked into kernel lists and may not be freed until it has been
549 * removed from the kernel lists.
550 *
551 * This call does not sleep therefore it can not
552 * guarantee all CPU's that are in middle of receiving packets
553 * will see the new packet type (until the next received packet).
554 */
555
556void dev_add_pack(struct packet_type *pt)
557{
558 struct list_head *head = ptype_head(pt);
559
560 spin_lock(&ptype_lock);
561 list_add_rcu(&pt->list, head);
562 spin_unlock(&ptype_lock);
563}
564EXPORT_SYMBOL(dev_add_pack);
565
566/**
567 * __dev_remove_pack - remove packet handler
568 * @pt: packet type declaration
569 *
570 * Remove a protocol handler that was previously added to the kernel
571 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
572 * from the kernel lists and can be freed or reused once this function
573 * returns.
574 *
575 * The packet type might still be in use by receivers
576 * and must not be freed until after all the CPU's have gone
577 * through a quiescent state.
578 */
579void __dev_remove_pack(struct packet_type *pt)
580{
581 struct list_head *head = ptype_head(pt);
582 struct packet_type *pt1;
583
584 spin_lock(&ptype_lock);
585
586 list_for_each_entry(pt1, head, list) {
587 if (pt == pt1) {
588 list_del_rcu(&pt->list);
589 goto out;
590 }
591 }
592
593 pr_warn("dev_remove_pack: %p not found\n", pt);
594out:
595 spin_unlock(&ptype_lock);
596}
597EXPORT_SYMBOL(__dev_remove_pack);
598
599/**
600 * dev_remove_pack - remove packet handler
601 * @pt: packet type declaration
602 *
603 * Remove a protocol handler that was previously added to the kernel
604 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
605 * from the kernel lists and can be freed or reused once this function
606 * returns.
607 *
608 * This call sleeps to guarantee that no CPU is looking at the packet
609 * type after return.
610 */
611void dev_remove_pack(struct packet_type *pt)
612{
613 __dev_remove_pack(pt);
614
615 synchronize_net();
616}
617EXPORT_SYMBOL(dev_remove_pack);
618
619
620/*******************************************************************************
621 *
622 * Device Interface Subroutines
623 *
624 *******************************************************************************/
625
626/**
627 * dev_get_iflink - get 'iflink' value of a interface
628 * @dev: targeted interface
629 *
630 * Indicates the ifindex the interface is linked to.
631 * Physical interfaces have the same 'ifindex' and 'iflink' values.
632 */
633
634int dev_get_iflink(const struct net_device *dev)
635{
636 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
637 return dev->netdev_ops->ndo_get_iflink(dev);
638
639 return dev->ifindex;
640}
641EXPORT_SYMBOL(dev_get_iflink);
642
643/**
644 * dev_fill_metadata_dst - Retrieve tunnel egress information.
645 * @dev: targeted interface
646 * @skb: The packet.
647 *
648 * For better visibility of tunnel traffic OVS needs to retrieve
649 * egress tunnel information for a packet. Following API allows
650 * user to get this info.
651 */
652int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
653{
654 struct ip_tunnel_info *info;
655
656 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
657 return -EINVAL;
658
659 info = skb_tunnel_info_unclone(skb);
660 if (!info)
661 return -ENOMEM;
662 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
663 return -EINVAL;
664
665 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
666}
667EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
668
669static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
670{
671 int k = stack->num_paths++;
672
673 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
674 return NULL;
675
676 return &stack->path[k];
677}
678
679int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
680 struct net_device_path_stack *stack)
681{
682 const struct net_device *last_dev;
683 struct net_device_path_ctx ctx = {
684 .dev = dev,
685 };
686 struct net_device_path *path;
687 int ret = 0;
688
689 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
690 stack->num_paths = 0;
691 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
692 last_dev = ctx.dev;
693 path = dev_fwd_path(stack);
694 if (!path)
695 return -1;
696
697 memset(path, 0, sizeof(struct net_device_path));
698 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
699 if (ret < 0)
700 return -1;
701
702 if (WARN_ON_ONCE(last_dev == ctx.dev))
703 return -1;
704 }
705
706 if (!ctx.dev)
707 return ret;
708
709 path = dev_fwd_path(stack);
710 if (!path)
711 return -1;
712 path->type = DEV_PATH_ETHERNET;
713 path->dev = ctx.dev;
714
715 return ret;
716}
717EXPORT_SYMBOL_GPL(dev_fill_forward_path);
718
719/**
720 * __dev_get_by_name - find a device by its name
721 * @net: the applicable net namespace
722 * @name: name to find
723 *
724 * Find an interface by name. Must be called under RTNL semaphore
725 * or @dev_base_lock. If the name is found a pointer to the device
726 * is returned. If the name is not found then %NULL is returned. The
727 * reference counters are not incremented so the caller must be
728 * careful with locks.
729 */
730
731struct net_device *__dev_get_by_name(struct net *net, const char *name)
732{
733 struct netdev_name_node *node_name;
734
735 node_name = netdev_name_node_lookup(net, name);
736 return node_name ? node_name->dev : NULL;
737}
738EXPORT_SYMBOL(__dev_get_by_name);
739
740/**
741 * dev_get_by_name_rcu - find a device by its name
742 * @net: the applicable net namespace
743 * @name: name to find
744 *
745 * Find an interface by name.
746 * If the name is found a pointer to the device is returned.
747 * If the name is not found then %NULL is returned.
748 * The reference counters are not incremented so the caller must be
749 * careful with locks. The caller must hold RCU lock.
750 */
751
752struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753{
754 struct netdev_name_node *node_name;
755
756 node_name = netdev_name_node_lookup_rcu(net, name);
757 return node_name ? node_name->dev : NULL;
758}
759EXPORT_SYMBOL(dev_get_by_name_rcu);
760
761/**
762 * dev_get_by_name - find a device by its name
763 * @net: the applicable net namespace
764 * @name: name to find
765 *
766 * Find an interface by name. This can be called from any
767 * context and does its own locking. The returned handle has
768 * the usage count incremented and the caller must use dev_put() to
769 * release it when it is no longer needed. %NULL is returned if no
770 * matching device is found.
771 */
772
773struct net_device *dev_get_by_name(struct net *net, const char *name)
774{
775 struct net_device *dev;
776
777 rcu_read_lock();
778 dev = dev_get_by_name_rcu(net, name);
779 dev_hold(dev);
780 rcu_read_unlock();
781 return dev;
782}
783EXPORT_SYMBOL(dev_get_by_name);
784
785/**
786 * __dev_get_by_index - find a device by its ifindex
787 * @net: the applicable net namespace
788 * @ifindex: index of device
789 *
790 * Search for an interface by index. Returns %NULL if the device
791 * is not found or a pointer to the device. The device has not
792 * had its reference counter increased so the caller must be careful
793 * about locking. The caller must hold either the RTNL semaphore
794 * or @dev_base_lock.
795 */
796
797struct net_device *__dev_get_by_index(struct net *net, int ifindex)
798{
799 struct net_device *dev;
800 struct hlist_head *head = dev_index_hash(net, ifindex);
801
802 hlist_for_each_entry(dev, head, index_hlist)
803 if (dev->ifindex == ifindex)
804 return dev;
805
806 return NULL;
807}
808EXPORT_SYMBOL(__dev_get_by_index);
809
810/**
811 * dev_get_by_index_rcu - find a device by its ifindex
812 * @net: the applicable net namespace
813 * @ifindex: index of device
814 *
815 * Search for an interface by index. Returns %NULL if the device
816 * is not found or a pointer to the device. The device has not
817 * had its reference counter increased so the caller must be careful
818 * about locking. The caller must hold RCU lock.
819 */
820
821struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
822{
823 struct net_device *dev;
824 struct hlist_head *head = dev_index_hash(net, ifindex);
825
826 hlist_for_each_entry_rcu(dev, head, index_hlist)
827 if (dev->ifindex == ifindex)
828 return dev;
829
830 return NULL;
831}
832EXPORT_SYMBOL(dev_get_by_index_rcu);
833
834
835/**
836 * dev_get_by_index - find a device by its ifindex
837 * @net: the applicable net namespace
838 * @ifindex: index of device
839 *
840 * Search for an interface by index. Returns NULL if the device
841 * is not found or a pointer to the device. The device returned has
842 * had a reference added and the pointer is safe until the user calls
843 * dev_put to indicate they have finished with it.
844 */
845
846struct net_device *dev_get_by_index(struct net *net, int ifindex)
847{
848 struct net_device *dev;
849
850 rcu_read_lock();
851 dev = dev_get_by_index_rcu(net, ifindex);
852 dev_hold(dev);
853 rcu_read_unlock();
854 return dev;
855}
856EXPORT_SYMBOL(dev_get_by_index);
857
858/**
859 * dev_get_by_napi_id - find a device by napi_id
860 * @napi_id: ID of the NAPI struct
861 *
862 * Search for an interface by NAPI ID. Returns %NULL if the device
863 * is not found or a pointer to the device. The device has not had
864 * its reference counter increased so the caller must be careful
865 * about locking. The caller must hold RCU lock.
866 */
867
868struct net_device *dev_get_by_napi_id(unsigned int napi_id)
869{
870 struct napi_struct *napi;
871
872 WARN_ON_ONCE(!rcu_read_lock_held());
873
874 if (napi_id < MIN_NAPI_ID)
875 return NULL;
876
877 napi = napi_by_id(napi_id);
878
879 return napi ? napi->dev : NULL;
880}
881EXPORT_SYMBOL(dev_get_by_napi_id);
882
883/**
884 * netdev_get_name - get a netdevice name, knowing its ifindex.
885 * @net: network namespace
886 * @name: a pointer to the buffer where the name will be stored.
887 * @ifindex: the ifindex of the interface to get the name from.
888 */
889int netdev_get_name(struct net *net, char *name, int ifindex)
890{
891 struct net_device *dev;
892 int ret;
893
894 down_read(&devnet_rename_sem);
895 rcu_read_lock();
896
897 dev = dev_get_by_index_rcu(net, ifindex);
898 if (!dev) {
899 ret = -ENODEV;
900 goto out;
901 }
902
903 strcpy(name, dev->name);
904
905 ret = 0;
906out:
907 rcu_read_unlock();
908 up_read(&devnet_rename_sem);
909 return ret;
910}
911
912/**
913 * dev_getbyhwaddr_rcu - find a device by its hardware address
914 * @net: the applicable net namespace
915 * @type: media type of device
916 * @ha: hardware address
917 *
918 * Search for an interface by MAC address. Returns NULL if the device
919 * is not found or a pointer to the device.
920 * The caller must hold RCU or RTNL.
921 * The returned device has not had its ref count increased
922 * and the caller must therefore be careful about locking
923 *
924 */
925
926struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
927 const char *ha)
928{
929 struct net_device *dev;
930
931 for_each_netdev_rcu(net, dev)
932 if (dev->type == type &&
933 !memcmp(dev->dev_addr, ha, dev->addr_len))
934 return dev;
935
936 return NULL;
937}
938EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
939
940struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
941{
942 struct net_device *dev, *ret = NULL;
943
944 rcu_read_lock();
945 for_each_netdev_rcu(net, dev)
946 if (dev->type == type) {
947 dev_hold(dev);
948 ret = dev;
949 break;
950 }
951 rcu_read_unlock();
952 return ret;
953}
954EXPORT_SYMBOL(dev_getfirstbyhwtype);
955
956/**
957 * __dev_get_by_flags - find any device with given flags
958 * @net: the applicable net namespace
959 * @if_flags: IFF_* values
960 * @mask: bitmask of bits in if_flags to check
961 *
962 * Search for any interface with the given flags. Returns NULL if a device
963 * is not found or a pointer to the device. Must be called inside
964 * rtnl_lock(), and result refcount is unchanged.
965 */
966
967struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
968 unsigned short mask)
969{
970 struct net_device *dev, *ret;
971
972 ASSERT_RTNL();
973
974 ret = NULL;
975 for_each_netdev(net, dev) {
976 if (((dev->flags ^ if_flags) & mask) == 0) {
977 ret = dev;
978 break;
979 }
980 }
981 return ret;
982}
983EXPORT_SYMBOL(__dev_get_by_flags);
984
985/**
986 * dev_valid_name - check if name is okay for network device
987 * @name: name string
988 *
989 * Network device names need to be valid file names to
990 * allow sysfs to work. We also disallow any kind of
991 * whitespace.
992 */
993bool dev_valid_name(const char *name)
994{
995 if (*name == '\0')
996 return false;
997 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
998 return false;
999 if (!strcmp(name, ".") || !strcmp(name, ".."))
1000 return false;
1001
1002 while (*name) {
1003 if (*name == '/' || *name == ':' || isspace(*name))
1004 return false;
1005 name++;
1006 }
1007 return true;
1008}
1009EXPORT_SYMBOL(dev_valid_name);
1010
1011/**
1012 * __dev_alloc_name - allocate a name for a device
1013 * @net: network namespace to allocate the device name in
1014 * @name: name format string
1015 * @buf: scratch buffer and result name string
1016 *
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1021 * duplicates.
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1024 */
1025
1026static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1027{
1028 int i = 0;
1029 const char *p;
1030 const int max_netdevices = 8*PAGE_SIZE;
1031 unsigned long *inuse;
1032 struct net_device *d;
1033
1034 if (!dev_valid_name(name))
1035 return -EINVAL;
1036
1037 p = strchr(name, '%');
1038 if (p) {
1039 /*
1040 * Verify the string as this thing may have come from
1041 * the user. There must be either one "%d" and no other "%"
1042 * characters.
1043 */
1044 if (p[1] != 'd' || strchr(p + 2, '%'))
1045 return -EINVAL;
1046
1047 /* Use one page as a bit array of possible slots */
1048 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1049 if (!inuse)
1050 return -ENOMEM;
1051
1052 for_each_netdev(net, d) {
1053 struct netdev_name_node *name_node;
1054 list_for_each_entry(name_node, &d->name_node->list, list) {
1055 if (!sscanf(name_node->name, name, &i))
1056 continue;
1057 if (i < 0 || i >= max_netdevices)
1058 continue;
1059
1060 /* avoid cases where sscanf is not exact inverse of printf */
1061 snprintf(buf, IFNAMSIZ, name, i);
1062 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1063 __set_bit(i, inuse);
1064 }
1065 if (!sscanf(d->name, name, &i))
1066 continue;
1067 if (i < 0 || i >= max_netdevices)
1068 continue;
1069
1070 /* avoid cases where sscanf is not exact inverse of printf */
1071 snprintf(buf, IFNAMSIZ, name, i);
1072 if (!strncmp(buf, d->name, IFNAMSIZ))
1073 __set_bit(i, inuse);
1074 }
1075
1076 i = find_first_zero_bit(inuse, max_netdevices);
1077 free_page((unsigned long) inuse);
1078 }
1079
1080 snprintf(buf, IFNAMSIZ, name, i);
1081 if (!netdev_name_in_use(net, buf))
1082 return i;
1083
1084 /* It is possible to run out of possible slots
1085 * when the name is long and there isn't enough space left
1086 * for the digits, or if all bits are used.
1087 */
1088 return -ENFILE;
1089}
1090
1091static int dev_alloc_name_ns(struct net *net,
1092 struct net_device *dev,
1093 const char *name)
1094{
1095 char buf[IFNAMSIZ];
1096 int ret;
1097
1098 BUG_ON(!net);
1099 ret = __dev_alloc_name(net, name, buf);
1100 if (ret >= 0)
1101 strlcpy(dev->name, buf, IFNAMSIZ);
1102 return ret;
1103}
1104
1105/**
1106 * dev_alloc_name - allocate a name for a device
1107 * @dev: device
1108 * @name: name format string
1109 *
1110 * Passed a format string - eg "lt%d" it will try and find a suitable
1111 * id. It scans list of devices to build up a free map, then chooses
1112 * the first empty slot. The caller must hold the dev_base or rtnl lock
1113 * while allocating the name and adding the device in order to avoid
1114 * duplicates.
1115 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1116 * Returns the number of the unit assigned or a negative errno code.
1117 */
1118
1119int dev_alloc_name(struct net_device *dev, const char *name)
1120{
1121 return dev_alloc_name_ns(dev_net(dev), dev, name);
1122}
1123EXPORT_SYMBOL(dev_alloc_name);
1124
1125static int dev_get_valid_name(struct net *net, struct net_device *dev,
1126 const char *name)
1127{
1128 BUG_ON(!net);
1129
1130 if (!dev_valid_name(name))
1131 return -EINVAL;
1132
1133 if (strchr(name, '%'))
1134 return dev_alloc_name_ns(net, dev, name);
1135 else if (netdev_name_in_use(net, name))
1136 return -EEXIST;
1137 else if (dev->name != name)
1138 strlcpy(dev->name, name, IFNAMSIZ);
1139
1140 return 0;
1141}
1142
1143/**
1144 * dev_change_name - change name of a device
1145 * @dev: device
1146 * @newname: name (or format string) must be at least IFNAMSIZ
1147 *
1148 * Change name of a device, can pass format strings "eth%d".
1149 * for wildcarding.
1150 */
1151int dev_change_name(struct net_device *dev, const char *newname)
1152{
1153 unsigned char old_assign_type;
1154 char oldname[IFNAMSIZ];
1155 int err = 0;
1156 int ret;
1157 struct net *net;
1158
1159 ASSERT_RTNL();
1160 BUG_ON(!dev_net(dev));
1161
1162 net = dev_net(dev);
1163
1164 /* Some auto-enslaved devices e.g. failover slaves are
1165 * special, as userspace might rename the device after
1166 * the interface had been brought up and running since
1167 * the point kernel initiated auto-enslavement. Allow
1168 * live name change even when these slave devices are
1169 * up and running.
1170 *
1171 * Typically, users of these auto-enslaving devices
1172 * don't actually care about slave name change, as
1173 * they are supposed to operate on master interface
1174 * directly.
1175 */
1176 if (dev->flags & IFF_UP &&
1177 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1178 return -EBUSY;
1179
1180 down_write(&devnet_rename_sem);
1181
1182 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1183 up_write(&devnet_rename_sem);
1184 return 0;
1185 }
1186
1187 memcpy(oldname, dev->name, IFNAMSIZ);
1188
1189 err = dev_get_valid_name(net, dev, newname);
1190 if (err < 0) {
1191 up_write(&devnet_rename_sem);
1192 return err;
1193 }
1194
1195 if (oldname[0] && !strchr(oldname, '%'))
1196 netdev_info(dev, "renamed from %s\n", oldname);
1197
1198 old_assign_type = dev->name_assign_type;
1199 dev->name_assign_type = NET_NAME_RENAMED;
1200
1201rollback:
1202 ret = device_rename(&dev->dev, dev->name);
1203 if (ret) {
1204 memcpy(dev->name, oldname, IFNAMSIZ);
1205 dev->name_assign_type = old_assign_type;
1206 up_write(&devnet_rename_sem);
1207 return ret;
1208 }
1209
1210 up_write(&devnet_rename_sem);
1211
1212 netdev_adjacent_rename_links(dev, oldname);
1213
1214 write_lock(&dev_base_lock);
1215 netdev_name_node_del(dev->name_node);
1216 write_unlock(&dev_base_lock);
1217
1218 synchronize_rcu();
1219
1220 write_lock(&dev_base_lock);
1221 netdev_name_node_add(net, dev->name_node);
1222 write_unlock(&dev_base_lock);
1223
1224 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1225 ret = notifier_to_errno(ret);
1226
1227 if (ret) {
1228 /* err >= 0 after dev_alloc_name() or stores the first errno */
1229 if (err >= 0) {
1230 err = ret;
1231 down_write(&devnet_rename_sem);
1232 memcpy(dev->name, oldname, IFNAMSIZ);
1233 memcpy(oldname, newname, IFNAMSIZ);
1234 dev->name_assign_type = old_assign_type;
1235 old_assign_type = NET_NAME_RENAMED;
1236 goto rollback;
1237 } else {
1238 netdev_err(dev, "name change rollback failed: %d\n",
1239 ret);
1240 }
1241 }
1242
1243 return err;
1244}
1245
1246/**
1247 * dev_set_alias - change ifalias of a device
1248 * @dev: device
1249 * @alias: name up to IFALIASZ
1250 * @len: limit of bytes to copy from info
1251 *
1252 * Set ifalias for a device,
1253 */
1254int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1255{
1256 struct dev_ifalias *new_alias = NULL;
1257
1258 if (len >= IFALIASZ)
1259 return -EINVAL;
1260
1261 if (len) {
1262 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1263 if (!new_alias)
1264 return -ENOMEM;
1265
1266 memcpy(new_alias->ifalias, alias, len);
1267 new_alias->ifalias[len] = 0;
1268 }
1269
1270 mutex_lock(&ifalias_mutex);
1271 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1272 mutex_is_locked(&ifalias_mutex));
1273 mutex_unlock(&ifalias_mutex);
1274
1275 if (new_alias)
1276 kfree_rcu(new_alias, rcuhead);
1277
1278 return len;
1279}
1280EXPORT_SYMBOL(dev_set_alias);
1281
1282/**
1283 * dev_get_alias - get ifalias of a device
1284 * @dev: device
1285 * @name: buffer to store name of ifalias
1286 * @len: size of buffer
1287 *
1288 * get ifalias for a device. Caller must make sure dev cannot go
1289 * away, e.g. rcu read lock or own a reference count to device.
1290 */
1291int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1292{
1293 const struct dev_ifalias *alias;
1294 int ret = 0;
1295
1296 rcu_read_lock();
1297 alias = rcu_dereference(dev->ifalias);
1298 if (alias)
1299 ret = snprintf(name, len, "%s", alias->ifalias);
1300 rcu_read_unlock();
1301
1302 return ret;
1303}
1304
1305/**
1306 * netdev_features_change - device changes features
1307 * @dev: device to cause notification
1308 *
1309 * Called to indicate a device has changed features.
1310 */
1311void netdev_features_change(struct net_device *dev)
1312{
1313 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1314}
1315EXPORT_SYMBOL(netdev_features_change);
1316
1317/**
1318 * netdev_state_change - device changes state
1319 * @dev: device to cause notification
1320 *
1321 * Called to indicate a device has changed state. This function calls
1322 * the notifier chains for netdev_chain and sends a NEWLINK message
1323 * to the routing socket.
1324 */
1325void netdev_state_change(struct net_device *dev)
1326{
1327 if (dev->flags & IFF_UP) {
1328 struct netdev_notifier_change_info change_info = {
1329 .info.dev = dev,
1330 };
1331
1332 call_netdevice_notifiers_info(NETDEV_CHANGE,
1333 &change_info.info);
1334 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1335 }
1336}
1337EXPORT_SYMBOL(netdev_state_change);
1338
1339/**
1340 * __netdev_notify_peers - notify network peers about existence of @dev,
1341 * to be called when rtnl lock is already held.
1342 * @dev: network device
1343 *
1344 * Generate traffic such that interested network peers are aware of
1345 * @dev, such as by generating a gratuitous ARP. This may be used when
1346 * a device wants to inform the rest of the network about some sort of
1347 * reconfiguration such as a failover event or virtual machine
1348 * migration.
1349 */
1350void __netdev_notify_peers(struct net_device *dev)
1351{
1352 ASSERT_RTNL();
1353 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1354 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1355}
1356EXPORT_SYMBOL(__netdev_notify_peers);
1357
1358/**
1359 * netdev_notify_peers - notify network peers about existence of @dev
1360 * @dev: network device
1361 *
1362 * Generate traffic such that interested network peers are aware of
1363 * @dev, such as by generating a gratuitous ARP. This may be used when
1364 * a device wants to inform the rest of the network about some sort of
1365 * reconfiguration such as a failover event or virtual machine
1366 * migration.
1367 */
1368void netdev_notify_peers(struct net_device *dev)
1369{
1370 rtnl_lock();
1371 __netdev_notify_peers(dev);
1372 rtnl_unlock();
1373}
1374EXPORT_SYMBOL(netdev_notify_peers);
1375
1376static int napi_threaded_poll(void *data);
1377
1378static int napi_kthread_create(struct napi_struct *n)
1379{
1380 int err = 0;
1381
1382 /* Create and wake up the kthread once to put it in
1383 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1384 * warning and work with loadavg.
1385 */
1386 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1387 n->dev->name, n->napi_id);
1388 if (IS_ERR(n->thread)) {
1389 err = PTR_ERR(n->thread);
1390 pr_err("kthread_run failed with err %d\n", err);
1391 n->thread = NULL;
1392 }
1393
1394 return err;
1395}
1396
1397static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1398{
1399 const struct net_device_ops *ops = dev->netdev_ops;
1400 int ret;
1401
1402 ASSERT_RTNL();
1403 dev_addr_check(dev);
1404
1405 if (!netif_device_present(dev)) {
1406 /* may be detached because parent is runtime-suspended */
1407 if (dev->dev.parent)
1408 pm_runtime_resume(dev->dev.parent);
1409 if (!netif_device_present(dev))
1410 return -ENODEV;
1411 }
1412
1413 /* Block netpoll from trying to do any rx path servicing.
1414 * If we don't do this there is a chance ndo_poll_controller
1415 * or ndo_poll may be running while we open the device
1416 */
1417 netpoll_poll_disable(dev);
1418
1419 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1420 ret = notifier_to_errno(ret);
1421 if (ret)
1422 return ret;
1423
1424 set_bit(__LINK_STATE_START, &dev->state);
1425
1426 if (ops->ndo_validate_addr)
1427 ret = ops->ndo_validate_addr(dev);
1428
1429 if (!ret && ops->ndo_open)
1430 ret = ops->ndo_open(dev);
1431
1432 netpoll_poll_enable(dev);
1433
1434 if (ret)
1435 clear_bit(__LINK_STATE_START, &dev->state);
1436 else {
1437 dev->flags |= IFF_UP;
1438 dev_set_rx_mode(dev);
1439 dev_activate(dev);
1440 add_device_randomness(dev->dev_addr, dev->addr_len);
1441 }
1442
1443 return ret;
1444}
1445
1446/**
1447 * dev_open - prepare an interface for use.
1448 * @dev: device to open
1449 * @extack: netlink extended ack
1450 *
1451 * Takes a device from down to up state. The device's private open
1452 * function is invoked and then the multicast lists are loaded. Finally
1453 * the device is moved into the up state and a %NETDEV_UP message is
1454 * sent to the netdev notifier chain.
1455 *
1456 * Calling this function on an active interface is a nop. On a failure
1457 * a negative errno code is returned.
1458 */
1459int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1460{
1461 int ret;
1462
1463 if (dev->flags & IFF_UP)
1464 return 0;
1465
1466 ret = __dev_open(dev, extack);
1467 if (ret < 0)
1468 return ret;
1469
1470 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1471 call_netdevice_notifiers(NETDEV_UP, dev);
1472
1473 return ret;
1474}
1475EXPORT_SYMBOL(dev_open);
1476
1477static void __dev_close_many(struct list_head *head)
1478{
1479 struct net_device *dev;
1480
1481 ASSERT_RTNL();
1482 might_sleep();
1483
1484 list_for_each_entry(dev, head, close_list) {
1485 /* Temporarily disable netpoll until the interface is down */
1486 netpoll_poll_disable(dev);
1487
1488 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1489
1490 clear_bit(__LINK_STATE_START, &dev->state);
1491
1492 /* Synchronize to scheduled poll. We cannot touch poll list, it
1493 * can be even on different cpu. So just clear netif_running().
1494 *
1495 * dev->stop() will invoke napi_disable() on all of it's
1496 * napi_struct instances on this device.
1497 */
1498 smp_mb__after_atomic(); /* Commit netif_running(). */
1499 }
1500
1501 dev_deactivate_many(head);
1502
1503 list_for_each_entry(dev, head, close_list) {
1504 const struct net_device_ops *ops = dev->netdev_ops;
1505
1506 /*
1507 * Call the device specific close. This cannot fail.
1508 * Only if device is UP
1509 *
1510 * We allow it to be called even after a DETACH hot-plug
1511 * event.
1512 */
1513 if (ops->ndo_stop)
1514 ops->ndo_stop(dev);
1515
1516 dev->flags &= ~IFF_UP;
1517 netpoll_poll_enable(dev);
1518 }
1519}
1520
1521static void __dev_close(struct net_device *dev)
1522{
1523 LIST_HEAD(single);
1524
1525 list_add(&dev->close_list, &single);
1526 __dev_close_many(&single);
1527 list_del(&single);
1528}
1529
1530void dev_close_many(struct list_head *head, bool unlink)
1531{
1532 struct net_device *dev, *tmp;
1533
1534 /* Remove the devices that don't need to be closed */
1535 list_for_each_entry_safe(dev, tmp, head, close_list)
1536 if (!(dev->flags & IFF_UP))
1537 list_del_init(&dev->close_list);
1538
1539 __dev_close_many(head);
1540
1541 list_for_each_entry_safe(dev, tmp, head, close_list) {
1542 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1543 call_netdevice_notifiers(NETDEV_DOWN, dev);
1544 if (unlink)
1545 list_del_init(&dev->close_list);
1546 }
1547}
1548EXPORT_SYMBOL(dev_close_many);
1549
1550/**
1551 * dev_close - shutdown an interface.
1552 * @dev: device to shutdown
1553 *
1554 * This function moves an active device into down state. A
1555 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1556 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1557 * chain.
1558 */
1559void dev_close(struct net_device *dev)
1560{
1561 if (dev->flags & IFF_UP) {
1562 LIST_HEAD(single);
1563
1564 list_add(&dev->close_list, &single);
1565 dev_close_many(&single, true);
1566 list_del(&single);
1567 }
1568}
1569EXPORT_SYMBOL(dev_close);
1570
1571
1572/**
1573 * dev_disable_lro - disable Large Receive Offload on a device
1574 * @dev: device
1575 *
1576 * Disable Large Receive Offload (LRO) on a net device. Must be
1577 * called under RTNL. This is needed if received packets may be
1578 * forwarded to another interface.
1579 */
1580void dev_disable_lro(struct net_device *dev)
1581{
1582 struct net_device *lower_dev;
1583 struct list_head *iter;
1584
1585 dev->wanted_features &= ~NETIF_F_LRO;
1586 netdev_update_features(dev);
1587
1588 if (unlikely(dev->features & NETIF_F_LRO))
1589 netdev_WARN(dev, "failed to disable LRO!\n");
1590
1591 netdev_for_each_lower_dev(dev, lower_dev, iter)
1592 dev_disable_lro(lower_dev);
1593}
1594EXPORT_SYMBOL(dev_disable_lro);
1595
1596/**
1597 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1598 * @dev: device
1599 *
1600 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1601 * called under RTNL. This is needed if Generic XDP is installed on
1602 * the device.
1603 */
1604static void dev_disable_gro_hw(struct net_device *dev)
1605{
1606 dev->wanted_features &= ~NETIF_F_GRO_HW;
1607 netdev_update_features(dev);
1608
1609 if (unlikely(dev->features & NETIF_F_GRO_HW))
1610 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1611}
1612
1613const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1614{
1615#define N(val) \
1616 case NETDEV_##val: \
1617 return "NETDEV_" __stringify(val);
1618 switch (cmd) {
1619 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1620 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1621 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1622 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1623 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1624 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1625 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1626 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1627 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1628 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1629 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1630 }
1631#undef N
1632 return "UNKNOWN_NETDEV_EVENT";
1633}
1634EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1635
1636static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1637 struct net_device *dev)
1638{
1639 struct netdev_notifier_info info = {
1640 .dev = dev,
1641 };
1642
1643 return nb->notifier_call(nb, val, &info);
1644}
1645
1646static int call_netdevice_register_notifiers(struct notifier_block *nb,
1647 struct net_device *dev)
1648{
1649 int err;
1650
1651 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1652 err = notifier_to_errno(err);
1653 if (err)
1654 return err;
1655
1656 if (!(dev->flags & IFF_UP))
1657 return 0;
1658
1659 call_netdevice_notifier(nb, NETDEV_UP, dev);
1660 return 0;
1661}
1662
1663static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1664 struct net_device *dev)
1665{
1666 if (dev->flags & IFF_UP) {
1667 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1668 dev);
1669 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1670 }
1671 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1672}
1673
1674static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1675 struct net *net)
1676{
1677 struct net_device *dev;
1678 int err;
1679
1680 for_each_netdev(net, dev) {
1681 err = call_netdevice_register_notifiers(nb, dev);
1682 if (err)
1683 goto rollback;
1684 }
1685 return 0;
1686
1687rollback:
1688 for_each_netdev_continue_reverse(net, dev)
1689 call_netdevice_unregister_notifiers(nb, dev);
1690 return err;
1691}
1692
1693static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1694 struct net *net)
1695{
1696 struct net_device *dev;
1697
1698 for_each_netdev(net, dev)
1699 call_netdevice_unregister_notifiers(nb, dev);
1700}
1701
1702static int dev_boot_phase = 1;
1703
1704/**
1705 * register_netdevice_notifier - register a network notifier block
1706 * @nb: notifier
1707 *
1708 * Register a notifier to be called when network device events occur.
1709 * The notifier passed is linked into the kernel structures and must
1710 * not be reused until it has been unregistered. A negative errno code
1711 * is returned on a failure.
1712 *
1713 * When registered all registration and up events are replayed
1714 * to the new notifier to allow device to have a race free
1715 * view of the network device list.
1716 */
1717
1718int register_netdevice_notifier(struct notifier_block *nb)
1719{
1720 struct net *net;
1721 int err;
1722
1723 /* Close race with setup_net() and cleanup_net() */
1724 down_write(&pernet_ops_rwsem);
1725 rtnl_lock();
1726 err = raw_notifier_chain_register(&netdev_chain, nb);
1727 if (err)
1728 goto unlock;
1729 if (dev_boot_phase)
1730 goto unlock;
1731 for_each_net(net) {
1732 err = call_netdevice_register_net_notifiers(nb, net);
1733 if (err)
1734 goto rollback;
1735 }
1736
1737unlock:
1738 rtnl_unlock();
1739 up_write(&pernet_ops_rwsem);
1740 return err;
1741
1742rollback:
1743 for_each_net_continue_reverse(net)
1744 call_netdevice_unregister_net_notifiers(nb, net);
1745
1746 raw_notifier_chain_unregister(&netdev_chain, nb);
1747 goto unlock;
1748}
1749EXPORT_SYMBOL(register_netdevice_notifier);
1750
1751/**
1752 * unregister_netdevice_notifier - unregister a network notifier block
1753 * @nb: notifier
1754 *
1755 * Unregister a notifier previously registered by
1756 * register_netdevice_notifier(). The notifier is unlinked into the
1757 * kernel structures and may then be reused. A negative errno code
1758 * is returned on a failure.
1759 *
1760 * After unregistering unregister and down device events are synthesized
1761 * for all devices on the device list to the removed notifier to remove
1762 * the need for special case cleanup code.
1763 */
1764
1765int unregister_netdevice_notifier(struct notifier_block *nb)
1766{
1767 struct net *net;
1768 int err;
1769
1770 /* Close race with setup_net() and cleanup_net() */
1771 down_write(&pernet_ops_rwsem);
1772 rtnl_lock();
1773 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1774 if (err)
1775 goto unlock;
1776
1777 for_each_net(net)
1778 call_netdevice_unregister_net_notifiers(nb, net);
1779
1780unlock:
1781 rtnl_unlock();
1782 up_write(&pernet_ops_rwsem);
1783 return err;
1784}
1785EXPORT_SYMBOL(unregister_netdevice_notifier);
1786
1787static int __register_netdevice_notifier_net(struct net *net,
1788 struct notifier_block *nb,
1789 bool ignore_call_fail)
1790{
1791 int err;
1792
1793 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1794 if (err)
1795 return err;
1796 if (dev_boot_phase)
1797 return 0;
1798
1799 err = call_netdevice_register_net_notifiers(nb, net);
1800 if (err && !ignore_call_fail)
1801 goto chain_unregister;
1802
1803 return 0;
1804
1805chain_unregister:
1806 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1807 return err;
1808}
1809
1810static int __unregister_netdevice_notifier_net(struct net *net,
1811 struct notifier_block *nb)
1812{
1813 int err;
1814
1815 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1816 if (err)
1817 return err;
1818
1819 call_netdevice_unregister_net_notifiers(nb, net);
1820 return 0;
1821}
1822
1823/**
1824 * register_netdevice_notifier_net - register a per-netns network notifier block
1825 * @net: network namespace
1826 * @nb: notifier
1827 *
1828 * Register a notifier to be called when network device events occur.
1829 * The notifier passed is linked into the kernel structures and must
1830 * not be reused until it has been unregistered. A negative errno code
1831 * is returned on a failure.
1832 *
1833 * When registered all registration and up events are replayed
1834 * to the new notifier to allow device to have a race free
1835 * view of the network device list.
1836 */
1837
1838int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1839{
1840 int err;
1841
1842 rtnl_lock();
1843 err = __register_netdevice_notifier_net(net, nb, false);
1844 rtnl_unlock();
1845 return err;
1846}
1847EXPORT_SYMBOL(register_netdevice_notifier_net);
1848
1849/**
1850 * unregister_netdevice_notifier_net - unregister a per-netns
1851 * network notifier block
1852 * @net: network namespace
1853 * @nb: notifier
1854 *
1855 * Unregister a notifier previously registered by
1856 * register_netdevice_notifier(). The notifier is unlinked into the
1857 * kernel structures and may then be reused. A negative errno code
1858 * is returned on a failure.
1859 *
1860 * After unregistering unregister and down device events are synthesized
1861 * for all devices on the device list to the removed notifier to remove
1862 * the need for special case cleanup code.
1863 */
1864
1865int unregister_netdevice_notifier_net(struct net *net,
1866 struct notifier_block *nb)
1867{
1868 int err;
1869
1870 rtnl_lock();
1871 err = __unregister_netdevice_notifier_net(net, nb);
1872 rtnl_unlock();
1873 return err;
1874}
1875EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1876
1877int register_netdevice_notifier_dev_net(struct net_device *dev,
1878 struct notifier_block *nb,
1879 struct netdev_net_notifier *nn)
1880{
1881 int err;
1882
1883 rtnl_lock();
1884 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1885 if (!err) {
1886 nn->nb = nb;
1887 list_add(&nn->list, &dev->net_notifier_list);
1888 }
1889 rtnl_unlock();
1890 return err;
1891}
1892EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1893
1894int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1895 struct notifier_block *nb,
1896 struct netdev_net_notifier *nn)
1897{
1898 int err;
1899
1900 rtnl_lock();
1901 list_del(&nn->list);
1902 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1903 rtnl_unlock();
1904 return err;
1905}
1906EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1907
1908static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1909 struct net *net)
1910{
1911 struct netdev_net_notifier *nn;
1912
1913 list_for_each_entry(nn, &dev->net_notifier_list, list) {
1914 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1915 __register_netdevice_notifier_net(net, nn->nb, true);
1916 }
1917}
1918
1919/**
1920 * call_netdevice_notifiers_info - call all network notifier blocks
1921 * @val: value passed unmodified to notifier function
1922 * @info: notifier information data
1923 *
1924 * Call all network notifier blocks. Parameters and return value
1925 * are as for raw_notifier_call_chain().
1926 */
1927
1928static int call_netdevice_notifiers_info(unsigned long val,
1929 struct netdev_notifier_info *info)
1930{
1931 struct net *net = dev_net(info->dev);
1932 int ret;
1933
1934 ASSERT_RTNL();
1935
1936 /* Run per-netns notifier block chain first, then run the global one.
1937 * Hopefully, one day, the global one is going to be removed after
1938 * all notifier block registrators get converted to be per-netns.
1939 */
1940 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1941 if (ret & NOTIFY_STOP_MASK)
1942 return ret;
1943 return raw_notifier_call_chain(&netdev_chain, val, info);
1944}
1945
1946/**
1947 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1948 * for and rollback on error
1949 * @val_up: value passed unmodified to notifier function
1950 * @val_down: value passed unmodified to the notifier function when
1951 * recovering from an error on @val_up
1952 * @info: notifier information data
1953 *
1954 * Call all per-netns network notifier blocks, but not notifier blocks on
1955 * the global notifier chain. Parameters and return value are as for
1956 * raw_notifier_call_chain_robust().
1957 */
1958
1959static int
1960call_netdevice_notifiers_info_robust(unsigned long val_up,
1961 unsigned long val_down,
1962 struct netdev_notifier_info *info)
1963{
1964 struct net *net = dev_net(info->dev);
1965
1966 ASSERT_RTNL();
1967
1968 return raw_notifier_call_chain_robust(&net->netdev_chain,
1969 val_up, val_down, info);
1970}
1971
1972static int call_netdevice_notifiers_extack(unsigned long val,
1973 struct net_device *dev,
1974 struct netlink_ext_ack *extack)
1975{
1976 struct netdev_notifier_info info = {
1977 .dev = dev,
1978 .extack = extack,
1979 };
1980
1981 return call_netdevice_notifiers_info(val, &info);
1982}
1983
1984/**
1985 * call_netdevice_notifiers - call all network notifier blocks
1986 * @val: value passed unmodified to notifier function
1987 * @dev: net_device pointer passed unmodified to notifier function
1988 *
1989 * Call all network notifier blocks. Parameters and return value
1990 * are as for raw_notifier_call_chain().
1991 */
1992
1993int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1994{
1995 return call_netdevice_notifiers_extack(val, dev, NULL);
1996}
1997EXPORT_SYMBOL(call_netdevice_notifiers);
1998
1999/**
2000 * call_netdevice_notifiers_mtu - call all network notifier blocks
2001 * @val: value passed unmodified to notifier function
2002 * @dev: net_device pointer passed unmodified to notifier function
2003 * @arg: additional u32 argument passed to the notifier function
2004 *
2005 * Call all network notifier blocks. Parameters and return value
2006 * are as for raw_notifier_call_chain().
2007 */
2008static int call_netdevice_notifiers_mtu(unsigned long val,
2009 struct net_device *dev, u32 arg)
2010{
2011 struct netdev_notifier_info_ext info = {
2012 .info.dev = dev,
2013 .ext.mtu = arg,
2014 };
2015
2016 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2017
2018 return call_netdevice_notifiers_info(val, &info.info);
2019}
2020
2021#ifdef CONFIG_NET_INGRESS
2022static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2023
2024void net_inc_ingress_queue(void)
2025{
2026 static_branch_inc(&ingress_needed_key);
2027}
2028EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2029
2030void net_dec_ingress_queue(void)
2031{
2032 static_branch_dec(&ingress_needed_key);
2033}
2034EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2035#endif
2036
2037#ifdef CONFIG_NET_EGRESS
2038static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2039
2040void net_inc_egress_queue(void)
2041{
2042 static_branch_inc(&egress_needed_key);
2043}
2044EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2045
2046void net_dec_egress_queue(void)
2047{
2048 static_branch_dec(&egress_needed_key);
2049}
2050EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2051#endif
2052
2053DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2054EXPORT_SYMBOL(netstamp_needed_key);
2055#ifdef CONFIG_JUMP_LABEL
2056static atomic_t netstamp_needed_deferred;
2057static atomic_t netstamp_wanted;
2058static void netstamp_clear(struct work_struct *work)
2059{
2060 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2061 int wanted;
2062
2063 wanted = atomic_add_return(deferred, &netstamp_wanted);
2064 if (wanted > 0)
2065 static_branch_enable(&netstamp_needed_key);
2066 else
2067 static_branch_disable(&netstamp_needed_key);
2068}
2069static DECLARE_WORK(netstamp_work, netstamp_clear);
2070#endif
2071
2072void net_enable_timestamp(void)
2073{
2074#ifdef CONFIG_JUMP_LABEL
2075 int wanted;
2076
2077 while (1) {
2078 wanted = atomic_read(&netstamp_wanted);
2079 if (wanted <= 0)
2080 break;
2081 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2082 return;
2083 }
2084 atomic_inc(&netstamp_needed_deferred);
2085 schedule_work(&netstamp_work);
2086#else
2087 static_branch_inc(&netstamp_needed_key);
2088#endif
2089}
2090EXPORT_SYMBOL(net_enable_timestamp);
2091
2092void net_disable_timestamp(void)
2093{
2094#ifdef CONFIG_JUMP_LABEL
2095 int wanted;
2096
2097 while (1) {
2098 wanted = atomic_read(&netstamp_wanted);
2099 if (wanted <= 1)
2100 break;
2101 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2102 return;
2103 }
2104 atomic_dec(&netstamp_needed_deferred);
2105 schedule_work(&netstamp_work);
2106#else
2107 static_branch_dec(&netstamp_needed_key);
2108#endif
2109}
2110EXPORT_SYMBOL(net_disable_timestamp);
2111
2112static inline void net_timestamp_set(struct sk_buff *skb)
2113{
2114 skb->tstamp = 0;
2115 skb->mono_delivery_time = 0;
2116 if (static_branch_unlikely(&netstamp_needed_key))
2117 skb->tstamp = ktime_get_real();
2118}
2119
2120#define net_timestamp_check(COND, SKB) \
2121 if (static_branch_unlikely(&netstamp_needed_key)) { \
2122 if ((COND) && !(SKB)->tstamp) \
2123 (SKB)->tstamp = ktime_get_real(); \
2124 } \
2125
2126bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2127{
2128 return __is_skb_forwardable(dev, skb, true);
2129}
2130EXPORT_SYMBOL_GPL(is_skb_forwardable);
2131
2132static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2133 bool check_mtu)
2134{
2135 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2136
2137 if (likely(!ret)) {
2138 skb->protocol = eth_type_trans(skb, dev);
2139 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2140 }
2141
2142 return ret;
2143}
2144
2145int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2146{
2147 return __dev_forward_skb2(dev, skb, true);
2148}
2149EXPORT_SYMBOL_GPL(__dev_forward_skb);
2150
2151/**
2152 * dev_forward_skb - loopback an skb to another netif
2153 *
2154 * @dev: destination network device
2155 * @skb: buffer to forward
2156 *
2157 * return values:
2158 * NET_RX_SUCCESS (no congestion)
2159 * NET_RX_DROP (packet was dropped, but freed)
2160 *
2161 * dev_forward_skb can be used for injecting an skb from the
2162 * start_xmit function of one device into the receive queue
2163 * of another device.
2164 *
2165 * The receiving device may be in another namespace, so
2166 * we have to clear all information in the skb that could
2167 * impact namespace isolation.
2168 */
2169int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2170{
2171 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2172}
2173EXPORT_SYMBOL_GPL(dev_forward_skb);
2174
2175int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2176{
2177 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2178}
2179
2180static inline int deliver_skb(struct sk_buff *skb,
2181 struct packet_type *pt_prev,
2182 struct net_device *orig_dev)
2183{
2184 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2185 return -ENOMEM;
2186 refcount_inc(&skb->users);
2187 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2188}
2189
2190static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2191 struct packet_type **pt,
2192 struct net_device *orig_dev,
2193 __be16 type,
2194 struct list_head *ptype_list)
2195{
2196 struct packet_type *ptype, *pt_prev = *pt;
2197
2198 list_for_each_entry_rcu(ptype, ptype_list, list) {
2199 if (ptype->type != type)
2200 continue;
2201 if (pt_prev)
2202 deliver_skb(skb, pt_prev, orig_dev);
2203 pt_prev = ptype;
2204 }
2205 *pt = pt_prev;
2206}
2207
2208static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2209{
2210 if (!ptype->af_packet_priv || !skb->sk)
2211 return false;
2212
2213 if (ptype->id_match)
2214 return ptype->id_match(ptype, skb->sk);
2215 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2216 return true;
2217
2218 return false;
2219}
2220
2221/**
2222 * dev_nit_active - return true if any network interface taps are in use
2223 *
2224 * @dev: network device to check for the presence of taps
2225 */
2226bool dev_nit_active(struct net_device *dev)
2227{
2228 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2229}
2230EXPORT_SYMBOL_GPL(dev_nit_active);
2231
2232/*
2233 * Support routine. Sends outgoing frames to any network
2234 * taps currently in use.
2235 */
2236
2237void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2238{
2239 struct packet_type *ptype;
2240 struct sk_buff *skb2 = NULL;
2241 struct packet_type *pt_prev = NULL;
2242 struct list_head *ptype_list = &ptype_all;
2243
2244 rcu_read_lock();
2245again:
2246 list_for_each_entry_rcu(ptype, ptype_list, list) {
2247 if (ptype->ignore_outgoing)
2248 continue;
2249
2250 /* Never send packets back to the socket
2251 * they originated from - MvS (miquels@drinkel.ow.org)
2252 */
2253 if (skb_loop_sk(ptype, skb))
2254 continue;
2255
2256 if (pt_prev) {
2257 deliver_skb(skb2, pt_prev, skb->dev);
2258 pt_prev = ptype;
2259 continue;
2260 }
2261
2262 /* need to clone skb, done only once */
2263 skb2 = skb_clone(skb, GFP_ATOMIC);
2264 if (!skb2)
2265 goto out_unlock;
2266
2267 net_timestamp_set(skb2);
2268
2269 /* skb->nh should be correctly
2270 * set by sender, so that the second statement is
2271 * just protection against buggy protocols.
2272 */
2273 skb_reset_mac_header(skb2);
2274
2275 if (skb_network_header(skb2) < skb2->data ||
2276 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2277 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2278 ntohs(skb2->protocol),
2279 dev->name);
2280 skb_reset_network_header(skb2);
2281 }
2282
2283 skb2->transport_header = skb2->network_header;
2284 skb2->pkt_type = PACKET_OUTGOING;
2285 pt_prev = ptype;
2286 }
2287
2288 if (ptype_list == &ptype_all) {
2289 ptype_list = &dev->ptype_all;
2290 goto again;
2291 }
2292out_unlock:
2293 if (pt_prev) {
2294 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2295 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2296 else
2297 kfree_skb(skb2);
2298 }
2299 rcu_read_unlock();
2300}
2301EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2302
2303/**
2304 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2305 * @dev: Network device
2306 * @txq: number of queues available
2307 *
2308 * If real_num_tx_queues is changed the tc mappings may no longer be
2309 * valid. To resolve this verify the tc mapping remains valid and if
2310 * not NULL the mapping. With no priorities mapping to this
2311 * offset/count pair it will no longer be used. In the worst case TC0
2312 * is invalid nothing can be done so disable priority mappings. If is
2313 * expected that drivers will fix this mapping if they can before
2314 * calling netif_set_real_num_tx_queues.
2315 */
2316static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2317{
2318 int i;
2319 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2320
2321 /* If TC0 is invalidated disable TC mapping */
2322 if (tc->offset + tc->count > txq) {
2323 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2324 dev->num_tc = 0;
2325 return;
2326 }
2327
2328 /* Invalidated prio to tc mappings set to TC0 */
2329 for (i = 1; i < TC_BITMASK + 1; i++) {
2330 int q = netdev_get_prio_tc_map(dev, i);
2331
2332 tc = &dev->tc_to_txq[q];
2333 if (tc->offset + tc->count > txq) {
2334 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2335 i, q);
2336 netdev_set_prio_tc_map(dev, i, 0);
2337 }
2338 }
2339}
2340
2341int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2342{
2343 if (dev->num_tc) {
2344 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2345 int i;
2346
2347 /* walk through the TCs and see if it falls into any of them */
2348 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2349 if ((txq - tc->offset) < tc->count)
2350 return i;
2351 }
2352
2353 /* didn't find it, just return -1 to indicate no match */
2354 return -1;
2355 }
2356
2357 return 0;
2358}
2359EXPORT_SYMBOL(netdev_txq_to_tc);
2360
2361#ifdef CONFIG_XPS
2362static struct static_key xps_needed __read_mostly;
2363static struct static_key xps_rxqs_needed __read_mostly;
2364static DEFINE_MUTEX(xps_map_mutex);
2365#define xmap_dereference(P) \
2366 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2367
2368static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2369 struct xps_dev_maps *old_maps, int tci, u16 index)
2370{
2371 struct xps_map *map = NULL;
2372 int pos;
2373
2374 if (dev_maps)
2375 map = xmap_dereference(dev_maps->attr_map[tci]);
2376 if (!map)
2377 return false;
2378
2379 for (pos = map->len; pos--;) {
2380 if (map->queues[pos] != index)
2381 continue;
2382
2383 if (map->len > 1) {
2384 map->queues[pos] = map->queues[--map->len];
2385 break;
2386 }
2387
2388 if (old_maps)
2389 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2390 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2391 kfree_rcu(map, rcu);
2392 return false;
2393 }
2394
2395 return true;
2396}
2397
2398static bool remove_xps_queue_cpu(struct net_device *dev,
2399 struct xps_dev_maps *dev_maps,
2400 int cpu, u16 offset, u16 count)
2401{
2402 int num_tc = dev_maps->num_tc;
2403 bool active = false;
2404 int tci;
2405
2406 for (tci = cpu * num_tc; num_tc--; tci++) {
2407 int i, j;
2408
2409 for (i = count, j = offset; i--; j++) {
2410 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2411 break;
2412 }
2413
2414 active |= i < 0;
2415 }
2416
2417 return active;
2418}
2419
2420static void reset_xps_maps(struct net_device *dev,
2421 struct xps_dev_maps *dev_maps,
2422 enum xps_map_type type)
2423{
2424 static_key_slow_dec_cpuslocked(&xps_needed);
2425 if (type == XPS_RXQS)
2426 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2427
2428 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2429
2430 kfree_rcu(dev_maps, rcu);
2431}
2432
2433static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2434 u16 offset, u16 count)
2435{
2436 struct xps_dev_maps *dev_maps;
2437 bool active = false;
2438 int i, j;
2439
2440 dev_maps = xmap_dereference(dev->xps_maps[type]);
2441 if (!dev_maps)
2442 return;
2443
2444 for (j = 0; j < dev_maps->nr_ids; j++)
2445 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2446 if (!active)
2447 reset_xps_maps(dev, dev_maps, type);
2448
2449 if (type == XPS_CPUS) {
2450 for (i = offset + (count - 1); count--; i--)
2451 netdev_queue_numa_node_write(
2452 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2453 }
2454}
2455
2456static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2457 u16 count)
2458{
2459 if (!static_key_false(&xps_needed))
2460 return;
2461
2462 cpus_read_lock();
2463 mutex_lock(&xps_map_mutex);
2464
2465 if (static_key_false(&xps_rxqs_needed))
2466 clean_xps_maps(dev, XPS_RXQS, offset, count);
2467
2468 clean_xps_maps(dev, XPS_CPUS, offset, count);
2469
2470 mutex_unlock(&xps_map_mutex);
2471 cpus_read_unlock();
2472}
2473
2474static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2475{
2476 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2477}
2478
2479static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2480 u16 index, bool is_rxqs_map)
2481{
2482 struct xps_map *new_map;
2483 int alloc_len = XPS_MIN_MAP_ALLOC;
2484 int i, pos;
2485
2486 for (pos = 0; map && pos < map->len; pos++) {
2487 if (map->queues[pos] != index)
2488 continue;
2489 return map;
2490 }
2491
2492 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2493 if (map) {
2494 if (pos < map->alloc_len)
2495 return map;
2496
2497 alloc_len = map->alloc_len * 2;
2498 }
2499
2500 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2501 * map
2502 */
2503 if (is_rxqs_map)
2504 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2505 else
2506 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2507 cpu_to_node(attr_index));
2508 if (!new_map)
2509 return NULL;
2510
2511 for (i = 0; i < pos; i++)
2512 new_map->queues[i] = map->queues[i];
2513 new_map->alloc_len = alloc_len;
2514 new_map->len = pos;
2515
2516 return new_map;
2517}
2518
2519/* Copy xps maps at a given index */
2520static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2521 struct xps_dev_maps *new_dev_maps, int index,
2522 int tc, bool skip_tc)
2523{
2524 int i, tci = index * dev_maps->num_tc;
2525 struct xps_map *map;
2526
2527 /* copy maps belonging to foreign traffic classes */
2528 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2529 if (i == tc && skip_tc)
2530 continue;
2531
2532 /* fill in the new device map from the old device map */
2533 map = xmap_dereference(dev_maps->attr_map[tci]);
2534 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2535 }
2536}
2537
2538/* Must be called under cpus_read_lock */
2539int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2540 u16 index, enum xps_map_type type)
2541{
2542 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2543 const unsigned long *online_mask = NULL;
2544 bool active = false, copy = false;
2545 int i, j, tci, numa_node_id = -2;
2546 int maps_sz, num_tc = 1, tc = 0;
2547 struct xps_map *map, *new_map;
2548 unsigned int nr_ids;
2549
2550 if (dev->num_tc) {
2551 /* Do not allow XPS on subordinate device directly */
2552 num_tc = dev->num_tc;
2553 if (num_tc < 0)
2554 return -EINVAL;
2555
2556 /* If queue belongs to subordinate dev use its map */
2557 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2558
2559 tc = netdev_txq_to_tc(dev, index);
2560 if (tc < 0)
2561 return -EINVAL;
2562 }
2563
2564 mutex_lock(&xps_map_mutex);
2565
2566 dev_maps = xmap_dereference(dev->xps_maps[type]);
2567 if (type == XPS_RXQS) {
2568 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2569 nr_ids = dev->num_rx_queues;
2570 } else {
2571 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2572 if (num_possible_cpus() > 1)
2573 online_mask = cpumask_bits(cpu_online_mask);
2574 nr_ids = nr_cpu_ids;
2575 }
2576
2577 if (maps_sz < L1_CACHE_BYTES)
2578 maps_sz = L1_CACHE_BYTES;
2579
2580 /* The old dev_maps could be larger or smaller than the one we're
2581 * setting up now, as dev->num_tc or nr_ids could have been updated in
2582 * between. We could try to be smart, but let's be safe instead and only
2583 * copy foreign traffic classes if the two map sizes match.
2584 */
2585 if (dev_maps &&
2586 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2587 copy = true;
2588
2589 /* allocate memory for queue storage */
2590 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2591 j < nr_ids;) {
2592 if (!new_dev_maps) {
2593 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2594 if (!new_dev_maps) {
2595 mutex_unlock(&xps_map_mutex);
2596 return -ENOMEM;
2597 }
2598
2599 new_dev_maps->nr_ids = nr_ids;
2600 new_dev_maps->num_tc = num_tc;
2601 }
2602
2603 tci = j * num_tc + tc;
2604 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2605
2606 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2607 if (!map)
2608 goto error;
2609
2610 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2611 }
2612
2613 if (!new_dev_maps)
2614 goto out_no_new_maps;
2615
2616 if (!dev_maps) {
2617 /* Increment static keys at most once per type */
2618 static_key_slow_inc_cpuslocked(&xps_needed);
2619 if (type == XPS_RXQS)
2620 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2621 }
2622
2623 for (j = 0; j < nr_ids; j++) {
2624 bool skip_tc = false;
2625
2626 tci = j * num_tc + tc;
2627 if (netif_attr_test_mask(j, mask, nr_ids) &&
2628 netif_attr_test_online(j, online_mask, nr_ids)) {
2629 /* add tx-queue to CPU/rx-queue maps */
2630 int pos = 0;
2631
2632 skip_tc = true;
2633
2634 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2635 while ((pos < map->len) && (map->queues[pos] != index))
2636 pos++;
2637
2638 if (pos == map->len)
2639 map->queues[map->len++] = index;
2640#ifdef CONFIG_NUMA
2641 if (type == XPS_CPUS) {
2642 if (numa_node_id == -2)
2643 numa_node_id = cpu_to_node(j);
2644 else if (numa_node_id != cpu_to_node(j))
2645 numa_node_id = -1;
2646 }
2647#endif
2648 }
2649
2650 if (copy)
2651 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2652 skip_tc);
2653 }
2654
2655 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2656
2657 /* Cleanup old maps */
2658 if (!dev_maps)
2659 goto out_no_old_maps;
2660
2661 for (j = 0; j < dev_maps->nr_ids; j++) {
2662 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2663 map = xmap_dereference(dev_maps->attr_map[tci]);
2664 if (!map)
2665 continue;
2666
2667 if (copy) {
2668 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2669 if (map == new_map)
2670 continue;
2671 }
2672
2673 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2674 kfree_rcu(map, rcu);
2675 }
2676 }
2677
2678 old_dev_maps = dev_maps;
2679
2680out_no_old_maps:
2681 dev_maps = new_dev_maps;
2682 active = true;
2683
2684out_no_new_maps:
2685 if (type == XPS_CPUS)
2686 /* update Tx queue numa node */
2687 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2688 (numa_node_id >= 0) ?
2689 numa_node_id : NUMA_NO_NODE);
2690
2691 if (!dev_maps)
2692 goto out_no_maps;
2693
2694 /* removes tx-queue from unused CPUs/rx-queues */
2695 for (j = 0; j < dev_maps->nr_ids; j++) {
2696 tci = j * dev_maps->num_tc;
2697
2698 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2699 if (i == tc &&
2700 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2701 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2702 continue;
2703
2704 active |= remove_xps_queue(dev_maps,
2705 copy ? old_dev_maps : NULL,
2706 tci, index);
2707 }
2708 }
2709
2710 if (old_dev_maps)
2711 kfree_rcu(old_dev_maps, rcu);
2712
2713 /* free map if not active */
2714 if (!active)
2715 reset_xps_maps(dev, dev_maps, type);
2716
2717out_no_maps:
2718 mutex_unlock(&xps_map_mutex);
2719
2720 return 0;
2721error:
2722 /* remove any maps that we added */
2723 for (j = 0; j < nr_ids; j++) {
2724 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2725 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2726 map = copy ?
2727 xmap_dereference(dev_maps->attr_map[tci]) :
2728 NULL;
2729 if (new_map && new_map != map)
2730 kfree(new_map);
2731 }
2732 }
2733
2734 mutex_unlock(&xps_map_mutex);
2735
2736 kfree(new_dev_maps);
2737 return -ENOMEM;
2738}
2739EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2740
2741int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2742 u16 index)
2743{
2744 int ret;
2745
2746 cpus_read_lock();
2747 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2748 cpus_read_unlock();
2749
2750 return ret;
2751}
2752EXPORT_SYMBOL(netif_set_xps_queue);
2753
2754#endif
2755static void netdev_unbind_all_sb_channels(struct net_device *dev)
2756{
2757 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2758
2759 /* Unbind any subordinate channels */
2760 while (txq-- != &dev->_tx[0]) {
2761 if (txq->sb_dev)
2762 netdev_unbind_sb_channel(dev, txq->sb_dev);
2763 }
2764}
2765
2766void netdev_reset_tc(struct net_device *dev)
2767{
2768#ifdef CONFIG_XPS
2769 netif_reset_xps_queues_gt(dev, 0);
2770#endif
2771 netdev_unbind_all_sb_channels(dev);
2772
2773 /* Reset TC configuration of device */
2774 dev->num_tc = 0;
2775 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2776 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2777}
2778EXPORT_SYMBOL(netdev_reset_tc);
2779
2780int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2781{
2782 if (tc >= dev->num_tc)
2783 return -EINVAL;
2784
2785#ifdef CONFIG_XPS
2786 netif_reset_xps_queues(dev, offset, count);
2787#endif
2788 dev->tc_to_txq[tc].count = count;
2789 dev->tc_to_txq[tc].offset = offset;
2790 return 0;
2791}
2792EXPORT_SYMBOL(netdev_set_tc_queue);
2793
2794int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2795{
2796 if (num_tc > TC_MAX_QUEUE)
2797 return -EINVAL;
2798
2799#ifdef CONFIG_XPS
2800 netif_reset_xps_queues_gt(dev, 0);
2801#endif
2802 netdev_unbind_all_sb_channels(dev);
2803
2804 dev->num_tc = num_tc;
2805 return 0;
2806}
2807EXPORT_SYMBOL(netdev_set_num_tc);
2808
2809void netdev_unbind_sb_channel(struct net_device *dev,
2810 struct net_device *sb_dev)
2811{
2812 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2813
2814#ifdef CONFIG_XPS
2815 netif_reset_xps_queues_gt(sb_dev, 0);
2816#endif
2817 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2818 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2819
2820 while (txq-- != &dev->_tx[0]) {
2821 if (txq->sb_dev == sb_dev)
2822 txq->sb_dev = NULL;
2823 }
2824}
2825EXPORT_SYMBOL(netdev_unbind_sb_channel);
2826
2827int netdev_bind_sb_channel_queue(struct net_device *dev,
2828 struct net_device *sb_dev,
2829 u8 tc, u16 count, u16 offset)
2830{
2831 /* Make certain the sb_dev and dev are already configured */
2832 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2833 return -EINVAL;
2834
2835 /* We cannot hand out queues we don't have */
2836 if ((offset + count) > dev->real_num_tx_queues)
2837 return -EINVAL;
2838
2839 /* Record the mapping */
2840 sb_dev->tc_to_txq[tc].count = count;
2841 sb_dev->tc_to_txq[tc].offset = offset;
2842
2843 /* Provide a way for Tx queue to find the tc_to_txq map or
2844 * XPS map for itself.
2845 */
2846 while (count--)
2847 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2848
2849 return 0;
2850}
2851EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2852
2853int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2854{
2855 /* Do not use a multiqueue device to represent a subordinate channel */
2856 if (netif_is_multiqueue(dev))
2857 return -ENODEV;
2858
2859 /* We allow channels 1 - 32767 to be used for subordinate channels.
2860 * Channel 0 is meant to be "native" mode and used only to represent
2861 * the main root device. We allow writing 0 to reset the device back
2862 * to normal mode after being used as a subordinate channel.
2863 */
2864 if (channel > S16_MAX)
2865 return -EINVAL;
2866
2867 dev->num_tc = -channel;
2868
2869 return 0;
2870}
2871EXPORT_SYMBOL(netdev_set_sb_channel);
2872
2873/*
2874 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2875 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2876 */
2877int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2878{
2879 bool disabling;
2880 int rc;
2881
2882 disabling = txq < dev->real_num_tx_queues;
2883
2884 if (txq < 1 || txq > dev->num_tx_queues)
2885 return -EINVAL;
2886
2887 if (dev->reg_state == NETREG_REGISTERED ||
2888 dev->reg_state == NETREG_UNREGISTERING) {
2889 ASSERT_RTNL();
2890
2891 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2892 txq);
2893 if (rc)
2894 return rc;
2895
2896 if (dev->num_tc)
2897 netif_setup_tc(dev, txq);
2898
2899 dev_qdisc_change_real_num_tx(dev, txq);
2900
2901 dev->real_num_tx_queues = txq;
2902
2903 if (disabling) {
2904 synchronize_net();
2905 qdisc_reset_all_tx_gt(dev, txq);
2906#ifdef CONFIG_XPS
2907 netif_reset_xps_queues_gt(dev, txq);
2908#endif
2909 }
2910 } else {
2911 dev->real_num_tx_queues = txq;
2912 }
2913
2914 return 0;
2915}
2916EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2917
2918#ifdef CONFIG_SYSFS
2919/**
2920 * netif_set_real_num_rx_queues - set actual number of RX queues used
2921 * @dev: Network device
2922 * @rxq: Actual number of RX queues
2923 *
2924 * This must be called either with the rtnl_lock held or before
2925 * registration of the net device. Returns 0 on success, or a
2926 * negative error code. If called before registration, it always
2927 * succeeds.
2928 */
2929int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2930{
2931 int rc;
2932
2933 if (rxq < 1 || rxq > dev->num_rx_queues)
2934 return -EINVAL;
2935
2936 if (dev->reg_state == NETREG_REGISTERED) {
2937 ASSERT_RTNL();
2938
2939 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2940 rxq);
2941 if (rc)
2942 return rc;
2943 }
2944
2945 dev->real_num_rx_queues = rxq;
2946 return 0;
2947}
2948EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2949#endif
2950
2951/**
2952 * netif_set_real_num_queues - set actual number of RX and TX queues used
2953 * @dev: Network device
2954 * @txq: Actual number of TX queues
2955 * @rxq: Actual number of RX queues
2956 *
2957 * Set the real number of both TX and RX queues.
2958 * Does nothing if the number of queues is already correct.
2959 */
2960int netif_set_real_num_queues(struct net_device *dev,
2961 unsigned int txq, unsigned int rxq)
2962{
2963 unsigned int old_rxq = dev->real_num_rx_queues;
2964 int err;
2965
2966 if (txq < 1 || txq > dev->num_tx_queues ||
2967 rxq < 1 || rxq > dev->num_rx_queues)
2968 return -EINVAL;
2969
2970 /* Start from increases, so the error path only does decreases -
2971 * decreases can't fail.
2972 */
2973 if (rxq > dev->real_num_rx_queues) {
2974 err = netif_set_real_num_rx_queues(dev, rxq);
2975 if (err)
2976 return err;
2977 }
2978 if (txq > dev->real_num_tx_queues) {
2979 err = netif_set_real_num_tx_queues(dev, txq);
2980 if (err)
2981 goto undo_rx;
2982 }
2983 if (rxq < dev->real_num_rx_queues)
2984 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2985 if (txq < dev->real_num_tx_queues)
2986 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2987
2988 return 0;
2989undo_rx:
2990 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2991 return err;
2992}
2993EXPORT_SYMBOL(netif_set_real_num_queues);
2994
2995/**
2996 * netif_set_tso_max_size() - set the max size of TSO frames supported
2997 * @dev: netdev to update
2998 * @size: max skb->len of a TSO frame
2999 *
3000 * Set the limit on the size of TSO super-frames the device can handle.
3001 * Unless explicitly set the stack will assume the value of
3002 * %GSO_LEGACY_MAX_SIZE.
3003 */
3004void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3005{
3006 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3007 if (size < READ_ONCE(dev->gso_max_size))
3008 netif_set_gso_max_size(dev, size);
3009}
3010EXPORT_SYMBOL(netif_set_tso_max_size);
3011
3012/**
3013 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3014 * @dev: netdev to update
3015 * @segs: max number of TCP segments
3016 *
3017 * Set the limit on the number of TCP segments the device can generate from
3018 * a single TSO super-frame.
3019 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3020 */
3021void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3022{
3023 dev->tso_max_segs = segs;
3024 if (segs < READ_ONCE(dev->gso_max_segs))
3025 netif_set_gso_max_segs(dev, segs);
3026}
3027EXPORT_SYMBOL(netif_set_tso_max_segs);
3028
3029/**
3030 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3031 * @to: netdev to update
3032 * @from: netdev from which to copy the limits
3033 */
3034void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3035{
3036 netif_set_tso_max_size(to, from->tso_max_size);
3037 netif_set_tso_max_segs(to, from->tso_max_segs);
3038}
3039EXPORT_SYMBOL(netif_inherit_tso_max);
3040
3041/**
3042 * netif_get_num_default_rss_queues - default number of RSS queues
3043 *
3044 * Default value is the number of physical cores if there are only 1 or 2, or
3045 * divided by 2 if there are more.
3046 */
3047int netif_get_num_default_rss_queues(void)
3048{
3049 cpumask_var_t cpus;
3050 int cpu, count = 0;
3051
3052 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3053 return 1;
3054
3055 cpumask_copy(cpus, cpu_online_mask);
3056 for_each_cpu(cpu, cpus) {
3057 ++count;
3058 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3059 }
3060 free_cpumask_var(cpus);
3061
3062 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3063}
3064EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3065
3066static void __netif_reschedule(struct Qdisc *q)
3067{
3068 struct softnet_data *sd;
3069 unsigned long flags;
3070
3071 local_irq_save(flags);
3072 sd = this_cpu_ptr(&softnet_data);
3073 q->next_sched = NULL;
3074 *sd->output_queue_tailp = q;
3075 sd->output_queue_tailp = &q->next_sched;
3076 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3077 local_irq_restore(flags);
3078}
3079
3080void __netif_schedule(struct Qdisc *q)
3081{
3082 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3083 __netif_reschedule(q);
3084}
3085EXPORT_SYMBOL(__netif_schedule);
3086
3087struct dev_kfree_skb_cb {
3088 enum skb_free_reason reason;
3089};
3090
3091static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3092{
3093 return (struct dev_kfree_skb_cb *)skb->cb;
3094}
3095
3096void netif_schedule_queue(struct netdev_queue *txq)
3097{
3098 rcu_read_lock();
3099 if (!netif_xmit_stopped(txq)) {
3100 struct Qdisc *q = rcu_dereference(txq->qdisc);
3101
3102 __netif_schedule(q);
3103 }
3104 rcu_read_unlock();
3105}
3106EXPORT_SYMBOL(netif_schedule_queue);
3107
3108void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3109{
3110 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3111 struct Qdisc *q;
3112
3113 rcu_read_lock();
3114 q = rcu_dereference(dev_queue->qdisc);
3115 __netif_schedule(q);
3116 rcu_read_unlock();
3117 }
3118}
3119EXPORT_SYMBOL(netif_tx_wake_queue);
3120
3121void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3122{
3123 unsigned long flags;
3124
3125 if (unlikely(!skb))
3126 return;
3127
3128 if (likely(refcount_read(&skb->users) == 1)) {
3129 smp_rmb();
3130 refcount_set(&skb->users, 0);
3131 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3132 return;
3133 }
3134 get_kfree_skb_cb(skb)->reason = reason;
3135 local_irq_save(flags);
3136 skb->next = __this_cpu_read(softnet_data.completion_queue);
3137 __this_cpu_write(softnet_data.completion_queue, skb);
3138 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3139 local_irq_restore(flags);
3140}
3141EXPORT_SYMBOL(__dev_kfree_skb_irq);
3142
3143void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3144{
3145 if (in_hardirq() || irqs_disabled())
3146 __dev_kfree_skb_irq(skb, reason);
3147 else
3148 dev_kfree_skb(skb);
3149}
3150EXPORT_SYMBOL(__dev_kfree_skb_any);
3151
3152
3153/**
3154 * netif_device_detach - mark device as removed
3155 * @dev: network device
3156 *
3157 * Mark device as removed from system and therefore no longer available.
3158 */
3159void netif_device_detach(struct net_device *dev)
3160{
3161 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3162 netif_running(dev)) {
3163 netif_tx_stop_all_queues(dev);
3164 }
3165}
3166EXPORT_SYMBOL(netif_device_detach);
3167
3168/**
3169 * netif_device_attach - mark device as attached
3170 * @dev: network device
3171 *
3172 * Mark device as attached from system and restart if needed.
3173 */
3174void netif_device_attach(struct net_device *dev)
3175{
3176 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3177 netif_running(dev)) {
3178 netif_tx_wake_all_queues(dev);
3179 __netdev_watchdog_up(dev);
3180 }
3181}
3182EXPORT_SYMBOL(netif_device_attach);
3183
3184/*
3185 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3186 * to be used as a distribution range.
3187 */
3188static u16 skb_tx_hash(const struct net_device *dev,
3189 const struct net_device *sb_dev,
3190 struct sk_buff *skb)
3191{
3192 u32 hash;
3193 u16 qoffset = 0;
3194 u16 qcount = dev->real_num_tx_queues;
3195
3196 if (dev->num_tc) {
3197 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3198
3199 qoffset = sb_dev->tc_to_txq[tc].offset;
3200 qcount = sb_dev->tc_to_txq[tc].count;
3201 if (unlikely(!qcount)) {
3202 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3203 sb_dev->name, qoffset, tc);
3204 qoffset = 0;
3205 qcount = dev->real_num_tx_queues;
3206 }
3207 }
3208
3209 if (skb_rx_queue_recorded(skb)) {
3210 hash = skb_get_rx_queue(skb);
3211 if (hash >= qoffset)
3212 hash -= qoffset;
3213 while (unlikely(hash >= qcount))
3214 hash -= qcount;
3215 return hash + qoffset;
3216 }
3217
3218 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3219}
3220
3221static void skb_warn_bad_offload(const struct sk_buff *skb)
3222{
3223 static const netdev_features_t null_features;
3224 struct net_device *dev = skb->dev;
3225 const char *name = "";
3226
3227 if (!net_ratelimit())
3228 return;
3229
3230 if (dev) {
3231 if (dev->dev.parent)
3232 name = dev_driver_string(dev->dev.parent);
3233 else
3234 name = netdev_name(dev);
3235 }
3236 skb_dump(KERN_WARNING, skb, false);
3237 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3238 name, dev ? &dev->features : &null_features,
3239 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3240}
3241
3242/*
3243 * Invalidate hardware checksum when packet is to be mangled, and
3244 * complete checksum manually on outgoing path.
3245 */
3246int skb_checksum_help(struct sk_buff *skb)
3247{
3248 __wsum csum;
3249 int ret = 0, offset;
3250
3251 if (skb->ip_summed == CHECKSUM_COMPLETE)
3252 goto out_set_summed;
3253
3254 if (unlikely(skb_is_gso(skb))) {
3255 skb_warn_bad_offload(skb);
3256 return -EINVAL;
3257 }
3258
3259 /* Before computing a checksum, we should make sure no frag could
3260 * be modified by an external entity : checksum could be wrong.
3261 */
3262 if (skb_has_shared_frag(skb)) {
3263 ret = __skb_linearize(skb);
3264 if (ret)
3265 goto out;
3266 }
3267
3268 offset = skb_checksum_start_offset(skb);
3269 ret = -EINVAL;
3270 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3271 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3272 goto out;
3273 }
3274 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3275
3276 offset += skb->csum_offset;
3277 if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3278 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3279 goto out;
3280 }
3281 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3282 if (ret)
3283 goto out;
3284
3285 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3286out_set_summed:
3287 skb->ip_summed = CHECKSUM_NONE;
3288out:
3289 return ret;
3290}
3291EXPORT_SYMBOL(skb_checksum_help);
3292
3293int skb_crc32c_csum_help(struct sk_buff *skb)
3294{
3295 __le32 crc32c_csum;
3296 int ret = 0, offset, start;
3297
3298 if (skb->ip_summed != CHECKSUM_PARTIAL)
3299 goto out;
3300
3301 if (unlikely(skb_is_gso(skb)))
3302 goto out;
3303
3304 /* Before computing a checksum, we should make sure no frag could
3305 * be modified by an external entity : checksum could be wrong.
3306 */
3307 if (unlikely(skb_has_shared_frag(skb))) {
3308 ret = __skb_linearize(skb);
3309 if (ret)
3310 goto out;
3311 }
3312 start = skb_checksum_start_offset(skb);
3313 offset = start + offsetof(struct sctphdr, checksum);
3314 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3315 ret = -EINVAL;
3316 goto out;
3317 }
3318
3319 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3320 if (ret)
3321 goto out;
3322
3323 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3324 skb->len - start, ~(__u32)0,
3325 crc32c_csum_stub));
3326 *(__le32 *)(skb->data + offset) = crc32c_csum;
3327 skb->ip_summed = CHECKSUM_NONE;
3328 skb->csum_not_inet = 0;
3329out:
3330 return ret;
3331}
3332
3333__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3334{
3335 __be16 type = skb->protocol;
3336
3337 /* Tunnel gso handlers can set protocol to ethernet. */
3338 if (type == htons(ETH_P_TEB)) {
3339 struct ethhdr *eth;
3340
3341 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3342 return 0;
3343
3344 eth = (struct ethhdr *)skb->data;
3345 type = eth->h_proto;
3346 }
3347
3348 return __vlan_get_protocol(skb, type, depth);
3349}
3350
3351/* openvswitch calls this on rx path, so we need a different check.
3352 */
3353static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3354{
3355 if (tx_path)
3356 return skb->ip_summed != CHECKSUM_PARTIAL &&
3357 skb->ip_summed != CHECKSUM_UNNECESSARY;
3358
3359 return skb->ip_summed == CHECKSUM_NONE;
3360}
3361
3362/**
3363 * __skb_gso_segment - Perform segmentation on skb.
3364 * @skb: buffer to segment
3365 * @features: features for the output path (see dev->features)
3366 * @tx_path: whether it is called in TX path
3367 *
3368 * This function segments the given skb and returns a list of segments.
3369 *
3370 * It may return NULL if the skb requires no segmentation. This is
3371 * only possible when GSO is used for verifying header integrity.
3372 *
3373 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3374 */
3375struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3376 netdev_features_t features, bool tx_path)
3377{
3378 struct sk_buff *segs;
3379
3380 if (unlikely(skb_needs_check(skb, tx_path))) {
3381 int err;
3382
3383 /* We're going to init ->check field in TCP or UDP header */
3384 err = skb_cow_head(skb, 0);
3385 if (err < 0)
3386 return ERR_PTR(err);
3387 }
3388
3389 /* Only report GSO partial support if it will enable us to
3390 * support segmentation on this frame without needing additional
3391 * work.
3392 */
3393 if (features & NETIF_F_GSO_PARTIAL) {
3394 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3395 struct net_device *dev = skb->dev;
3396
3397 partial_features |= dev->features & dev->gso_partial_features;
3398 if (!skb_gso_ok(skb, features | partial_features))
3399 features &= ~NETIF_F_GSO_PARTIAL;
3400 }
3401
3402 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3403 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3404
3405 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3406 SKB_GSO_CB(skb)->encap_level = 0;
3407
3408 skb_reset_mac_header(skb);
3409 skb_reset_mac_len(skb);
3410
3411 segs = skb_mac_gso_segment(skb, features);
3412
3413 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3414 skb_warn_bad_offload(skb);
3415
3416 return segs;
3417}
3418EXPORT_SYMBOL(__skb_gso_segment);
3419
3420/* Take action when hardware reception checksum errors are detected. */
3421#ifdef CONFIG_BUG
3422static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3423{
3424 netdev_err(dev, "hw csum failure\n");
3425 skb_dump(KERN_ERR, skb, true);
3426 dump_stack();
3427}
3428
3429void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3430{
3431 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3432}
3433EXPORT_SYMBOL(netdev_rx_csum_fault);
3434#endif
3435
3436/* XXX: check that highmem exists at all on the given machine. */
3437static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3438{
3439#ifdef CONFIG_HIGHMEM
3440 int i;
3441
3442 if (!(dev->features & NETIF_F_HIGHDMA)) {
3443 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3444 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3445
3446 if (PageHighMem(skb_frag_page(frag)))
3447 return 1;
3448 }
3449 }
3450#endif
3451 return 0;
3452}
3453
3454/* If MPLS offload request, verify we are testing hardware MPLS features
3455 * instead of standard features for the netdev.
3456 */
3457#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3458static netdev_features_t net_mpls_features(struct sk_buff *skb,
3459 netdev_features_t features,
3460 __be16 type)
3461{
3462 if (eth_p_mpls(type))
3463 features &= skb->dev->mpls_features;
3464
3465 return features;
3466}
3467#else
3468static netdev_features_t net_mpls_features(struct sk_buff *skb,
3469 netdev_features_t features,
3470 __be16 type)
3471{
3472 return features;
3473}
3474#endif
3475
3476static netdev_features_t harmonize_features(struct sk_buff *skb,
3477 netdev_features_t features)
3478{
3479 __be16 type;
3480
3481 type = skb_network_protocol(skb, NULL);
3482 features = net_mpls_features(skb, features, type);
3483
3484 if (skb->ip_summed != CHECKSUM_NONE &&
3485 !can_checksum_protocol(features, type)) {
3486 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3487 }
3488 if (illegal_highdma(skb->dev, skb))
3489 features &= ~NETIF_F_SG;
3490
3491 return features;
3492}
3493
3494netdev_features_t passthru_features_check(struct sk_buff *skb,
3495 struct net_device *dev,
3496 netdev_features_t features)
3497{
3498 return features;
3499}
3500EXPORT_SYMBOL(passthru_features_check);
3501
3502static netdev_features_t dflt_features_check(struct sk_buff *skb,
3503 struct net_device *dev,
3504 netdev_features_t features)
3505{
3506 return vlan_features_check(skb, features);
3507}
3508
3509static netdev_features_t gso_features_check(const struct sk_buff *skb,
3510 struct net_device *dev,
3511 netdev_features_t features)
3512{
3513 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3514
3515 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3516 return features & ~NETIF_F_GSO_MASK;
3517
3518 if (!skb_shinfo(skb)->gso_type) {
3519 skb_warn_bad_offload(skb);
3520 return features & ~NETIF_F_GSO_MASK;
3521 }
3522
3523 /* Support for GSO partial features requires software
3524 * intervention before we can actually process the packets
3525 * so we need to strip support for any partial features now
3526 * and we can pull them back in after we have partially
3527 * segmented the frame.
3528 */
3529 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3530 features &= ~dev->gso_partial_features;
3531
3532 /* Make sure to clear the IPv4 ID mangling feature if the
3533 * IPv4 header has the potential to be fragmented.
3534 */
3535 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3536 struct iphdr *iph = skb->encapsulation ?
3537 inner_ip_hdr(skb) : ip_hdr(skb);
3538
3539 if (!(iph->frag_off & htons(IP_DF)))
3540 features &= ~NETIF_F_TSO_MANGLEID;
3541 }
3542
3543 return features;
3544}
3545
3546netdev_features_t netif_skb_features(struct sk_buff *skb)
3547{
3548 struct net_device *dev = skb->dev;
3549 netdev_features_t features = dev->features;
3550
3551 if (skb_is_gso(skb))
3552 features = gso_features_check(skb, dev, features);
3553
3554 /* If encapsulation offload request, verify we are testing
3555 * hardware encapsulation features instead of standard
3556 * features for the netdev
3557 */
3558 if (skb->encapsulation)
3559 features &= dev->hw_enc_features;
3560
3561 if (skb_vlan_tagged(skb))
3562 features = netdev_intersect_features(features,
3563 dev->vlan_features |
3564 NETIF_F_HW_VLAN_CTAG_TX |
3565 NETIF_F_HW_VLAN_STAG_TX);
3566
3567 if (dev->netdev_ops->ndo_features_check)
3568 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3569 features);
3570 else
3571 features &= dflt_features_check(skb, dev, features);
3572
3573 return harmonize_features(skb, features);
3574}
3575EXPORT_SYMBOL(netif_skb_features);
3576
3577static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3578 struct netdev_queue *txq, bool more)
3579{
3580 unsigned int len;
3581 int rc;
3582
3583 if (dev_nit_active(dev))
3584 dev_queue_xmit_nit(skb, dev);
3585
3586 len = skb->len;
3587 trace_net_dev_start_xmit(skb, dev);
3588 rc = netdev_start_xmit(skb, dev, txq, more);
3589 trace_net_dev_xmit(skb, rc, dev, len);
3590
3591 return rc;
3592}
3593
3594struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3595 struct netdev_queue *txq, int *ret)
3596{
3597 struct sk_buff *skb = first;
3598 int rc = NETDEV_TX_OK;
3599
3600 while (skb) {
3601 struct sk_buff *next = skb->next;
3602
3603 skb_mark_not_on_list(skb);
3604 rc = xmit_one(skb, dev, txq, next != NULL);
3605 if (unlikely(!dev_xmit_complete(rc))) {
3606 skb->next = next;
3607 goto out;
3608 }
3609
3610 skb = next;
3611 if (netif_tx_queue_stopped(txq) && skb) {
3612 rc = NETDEV_TX_BUSY;
3613 break;
3614 }
3615 }
3616
3617out:
3618 *ret = rc;
3619 return skb;
3620}
3621
3622static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3623 netdev_features_t features)
3624{
3625 if (skb_vlan_tag_present(skb) &&
3626 !vlan_hw_offload_capable(features, skb->vlan_proto))
3627 skb = __vlan_hwaccel_push_inside(skb);
3628 return skb;
3629}
3630
3631int skb_csum_hwoffload_help(struct sk_buff *skb,
3632 const netdev_features_t features)
3633{
3634 if (unlikely(skb_csum_is_sctp(skb)))
3635 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3636 skb_crc32c_csum_help(skb);
3637
3638 if (features & NETIF_F_HW_CSUM)
3639 return 0;
3640
3641 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3642 switch (skb->csum_offset) {
3643 case offsetof(struct tcphdr, check):
3644 case offsetof(struct udphdr, check):
3645 return 0;
3646 }
3647 }
3648
3649 return skb_checksum_help(skb);
3650}
3651EXPORT_SYMBOL(skb_csum_hwoffload_help);
3652
3653static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3654{
3655 netdev_features_t features;
3656
3657 features = netif_skb_features(skb);
3658 skb = validate_xmit_vlan(skb, features);
3659 if (unlikely(!skb))
3660 goto out_null;
3661
3662 skb = sk_validate_xmit_skb(skb, dev);
3663 if (unlikely(!skb))
3664 goto out_null;
3665
3666 if (netif_needs_gso(skb, features)) {
3667 struct sk_buff *segs;
3668
3669 segs = skb_gso_segment(skb, features);
3670 if (IS_ERR(segs)) {
3671 goto out_kfree_skb;
3672 } else if (segs) {
3673 consume_skb(skb);
3674 skb = segs;
3675 }
3676 } else {
3677 if (skb_needs_linearize(skb, features) &&
3678 __skb_linearize(skb))
3679 goto out_kfree_skb;
3680
3681 /* If packet is not checksummed and device does not
3682 * support checksumming for this protocol, complete
3683 * checksumming here.
3684 */
3685 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3686 if (skb->encapsulation)
3687 skb_set_inner_transport_header(skb,
3688 skb_checksum_start_offset(skb));
3689 else
3690 skb_set_transport_header(skb,
3691 skb_checksum_start_offset(skb));
3692 if (skb_csum_hwoffload_help(skb, features))
3693 goto out_kfree_skb;
3694 }
3695 }
3696
3697 skb = validate_xmit_xfrm(skb, features, again);
3698
3699 return skb;
3700
3701out_kfree_skb:
3702 kfree_skb(skb);
3703out_null:
3704 dev_core_stats_tx_dropped_inc(dev);
3705 return NULL;
3706}
3707
3708struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3709{
3710 struct sk_buff *next, *head = NULL, *tail;
3711
3712 for (; skb != NULL; skb = next) {
3713 next = skb->next;
3714 skb_mark_not_on_list(skb);
3715
3716 /* in case skb wont be segmented, point to itself */
3717 skb->prev = skb;
3718
3719 skb = validate_xmit_skb(skb, dev, again);
3720 if (!skb)
3721 continue;
3722
3723 if (!head)
3724 head = skb;
3725 else
3726 tail->next = skb;
3727 /* If skb was segmented, skb->prev points to
3728 * the last segment. If not, it still contains skb.
3729 */
3730 tail = skb->prev;
3731 }
3732 return head;
3733}
3734EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3735
3736static void qdisc_pkt_len_init(struct sk_buff *skb)
3737{
3738 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3739
3740 qdisc_skb_cb(skb)->pkt_len = skb->len;
3741
3742 /* To get more precise estimation of bytes sent on wire,
3743 * we add to pkt_len the headers size of all segments
3744 */
3745 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3746 unsigned int hdr_len;
3747 u16 gso_segs = shinfo->gso_segs;
3748
3749 /* mac layer + network layer */
3750 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3751
3752 /* + transport layer */
3753 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3754 const struct tcphdr *th;
3755 struct tcphdr _tcphdr;
3756
3757 th = skb_header_pointer(skb, skb_transport_offset(skb),
3758 sizeof(_tcphdr), &_tcphdr);
3759 if (likely(th))
3760 hdr_len += __tcp_hdrlen(th);
3761 } else {
3762 struct udphdr _udphdr;
3763
3764 if (skb_header_pointer(skb, skb_transport_offset(skb),
3765 sizeof(_udphdr), &_udphdr))
3766 hdr_len += sizeof(struct udphdr);
3767 }
3768
3769 if (shinfo->gso_type & SKB_GSO_DODGY)
3770 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3771 shinfo->gso_size);
3772
3773 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3774 }
3775}
3776
3777static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3778 struct sk_buff **to_free,
3779 struct netdev_queue *txq)
3780{
3781 int rc;
3782
3783 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3784 if (rc == NET_XMIT_SUCCESS)
3785 trace_qdisc_enqueue(q, txq, skb);
3786 return rc;
3787}
3788
3789static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3790 struct net_device *dev,
3791 struct netdev_queue *txq)
3792{
3793 spinlock_t *root_lock = qdisc_lock(q);
3794 struct sk_buff *to_free = NULL;
3795 bool contended;
3796 int rc;
3797
3798 qdisc_calculate_pkt_len(skb, q);
3799
3800 if (q->flags & TCQ_F_NOLOCK) {
3801 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3802 qdisc_run_begin(q)) {
3803 /* Retest nolock_qdisc_is_empty() within the protection
3804 * of q->seqlock to protect from racing with requeuing.
3805 */
3806 if (unlikely(!nolock_qdisc_is_empty(q))) {
3807 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3808 __qdisc_run(q);
3809 qdisc_run_end(q);
3810
3811 goto no_lock_out;
3812 }
3813
3814 qdisc_bstats_cpu_update(q, skb);
3815 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3816 !nolock_qdisc_is_empty(q))
3817 __qdisc_run(q);
3818
3819 qdisc_run_end(q);
3820 return NET_XMIT_SUCCESS;
3821 }
3822
3823 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3824 qdisc_run(q);
3825
3826no_lock_out:
3827 if (unlikely(to_free))
3828 kfree_skb_list_reason(to_free,
3829 SKB_DROP_REASON_QDISC_DROP);
3830 return rc;
3831 }
3832
3833 /*
3834 * Heuristic to force contended enqueues to serialize on a
3835 * separate lock before trying to get qdisc main lock.
3836 * This permits qdisc->running owner to get the lock more
3837 * often and dequeue packets faster.
3838 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3839 * and then other tasks will only enqueue packets. The packets will be
3840 * sent after the qdisc owner is scheduled again. To prevent this
3841 * scenario the task always serialize on the lock.
3842 */
3843 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3844 if (unlikely(contended))
3845 spin_lock(&q->busylock);
3846
3847 spin_lock(root_lock);
3848 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3849 __qdisc_drop(skb, &to_free);
3850 rc = NET_XMIT_DROP;
3851 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3852 qdisc_run_begin(q)) {
3853 /*
3854 * This is a work-conserving queue; there are no old skbs
3855 * waiting to be sent out; and the qdisc is not running -
3856 * xmit the skb directly.
3857 */
3858
3859 qdisc_bstats_update(q, skb);
3860
3861 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3862 if (unlikely(contended)) {
3863 spin_unlock(&q->busylock);
3864 contended = false;
3865 }
3866 __qdisc_run(q);
3867 }
3868
3869 qdisc_run_end(q);
3870 rc = NET_XMIT_SUCCESS;
3871 } else {
3872 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3873 if (qdisc_run_begin(q)) {
3874 if (unlikely(contended)) {
3875 spin_unlock(&q->busylock);
3876 contended = false;
3877 }
3878 __qdisc_run(q);
3879 qdisc_run_end(q);
3880 }
3881 }
3882 spin_unlock(root_lock);
3883 if (unlikely(to_free))
3884 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3885 if (unlikely(contended))
3886 spin_unlock(&q->busylock);
3887 return rc;
3888}
3889
3890#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3891static void skb_update_prio(struct sk_buff *skb)
3892{
3893 const struct netprio_map *map;
3894 const struct sock *sk;
3895 unsigned int prioidx;
3896
3897 if (skb->priority)
3898 return;
3899 map = rcu_dereference_bh(skb->dev->priomap);
3900 if (!map)
3901 return;
3902 sk = skb_to_full_sk(skb);
3903 if (!sk)
3904 return;
3905
3906 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3907
3908 if (prioidx < map->priomap_len)
3909 skb->priority = map->priomap[prioidx];
3910}
3911#else
3912#define skb_update_prio(skb)
3913#endif
3914
3915/**
3916 * dev_loopback_xmit - loop back @skb
3917 * @net: network namespace this loopback is happening in
3918 * @sk: sk needed to be a netfilter okfn
3919 * @skb: buffer to transmit
3920 */
3921int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3922{
3923 skb_reset_mac_header(skb);
3924 __skb_pull(skb, skb_network_offset(skb));
3925 skb->pkt_type = PACKET_LOOPBACK;
3926 if (skb->ip_summed == CHECKSUM_NONE)
3927 skb->ip_summed = CHECKSUM_UNNECESSARY;
3928 WARN_ON(!skb_dst(skb));
3929 skb_dst_force(skb);
3930 netif_rx(skb);
3931 return 0;
3932}
3933EXPORT_SYMBOL(dev_loopback_xmit);
3934
3935#ifdef CONFIG_NET_EGRESS
3936static struct sk_buff *
3937sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3938{
3939#ifdef CONFIG_NET_CLS_ACT
3940 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3941 struct tcf_result cl_res;
3942
3943 if (!miniq)
3944 return skb;
3945
3946 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3947 tc_skb_cb(skb)->mru = 0;
3948 tc_skb_cb(skb)->post_ct = false;
3949 mini_qdisc_bstats_cpu_update(miniq, skb);
3950
3951 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3952 case TC_ACT_OK:
3953 case TC_ACT_RECLASSIFY:
3954 skb->tc_index = TC_H_MIN(cl_res.classid);
3955 break;
3956 case TC_ACT_SHOT:
3957 mini_qdisc_qstats_cpu_drop(miniq);
3958 *ret = NET_XMIT_DROP;
3959 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3960 return NULL;
3961 case TC_ACT_STOLEN:
3962 case TC_ACT_QUEUED:
3963 case TC_ACT_TRAP:
3964 *ret = NET_XMIT_SUCCESS;
3965 consume_skb(skb);
3966 return NULL;
3967 case TC_ACT_REDIRECT:
3968 /* No need to push/pop skb's mac_header here on egress! */
3969 skb_do_redirect(skb);
3970 *ret = NET_XMIT_SUCCESS;
3971 return NULL;
3972 default:
3973 break;
3974 }
3975#endif /* CONFIG_NET_CLS_ACT */
3976
3977 return skb;
3978}
3979
3980static struct netdev_queue *
3981netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3982{
3983 int qm = skb_get_queue_mapping(skb);
3984
3985 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3986}
3987
3988static bool netdev_xmit_txqueue_skipped(void)
3989{
3990 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3991}
3992
3993void netdev_xmit_skip_txqueue(bool skip)
3994{
3995 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3996}
3997EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3998#endif /* CONFIG_NET_EGRESS */
3999
4000#ifdef CONFIG_XPS
4001static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4002 struct xps_dev_maps *dev_maps, unsigned int tci)
4003{
4004 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4005 struct xps_map *map;
4006 int queue_index = -1;
4007
4008 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4009 return queue_index;
4010
4011 tci *= dev_maps->num_tc;
4012 tci += tc;
4013
4014 map = rcu_dereference(dev_maps->attr_map[tci]);
4015 if (map) {
4016 if (map->len == 1)
4017 queue_index = map->queues[0];
4018 else
4019 queue_index = map->queues[reciprocal_scale(
4020 skb_get_hash(skb), map->len)];
4021 if (unlikely(queue_index >= dev->real_num_tx_queues))
4022 queue_index = -1;
4023 }
4024 return queue_index;
4025}
4026#endif
4027
4028static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4029 struct sk_buff *skb)
4030{
4031#ifdef CONFIG_XPS
4032 struct xps_dev_maps *dev_maps;
4033 struct sock *sk = skb->sk;
4034 int queue_index = -1;
4035
4036 if (!static_key_false(&xps_needed))
4037 return -1;
4038
4039 rcu_read_lock();
4040 if (!static_key_false(&xps_rxqs_needed))
4041 goto get_cpus_map;
4042
4043 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4044 if (dev_maps) {
4045 int tci = sk_rx_queue_get(sk);
4046
4047 if (tci >= 0)
4048 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4049 tci);
4050 }
4051
4052get_cpus_map:
4053 if (queue_index < 0) {
4054 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4055 if (dev_maps) {
4056 unsigned int tci = skb->sender_cpu - 1;
4057
4058 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4059 tci);
4060 }
4061 }
4062 rcu_read_unlock();
4063
4064 return queue_index;
4065#else
4066 return -1;
4067#endif
4068}
4069
4070u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4071 struct net_device *sb_dev)
4072{
4073 return 0;
4074}
4075EXPORT_SYMBOL(dev_pick_tx_zero);
4076
4077u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4078 struct net_device *sb_dev)
4079{
4080 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4081}
4082EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4083
4084u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4085 struct net_device *sb_dev)
4086{
4087 struct sock *sk = skb->sk;
4088 int queue_index = sk_tx_queue_get(sk);
4089
4090 sb_dev = sb_dev ? : dev;
4091
4092 if (queue_index < 0 || skb->ooo_okay ||
4093 queue_index >= dev->real_num_tx_queues) {
4094 int new_index = get_xps_queue(dev, sb_dev, skb);
4095
4096 if (new_index < 0)
4097 new_index = skb_tx_hash(dev, sb_dev, skb);
4098
4099 if (queue_index != new_index && sk &&
4100 sk_fullsock(sk) &&
4101 rcu_access_pointer(sk->sk_dst_cache))
4102 sk_tx_queue_set(sk, new_index);
4103
4104 queue_index = new_index;
4105 }
4106
4107 return queue_index;
4108}
4109EXPORT_SYMBOL(netdev_pick_tx);
4110
4111struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4112 struct sk_buff *skb,
4113 struct net_device *sb_dev)
4114{
4115 int queue_index = 0;
4116
4117#ifdef CONFIG_XPS
4118 u32 sender_cpu = skb->sender_cpu - 1;
4119
4120 if (sender_cpu >= (u32)NR_CPUS)
4121 skb->sender_cpu = raw_smp_processor_id() + 1;
4122#endif
4123
4124 if (dev->real_num_tx_queues != 1) {
4125 const struct net_device_ops *ops = dev->netdev_ops;
4126
4127 if (ops->ndo_select_queue)
4128 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4129 else
4130 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4131
4132 queue_index = netdev_cap_txqueue(dev, queue_index);
4133 }
4134
4135 skb_set_queue_mapping(skb, queue_index);
4136 return netdev_get_tx_queue(dev, queue_index);
4137}
4138
4139/**
4140 * __dev_queue_xmit() - transmit a buffer
4141 * @skb: buffer to transmit
4142 * @sb_dev: suboordinate device used for L2 forwarding offload
4143 *
4144 * Queue a buffer for transmission to a network device. The caller must
4145 * have set the device and priority and built the buffer before calling
4146 * this function. The function can be called from an interrupt.
4147 *
4148 * When calling this method, interrupts MUST be enabled. This is because
4149 * the BH enable code must have IRQs enabled so that it will not deadlock.
4150 *
4151 * Regardless of the return value, the skb is consumed, so it is currently
4152 * difficult to retry a send to this method. (You can bump the ref count
4153 * before sending to hold a reference for retry if you are careful.)
4154 *
4155 * Return:
4156 * * 0 - buffer successfully transmitted
4157 * * positive qdisc return code - NET_XMIT_DROP etc.
4158 * * negative errno - other errors
4159 */
4160int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4161{
4162 struct net_device *dev = skb->dev;
4163 struct netdev_queue *txq = NULL;
4164 struct Qdisc *q;
4165 int rc = -ENOMEM;
4166 bool again = false;
4167
4168 skb_reset_mac_header(skb);
4169
4170 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4171 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4172
4173 /* Disable soft irqs for various locks below. Also
4174 * stops preemption for RCU.
4175 */
4176 rcu_read_lock_bh();
4177
4178 skb_update_prio(skb);
4179
4180 qdisc_pkt_len_init(skb);
4181#ifdef CONFIG_NET_CLS_ACT
4182 skb->tc_at_ingress = 0;
4183#endif
4184#ifdef CONFIG_NET_EGRESS
4185 if (static_branch_unlikely(&egress_needed_key)) {
4186 if (nf_hook_egress_active()) {
4187 skb = nf_hook_egress(skb, &rc, dev);
4188 if (!skb)
4189 goto out;
4190 }
4191
4192 netdev_xmit_skip_txqueue(false);
4193
4194 nf_skip_egress(skb, true);
4195 skb = sch_handle_egress(skb, &rc, dev);
4196 if (!skb)
4197 goto out;
4198 nf_skip_egress(skb, false);
4199
4200 if (netdev_xmit_txqueue_skipped())
4201 txq = netdev_tx_queue_mapping(dev, skb);
4202 }
4203#endif
4204 /* If device/qdisc don't need skb->dst, release it right now while
4205 * its hot in this cpu cache.
4206 */
4207 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4208 skb_dst_drop(skb);
4209 else
4210 skb_dst_force(skb);
4211
4212 if (!txq)
4213 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4214
4215 q = rcu_dereference_bh(txq->qdisc);
4216
4217 trace_net_dev_queue(skb);
4218 if (q->enqueue) {
4219 rc = __dev_xmit_skb(skb, q, dev, txq);
4220 goto out;
4221 }
4222
4223 /* The device has no queue. Common case for software devices:
4224 * loopback, all the sorts of tunnels...
4225
4226 * Really, it is unlikely that netif_tx_lock protection is necessary
4227 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4228 * counters.)
4229 * However, it is possible, that they rely on protection
4230 * made by us here.
4231
4232 * Check this and shot the lock. It is not prone from deadlocks.
4233 *Either shot noqueue qdisc, it is even simpler 8)
4234 */
4235 if (dev->flags & IFF_UP) {
4236 int cpu = smp_processor_id(); /* ok because BHs are off */
4237
4238 /* Other cpus might concurrently change txq->xmit_lock_owner
4239 * to -1 or to their cpu id, but not to our id.
4240 */
4241 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4242 if (dev_xmit_recursion())
4243 goto recursion_alert;
4244
4245 skb = validate_xmit_skb(skb, dev, &again);
4246 if (!skb)
4247 goto out;
4248
4249 HARD_TX_LOCK(dev, txq, cpu);
4250
4251 if (!netif_xmit_stopped(txq)) {
4252 dev_xmit_recursion_inc();
4253 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4254 dev_xmit_recursion_dec();
4255 if (dev_xmit_complete(rc)) {
4256 HARD_TX_UNLOCK(dev, txq);
4257 goto out;
4258 }
4259 }
4260 HARD_TX_UNLOCK(dev, txq);
4261 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4262 dev->name);
4263 } else {
4264 /* Recursion is detected! It is possible,
4265 * unfortunately
4266 */
4267recursion_alert:
4268 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4269 dev->name);
4270 }
4271 }
4272
4273 rc = -ENETDOWN;
4274 rcu_read_unlock_bh();
4275
4276 dev_core_stats_tx_dropped_inc(dev);
4277 kfree_skb_list(skb);
4278 return rc;
4279out:
4280 rcu_read_unlock_bh();
4281 return rc;
4282}
4283EXPORT_SYMBOL(__dev_queue_xmit);
4284
4285int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4286{
4287 struct net_device *dev = skb->dev;
4288 struct sk_buff *orig_skb = skb;
4289 struct netdev_queue *txq;
4290 int ret = NETDEV_TX_BUSY;
4291 bool again = false;
4292
4293 if (unlikely(!netif_running(dev) ||
4294 !netif_carrier_ok(dev)))
4295 goto drop;
4296
4297 skb = validate_xmit_skb_list(skb, dev, &again);
4298 if (skb != orig_skb)
4299 goto drop;
4300
4301 skb_set_queue_mapping(skb, queue_id);
4302 txq = skb_get_tx_queue(dev, skb);
4303
4304 local_bh_disable();
4305
4306 dev_xmit_recursion_inc();
4307 HARD_TX_LOCK(dev, txq, smp_processor_id());
4308 if (!netif_xmit_frozen_or_drv_stopped(txq))
4309 ret = netdev_start_xmit(skb, dev, txq, false);
4310 HARD_TX_UNLOCK(dev, txq);
4311 dev_xmit_recursion_dec();
4312
4313 local_bh_enable();
4314 return ret;
4315drop:
4316 dev_core_stats_tx_dropped_inc(dev);
4317 kfree_skb_list(skb);
4318 return NET_XMIT_DROP;
4319}
4320EXPORT_SYMBOL(__dev_direct_xmit);
4321
4322/*************************************************************************
4323 * Receiver routines
4324 *************************************************************************/
4325
4326int netdev_max_backlog __read_mostly = 1000;
4327EXPORT_SYMBOL(netdev_max_backlog);
4328
4329int netdev_tstamp_prequeue __read_mostly = 1;
4330unsigned int sysctl_skb_defer_max __read_mostly = 64;
4331int netdev_budget __read_mostly = 300;
4332/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4333unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4334int weight_p __read_mostly = 64; /* old backlog weight */
4335int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4336int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4337int dev_rx_weight __read_mostly = 64;
4338int dev_tx_weight __read_mostly = 64;
4339
4340/* Called with irq disabled */
4341static inline void ____napi_schedule(struct softnet_data *sd,
4342 struct napi_struct *napi)
4343{
4344 struct task_struct *thread;
4345
4346 lockdep_assert_irqs_disabled();
4347
4348 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4349 /* Paired with smp_mb__before_atomic() in
4350 * napi_enable()/dev_set_threaded().
4351 * Use READ_ONCE() to guarantee a complete
4352 * read on napi->thread. Only call
4353 * wake_up_process() when it's not NULL.
4354 */
4355 thread = READ_ONCE(napi->thread);
4356 if (thread) {
4357 /* Avoid doing set_bit() if the thread is in
4358 * INTERRUPTIBLE state, cause napi_thread_wait()
4359 * makes sure to proceed with napi polling
4360 * if the thread is explicitly woken from here.
4361 */
4362 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4363 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4364 wake_up_process(thread);
4365 return;
4366 }
4367 }
4368
4369 list_add_tail(&napi->poll_list, &sd->poll_list);
4370 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4371}
4372
4373#ifdef CONFIG_RPS
4374
4375/* One global table that all flow-based protocols share. */
4376struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4377EXPORT_SYMBOL(rps_sock_flow_table);
4378u32 rps_cpu_mask __read_mostly;
4379EXPORT_SYMBOL(rps_cpu_mask);
4380
4381struct static_key_false rps_needed __read_mostly;
4382EXPORT_SYMBOL(rps_needed);
4383struct static_key_false rfs_needed __read_mostly;
4384EXPORT_SYMBOL(rfs_needed);
4385
4386static struct rps_dev_flow *
4387set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4388 struct rps_dev_flow *rflow, u16 next_cpu)
4389{
4390 if (next_cpu < nr_cpu_ids) {
4391#ifdef CONFIG_RFS_ACCEL
4392 struct netdev_rx_queue *rxqueue;
4393 struct rps_dev_flow_table *flow_table;
4394 struct rps_dev_flow *old_rflow;
4395 u32 flow_id;
4396 u16 rxq_index;
4397 int rc;
4398
4399 /* Should we steer this flow to a different hardware queue? */
4400 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4401 !(dev->features & NETIF_F_NTUPLE))
4402 goto out;
4403 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4404 if (rxq_index == skb_get_rx_queue(skb))
4405 goto out;
4406
4407 rxqueue = dev->_rx + rxq_index;
4408 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4409 if (!flow_table)
4410 goto out;
4411 flow_id = skb_get_hash(skb) & flow_table->mask;
4412 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4413 rxq_index, flow_id);
4414 if (rc < 0)
4415 goto out;
4416 old_rflow = rflow;
4417 rflow = &flow_table->flows[flow_id];
4418 rflow->filter = rc;
4419 if (old_rflow->filter == rflow->filter)
4420 old_rflow->filter = RPS_NO_FILTER;
4421 out:
4422#endif
4423 rflow->last_qtail =
4424 per_cpu(softnet_data, next_cpu).input_queue_head;
4425 }
4426
4427 rflow->cpu = next_cpu;
4428 return rflow;
4429}
4430
4431/*
4432 * get_rps_cpu is called from netif_receive_skb and returns the target
4433 * CPU from the RPS map of the receiving queue for a given skb.
4434 * rcu_read_lock must be held on entry.
4435 */
4436static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4437 struct rps_dev_flow **rflowp)
4438{
4439 const struct rps_sock_flow_table *sock_flow_table;
4440 struct netdev_rx_queue *rxqueue = dev->_rx;
4441 struct rps_dev_flow_table *flow_table;
4442 struct rps_map *map;
4443 int cpu = -1;
4444 u32 tcpu;
4445 u32 hash;
4446
4447 if (skb_rx_queue_recorded(skb)) {
4448 u16 index = skb_get_rx_queue(skb);
4449
4450 if (unlikely(index >= dev->real_num_rx_queues)) {
4451 WARN_ONCE(dev->real_num_rx_queues > 1,
4452 "%s received packet on queue %u, but number "
4453 "of RX queues is %u\n",
4454 dev->name, index, dev->real_num_rx_queues);
4455 goto done;
4456 }
4457 rxqueue += index;
4458 }
4459
4460 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4461
4462 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4463 map = rcu_dereference(rxqueue->rps_map);
4464 if (!flow_table && !map)
4465 goto done;
4466
4467 skb_reset_network_header(skb);
4468 hash = skb_get_hash(skb);
4469 if (!hash)
4470 goto done;
4471
4472 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4473 if (flow_table && sock_flow_table) {
4474 struct rps_dev_flow *rflow;
4475 u32 next_cpu;
4476 u32 ident;
4477
4478 /* First check into global flow table if there is a match */
4479 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4480 if ((ident ^ hash) & ~rps_cpu_mask)
4481 goto try_rps;
4482
4483 next_cpu = ident & rps_cpu_mask;
4484
4485 /* OK, now we know there is a match,
4486 * we can look at the local (per receive queue) flow table
4487 */
4488 rflow = &flow_table->flows[hash & flow_table->mask];
4489 tcpu = rflow->cpu;
4490
4491 /*
4492 * If the desired CPU (where last recvmsg was done) is
4493 * different from current CPU (one in the rx-queue flow
4494 * table entry), switch if one of the following holds:
4495 * - Current CPU is unset (>= nr_cpu_ids).
4496 * - Current CPU is offline.
4497 * - The current CPU's queue tail has advanced beyond the
4498 * last packet that was enqueued using this table entry.
4499 * This guarantees that all previous packets for the flow
4500 * have been dequeued, thus preserving in order delivery.
4501 */
4502 if (unlikely(tcpu != next_cpu) &&
4503 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4504 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4505 rflow->last_qtail)) >= 0)) {
4506 tcpu = next_cpu;
4507 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4508 }
4509
4510 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4511 *rflowp = rflow;
4512 cpu = tcpu;
4513 goto done;
4514 }
4515 }
4516
4517try_rps:
4518
4519 if (map) {
4520 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4521 if (cpu_online(tcpu)) {
4522 cpu = tcpu;
4523 goto done;
4524 }
4525 }
4526
4527done:
4528 return cpu;
4529}
4530
4531#ifdef CONFIG_RFS_ACCEL
4532
4533/**
4534 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4535 * @dev: Device on which the filter was set
4536 * @rxq_index: RX queue index
4537 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4538 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4539 *
4540 * Drivers that implement ndo_rx_flow_steer() should periodically call
4541 * this function for each installed filter and remove the filters for
4542 * which it returns %true.
4543 */
4544bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4545 u32 flow_id, u16 filter_id)
4546{
4547 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4548 struct rps_dev_flow_table *flow_table;
4549 struct rps_dev_flow *rflow;
4550 bool expire = true;
4551 unsigned int cpu;
4552
4553 rcu_read_lock();
4554 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4555 if (flow_table && flow_id <= flow_table->mask) {
4556 rflow = &flow_table->flows[flow_id];
4557 cpu = READ_ONCE(rflow->cpu);
4558 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4559 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4560 rflow->last_qtail) <
4561 (int)(10 * flow_table->mask)))
4562 expire = false;
4563 }
4564 rcu_read_unlock();
4565 return expire;
4566}
4567EXPORT_SYMBOL(rps_may_expire_flow);
4568
4569#endif /* CONFIG_RFS_ACCEL */
4570
4571/* Called from hardirq (IPI) context */
4572static void rps_trigger_softirq(void *data)
4573{
4574 struct softnet_data *sd = data;
4575
4576 ____napi_schedule(sd, &sd->backlog);
4577 sd->received_rps++;
4578}
4579
4580#endif /* CONFIG_RPS */
4581
4582/* Called from hardirq (IPI) context */
4583static void trigger_rx_softirq(void *data)
4584{
4585 struct softnet_data *sd = data;
4586
4587 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4588 smp_store_release(&sd->defer_ipi_scheduled, 0);
4589}
4590
4591/*
4592 * Check if this softnet_data structure is another cpu one
4593 * If yes, queue it to our IPI list and return 1
4594 * If no, return 0
4595 */
4596static int napi_schedule_rps(struct softnet_data *sd)
4597{
4598 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4599
4600#ifdef CONFIG_RPS
4601 if (sd != mysd) {
4602 sd->rps_ipi_next = mysd->rps_ipi_list;
4603 mysd->rps_ipi_list = sd;
4604
4605 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4606 return 1;
4607 }
4608#endif /* CONFIG_RPS */
4609 __napi_schedule_irqoff(&mysd->backlog);
4610 return 0;
4611}
4612
4613#ifdef CONFIG_NET_FLOW_LIMIT
4614int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4615#endif
4616
4617static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4618{
4619#ifdef CONFIG_NET_FLOW_LIMIT
4620 struct sd_flow_limit *fl;
4621 struct softnet_data *sd;
4622 unsigned int old_flow, new_flow;
4623
4624 if (qlen < (netdev_max_backlog >> 1))
4625 return false;
4626
4627 sd = this_cpu_ptr(&softnet_data);
4628
4629 rcu_read_lock();
4630 fl = rcu_dereference(sd->flow_limit);
4631 if (fl) {
4632 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4633 old_flow = fl->history[fl->history_head];
4634 fl->history[fl->history_head] = new_flow;
4635
4636 fl->history_head++;
4637 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4638
4639 if (likely(fl->buckets[old_flow]))
4640 fl->buckets[old_flow]--;
4641
4642 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4643 fl->count++;
4644 rcu_read_unlock();
4645 return true;
4646 }
4647 }
4648 rcu_read_unlock();
4649#endif
4650 return false;
4651}
4652
4653/*
4654 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4655 * queue (may be a remote CPU queue).
4656 */
4657static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4658 unsigned int *qtail)
4659{
4660 enum skb_drop_reason reason;
4661 struct softnet_data *sd;
4662 unsigned long flags;
4663 unsigned int qlen;
4664
4665 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4666 sd = &per_cpu(softnet_data, cpu);
4667
4668 rps_lock_irqsave(sd, &flags);
4669 if (!netif_running(skb->dev))
4670 goto drop;
4671 qlen = skb_queue_len(&sd->input_pkt_queue);
4672 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4673 if (qlen) {
4674enqueue:
4675 __skb_queue_tail(&sd->input_pkt_queue, skb);
4676 input_queue_tail_incr_save(sd, qtail);
4677 rps_unlock_irq_restore(sd, &flags);
4678 return NET_RX_SUCCESS;
4679 }
4680
4681 /* Schedule NAPI for backlog device
4682 * We can use non atomic operation since we own the queue lock
4683 */
4684 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4685 napi_schedule_rps(sd);
4686 goto enqueue;
4687 }
4688 reason = SKB_DROP_REASON_CPU_BACKLOG;
4689
4690drop:
4691 sd->dropped++;
4692 rps_unlock_irq_restore(sd, &flags);
4693
4694 dev_core_stats_rx_dropped_inc(skb->dev);
4695 kfree_skb_reason(skb, reason);
4696 return NET_RX_DROP;
4697}
4698
4699static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4700{
4701 struct net_device *dev = skb->dev;
4702 struct netdev_rx_queue *rxqueue;
4703
4704 rxqueue = dev->_rx;
4705
4706 if (skb_rx_queue_recorded(skb)) {
4707 u16 index = skb_get_rx_queue(skb);
4708
4709 if (unlikely(index >= dev->real_num_rx_queues)) {
4710 WARN_ONCE(dev->real_num_rx_queues > 1,
4711 "%s received packet on queue %u, but number "
4712 "of RX queues is %u\n",
4713 dev->name, index, dev->real_num_rx_queues);
4714
4715 return rxqueue; /* Return first rxqueue */
4716 }
4717 rxqueue += index;
4718 }
4719 return rxqueue;
4720}
4721
4722u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4723 struct bpf_prog *xdp_prog)
4724{
4725 void *orig_data, *orig_data_end, *hard_start;
4726 struct netdev_rx_queue *rxqueue;
4727 bool orig_bcast, orig_host;
4728 u32 mac_len, frame_sz;
4729 __be16 orig_eth_type;
4730 struct ethhdr *eth;
4731 u32 metalen, act;
4732 int off;
4733
4734 /* The XDP program wants to see the packet starting at the MAC
4735 * header.
4736 */
4737 mac_len = skb->data - skb_mac_header(skb);
4738 hard_start = skb->data - skb_headroom(skb);
4739
4740 /* SKB "head" area always have tailroom for skb_shared_info */
4741 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4742 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4743
4744 rxqueue = netif_get_rxqueue(skb);
4745 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4746 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4747 skb_headlen(skb) + mac_len, true);
4748
4749 orig_data_end = xdp->data_end;
4750 orig_data = xdp->data;
4751 eth = (struct ethhdr *)xdp->data;
4752 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4753 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4754 orig_eth_type = eth->h_proto;
4755
4756 act = bpf_prog_run_xdp(xdp_prog, xdp);
4757
4758 /* check if bpf_xdp_adjust_head was used */
4759 off = xdp->data - orig_data;
4760 if (off) {
4761 if (off > 0)
4762 __skb_pull(skb, off);
4763 else if (off < 0)
4764 __skb_push(skb, -off);
4765
4766 skb->mac_header += off;
4767 skb_reset_network_header(skb);
4768 }
4769
4770 /* check if bpf_xdp_adjust_tail was used */
4771 off = xdp->data_end - orig_data_end;
4772 if (off != 0) {
4773 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4774 skb->len += off; /* positive on grow, negative on shrink */
4775 }
4776
4777 /* check if XDP changed eth hdr such SKB needs update */
4778 eth = (struct ethhdr *)xdp->data;
4779 if ((orig_eth_type != eth->h_proto) ||
4780 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4781 skb->dev->dev_addr)) ||
4782 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4783 __skb_push(skb, ETH_HLEN);
4784 skb->pkt_type = PACKET_HOST;
4785 skb->protocol = eth_type_trans(skb, skb->dev);
4786 }
4787
4788 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4789 * before calling us again on redirect path. We do not call do_redirect
4790 * as we leave that up to the caller.
4791 *
4792 * Caller is responsible for managing lifetime of skb (i.e. calling
4793 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4794 */
4795 switch (act) {
4796 case XDP_REDIRECT:
4797 case XDP_TX:
4798 __skb_push(skb, mac_len);
4799 break;
4800 case XDP_PASS:
4801 metalen = xdp->data - xdp->data_meta;
4802 if (metalen)
4803 skb_metadata_set(skb, metalen);
4804 break;
4805 }
4806
4807 return act;
4808}
4809
4810static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4811 struct xdp_buff *xdp,
4812 struct bpf_prog *xdp_prog)
4813{
4814 u32 act = XDP_DROP;
4815
4816 /* Reinjected packets coming from act_mirred or similar should
4817 * not get XDP generic processing.
4818 */
4819 if (skb_is_redirected(skb))
4820 return XDP_PASS;
4821
4822 /* XDP packets must be linear and must have sufficient headroom
4823 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4824 * native XDP provides, thus we need to do it here as well.
4825 */
4826 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4827 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4828 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4829 int troom = skb->tail + skb->data_len - skb->end;
4830
4831 /* In case we have to go down the path and also linearize,
4832 * then lets do the pskb_expand_head() work just once here.
4833 */
4834 if (pskb_expand_head(skb,
4835 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4836 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4837 goto do_drop;
4838 if (skb_linearize(skb))
4839 goto do_drop;
4840 }
4841
4842 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4843 switch (act) {
4844 case XDP_REDIRECT:
4845 case XDP_TX:
4846 case XDP_PASS:
4847 break;
4848 default:
4849 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4850 fallthrough;
4851 case XDP_ABORTED:
4852 trace_xdp_exception(skb->dev, xdp_prog, act);
4853 fallthrough;
4854 case XDP_DROP:
4855 do_drop:
4856 kfree_skb(skb);
4857 break;
4858 }
4859
4860 return act;
4861}
4862
4863/* When doing generic XDP we have to bypass the qdisc layer and the
4864 * network taps in order to match in-driver-XDP behavior.
4865 */
4866void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4867{
4868 struct net_device *dev = skb->dev;
4869 struct netdev_queue *txq;
4870 bool free_skb = true;
4871 int cpu, rc;
4872
4873 txq = netdev_core_pick_tx(dev, skb, NULL);
4874 cpu = smp_processor_id();
4875 HARD_TX_LOCK(dev, txq, cpu);
4876 if (!netif_xmit_stopped(txq)) {
4877 rc = netdev_start_xmit(skb, dev, txq, 0);
4878 if (dev_xmit_complete(rc))
4879 free_skb = false;
4880 }
4881 HARD_TX_UNLOCK(dev, txq);
4882 if (free_skb) {
4883 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4884 kfree_skb(skb);
4885 }
4886}
4887
4888static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4889
4890int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4891{
4892 if (xdp_prog) {
4893 struct xdp_buff xdp;
4894 u32 act;
4895 int err;
4896
4897 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4898 if (act != XDP_PASS) {
4899 switch (act) {
4900 case XDP_REDIRECT:
4901 err = xdp_do_generic_redirect(skb->dev, skb,
4902 &xdp, xdp_prog);
4903 if (err)
4904 goto out_redir;
4905 break;
4906 case XDP_TX:
4907 generic_xdp_tx(skb, xdp_prog);
4908 break;
4909 }
4910 return XDP_DROP;
4911 }
4912 }
4913 return XDP_PASS;
4914out_redir:
4915 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4916 return XDP_DROP;
4917}
4918EXPORT_SYMBOL_GPL(do_xdp_generic);
4919
4920static int netif_rx_internal(struct sk_buff *skb)
4921{
4922 int ret;
4923
4924 net_timestamp_check(netdev_tstamp_prequeue, skb);
4925
4926 trace_netif_rx(skb);
4927
4928#ifdef CONFIG_RPS
4929 if (static_branch_unlikely(&rps_needed)) {
4930 struct rps_dev_flow voidflow, *rflow = &voidflow;
4931 int cpu;
4932
4933 rcu_read_lock();
4934
4935 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4936 if (cpu < 0)
4937 cpu = smp_processor_id();
4938
4939 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4940
4941 rcu_read_unlock();
4942 } else
4943#endif
4944 {
4945 unsigned int qtail;
4946
4947 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4948 }
4949 return ret;
4950}
4951
4952/**
4953 * __netif_rx - Slightly optimized version of netif_rx
4954 * @skb: buffer to post
4955 *
4956 * This behaves as netif_rx except that it does not disable bottom halves.
4957 * As a result this function may only be invoked from the interrupt context
4958 * (either hard or soft interrupt).
4959 */
4960int __netif_rx(struct sk_buff *skb)
4961{
4962 int ret;
4963
4964 lockdep_assert_once(hardirq_count() | softirq_count());
4965
4966 trace_netif_rx_entry(skb);
4967 ret = netif_rx_internal(skb);
4968 trace_netif_rx_exit(ret);
4969 return ret;
4970}
4971EXPORT_SYMBOL(__netif_rx);
4972
4973/**
4974 * netif_rx - post buffer to the network code
4975 * @skb: buffer to post
4976 *
4977 * This function receives a packet from a device driver and queues it for
4978 * the upper (protocol) levels to process via the backlog NAPI device. It
4979 * always succeeds. The buffer may be dropped during processing for
4980 * congestion control or by the protocol layers.
4981 * The network buffer is passed via the backlog NAPI device. Modern NIC
4982 * driver should use NAPI and GRO.
4983 * This function can used from interrupt and from process context. The
4984 * caller from process context must not disable interrupts before invoking
4985 * this function.
4986 *
4987 * return values:
4988 * NET_RX_SUCCESS (no congestion)
4989 * NET_RX_DROP (packet was dropped)
4990 *
4991 */
4992int netif_rx(struct sk_buff *skb)
4993{
4994 bool need_bh_off = !(hardirq_count() | softirq_count());
4995 int ret;
4996
4997 if (need_bh_off)
4998 local_bh_disable();
4999 trace_netif_rx_entry(skb);
5000 ret = netif_rx_internal(skb);
5001 trace_netif_rx_exit(ret);
5002 if (need_bh_off)
5003 local_bh_enable();
5004 return ret;
5005}
5006EXPORT_SYMBOL(netif_rx);
5007
5008static __latent_entropy void net_tx_action(struct softirq_action *h)
5009{
5010 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5011
5012 if (sd->completion_queue) {
5013 struct sk_buff *clist;
5014
5015 local_irq_disable();
5016 clist = sd->completion_queue;
5017 sd->completion_queue = NULL;
5018 local_irq_enable();
5019
5020 while (clist) {
5021 struct sk_buff *skb = clist;
5022
5023 clist = clist->next;
5024
5025 WARN_ON(refcount_read(&skb->users));
5026 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5027 trace_consume_skb(skb);
5028 else
5029 trace_kfree_skb(skb, net_tx_action,
5030 SKB_DROP_REASON_NOT_SPECIFIED);
5031
5032 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5033 __kfree_skb(skb);
5034 else
5035 __kfree_skb_defer(skb);
5036 }
5037 }
5038
5039 if (sd->output_queue) {
5040 struct Qdisc *head;
5041
5042 local_irq_disable();
5043 head = sd->output_queue;
5044 sd->output_queue = NULL;
5045 sd->output_queue_tailp = &sd->output_queue;
5046 local_irq_enable();
5047
5048 rcu_read_lock();
5049
5050 while (head) {
5051 struct Qdisc *q = head;
5052 spinlock_t *root_lock = NULL;
5053
5054 head = head->next_sched;
5055
5056 /* We need to make sure head->next_sched is read
5057 * before clearing __QDISC_STATE_SCHED
5058 */
5059 smp_mb__before_atomic();
5060
5061 if (!(q->flags & TCQ_F_NOLOCK)) {
5062 root_lock = qdisc_lock(q);
5063 spin_lock(root_lock);
5064 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5065 &q->state))) {
5066 /* There is a synchronize_net() between
5067 * STATE_DEACTIVATED flag being set and
5068 * qdisc_reset()/some_qdisc_is_busy() in
5069 * dev_deactivate(), so we can safely bail out
5070 * early here to avoid data race between
5071 * qdisc_deactivate() and some_qdisc_is_busy()
5072 * for lockless qdisc.
5073 */
5074 clear_bit(__QDISC_STATE_SCHED, &q->state);
5075 continue;
5076 }
5077
5078 clear_bit(__QDISC_STATE_SCHED, &q->state);
5079 qdisc_run(q);
5080 if (root_lock)
5081 spin_unlock(root_lock);
5082 }
5083
5084 rcu_read_unlock();
5085 }
5086
5087 xfrm_dev_backlog(sd);
5088}
5089
5090#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5091/* This hook is defined here for ATM LANE */
5092int (*br_fdb_test_addr_hook)(struct net_device *dev,
5093 unsigned char *addr) __read_mostly;
5094EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5095#endif
5096
5097static inline struct sk_buff *
5098sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5099 struct net_device *orig_dev, bool *another)
5100{
5101#ifdef CONFIG_NET_CLS_ACT
5102 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5103 struct tcf_result cl_res;
5104
5105 /* If there's at least one ingress present somewhere (so
5106 * we get here via enabled static key), remaining devices
5107 * that are not configured with an ingress qdisc will bail
5108 * out here.
5109 */
5110 if (!miniq)
5111 return skb;
5112
5113 if (*pt_prev) {
5114 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5115 *pt_prev = NULL;
5116 }
5117
5118 qdisc_skb_cb(skb)->pkt_len = skb->len;
5119 tc_skb_cb(skb)->mru = 0;
5120 tc_skb_cb(skb)->post_ct = false;
5121 skb->tc_at_ingress = 1;
5122 mini_qdisc_bstats_cpu_update(miniq, skb);
5123
5124 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5125 case TC_ACT_OK:
5126 case TC_ACT_RECLASSIFY:
5127 skb->tc_index = TC_H_MIN(cl_res.classid);
5128 break;
5129 case TC_ACT_SHOT:
5130 mini_qdisc_qstats_cpu_drop(miniq);
5131 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5132 return NULL;
5133 case TC_ACT_STOLEN:
5134 case TC_ACT_QUEUED:
5135 case TC_ACT_TRAP:
5136 consume_skb(skb);
5137 return NULL;
5138 case TC_ACT_REDIRECT:
5139 /* skb_mac_header check was done by cls/act_bpf, so
5140 * we can safely push the L2 header back before
5141 * redirecting to another netdev
5142 */
5143 __skb_push(skb, skb->mac_len);
5144 if (skb_do_redirect(skb) == -EAGAIN) {
5145 __skb_pull(skb, skb->mac_len);
5146 *another = true;
5147 break;
5148 }
5149 return NULL;
5150 case TC_ACT_CONSUMED:
5151 return NULL;
5152 default:
5153 break;
5154 }
5155#endif /* CONFIG_NET_CLS_ACT */
5156 return skb;
5157}
5158
5159/**
5160 * netdev_is_rx_handler_busy - check if receive handler is registered
5161 * @dev: device to check
5162 *
5163 * Check if a receive handler is already registered for a given device.
5164 * Return true if there one.
5165 *
5166 * The caller must hold the rtnl_mutex.
5167 */
5168bool netdev_is_rx_handler_busy(struct net_device *dev)
5169{
5170 ASSERT_RTNL();
5171 return dev && rtnl_dereference(dev->rx_handler);
5172}
5173EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5174
5175/**
5176 * netdev_rx_handler_register - register receive handler
5177 * @dev: device to register a handler for
5178 * @rx_handler: receive handler to register
5179 * @rx_handler_data: data pointer that is used by rx handler
5180 *
5181 * Register a receive handler for a device. This handler will then be
5182 * called from __netif_receive_skb. A negative errno code is returned
5183 * on a failure.
5184 *
5185 * The caller must hold the rtnl_mutex.
5186 *
5187 * For a general description of rx_handler, see enum rx_handler_result.
5188 */
5189int netdev_rx_handler_register(struct net_device *dev,
5190 rx_handler_func_t *rx_handler,
5191 void *rx_handler_data)
5192{
5193 if (netdev_is_rx_handler_busy(dev))
5194 return -EBUSY;
5195
5196 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5197 return -EINVAL;
5198
5199 /* Note: rx_handler_data must be set before rx_handler */
5200 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5201 rcu_assign_pointer(dev->rx_handler, rx_handler);
5202
5203 return 0;
5204}
5205EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5206
5207/**
5208 * netdev_rx_handler_unregister - unregister receive handler
5209 * @dev: device to unregister a handler from
5210 *
5211 * Unregister a receive handler from a device.
5212 *
5213 * The caller must hold the rtnl_mutex.
5214 */
5215void netdev_rx_handler_unregister(struct net_device *dev)
5216{
5217
5218 ASSERT_RTNL();
5219 RCU_INIT_POINTER(dev->rx_handler, NULL);
5220 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5221 * section has a guarantee to see a non NULL rx_handler_data
5222 * as well.
5223 */
5224 synchronize_net();
5225 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5226}
5227EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5228
5229/*
5230 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5231 * the special handling of PFMEMALLOC skbs.
5232 */
5233static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5234{
5235 switch (skb->protocol) {
5236 case htons(ETH_P_ARP):
5237 case htons(ETH_P_IP):
5238 case htons(ETH_P_IPV6):
5239 case htons(ETH_P_8021Q):
5240 case htons(ETH_P_8021AD):
5241 return true;
5242 default:
5243 return false;
5244 }
5245}
5246
5247static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5248 int *ret, struct net_device *orig_dev)
5249{
5250 if (nf_hook_ingress_active(skb)) {
5251 int ingress_retval;
5252
5253 if (*pt_prev) {
5254 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5255 *pt_prev = NULL;
5256 }
5257
5258 rcu_read_lock();
5259 ingress_retval = nf_hook_ingress(skb);
5260 rcu_read_unlock();
5261 return ingress_retval;
5262 }
5263 return 0;
5264}
5265
5266static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5267 struct packet_type **ppt_prev)
5268{
5269 struct packet_type *ptype, *pt_prev;
5270 rx_handler_func_t *rx_handler;
5271 struct sk_buff *skb = *pskb;
5272 struct net_device *orig_dev;
5273 bool deliver_exact = false;
5274 int ret = NET_RX_DROP;
5275 __be16 type;
5276
5277 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5278
5279 trace_netif_receive_skb(skb);
5280
5281 orig_dev = skb->dev;
5282
5283 skb_reset_network_header(skb);
5284 if (!skb_transport_header_was_set(skb))
5285 skb_reset_transport_header(skb);
5286 skb_reset_mac_len(skb);
5287
5288 pt_prev = NULL;
5289
5290another_round:
5291 skb->skb_iif = skb->dev->ifindex;
5292
5293 __this_cpu_inc(softnet_data.processed);
5294
5295 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5296 int ret2;
5297
5298 migrate_disable();
5299 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5300 migrate_enable();
5301
5302 if (ret2 != XDP_PASS) {
5303 ret = NET_RX_DROP;
5304 goto out;
5305 }
5306 }
5307
5308 if (eth_type_vlan(skb->protocol)) {
5309 skb = skb_vlan_untag(skb);
5310 if (unlikely(!skb))
5311 goto out;
5312 }
5313
5314 if (skb_skip_tc_classify(skb))
5315 goto skip_classify;
5316
5317 if (pfmemalloc)
5318 goto skip_taps;
5319
5320 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5321 if (pt_prev)
5322 ret = deliver_skb(skb, pt_prev, orig_dev);
5323 pt_prev = ptype;
5324 }
5325
5326 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5327 if (pt_prev)
5328 ret = deliver_skb(skb, pt_prev, orig_dev);
5329 pt_prev = ptype;
5330 }
5331
5332skip_taps:
5333#ifdef CONFIG_NET_INGRESS
5334 if (static_branch_unlikely(&ingress_needed_key)) {
5335 bool another = false;
5336
5337 nf_skip_egress(skb, true);
5338 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5339 &another);
5340 if (another)
5341 goto another_round;
5342 if (!skb)
5343 goto out;
5344
5345 nf_skip_egress(skb, false);
5346 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5347 goto out;
5348 }
5349#endif
5350 skb_reset_redirect(skb);
5351skip_classify:
5352 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5353 goto drop;
5354
5355 if (skb_vlan_tag_present(skb)) {
5356 if (pt_prev) {
5357 ret = deliver_skb(skb, pt_prev, orig_dev);
5358 pt_prev = NULL;
5359 }
5360 if (vlan_do_receive(&skb))
5361 goto another_round;
5362 else if (unlikely(!skb))
5363 goto out;
5364 }
5365
5366 rx_handler = rcu_dereference(skb->dev->rx_handler);
5367 if (rx_handler) {
5368 if (pt_prev) {
5369 ret = deliver_skb(skb, pt_prev, orig_dev);
5370 pt_prev = NULL;
5371 }
5372 switch (rx_handler(&skb)) {
5373 case RX_HANDLER_CONSUMED:
5374 ret = NET_RX_SUCCESS;
5375 goto out;
5376 case RX_HANDLER_ANOTHER:
5377 goto another_round;
5378 case RX_HANDLER_EXACT:
5379 deliver_exact = true;
5380 break;
5381 case RX_HANDLER_PASS:
5382 break;
5383 default:
5384 BUG();
5385 }
5386 }
5387
5388 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5389check_vlan_id:
5390 if (skb_vlan_tag_get_id(skb)) {
5391 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5392 * find vlan device.
5393 */
5394 skb->pkt_type = PACKET_OTHERHOST;
5395 } else if (eth_type_vlan(skb->protocol)) {
5396 /* Outer header is 802.1P with vlan 0, inner header is
5397 * 802.1Q or 802.1AD and vlan_do_receive() above could
5398 * not find vlan dev for vlan id 0.
5399 */
5400 __vlan_hwaccel_clear_tag(skb);
5401 skb = skb_vlan_untag(skb);
5402 if (unlikely(!skb))
5403 goto out;
5404 if (vlan_do_receive(&skb))
5405 /* After stripping off 802.1P header with vlan 0
5406 * vlan dev is found for inner header.
5407 */
5408 goto another_round;
5409 else if (unlikely(!skb))
5410 goto out;
5411 else
5412 /* We have stripped outer 802.1P vlan 0 header.
5413 * But could not find vlan dev.
5414 * check again for vlan id to set OTHERHOST.
5415 */
5416 goto check_vlan_id;
5417 }
5418 /* Note: we might in the future use prio bits
5419 * and set skb->priority like in vlan_do_receive()
5420 * For the time being, just ignore Priority Code Point
5421 */
5422 __vlan_hwaccel_clear_tag(skb);
5423 }
5424
5425 type = skb->protocol;
5426
5427 /* deliver only exact match when indicated */
5428 if (likely(!deliver_exact)) {
5429 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5430 &ptype_base[ntohs(type) &
5431 PTYPE_HASH_MASK]);
5432 }
5433
5434 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5435 &orig_dev->ptype_specific);
5436
5437 if (unlikely(skb->dev != orig_dev)) {
5438 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5439 &skb->dev->ptype_specific);
5440 }
5441
5442 if (pt_prev) {
5443 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5444 goto drop;
5445 *ppt_prev = pt_prev;
5446 } else {
5447drop:
5448 if (!deliver_exact)
5449 dev_core_stats_rx_dropped_inc(skb->dev);
5450 else
5451 dev_core_stats_rx_nohandler_inc(skb->dev);
5452 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5453 /* Jamal, now you will not able to escape explaining
5454 * me how you were going to use this. :-)
5455 */
5456 ret = NET_RX_DROP;
5457 }
5458
5459out:
5460 /* The invariant here is that if *ppt_prev is not NULL
5461 * then skb should also be non-NULL.
5462 *
5463 * Apparently *ppt_prev assignment above holds this invariant due to
5464 * skb dereferencing near it.
5465 */
5466 *pskb = skb;
5467 return ret;
5468}
5469
5470static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5471{
5472 struct net_device *orig_dev = skb->dev;
5473 struct packet_type *pt_prev = NULL;
5474 int ret;
5475
5476 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5477 if (pt_prev)
5478 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5479 skb->dev, pt_prev, orig_dev);
5480 return ret;
5481}
5482
5483/**
5484 * netif_receive_skb_core - special purpose version of netif_receive_skb
5485 * @skb: buffer to process
5486 *
5487 * More direct receive version of netif_receive_skb(). It should
5488 * only be used by callers that have a need to skip RPS and Generic XDP.
5489 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5490 *
5491 * This function may only be called from softirq context and interrupts
5492 * should be enabled.
5493 *
5494 * Return values (usually ignored):
5495 * NET_RX_SUCCESS: no congestion
5496 * NET_RX_DROP: packet was dropped
5497 */
5498int netif_receive_skb_core(struct sk_buff *skb)
5499{
5500 int ret;
5501
5502 rcu_read_lock();
5503 ret = __netif_receive_skb_one_core(skb, false);
5504 rcu_read_unlock();
5505
5506 return ret;
5507}
5508EXPORT_SYMBOL(netif_receive_skb_core);
5509
5510static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5511 struct packet_type *pt_prev,
5512 struct net_device *orig_dev)
5513{
5514 struct sk_buff *skb, *next;
5515
5516 if (!pt_prev)
5517 return;
5518 if (list_empty(head))
5519 return;
5520 if (pt_prev->list_func != NULL)
5521 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5522 ip_list_rcv, head, pt_prev, orig_dev);
5523 else
5524 list_for_each_entry_safe(skb, next, head, list) {
5525 skb_list_del_init(skb);
5526 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5527 }
5528}
5529
5530static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5531{
5532 /* Fast-path assumptions:
5533 * - There is no RX handler.
5534 * - Only one packet_type matches.
5535 * If either of these fails, we will end up doing some per-packet
5536 * processing in-line, then handling the 'last ptype' for the whole
5537 * sublist. This can't cause out-of-order delivery to any single ptype,
5538 * because the 'last ptype' must be constant across the sublist, and all
5539 * other ptypes are handled per-packet.
5540 */
5541 /* Current (common) ptype of sublist */
5542 struct packet_type *pt_curr = NULL;
5543 /* Current (common) orig_dev of sublist */
5544 struct net_device *od_curr = NULL;
5545 struct list_head sublist;
5546 struct sk_buff *skb, *next;
5547
5548 INIT_LIST_HEAD(&sublist);
5549 list_for_each_entry_safe(skb, next, head, list) {
5550 struct net_device *orig_dev = skb->dev;
5551 struct packet_type *pt_prev = NULL;
5552
5553 skb_list_del_init(skb);
5554 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5555 if (!pt_prev)
5556 continue;
5557 if (pt_curr != pt_prev || od_curr != orig_dev) {
5558 /* dispatch old sublist */
5559 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5560 /* start new sublist */
5561 INIT_LIST_HEAD(&sublist);
5562 pt_curr = pt_prev;
5563 od_curr = orig_dev;
5564 }
5565 list_add_tail(&skb->list, &sublist);
5566 }
5567
5568 /* dispatch final sublist */
5569 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5570}
5571
5572static int __netif_receive_skb(struct sk_buff *skb)
5573{
5574 int ret;
5575
5576 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5577 unsigned int noreclaim_flag;
5578
5579 /*
5580 * PFMEMALLOC skbs are special, they should
5581 * - be delivered to SOCK_MEMALLOC sockets only
5582 * - stay away from userspace
5583 * - have bounded memory usage
5584 *
5585 * Use PF_MEMALLOC as this saves us from propagating the allocation
5586 * context down to all allocation sites.
5587 */
5588 noreclaim_flag = memalloc_noreclaim_save();
5589 ret = __netif_receive_skb_one_core(skb, true);
5590 memalloc_noreclaim_restore(noreclaim_flag);
5591 } else
5592 ret = __netif_receive_skb_one_core(skb, false);
5593
5594 return ret;
5595}
5596
5597static void __netif_receive_skb_list(struct list_head *head)
5598{
5599 unsigned long noreclaim_flag = 0;
5600 struct sk_buff *skb, *next;
5601 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5602
5603 list_for_each_entry_safe(skb, next, head, list) {
5604 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5605 struct list_head sublist;
5606
5607 /* Handle the previous sublist */
5608 list_cut_before(&sublist, head, &skb->list);
5609 if (!list_empty(&sublist))
5610 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5611 pfmemalloc = !pfmemalloc;
5612 /* See comments in __netif_receive_skb */
5613 if (pfmemalloc)
5614 noreclaim_flag = memalloc_noreclaim_save();
5615 else
5616 memalloc_noreclaim_restore(noreclaim_flag);
5617 }
5618 }
5619 /* Handle the remaining sublist */
5620 if (!list_empty(head))
5621 __netif_receive_skb_list_core(head, pfmemalloc);
5622 /* Restore pflags */
5623 if (pfmemalloc)
5624 memalloc_noreclaim_restore(noreclaim_flag);
5625}
5626
5627static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5628{
5629 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5630 struct bpf_prog *new = xdp->prog;
5631 int ret = 0;
5632
5633 switch (xdp->command) {
5634 case XDP_SETUP_PROG:
5635 rcu_assign_pointer(dev->xdp_prog, new);
5636 if (old)
5637 bpf_prog_put(old);
5638
5639 if (old && !new) {
5640 static_branch_dec(&generic_xdp_needed_key);
5641 } else if (new && !old) {
5642 static_branch_inc(&generic_xdp_needed_key);
5643 dev_disable_lro(dev);
5644 dev_disable_gro_hw(dev);
5645 }
5646 break;
5647
5648 default:
5649 ret = -EINVAL;
5650 break;
5651 }
5652
5653 return ret;
5654}
5655
5656static int netif_receive_skb_internal(struct sk_buff *skb)
5657{
5658 int ret;
5659
5660 net_timestamp_check(netdev_tstamp_prequeue, skb);
5661
5662 if (skb_defer_rx_timestamp(skb))
5663 return NET_RX_SUCCESS;
5664
5665 rcu_read_lock();
5666#ifdef CONFIG_RPS
5667 if (static_branch_unlikely(&rps_needed)) {
5668 struct rps_dev_flow voidflow, *rflow = &voidflow;
5669 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5670
5671 if (cpu >= 0) {
5672 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5673 rcu_read_unlock();
5674 return ret;
5675 }
5676 }
5677#endif
5678 ret = __netif_receive_skb(skb);
5679 rcu_read_unlock();
5680 return ret;
5681}
5682
5683void netif_receive_skb_list_internal(struct list_head *head)
5684{
5685 struct sk_buff *skb, *next;
5686 struct list_head sublist;
5687
5688 INIT_LIST_HEAD(&sublist);
5689 list_for_each_entry_safe(skb, next, head, list) {
5690 net_timestamp_check(netdev_tstamp_prequeue, skb);
5691 skb_list_del_init(skb);
5692 if (!skb_defer_rx_timestamp(skb))
5693 list_add_tail(&skb->list, &sublist);
5694 }
5695 list_splice_init(&sublist, head);
5696
5697 rcu_read_lock();
5698#ifdef CONFIG_RPS
5699 if (static_branch_unlikely(&rps_needed)) {
5700 list_for_each_entry_safe(skb, next, head, list) {
5701 struct rps_dev_flow voidflow, *rflow = &voidflow;
5702 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5703
5704 if (cpu >= 0) {
5705 /* Will be handled, remove from list */
5706 skb_list_del_init(skb);
5707 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5708 }
5709 }
5710 }
5711#endif
5712 __netif_receive_skb_list(head);
5713 rcu_read_unlock();
5714}
5715
5716/**
5717 * netif_receive_skb - process receive buffer from network
5718 * @skb: buffer to process
5719 *
5720 * netif_receive_skb() is the main receive data processing function.
5721 * It always succeeds. The buffer may be dropped during processing
5722 * for congestion control or by the protocol layers.
5723 *
5724 * This function may only be called from softirq context and interrupts
5725 * should be enabled.
5726 *
5727 * Return values (usually ignored):
5728 * NET_RX_SUCCESS: no congestion
5729 * NET_RX_DROP: packet was dropped
5730 */
5731int netif_receive_skb(struct sk_buff *skb)
5732{
5733 int ret;
5734
5735 trace_netif_receive_skb_entry(skb);
5736
5737 ret = netif_receive_skb_internal(skb);
5738 trace_netif_receive_skb_exit(ret);
5739
5740 return ret;
5741}
5742EXPORT_SYMBOL(netif_receive_skb);
5743
5744/**
5745 * netif_receive_skb_list - process many receive buffers from network
5746 * @head: list of skbs to process.
5747 *
5748 * Since return value of netif_receive_skb() is normally ignored, and
5749 * wouldn't be meaningful for a list, this function returns void.
5750 *
5751 * This function may only be called from softirq context and interrupts
5752 * should be enabled.
5753 */
5754void netif_receive_skb_list(struct list_head *head)
5755{
5756 struct sk_buff *skb;
5757
5758 if (list_empty(head))
5759 return;
5760 if (trace_netif_receive_skb_list_entry_enabled()) {
5761 list_for_each_entry(skb, head, list)
5762 trace_netif_receive_skb_list_entry(skb);
5763 }
5764 netif_receive_skb_list_internal(head);
5765 trace_netif_receive_skb_list_exit(0);
5766}
5767EXPORT_SYMBOL(netif_receive_skb_list);
5768
5769static DEFINE_PER_CPU(struct work_struct, flush_works);
5770
5771/* Network device is going away, flush any packets still pending */
5772static void flush_backlog(struct work_struct *work)
5773{
5774 struct sk_buff *skb, *tmp;
5775 struct softnet_data *sd;
5776
5777 local_bh_disable();
5778 sd = this_cpu_ptr(&softnet_data);
5779
5780 rps_lock_irq_disable(sd);
5781 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5782 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5783 __skb_unlink(skb, &sd->input_pkt_queue);
5784 dev_kfree_skb_irq(skb);
5785 input_queue_head_incr(sd);
5786 }
5787 }
5788 rps_unlock_irq_enable(sd);
5789
5790 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5791 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5792 __skb_unlink(skb, &sd->process_queue);
5793 kfree_skb(skb);
5794 input_queue_head_incr(sd);
5795 }
5796 }
5797 local_bh_enable();
5798}
5799
5800static bool flush_required(int cpu)
5801{
5802#if IS_ENABLED(CONFIG_RPS)
5803 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5804 bool do_flush;
5805
5806 rps_lock_irq_disable(sd);
5807
5808 /* as insertion into process_queue happens with the rps lock held,
5809 * process_queue access may race only with dequeue
5810 */
5811 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5812 !skb_queue_empty_lockless(&sd->process_queue);
5813 rps_unlock_irq_enable(sd);
5814
5815 return do_flush;
5816#endif
5817 /* without RPS we can't safely check input_pkt_queue: during a
5818 * concurrent remote skb_queue_splice() we can detect as empty both
5819 * input_pkt_queue and process_queue even if the latter could end-up
5820 * containing a lot of packets.
5821 */
5822 return true;
5823}
5824
5825static void flush_all_backlogs(void)
5826{
5827 static cpumask_t flush_cpus;
5828 unsigned int cpu;
5829
5830 /* since we are under rtnl lock protection we can use static data
5831 * for the cpumask and avoid allocating on stack the possibly
5832 * large mask
5833 */
5834 ASSERT_RTNL();
5835
5836 cpus_read_lock();
5837
5838 cpumask_clear(&flush_cpus);
5839 for_each_online_cpu(cpu) {
5840 if (flush_required(cpu)) {
5841 queue_work_on(cpu, system_highpri_wq,
5842 per_cpu_ptr(&flush_works, cpu));
5843 cpumask_set_cpu(cpu, &flush_cpus);
5844 }
5845 }
5846
5847 /* we can have in flight packet[s] on the cpus we are not flushing,
5848 * synchronize_net() in unregister_netdevice_many() will take care of
5849 * them
5850 */
5851 for_each_cpu(cpu, &flush_cpus)
5852 flush_work(per_cpu_ptr(&flush_works, cpu));
5853
5854 cpus_read_unlock();
5855}
5856
5857static void net_rps_send_ipi(struct softnet_data *remsd)
5858{
5859#ifdef CONFIG_RPS
5860 while (remsd) {
5861 struct softnet_data *next = remsd->rps_ipi_next;
5862
5863 if (cpu_online(remsd->cpu))
5864 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5865 remsd = next;
5866 }
5867#endif
5868}
5869
5870/*
5871 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5872 * Note: called with local irq disabled, but exits with local irq enabled.
5873 */
5874static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5875{
5876#ifdef CONFIG_RPS
5877 struct softnet_data *remsd = sd->rps_ipi_list;
5878
5879 if (remsd) {
5880 sd->rps_ipi_list = NULL;
5881
5882 local_irq_enable();
5883
5884 /* Send pending IPI's to kick RPS processing on remote cpus. */
5885 net_rps_send_ipi(remsd);
5886 } else
5887#endif
5888 local_irq_enable();
5889}
5890
5891static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5892{
5893#ifdef CONFIG_RPS
5894 return sd->rps_ipi_list != NULL;
5895#else
5896 return false;
5897#endif
5898}
5899
5900static int process_backlog(struct napi_struct *napi, int quota)
5901{
5902 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5903 bool again = true;
5904 int work = 0;
5905
5906 /* Check if we have pending ipi, its better to send them now,
5907 * not waiting net_rx_action() end.
5908 */
5909 if (sd_has_rps_ipi_waiting(sd)) {
5910 local_irq_disable();
5911 net_rps_action_and_irq_enable(sd);
5912 }
5913
5914 napi->weight = dev_rx_weight;
5915 while (again) {
5916 struct sk_buff *skb;
5917
5918 while ((skb = __skb_dequeue(&sd->process_queue))) {
5919 rcu_read_lock();
5920 __netif_receive_skb(skb);
5921 rcu_read_unlock();
5922 input_queue_head_incr(sd);
5923 if (++work >= quota)
5924 return work;
5925
5926 }
5927
5928 rps_lock_irq_disable(sd);
5929 if (skb_queue_empty(&sd->input_pkt_queue)) {
5930 /*
5931 * Inline a custom version of __napi_complete().
5932 * only current cpu owns and manipulates this napi,
5933 * and NAPI_STATE_SCHED is the only possible flag set
5934 * on backlog.
5935 * We can use a plain write instead of clear_bit(),
5936 * and we dont need an smp_mb() memory barrier.
5937 */
5938 napi->state = 0;
5939 again = false;
5940 } else {
5941 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5942 &sd->process_queue);
5943 }
5944 rps_unlock_irq_enable(sd);
5945 }
5946
5947 return work;
5948}
5949
5950/**
5951 * __napi_schedule - schedule for receive
5952 * @n: entry to schedule
5953 *
5954 * The entry's receive function will be scheduled to run.
5955 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5956 */
5957void __napi_schedule(struct napi_struct *n)
5958{
5959 unsigned long flags;
5960
5961 local_irq_save(flags);
5962 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5963 local_irq_restore(flags);
5964}
5965EXPORT_SYMBOL(__napi_schedule);
5966
5967/**
5968 * napi_schedule_prep - check if napi can be scheduled
5969 * @n: napi context
5970 *
5971 * Test if NAPI routine is already running, and if not mark
5972 * it as running. This is used as a condition variable to
5973 * insure only one NAPI poll instance runs. We also make
5974 * sure there is no pending NAPI disable.
5975 */
5976bool napi_schedule_prep(struct napi_struct *n)
5977{
5978 unsigned long val, new;
5979
5980 do {
5981 val = READ_ONCE(n->state);
5982 if (unlikely(val & NAPIF_STATE_DISABLE))
5983 return false;
5984 new = val | NAPIF_STATE_SCHED;
5985
5986 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5987 * This was suggested by Alexander Duyck, as compiler
5988 * emits better code than :
5989 * if (val & NAPIF_STATE_SCHED)
5990 * new |= NAPIF_STATE_MISSED;
5991 */
5992 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5993 NAPIF_STATE_MISSED;
5994 } while (cmpxchg(&n->state, val, new) != val);
5995
5996 return !(val & NAPIF_STATE_SCHED);
5997}
5998EXPORT_SYMBOL(napi_schedule_prep);
5999
6000/**
6001 * __napi_schedule_irqoff - schedule for receive
6002 * @n: entry to schedule
6003 *
6004 * Variant of __napi_schedule() assuming hard irqs are masked.
6005 *
6006 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6007 * because the interrupt disabled assumption might not be true
6008 * due to force-threaded interrupts and spinlock substitution.
6009 */
6010void __napi_schedule_irqoff(struct napi_struct *n)
6011{
6012 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6013 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6014 else
6015 __napi_schedule(n);
6016}
6017EXPORT_SYMBOL(__napi_schedule_irqoff);
6018
6019bool napi_complete_done(struct napi_struct *n, int work_done)
6020{
6021 unsigned long flags, val, new, timeout = 0;
6022 bool ret = true;
6023
6024 /*
6025 * 1) Don't let napi dequeue from the cpu poll list
6026 * just in case its running on a different cpu.
6027 * 2) If we are busy polling, do nothing here, we have
6028 * the guarantee we will be called later.
6029 */
6030 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6031 NAPIF_STATE_IN_BUSY_POLL)))
6032 return false;
6033
6034 if (work_done) {
6035 if (n->gro_bitmask)
6036 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6037 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6038 }
6039 if (n->defer_hard_irqs_count > 0) {
6040 n->defer_hard_irqs_count--;
6041 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6042 if (timeout)
6043 ret = false;
6044 }
6045 if (n->gro_bitmask) {
6046 /* When the NAPI instance uses a timeout and keeps postponing
6047 * it, we need to bound somehow the time packets are kept in
6048 * the GRO layer
6049 */
6050 napi_gro_flush(n, !!timeout);
6051 }
6052
6053 gro_normal_list(n);
6054
6055 if (unlikely(!list_empty(&n->poll_list))) {
6056 /* If n->poll_list is not empty, we need to mask irqs */
6057 local_irq_save(flags);
6058 list_del_init(&n->poll_list);
6059 local_irq_restore(flags);
6060 }
6061
6062 do {
6063 val = READ_ONCE(n->state);
6064
6065 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6066
6067 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6068 NAPIF_STATE_SCHED_THREADED |
6069 NAPIF_STATE_PREFER_BUSY_POLL);
6070
6071 /* If STATE_MISSED was set, leave STATE_SCHED set,
6072 * because we will call napi->poll() one more time.
6073 * This C code was suggested by Alexander Duyck to help gcc.
6074 */
6075 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6076 NAPIF_STATE_SCHED;
6077 } while (cmpxchg(&n->state, val, new) != val);
6078
6079 if (unlikely(val & NAPIF_STATE_MISSED)) {
6080 __napi_schedule(n);
6081 return false;
6082 }
6083
6084 if (timeout)
6085 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6086 HRTIMER_MODE_REL_PINNED);
6087 return ret;
6088}
6089EXPORT_SYMBOL(napi_complete_done);
6090
6091/* must be called under rcu_read_lock(), as we dont take a reference */
6092static struct napi_struct *napi_by_id(unsigned int napi_id)
6093{
6094 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6095 struct napi_struct *napi;
6096
6097 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6098 if (napi->napi_id == napi_id)
6099 return napi;
6100
6101 return NULL;
6102}
6103
6104#if defined(CONFIG_NET_RX_BUSY_POLL)
6105
6106static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6107{
6108 if (!skip_schedule) {
6109 gro_normal_list(napi);
6110 __napi_schedule(napi);
6111 return;
6112 }
6113
6114 if (napi->gro_bitmask) {
6115 /* flush too old packets
6116 * If HZ < 1000, flush all packets.
6117 */
6118 napi_gro_flush(napi, HZ >= 1000);
6119 }
6120
6121 gro_normal_list(napi);
6122 clear_bit(NAPI_STATE_SCHED, &napi->state);
6123}
6124
6125static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6126 u16 budget)
6127{
6128 bool skip_schedule = false;
6129 unsigned long timeout;
6130 int rc;
6131
6132 /* Busy polling means there is a high chance device driver hard irq
6133 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6134 * set in napi_schedule_prep().
6135 * Since we are about to call napi->poll() once more, we can safely
6136 * clear NAPI_STATE_MISSED.
6137 *
6138 * Note: x86 could use a single "lock and ..." instruction
6139 * to perform these two clear_bit()
6140 */
6141 clear_bit(NAPI_STATE_MISSED, &napi->state);
6142 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6143
6144 local_bh_disable();
6145
6146 if (prefer_busy_poll) {
6147 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6148 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6149 if (napi->defer_hard_irqs_count && timeout) {
6150 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6151 skip_schedule = true;
6152 }
6153 }
6154
6155 /* All we really want here is to re-enable device interrupts.
6156 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6157 */
6158 rc = napi->poll(napi, budget);
6159 /* We can't gro_normal_list() here, because napi->poll() might have
6160 * rearmed the napi (napi_complete_done()) in which case it could
6161 * already be running on another CPU.
6162 */
6163 trace_napi_poll(napi, rc, budget);
6164 netpoll_poll_unlock(have_poll_lock);
6165 if (rc == budget)
6166 __busy_poll_stop(napi, skip_schedule);
6167 local_bh_enable();
6168}
6169
6170void napi_busy_loop(unsigned int napi_id,
6171 bool (*loop_end)(void *, unsigned long),
6172 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6173{
6174 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6175 int (*napi_poll)(struct napi_struct *napi, int budget);
6176 void *have_poll_lock = NULL;
6177 struct napi_struct *napi;
6178
6179restart:
6180 napi_poll = NULL;
6181
6182 rcu_read_lock();
6183
6184 napi = napi_by_id(napi_id);
6185 if (!napi)
6186 goto out;
6187
6188 preempt_disable();
6189 for (;;) {
6190 int work = 0;
6191
6192 local_bh_disable();
6193 if (!napi_poll) {
6194 unsigned long val = READ_ONCE(napi->state);
6195
6196 /* If multiple threads are competing for this napi,
6197 * we avoid dirtying napi->state as much as we can.
6198 */
6199 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6200 NAPIF_STATE_IN_BUSY_POLL)) {
6201 if (prefer_busy_poll)
6202 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6203 goto count;
6204 }
6205 if (cmpxchg(&napi->state, val,
6206 val | NAPIF_STATE_IN_BUSY_POLL |
6207 NAPIF_STATE_SCHED) != val) {
6208 if (prefer_busy_poll)
6209 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6210 goto count;
6211 }
6212 have_poll_lock = netpoll_poll_lock(napi);
6213 napi_poll = napi->poll;
6214 }
6215 work = napi_poll(napi, budget);
6216 trace_napi_poll(napi, work, budget);
6217 gro_normal_list(napi);
6218count:
6219 if (work > 0)
6220 __NET_ADD_STATS(dev_net(napi->dev),
6221 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6222 local_bh_enable();
6223
6224 if (!loop_end || loop_end(loop_end_arg, start_time))
6225 break;
6226
6227 if (unlikely(need_resched())) {
6228 if (napi_poll)
6229 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6230 preempt_enable();
6231 rcu_read_unlock();
6232 cond_resched();
6233 if (loop_end(loop_end_arg, start_time))
6234 return;
6235 goto restart;
6236 }
6237 cpu_relax();
6238 }
6239 if (napi_poll)
6240 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6241 preempt_enable();
6242out:
6243 rcu_read_unlock();
6244}
6245EXPORT_SYMBOL(napi_busy_loop);
6246
6247#endif /* CONFIG_NET_RX_BUSY_POLL */
6248
6249static void napi_hash_add(struct napi_struct *napi)
6250{
6251 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6252 return;
6253
6254 spin_lock(&napi_hash_lock);
6255
6256 /* 0..NR_CPUS range is reserved for sender_cpu use */
6257 do {
6258 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6259 napi_gen_id = MIN_NAPI_ID;
6260 } while (napi_by_id(napi_gen_id));
6261 napi->napi_id = napi_gen_id;
6262
6263 hlist_add_head_rcu(&napi->napi_hash_node,
6264 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6265
6266 spin_unlock(&napi_hash_lock);
6267}
6268
6269/* Warning : caller is responsible to make sure rcu grace period
6270 * is respected before freeing memory containing @napi
6271 */
6272static void napi_hash_del(struct napi_struct *napi)
6273{
6274 spin_lock(&napi_hash_lock);
6275
6276 hlist_del_init_rcu(&napi->napi_hash_node);
6277
6278 spin_unlock(&napi_hash_lock);
6279}
6280
6281static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6282{
6283 struct napi_struct *napi;
6284
6285 napi = container_of(timer, struct napi_struct, timer);
6286
6287 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6288 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6289 */
6290 if (!napi_disable_pending(napi) &&
6291 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6292 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6293 __napi_schedule_irqoff(napi);
6294 }
6295
6296 return HRTIMER_NORESTART;
6297}
6298
6299static void init_gro_hash(struct napi_struct *napi)
6300{
6301 int i;
6302
6303 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6304 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6305 napi->gro_hash[i].count = 0;
6306 }
6307 napi->gro_bitmask = 0;
6308}
6309
6310int dev_set_threaded(struct net_device *dev, bool threaded)
6311{
6312 struct napi_struct *napi;
6313 int err = 0;
6314
6315 if (dev->threaded == threaded)
6316 return 0;
6317
6318 if (threaded) {
6319 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6320 if (!napi->thread) {
6321 err = napi_kthread_create(napi);
6322 if (err) {
6323 threaded = false;
6324 break;
6325 }
6326 }
6327 }
6328 }
6329
6330 dev->threaded = threaded;
6331
6332 /* Make sure kthread is created before THREADED bit
6333 * is set.
6334 */
6335 smp_mb__before_atomic();
6336
6337 /* Setting/unsetting threaded mode on a napi might not immediately
6338 * take effect, if the current napi instance is actively being
6339 * polled. In this case, the switch between threaded mode and
6340 * softirq mode will happen in the next round of napi_schedule().
6341 * This should not cause hiccups/stalls to the live traffic.
6342 */
6343 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6344 if (threaded)
6345 set_bit(NAPI_STATE_THREADED, &napi->state);
6346 else
6347 clear_bit(NAPI_STATE_THREADED, &napi->state);
6348 }
6349
6350 return err;
6351}
6352EXPORT_SYMBOL(dev_set_threaded);
6353
6354void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6355 int (*poll)(struct napi_struct *, int), int weight)
6356{
6357 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6358 return;
6359
6360 INIT_LIST_HEAD(&napi->poll_list);
6361 INIT_HLIST_NODE(&napi->napi_hash_node);
6362 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6363 napi->timer.function = napi_watchdog;
6364 init_gro_hash(napi);
6365 napi->skb = NULL;
6366 INIT_LIST_HEAD(&napi->rx_list);
6367 napi->rx_count = 0;
6368 napi->poll = poll;
6369 if (weight > NAPI_POLL_WEIGHT)
6370 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6371 weight);
6372 napi->weight = weight;
6373 napi->dev = dev;
6374#ifdef CONFIG_NETPOLL
6375 napi->poll_owner = -1;
6376#endif
6377 set_bit(NAPI_STATE_SCHED, &napi->state);
6378 set_bit(NAPI_STATE_NPSVC, &napi->state);
6379 list_add_rcu(&napi->dev_list, &dev->napi_list);
6380 napi_hash_add(napi);
6381 /* Create kthread for this napi if dev->threaded is set.
6382 * Clear dev->threaded if kthread creation failed so that
6383 * threaded mode will not be enabled in napi_enable().
6384 */
6385 if (dev->threaded && napi_kthread_create(napi))
6386 dev->threaded = 0;
6387}
6388EXPORT_SYMBOL(netif_napi_add_weight);
6389
6390void napi_disable(struct napi_struct *n)
6391{
6392 unsigned long val, new;
6393
6394 might_sleep();
6395 set_bit(NAPI_STATE_DISABLE, &n->state);
6396
6397 for ( ; ; ) {
6398 val = READ_ONCE(n->state);
6399 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6400 usleep_range(20, 200);
6401 continue;
6402 }
6403
6404 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6405 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6406
6407 if (cmpxchg(&n->state, val, new) == val)
6408 break;
6409 }
6410
6411 hrtimer_cancel(&n->timer);
6412
6413 clear_bit(NAPI_STATE_DISABLE, &n->state);
6414}
6415EXPORT_SYMBOL(napi_disable);
6416
6417/**
6418 * napi_enable - enable NAPI scheduling
6419 * @n: NAPI context
6420 *
6421 * Resume NAPI from being scheduled on this context.
6422 * Must be paired with napi_disable.
6423 */
6424void napi_enable(struct napi_struct *n)
6425{
6426 unsigned long val, new;
6427
6428 do {
6429 val = READ_ONCE(n->state);
6430 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6431
6432 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6433 if (n->dev->threaded && n->thread)
6434 new |= NAPIF_STATE_THREADED;
6435 } while (cmpxchg(&n->state, val, new) != val);
6436}
6437EXPORT_SYMBOL(napi_enable);
6438
6439static void flush_gro_hash(struct napi_struct *napi)
6440{
6441 int i;
6442
6443 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6444 struct sk_buff *skb, *n;
6445
6446 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6447 kfree_skb(skb);
6448 napi->gro_hash[i].count = 0;
6449 }
6450}
6451
6452/* Must be called in process context */
6453void __netif_napi_del(struct napi_struct *napi)
6454{
6455 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6456 return;
6457
6458 napi_hash_del(napi);
6459 list_del_rcu(&napi->dev_list);
6460 napi_free_frags(napi);
6461
6462 flush_gro_hash(napi);
6463 napi->gro_bitmask = 0;
6464
6465 if (napi->thread) {
6466 kthread_stop(napi->thread);
6467 napi->thread = NULL;
6468 }
6469}
6470EXPORT_SYMBOL(__netif_napi_del);
6471
6472static int __napi_poll(struct napi_struct *n, bool *repoll)
6473{
6474 int work, weight;
6475
6476 weight = n->weight;
6477
6478 /* This NAPI_STATE_SCHED test is for avoiding a race
6479 * with netpoll's poll_napi(). Only the entity which
6480 * obtains the lock and sees NAPI_STATE_SCHED set will
6481 * actually make the ->poll() call. Therefore we avoid
6482 * accidentally calling ->poll() when NAPI is not scheduled.
6483 */
6484 work = 0;
6485 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6486 work = n->poll(n, weight);
6487 trace_napi_poll(n, work, weight);
6488 }
6489
6490 if (unlikely(work > weight))
6491 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6492 n->poll, work, weight);
6493
6494 if (likely(work < weight))
6495 return work;
6496
6497 /* Drivers must not modify the NAPI state if they
6498 * consume the entire weight. In such cases this code
6499 * still "owns" the NAPI instance and therefore can
6500 * move the instance around on the list at-will.
6501 */
6502 if (unlikely(napi_disable_pending(n))) {
6503 napi_complete(n);
6504 return work;
6505 }
6506
6507 /* The NAPI context has more processing work, but busy-polling
6508 * is preferred. Exit early.
6509 */
6510 if (napi_prefer_busy_poll(n)) {
6511 if (napi_complete_done(n, work)) {
6512 /* If timeout is not set, we need to make sure
6513 * that the NAPI is re-scheduled.
6514 */
6515 napi_schedule(n);
6516 }
6517 return work;
6518 }
6519
6520 if (n->gro_bitmask) {
6521 /* flush too old packets
6522 * If HZ < 1000, flush all packets.
6523 */
6524 napi_gro_flush(n, HZ >= 1000);
6525 }
6526
6527 gro_normal_list(n);
6528
6529 /* Some drivers may have called napi_schedule
6530 * prior to exhausting their budget.
6531 */
6532 if (unlikely(!list_empty(&n->poll_list))) {
6533 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6534 n->dev ? n->dev->name : "backlog");
6535 return work;
6536 }
6537
6538 *repoll = true;
6539
6540 return work;
6541}
6542
6543static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6544{
6545 bool do_repoll = false;
6546 void *have;
6547 int work;
6548
6549 list_del_init(&n->poll_list);
6550
6551 have = netpoll_poll_lock(n);
6552
6553 work = __napi_poll(n, &do_repoll);
6554
6555 if (do_repoll)
6556 list_add_tail(&n->poll_list, repoll);
6557
6558 netpoll_poll_unlock(have);
6559
6560 return work;
6561}
6562
6563static int napi_thread_wait(struct napi_struct *napi)
6564{
6565 bool woken = false;
6566
6567 set_current_state(TASK_INTERRUPTIBLE);
6568
6569 while (!kthread_should_stop()) {
6570 /* Testing SCHED_THREADED bit here to make sure the current
6571 * kthread owns this napi and could poll on this napi.
6572 * Testing SCHED bit is not enough because SCHED bit might be
6573 * set by some other busy poll thread or by napi_disable().
6574 */
6575 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6576 WARN_ON(!list_empty(&napi->poll_list));
6577 __set_current_state(TASK_RUNNING);
6578 return 0;
6579 }
6580
6581 schedule();
6582 /* woken being true indicates this thread owns this napi. */
6583 woken = true;
6584 set_current_state(TASK_INTERRUPTIBLE);
6585 }
6586 __set_current_state(TASK_RUNNING);
6587
6588 return -1;
6589}
6590
6591static int napi_threaded_poll(void *data)
6592{
6593 struct napi_struct *napi = data;
6594 void *have;
6595
6596 while (!napi_thread_wait(napi)) {
6597 for (;;) {
6598 bool repoll = false;
6599
6600 local_bh_disable();
6601
6602 have = netpoll_poll_lock(napi);
6603 __napi_poll(napi, &repoll);
6604 netpoll_poll_unlock(have);
6605
6606 local_bh_enable();
6607
6608 if (!repoll)
6609 break;
6610
6611 cond_resched();
6612 }
6613 }
6614 return 0;
6615}
6616
6617static void skb_defer_free_flush(struct softnet_data *sd)
6618{
6619 struct sk_buff *skb, *next;
6620 unsigned long flags;
6621
6622 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6623 if (!READ_ONCE(sd->defer_list))
6624 return;
6625
6626 spin_lock_irqsave(&sd->defer_lock, flags);
6627 skb = sd->defer_list;
6628 sd->defer_list = NULL;
6629 sd->defer_count = 0;
6630 spin_unlock_irqrestore(&sd->defer_lock, flags);
6631
6632 while (skb != NULL) {
6633 next = skb->next;
6634 napi_consume_skb(skb, 1);
6635 skb = next;
6636 }
6637}
6638
6639static __latent_entropy void net_rx_action(struct softirq_action *h)
6640{
6641 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6642 unsigned long time_limit = jiffies +
6643 usecs_to_jiffies(netdev_budget_usecs);
6644 int budget = netdev_budget;
6645 LIST_HEAD(list);
6646 LIST_HEAD(repoll);
6647
6648 local_irq_disable();
6649 list_splice_init(&sd->poll_list, &list);
6650 local_irq_enable();
6651
6652 for (;;) {
6653 struct napi_struct *n;
6654
6655 skb_defer_free_flush(sd);
6656
6657 if (list_empty(&list)) {
6658 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6659 goto end;
6660 break;
6661 }
6662
6663 n = list_first_entry(&list, struct napi_struct, poll_list);
6664 budget -= napi_poll(n, &repoll);
6665
6666 /* If softirq window is exhausted then punt.
6667 * Allow this to run for 2 jiffies since which will allow
6668 * an average latency of 1.5/HZ.
6669 */
6670 if (unlikely(budget <= 0 ||
6671 time_after_eq(jiffies, time_limit))) {
6672 sd->time_squeeze++;
6673 break;
6674 }
6675 }
6676
6677 local_irq_disable();
6678
6679 list_splice_tail_init(&sd->poll_list, &list);
6680 list_splice_tail(&repoll, &list);
6681 list_splice(&list, &sd->poll_list);
6682 if (!list_empty(&sd->poll_list))
6683 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6684
6685 net_rps_action_and_irq_enable(sd);
6686end:;
6687}
6688
6689struct netdev_adjacent {
6690 struct net_device *dev;
6691 netdevice_tracker dev_tracker;
6692
6693 /* upper master flag, there can only be one master device per list */
6694 bool master;
6695
6696 /* lookup ignore flag */
6697 bool ignore;
6698
6699 /* counter for the number of times this device was added to us */
6700 u16 ref_nr;
6701
6702 /* private field for the users */
6703 void *private;
6704
6705 struct list_head list;
6706 struct rcu_head rcu;
6707};
6708
6709static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6710 struct list_head *adj_list)
6711{
6712 struct netdev_adjacent *adj;
6713
6714 list_for_each_entry(adj, adj_list, list) {
6715 if (adj->dev == adj_dev)
6716 return adj;
6717 }
6718 return NULL;
6719}
6720
6721static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6722 struct netdev_nested_priv *priv)
6723{
6724 struct net_device *dev = (struct net_device *)priv->data;
6725
6726 return upper_dev == dev;
6727}
6728
6729/**
6730 * netdev_has_upper_dev - Check if device is linked to an upper device
6731 * @dev: device
6732 * @upper_dev: upper device to check
6733 *
6734 * Find out if a device is linked to specified upper device and return true
6735 * in case it is. Note that this checks only immediate upper device,
6736 * not through a complete stack of devices. The caller must hold the RTNL lock.
6737 */
6738bool netdev_has_upper_dev(struct net_device *dev,
6739 struct net_device *upper_dev)
6740{
6741 struct netdev_nested_priv priv = {
6742 .data = (void *)upper_dev,
6743 };
6744
6745 ASSERT_RTNL();
6746
6747 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6748 &priv);
6749}
6750EXPORT_SYMBOL(netdev_has_upper_dev);
6751
6752/**
6753 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6754 * @dev: device
6755 * @upper_dev: upper device to check
6756 *
6757 * Find out if a device is linked to specified upper device and return true
6758 * in case it is. Note that this checks the entire upper device chain.
6759 * The caller must hold rcu lock.
6760 */
6761
6762bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6763 struct net_device *upper_dev)
6764{
6765 struct netdev_nested_priv priv = {
6766 .data = (void *)upper_dev,
6767 };
6768
6769 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6770 &priv);
6771}
6772EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6773
6774/**
6775 * netdev_has_any_upper_dev - Check if device is linked to some device
6776 * @dev: device
6777 *
6778 * Find out if a device is linked to an upper device and return true in case
6779 * it is. The caller must hold the RTNL lock.
6780 */
6781bool netdev_has_any_upper_dev(struct net_device *dev)
6782{
6783 ASSERT_RTNL();
6784
6785 return !list_empty(&dev->adj_list.upper);
6786}
6787EXPORT_SYMBOL(netdev_has_any_upper_dev);
6788
6789/**
6790 * netdev_master_upper_dev_get - Get master upper device
6791 * @dev: device
6792 *
6793 * Find a master upper device and return pointer to it or NULL in case
6794 * it's not there. The caller must hold the RTNL lock.
6795 */
6796struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6797{
6798 struct netdev_adjacent *upper;
6799
6800 ASSERT_RTNL();
6801
6802 if (list_empty(&dev->adj_list.upper))
6803 return NULL;
6804
6805 upper = list_first_entry(&dev->adj_list.upper,
6806 struct netdev_adjacent, list);
6807 if (likely(upper->master))
6808 return upper->dev;
6809 return NULL;
6810}
6811EXPORT_SYMBOL(netdev_master_upper_dev_get);
6812
6813static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6814{
6815 struct netdev_adjacent *upper;
6816
6817 ASSERT_RTNL();
6818
6819 if (list_empty(&dev->adj_list.upper))
6820 return NULL;
6821
6822 upper = list_first_entry(&dev->adj_list.upper,
6823 struct netdev_adjacent, list);
6824 if (likely(upper->master) && !upper->ignore)
6825 return upper->dev;
6826 return NULL;
6827}
6828
6829/**
6830 * netdev_has_any_lower_dev - Check if device is linked to some device
6831 * @dev: device
6832 *
6833 * Find out if a device is linked to a lower device and return true in case
6834 * it is. The caller must hold the RTNL lock.
6835 */
6836static bool netdev_has_any_lower_dev(struct net_device *dev)
6837{
6838 ASSERT_RTNL();
6839
6840 return !list_empty(&dev->adj_list.lower);
6841}
6842
6843void *netdev_adjacent_get_private(struct list_head *adj_list)
6844{
6845 struct netdev_adjacent *adj;
6846
6847 adj = list_entry(adj_list, struct netdev_adjacent, list);
6848
6849 return adj->private;
6850}
6851EXPORT_SYMBOL(netdev_adjacent_get_private);
6852
6853/**
6854 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6855 * @dev: device
6856 * @iter: list_head ** of the current position
6857 *
6858 * Gets the next device from the dev's upper list, starting from iter
6859 * position. The caller must hold RCU read lock.
6860 */
6861struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6862 struct list_head **iter)
6863{
6864 struct netdev_adjacent *upper;
6865
6866 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6867
6868 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6869
6870 if (&upper->list == &dev->adj_list.upper)
6871 return NULL;
6872
6873 *iter = &upper->list;
6874
6875 return upper->dev;
6876}
6877EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6878
6879static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6880 struct list_head **iter,
6881 bool *ignore)
6882{
6883 struct netdev_adjacent *upper;
6884
6885 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6886
6887 if (&upper->list == &dev->adj_list.upper)
6888 return NULL;
6889
6890 *iter = &upper->list;
6891 *ignore = upper->ignore;
6892
6893 return upper->dev;
6894}
6895
6896static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6897 struct list_head **iter)
6898{
6899 struct netdev_adjacent *upper;
6900
6901 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6902
6903 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6904
6905 if (&upper->list == &dev->adj_list.upper)
6906 return NULL;
6907
6908 *iter = &upper->list;
6909
6910 return upper->dev;
6911}
6912
6913static int __netdev_walk_all_upper_dev(struct net_device *dev,
6914 int (*fn)(struct net_device *dev,
6915 struct netdev_nested_priv *priv),
6916 struct netdev_nested_priv *priv)
6917{
6918 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6919 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6920 int ret, cur = 0;
6921 bool ignore;
6922
6923 now = dev;
6924 iter = &dev->adj_list.upper;
6925
6926 while (1) {
6927 if (now != dev) {
6928 ret = fn(now, priv);
6929 if (ret)
6930 return ret;
6931 }
6932
6933 next = NULL;
6934 while (1) {
6935 udev = __netdev_next_upper_dev(now, &iter, &ignore);
6936 if (!udev)
6937 break;
6938 if (ignore)
6939 continue;
6940
6941 next = udev;
6942 niter = &udev->adj_list.upper;
6943 dev_stack[cur] = now;
6944 iter_stack[cur++] = iter;
6945 break;
6946 }
6947
6948 if (!next) {
6949 if (!cur)
6950 return 0;
6951 next = dev_stack[--cur];
6952 niter = iter_stack[cur];
6953 }
6954
6955 now = next;
6956 iter = niter;
6957 }
6958
6959 return 0;
6960}
6961
6962int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6963 int (*fn)(struct net_device *dev,
6964 struct netdev_nested_priv *priv),
6965 struct netdev_nested_priv *priv)
6966{
6967 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6968 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6969 int ret, cur = 0;
6970
6971 now = dev;
6972 iter = &dev->adj_list.upper;
6973
6974 while (1) {
6975 if (now != dev) {
6976 ret = fn(now, priv);
6977 if (ret)
6978 return ret;
6979 }
6980
6981 next = NULL;
6982 while (1) {
6983 udev = netdev_next_upper_dev_rcu(now, &iter);
6984 if (!udev)
6985 break;
6986
6987 next = udev;
6988 niter = &udev->adj_list.upper;
6989 dev_stack[cur] = now;
6990 iter_stack[cur++] = iter;
6991 break;
6992 }
6993
6994 if (!next) {
6995 if (!cur)
6996 return 0;
6997 next = dev_stack[--cur];
6998 niter = iter_stack[cur];
6999 }
7000
7001 now = next;
7002 iter = niter;
7003 }
7004
7005 return 0;
7006}
7007EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7008
7009static bool __netdev_has_upper_dev(struct net_device *dev,
7010 struct net_device *upper_dev)
7011{
7012 struct netdev_nested_priv priv = {
7013 .flags = 0,
7014 .data = (void *)upper_dev,
7015 };
7016
7017 ASSERT_RTNL();
7018
7019 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7020 &priv);
7021}
7022
7023/**
7024 * netdev_lower_get_next_private - Get the next ->private from the
7025 * lower neighbour list
7026 * @dev: device
7027 * @iter: list_head ** of the current position
7028 *
7029 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7030 * list, starting from iter position. The caller must hold either hold the
7031 * RTNL lock or its own locking that guarantees that the neighbour lower
7032 * list will remain unchanged.
7033 */
7034void *netdev_lower_get_next_private(struct net_device *dev,
7035 struct list_head **iter)
7036{
7037 struct netdev_adjacent *lower;
7038
7039 lower = list_entry(*iter, struct netdev_adjacent, list);
7040
7041 if (&lower->list == &dev->adj_list.lower)
7042 return NULL;
7043
7044 *iter = lower->list.next;
7045
7046 return lower->private;
7047}
7048EXPORT_SYMBOL(netdev_lower_get_next_private);
7049
7050/**
7051 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7052 * lower neighbour list, RCU
7053 * variant
7054 * @dev: device
7055 * @iter: list_head ** of the current position
7056 *
7057 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7058 * list, starting from iter position. The caller must hold RCU read lock.
7059 */
7060void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7061 struct list_head **iter)
7062{
7063 struct netdev_adjacent *lower;
7064
7065 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7066
7067 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7068
7069 if (&lower->list == &dev->adj_list.lower)
7070 return NULL;
7071
7072 *iter = &lower->list;
7073
7074 return lower->private;
7075}
7076EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7077
7078/**
7079 * netdev_lower_get_next - Get the next device from the lower neighbour
7080 * list
7081 * @dev: device
7082 * @iter: list_head ** of the current position
7083 *
7084 * Gets the next netdev_adjacent from the dev's lower neighbour
7085 * list, starting from iter position. The caller must hold RTNL lock or
7086 * its own locking that guarantees that the neighbour lower
7087 * list will remain unchanged.
7088 */
7089void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7090{
7091 struct netdev_adjacent *lower;
7092
7093 lower = list_entry(*iter, struct netdev_adjacent, list);
7094
7095 if (&lower->list == &dev->adj_list.lower)
7096 return NULL;
7097
7098 *iter = lower->list.next;
7099
7100 return lower->dev;
7101}
7102EXPORT_SYMBOL(netdev_lower_get_next);
7103
7104static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7105 struct list_head **iter)
7106{
7107 struct netdev_adjacent *lower;
7108
7109 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7110
7111 if (&lower->list == &dev->adj_list.lower)
7112 return NULL;
7113
7114 *iter = &lower->list;
7115
7116 return lower->dev;
7117}
7118
7119static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7120 struct list_head **iter,
7121 bool *ignore)
7122{
7123 struct netdev_adjacent *lower;
7124
7125 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7126
7127 if (&lower->list == &dev->adj_list.lower)
7128 return NULL;
7129
7130 *iter = &lower->list;
7131 *ignore = lower->ignore;
7132
7133 return lower->dev;
7134}
7135
7136int netdev_walk_all_lower_dev(struct net_device *dev,
7137 int (*fn)(struct net_device *dev,
7138 struct netdev_nested_priv *priv),
7139 struct netdev_nested_priv *priv)
7140{
7141 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7142 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7143 int ret, cur = 0;
7144
7145 now = dev;
7146 iter = &dev->adj_list.lower;
7147
7148 while (1) {
7149 if (now != dev) {
7150 ret = fn(now, priv);
7151 if (ret)
7152 return ret;
7153 }
7154
7155 next = NULL;
7156 while (1) {
7157 ldev = netdev_next_lower_dev(now, &iter);
7158 if (!ldev)
7159 break;
7160
7161 next = ldev;
7162 niter = &ldev->adj_list.lower;
7163 dev_stack[cur] = now;
7164 iter_stack[cur++] = iter;
7165 break;
7166 }
7167
7168 if (!next) {
7169 if (!cur)
7170 return 0;
7171 next = dev_stack[--cur];
7172 niter = iter_stack[cur];
7173 }
7174
7175 now = next;
7176 iter = niter;
7177 }
7178
7179 return 0;
7180}
7181EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7182
7183static int __netdev_walk_all_lower_dev(struct net_device *dev,
7184 int (*fn)(struct net_device *dev,
7185 struct netdev_nested_priv *priv),
7186 struct netdev_nested_priv *priv)
7187{
7188 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7189 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7190 int ret, cur = 0;
7191 bool ignore;
7192
7193 now = dev;
7194 iter = &dev->adj_list.lower;
7195
7196 while (1) {
7197 if (now != dev) {
7198 ret = fn(now, priv);
7199 if (ret)
7200 return ret;
7201 }
7202
7203 next = NULL;
7204 while (1) {
7205 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7206 if (!ldev)
7207 break;
7208 if (ignore)
7209 continue;
7210
7211 next = ldev;
7212 niter = &ldev->adj_list.lower;
7213 dev_stack[cur] = now;
7214 iter_stack[cur++] = iter;
7215 break;
7216 }
7217
7218 if (!next) {
7219 if (!cur)
7220 return 0;
7221 next = dev_stack[--cur];
7222 niter = iter_stack[cur];
7223 }
7224
7225 now = next;
7226 iter = niter;
7227 }
7228
7229 return 0;
7230}
7231
7232struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7233 struct list_head **iter)
7234{
7235 struct netdev_adjacent *lower;
7236
7237 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7238 if (&lower->list == &dev->adj_list.lower)
7239 return NULL;
7240
7241 *iter = &lower->list;
7242
7243 return lower->dev;
7244}
7245EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7246
7247static u8 __netdev_upper_depth(struct net_device *dev)
7248{
7249 struct net_device *udev;
7250 struct list_head *iter;
7251 u8 max_depth = 0;
7252 bool ignore;
7253
7254 for (iter = &dev->adj_list.upper,
7255 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7256 udev;
7257 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7258 if (ignore)
7259 continue;
7260 if (max_depth < udev->upper_level)
7261 max_depth = udev->upper_level;
7262 }
7263
7264 return max_depth;
7265}
7266
7267static u8 __netdev_lower_depth(struct net_device *dev)
7268{
7269 struct net_device *ldev;
7270 struct list_head *iter;
7271 u8 max_depth = 0;
7272 bool ignore;
7273
7274 for (iter = &dev->adj_list.lower,
7275 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7276 ldev;
7277 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7278 if (ignore)
7279 continue;
7280 if (max_depth < ldev->lower_level)
7281 max_depth = ldev->lower_level;
7282 }
7283
7284 return max_depth;
7285}
7286
7287static int __netdev_update_upper_level(struct net_device *dev,
7288 struct netdev_nested_priv *__unused)
7289{
7290 dev->upper_level = __netdev_upper_depth(dev) + 1;
7291 return 0;
7292}
7293
7294#ifdef CONFIG_LOCKDEP
7295static LIST_HEAD(net_unlink_list);
7296
7297static void net_unlink_todo(struct net_device *dev)
7298{
7299 if (list_empty(&dev->unlink_list))
7300 list_add_tail(&dev->unlink_list, &net_unlink_list);
7301}
7302#endif
7303
7304static int __netdev_update_lower_level(struct net_device *dev,
7305 struct netdev_nested_priv *priv)
7306{
7307 dev->lower_level = __netdev_lower_depth(dev) + 1;
7308
7309#ifdef CONFIG_LOCKDEP
7310 if (!priv)
7311 return 0;
7312
7313 if (priv->flags & NESTED_SYNC_IMM)
7314 dev->nested_level = dev->lower_level - 1;
7315 if (priv->flags & NESTED_SYNC_TODO)
7316 net_unlink_todo(dev);
7317#endif
7318 return 0;
7319}
7320
7321int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7322 int (*fn)(struct net_device *dev,
7323 struct netdev_nested_priv *priv),
7324 struct netdev_nested_priv *priv)
7325{
7326 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7327 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7328 int ret, cur = 0;
7329
7330 now = dev;
7331 iter = &dev->adj_list.lower;
7332
7333 while (1) {
7334 if (now != dev) {
7335 ret = fn(now, priv);
7336 if (ret)
7337 return ret;
7338 }
7339
7340 next = NULL;
7341 while (1) {
7342 ldev = netdev_next_lower_dev_rcu(now, &iter);
7343 if (!ldev)
7344 break;
7345
7346 next = ldev;
7347 niter = &ldev->adj_list.lower;
7348 dev_stack[cur] = now;
7349 iter_stack[cur++] = iter;
7350 break;
7351 }
7352
7353 if (!next) {
7354 if (!cur)
7355 return 0;
7356 next = dev_stack[--cur];
7357 niter = iter_stack[cur];
7358 }
7359
7360 now = next;
7361 iter = niter;
7362 }
7363
7364 return 0;
7365}
7366EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7367
7368/**
7369 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7370 * lower neighbour list, RCU
7371 * variant
7372 * @dev: device
7373 *
7374 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7375 * list. The caller must hold RCU read lock.
7376 */
7377void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7378{
7379 struct netdev_adjacent *lower;
7380
7381 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7382 struct netdev_adjacent, list);
7383 if (lower)
7384 return lower->private;
7385 return NULL;
7386}
7387EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7388
7389/**
7390 * netdev_master_upper_dev_get_rcu - Get master upper device
7391 * @dev: device
7392 *
7393 * Find a master upper device and return pointer to it or NULL in case
7394 * it's not there. The caller must hold the RCU read lock.
7395 */
7396struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7397{
7398 struct netdev_adjacent *upper;
7399
7400 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7401 struct netdev_adjacent, list);
7402 if (upper && likely(upper->master))
7403 return upper->dev;
7404 return NULL;
7405}
7406EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7407
7408static int netdev_adjacent_sysfs_add(struct net_device *dev,
7409 struct net_device *adj_dev,
7410 struct list_head *dev_list)
7411{
7412 char linkname[IFNAMSIZ+7];
7413
7414 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7415 "upper_%s" : "lower_%s", adj_dev->name);
7416 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7417 linkname);
7418}
7419static void netdev_adjacent_sysfs_del(struct net_device *dev,
7420 char *name,
7421 struct list_head *dev_list)
7422{
7423 char linkname[IFNAMSIZ+7];
7424
7425 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7426 "upper_%s" : "lower_%s", name);
7427 sysfs_remove_link(&(dev->dev.kobj), linkname);
7428}
7429
7430static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7431 struct net_device *adj_dev,
7432 struct list_head *dev_list)
7433{
7434 return (dev_list == &dev->adj_list.upper ||
7435 dev_list == &dev->adj_list.lower) &&
7436 net_eq(dev_net(dev), dev_net(adj_dev));
7437}
7438
7439static int __netdev_adjacent_dev_insert(struct net_device *dev,
7440 struct net_device *adj_dev,
7441 struct list_head *dev_list,
7442 void *private, bool master)
7443{
7444 struct netdev_adjacent *adj;
7445 int ret;
7446
7447 adj = __netdev_find_adj(adj_dev, dev_list);
7448
7449 if (adj) {
7450 adj->ref_nr += 1;
7451 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7452 dev->name, adj_dev->name, adj->ref_nr);
7453
7454 return 0;
7455 }
7456
7457 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7458 if (!adj)
7459 return -ENOMEM;
7460
7461 adj->dev = adj_dev;
7462 adj->master = master;
7463 adj->ref_nr = 1;
7464 adj->private = private;
7465 adj->ignore = false;
7466 dev_hold_track(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7467
7468 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7469 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7470
7471 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7472 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7473 if (ret)
7474 goto free_adj;
7475 }
7476
7477 /* Ensure that master link is always the first item in list. */
7478 if (master) {
7479 ret = sysfs_create_link(&(dev->dev.kobj),
7480 &(adj_dev->dev.kobj), "master");
7481 if (ret)
7482 goto remove_symlinks;
7483
7484 list_add_rcu(&adj->list, dev_list);
7485 } else {
7486 list_add_tail_rcu(&adj->list, dev_list);
7487 }
7488
7489 return 0;
7490
7491remove_symlinks:
7492 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7493 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7494free_adj:
7495 dev_put_track(adj_dev, &adj->dev_tracker);
7496 kfree(adj);
7497
7498 return ret;
7499}
7500
7501static void __netdev_adjacent_dev_remove(struct net_device *dev,
7502 struct net_device *adj_dev,
7503 u16 ref_nr,
7504 struct list_head *dev_list)
7505{
7506 struct netdev_adjacent *adj;
7507
7508 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7509 dev->name, adj_dev->name, ref_nr);
7510
7511 adj = __netdev_find_adj(adj_dev, dev_list);
7512
7513 if (!adj) {
7514 pr_err("Adjacency does not exist for device %s from %s\n",
7515 dev->name, adj_dev->name);
7516 WARN_ON(1);
7517 return;
7518 }
7519
7520 if (adj->ref_nr > ref_nr) {
7521 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7522 dev->name, adj_dev->name, ref_nr,
7523 adj->ref_nr - ref_nr);
7524 adj->ref_nr -= ref_nr;
7525 return;
7526 }
7527
7528 if (adj->master)
7529 sysfs_remove_link(&(dev->dev.kobj), "master");
7530
7531 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7532 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7533
7534 list_del_rcu(&adj->list);
7535 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7536 adj_dev->name, dev->name, adj_dev->name);
7537 dev_put_track(adj_dev, &adj->dev_tracker);
7538 kfree_rcu(adj, rcu);
7539}
7540
7541static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7542 struct net_device *upper_dev,
7543 struct list_head *up_list,
7544 struct list_head *down_list,
7545 void *private, bool master)
7546{
7547 int ret;
7548
7549 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7550 private, master);
7551 if (ret)
7552 return ret;
7553
7554 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7555 private, false);
7556 if (ret) {
7557 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7558 return ret;
7559 }
7560
7561 return 0;
7562}
7563
7564static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7565 struct net_device *upper_dev,
7566 u16 ref_nr,
7567 struct list_head *up_list,
7568 struct list_head *down_list)
7569{
7570 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7571 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7572}
7573
7574static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7575 struct net_device *upper_dev,
7576 void *private, bool master)
7577{
7578 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7579 &dev->adj_list.upper,
7580 &upper_dev->adj_list.lower,
7581 private, master);
7582}
7583
7584static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7585 struct net_device *upper_dev)
7586{
7587 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7588 &dev->adj_list.upper,
7589 &upper_dev->adj_list.lower);
7590}
7591
7592static int __netdev_upper_dev_link(struct net_device *dev,
7593 struct net_device *upper_dev, bool master,
7594 void *upper_priv, void *upper_info,
7595 struct netdev_nested_priv *priv,
7596 struct netlink_ext_ack *extack)
7597{
7598 struct netdev_notifier_changeupper_info changeupper_info = {
7599 .info = {
7600 .dev = dev,
7601 .extack = extack,
7602 },
7603 .upper_dev = upper_dev,
7604 .master = master,
7605 .linking = true,
7606 .upper_info = upper_info,
7607 };
7608 struct net_device *master_dev;
7609 int ret = 0;
7610
7611 ASSERT_RTNL();
7612
7613 if (dev == upper_dev)
7614 return -EBUSY;
7615
7616 /* To prevent loops, check if dev is not upper device to upper_dev. */
7617 if (__netdev_has_upper_dev(upper_dev, dev))
7618 return -EBUSY;
7619
7620 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7621 return -EMLINK;
7622
7623 if (!master) {
7624 if (__netdev_has_upper_dev(dev, upper_dev))
7625 return -EEXIST;
7626 } else {
7627 master_dev = __netdev_master_upper_dev_get(dev);
7628 if (master_dev)
7629 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7630 }
7631
7632 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7633 &changeupper_info.info);
7634 ret = notifier_to_errno(ret);
7635 if (ret)
7636 return ret;
7637
7638 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7639 master);
7640 if (ret)
7641 return ret;
7642
7643 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7644 &changeupper_info.info);
7645 ret = notifier_to_errno(ret);
7646 if (ret)
7647 goto rollback;
7648
7649 __netdev_update_upper_level(dev, NULL);
7650 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7651
7652 __netdev_update_lower_level(upper_dev, priv);
7653 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7654 priv);
7655
7656 return 0;
7657
7658rollback:
7659 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7660
7661 return ret;
7662}
7663
7664/**
7665 * netdev_upper_dev_link - Add a link to the upper device
7666 * @dev: device
7667 * @upper_dev: new upper device
7668 * @extack: netlink extended ack
7669 *
7670 * Adds a link to device which is upper to this one. The caller must hold
7671 * the RTNL lock. On a failure a negative errno code is returned.
7672 * On success the reference counts are adjusted and the function
7673 * returns zero.
7674 */
7675int netdev_upper_dev_link(struct net_device *dev,
7676 struct net_device *upper_dev,
7677 struct netlink_ext_ack *extack)
7678{
7679 struct netdev_nested_priv priv = {
7680 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7681 .data = NULL,
7682 };
7683
7684 return __netdev_upper_dev_link(dev, upper_dev, false,
7685 NULL, NULL, &priv, extack);
7686}
7687EXPORT_SYMBOL(netdev_upper_dev_link);
7688
7689/**
7690 * netdev_master_upper_dev_link - Add a master link to the upper device
7691 * @dev: device
7692 * @upper_dev: new upper device
7693 * @upper_priv: upper device private
7694 * @upper_info: upper info to be passed down via notifier
7695 * @extack: netlink extended ack
7696 *
7697 * Adds a link to device which is upper to this one. In this case, only
7698 * one master upper device can be linked, although other non-master devices
7699 * might be linked as well. The caller must hold the RTNL lock.
7700 * On a failure a negative errno code is returned. On success the reference
7701 * counts are adjusted and the function returns zero.
7702 */
7703int netdev_master_upper_dev_link(struct net_device *dev,
7704 struct net_device *upper_dev,
7705 void *upper_priv, void *upper_info,
7706 struct netlink_ext_ack *extack)
7707{
7708 struct netdev_nested_priv priv = {
7709 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7710 .data = NULL,
7711 };
7712
7713 return __netdev_upper_dev_link(dev, upper_dev, true,
7714 upper_priv, upper_info, &priv, extack);
7715}
7716EXPORT_SYMBOL(netdev_master_upper_dev_link);
7717
7718static void __netdev_upper_dev_unlink(struct net_device *dev,
7719 struct net_device *upper_dev,
7720 struct netdev_nested_priv *priv)
7721{
7722 struct netdev_notifier_changeupper_info changeupper_info = {
7723 .info = {
7724 .dev = dev,
7725 },
7726 .upper_dev = upper_dev,
7727 .linking = false,
7728 };
7729
7730 ASSERT_RTNL();
7731
7732 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7733
7734 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7735 &changeupper_info.info);
7736
7737 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7738
7739 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7740 &changeupper_info.info);
7741
7742 __netdev_update_upper_level(dev, NULL);
7743 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7744
7745 __netdev_update_lower_level(upper_dev, priv);
7746 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7747 priv);
7748}
7749
7750/**
7751 * netdev_upper_dev_unlink - Removes a link to upper device
7752 * @dev: device
7753 * @upper_dev: new upper device
7754 *
7755 * Removes a link to device which is upper to this one. The caller must hold
7756 * the RTNL lock.
7757 */
7758void netdev_upper_dev_unlink(struct net_device *dev,
7759 struct net_device *upper_dev)
7760{
7761 struct netdev_nested_priv priv = {
7762 .flags = NESTED_SYNC_TODO,
7763 .data = NULL,
7764 };
7765
7766 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7767}
7768EXPORT_SYMBOL(netdev_upper_dev_unlink);
7769
7770static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7771 struct net_device *lower_dev,
7772 bool val)
7773{
7774 struct netdev_adjacent *adj;
7775
7776 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7777 if (adj)
7778 adj->ignore = val;
7779
7780 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7781 if (adj)
7782 adj->ignore = val;
7783}
7784
7785static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7786 struct net_device *lower_dev)
7787{
7788 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7789}
7790
7791static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7792 struct net_device *lower_dev)
7793{
7794 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7795}
7796
7797int netdev_adjacent_change_prepare(struct net_device *old_dev,
7798 struct net_device *new_dev,
7799 struct net_device *dev,
7800 struct netlink_ext_ack *extack)
7801{
7802 struct netdev_nested_priv priv = {
7803 .flags = 0,
7804 .data = NULL,
7805 };
7806 int err;
7807
7808 if (!new_dev)
7809 return 0;
7810
7811 if (old_dev && new_dev != old_dev)
7812 netdev_adjacent_dev_disable(dev, old_dev);
7813 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7814 extack);
7815 if (err) {
7816 if (old_dev && new_dev != old_dev)
7817 netdev_adjacent_dev_enable(dev, old_dev);
7818 return err;
7819 }
7820
7821 return 0;
7822}
7823EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7824
7825void netdev_adjacent_change_commit(struct net_device *old_dev,
7826 struct net_device *new_dev,
7827 struct net_device *dev)
7828{
7829 struct netdev_nested_priv priv = {
7830 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7831 .data = NULL,
7832 };
7833
7834 if (!new_dev || !old_dev)
7835 return;
7836
7837 if (new_dev == old_dev)
7838 return;
7839
7840 netdev_adjacent_dev_enable(dev, old_dev);
7841 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7842}
7843EXPORT_SYMBOL(netdev_adjacent_change_commit);
7844
7845void netdev_adjacent_change_abort(struct net_device *old_dev,
7846 struct net_device *new_dev,
7847 struct net_device *dev)
7848{
7849 struct netdev_nested_priv priv = {
7850 .flags = 0,
7851 .data = NULL,
7852 };
7853
7854 if (!new_dev)
7855 return;
7856
7857 if (old_dev && new_dev != old_dev)
7858 netdev_adjacent_dev_enable(dev, old_dev);
7859
7860 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7861}
7862EXPORT_SYMBOL(netdev_adjacent_change_abort);
7863
7864/**
7865 * netdev_bonding_info_change - Dispatch event about slave change
7866 * @dev: device
7867 * @bonding_info: info to dispatch
7868 *
7869 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7870 * The caller must hold the RTNL lock.
7871 */
7872void netdev_bonding_info_change(struct net_device *dev,
7873 struct netdev_bonding_info *bonding_info)
7874{
7875 struct netdev_notifier_bonding_info info = {
7876 .info.dev = dev,
7877 };
7878
7879 memcpy(&info.bonding_info, bonding_info,
7880 sizeof(struct netdev_bonding_info));
7881 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7882 &info.info);
7883}
7884EXPORT_SYMBOL(netdev_bonding_info_change);
7885
7886static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7887 struct netlink_ext_ack *extack)
7888{
7889 struct netdev_notifier_offload_xstats_info info = {
7890 .info.dev = dev,
7891 .info.extack = extack,
7892 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7893 };
7894 int err;
7895 int rc;
7896
7897 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7898 GFP_KERNEL);
7899 if (!dev->offload_xstats_l3)
7900 return -ENOMEM;
7901
7902 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7903 NETDEV_OFFLOAD_XSTATS_DISABLE,
7904 &info.info);
7905 err = notifier_to_errno(rc);
7906 if (err)
7907 goto free_stats;
7908
7909 return 0;
7910
7911free_stats:
7912 kfree(dev->offload_xstats_l3);
7913 dev->offload_xstats_l3 = NULL;
7914 return err;
7915}
7916
7917int netdev_offload_xstats_enable(struct net_device *dev,
7918 enum netdev_offload_xstats_type type,
7919 struct netlink_ext_ack *extack)
7920{
7921 ASSERT_RTNL();
7922
7923 if (netdev_offload_xstats_enabled(dev, type))
7924 return -EALREADY;
7925
7926 switch (type) {
7927 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7928 return netdev_offload_xstats_enable_l3(dev, extack);
7929 }
7930
7931 WARN_ON(1);
7932 return -EINVAL;
7933}
7934EXPORT_SYMBOL(netdev_offload_xstats_enable);
7935
7936static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7937{
7938 struct netdev_notifier_offload_xstats_info info = {
7939 .info.dev = dev,
7940 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7941 };
7942
7943 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7944 &info.info);
7945 kfree(dev->offload_xstats_l3);
7946 dev->offload_xstats_l3 = NULL;
7947}
7948
7949int netdev_offload_xstats_disable(struct net_device *dev,
7950 enum netdev_offload_xstats_type type)
7951{
7952 ASSERT_RTNL();
7953
7954 if (!netdev_offload_xstats_enabled(dev, type))
7955 return -EALREADY;
7956
7957 switch (type) {
7958 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7959 netdev_offload_xstats_disable_l3(dev);
7960 return 0;
7961 }
7962
7963 WARN_ON(1);
7964 return -EINVAL;
7965}
7966EXPORT_SYMBOL(netdev_offload_xstats_disable);
7967
7968static void netdev_offload_xstats_disable_all(struct net_device *dev)
7969{
7970 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7971}
7972
7973static struct rtnl_hw_stats64 *
7974netdev_offload_xstats_get_ptr(const struct net_device *dev,
7975 enum netdev_offload_xstats_type type)
7976{
7977 switch (type) {
7978 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7979 return dev->offload_xstats_l3;
7980 }
7981
7982 WARN_ON(1);
7983 return NULL;
7984}
7985
7986bool netdev_offload_xstats_enabled(const struct net_device *dev,
7987 enum netdev_offload_xstats_type type)
7988{
7989 ASSERT_RTNL();
7990
7991 return netdev_offload_xstats_get_ptr(dev, type);
7992}
7993EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7994
7995struct netdev_notifier_offload_xstats_ru {
7996 bool used;
7997};
7998
7999struct netdev_notifier_offload_xstats_rd {
8000 struct rtnl_hw_stats64 stats;
8001 bool used;
8002};
8003
8004static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8005 const struct rtnl_hw_stats64 *src)
8006{
8007 dest->rx_packets += src->rx_packets;
8008 dest->tx_packets += src->tx_packets;
8009 dest->rx_bytes += src->rx_bytes;
8010 dest->tx_bytes += src->tx_bytes;
8011 dest->rx_errors += src->rx_errors;
8012 dest->tx_errors += src->tx_errors;
8013 dest->rx_dropped += src->rx_dropped;
8014 dest->tx_dropped += src->tx_dropped;
8015 dest->multicast += src->multicast;
8016}
8017
8018static int netdev_offload_xstats_get_used(struct net_device *dev,
8019 enum netdev_offload_xstats_type type,
8020 bool *p_used,
8021 struct netlink_ext_ack *extack)
8022{
8023 struct netdev_notifier_offload_xstats_ru report_used = {};
8024 struct netdev_notifier_offload_xstats_info info = {
8025 .info.dev = dev,
8026 .info.extack = extack,
8027 .type = type,
8028 .report_used = &report_used,
8029 };
8030 int rc;
8031
8032 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8033 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8034 &info.info);
8035 *p_used = report_used.used;
8036 return notifier_to_errno(rc);
8037}
8038
8039static int netdev_offload_xstats_get_stats(struct net_device *dev,
8040 enum netdev_offload_xstats_type type,
8041 struct rtnl_hw_stats64 *p_stats,
8042 bool *p_used,
8043 struct netlink_ext_ack *extack)
8044{
8045 struct netdev_notifier_offload_xstats_rd report_delta = {};
8046 struct netdev_notifier_offload_xstats_info info = {
8047 .info.dev = dev,
8048 .info.extack = extack,
8049 .type = type,
8050 .report_delta = &report_delta,
8051 };
8052 struct rtnl_hw_stats64 *stats;
8053 int rc;
8054
8055 stats = netdev_offload_xstats_get_ptr(dev, type);
8056 if (WARN_ON(!stats))
8057 return -EINVAL;
8058
8059 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8060 &info.info);
8061
8062 /* Cache whatever we got, even if there was an error, otherwise the
8063 * successful stats retrievals would get lost.
8064 */
8065 netdev_hw_stats64_add(stats, &report_delta.stats);
8066
8067 if (p_stats)
8068 *p_stats = *stats;
8069 *p_used = report_delta.used;
8070
8071 return notifier_to_errno(rc);
8072}
8073
8074int netdev_offload_xstats_get(struct net_device *dev,
8075 enum netdev_offload_xstats_type type,
8076 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8077 struct netlink_ext_ack *extack)
8078{
8079 ASSERT_RTNL();
8080
8081 if (p_stats)
8082 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8083 p_used, extack);
8084 else
8085 return netdev_offload_xstats_get_used(dev, type, p_used,
8086 extack);
8087}
8088EXPORT_SYMBOL(netdev_offload_xstats_get);
8089
8090void
8091netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8092 const struct rtnl_hw_stats64 *stats)
8093{
8094 report_delta->used = true;
8095 netdev_hw_stats64_add(&report_delta->stats, stats);
8096}
8097EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8098
8099void
8100netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8101{
8102 report_used->used = true;
8103}
8104EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8105
8106void netdev_offload_xstats_push_delta(struct net_device *dev,
8107 enum netdev_offload_xstats_type type,
8108 const struct rtnl_hw_stats64 *p_stats)
8109{
8110 struct rtnl_hw_stats64 *stats;
8111
8112 ASSERT_RTNL();
8113
8114 stats = netdev_offload_xstats_get_ptr(dev, type);
8115 if (WARN_ON(!stats))
8116 return;
8117
8118 netdev_hw_stats64_add(stats, p_stats);
8119}
8120EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8121
8122/**
8123 * netdev_get_xmit_slave - Get the xmit slave of master device
8124 * @dev: device
8125 * @skb: The packet
8126 * @all_slaves: assume all the slaves are active
8127 *
8128 * The reference counters are not incremented so the caller must be
8129 * careful with locks. The caller must hold RCU lock.
8130 * %NULL is returned if no slave is found.
8131 */
8132
8133struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8134 struct sk_buff *skb,
8135 bool all_slaves)
8136{
8137 const struct net_device_ops *ops = dev->netdev_ops;
8138
8139 if (!ops->ndo_get_xmit_slave)
8140 return NULL;
8141 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8142}
8143EXPORT_SYMBOL(netdev_get_xmit_slave);
8144
8145static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8146 struct sock *sk)
8147{
8148 const struct net_device_ops *ops = dev->netdev_ops;
8149
8150 if (!ops->ndo_sk_get_lower_dev)
8151 return NULL;
8152 return ops->ndo_sk_get_lower_dev(dev, sk);
8153}
8154
8155/**
8156 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8157 * @dev: device
8158 * @sk: the socket
8159 *
8160 * %NULL is returned if no lower device is found.
8161 */
8162
8163struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8164 struct sock *sk)
8165{
8166 struct net_device *lower;
8167
8168 lower = netdev_sk_get_lower_dev(dev, sk);
8169 while (lower) {
8170 dev = lower;
8171 lower = netdev_sk_get_lower_dev(dev, sk);
8172 }
8173
8174 return dev;
8175}
8176EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8177
8178static void netdev_adjacent_add_links(struct net_device *dev)
8179{
8180 struct netdev_adjacent *iter;
8181
8182 struct net *net = dev_net(dev);
8183
8184 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8185 if (!net_eq(net, dev_net(iter->dev)))
8186 continue;
8187 netdev_adjacent_sysfs_add(iter->dev, dev,
8188 &iter->dev->adj_list.lower);
8189 netdev_adjacent_sysfs_add(dev, iter->dev,
8190 &dev->adj_list.upper);
8191 }
8192
8193 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8194 if (!net_eq(net, dev_net(iter->dev)))
8195 continue;
8196 netdev_adjacent_sysfs_add(iter->dev, dev,
8197 &iter->dev->adj_list.upper);
8198 netdev_adjacent_sysfs_add(dev, iter->dev,
8199 &dev->adj_list.lower);
8200 }
8201}
8202
8203static void netdev_adjacent_del_links(struct net_device *dev)
8204{
8205 struct netdev_adjacent *iter;
8206
8207 struct net *net = dev_net(dev);
8208
8209 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8210 if (!net_eq(net, dev_net(iter->dev)))
8211 continue;
8212 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8213 &iter->dev->adj_list.lower);
8214 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8215 &dev->adj_list.upper);
8216 }
8217
8218 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8219 if (!net_eq(net, dev_net(iter->dev)))
8220 continue;
8221 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8222 &iter->dev->adj_list.upper);
8223 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8224 &dev->adj_list.lower);
8225 }
8226}
8227
8228void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8229{
8230 struct netdev_adjacent *iter;
8231
8232 struct net *net = dev_net(dev);
8233
8234 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8235 if (!net_eq(net, dev_net(iter->dev)))
8236 continue;
8237 netdev_adjacent_sysfs_del(iter->dev, oldname,
8238 &iter->dev->adj_list.lower);
8239 netdev_adjacent_sysfs_add(iter->dev, dev,
8240 &iter->dev->adj_list.lower);
8241 }
8242
8243 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8244 if (!net_eq(net, dev_net(iter->dev)))
8245 continue;
8246 netdev_adjacent_sysfs_del(iter->dev, oldname,
8247 &iter->dev->adj_list.upper);
8248 netdev_adjacent_sysfs_add(iter->dev, dev,
8249 &iter->dev->adj_list.upper);
8250 }
8251}
8252
8253void *netdev_lower_dev_get_private(struct net_device *dev,
8254 struct net_device *lower_dev)
8255{
8256 struct netdev_adjacent *lower;
8257
8258 if (!lower_dev)
8259 return NULL;
8260 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8261 if (!lower)
8262 return NULL;
8263
8264 return lower->private;
8265}
8266EXPORT_SYMBOL(netdev_lower_dev_get_private);
8267
8268
8269/**
8270 * netdev_lower_state_changed - Dispatch event about lower device state change
8271 * @lower_dev: device
8272 * @lower_state_info: state to dispatch
8273 *
8274 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8275 * The caller must hold the RTNL lock.
8276 */
8277void netdev_lower_state_changed(struct net_device *lower_dev,
8278 void *lower_state_info)
8279{
8280 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8281 .info.dev = lower_dev,
8282 };
8283
8284 ASSERT_RTNL();
8285 changelowerstate_info.lower_state_info = lower_state_info;
8286 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8287 &changelowerstate_info.info);
8288}
8289EXPORT_SYMBOL(netdev_lower_state_changed);
8290
8291static void dev_change_rx_flags(struct net_device *dev, int flags)
8292{
8293 const struct net_device_ops *ops = dev->netdev_ops;
8294
8295 if (ops->ndo_change_rx_flags)
8296 ops->ndo_change_rx_flags(dev, flags);
8297}
8298
8299static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8300{
8301 unsigned int old_flags = dev->flags;
8302 kuid_t uid;
8303 kgid_t gid;
8304
8305 ASSERT_RTNL();
8306
8307 dev->flags |= IFF_PROMISC;
8308 dev->promiscuity += inc;
8309 if (dev->promiscuity == 0) {
8310 /*
8311 * Avoid overflow.
8312 * If inc causes overflow, untouch promisc and return error.
8313 */
8314 if (inc < 0)
8315 dev->flags &= ~IFF_PROMISC;
8316 else {
8317 dev->promiscuity -= inc;
8318 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8319 return -EOVERFLOW;
8320 }
8321 }
8322 if (dev->flags != old_flags) {
8323 pr_info("device %s %s promiscuous mode\n",
8324 dev->name,
8325 dev->flags & IFF_PROMISC ? "entered" : "left");
8326 if (audit_enabled) {
8327 current_uid_gid(&uid, &gid);
8328 audit_log(audit_context(), GFP_ATOMIC,
8329 AUDIT_ANOM_PROMISCUOUS,
8330 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8331 dev->name, (dev->flags & IFF_PROMISC),
8332 (old_flags & IFF_PROMISC),
8333 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8334 from_kuid(&init_user_ns, uid),
8335 from_kgid(&init_user_ns, gid),
8336 audit_get_sessionid(current));
8337 }
8338
8339 dev_change_rx_flags(dev, IFF_PROMISC);
8340 }
8341 if (notify)
8342 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8343 return 0;
8344}
8345
8346/**
8347 * dev_set_promiscuity - update promiscuity count on a device
8348 * @dev: device
8349 * @inc: modifier
8350 *
8351 * Add or remove promiscuity from a device. While the count in the device
8352 * remains above zero the interface remains promiscuous. Once it hits zero
8353 * the device reverts back to normal filtering operation. A negative inc
8354 * value is used to drop promiscuity on the device.
8355 * Return 0 if successful or a negative errno code on error.
8356 */
8357int dev_set_promiscuity(struct net_device *dev, int inc)
8358{
8359 unsigned int old_flags = dev->flags;
8360 int err;
8361
8362 err = __dev_set_promiscuity(dev, inc, true);
8363 if (err < 0)
8364 return err;
8365 if (dev->flags != old_flags)
8366 dev_set_rx_mode(dev);
8367 return err;
8368}
8369EXPORT_SYMBOL(dev_set_promiscuity);
8370
8371static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8372{
8373 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8374
8375 ASSERT_RTNL();
8376
8377 dev->flags |= IFF_ALLMULTI;
8378 dev->allmulti += inc;
8379 if (dev->allmulti == 0) {
8380 /*
8381 * Avoid overflow.
8382 * If inc causes overflow, untouch allmulti and return error.
8383 */
8384 if (inc < 0)
8385 dev->flags &= ~IFF_ALLMULTI;
8386 else {
8387 dev->allmulti -= inc;
8388 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8389 return -EOVERFLOW;
8390 }
8391 }
8392 if (dev->flags ^ old_flags) {
8393 dev_change_rx_flags(dev, IFF_ALLMULTI);
8394 dev_set_rx_mode(dev);
8395 if (notify)
8396 __dev_notify_flags(dev, old_flags,
8397 dev->gflags ^ old_gflags);
8398 }
8399 return 0;
8400}
8401
8402/**
8403 * dev_set_allmulti - update allmulti count on a device
8404 * @dev: device
8405 * @inc: modifier
8406 *
8407 * Add or remove reception of all multicast frames to a device. While the
8408 * count in the device remains above zero the interface remains listening
8409 * to all interfaces. Once it hits zero the device reverts back to normal
8410 * filtering operation. A negative @inc value is used to drop the counter
8411 * when releasing a resource needing all multicasts.
8412 * Return 0 if successful or a negative errno code on error.
8413 */
8414
8415int dev_set_allmulti(struct net_device *dev, int inc)
8416{
8417 return __dev_set_allmulti(dev, inc, true);
8418}
8419EXPORT_SYMBOL(dev_set_allmulti);
8420
8421/*
8422 * Upload unicast and multicast address lists to device and
8423 * configure RX filtering. When the device doesn't support unicast
8424 * filtering it is put in promiscuous mode while unicast addresses
8425 * are present.
8426 */
8427void __dev_set_rx_mode(struct net_device *dev)
8428{
8429 const struct net_device_ops *ops = dev->netdev_ops;
8430
8431 /* dev_open will call this function so the list will stay sane. */
8432 if (!(dev->flags&IFF_UP))
8433 return;
8434
8435 if (!netif_device_present(dev))
8436 return;
8437
8438 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8439 /* Unicast addresses changes may only happen under the rtnl,
8440 * therefore calling __dev_set_promiscuity here is safe.
8441 */
8442 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8443 __dev_set_promiscuity(dev, 1, false);
8444 dev->uc_promisc = true;
8445 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8446 __dev_set_promiscuity(dev, -1, false);
8447 dev->uc_promisc = false;
8448 }
8449 }
8450
8451 if (ops->ndo_set_rx_mode)
8452 ops->ndo_set_rx_mode(dev);
8453}
8454
8455void dev_set_rx_mode(struct net_device *dev)
8456{
8457 netif_addr_lock_bh(dev);
8458 __dev_set_rx_mode(dev);
8459 netif_addr_unlock_bh(dev);
8460}
8461
8462/**
8463 * dev_get_flags - get flags reported to userspace
8464 * @dev: device
8465 *
8466 * Get the combination of flag bits exported through APIs to userspace.
8467 */
8468unsigned int dev_get_flags(const struct net_device *dev)
8469{
8470 unsigned int flags;
8471
8472 flags = (dev->flags & ~(IFF_PROMISC |
8473 IFF_ALLMULTI |
8474 IFF_RUNNING |
8475 IFF_LOWER_UP |
8476 IFF_DORMANT)) |
8477 (dev->gflags & (IFF_PROMISC |
8478 IFF_ALLMULTI));
8479
8480 if (netif_running(dev)) {
8481 if (netif_oper_up(dev))
8482 flags |= IFF_RUNNING;
8483 if (netif_carrier_ok(dev))
8484 flags |= IFF_LOWER_UP;
8485 if (netif_dormant(dev))
8486 flags |= IFF_DORMANT;
8487 }
8488
8489 return flags;
8490}
8491EXPORT_SYMBOL(dev_get_flags);
8492
8493int __dev_change_flags(struct net_device *dev, unsigned int flags,
8494 struct netlink_ext_ack *extack)
8495{
8496 unsigned int old_flags = dev->flags;
8497 int ret;
8498
8499 ASSERT_RTNL();
8500
8501 /*
8502 * Set the flags on our device.
8503 */
8504
8505 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8506 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8507 IFF_AUTOMEDIA)) |
8508 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8509 IFF_ALLMULTI));
8510
8511 /*
8512 * Load in the correct multicast list now the flags have changed.
8513 */
8514
8515 if ((old_flags ^ flags) & IFF_MULTICAST)
8516 dev_change_rx_flags(dev, IFF_MULTICAST);
8517
8518 dev_set_rx_mode(dev);
8519
8520 /*
8521 * Have we downed the interface. We handle IFF_UP ourselves
8522 * according to user attempts to set it, rather than blindly
8523 * setting it.
8524 */
8525
8526 ret = 0;
8527 if ((old_flags ^ flags) & IFF_UP) {
8528 if (old_flags & IFF_UP)
8529 __dev_close(dev);
8530 else
8531 ret = __dev_open(dev, extack);
8532 }
8533
8534 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8535 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8536 unsigned int old_flags = dev->flags;
8537
8538 dev->gflags ^= IFF_PROMISC;
8539
8540 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8541 if (dev->flags != old_flags)
8542 dev_set_rx_mode(dev);
8543 }
8544
8545 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8546 * is important. Some (broken) drivers set IFF_PROMISC, when
8547 * IFF_ALLMULTI is requested not asking us and not reporting.
8548 */
8549 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8550 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8551
8552 dev->gflags ^= IFF_ALLMULTI;
8553 __dev_set_allmulti(dev, inc, false);
8554 }
8555
8556 return ret;
8557}
8558
8559void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8560 unsigned int gchanges)
8561{
8562 unsigned int changes = dev->flags ^ old_flags;
8563
8564 if (gchanges)
8565 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8566
8567 if (changes & IFF_UP) {
8568 if (dev->flags & IFF_UP)
8569 call_netdevice_notifiers(NETDEV_UP, dev);
8570 else
8571 call_netdevice_notifiers(NETDEV_DOWN, dev);
8572 }
8573
8574 if (dev->flags & IFF_UP &&
8575 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8576 struct netdev_notifier_change_info change_info = {
8577 .info = {
8578 .dev = dev,
8579 },
8580 .flags_changed = changes,
8581 };
8582
8583 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8584 }
8585}
8586
8587/**
8588 * dev_change_flags - change device settings
8589 * @dev: device
8590 * @flags: device state flags
8591 * @extack: netlink extended ack
8592 *
8593 * Change settings on device based state flags. The flags are
8594 * in the userspace exported format.
8595 */
8596int dev_change_flags(struct net_device *dev, unsigned int flags,
8597 struct netlink_ext_ack *extack)
8598{
8599 int ret;
8600 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8601
8602 ret = __dev_change_flags(dev, flags, extack);
8603 if (ret < 0)
8604 return ret;
8605
8606 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8607 __dev_notify_flags(dev, old_flags, changes);
8608 return ret;
8609}
8610EXPORT_SYMBOL(dev_change_flags);
8611
8612int __dev_set_mtu(struct net_device *dev, int new_mtu)
8613{
8614 const struct net_device_ops *ops = dev->netdev_ops;
8615
8616 if (ops->ndo_change_mtu)
8617 return ops->ndo_change_mtu(dev, new_mtu);
8618
8619 /* Pairs with all the lockless reads of dev->mtu in the stack */
8620 WRITE_ONCE(dev->mtu, new_mtu);
8621 return 0;
8622}
8623EXPORT_SYMBOL(__dev_set_mtu);
8624
8625int dev_validate_mtu(struct net_device *dev, int new_mtu,
8626 struct netlink_ext_ack *extack)
8627{
8628 /* MTU must be positive, and in range */
8629 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8630 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8631 return -EINVAL;
8632 }
8633
8634 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8635 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8636 return -EINVAL;
8637 }
8638 return 0;
8639}
8640
8641/**
8642 * dev_set_mtu_ext - Change maximum transfer unit
8643 * @dev: device
8644 * @new_mtu: new transfer unit
8645 * @extack: netlink extended ack
8646 *
8647 * Change the maximum transfer size of the network device.
8648 */
8649int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8650 struct netlink_ext_ack *extack)
8651{
8652 int err, orig_mtu;
8653
8654 if (new_mtu == dev->mtu)
8655 return 0;
8656
8657 err = dev_validate_mtu(dev, new_mtu, extack);
8658 if (err)
8659 return err;
8660
8661 if (!netif_device_present(dev))
8662 return -ENODEV;
8663
8664 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8665 err = notifier_to_errno(err);
8666 if (err)
8667 return err;
8668
8669 orig_mtu = dev->mtu;
8670 err = __dev_set_mtu(dev, new_mtu);
8671
8672 if (!err) {
8673 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8674 orig_mtu);
8675 err = notifier_to_errno(err);
8676 if (err) {
8677 /* setting mtu back and notifying everyone again,
8678 * so that they have a chance to revert changes.
8679 */
8680 __dev_set_mtu(dev, orig_mtu);
8681 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8682 new_mtu);
8683 }
8684 }
8685 return err;
8686}
8687
8688int dev_set_mtu(struct net_device *dev, int new_mtu)
8689{
8690 struct netlink_ext_ack extack;
8691 int err;
8692
8693 memset(&extack, 0, sizeof(extack));
8694 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8695 if (err && extack._msg)
8696 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8697 return err;
8698}
8699EXPORT_SYMBOL(dev_set_mtu);
8700
8701/**
8702 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8703 * @dev: device
8704 * @new_len: new tx queue length
8705 */
8706int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8707{
8708 unsigned int orig_len = dev->tx_queue_len;
8709 int res;
8710
8711 if (new_len != (unsigned int)new_len)
8712 return -ERANGE;
8713
8714 if (new_len != orig_len) {
8715 dev->tx_queue_len = new_len;
8716 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8717 res = notifier_to_errno(res);
8718 if (res)
8719 goto err_rollback;
8720 res = dev_qdisc_change_tx_queue_len(dev);
8721 if (res)
8722 goto err_rollback;
8723 }
8724
8725 return 0;
8726
8727err_rollback:
8728 netdev_err(dev, "refused to change device tx_queue_len\n");
8729 dev->tx_queue_len = orig_len;
8730 return res;
8731}
8732
8733/**
8734 * dev_set_group - Change group this device belongs to
8735 * @dev: device
8736 * @new_group: group this device should belong to
8737 */
8738void dev_set_group(struct net_device *dev, int new_group)
8739{
8740 dev->group = new_group;
8741}
8742
8743/**
8744 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8745 * @dev: device
8746 * @addr: new address
8747 * @extack: netlink extended ack
8748 */
8749int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8750 struct netlink_ext_ack *extack)
8751{
8752 struct netdev_notifier_pre_changeaddr_info info = {
8753 .info.dev = dev,
8754 .info.extack = extack,
8755 .dev_addr = addr,
8756 };
8757 int rc;
8758
8759 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8760 return notifier_to_errno(rc);
8761}
8762EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8763
8764/**
8765 * dev_set_mac_address - Change Media Access Control Address
8766 * @dev: device
8767 * @sa: new address
8768 * @extack: netlink extended ack
8769 *
8770 * Change the hardware (MAC) address of the device
8771 */
8772int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8773 struct netlink_ext_ack *extack)
8774{
8775 const struct net_device_ops *ops = dev->netdev_ops;
8776 int err;
8777
8778 if (!ops->ndo_set_mac_address)
8779 return -EOPNOTSUPP;
8780 if (sa->sa_family != dev->type)
8781 return -EINVAL;
8782 if (!netif_device_present(dev))
8783 return -ENODEV;
8784 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8785 if (err)
8786 return err;
8787 err = ops->ndo_set_mac_address(dev, sa);
8788 if (err)
8789 return err;
8790 dev->addr_assign_type = NET_ADDR_SET;
8791 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8792 add_device_randomness(dev->dev_addr, dev->addr_len);
8793 return 0;
8794}
8795EXPORT_SYMBOL(dev_set_mac_address);
8796
8797static DECLARE_RWSEM(dev_addr_sem);
8798
8799int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8800 struct netlink_ext_ack *extack)
8801{
8802 int ret;
8803
8804 down_write(&dev_addr_sem);
8805 ret = dev_set_mac_address(dev, sa, extack);
8806 up_write(&dev_addr_sem);
8807 return ret;
8808}
8809EXPORT_SYMBOL(dev_set_mac_address_user);
8810
8811int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8812{
8813 size_t size = sizeof(sa->sa_data);
8814 struct net_device *dev;
8815 int ret = 0;
8816
8817 down_read(&dev_addr_sem);
8818 rcu_read_lock();
8819
8820 dev = dev_get_by_name_rcu(net, dev_name);
8821 if (!dev) {
8822 ret = -ENODEV;
8823 goto unlock;
8824 }
8825 if (!dev->addr_len)
8826 memset(sa->sa_data, 0, size);
8827 else
8828 memcpy(sa->sa_data, dev->dev_addr,
8829 min_t(size_t, size, dev->addr_len));
8830 sa->sa_family = dev->type;
8831
8832unlock:
8833 rcu_read_unlock();
8834 up_read(&dev_addr_sem);
8835 return ret;
8836}
8837EXPORT_SYMBOL(dev_get_mac_address);
8838
8839/**
8840 * dev_change_carrier - Change device carrier
8841 * @dev: device
8842 * @new_carrier: new value
8843 *
8844 * Change device carrier
8845 */
8846int dev_change_carrier(struct net_device *dev, bool new_carrier)
8847{
8848 const struct net_device_ops *ops = dev->netdev_ops;
8849
8850 if (!ops->ndo_change_carrier)
8851 return -EOPNOTSUPP;
8852 if (!netif_device_present(dev))
8853 return -ENODEV;
8854 return ops->ndo_change_carrier(dev, new_carrier);
8855}
8856
8857/**
8858 * dev_get_phys_port_id - Get device physical port ID
8859 * @dev: device
8860 * @ppid: port ID
8861 *
8862 * Get device physical port ID
8863 */
8864int dev_get_phys_port_id(struct net_device *dev,
8865 struct netdev_phys_item_id *ppid)
8866{
8867 const struct net_device_ops *ops = dev->netdev_ops;
8868
8869 if (!ops->ndo_get_phys_port_id)
8870 return -EOPNOTSUPP;
8871 return ops->ndo_get_phys_port_id(dev, ppid);
8872}
8873
8874/**
8875 * dev_get_phys_port_name - Get device physical port name
8876 * @dev: device
8877 * @name: port name
8878 * @len: limit of bytes to copy to name
8879 *
8880 * Get device physical port name
8881 */
8882int dev_get_phys_port_name(struct net_device *dev,
8883 char *name, size_t len)
8884{
8885 const struct net_device_ops *ops = dev->netdev_ops;
8886 int err;
8887
8888 if (ops->ndo_get_phys_port_name) {
8889 err = ops->ndo_get_phys_port_name(dev, name, len);
8890 if (err != -EOPNOTSUPP)
8891 return err;
8892 }
8893 return devlink_compat_phys_port_name_get(dev, name, len);
8894}
8895
8896/**
8897 * dev_get_port_parent_id - Get the device's port parent identifier
8898 * @dev: network device
8899 * @ppid: pointer to a storage for the port's parent identifier
8900 * @recurse: allow/disallow recursion to lower devices
8901 *
8902 * Get the devices's port parent identifier
8903 */
8904int dev_get_port_parent_id(struct net_device *dev,
8905 struct netdev_phys_item_id *ppid,
8906 bool recurse)
8907{
8908 const struct net_device_ops *ops = dev->netdev_ops;
8909 struct netdev_phys_item_id first = { };
8910 struct net_device *lower_dev;
8911 struct list_head *iter;
8912 int err;
8913
8914 if (ops->ndo_get_port_parent_id) {
8915 err = ops->ndo_get_port_parent_id(dev, ppid);
8916 if (err != -EOPNOTSUPP)
8917 return err;
8918 }
8919
8920 err = devlink_compat_switch_id_get(dev, ppid);
8921 if (!recurse || err != -EOPNOTSUPP)
8922 return err;
8923
8924 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8925 err = dev_get_port_parent_id(lower_dev, ppid, true);
8926 if (err)
8927 break;
8928 if (!first.id_len)
8929 first = *ppid;
8930 else if (memcmp(&first, ppid, sizeof(*ppid)))
8931 return -EOPNOTSUPP;
8932 }
8933
8934 return err;
8935}
8936EXPORT_SYMBOL(dev_get_port_parent_id);
8937
8938/**
8939 * netdev_port_same_parent_id - Indicate if two network devices have
8940 * the same port parent identifier
8941 * @a: first network device
8942 * @b: second network device
8943 */
8944bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8945{
8946 struct netdev_phys_item_id a_id = { };
8947 struct netdev_phys_item_id b_id = { };
8948
8949 if (dev_get_port_parent_id(a, &a_id, true) ||
8950 dev_get_port_parent_id(b, &b_id, true))
8951 return false;
8952
8953 return netdev_phys_item_id_same(&a_id, &b_id);
8954}
8955EXPORT_SYMBOL(netdev_port_same_parent_id);
8956
8957/**
8958 * dev_change_proto_down - set carrier according to proto_down.
8959 *
8960 * @dev: device
8961 * @proto_down: new value
8962 */
8963int dev_change_proto_down(struct net_device *dev, bool proto_down)
8964{
8965 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8966 return -EOPNOTSUPP;
8967 if (!netif_device_present(dev))
8968 return -ENODEV;
8969 if (proto_down)
8970 netif_carrier_off(dev);
8971 else
8972 netif_carrier_on(dev);
8973 dev->proto_down = proto_down;
8974 return 0;
8975}
8976
8977/**
8978 * dev_change_proto_down_reason - proto down reason
8979 *
8980 * @dev: device
8981 * @mask: proto down mask
8982 * @value: proto down value
8983 */
8984void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8985 u32 value)
8986{
8987 int b;
8988
8989 if (!mask) {
8990 dev->proto_down_reason = value;
8991 } else {
8992 for_each_set_bit(b, &mask, 32) {
8993 if (value & (1 << b))
8994 dev->proto_down_reason |= BIT(b);
8995 else
8996 dev->proto_down_reason &= ~BIT(b);
8997 }
8998 }
8999}
9000
9001struct bpf_xdp_link {
9002 struct bpf_link link;
9003 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9004 int flags;
9005};
9006
9007static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9008{
9009 if (flags & XDP_FLAGS_HW_MODE)
9010 return XDP_MODE_HW;
9011 if (flags & XDP_FLAGS_DRV_MODE)
9012 return XDP_MODE_DRV;
9013 if (flags & XDP_FLAGS_SKB_MODE)
9014 return XDP_MODE_SKB;
9015 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9016}
9017
9018static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9019{
9020 switch (mode) {
9021 case XDP_MODE_SKB:
9022 return generic_xdp_install;
9023 case XDP_MODE_DRV:
9024 case XDP_MODE_HW:
9025 return dev->netdev_ops->ndo_bpf;
9026 default:
9027 return NULL;
9028 }
9029}
9030
9031static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9032 enum bpf_xdp_mode mode)
9033{
9034 return dev->xdp_state[mode].link;
9035}
9036
9037static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9038 enum bpf_xdp_mode mode)
9039{
9040 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9041
9042 if (link)
9043 return link->link.prog;
9044 return dev->xdp_state[mode].prog;
9045}
9046
9047u8 dev_xdp_prog_count(struct net_device *dev)
9048{
9049 u8 count = 0;
9050 int i;
9051
9052 for (i = 0; i < __MAX_XDP_MODE; i++)
9053 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9054 count++;
9055 return count;
9056}
9057EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9058
9059u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9060{
9061 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9062
9063 return prog ? prog->aux->id : 0;
9064}
9065
9066static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9067 struct bpf_xdp_link *link)
9068{
9069 dev->xdp_state[mode].link = link;
9070 dev->xdp_state[mode].prog = NULL;
9071}
9072
9073static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9074 struct bpf_prog *prog)
9075{
9076 dev->xdp_state[mode].link = NULL;
9077 dev->xdp_state[mode].prog = prog;
9078}
9079
9080static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9081 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9082 u32 flags, struct bpf_prog *prog)
9083{
9084 struct netdev_bpf xdp;
9085 int err;
9086
9087 memset(&xdp, 0, sizeof(xdp));
9088 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9089 xdp.extack = extack;
9090 xdp.flags = flags;
9091 xdp.prog = prog;
9092
9093 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9094 * "moved" into driver), so they don't increment it on their own, but
9095 * they do decrement refcnt when program is detached or replaced.
9096 * Given net_device also owns link/prog, we need to bump refcnt here
9097 * to prevent drivers from underflowing it.
9098 */
9099 if (prog)
9100 bpf_prog_inc(prog);
9101 err = bpf_op(dev, &xdp);
9102 if (err) {
9103 if (prog)
9104 bpf_prog_put(prog);
9105 return err;
9106 }
9107
9108 if (mode != XDP_MODE_HW)
9109 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9110
9111 return 0;
9112}
9113
9114static void dev_xdp_uninstall(struct net_device *dev)
9115{
9116 struct bpf_xdp_link *link;
9117 struct bpf_prog *prog;
9118 enum bpf_xdp_mode mode;
9119 bpf_op_t bpf_op;
9120
9121 ASSERT_RTNL();
9122
9123 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9124 prog = dev_xdp_prog(dev, mode);
9125 if (!prog)
9126 continue;
9127
9128 bpf_op = dev_xdp_bpf_op(dev, mode);
9129 if (!bpf_op)
9130 continue;
9131
9132 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9133
9134 /* auto-detach link from net device */
9135 link = dev_xdp_link(dev, mode);
9136 if (link)
9137 link->dev = NULL;
9138 else
9139 bpf_prog_put(prog);
9140
9141 dev_xdp_set_link(dev, mode, NULL);
9142 }
9143}
9144
9145static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9146 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9147 struct bpf_prog *old_prog, u32 flags)
9148{
9149 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9150 struct bpf_prog *cur_prog;
9151 struct net_device *upper;
9152 struct list_head *iter;
9153 enum bpf_xdp_mode mode;
9154 bpf_op_t bpf_op;
9155 int err;
9156
9157 ASSERT_RTNL();
9158
9159 /* either link or prog attachment, never both */
9160 if (link && (new_prog || old_prog))
9161 return -EINVAL;
9162 /* link supports only XDP mode flags */
9163 if (link && (flags & ~XDP_FLAGS_MODES)) {
9164 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9165 return -EINVAL;
9166 }
9167 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9168 if (num_modes > 1) {
9169 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9170 return -EINVAL;
9171 }
9172 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9173 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9174 NL_SET_ERR_MSG(extack,
9175 "More than one program loaded, unset mode is ambiguous");
9176 return -EINVAL;
9177 }
9178 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9179 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9180 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9181 return -EINVAL;
9182 }
9183
9184 mode = dev_xdp_mode(dev, flags);
9185 /* can't replace attached link */
9186 if (dev_xdp_link(dev, mode)) {
9187 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9188 return -EBUSY;
9189 }
9190
9191 /* don't allow if an upper device already has a program */
9192 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9193 if (dev_xdp_prog_count(upper) > 0) {
9194 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9195 return -EEXIST;
9196 }
9197 }
9198
9199 cur_prog = dev_xdp_prog(dev, mode);
9200 /* can't replace attached prog with link */
9201 if (link && cur_prog) {
9202 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9203 return -EBUSY;
9204 }
9205 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9206 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9207 return -EEXIST;
9208 }
9209
9210 /* put effective new program into new_prog */
9211 if (link)
9212 new_prog = link->link.prog;
9213
9214 if (new_prog) {
9215 bool offload = mode == XDP_MODE_HW;
9216 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9217 ? XDP_MODE_DRV : XDP_MODE_SKB;
9218
9219 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9220 NL_SET_ERR_MSG(extack, "XDP program already attached");
9221 return -EBUSY;
9222 }
9223 if (!offload && dev_xdp_prog(dev, other_mode)) {
9224 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9225 return -EEXIST;
9226 }
9227 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9228 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9229 return -EINVAL;
9230 }
9231 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9232 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9233 return -EINVAL;
9234 }
9235 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9236 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9237 return -EINVAL;
9238 }
9239 }
9240
9241 /* don't call drivers if the effective program didn't change */
9242 if (new_prog != cur_prog) {
9243 bpf_op = dev_xdp_bpf_op(dev, mode);
9244 if (!bpf_op) {
9245 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9246 return -EOPNOTSUPP;
9247 }
9248
9249 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9250 if (err)
9251 return err;
9252 }
9253
9254 if (link)
9255 dev_xdp_set_link(dev, mode, link);
9256 else
9257 dev_xdp_set_prog(dev, mode, new_prog);
9258 if (cur_prog)
9259 bpf_prog_put(cur_prog);
9260
9261 return 0;
9262}
9263
9264static int dev_xdp_attach_link(struct net_device *dev,
9265 struct netlink_ext_ack *extack,
9266 struct bpf_xdp_link *link)
9267{
9268 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9269}
9270
9271static int dev_xdp_detach_link(struct net_device *dev,
9272 struct netlink_ext_ack *extack,
9273 struct bpf_xdp_link *link)
9274{
9275 enum bpf_xdp_mode mode;
9276 bpf_op_t bpf_op;
9277
9278 ASSERT_RTNL();
9279
9280 mode = dev_xdp_mode(dev, link->flags);
9281 if (dev_xdp_link(dev, mode) != link)
9282 return -EINVAL;
9283
9284 bpf_op = dev_xdp_bpf_op(dev, mode);
9285 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9286 dev_xdp_set_link(dev, mode, NULL);
9287 return 0;
9288}
9289
9290static void bpf_xdp_link_release(struct bpf_link *link)
9291{
9292 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9293
9294 rtnl_lock();
9295
9296 /* if racing with net_device's tear down, xdp_link->dev might be
9297 * already NULL, in which case link was already auto-detached
9298 */
9299 if (xdp_link->dev) {
9300 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9301 xdp_link->dev = NULL;
9302 }
9303
9304 rtnl_unlock();
9305}
9306
9307static int bpf_xdp_link_detach(struct bpf_link *link)
9308{
9309 bpf_xdp_link_release(link);
9310 return 0;
9311}
9312
9313static void bpf_xdp_link_dealloc(struct bpf_link *link)
9314{
9315 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9316
9317 kfree(xdp_link);
9318}
9319
9320static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9321 struct seq_file *seq)
9322{
9323 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9324 u32 ifindex = 0;
9325
9326 rtnl_lock();
9327 if (xdp_link->dev)
9328 ifindex = xdp_link->dev->ifindex;
9329 rtnl_unlock();
9330
9331 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9332}
9333
9334static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9335 struct bpf_link_info *info)
9336{
9337 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9338 u32 ifindex = 0;
9339
9340 rtnl_lock();
9341 if (xdp_link->dev)
9342 ifindex = xdp_link->dev->ifindex;
9343 rtnl_unlock();
9344
9345 info->xdp.ifindex = ifindex;
9346 return 0;
9347}
9348
9349static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9350 struct bpf_prog *old_prog)
9351{
9352 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9353 enum bpf_xdp_mode mode;
9354 bpf_op_t bpf_op;
9355 int err = 0;
9356
9357 rtnl_lock();
9358
9359 /* link might have been auto-released already, so fail */
9360 if (!xdp_link->dev) {
9361 err = -ENOLINK;
9362 goto out_unlock;
9363 }
9364
9365 if (old_prog && link->prog != old_prog) {
9366 err = -EPERM;
9367 goto out_unlock;
9368 }
9369 old_prog = link->prog;
9370 if (old_prog->type != new_prog->type ||
9371 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9372 err = -EINVAL;
9373 goto out_unlock;
9374 }
9375
9376 if (old_prog == new_prog) {
9377 /* no-op, don't disturb drivers */
9378 bpf_prog_put(new_prog);
9379 goto out_unlock;
9380 }
9381
9382 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9383 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9384 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9385 xdp_link->flags, new_prog);
9386 if (err)
9387 goto out_unlock;
9388
9389 old_prog = xchg(&link->prog, new_prog);
9390 bpf_prog_put(old_prog);
9391
9392out_unlock:
9393 rtnl_unlock();
9394 return err;
9395}
9396
9397static const struct bpf_link_ops bpf_xdp_link_lops = {
9398 .release = bpf_xdp_link_release,
9399 .dealloc = bpf_xdp_link_dealloc,
9400 .detach = bpf_xdp_link_detach,
9401 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9402 .fill_link_info = bpf_xdp_link_fill_link_info,
9403 .update_prog = bpf_xdp_link_update,
9404};
9405
9406int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9407{
9408 struct net *net = current->nsproxy->net_ns;
9409 struct bpf_link_primer link_primer;
9410 struct bpf_xdp_link *link;
9411 struct net_device *dev;
9412 int err, fd;
9413
9414 rtnl_lock();
9415 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9416 if (!dev) {
9417 rtnl_unlock();
9418 return -EINVAL;
9419 }
9420
9421 link = kzalloc(sizeof(*link), GFP_USER);
9422 if (!link) {
9423 err = -ENOMEM;
9424 goto unlock;
9425 }
9426
9427 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9428 link->dev = dev;
9429 link->flags = attr->link_create.flags;
9430
9431 err = bpf_link_prime(&link->link, &link_primer);
9432 if (err) {
9433 kfree(link);
9434 goto unlock;
9435 }
9436
9437 err = dev_xdp_attach_link(dev, NULL, link);
9438 rtnl_unlock();
9439
9440 if (err) {
9441 link->dev = NULL;
9442 bpf_link_cleanup(&link_primer);
9443 goto out_put_dev;
9444 }
9445
9446 fd = bpf_link_settle(&link_primer);
9447 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9448 dev_put(dev);
9449 return fd;
9450
9451unlock:
9452 rtnl_unlock();
9453
9454out_put_dev:
9455 dev_put(dev);
9456 return err;
9457}
9458
9459/**
9460 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9461 * @dev: device
9462 * @extack: netlink extended ack
9463 * @fd: new program fd or negative value to clear
9464 * @expected_fd: old program fd that userspace expects to replace or clear
9465 * @flags: xdp-related flags
9466 *
9467 * Set or clear a bpf program for a device
9468 */
9469int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9470 int fd, int expected_fd, u32 flags)
9471{
9472 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9473 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9474 int err;
9475
9476 ASSERT_RTNL();
9477
9478 if (fd >= 0) {
9479 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9480 mode != XDP_MODE_SKB);
9481 if (IS_ERR(new_prog))
9482 return PTR_ERR(new_prog);
9483 }
9484
9485 if (expected_fd >= 0) {
9486 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9487 mode != XDP_MODE_SKB);
9488 if (IS_ERR(old_prog)) {
9489 err = PTR_ERR(old_prog);
9490 old_prog = NULL;
9491 goto err_out;
9492 }
9493 }
9494
9495 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9496
9497err_out:
9498 if (err && new_prog)
9499 bpf_prog_put(new_prog);
9500 if (old_prog)
9501 bpf_prog_put(old_prog);
9502 return err;
9503}
9504
9505/**
9506 * dev_new_index - allocate an ifindex
9507 * @net: the applicable net namespace
9508 *
9509 * Returns a suitable unique value for a new device interface
9510 * number. The caller must hold the rtnl semaphore or the
9511 * dev_base_lock to be sure it remains unique.
9512 */
9513static int dev_new_index(struct net *net)
9514{
9515 int ifindex = net->ifindex;
9516
9517 for (;;) {
9518 if (++ifindex <= 0)
9519 ifindex = 1;
9520 if (!__dev_get_by_index(net, ifindex))
9521 return net->ifindex = ifindex;
9522 }
9523}
9524
9525/* Delayed registration/unregisteration */
9526LIST_HEAD(net_todo_list);
9527DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9528
9529static void net_set_todo(struct net_device *dev)
9530{
9531 list_add_tail(&dev->todo_list, &net_todo_list);
9532 atomic_inc(&dev_net(dev)->dev_unreg_count);
9533}
9534
9535static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9536 struct net_device *upper, netdev_features_t features)
9537{
9538 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9539 netdev_features_t feature;
9540 int feature_bit;
9541
9542 for_each_netdev_feature(upper_disables, feature_bit) {
9543 feature = __NETIF_F_BIT(feature_bit);
9544 if (!(upper->wanted_features & feature)
9545 && (features & feature)) {
9546 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9547 &feature, upper->name);
9548 features &= ~feature;
9549 }
9550 }
9551
9552 return features;
9553}
9554
9555static void netdev_sync_lower_features(struct net_device *upper,
9556 struct net_device *lower, netdev_features_t features)
9557{
9558 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9559 netdev_features_t feature;
9560 int feature_bit;
9561
9562 for_each_netdev_feature(upper_disables, feature_bit) {
9563 feature = __NETIF_F_BIT(feature_bit);
9564 if (!(features & feature) && (lower->features & feature)) {
9565 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9566 &feature, lower->name);
9567 lower->wanted_features &= ~feature;
9568 __netdev_update_features(lower);
9569
9570 if (unlikely(lower->features & feature))
9571 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9572 &feature, lower->name);
9573 else
9574 netdev_features_change(lower);
9575 }
9576 }
9577}
9578
9579static netdev_features_t netdev_fix_features(struct net_device *dev,
9580 netdev_features_t features)
9581{
9582 /* Fix illegal checksum combinations */
9583 if ((features & NETIF_F_HW_CSUM) &&
9584 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9585 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9586 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9587 }
9588
9589 /* TSO requires that SG is present as well. */
9590 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9591 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9592 features &= ~NETIF_F_ALL_TSO;
9593 }
9594
9595 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9596 !(features & NETIF_F_IP_CSUM)) {
9597 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9598 features &= ~NETIF_F_TSO;
9599 features &= ~NETIF_F_TSO_ECN;
9600 }
9601
9602 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9603 !(features & NETIF_F_IPV6_CSUM)) {
9604 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9605 features &= ~NETIF_F_TSO6;
9606 }
9607
9608 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9609 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9610 features &= ~NETIF_F_TSO_MANGLEID;
9611
9612 /* TSO ECN requires that TSO is present as well. */
9613 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9614 features &= ~NETIF_F_TSO_ECN;
9615
9616 /* Software GSO depends on SG. */
9617 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9618 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9619 features &= ~NETIF_F_GSO;
9620 }
9621
9622 /* GSO partial features require GSO partial be set */
9623 if ((features & dev->gso_partial_features) &&
9624 !(features & NETIF_F_GSO_PARTIAL)) {
9625 netdev_dbg(dev,
9626 "Dropping partially supported GSO features since no GSO partial.\n");
9627 features &= ~dev->gso_partial_features;
9628 }
9629
9630 if (!(features & NETIF_F_RXCSUM)) {
9631 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9632 * successfully merged by hardware must also have the
9633 * checksum verified by hardware. If the user does not
9634 * want to enable RXCSUM, logically, we should disable GRO_HW.
9635 */
9636 if (features & NETIF_F_GRO_HW) {
9637 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9638 features &= ~NETIF_F_GRO_HW;
9639 }
9640 }
9641
9642 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9643 if (features & NETIF_F_RXFCS) {
9644 if (features & NETIF_F_LRO) {
9645 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9646 features &= ~NETIF_F_LRO;
9647 }
9648
9649 if (features & NETIF_F_GRO_HW) {
9650 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9651 features &= ~NETIF_F_GRO_HW;
9652 }
9653 }
9654
9655 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9656 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9657 features &= ~NETIF_F_LRO;
9658 }
9659
9660 if (features & NETIF_F_HW_TLS_TX) {
9661 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9662 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9663 bool hw_csum = features & NETIF_F_HW_CSUM;
9664
9665 if (!ip_csum && !hw_csum) {
9666 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9667 features &= ~NETIF_F_HW_TLS_TX;
9668 }
9669 }
9670
9671 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9672 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9673 features &= ~NETIF_F_HW_TLS_RX;
9674 }
9675
9676 return features;
9677}
9678
9679int __netdev_update_features(struct net_device *dev)
9680{
9681 struct net_device *upper, *lower;
9682 netdev_features_t features;
9683 struct list_head *iter;
9684 int err = -1;
9685
9686 ASSERT_RTNL();
9687
9688 features = netdev_get_wanted_features(dev);
9689
9690 if (dev->netdev_ops->ndo_fix_features)
9691 features = dev->netdev_ops->ndo_fix_features(dev, features);
9692
9693 /* driver might be less strict about feature dependencies */
9694 features = netdev_fix_features(dev, features);
9695
9696 /* some features can't be enabled if they're off on an upper device */
9697 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9698 features = netdev_sync_upper_features(dev, upper, features);
9699
9700 if (dev->features == features)
9701 goto sync_lower;
9702
9703 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9704 &dev->features, &features);
9705
9706 if (dev->netdev_ops->ndo_set_features)
9707 err = dev->netdev_ops->ndo_set_features(dev, features);
9708 else
9709 err = 0;
9710
9711 if (unlikely(err < 0)) {
9712 netdev_err(dev,
9713 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9714 err, &features, &dev->features);
9715 /* return non-0 since some features might have changed and
9716 * it's better to fire a spurious notification than miss it
9717 */
9718 return -1;
9719 }
9720
9721sync_lower:
9722 /* some features must be disabled on lower devices when disabled
9723 * on an upper device (think: bonding master or bridge)
9724 */
9725 netdev_for_each_lower_dev(dev, lower, iter)
9726 netdev_sync_lower_features(dev, lower, features);
9727
9728 if (!err) {
9729 netdev_features_t diff = features ^ dev->features;
9730
9731 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9732 /* udp_tunnel_{get,drop}_rx_info both need
9733 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9734 * device, or they won't do anything.
9735 * Thus we need to update dev->features
9736 * *before* calling udp_tunnel_get_rx_info,
9737 * but *after* calling udp_tunnel_drop_rx_info.
9738 */
9739 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9740 dev->features = features;
9741 udp_tunnel_get_rx_info(dev);
9742 } else {
9743 udp_tunnel_drop_rx_info(dev);
9744 }
9745 }
9746
9747 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9748 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9749 dev->features = features;
9750 err |= vlan_get_rx_ctag_filter_info(dev);
9751 } else {
9752 vlan_drop_rx_ctag_filter_info(dev);
9753 }
9754 }
9755
9756 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9757 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9758 dev->features = features;
9759 err |= vlan_get_rx_stag_filter_info(dev);
9760 } else {
9761 vlan_drop_rx_stag_filter_info(dev);
9762 }
9763 }
9764
9765 dev->features = features;
9766 }
9767
9768 return err < 0 ? 0 : 1;
9769}
9770
9771/**
9772 * netdev_update_features - recalculate device features
9773 * @dev: the device to check
9774 *
9775 * Recalculate dev->features set and send notifications if it
9776 * has changed. Should be called after driver or hardware dependent
9777 * conditions might have changed that influence the features.
9778 */
9779void netdev_update_features(struct net_device *dev)
9780{
9781 if (__netdev_update_features(dev))
9782 netdev_features_change(dev);
9783}
9784EXPORT_SYMBOL(netdev_update_features);
9785
9786/**
9787 * netdev_change_features - recalculate device features
9788 * @dev: the device to check
9789 *
9790 * Recalculate dev->features set and send notifications even
9791 * if they have not changed. Should be called instead of
9792 * netdev_update_features() if also dev->vlan_features might
9793 * have changed to allow the changes to be propagated to stacked
9794 * VLAN devices.
9795 */
9796void netdev_change_features(struct net_device *dev)
9797{
9798 __netdev_update_features(dev);
9799 netdev_features_change(dev);
9800}
9801EXPORT_SYMBOL(netdev_change_features);
9802
9803/**
9804 * netif_stacked_transfer_operstate - transfer operstate
9805 * @rootdev: the root or lower level device to transfer state from
9806 * @dev: the device to transfer operstate to
9807 *
9808 * Transfer operational state from root to device. This is normally
9809 * called when a stacking relationship exists between the root
9810 * device and the device(a leaf device).
9811 */
9812void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9813 struct net_device *dev)
9814{
9815 if (rootdev->operstate == IF_OPER_DORMANT)
9816 netif_dormant_on(dev);
9817 else
9818 netif_dormant_off(dev);
9819
9820 if (rootdev->operstate == IF_OPER_TESTING)
9821 netif_testing_on(dev);
9822 else
9823 netif_testing_off(dev);
9824
9825 if (netif_carrier_ok(rootdev))
9826 netif_carrier_on(dev);
9827 else
9828 netif_carrier_off(dev);
9829}
9830EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9831
9832static int netif_alloc_rx_queues(struct net_device *dev)
9833{
9834 unsigned int i, count = dev->num_rx_queues;
9835 struct netdev_rx_queue *rx;
9836 size_t sz = count * sizeof(*rx);
9837 int err = 0;
9838
9839 BUG_ON(count < 1);
9840
9841 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9842 if (!rx)
9843 return -ENOMEM;
9844
9845 dev->_rx = rx;
9846
9847 for (i = 0; i < count; i++) {
9848 rx[i].dev = dev;
9849
9850 /* XDP RX-queue setup */
9851 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9852 if (err < 0)
9853 goto err_rxq_info;
9854 }
9855 return 0;
9856
9857err_rxq_info:
9858 /* Rollback successful reg's and free other resources */
9859 while (i--)
9860 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9861 kvfree(dev->_rx);
9862 dev->_rx = NULL;
9863 return err;
9864}
9865
9866static void netif_free_rx_queues(struct net_device *dev)
9867{
9868 unsigned int i, count = dev->num_rx_queues;
9869
9870 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9871 if (!dev->_rx)
9872 return;
9873
9874 for (i = 0; i < count; i++)
9875 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9876
9877 kvfree(dev->_rx);
9878}
9879
9880static void netdev_init_one_queue(struct net_device *dev,
9881 struct netdev_queue *queue, void *_unused)
9882{
9883 /* Initialize queue lock */
9884 spin_lock_init(&queue->_xmit_lock);
9885 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9886 queue->xmit_lock_owner = -1;
9887 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9888 queue->dev = dev;
9889#ifdef CONFIG_BQL
9890 dql_init(&queue->dql, HZ);
9891#endif
9892}
9893
9894static void netif_free_tx_queues(struct net_device *dev)
9895{
9896 kvfree(dev->_tx);
9897}
9898
9899static int netif_alloc_netdev_queues(struct net_device *dev)
9900{
9901 unsigned int count = dev->num_tx_queues;
9902 struct netdev_queue *tx;
9903 size_t sz = count * sizeof(*tx);
9904
9905 if (count < 1 || count > 0xffff)
9906 return -EINVAL;
9907
9908 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9909 if (!tx)
9910 return -ENOMEM;
9911
9912 dev->_tx = tx;
9913
9914 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9915 spin_lock_init(&dev->tx_global_lock);
9916
9917 return 0;
9918}
9919
9920void netif_tx_stop_all_queues(struct net_device *dev)
9921{
9922 unsigned int i;
9923
9924 for (i = 0; i < dev->num_tx_queues; i++) {
9925 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9926
9927 netif_tx_stop_queue(txq);
9928 }
9929}
9930EXPORT_SYMBOL(netif_tx_stop_all_queues);
9931
9932/**
9933 * register_netdevice() - register a network device
9934 * @dev: device to register
9935 *
9936 * Take a prepared network device structure and make it externally accessible.
9937 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9938 * Callers must hold the rtnl lock - you may want register_netdev()
9939 * instead of this.
9940 */
9941int register_netdevice(struct net_device *dev)
9942{
9943 int ret;
9944 struct net *net = dev_net(dev);
9945
9946 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9947 NETDEV_FEATURE_COUNT);
9948 BUG_ON(dev_boot_phase);
9949 ASSERT_RTNL();
9950
9951 might_sleep();
9952
9953 /* When net_device's are persistent, this will be fatal. */
9954 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9955 BUG_ON(!net);
9956
9957 ret = ethtool_check_ops(dev->ethtool_ops);
9958 if (ret)
9959 return ret;
9960
9961 spin_lock_init(&dev->addr_list_lock);
9962 netdev_set_addr_lockdep_class(dev);
9963
9964 ret = dev_get_valid_name(net, dev, dev->name);
9965 if (ret < 0)
9966 goto out;
9967
9968 ret = -ENOMEM;
9969 dev->name_node = netdev_name_node_head_alloc(dev);
9970 if (!dev->name_node)
9971 goto out;
9972
9973 /* Init, if this function is available */
9974 if (dev->netdev_ops->ndo_init) {
9975 ret = dev->netdev_ops->ndo_init(dev);
9976 if (ret) {
9977 if (ret > 0)
9978 ret = -EIO;
9979 goto err_free_name;
9980 }
9981 }
9982
9983 if (((dev->hw_features | dev->features) &
9984 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9985 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9986 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9987 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9988 ret = -EINVAL;
9989 goto err_uninit;
9990 }
9991
9992 ret = -EBUSY;
9993 if (!dev->ifindex)
9994 dev->ifindex = dev_new_index(net);
9995 else if (__dev_get_by_index(net, dev->ifindex))
9996 goto err_uninit;
9997
9998 /* Transfer changeable features to wanted_features and enable
9999 * software offloads (GSO and GRO).
10000 */
10001 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10002 dev->features |= NETIF_F_SOFT_FEATURES;
10003
10004 if (dev->udp_tunnel_nic_info) {
10005 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10006 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10007 }
10008
10009 dev->wanted_features = dev->features & dev->hw_features;
10010
10011 if (!(dev->flags & IFF_LOOPBACK))
10012 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10013
10014 /* If IPv4 TCP segmentation offload is supported we should also
10015 * allow the device to enable segmenting the frame with the option
10016 * of ignoring a static IP ID value. This doesn't enable the
10017 * feature itself but allows the user to enable it later.
10018 */
10019 if (dev->hw_features & NETIF_F_TSO)
10020 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10021 if (dev->vlan_features & NETIF_F_TSO)
10022 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10023 if (dev->mpls_features & NETIF_F_TSO)
10024 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10025 if (dev->hw_enc_features & NETIF_F_TSO)
10026 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10027
10028 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10029 */
10030 dev->vlan_features |= NETIF_F_HIGHDMA;
10031
10032 /* Make NETIF_F_SG inheritable to tunnel devices.
10033 */
10034 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10035
10036 /* Make NETIF_F_SG inheritable to MPLS.
10037 */
10038 dev->mpls_features |= NETIF_F_SG;
10039
10040 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10041 ret = notifier_to_errno(ret);
10042 if (ret)
10043 goto err_uninit;
10044
10045 ret = netdev_register_kobject(dev);
10046 if (ret) {
10047 dev->reg_state = NETREG_UNREGISTERED;
10048 goto err_uninit;
10049 }
10050 dev->reg_state = NETREG_REGISTERED;
10051
10052 __netdev_update_features(dev);
10053
10054 /*
10055 * Default initial state at registry is that the
10056 * device is present.
10057 */
10058
10059 set_bit(__LINK_STATE_PRESENT, &dev->state);
10060
10061 linkwatch_init_dev(dev);
10062
10063 dev_init_scheduler(dev);
10064
10065 dev_hold_track(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10066 list_netdevice(dev);
10067
10068 add_device_randomness(dev->dev_addr, dev->addr_len);
10069
10070 /* If the device has permanent device address, driver should
10071 * set dev_addr and also addr_assign_type should be set to
10072 * NET_ADDR_PERM (default value).
10073 */
10074 if (dev->addr_assign_type == NET_ADDR_PERM)
10075 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10076
10077 /* Notify protocols, that a new device appeared. */
10078 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10079 ret = notifier_to_errno(ret);
10080 if (ret) {
10081 /* Expect explicit free_netdev() on failure */
10082 dev->needs_free_netdev = false;
10083 unregister_netdevice_queue(dev, NULL);
10084 goto out;
10085 }
10086 /*
10087 * Prevent userspace races by waiting until the network
10088 * device is fully setup before sending notifications.
10089 */
10090 if (!dev->rtnl_link_ops ||
10091 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10092 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10093
10094out:
10095 return ret;
10096
10097err_uninit:
10098 if (dev->netdev_ops->ndo_uninit)
10099 dev->netdev_ops->ndo_uninit(dev);
10100 if (dev->priv_destructor)
10101 dev->priv_destructor(dev);
10102err_free_name:
10103 netdev_name_node_free(dev->name_node);
10104 goto out;
10105}
10106EXPORT_SYMBOL(register_netdevice);
10107
10108/**
10109 * init_dummy_netdev - init a dummy network device for NAPI
10110 * @dev: device to init
10111 *
10112 * This takes a network device structure and initialize the minimum
10113 * amount of fields so it can be used to schedule NAPI polls without
10114 * registering a full blown interface. This is to be used by drivers
10115 * that need to tie several hardware interfaces to a single NAPI
10116 * poll scheduler due to HW limitations.
10117 */
10118int init_dummy_netdev(struct net_device *dev)
10119{
10120 /* Clear everything. Note we don't initialize spinlocks
10121 * are they aren't supposed to be taken by any of the
10122 * NAPI code and this dummy netdev is supposed to be
10123 * only ever used for NAPI polls
10124 */
10125 memset(dev, 0, sizeof(struct net_device));
10126
10127 /* make sure we BUG if trying to hit standard
10128 * register/unregister code path
10129 */
10130 dev->reg_state = NETREG_DUMMY;
10131
10132 /* NAPI wants this */
10133 INIT_LIST_HEAD(&dev->napi_list);
10134
10135 /* a dummy interface is started by default */
10136 set_bit(__LINK_STATE_PRESENT, &dev->state);
10137 set_bit(__LINK_STATE_START, &dev->state);
10138
10139 /* napi_busy_loop stats accounting wants this */
10140 dev_net_set(dev, &init_net);
10141
10142 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10143 * because users of this 'device' dont need to change
10144 * its refcount.
10145 */
10146
10147 return 0;
10148}
10149EXPORT_SYMBOL_GPL(init_dummy_netdev);
10150
10151
10152/**
10153 * register_netdev - register a network device
10154 * @dev: device to register
10155 *
10156 * Take a completed network device structure and add it to the kernel
10157 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10158 * chain. 0 is returned on success. A negative errno code is returned
10159 * on a failure to set up the device, or if the name is a duplicate.
10160 *
10161 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10162 * and expands the device name if you passed a format string to
10163 * alloc_netdev.
10164 */
10165int register_netdev(struct net_device *dev)
10166{
10167 int err;
10168
10169 if (rtnl_lock_killable())
10170 return -EINTR;
10171 err = register_netdevice(dev);
10172 rtnl_unlock();
10173 return err;
10174}
10175EXPORT_SYMBOL(register_netdev);
10176
10177int netdev_refcnt_read(const struct net_device *dev)
10178{
10179#ifdef CONFIG_PCPU_DEV_REFCNT
10180 int i, refcnt = 0;
10181
10182 for_each_possible_cpu(i)
10183 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10184 return refcnt;
10185#else
10186 return refcount_read(&dev->dev_refcnt);
10187#endif
10188}
10189EXPORT_SYMBOL(netdev_refcnt_read);
10190
10191int netdev_unregister_timeout_secs __read_mostly = 10;
10192
10193#define WAIT_REFS_MIN_MSECS 1
10194#define WAIT_REFS_MAX_MSECS 250
10195/**
10196 * netdev_wait_allrefs_any - wait until all references are gone.
10197 * @list: list of net_devices to wait on
10198 *
10199 * This is called when unregistering network devices.
10200 *
10201 * Any protocol or device that holds a reference should register
10202 * for netdevice notification, and cleanup and put back the
10203 * reference if they receive an UNREGISTER event.
10204 * We can get stuck here if buggy protocols don't correctly
10205 * call dev_put.
10206 */
10207static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10208{
10209 unsigned long rebroadcast_time, warning_time;
10210 struct net_device *dev;
10211 int wait = 0;
10212
10213 rebroadcast_time = warning_time = jiffies;
10214
10215 list_for_each_entry(dev, list, todo_list)
10216 if (netdev_refcnt_read(dev) == 1)
10217 return dev;
10218
10219 while (true) {
10220 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10221 rtnl_lock();
10222
10223 /* Rebroadcast unregister notification */
10224 list_for_each_entry(dev, list, todo_list)
10225 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10226
10227 __rtnl_unlock();
10228 rcu_barrier();
10229 rtnl_lock();
10230
10231 list_for_each_entry(dev, list, todo_list)
10232 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10233 &dev->state)) {
10234 /* We must not have linkwatch events
10235 * pending on unregister. If this
10236 * happens, we simply run the queue
10237 * unscheduled, resulting in a noop
10238 * for this device.
10239 */
10240 linkwatch_run_queue();
10241 break;
10242 }
10243
10244 __rtnl_unlock();
10245
10246 rebroadcast_time = jiffies;
10247 }
10248
10249 if (!wait) {
10250 rcu_barrier();
10251 wait = WAIT_REFS_MIN_MSECS;
10252 } else {
10253 msleep(wait);
10254 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10255 }
10256
10257 list_for_each_entry(dev, list, todo_list)
10258 if (netdev_refcnt_read(dev) == 1)
10259 return dev;
10260
10261 if (time_after(jiffies, warning_time +
10262 netdev_unregister_timeout_secs * HZ)) {
10263 list_for_each_entry(dev, list, todo_list) {
10264 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10265 dev->name, netdev_refcnt_read(dev));
10266 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10267 }
10268
10269 warning_time = jiffies;
10270 }
10271 }
10272}
10273
10274/* The sequence is:
10275 *
10276 * rtnl_lock();
10277 * ...
10278 * register_netdevice(x1);
10279 * register_netdevice(x2);
10280 * ...
10281 * unregister_netdevice(y1);
10282 * unregister_netdevice(y2);
10283 * ...
10284 * rtnl_unlock();
10285 * free_netdev(y1);
10286 * free_netdev(y2);
10287 *
10288 * We are invoked by rtnl_unlock().
10289 * This allows us to deal with problems:
10290 * 1) We can delete sysfs objects which invoke hotplug
10291 * without deadlocking with linkwatch via keventd.
10292 * 2) Since we run with the RTNL semaphore not held, we can sleep
10293 * safely in order to wait for the netdev refcnt to drop to zero.
10294 *
10295 * We must not return until all unregister events added during
10296 * the interval the lock was held have been completed.
10297 */
10298void netdev_run_todo(void)
10299{
10300 struct net_device *dev, *tmp;
10301 struct list_head list;
10302#ifdef CONFIG_LOCKDEP
10303 struct list_head unlink_list;
10304
10305 list_replace_init(&net_unlink_list, &unlink_list);
10306
10307 while (!list_empty(&unlink_list)) {
10308 struct net_device *dev = list_first_entry(&unlink_list,
10309 struct net_device,
10310 unlink_list);
10311 list_del_init(&dev->unlink_list);
10312 dev->nested_level = dev->lower_level - 1;
10313 }
10314#endif
10315
10316 /* Snapshot list, allow later requests */
10317 list_replace_init(&net_todo_list, &list);
10318
10319 __rtnl_unlock();
10320
10321 /* Wait for rcu callbacks to finish before next phase */
10322 if (!list_empty(&list))
10323 rcu_barrier();
10324
10325 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10326 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10327 netdev_WARN(dev, "run_todo but not unregistering\n");
10328 list_del(&dev->todo_list);
10329 continue;
10330 }
10331
10332 dev->reg_state = NETREG_UNREGISTERED;
10333 linkwatch_forget_dev(dev);
10334 }
10335
10336 while (!list_empty(&list)) {
10337 dev = netdev_wait_allrefs_any(&list);
10338 list_del(&dev->todo_list);
10339
10340 /* paranoia */
10341 BUG_ON(netdev_refcnt_read(dev) != 1);
10342 BUG_ON(!list_empty(&dev->ptype_all));
10343 BUG_ON(!list_empty(&dev->ptype_specific));
10344 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10345 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10346#if IS_ENABLED(CONFIG_DECNET)
10347 WARN_ON(dev->dn_ptr);
10348#endif
10349 if (dev->priv_destructor)
10350 dev->priv_destructor(dev);
10351 if (dev->needs_free_netdev)
10352 free_netdev(dev);
10353
10354 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10355 wake_up(&netdev_unregistering_wq);
10356
10357 /* Free network device */
10358 kobject_put(&dev->dev.kobj);
10359 }
10360}
10361
10362/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10363 * all the same fields in the same order as net_device_stats, with only
10364 * the type differing, but rtnl_link_stats64 may have additional fields
10365 * at the end for newer counters.
10366 */
10367void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10368 const struct net_device_stats *netdev_stats)
10369{
10370#if BITS_PER_LONG == 64
10371 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10372 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10373 /* zero out counters that only exist in rtnl_link_stats64 */
10374 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10375 sizeof(*stats64) - sizeof(*netdev_stats));
10376#else
10377 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10378 const unsigned long *src = (const unsigned long *)netdev_stats;
10379 u64 *dst = (u64 *)stats64;
10380
10381 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10382 for (i = 0; i < n; i++)
10383 dst[i] = src[i];
10384 /* zero out counters that only exist in rtnl_link_stats64 */
10385 memset((char *)stats64 + n * sizeof(u64), 0,
10386 sizeof(*stats64) - n * sizeof(u64));
10387#endif
10388}
10389EXPORT_SYMBOL(netdev_stats_to_stats64);
10390
10391struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10392{
10393 struct net_device_core_stats __percpu *p;
10394
10395 p = alloc_percpu_gfp(struct net_device_core_stats,
10396 GFP_ATOMIC | __GFP_NOWARN);
10397
10398 if (p && cmpxchg(&dev->core_stats, NULL, p))
10399 free_percpu(p);
10400
10401 /* This READ_ONCE() pairs with the cmpxchg() above */
10402 return READ_ONCE(dev->core_stats);
10403}
10404EXPORT_SYMBOL(netdev_core_stats_alloc);
10405
10406/**
10407 * dev_get_stats - get network device statistics
10408 * @dev: device to get statistics from
10409 * @storage: place to store stats
10410 *
10411 * Get network statistics from device. Return @storage.
10412 * The device driver may provide its own method by setting
10413 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10414 * otherwise the internal statistics structure is used.
10415 */
10416struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10417 struct rtnl_link_stats64 *storage)
10418{
10419 const struct net_device_ops *ops = dev->netdev_ops;
10420 const struct net_device_core_stats __percpu *p;
10421
10422 if (ops->ndo_get_stats64) {
10423 memset(storage, 0, sizeof(*storage));
10424 ops->ndo_get_stats64(dev, storage);
10425 } else if (ops->ndo_get_stats) {
10426 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10427 } else {
10428 netdev_stats_to_stats64(storage, &dev->stats);
10429 }
10430
10431 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10432 p = READ_ONCE(dev->core_stats);
10433 if (p) {
10434 const struct net_device_core_stats *core_stats;
10435 int i;
10436
10437 for_each_possible_cpu(i) {
10438 core_stats = per_cpu_ptr(p, i);
10439 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10440 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10441 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10442 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10443 }
10444 }
10445 return storage;
10446}
10447EXPORT_SYMBOL(dev_get_stats);
10448
10449/**
10450 * dev_fetch_sw_netstats - get per-cpu network device statistics
10451 * @s: place to store stats
10452 * @netstats: per-cpu network stats to read from
10453 *
10454 * Read per-cpu network statistics and populate the related fields in @s.
10455 */
10456void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10457 const struct pcpu_sw_netstats __percpu *netstats)
10458{
10459 int cpu;
10460
10461 for_each_possible_cpu(cpu) {
10462 const struct pcpu_sw_netstats *stats;
10463 struct pcpu_sw_netstats tmp;
10464 unsigned int start;
10465
10466 stats = per_cpu_ptr(netstats, cpu);
10467 do {
10468 start = u64_stats_fetch_begin_irq(&stats->syncp);
10469 tmp.rx_packets = stats->rx_packets;
10470 tmp.rx_bytes = stats->rx_bytes;
10471 tmp.tx_packets = stats->tx_packets;
10472 tmp.tx_bytes = stats->tx_bytes;
10473 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10474
10475 s->rx_packets += tmp.rx_packets;
10476 s->rx_bytes += tmp.rx_bytes;
10477 s->tx_packets += tmp.tx_packets;
10478 s->tx_bytes += tmp.tx_bytes;
10479 }
10480}
10481EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10482
10483/**
10484 * dev_get_tstats64 - ndo_get_stats64 implementation
10485 * @dev: device to get statistics from
10486 * @s: place to store stats
10487 *
10488 * Populate @s from dev->stats and dev->tstats. Can be used as
10489 * ndo_get_stats64() callback.
10490 */
10491void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10492{
10493 netdev_stats_to_stats64(s, &dev->stats);
10494 dev_fetch_sw_netstats(s, dev->tstats);
10495}
10496EXPORT_SYMBOL_GPL(dev_get_tstats64);
10497
10498struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10499{
10500 struct netdev_queue *queue = dev_ingress_queue(dev);
10501
10502#ifdef CONFIG_NET_CLS_ACT
10503 if (queue)
10504 return queue;
10505 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10506 if (!queue)
10507 return NULL;
10508 netdev_init_one_queue(dev, queue, NULL);
10509 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10510 queue->qdisc_sleeping = &noop_qdisc;
10511 rcu_assign_pointer(dev->ingress_queue, queue);
10512#endif
10513 return queue;
10514}
10515
10516static const struct ethtool_ops default_ethtool_ops;
10517
10518void netdev_set_default_ethtool_ops(struct net_device *dev,
10519 const struct ethtool_ops *ops)
10520{
10521 if (dev->ethtool_ops == &default_ethtool_ops)
10522 dev->ethtool_ops = ops;
10523}
10524EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10525
10526void netdev_freemem(struct net_device *dev)
10527{
10528 char *addr = (char *)dev - dev->padded;
10529
10530 kvfree(addr);
10531}
10532
10533/**
10534 * alloc_netdev_mqs - allocate network device
10535 * @sizeof_priv: size of private data to allocate space for
10536 * @name: device name format string
10537 * @name_assign_type: origin of device name
10538 * @setup: callback to initialize device
10539 * @txqs: the number of TX subqueues to allocate
10540 * @rxqs: the number of RX subqueues to allocate
10541 *
10542 * Allocates a struct net_device with private data area for driver use
10543 * and performs basic initialization. Also allocates subqueue structs
10544 * for each queue on the device.
10545 */
10546struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10547 unsigned char name_assign_type,
10548 void (*setup)(struct net_device *),
10549 unsigned int txqs, unsigned int rxqs)
10550{
10551 struct net_device *dev;
10552 unsigned int alloc_size;
10553 struct net_device *p;
10554
10555 BUG_ON(strlen(name) >= sizeof(dev->name));
10556
10557 if (txqs < 1) {
10558 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10559 return NULL;
10560 }
10561
10562 if (rxqs < 1) {
10563 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10564 return NULL;
10565 }
10566
10567 alloc_size = sizeof(struct net_device);
10568 if (sizeof_priv) {
10569 /* ensure 32-byte alignment of private area */
10570 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10571 alloc_size += sizeof_priv;
10572 }
10573 /* ensure 32-byte alignment of whole construct */
10574 alloc_size += NETDEV_ALIGN - 1;
10575
10576 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10577 if (!p)
10578 return NULL;
10579
10580 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10581 dev->padded = (char *)dev - (char *)p;
10582
10583 ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10584#ifdef CONFIG_PCPU_DEV_REFCNT
10585 dev->pcpu_refcnt = alloc_percpu(int);
10586 if (!dev->pcpu_refcnt)
10587 goto free_dev;
10588 __dev_hold(dev);
10589#else
10590 refcount_set(&dev->dev_refcnt, 1);
10591#endif
10592
10593 if (dev_addr_init(dev))
10594 goto free_pcpu;
10595
10596 dev_mc_init(dev);
10597 dev_uc_init(dev);
10598
10599 dev_net_set(dev, &init_net);
10600
10601 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10602 dev->gso_max_segs = GSO_MAX_SEGS;
10603 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10604 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10605 dev->tso_max_segs = TSO_MAX_SEGS;
10606 dev->upper_level = 1;
10607 dev->lower_level = 1;
10608#ifdef CONFIG_LOCKDEP
10609 dev->nested_level = 0;
10610 INIT_LIST_HEAD(&dev->unlink_list);
10611#endif
10612
10613 INIT_LIST_HEAD(&dev->napi_list);
10614 INIT_LIST_HEAD(&dev->unreg_list);
10615 INIT_LIST_HEAD(&dev->close_list);
10616 INIT_LIST_HEAD(&dev->link_watch_list);
10617 INIT_LIST_HEAD(&dev->adj_list.upper);
10618 INIT_LIST_HEAD(&dev->adj_list.lower);
10619 INIT_LIST_HEAD(&dev->ptype_all);
10620 INIT_LIST_HEAD(&dev->ptype_specific);
10621 INIT_LIST_HEAD(&dev->net_notifier_list);
10622#ifdef CONFIG_NET_SCHED
10623 hash_init(dev->qdisc_hash);
10624#endif
10625 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10626 setup(dev);
10627
10628 if (!dev->tx_queue_len) {
10629 dev->priv_flags |= IFF_NO_QUEUE;
10630 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10631 }
10632
10633 dev->num_tx_queues = txqs;
10634 dev->real_num_tx_queues = txqs;
10635 if (netif_alloc_netdev_queues(dev))
10636 goto free_all;
10637
10638 dev->num_rx_queues = rxqs;
10639 dev->real_num_rx_queues = rxqs;
10640 if (netif_alloc_rx_queues(dev))
10641 goto free_all;
10642
10643 strcpy(dev->name, name);
10644 dev->name_assign_type = name_assign_type;
10645 dev->group = INIT_NETDEV_GROUP;
10646 if (!dev->ethtool_ops)
10647 dev->ethtool_ops = &default_ethtool_ops;
10648
10649 nf_hook_netdev_init(dev);
10650
10651 return dev;
10652
10653free_all:
10654 free_netdev(dev);
10655 return NULL;
10656
10657free_pcpu:
10658#ifdef CONFIG_PCPU_DEV_REFCNT
10659 free_percpu(dev->pcpu_refcnt);
10660free_dev:
10661#endif
10662 netdev_freemem(dev);
10663 return NULL;
10664}
10665EXPORT_SYMBOL(alloc_netdev_mqs);
10666
10667/**
10668 * free_netdev - free network device
10669 * @dev: device
10670 *
10671 * This function does the last stage of destroying an allocated device
10672 * interface. The reference to the device object is released. If this
10673 * is the last reference then it will be freed.Must be called in process
10674 * context.
10675 */
10676void free_netdev(struct net_device *dev)
10677{
10678 struct napi_struct *p, *n;
10679
10680 might_sleep();
10681
10682 /* When called immediately after register_netdevice() failed the unwind
10683 * handling may still be dismantling the device. Handle that case by
10684 * deferring the free.
10685 */
10686 if (dev->reg_state == NETREG_UNREGISTERING) {
10687 ASSERT_RTNL();
10688 dev->needs_free_netdev = true;
10689 return;
10690 }
10691
10692 netif_free_tx_queues(dev);
10693 netif_free_rx_queues(dev);
10694
10695 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10696
10697 /* Flush device addresses */
10698 dev_addr_flush(dev);
10699
10700 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10701 netif_napi_del(p);
10702
10703 ref_tracker_dir_exit(&dev->refcnt_tracker);
10704#ifdef CONFIG_PCPU_DEV_REFCNT
10705 free_percpu(dev->pcpu_refcnt);
10706 dev->pcpu_refcnt = NULL;
10707#endif
10708 free_percpu(dev->core_stats);
10709 dev->core_stats = NULL;
10710 free_percpu(dev->xdp_bulkq);
10711 dev->xdp_bulkq = NULL;
10712
10713 /* Compatibility with error handling in drivers */
10714 if (dev->reg_state == NETREG_UNINITIALIZED) {
10715 netdev_freemem(dev);
10716 return;
10717 }
10718
10719 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10720 dev->reg_state = NETREG_RELEASED;
10721
10722 /* will free via device release */
10723 put_device(&dev->dev);
10724}
10725EXPORT_SYMBOL(free_netdev);
10726
10727/**
10728 * synchronize_net - Synchronize with packet receive processing
10729 *
10730 * Wait for packets currently being received to be done.
10731 * Does not block later packets from starting.
10732 */
10733void synchronize_net(void)
10734{
10735 might_sleep();
10736 if (rtnl_is_locked())
10737 synchronize_rcu_expedited();
10738 else
10739 synchronize_rcu();
10740}
10741EXPORT_SYMBOL(synchronize_net);
10742
10743/**
10744 * unregister_netdevice_queue - remove device from the kernel
10745 * @dev: device
10746 * @head: list
10747 *
10748 * This function shuts down a device interface and removes it
10749 * from the kernel tables.
10750 * If head not NULL, device is queued to be unregistered later.
10751 *
10752 * Callers must hold the rtnl semaphore. You may want
10753 * unregister_netdev() instead of this.
10754 */
10755
10756void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10757{
10758 ASSERT_RTNL();
10759
10760 if (head) {
10761 list_move_tail(&dev->unreg_list, head);
10762 } else {
10763 LIST_HEAD(single);
10764
10765 list_add(&dev->unreg_list, &single);
10766 unregister_netdevice_many(&single);
10767 }
10768}
10769EXPORT_SYMBOL(unregister_netdevice_queue);
10770
10771/**
10772 * unregister_netdevice_many - unregister many devices
10773 * @head: list of devices
10774 *
10775 * Note: As most callers use a stack allocated list_head,
10776 * we force a list_del() to make sure stack wont be corrupted later.
10777 */
10778void unregister_netdevice_many(struct list_head *head)
10779{
10780 struct net_device *dev, *tmp;
10781 LIST_HEAD(close_head);
10782
10783 BUG_ON(dev_boot_phase);
10784 ASSERT_RTNL();
10785
10786 if (list_empty(head))
10787 return;
10788
10789 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10790 /* Some devices call without registering
10791 * for initialization unwind. Remove those
10792 * devices and proceed with the remaining.
10793 */
10794 if (dev->reg_state == NETREG_UNINITIALIZED) {
10795 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10796 dev->name, dev);
10797
10798 WARN_ON(1);
10799 list_del(&dev->unreg_list);
10800 continue;
10801 }
10802 dev->dismantle = true;
10803 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10804 }
10805
10806 /* If device is running, close it first. */
10807 list_for_each_entry(dev, head, unreg_list)
10808 list_add_tail(&dev->close_list, &close_head);
10809 dev_close_many(&close_head, true);
10810
10811 list_for_each_entry(dev, head, unreg_list) {
10812 /* And unlink it from device chain. */
10813 unlist_netdevice(dev);
10814
10815 dev->reg_state = NETREG_UNREGISTERING;
10816 }
10817 flush_all_backlogs();
10818
10819 synchronize_net();
10820
10821 list_for_each_entry(dev, head, unreg_list) {
10822 struct sk_buff *skb = NULL;
10823
10824 /* Shutdown queueing discipline. */
10825 dev_shutdown(dev);
10826
10827 dev_xdp_uninstall(dev);
10828
10829 netdev_offload_xstats_disable_all(dev);
10830
10831 /* Notify protocols, that we are about to destroy
10832 * this device. They should clean all the things.
10833 */
10834 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10835
10836 if (!dev->rtnl_link_ops ||
10837 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10838 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10839 GFP_KERNEL, NULL, 0);
10840
10841 /*
10842 * Flush the unicast and multicast chains
10843 */
10844 dev_uc_flush(dev);
10845 dev_mc_flush(dev);
10846
10847 netdev_name_node_alt_flush(dev);
10848 netdev_name_node_free(dev->name_node);
10849
10850 if (dev->netdev_ops->ndo_uninit)
10851 dev->netdev_ops->ndo_uninit(dev);
10852
10853 if (skb)
10854 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10855
10856 /* Notifier chain MUST detach us all upper devices. */
10857 WARN_ON(netdev_has_any_upper_dev(dev));
10858 WARN_ON(netdev_has_any_lower_dev(dev));
10859
10860 /* Remove entries from kobject tree */
10861 netdev_unregister_kobject(dev);
10862#ifdef CONFIG_XPS
10863 /* Remove XPS queueing entries */
10864 netif_reset_xps_queues_gt(dev, 0);
10865#endif
10866 }
10867
10868 synchronize_net();
10869
10870 list_for_each_entry(dev, head, unreg_list) {
10871 dev_put_track(dev, &dev->dev_registered_tracker);
10872 net_set_todo(dev);
10873 }
10874
10875 list_del(head);
10876}
10877EXPORT_SYMBOL(unregister_netdevice_many);
10878
10879/**
10880 * unregister_netdev - remove device from the kernel
10881 * @dev: device
10882 *
10883 * This function shuts down a device interface and removes it
10884 * from the kernel tables.
10885 *
10886 * This is just a wrapper for unregister_netdevice that takes
10887 * the rtnl semaphore. In general you want to use this and not
10888 * unregister_netdevice.
10889 */
10890void unregister_netdev(struct net_device *dev)
10891{
10892 rtnl_lock();
10893 unregister_netdevice(dev);
10894 rtnl_unlock();
10895}
10896EXPORT_SYMBOL(unregister_netdev);
10897
10898/**
10899 * __dev_change_net_namespace - move device to different nethost namespace
10900 * @dev: device
10901 * @net: network namespace
10902 * @pat: If not NULL name pattern to try if the current device name
10903 * is already taken in the destination network namespace.
10904 * @new_ifindex: If not zero, specifies device index in the target
10905 * namespace.
10906 *
10907 * This function shuts down a device interface and moves it
10908 * to a new network namespace. On success 0 is returned, on
10909 * a failure a netagive errno code is returned.
10910 *
10911 * Callers must hold the rtnl semaphore.
10912 */
10913
10914int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10915 const char *pat, int new_ifindex)
10916{
10917 struct net *net_old = dev_net(dev);
10918 int err, new_nsid;
10919
10920 ASSERT_RTNL();
10921
10922 /* Don't allow namespace local devices to be moved. */
10923 err = -EINVAL;
10924 if (dev->features & NETIF_F_NETNS_LOCAL)
10925 goto out;
10926
10927 /* Ensure the device has been registrered */
10928 if (dev->reg_state != NETREG_REGISTERED)
10929 goto out;
10930
10931 /* Get out if there is nothing todo */
10932 err = 0;
10933 if (net_eq(net_old, net))
10934 goto out;
10935
10936 /* Pick the destination device name, and ensure
10937 * we can use it in the destination network namespace.
10938 */
10939 err = -EEXIST;
10940 if (netdev_name_in_use(net, dev->name)) {
10941 /* We get here if we can't use the current device name */
10942 if (!pat)
10943 goto out;
10944 err = dev_get_valid_name(net, dev, pat);
10945 if (err < 0)
10946 goto out;
10947 }
10948
10949 /* Check that new_ifindex isn't used yet. */
10950 err = -EBUSY;
10951 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10952 goto out;
10953
10954 /*
10955 * And now a mini version of register_netdevice unregister_netdevice.
10956 */
10957
10958 /* If device is running close it first. */
10959 dev_close(dev);
10960
10961 /* And unlink it from device chain */
10962 unlist_netdevice(dev);
10963
10964 synchronize_net();
10965
10966 /* Shutdown queueing discipline. */
10967 dev_shutdown(dev);
10968
10969 /* Notify protocols, that we are about to destroy
10970 * this device. They should clean all the things.
10971 *
10972 * Note that dev->reg_state stays at NETREG_REGISTERED.
10973 * This is wanted because this way 8021q and macvlan know
10974 * the device is just moving and can keep their slaves up.
10975 */
10976 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10977 rcu_barrier();
10978
10979 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10980 /* If there is an ifindex conflict assign a new one */
10981 if (!new_ifindex) {
10982 if (__dev_get_by_index(net, dev->ifindex))
10983 new_ifindex = dev_new_index(net);
10984 else
10985 new_ifindex = dev->ifindex;
10986 }
10987
10988 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10989 new_ifindex);
10990
10991 /*
10992 * Flush the unicast and multicast chains
10993 */
10994 dev_uc_flush(dev);
10995 dev_mc_flush(dev);
10996
10997 /* Send a netdev-removed uevent to the old namespace */
10998 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10999 netdev_adjacent_del_links(dev);
11000
11001 /* Move per-net netdevice notifiers that are following the netdevice */
11002 move_netdevice_notifiers_dev_net(dev, net);
11003
11004 /* Actually switch the network namespace */
11005 dev_net_set(dev, net);
11006 dev->ifindex = new_ifindex;
11007
11008 /* Send a netdev-add uevent to the new namespace */
11009 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11010 netdev_adjacent_add_links(dev);
11011
11012 /* Fixup kobjects */
11013 err = device_rename(&dev->dev, dev->name);
11014 WARN_ON(err);
11015
11016 /* Adapt owner in case owning user namespace of target network
11017 * namespace is different from the original one.
11018 */
11019 err = netdev_change_owner(dev, net_old, net);
11020 WARN_ON(err);
11021
11022 /* Add the device back in the hashes */
11023 list_netdevice(dev);
11024
11025 /* Notify protocols, that a new device appeared. */
11026 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11027
11028 /*
11029 * Prevent userspace races by waiting until the network
11030 * device is fully setup before sending notifications.
11031 */
11032 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11033
11034 synchronize_net();
11035 err = 0;
11036out:
11037 return err;
11038}
11039EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11040
11041static int dev_cpu_dead(unsigned int oldcpu)
11042{
11043 struct sk_buff **list_skb;
11044 struct sk_buff *skb;
11045 unsigned int cpu;
11046 struct softnet_data *sd, *oldsd, *remsd = NULL;
11047
11048 local_irq_disable();
11049 cpu = smp_processor_id();
11050 sd = &per_cpu(softnet_data, cpu);
11051 oldsd = &per_cpu(softnet_data, oldcpu);
11052
11053 /* Find end of our completion_queue. */
11054 list_skb = &sd->completion_queue;
11055 while (*list_skb)
11056 list_skb = &(*list_skb)->next;
11057 /* Append completion queue from offline CPU. */
11058 *list_skb = oldsd->completion_queue;
11059 oldsd->completion_queue = NULL;
11060
11061 /* Append output queue from offline CPU. */
11062 if (oldsd->output_queue) {
11063 *sd->output_queue_tailp = oldsd->output_queue;
11064 sd->output_queue_tailp = oldsd->output_queue_tailp;
11065 oldsd->output_queue = NULL;
11066 oldsd->output_queue_tailp = &oldsd->output_queue;
11067 }
11068 /* Append NAPI poll list from offline CPU, with one exception :
11069 * process_backlog() must be called by cpu owning percpu backlog.
11070 * We properly handle process_queue & input_pkt_queue later.
11071 */
11072 while (!list_empty(&oldsd->poll_list)) {
11073 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11074 struct napi_struct,
11075 poll_list);
11076
11077 list_del_init(&napi->poll_list);
11078 if (napi->poll == process_backlog)
11079 napi->state = 0;
11080 else
11081 ____napi_schedule(sd, napi);
11082 }
11083
11084 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11085 local_irq_enable();
11086
11087#ifdef CONFIG_RPS
11088 remsd = oldsd->rps_ipi_list;
11089 oldsd->rps_ipi_list = NULL;
11090#endif
11091 /* send out pending IPI's on offline CPU */
11092 net_rps_send_ipi(remsd);
11093
11094 /* Process offline CPU's input_pkt_queue */
11095 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11096 netif_rx(skb);
11097 input_queue_head_incr(oldsd);
11098 }
11099 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11100 netif_rx(skb);
11101 input_queue_head_incr(oldsd);
11102 }
11103
11104 return 0;
11105}
11106
11107/**
11108 * netdev_increment_features - increment feature set by one
11109 * @all: current feature set
11110 * @one: new feature set
11111 * @mask: mask feature set
11112 *
11113 * Computes a new feature set after adding a device with feature set
11114 * @one to the master device with current feature set @all. Will not
11115 * enable anything that is off in @mask. Returns the new feature set.
11116 */
11117netdev_features_t netdev_increment_features(netdev_features_t all,
11118 netdev_features_t one, netdev_features_t mask)
11119{
11120 if (mask & NETIF_F_HW_CSUM)
11121 mask |= NETIF_F_CSUM_MASK;
11122 mask |= NETIF_F_VLAN_CHALLENGED;
11123
11124 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11125 all &= one | ~NETIF_F_ALL_FOR_ALL;
11126
11127 /* If one device supports hw checksumming, set for all. */
11128 if (all & NETIF_F_HW_CSUM)
11129 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11130
11131 return all;
11132}
11133EXPORT_SYMBOL(netdev_increment_features);
11134
11135static struct hlist_head * __net_init netdev_create_hash(void)
11136{
11137 int i;
11138 struct hlist_head *hash;
11139
11140 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11141 if (hash != NULL)
11142 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11143 INIT_HLIST_HEAD(&hash[i]);
11144
11145 return hash;
11146}
11147
11148/* Initialize per network namespace state */
11149static int __net_init netdev_init(struct net *net)
11150{
11151 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11152 8 * sizeof_field(struct napi_struct, gro_bitmask));
11153
11154 INIT_LIST_HEAD(&net->dev_base_head);
11155
11156 net->dev_name_head = netdev_create_hash();
11157 if (net->dev_name_head == NULL)
11158 goto err_name;
11159
11160 net->dev_index_head = netdev_create_hash();
11161 if (net->dev_index_head == NULL)
11162 goto err_idx;
11163
11164 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11165
11166 return 0;
11167
11168err_idx:
11169 kfree(net->dev_name_head);
11170err_name:
11171 return -ENOMEM;
11172}
11173
11174/**
11175 * netdev_drivername - network driver for the device
11176 * @dev: network device
11177 *
11178 * Determine network driver for device.
11179 */
11180const char *netdev_drivername(const struct net_device *dev)
11181{
11182 const struct device_driver *driver;
11183 const struct device *parent;
11184 const char *empty = "";
11185
11186 parent = dev->dev.parent;
11187 if (!parent)
11188 return empty;
11189
11190 driver = parent->driver;
11191 if (driver && driver->name)
11192 return driver->name;
11193 return empty;
11194}
11195
11196static void __netdev_printk(const char *level, const struct net_device *dev,
11197 struct va_format *vaf)
11198{
11199 if (dev && dev->dev.parent) {
11200 dev_printk_emit(level[1] - '0',
11201 dev->dev.parent,
11202 "%s %s %s%s: %pV",
11203 dev_driver_string(dev->dev.parent),
11204 dev_name(dev->dev.parent),
11205 netdev_name(dev), netdev_reg_state(dev),
11206 vaf);
11207 } else if (dev) {
11208 printk("%s%s%s: %pV",
11209 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11210 } else {
11211 printk("%s(NULL net_device): %pV", level, vaf);
11212 }
11213}
11214
11215void netdev_printk(const char *level, const struct net_device *dev,
11216 const char *format, ...)
11217{
11218 struct va_format vaf;
11219 va_list args;
11220
11221 va_start(args, format);
11222
11223 vaf.fmt = format;
11224 vaf.va = &args;
11225
11226 __netdev_printk(level, dev, &vaf);
11227
11228 va_end(args);
11229}
11230EXPORT_SYMBOL(netdev_printk);
11231
11232#define define_netdev_printk_level(func, level) \
11233void func(const struct net_device *dev, const char *fmt, ...) \
11234{ \
11235 struct va_format vaf; \
11236 va_list args; \
11237 \
11238 va_start(args, fmt); \
11239 \
11240 vaf.fmt = fmt; \
11241 vaf.va = &args; \
11242 \
11243 __netdev_printk(level, dev, &vaf); \
11244 \
11245 va_end(args); \
11246} \
11247EXPORT_SYMBOL(func);
11248
11249define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11250define_netdev_printk_level(netdev_alert, KERN_ALERT);
11251define_netdev_printk_level(netdev_crit, KERN_CRIT);
11252define_netdev_printk_level(netdev_err, KERN_ERR);
11253define_netdev_printk_level(netdev_warn, KERN_WARNING);
11254define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11255define_netdev_printk_level(netdev_info, KERN_INFO);
11256
11257static void __net_exit netdev_exit(struct net *net)
11258{
11259 kfree(net->dev_name_head);
11260 kfree(net->dev_index_head);
11261 if (net != &init_net)
11262 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11263}
11264
11265static struct pernet_operations __net_initdata netdev_net_ops = {
11266 .init = netdev_init,
11267 .exit = netdev_exit,
11268};
11269
11270static void __net_exit default_device_exit_net(struct net *net)
11271{
11272 struct net_device *dev, *aux;
11273 /*
11274 * Push all migratable network devices back to the
11275 * initial network namespace
11276 */
11277 ASSERT_RTNL();
11278 for_each_netdev_safe(net, dev, aux) {
11279 int err;
11280 char fb_name[IFNAMSIZ];
11281
11282 /* Ignore unmoveable devices (i.e. loopback) */
11283 if (dev->features & NETIF_F_NETNS_LOCAL)
11284 continue;
11285
11286 /* Leave virtual devices for the generic cleanup */
11287 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11288 continue;
11289
11290 /* Push remaining network devices to init_net */
11291 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11292 if (netdev_name_in_use(&init_net, fb_name))
11293 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11294 err = dev_change_net_namespace(dev, &init_net, fb_name);
11295 if (err) {
11296 pr_emerg("%s: failed to move %s to init_net: %d\n",
11297 __func__, dev->name, err);
11298 BUG();
11299 }
11300 }
11301}
11302
11303static void __net_exit default_device_exit_batch(struct list_head *net_list)
11304{
11305 /* At exit all network devices most be removed from a network
11306 * namespace. Do this in the reverse order of registration.
11307 * Do this across as many network namespaces as possible to
11308 * improve batching efficiency.
11309 */
11310 struct net_device *dev;
11311 struct net *net;
11312 LIST_HEAD(dev_kill_list);
11313
11314 rtnl_lock();
11315 list_for_each_entry(net, net_list, exit_list) {
11316 default_device_exit_net(net);
11317 cond_resched();
11318 }
11319
11320 list_for_each_entry(net, net_list, exit_list) {
11321 for_each_netdev_reverse(net, dev) {
11322 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11323 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11324 else
11325 unregister_netdevice_queue(dev, &dev_kill_list);
11326 }
11327 }
11328 unregister_netdevice_many(&dev_kill_list);
11329 rtnl_unlock();
11330}
11331
11332static struct pernet_operations __net_initdata default_device_ops = {
11333 .exit_batch = default_device_exit_batch,
11334};
11335
11336/*
11337 * Initialize the DEV module. At boot time this walks the device list and
11338 * unhooks any devices that fail to initialise (normally hardware not
11339 * present) and leaves us with a valid list of present and active devices.
11340 *
11341 */
11342
11343/*
11344 * This is called single threaded during boot, so no need
11345 * to take the rtnl semaphore.
11346 */
11347static int __init net_dev_init(void)
11348{
11349 int i, rc = -ENOMEM;
11350
11351 BUG_ON(!dev_boot_phase);
11352
11353 if (dev_proc_init())
11354 goto out;
11355
11356 if (netdev_kobject_init())
11357 goto out;
11358
11359 INIT_LIST_HEAD(&ptype_all);
11360 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11361 INIT_LIST_HEAD(&ptype_base[i]);
11362
11363 if (register_pernet_subsys(&netdev_net_ops))
11364 goto out;
11365
11366 /*
11367 * Initialise the packet receive queues.
11368 */
11369
11370 for_each_possible_cpu(i) {
11371 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11372 struct softnet_data *sd = &per_cpu(softnet_data, i);
11373
11374 INIT_WORK(flush, flush_backlog);
11375
11376 skb_queue_head_init(&sd->input_pkt_queue);
11377 skb_queue_head_init(&sd->process_queue);
11378#ifdef CONFIG_XFRM_OFFLOAD
11379 skb_queue_head_init(&sd->xfrm_backlog);
11380#endif
11381 INIT_LIST_HEAD(&sd->poll_list);
11382 sd->output_queue_tailp = &sd->output_queue;
11383#ifdef CONFIG_RPS
11384 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11385 sd->cpu = i;
11386#endif
11387 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11388 spin_lock_init(&sd->defer_lock);
11389
11390 init_gro_hash(&sd->backlog);
11391 sd->backlog.poll = process_backlog;
11392 sd->backlog.weight = weight_p;
11393 }
11394
11395 dev_boot_phase = 0;
11396
11397 /* The loopback device is special if any other network devices
11398 * is present in a network namespace the loopback device must
11399 * be present. Since we now dynamically allocate and free the
11400 * loopback device ensure this invariant is maintained by
11401 * keeping the loopback device as the first device on the
11402 * list of network devices. Ensuring the loopback devices
11403 * is the first device that appears and the last network device
11404 * that disappears.
11405 */
11406 if (register_pernet_device(&loopback_net_ops))
11407 goto out;
11408
11409 if (register_pernet_device(&default_device_ops))
11410 goto out;
11411
11412 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11413 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11414
11415 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11416 NULL, dev_cpu_dead);
11417 WARN_ON(rc < 0);
11418 rc = 0;
11419out:
11420 return rc;
11421}
11422
11423subsys_initcall(net_dev_init);