Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <trace/events/qdisc.h>
135#include <linux/inetdevice.h>
136#include <linux/cpu_rmap.h>
137#include <linux/static_key.h>
138#include <linux/hashtable.h>
139#include <linux/vmalloc.h>
140#include <linux/if_macvlan.h>
141#include <linux/errqueue.h>
142#include <linux/hrtimer.h>
143#include <linux/netfilter_netdev.h>
144#include <linux/crash_dump.h>
145#include <linux/sctp.h>
146#include <net/udp_tunnel.h>
147#include <linux/net_namespace.h>
148#include <linux/indirect_call_wrapper.h>
149#include <net/devlink.h>
150#include <linux/pm_runtime.h>
151#include <linux/prandom.h>
152#include <linux/once_lite.h>
153
154#include "net-sysfs.h"
155
156
157static DEFINE_SPINLOCK(ptype_lock);
158struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159struct list_head ptype_all __read_mostly; /* Taps */
160
161static int netif_rx_internal(struct sk_buff *skb);
162static int call_netdevice_notifiers_info(unsigned long val,
163 struct netdev_notifier_info *info);
164static int call_netdevice_notifiers_extack(unsigned long val,
165 struct net_device *dev,
166 struct netlink_ext_ack *extack);
167static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169/*
170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * semaphore.
172 *
173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
176 * dev_base_head list, and hold dev_base_lock for writing when they do the
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
188DEFINE_RWLOCK(dev_base_lock);
189EXPORT_SYMBOL(dev_base_lock);
190
191static DEFINE_MUTEX(ifalias_mutex);
192
193/* protects napi_hash addition/deletion and napi_gen_id */
194static DEFINE_SPINLOCK(napi_hash_lock);
195
196static unsigned int napi_gen_id = NR_CPUS;
197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199static DECLARE_RWSEM(devnet_rename_sem);
200
201static inline void dev_base_seq_inc(struct net *net)
202{
203 while (++net->dev_base_seq == 0)
204 ;
205}
206
207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208{
209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212}
213
214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215{
216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217}
218
219static inline void rps_lock_irqsave(struct softnet_data *sd,
220 unsigned long *flags)
221{
222 if (IS_ENABLED(CONFIG_RPS))
223 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
224 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
225 local_irq_save(*flags);
226}
227
228static inline void rps_lock_irq_disable(struct softnet_data *sd)
229{
230 if (IS_ENABLED(CONFIG_RPS))
231 spin_lock_irq(&sd->input_pkt_queue.lock);
232 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
233 local_irq_disable();
234}
235
236static inline void rps_unlock_irq_restore(struct softnet_data *sd,
237 unsigned long *flags)
238{
239 if (IS_ENABLED(CONFIG_RPS))
240 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
241 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242 local_irq_restore(*flags);
243}
244
245static inline void rps_unlock_irq_enable(struct softnet_data *sd)
246{
247 if (IS_ENABLED(CONFIG_RPS))
248 spin_unlock_irq(&sd->input_pkt_queue.lock);
249 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
250 local_irq_enable();
251}
252
253static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
254 const char *name)
255{
256 struct netdev_name_node *name_node;
257
258 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
259 if (!name_node)
260 return NULL;
261 INIT_HLIST_NODE(&name_node->hlist);
262 name_node->dev = dev;
263 name_node->name = name;
264 return name_node;
265}
266
267static struct netdev_name_node *
268netdev_name_node_head_alloc(struct net_device *dev)
269{
270 struct netdev_name_node *name_node;
271
272 name_node = netdev_name_node_alloc(dev, dev->name);
273 if (!name_node)
274 return NULL;
275 INIT_LIST_HEAD(&name_node->list);
276 return name_node;
277}
278
279static void netdev_name_node_free(struct netdev_name_node *name_node)
280{
281 kfree(name_node);
282}
283
284static void netdev_name_node_add(struct net *net,
285 struct netdev_name_node *name_node)
286{
287 hlist_add_head_rcu(&name_node->hlist,
288 dev_name_hash(net, name_node->name));
289}
290
291static void netdev_name_node_del(struct netdev_name_node *name_node)
292{
293 hlist_del_rcu(&name_node->hlist);
294}
295
296static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
297 const char *name)
298{
299 struct hlist_head *head = dev_name_hash(net, name);
300 struct netdev_name_node *name_node;
301
302 hlist_for_each_entry(name_node, head, hlist)
303 if (!strcmp(name_node->name, name))
304 return name_node;
305 return NULL;
306}
307
308static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
309 const char *name)
310{
311 struct hlist_head *head = dev_name_hash(net, name);
312 struct netdev_name_node *name_node;
313
314 hlist_for_each_entry_rcu(name_node, head, hlist)
315 if (!strcmp(name_node->name, name))
316 return name_node;
317 return NULL;
318}
319
320bool netdev_name_in_use(struct net *net, const char *name)
321{
322 return netdev_name_node_lookup(net, name);
323}
324EXPORT_SYMBOL(netdev_name_in_use);
325
326int netdev_name_node_alt_create(struct net_device *dev, const char *name)
327{
328 struct netdev_name_node *name_node;
329 struct net *net = dev_net(dev);
330
331 name_node = netdev_name_node_lookup(net, name);
332 if (name_node)
333 return -EEXIST;
334 name_node = netdev_name_node_alloc(dev, name);
335 if (!name_node)
336 return -ENOMEM;
337 netdev_name_node_add(net, name_node);
338 /* The node that holds dev->name acts as a head of per-device list. */
339 list_add_tail(&name_node->list, &dev->name_node->list);
340
341 return 0;
342}
343
344static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
345{
346 list_del(&name_node->list);
347 netdev_name_node_del(name_node);
348 kfree(name_node->name);
349 netdev_name_node_free(name_node);
350}
351
352int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353{
354 struct netdev_name_node *name_node;
355 struct net *net = dev_net(dev);
356
357 name_node = netdev_name_node_lookup(net, name);
358 if (!name_node)
359 return -ENOENT;
360 /* lookup might have found our primary name or a name belonging
361 * to another device.
362 */
363 if (name_node == dev->name_node || name_node->dev != dev)
364 return -EINVAL;
365
366 __netdev_name_node_alt_destroy(name_node);
367
368 return 0;
369}
370
371static void netdev_name_node_alt_flush(struct net_device *dev)
372{
373 struct netdev_name_node *name_node, *tmp;
374
375 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
376 __netdev_name_node_alt_destroy(name_node);
377}
378
379/* Device list insertion */
380static void list_netdevice(struct net_device *dev)
381{
382 struct net *net = dev_net(dev);
383
384 ASSERT_RTNL();
385
386 write_lock(&dev_base_lock);
387 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
388 netdev_name_node_add(net, dev->name_node);
389 hlist_add_head_rcu(&dev->index_hlist,
390 dev_index_hash(net, dev->ifindex));
391 write_unlock(&dev_base_lock);
392
393 dev_base_seq_inc(net);
394}
395
396/* Device list removal
397 * caller must respect a RCU grace period before freeing/reusing dev
398 */
399static void unlist_netdevice(struct net_device *dev)
400{
401 ASSERT_RTNL();
402
403 /* Unlink dev from the device chain */
404 write_lock(&dev_base_lock);
405 list_del_rcu(&dev->dev_list);
406 netdev_name_node_del(dev->name_node);
407 hlist_del_rcu(&dev->index_hlist);
408 write_unlock(&dev_base_lock);
409
410 dev_base_seq_inc(dev_net(dev));
411}
412
413/*
414 * Our notifier list
415 */
416
417static RAW_NOTIFIER_HEAD(netdev_chain);
418
419/*
420 * Device drivers call our routines to queue packets here. We empty the
421 * queue in the local softnet handler.
422 */
423
424DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
425EXPORT_PER_CPU_SYMBOL(softnet_data);
426
427#ifdef CONFIG_LOCKDEP
428/*
429 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
430 * according to dev->type
431 */
432static const unsigned short netdev_lock_type[] = {
433 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
434 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
435 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
436 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
437 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
438 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
439 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
440 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
441 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
442 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
443 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
444 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
445 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
446 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
447 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
448
449static const char *const netdev_lock_name[] = {
450 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
451 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
452 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
453 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
454 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
455 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
456 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
457 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
458 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
459 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
460 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
461 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
462 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
463 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
464 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
465
466static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
467static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
468
469static inline unsigned short netdev_lock_pos(unsigned short dev_type)
470{
471 int i;
472
473 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
474 if (netdev_lock_type[i] == dev_type)
475 return i;
476 /* the last key is used by default */
477 return ARRAY_SIZE(netdev_lock_type) - 1;
478}
479
480static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481 unsigned short dev_type)
482{
483 int i;
484
485 i = netdev_lock_pos(dev_type);
486 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
487 netdev_lock_name[i]);
488}
489
490static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
491{
492 int i;
493
494 i = netdev_lock_pos(dev->type);
495 lockdep_set_class_and_name(&dev->addr_list_lock,
496 &netdev_addr_lock_key[i],
497 netdev_lock_name[i]);
498}
499#else
500static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
501 unsigned short dev_type)
502{
503}
504
505static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
506{
507}
508#endif
509
510/*******************************************************************************
511 *
512 * Protocol management and registration routines
513 *
514 *******************************************************************************/
515
516
517/*
518 * Add a protocol ID to the list. Now that the input handler is
519 * smarter we can dispense with all the messy stuff that used to be
520 * here.
521 *
522 * BEWARE!!! Protocol handlers, mangling input packets,
523 * MUST BE last in hash buckets and checking protocol handlers
524 * MUST start from promiscuous ptype_all chain in net_bh.
525 * It is true now, do not change it.
526 * Explanation follows: if protocol handler, mangling packet, will
527 * be the first on list, it is not able to sense, that packet
528 * is cloned and should be copied-on-write, so that it will
529 * change it and subsequent readers will get broken packet.
530 * --ANK (980803)
531 */
532
533static inline struct list_head *ptype_head(const struct packet_type *pt)
534{
535 if (pt->type == htons(ETH_P_ALL))
536 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
537 else
538 return pt->dev ? &pt->dev->ptype_specific :
539 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
540}
541
542/**
543 * dev_add_pack - add packet handler
544 * @pt: packet type declaration
545 *
546 * Add a protocol handler to the networking stack. The passed &packet_type
547 * is linked into kernel lists and may not be freed until it has been
548 * removed from the kernel lists.
549 *
550 * This call does not sleep therefore it can not
551 * guarantee all CPU's that are in middle of receiving packets
552 * will see the new packet type (until the next received packet).
553 */
554
555void dev_add_pack(struct packet_type *pt)
556{
557 struct list_head *head = ptype_head(pt);
558
559 spin_lock(&ptype_lock);
560 list_add_rcu(&pt->list, head);
561 spin_unlock(&ptype_lock);
562}
563EXPORT_SYMBOL(dev_add_pack);
564
565/**
566 * __dev_remove_pack - remove packet handler
567 * @pt: packet type declaration
568 *
569 * Remove a protocol handler that was previously added to the kernel
570 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
571 * from the kernel lists and can be freed or reused once this function
572 * returns.
573 *
574 * The packet type might still be in use by receivers
575 * and must not be freed until after all the CPU's have gone
576 * through a quiescent state.
577 */
578void __dev_remove_pack(struct packet_type *pt)
579{
580 struct list_head *head = ptype_head(pt);
581 struct packet_type *pt1;
582
583 spin_lock(&ptype_lock);
584
585 list_for_each_entry(pt1, head, list) {
586 if (pt == pt1) {
587 list_del_rcu(&pt->list);
588 goto out;
589 }
590 }
591
592 pr_warn("dev_remove_pack: %p not found\n", pt);
593out:
594 spin_unlock(&ptype_lock);
595}
596EXPORT_SYMBOL(__dev_remove_pack);
597
598/**
599 * dev_remove_pack - remove packet handler
600 * @pt: packet type declaration
601 *
602 * Remove a protocol handler that was previously added to the kernel
603 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
604 * from the kernel lists and can be freed or reused once this function
605 * returns.
606 *
607 * This call sleeps to guarantee that no CPU is looking at the packet
608 * type after return.
609 */
610void dev_remove_pack(struct packet_type *pt)
611{
612 __dev_remove_pack(pt);
613
614 synchronize_net();
615}
616EXPORT_SYMBOL(dev_remove_pack);
617
618
619/*******************************************************************************
620 *
621 * Device Interface Subroutines
622 *
623 *******************************************************************************/
624
625/**
626 * dev_get_iflink - get 'iflink' value of a interface
627 * @dev: targeted interface
628 *
629 * Indicates the ifindex the interface is linked to.
630 * Physical interfaces have the same 'ifindex' and 'iflink' values.
631 */
632
633int dev_get_iflink(const struct net_device *dev)
634{
635 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
636 return dev->netdev_ops->ndo_get_iflink(dev);
637
638 return dev->ifindex;
639}
640EXPORT_SYMBOL(dev_get_iflink);
641
642/**
643 * dev_fill_metadata_dst - Retrieve tunnel egress information.
644 * @dev: targeted interface
645 * @skb: The packet.
646 *
647 * For better visibility of tunnel traffic OVS needs to retrieve
648 * egress tunnel information for a packet. Following API allows
649 * user to get this info.
650 */
651int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
652{
653 struct ip_tunnel_info *info;
654
655 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
656 return -EINVAL;
657
658 info = skb_tunnel_info_unclone(skb);
659 if (!info)
660 return -ENOMEM;
661 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
662 return -EINVAL;
663
664 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
665}
666EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
667
668static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
669{
670 int k = stack->num_paths++;
671
672 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
673 return NULL;
674
675 return &stack->path[k];
676}
677
678int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
679 struct net_device_path_stack *stack)
680{
681 const struct net_device *last_dev;
682 struct net_device_path_ctx ctx = {
683 .dev = dev,
684 };
685 struct net_device_path *path;
686 int ret = 0;
687
688 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
689 stack->num_paths = 0;
690 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
691 last_dev = ctx.dev;
692 path = dev_fwd_path(stack);
693 if (!path)
694 return -1;
695
696 memset(path, 0, sizeof(struct net_device_path));
697 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
698 if (ret < 0)
699 return -1;
700
701 if (WARN_ON_ONCE(last_dev == ctx.dev))
702 return -1;
703 }
704 path = dev_fwd_path(stack);
705 if (!path)
706 return -1;
707 path->type = DEV_PATH_ETHERNET;
708 path->dev = ctx.dev;
709
710 return ret;
711}
712EXPORT_SYMBOL_GPL(dev_fill_forward_path);
713
714/**
715 * __dev_get_by_name - find a device by its name
716 * @net: the applicable net namespace
717 * @name: name to find
718 *
719 * Find an interface by name. Must be called under RTNL semaphore
720 * or @dev_base_lock. If the name is found a pointer to the device
721 * is returned. If the name is not found then %NULL is returned. The
722 * reference counters are not incremented so the caller must be
723 * careful with locks.
724 */
725
726struct net_device *__dev_get_by_name(struct net *net, const char *name)
727{
728 struct netdev_name_node *node_name;
729
730 node_name = netdev_name_node_lookup(net, name);
731 return node_name ? node_name->dev : NULL;
732}
733EXPORT_SYMBOL(__dev_get_by_name);
734
735/**
736 * dev_get_by_name_rcu - find a device by its name
737 * @net: the applicable net namespace
738 * @name: name to find
739 *
740 * Find an interface by name.
741 * If the name is found a pointer to the device is returned.
742 * If the name is not found then %NULL is returned.
743 * The reference counters are not incremented so the caller must be
744 * careful with locks. The caller must hold RCU lock.
745 */
746
747struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
748{
749 struct netdev_name_node *node_name;
750
751 node_name = netdev_name_node_lookup_rcu(net, name);
752 return node_name ? node_name->dev : NULL;
753}
754EXPORT_SYMBOL(dev_get_by_name_rcu);
755
756/**
757 * dev_get_by_name - find a device by its name
758 * @net: the applicable net namespace
759 * @name: name to find
760 *
761 * Find an interface by name. This can be called from any
762 * context and does its own locking. The returned handle has
763 * the usage count incremented and the caller must use dev_put() to
764 * release it when it is no longer needed. %NULL is returned if no
765 * matching device is found.
766 */
767
768struct net_device *dev_get_by_name(struct net *net, const char *name)
769{
770 struct net_device *dev;
771
772 rcu_read_lock();
773 dev = dev_get_by_name_rcu(net, name);
774 dev_hold(dev);
775 rcu_read_unlock();
776 return dev;
777}
778EXPORT_SYMBOL(dev_get_by_name);
779
780/**
781 * __dev_get_by_index - find a device by its ifindex
782 * @net: the applicable net namespace
783 * @ifindex: index of device
784 *
785 * Search for an interface by index. Returns %NULL if the device
786 * is not found or a pointer to the device. The device has not
787 * had its reference counter increased so the caller must be careful
788 * about locking. The caller must hold either the RTNL semaphore
789 * or @dev_base_lock.
790 */
791
792struct net_device *__dev_get_by_index(struct net *net, int ifindex)
793{
794 struct net_device *dev;
795 struct hlist_head *head = dev_index_hash(net, ifindex);
796
797 hlist_for_each_entry(dev, head, index_hlist)
798 if (dev->ifindex == ifindex)
799 return dev;
800
801 return NULL;
802}
803EXPORT_SYMBOL(__dev_get_by_index);
804
805/**
806 * dev_get_by_index_rcu - find a device by its ifindex
807 * @net: the applicable net namespace
808 * @ifindex: index of device
809 *
810 * Search for an interface by index. Returns %NULL if the device
811 * is not found or a pointer to the device. The device has not
812 * had its reference counter increased so the caller must be careful
813 * about locking. The caller must hold RCU lock.
814 */
815
816struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
817{
818 struct net_device *dev;
819 struct hlist_head *head = dev_index_hash(net, ifindex);
820
821 hlist_for_each_entry_rcu(dev, head, index_hlist)
822 if (dev->ifindex == ifindex)
823 return dev;
824
825 return NULL;
826}
827EXPORT_SYMBOL(dev_get_by_index_rcu);
828
829
830/**
831 * dev_get_by_index - find a device by its ifindex
832 * @net: the applicable net namespace
833 * @ifindex: index of device
834 *
835 * Search for an interface by index. Returns NULL if the device
836 * is not found or a pointer to the device. The device returned has
837 * had a reference added and the pointer is safe until the user calls
838 * dev_put to indicate they have finished with it.
839 */
840
841struct net_device *dev_get_by_index(struct net *net, int ifindex)
842{
843 struct net_device *dev;
844
845 rcu_read_lock();
846 dev = dev_get_by_index_rcu(net, ifindex);
847 dev_hold(dev);
848 rcu_read_unlock();
849 return dev;
850}
851EXPORT_SYMBOL(dev_get_by_index);
852
853/**
854 * dev_get_by_napi_id - find a device by napi_id
855 * @napi_id: ID of the NAPI struct
856 *
857 * Search for an interface by NAPI ID. Returns %NULL if the device
858 * is not found or a pointer to the device. The device has not had
859 * its reference counter increased so the caller must be careful
860 * about locking. The caller must hold RCU lock.
861 */
862
863struct net_device *dev_get_by_napi_id(unsigned int napi_id)
864{
865 struct napi_struct *napi;
866
867 WARN_ON_ONCE(!rcu_read_lock_held());
868
869 if (napi_id < MIN_NAPI_ID)
870 return NULL;
871
872 napi = napi_by_id(napi_id);
873
874 return napi ? napi->dev : NULL;
875}
876EXPORT_SYMBOL(dev_get_by_napi_id);
877
878/**
879 * netdev_get_name - get a netdevice name, knowing its ifindex.
880 * @net: network namespace
881 * @name: a pointer to the buffer where the name will be stored.
882 * @ifindex: the ifindex of the interface to get the name from.
883 */
884int netdev_get_name(struct net *net, char *name, int ifindex)
885{
886 struct net_device *dev;
887 int ret;
888
889 down_read(&devnet_rename_sem);
890 rcu_read_lock();
891
892 dev = dev_get_by_index_rcu(net, ifindex);
893 if (!dev) {
894 ret = -ENODEV;
895 goto out;
896 }
897
898 strcpy(name, dev->name);
899
900 ret = 0;
901out:
902 rcu_read_unlock();
903 up_read(&devnet_rename_sem);
904 return ret;
905}
906
907/**
908 * dev_getbyhwaddr_rcu - find a device by its hardware address
909 * @net: the applicable net namespace
910 * @type: media type of device
911 * @ha: hardware address
912 *
913 * Search for an interface by MAC address. Returns NULL if the device
914 * is not found or a pointer to the device.
915 * The caller must hold RCU or RTNL.
916 * The returned device has not had its ref count increased
917 * and the caller must therefore be careful about locking
918 *
919 */
920
921struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
922 const char *ha)
923{
924 struct net_device *dev;
925
926 for_each_netdev_rcu(net, dev)
927 if (dev->type == type &&
928 !memcmp(dev->dev_addr, ha, dev->addr_len))
929 return dev;
930
931 return NULL;
932}
933EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
934
935struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
936{
937 struct net_device *dev, *ret = NULL;
938
939 rcu_read_lock();
940 for_each_netdev_rcu(net, dev)
941 if (dev->type == type) {
942 dev_hold(dev);
943 ret = dev;
944 break;
945 }
946 rcu_read_unlock();
947 return ret;
948}
949EXPORT_SYMBOL(dev_getfirstbyhwtype);
950
951/**
952 * __dev_get_by_flags - find any device with given flags
953 * @net: the applicable net namespace
954 * @if_flags: IFF_* values
955 * @mask: bitmask of bits in if_flags to check
956 *
957 * Search for any interface with the given flags. Returns NULL if a device
958 * is not found or a pointer to the device. Must be called inside
959 * rtnl_lock(), and result refcount is unchanged.
960 */
961
962struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
963 unsigned short mask)
964{
965 struct net_device *dev, *ret;
966
967 ASSERT_RTNL();
968
969 ret = NULL;
970 for_each_netdev(net, dev) {
971 if (((dev->flags ^ if_flags) & mask) == 0) {
972 ret = dev;
973 break;
974 }
975 }
976 return ret;
977}
978EXPORT_SYMBOL(__dev_get_by_flags);
979
980/**
981 * dev_valid_name - check if name is okay for network device
982 * @name: name string
983 *
984 * Network device names need to be valid file names to
985 * allow sysfs to work. We also disallow any kind of
986 * whitespace.
987 */
988bool dev_valid_name(const char *name)
989{
990 if (*name == '\0')
991 return false;
992 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
993 return false;
994 if (!strcmp(name, ".") || !strcmp(name, ".."))
995 return false;
996
997 while (*name) {
998 if (*name == '/' || *name == ':' || isspace(*name))
999 return false;
1000 name++;
1001 }
1002 return true;
1003}
1004EXPORT_SYMBOL(dev_valid_name);
1005
1006/**
1007 * __dev_alloc_name - allocate a name for a device
1008 * @net: network namespace to allocate the device name in
1009 * @name: name format string
1010 * @buf: scratch buffer and result name string
1011 *
1012 * Passed a format string - eg "lt%d" it will try and find a suitable
1013 * id. It scans list of devices to build up a free map, then chooses
1014 * the first empty slot. The caller must hold the dev_base or rtnl lock
1015 * while allocating the name and adding the device in order to avoid
1016 * duplicates.
1017 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1018 * Returns the number of the unit assigned or a negative errno code.
1019 */
1020
1021static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1022{
1023 int i = 0;
1024 const char *p;
1025 const int max_netdevices = 8*PAGE_SIZE;
1026 unsigned long *inuse;
1027 struct net_device *d;
1028
1029 if (!dev_valid_name(name))
1030 return -EINVAL;
1031
1032 p = strchr(name, '%');
1033 if (p) {
1034 /*
1035 * Verify the string as this thing may have come from
1036 * the user. There must be either one "%d" and no other "%"
1037 * characters.
1038 */
1039 if (p[1] != 'd' || strchr(p + 2, '%'))
1040 return -EINVAL;
1041
1042 /* Use one page as a bit array of possible slots */
1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1044 if (!inuse)
1045 return -ENOMEM;
1046
1047 for_each_netdev(net, d) {
1048 struct netdev_name_node *name_node;
1049 list_for_each_entry(name_node, &d->name_node->list, list) {
1050 if (!sscanf(name_node->name, name, &i))
1051 continue;
1052 if (i < 0 || i >= max_netdevices)
1053 continue;
1054
1055 /* avoid cases where sscanf is not exact inverse of printf */
1056 snprintf(buf, IFNAMSIZ, name, i);
1057 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1058 __set_bit(i, inuse);
1059 }
1060 if (!sscanf(d->name, name, &i))
1061 continue;
1062 if (i < 0 || i >= max_netdevices)
1063 continue;
1064
1065 /* avoid cases where sscanf is not exact inverse of printf */
1066 snprintf(buf, IFNAMSIZ, name, i);
1067 if (!strncmp(buf, d->name, IFNAMSIZ))
1068 __set_bit(i, inuse);
1069 }
1070
1071 i = find_first_zero_bit(inuse, max_netdevices);
1072 free_page((unsigned long) inuse);
1073 }
1074
1075 snprintf(buf, IFNAMSIZ, name, i);
1076 if (!netdev_name_in_use(net, buf))
1077 return i;
1078
1079 /* It is possible to run out of possible slots
1080 * when the name is long and there isn't enough space left
1081 * for the digits, or if all bits are used.
1082 */
1083 return -ENFILE;
1084}
1085
1086static int dev_alloc_name_ns(struct net *net,
1087 struct net_device *dev,
1088 const char *name)
1089{
1090 char buf[IFNAMSIZ];
1091 int ret;
1092
1093 BUG_ON(!net);
1094 ret = __dev_alloc_name(net, name, buf);
1095 if (ret >= 0)
1096 strlcpy(dev->name, buf, IFNAMSIZ);
1097 return ret;
1098}
1099
1100/**
1101 * dev_alloc_name - allocate a name for a device
1102 * @dev: device
1103 * @name: name format string
1104 *
1105 * Passed a format string - eg "lt%d" it will try and find a suitable
1106 * id. It scans list of devices to build up a free map, then chooses
1107 * the first empty slot. The caller must hold the dev_base or rtnl lock
1108 * while allocating the name and adding the device in order to avoid
1109 * duplicates.
1110 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1111 * Returns the number of the unit assigned or a negative errno code.
1112 */
1113
1114int dev_alloc_name(struct net_device *dev, const char *name)
1115{
1116 return dev_alloc_name_ns(dev_net(dev), dev, name);
1117}
1118EXPORT_SYMBOL(dev_alloc_name);
1119
1120static int dev_get_valid_name(struct net *net, struct net_device *dev,
1121 const char *name)
1122{
1123 BUG_ON(!net);
1124
1125 if (!dev_valid_name(name))
1126 return -EINVAL;
1127
1128 if (strchr(name, '%'))
1129 return dev_alloc_name_ns(net, dev, name);
1130 else if (netdev_name_in_use(net, name))
1131 return -EEXIST;
1132 else if (dev->name != name)
1133 strlcpy(dev->name, name, IFNAMSIZ);
1134
1135 return 0;
1136}
1137
1138/**
1139 * dev_change_name - change name of a device
1140 * @dev: device
1141 * @newname: name (or format string) must be at least IFNAMSIZ
1142 *
1143 * Change name of a device, can pass format strings "eth%d".
1144 * for wildcarding.
1145 */
1146int dev_change_name(struct net_device *dev, const char *newname)
1147{
1148 unsigned char old_assign_type;
1149 char oldname[IFNAMSIZ];
1150 int err = 0;
1151 int ret;
1152 struct net *net;
1153
1154 ASSERT_RTNL();
1155 BUG_ON(!dev_net(dev));
1156
1157 net = dev_net(dev);
1158
1159 /* Some auto-enslaved devices e.g. failover slaves are
1160 * special, as userspace might rename the device after
1161 * the interface had been brought up and running since
1162 * the point kernel initiated auto-enslavement. Allow
1163 * live name change even when these slave devices are
1164 * up and running.
1165 *
1166 * Typically, users of these auto-enslaving devices
1167 * don't actually care about slave name change, as
1168 * they are supposed to operate on master interface
1169 * directly.
1170 */
1171 if (dev->flags & IFF_UP &&
1172 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1173 return -EBUSY;
1174
1175 down_write(&devnet_rename_sem);
1176
1177 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1178 up_write(&devnet_rename_sem);
1179 return 0;
1180 }
1181
1182 memcpy(oldname, dev->name, IFNAMSIZ);
1183
1184 err = dev_get_valid_name(net, dev, newname);
1185 if (err < 0) {
1186 up_write(&devnet_rename_sem);
1187 return err;
1188 }
1189
1190 if (oldname[0] && !strchr(oldname, '%'))
1191 netdev_info(dev, "renamed from %s\n", oldname);
1192
1193 old_assign_type = dev->name_assign_type;
1194 dev->name_assign_type = NET_NAME_RENAMED;
1195
1196rollback:
1197 ret = device_rename(&dev->dev, dev->name);
1198 if (ret) {
1199 memcpy(dev->name, oldname, IFNAMSIZ);
1200 dev->name_assign_type = old_assign_type;
1201 up_write(&devnet_rename_sem);
1202 return ret;
1203 }
1204
1205 up_write(&devnet_rename_sem);
1206
1207 netdev_adjacent_rename_links(dev, oldname);
1208
1209 write_lock(&dev_base_lock);
1210 netdev_name_node_del(dev->name_node);
1211 write_unlock(&dev_base_lock);
1212
1213 synchronize_rcu();
1214
1215 write_lock(&dev_base_lock);
1216 netdev_name_node_add(net, dev->name_node);
1217 write_unlock(&dev_base_lock);
1218
1219 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1220 ret = notifier_to_errno(ret);
1221
1222 if (ret) {
1223 /* err >= 0 after dev_alloc_name() or stores the first errno */
1224 if (err >= 0) {
1225 err = ret;
1226 down_write(&devnet_rename_sem);
1227 memcpy(dev->name, oldname, IFNAMSIZ);
1228 memcpy(oldname, newname, IFNAMSIZ);
1229 dev->name_assign_type = old_assign_type;
1230 old_assign_type = NET_NAME_RENAMED;
1231 goto rollback;
1232 } else {
1233 netdev_err(dev, "name change rollback failed: %d\n",
1234 ret);
1235 }
1236 }
1237
1238 return err;
1239}
1240
1241/**
1242 * dev_set_alias - change ifalias of a device
1243 * @dev: device
1244 * @alias: name up to IFALIASZ
1245 * @len: limit of bytes to copy from info
1246 *
1247 * Set ifalias for a device,
1248 */
1249int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1250{
1251 struct dev_ifalias *new_alias = NULL;
1252
1253 if (len >= IFALIASZ)
1254 return -EINVAL;
1255
1256 if (len) {
1257 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1258 if (!new_alias)
1259 return -ENOMEM;
1260
1261 memcpy(new_alias->ifalias, alias, len);
1262 new_alias->ifalias[len] = 0;
1263 }
1264
1265 mutex_lock(&ifalias_mutex);
1266 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1267 mutex_is_locked(&ifalias_mutex));
1268 mutex_unlock(&ifalias_mutex);
1269
1270 if (new_alias)
1271 kfree_rcu(new_alias, rcuhead);
1272
1273 return len;
1274}
1275EXPORT_SYMBOL(dev_set_alias);
1276
1277/**
1278 * dev_get_alias - get ifalias of a device
1279 * @dev: device
1280 * @name: buffer to store name of ifalias
1281 * @len: size of buffer
1282 *
1283 * get ifalias for a device. Caller must make sure dev cannot go
1284 * away, e.g. rcu read lock or own a reference count to device.
1285 */
1286int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1287{
1288 const struct dev_ifalias *alias;
1289 int ret = 0;
1290
1291 rcu_read_lock();
1292 alias = rcu_dereference(dev->ifalias);
1293 if (alias)
1294 ret = snprintf(name, len, "%s", alias->ifalias);
1295 rcu_read_unlock();
1296
1297 return ret;
1298}
1299
1300/**
1301 * netdev_features_change - device changes features
1302 * @dev: device to cause notification
1303 *
1304 * Called to indicate a device has changed features.
1305 */
1306void netdev_features_change(struct net_device *dev)
1307{
1308 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1309}
1310EXPORT_SYMBOL(netdev_features_change);
1311
1312/**
1313 * netdev_state_change - device changes state
1314 * @dev: device to cause notification
1315 *
1316 * Called to indicate a device has changed state. This function calls
1317 * the notifier chains for netdev_chain and sends a NEWLINK message
1318 * to the routing socket.
1319 */
1320void netdev_state_change(struct net_device *dev)
1321{
1322 if (dev->flags & IFF_UP) {
1323 struct netdev_notifier_change_info change_info = {
1324 .info.dev = dev,
1325 };
1326
1327 call_netdevice_notifiers_info(NETDEV_CHANGE,
1328 &change_info.info);
1329 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1330 }
1331}
1332EXPORT_SYMBOL(netdev_state_change);
1333
1334/**
1335 * __netdev_notify_peers - notify network peers about existence of @dev,
1336 * to be called when rtnl lock is already held.
1337 * @dev: network device
1338 *
1339 * Generate traffic such that interested network peers are aware of
1340 * @dev, such as by generating a gratuitous ARP. This may be used when
1341 * a device wants to inform the rest of the network about some sort of
1342 * reconfiguration such as a failover event or virtual machine
1343 * migration.
1344 */
1345void __netdev_notify_peers(struct net_device *dev)
1346{
1347 ASSERT_RTNL();
1348 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1349 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1350}
1351EXPORT_SYMBOL(__netdev_notify_peers);
1352
1353/**
1354 * netdev_notify_peers - notify network peers about existence of @dev
1355 * @dev: network device
1356 *
1357 * Generate traffic such that interested network peers are aware of
1358 * @dev, such as by generating a gratuitous ARP. This may be used when
1359 * a device wants to inform the rest of the network about some sort of
1360 * reconfiguration such as a failover event or virtual machine
1361 * migration.
1362 */
1363void netdev_notify_peers(struct net_device *dev)
1364{
1365 rtnl_lock();
1366 __netdev_notify_peers(dev);
1367 rtnl_unlock();
1368}
1369EXPORT_SYMBOL(netdev_notify_peers);
1370
1371static int napi_threaded_poll(void *data);
1372
1373static int napi_kthread_create(struct napi_struct *n)
1374{
1375 int err = 0;
1376
1377 /* Create and wake up the kthread once to put it in
1378 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1379 * warning and work with loadavg.
1380 */
1381 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1382 n->dev->name, n->napi_id);
1383 if (IS_ERR(n->thread)) {
1384 err = PTR_ERR(n->thread);
1385 pr_err("kthread_run failed with err %d\n", err);
1386 n->thread = NULL;
1387 }
1388
1389 return err;
1390}
1391
1392static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1393{
1394 const struct net_device_ops *ops = dev->netdev_ops;
1395 int ret;
1396
1397 ASSERT_RTNL();
1398 dev_addr_check(dev);
1399
1400 if (!netif_device_present(dev)) {
1401 /* may be detached because parent is runtime-suspended */
1402 if (dev->dev.parent)
1403 pm_runtime_resume(dev->dev.parent);
1404 if (!netif_device_present(dev))
1405 return -ENODEV;
1406 }
1407
1408 /* Block netpoll from trying to do any rx path servicing.
1409 * If we don't do this there is a chance ndo_poll_controller
1410 * or ndo_poll may be running while we open the device
1411 */
1412 netpoll_poll_disable(dev);
1413
1414 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1415 ret = notifier_to_errno(ret);
1416 if (ret)
1417 return ret;
1418
1419 set_bit(__LINK_STATE_START, &dev->state);
1420
1421 if (ops->ndo_validate_addr)
1422 ret = ops->ndo_validate_addr(dev);
1423
1424 if (!ret && ops->ndo_open)
1425 ret = ops->ndo_open(dev);
1426
1427 netpoll_poll_enable(dev);
1428
1429 if (ret)
1430 clear_bit(__LINK_STATE_START, &dev->state);
1431 else {
1432 dev->flags |= IFF_UP;
1433 dev_set_rx_mode(dev);
1434 dev_activate(dev);
1435 add_device_randomness(dev->dev_addr, dev->addr_len);
1436 }
1437
1438 return ret;
1439}
1440
1441/**
1442 * dev_open - prepare an interface for use.
1443 * @dev: device to open
1444 * @extack: netlink extended ack
1445 *
1446 * Takes a device from down to up state. The device's private open
1447 * function is invoked and then the multicast lists are loaded. Finally
1448 * the device is moved into the up state and a %NETDEV_UP message is
1449 * sent to the netdev notifier chain.
1450 *
1451 * Calling this function on an active interface is a nop. On a failure
1452 * a negative errno code is returned.
1453 */
1454int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1455{
1456 int ret;
1457
1458 if (dev->flags & IFF_UP)
1459 return 0;
1460
1461 ret = __dev_open(dev, extack);
1462 if (ret < 0)
1463 return ret;
1464
1465 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1466 call_netdevice_notifiers(NETDEV_UP, dev);
1467
1468 return ret;
1469}
1470EXPORT_SYMBOL(dev_open);
1471
1472static void __dev_close_many(struct list_head *head)
1473{
1474 struct net_device *dev;
1475
1476 ASSERT_RTNL();
1477 might_sleep();
1478
1479 list_for_each_entry(dev, head, close_list) {
1480 /* Temporarily disable netpoll until the interface is down */
1481 netpoll_poll_disable(dev);
1482
1483 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1484
1485 clear_bit(__LINK_STATE_START, &dev->state);
1486
1487 /* Synchronize to scheduled poll. We cannot touch poll list, it
1488 * can be even on different cpu. So just clear netif_running().
1489 *
1490 * dev->stop() will invoke napi_disable() on all of it's
1491 * napi_struct instances on this device.
1492 */
1493 smp_mb__after_atomic(); /* Commit netif_running(). */
1494 }
1495
1496 dev_deactivate_many(head);
1497
1498 list_for_each_entry(dev, head, close_list) {
1499 const struct net_device_ops *ops = dev->netdev_ops;
1500
1501 /*
1502 * Call the device specific close. This cannot fail.
1503 * Only if device is UP
1504 *
1505 * We allow it to be called even after a DETACH hot-plug
1506 * event.
1507 */
1508 if (ops->ndo_stop)
1509 ops->ndo_stop(dev);
1510
1511 dev->flags &= ~IFF_UP;
1512 netpoll_poll_enable(dev);
1513 }
1514}
1515
1516static void __dev_close(struct net_device *dev)
1517{
1518 LIST_HEAD(single);
1519
1520 list_add(&dev->close_list, &single);
1521 __dev_close_many(&single);
1522 list_del(&single);
1523}
1524
1525void dev_close_many(struct list_head *head, bool unlink)
1526{
1527 struct net_device *dev, *tmp;
1528
1529 /* Remove the devices that don't need to be closed */
1530 list_for_each_entry_safe(dev, tmp, head, close_list)
1531 if (!(dev->flags & IFF_UP))
1532 list_del_init(&dev->close_list);
1533
1534 __dev_close_many(head);
1535
1536 list_for_each_entry_safe(dev, tmp, head, close_list) {
1537 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1538 call_netdevice_notifiers(NETDEV_DOWN, dev);
1539 if (unlink)
1540 list_del_init(&dev->close_list);
1541 }
1542}
1543EXPORT_SYMBOL(dev_close_many);
1544
1545/**
1546 * dev_close - shutdown an interface.
1547 * @dev: device to shutdown
1548 *
1549 * This function moves an active device into down state. A
1550 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1551 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1552 * chain.
1553 */
1554void dev_close(struct net_device *dev)
1555{
1556 if (dev->flags & IFF_UP) {
1557 LIST_HEAD(single);
1558
1559 list_add(&dev->close_list, &single);
1560 dev_close_many(&single, true);
1561 list_del(&single);
1562 }
1563}
1564EXPORT_SYMBOL(dev_close);
1565
1566
1567/**
1568 * dev_disable_lro - disable Large Receive Offload on a device
1569 * @dev: device
1570 *
1571 * Disable Large Receive Offload (LRO) on a net device. Must be
1572 * called under RTNL. This is needed if received packets may be
1573 * forwarded to another interface.
1574 */
1575void dev_disable_lro(struct net_device *dev)
1576{
1577 struct net_device *lower_dev;
1578 struct list_head *iter;
1579
1580 dev->wanted_features &= ~NETIF_F_LRO;
1581 netdev_update_features(dev);
1582
1583 if (unlikely(dev->features & NETIF_F_LRO))
1584 netdev_WARN(dev, "failed to disable LRO!\n");
1585
1586 netdev_for_each_lower_dev(dev, lower_dev, iter)
1587 dev_disable_lro(lower_dev);
1588}
1589EXPORT_SYMBOL(dev_disable_lro);
1590
1591/**
1592 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1593 * @dev: device
1594 *
1595 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1596 * called under RTNL. This is needed if Generic XDP is installed on
1597 * the device.
1598 */
1599static void dev_disable_gro_hw(struct net_device *dev)
1600{
1601 dev->wanted_features &= ~NETIF_F_GRO_HW;
1602 netdev_update_features(dev);
1603
1604 if (unlikely(dev->features & NETIF_F_GRO_HW))
1605 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1606}
1607
1608const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1609{
1610#define N(val) \
1611 case NETDEV_##val: \
1612 return "NETDEV_" __stringify(val);
1613 switch (cmd) {
1614 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1615 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1616 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1617 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1618 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1619 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1620 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1621 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1622 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1623 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1624 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1625 }
1626#undef N
1627 return "UNKNOWN_NETDEV_EVENT";
1628}
1629EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1630
1631static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1632 struct net_device *dev)
1633{
1634 struct netdev_notifier_info info = {
1635 .dev = dev,
1636 };
1637
1638 return nb->notifier_call(nb, val, &info);
1639}
1640
1641static int call_netdevice_register_notifiers(struct notifier_block *nb,
1642 struct net_device *dev)
1643{
1644 int err;
1645
1646 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1647 err = notifier_to_errno(err);
1648 if (err)
1649 return err;
1650
1651 if (!(dev->flags & IFF_UP))
1652 return 0;
1653
1654 call_netdevice_notifier(nb, NETDEV_UP, dev);
1655 return 0;
1656}
1657
1658static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1659 struct net_device *dev)
1660{
1661 if (dev->flags & IFF_UP) {
1662 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1663 dev);
1664 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1665 }
1666 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1667}
1668
1669static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1670 struct net *net)
1671{
1672 struct net_device *dev;
1673 int err;
1674
1675 for_each_netdev(net, dev) {
1676 err = call_netdevice_register_notifiers(nb, dev);
1677 if (err)
1678 goto rollback;
1679 }
1680 return 0;
1681
1682rollback:
1683 for_each_netdev_continue_reverse(net, dev)
1684 call_netdevice_unregister_notifiers(nb, dev);
1685 return err;
1686}
1687
1688static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1689 struct net *net)
1690{
1691 struct net_device *dev;
1692
1693 for_each_netdev(net, dev)
1694 call_netdevice_unregister_notifiers(nb, dev);
1695}
1696
1697static int dev_boot_phase = 1;
1698
1699/**
1700 * register_netdevice_notifier - register a network notifier block
1701 * @nb: notifier
1702 *
1703 * Register a notifier to be called when network device events occur.
1704 * The notifier passed is linked into the kernel structures and must
1705 * not be reused until it has been unregistered. A negative errno code
1706 * is returned on a failure.
1707 *
1708 * When registered all registration and up events are replayed
1709 * to the new notifier to allow device to have a race free
1710 * view of the network device list.
1711 */
1712
1713int register_netdevice_notifier(struct notifier_block *nb)
1714{
1715 struct net *net;
1716 int err;
1717
1718 /* Close race with setup_net() and cleanup_net() */
1719 down_write(&pernet_ops_rwsem);
1720 rtnl_lock();
1721 err = raw_notifier_chain_register(&netdev_chain, nb);
1722 if (err)
1723 goto unlock;
1724 if (dev_boot_phase)
1725 goto unlock;
1726 for_each_net(net) {
1727 err = call_netdevice_register_net_notifiers(nb, net);
1728 if (err)
1729 goto rollback;
1730 }
1731
1732unlock:
1733 rtnl_unlock();
1734 up_write(&pernet_ops_rwsem);
1735 return err;
1736
1737rollback:
1738 for_each_net_continue_reverse(net)
1739 call_netdevice_unregister_net_notifiers(nb, net);
1740
1741 raw_notifier_chain_unregister(&netdev_chain, nb);
1742 goto unlock;
1743}
1744EXPORT_SYMBOL(register_netdevice_notifier);
1745
1746/**
1747 * unregister_netdevice_notifier - unregister a network notifier block
1748 * @nb: notifier
1749 *
1750 * Unregister a notifier previously registered by
1751 * register_netdevice_notifier(). The notifier is unlinked into the
1752 * kernel structures and may then be reused. A negative errno code
1753 * is returned on a failure.
1754 *
1755 * After unregistering unregister and down device events are synthesized
1756 * for all devices on the device list to the removed notifier to remove
1757 * the need for special case cleanup code.
1758 */
1759
1760int unregister_netdevice_notifier(struct notifier_block *nb)
1761{
1762 struct net *net;
1763 int err;
1764
1765 /* Close race with setup_net() and cleanup_net() */
1766 down_write(&pernet_ops_rwsem);
1767 rtnl_lock();
1768 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1769 if (err)
1770 goto unlock;
1771
1772 for_each_net(net)
1773 call_netdevice_unregister_net_notifiers(nb, net);
1774
1775unlock:
1776 rtnl_unlock();
1777 up_write(&pernet_ops_rwsem);
1778 return err;
1779}
1780EXPORT_SYMBOL(unregister_netdevice_notifier);
1781
1782static int __register_netdevice_notifier_net(struct net *net,
1783 struct notifier_block *nb,
1784 bool ignore_call_fail)
1785{
1786 int err;
1787
1788 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1789 if (err)
1790 return err;
1791 if (dev_boot_phase)
1792 return 0;
1793
1794 err = call_netdevice_register_net_notifiers(nb, net);
1795 if (err && !ignore_call_fail)
1796 goto chain_unregister;
1797
1798 return 0;
1799
1800chain_unregister:
1801 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1802 return err;
1803}
1804
1805static int __unregister_netdevice_notifier_net(struct net *net,
1806 struct notifier_block *nb)
1807{
1808 int err;
1809
1810 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1811 if (err)
1812 return err;
1813
1814 call_netdevice_unregister_net_notifiers(nb, net);
1815 return 0;
1816}
1817
1818/**
1819 * register_netdevice_notifier_net - register a per-netns network notifier block
1820 * @net: network namespace
1821 * @nb: notifier
1822 *
1823 * Register a notifier to be called when network device events occur.
1824 * The notifier passed is linked into the kernel structures and must
1825 * not be reused until it has been unregistered. A negative errno code
1826 * is returned on a failure.
1827 *
1828 * When registered all registration and up events are replayed
1829 * to the new notifier to allow device to have a race free
1830 * view of the network device list.
1831 */
1832
1833int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1834{
1835 int err;
1836
1837 rtnl_lock();
1838 err = __register_netdevice_notifier_net(net, nb, false);
1839 rtnl_unlock();
1840 return err;
1841}
1842EXPORT_SYMBOL(register_netdevice_notifier_net);
1843
1844/**
1845 * unregister_netdevice_notifier_net - unregister a per-netns
1846 * network notifier block
1847 * @net: network namespace
1848 * @nb: notifier
1849 *
1850 * Unregister a notifier previously registered by
1851 * register_netdevice_notifier(). The notifier is unlinked into the
1852 * kernel structures and may then be reused. A negative errno code
1853 * is returned on a failure.
1854 *
1855 * After unregistering unregister and down device events are synthesized
1856 * for all devices on the device list to the removed notifier to remove
1857 * the need for special case cleanup code.
1858 */
1859
1860int unregister_netdevice_notifier_net(struct net *net,
1861 struct notifier_block *nb)
1862{
1863 int err;
1864
1865 rtnl_lock();
1866 err = __unregister_netdevice_notifier_net(net, nb);
1867 rtnl_unlock();
1868 return err;
1869}
1870EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1871
1872int register_netdevice_notifier_dev_net(struct net_device *dev,
1873 struct notifier_block *nb,
1874 struct netdev_net_notifier *nn)
1875{
1876 int err;
1877
1878 rtnl_lock();
1879 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1880 if (!err) {
1881 nn->nb = nb;
1882 list_add(&nn->list, &dev->net_notifier_list);
1883 }
1884 rtnl_unlock();
1885 return err;
1886}
1887EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1888
1889int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1890 struct notifier_block *nb,
1891 struct netdev_net_notifier *nn)
1892{
1893 int err;
1894
1895 rtnl_lock();
1896 list_del(&nn->list);
1897 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1898 rtnl_unlock();
1899 return err;
1900}
1901EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1902
1903static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1904 struct net *net)
1905{
1906 struct netdev_net_notifier *nn;
1907
1908 list_for_each_entry(nn, &dev->net_notifier_list, list) {
1909 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1910 __register_netdevice_notifier_net(net, nn->nb, true);
1911 }
1912}
1913
1914/**
1915 * call_netdevice_notifiers_info - call all network notifier blocks
1916 * @val: value passed unmodified to notifier function
1917 * @info: notifier information data
1918 *
1919 * Call all network notifier blocks. Parameters and return value
1920 * are as for raw_notifier_call_chain().
1921 */
1922
1923static int call_netdevice_notifiers_info(unsigned long val,
1924 struct netdev_notifier_info *info)
1925{
1926 struct net *net = dev_net(info->dev);
1927 int ret;
1928
1929 ASSERT_RTNL();
1930
1931 /* Run per-netns notifier block chain first, then run the global one.
1932 * Hopefully, one day, the global one is going to be removed after
1933 * all notifier block registrators get converted to be per-netns.
1934 */
1935 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1936 if (ret & NOTIFY_STOP_MASK)
1937 return ret;
1938 return raw_notifier_call_chain(&netdev_chain, val, info);
1939}
1940
1941/**
1942 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1943 * for and rollback on error
1944 * @val_up: value passed unmodified to notifier function
1945 * @val_down: value passed unmodified to the notifier function when
1946 * recovering from an error on @val_up
1947 * @info: notifier information data
1948 *
1949 * Call all per-netns network notifier blocks, but not notifier blocks on
1950 * the global notifier chain. Parameters and return value are as for
1951 * raw_notifier_call_chain_robust().
1952 */
1953
1954static int
1955call_netdevice_notifiers_info_robust(unsigned long val_up,
1956 unsigned long val_down,
1957 struct netdev_notifier_info *info)
1958{
1959 struct net *net = dev_net(info->dev);
1960
1961 ASSERT_RTNL();
1962
1963 return raw_notifier_call_chain_robust(&net->netdev_chain,
1964 val_up, val_down, info);
1965}
1966
1967static int call_netdevice_notifiers_extack(unsigned long val,
1968 struct net_device *dev,
1969 struct netlink_ext_ack *extack)
1970{
1971 struct netdev_notifier_info info = {
1972 .dev = dev,
1973 .extack = extack,
1974 };
1975
1976 return call_netdevice_notifiers_info(val, &info);
1977}
1978
1979/**
1980 * call_netdevice_notifiers - call all network notifier blocks
1981 * @val: value passed unmodified to notifier function
1982 * @dev: net_device pointer passed unmodified to notifier function
1983 *
1984 * Call all network notifier blocks. Parameters and return value
1985 * are as for raw_notifier_call_chain().
1986 */
1987
1988int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1989{
1990 return call_netdevice_notifiers_extack(val, dev, NULL);
1991}
1992EXPORT_SYMBOL(call_netdevice_notifiers);
1993
1994/**
1995 * call_netdevice_notifiers_mtu - call all network notifier blocks
1996 * @val: value passed unmodified to notifier function
1997 * @dev: net_device pointer passed unmodified to notifier function
1998 * @arg: additional u32 argument passed to the notifier function
1999 *
2000 * Call all network notifier blocks. Parameters and return value
2001 * are as for raw_notifier_call_chain().
2002 */
2003static int call_netdevice_notifiers_mtu(unsigned long val,
2004 struct net_device *dev, u32 arg)
2005{
2006 struct netdev_notifier_info_ext info = {
2007 .info.dev = dev,
2008 .ext.mtu = arg,
2009 };
2010
2011 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2012
2013 return call_netdevice_notifiers_info(val, &info.info);
2014}
2015
2016#ifdef CONFIG_NET_INGRESS
2017static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2018
2019void net_inc_ingress_queue(void)
2020{
2021 static_branch_inc(&ingress_needed_key);
2022}
2023EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2024
2025void net_dec_ingress_queue(void)
2026{
2027 static_branch_dec(&ingress_needed_key);
2028}
2029EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2030#endif
2031
2032#ifdef CONFIG_NET_EGRESS
2033static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2034
2035void net_inc_egress_queue(void)
2036{
2037 static_branch_inc(&egress_needed_key);
2038}
2039EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2040
2041void net_dec_egress_queue(void)
2042{
2043 static_branch_dec(&egress_needed_key);
2044}
2045EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2046#endif
2047
2048DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2049EXPORT_SYMBOL(netstamp_needed_key);
2050#ifdef CONFIG_JUMP_LABEL
2051static atomic_t netstamp_needed_deferred;
2052static atomic_t netstamp_wanted;
2053static void netstamp_clear(struct work_struct *work)
2054{
2055 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2056 int wanted;
2057
2058 wanted = atomic_add_return(deferred, &netstamp_wanted);
2059 if (wanted > 0)
2060 static_branch_enable(&netstamp_needed_key);
2061 else
2062 static_branch_disable(&netstamp_needed_key);
2063}
2064static DECLARE_WORK(netstamp_work, netstamp_clear);
2065#endif
2066
2067void net_enable_timestamp(void)
2068{
2069#ifdef CONFIG_JUMP_LABEL
2070 int wanted;
2071
2072 while (1) {
2073 wanted = atomic_read(&netstamp_wanted);
2074 if (wanted <= 0)
2075 break;
2076 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2077 return;
2078 }
2079 atomic_inc(&netstamp_needed_deferred);
2080 schedule_work(&netstamp_work);
2081#else
2082 static_branch_inc(&netstamp_needed_key);
2083#endif
2084}
2085EXPORT_SYMBOL(net_enable_timestamp);
2086
2087void net_disable_timestamp(void)
2088{
2089#ifdef CONFIG_JUMP_LABEL
2090 int wanted;
2091
2092 while (1) {
2093 wanted = atomic_read(&netstamp_wanted);
2094 if (wanted <= 1)
2095 break;
2096 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2097 return;
2098 }
2099 atomic_dec(&netstamp_needed_deferred);
2100 schedule_work(&netstamp_work);
2101#else
2102 static_branch_dec(&netstamp_needed_key);
2103#endif
2104}
2105EXPORT_SYMBOL(net_disable_timestamp);
2106
2107static inline void net_timestamp_set(struct sk_buff *skb)
2108{
2109 skb->tstamp = 0;
2110 skb->mono_delivery_time = 0;
2111 if (static_branch_unlikely(&netstamp_needed_key))
2112 skb->tstamp = ktime_get_real();
2113}
2114
2115#define net_timestamp_check(COND, SKB) \
2116 if (static_branch_unlikely(&netstamp_needed_key)) { \
2117 if ((COND) && !(SKB)->tstamp) \
2118 (SKB)->tstamp = ktime_get_real(); \
2119 } \
2120
2121bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2122{
2123 return __is_skb_forwardable(dev, skb, true);
2124}
2125EXPORT_SYMBOL_GPL(is_skb_forwardable);
2126
2127static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2128 bool check_mtu)
2129{
2130 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2131
2132 if (likely(!ret)) {
2133 skb->protocol = eth_type_trans(skb, dev);
2134 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2135 }
2136
2137 return ret;
2138}
2139
2140int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2141{
2142 return __dev_forward_skb2(dev, skb, true);
2143}
2144EXPORT_SYMBOL_GPL(__dev_forward_skb);
2145
2146/**
2147 * dev_forward_skb - loopback an skb to another netif
2148 *
2149 * @dev: destination network device
2150 * @skb: buffer to forward
2151 *
2152 * return values:
2153 * NET_RX_SUCCESS (no congestion)
2154 * NET_RX_DROP (packet was dropped, but freed)
2155 *
2156 * dev_forward_skb can be used for injecting an skb from the
2157 * start_xmit function of one device into the receive queue
2158 * of another device.
2159 *
2160 * The receiving device may be in another namespace, so
2161 * we have to clear all information in the skb that could
2162 * impact namespace isolation.
2163 */
2164int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2165{
2166 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2167}
2168EXPORT_SYMBOL_GPL(dev_forward_skb);
2169
2170int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2171{
2172 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2173}
2174
2175static inline int deliver_skb(struct sk_buff *skb,
2176 struct packet_type *pt_prev,
2177 struct net_device *orig_dev)
2178{
2179 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2180 return -ENOMEM;
2181 refcount_inc(&skb->users);
2182 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2183}
2184
2185static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2186 struct packet_type **pt,
2187 struct net_device *orig_dev,
2188 __be16 type,
2189 struct list_head *ptype_list)
2190{
2191 struct packet_type *ptype, *pt_prev = *pt;
2192
2193 list_for_each_entry_rcu(ptype, ptype_list, list) {
2194 if (ptype->type != type)
2195 continue;
2196 if (pt_prev)
2197 deliver_skb(skb, pt_prev, orig_dev);
2198 pt_prev = ptype;
2199 }
2200 *pt = pt_prev;
2201}
2202
2203static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2204{
2205 if (!ptype->af_packet_priv || !skb->sk)
2206 return false;
2207
2208 if (ptype->id_match)
2209 return ptype->id_match(ptype, skb->sk);
2210 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2211 return true;
2212
2213 return false;
2214}
2215
2216/**
2217 * dev_nit_active - return true if any network interface taps are in use
2218 *
2219 * @dev: network device to check for the presence of taps
2220 */
2221bool dev_nit_active(struct net_device *dev)
2222{
2223 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2224}
2225EXPORT_SYMBOL_GPL(dev_nit_active);
2226
2227/*
2228 * Support routine. Sends outgoing frames to any network
2229 * taps currently in use.
2230 */
2231
2232void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2233{
2234 struct packet_type *ptype;
2235 struct sk_buff *skb2 = NULL;
2236 struct packet_type *pt_prev = NULL;
2237 struct list_head *ptype_list = &ptype_all;
2238
2239 rcu_read_lock();
2240again:
2241 list_for_each_entry_rcu(ptype, ptype_list, list) {
2242 if (ptype->ignore_outgoing)
2243 continue;
2244
2245 /* Never send packets back to the socket
2246 * they originated from - MvS (miquels@drinkel.ow.org)
2247 */
2248 if (skb_loop_sk(ptype, skb))
2249 continue;
2250
2251 if (pt_prev) {
2252 deliver_skb(skb2, pt_prev, skb->dev);
2253 pt_prev = ptype;
2254 continue;
2255 }
2256
2257 /* need to clone skb, done only once */
2258 skb2 = skb_clone(skb, GFP_ATOMIC);
2259 if (!skb2)
2260 goto out_unlock;
2261
2262 net_timestamp_set(skb2);
2263
2264 /* skb->nh should be correctly
2265 * set by sender, so that the second statement is
2266 * just protection against buggy protocols.
2267 */
2268 skb_reset_mac_header(skb2);
2269
2270 if (skb_network_header(skb2) < skb2->data ||
2271 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2272 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2273 ntohs(skb2->protocol),
2274 dev->name);
2275 skb_reset_network_header(skb2);
2276 }
2277
2278 skb2->transport_header = skb2->network_header;
2279 skb2->pkt_type = PACKET_OUTGOING;
2280 pt_prev = ptype;
2281 }
2282
2283 if (ptype_list == &ptype_all) {
2284 ptype_list = &dev->ptype_all;
2285 goto again;
2286 }
2287out_unlock:
2288 if (pt_prev) {
2289 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2290 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2291 else
2292 kfree_skb(skb2);
2293 }
2294 rcu_read_unlock();
2295}
2296EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2297
2298/**
2299 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2300 * @dev: Network device
2301 * @txq: number of queues available
2302 *
2303 * If real_num_tx_queues is changed the tc mappings may no longer be
2304 * valid. To resolve this verify the tc mapping remains valid and if
2305 * not NULL the mapping. With no priorities mapping to this
2306 * offset/count pair it will no longer be used. In the worst case TC0
2307 * is invalid nothing can be done so disable priority mappings. If is
2308 * expected that drivers will fix this mapping if they can before
2309 * calling netif_set_real_num_tx_queues.
2310 */
2311static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2312{
2313 int i;
2314 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2315
2316 /* If TC0 is invalidated disable TC mapping */
2317 if (tc->offset + tc->count > txq) {
2318 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2319 dev->num_tc = 0;
2320 return;
2321 }
2322
2323 /* Invalidated prio to tc mappings set to TC0 */
2324 for (i = 1; i < TC_BITMASK + 1; i++) {
2325 int q = netdev_get_prio_tc_map(dev, i);
2326
2327 tc = &dev->tc_to_txq[q];
2328 if (tc->offset + tc->count > txq) {
2329 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2330 i, q);
2331 netdev_set_prio_tc_map(dev, i, 0);
2332 }
2333 }
2334}
2335
2336int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2337{
2338 if (dev->num_tc) {
2339 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2340 int i;
2341
2342 /* walk through the TCs and see if it falls into any of them */
2343 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2344 if ((txq - tc->offset) < tc->count)
2345 return i;
2346 }
2347
2348 /* didn't find it, just return -1 to indicate no match */
2349 return -1;
2350 }
2351
2352 return 0;
2353}
2354EXPORT_SYMBOL(netdev_txq_to_tc);
2355
2356#ifdef CONFIG_XPS
2357static struct static_key xps_needed __read_mostly;
2358static struct static_key xps_rxqs_needed __read_mostly;
2359static DEFINE_MUTEX(xps_map_mutex);
2360#define xmap_dereference(P) \
2361 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2362
2363static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2364 struct xps_dev_maps *old_maps, int tci, u16 index)
2365{
2366 struct xps_map *map = NULL;
2367 int pos;
2368
2369 if (dev_maps)
2370 map = xmap_dereference(dev_maps->attr_map[tci]);
2371 if (!map)
2372 return false;
2373
2374 for (pos = map->len; pos--;) {
2375 if (map->queues[pos] != index)
2376 continue;
2377
2378 if (map->len > 1) {
2379 map->queues[pos] = map->queues[--map->len];
2380 break;
2381 }
2382
2383 if (old_maps)
2384 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2385 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2386 kfree_rcu(map, rcu);
2387 return false;
2388 }
2389
2390 return true;
2391}
2392
2393static bool remove_xps_queue_cpu(struct net_device *dev,
2394 struct xps_dev_maps *dev_maps,
2395 int cpu, u16 offset, u16 count)
2396{
2397 int num_tc = dev_maps->num_tc;
2398 bool active = false;
2399 int tci;
2400
2401 for (tci = cpu * num_tc; num_tc--; tci++) {
2402 int i, j;
2403
2404 for (i = count, j = offset; i--; j++) {
2405 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2406 break;
2407 }
2408
2409 active |= i < 0;
2410 }
2411
2412 return active;
2413}
2414
2415static void reset_xps_maps(struct net_device *dev,
2416 struct xps_dev_maps *dev_maps,
2417 enum xps_map_type type)
2418{
2419 static_key_slow_dec_cpuslocked(&xps_needed);
2420 if (type == XPS_RXQS)
2421 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2422
2423 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2424
2425 kfree_rcu(dev_maps, rcu);
2426}
2427
2428static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2429 u16 offset, u16 count)
2430{
2431 struct xps_dev_maps *dev_maps;
2432 bool active = false;
2433 int i, j;
2434
2435 dev_maps = xmap_dereference(dev->xps_maps[type]);
2436 if (!dev_maps)
2437 return;
2438
2439 for (j = 0; j < dev_maps->nr_ids; j++)
2440 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2441 if (!active)
2442 reset_xps_maps(dev, dev_maps, type);
2443
2444 if (type == XPS_CPUS) {
2445 for (i = offset + (count - 1); count--; i--)
2446 netdev_queue_numa_node_write(
2447 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2448 }
2449}
2450
2451static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2452 u16 count)
2453{
2454 if (!static_key_false(&xps_needed))
2455 return;
2456
2457 cpus_read_lock();
2458 mutex_lock(&xps_map_mutex);
2459
2460 if (static_key_false(&xps_rxqs_needed))
2461 clean_xps_maps(dev, XPS_RXQS, offset, count);
2462
2463 clean_xps_maps(dev, XPS_CPUS, offset, count);
2464
2465 mutex_unlock(&xps_map_mutex);
2466 cpus_read_unlock();
2467}
2468
2469static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2470{
2471 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2472}
2473
2474static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2475 u16 index, bool is_rxqs_map)
2476{
2477 struct xps_map *new_map;
2478 int alloc_len = XPS_MIN_MAP_ALLOC;
2479 int i, pos;
2480
2481 for (pos = 0; map && pos < map->len; pos++) {
2482 if (map->queues[pos] != index)
2483 continue;
2484 return map;
2485 }
2486
2487 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2488 if (map) {
2489 if (pos < map->alloc_len)
2490 return map;
2491
2492 alloc_len = map->alloc_len * 2;
2493 }
2494
2495 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2496 * map
2497 */
2498 if (is_rxqs_map)
2499 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2500 else
2501 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2502 cpu_to_node(attr_index));
2503 if (!new_map)
2504 return NULL;
2505
2506 for (i = 0; i < pos; i++)
2507 new_map->queues[i] = map->queues[i];
2508 new_map->alloc_len = alloc_len;
2509 new_map->len = pos;
2510
2511 return new_map;
2512}
2513
2514/* Copy xps maps at a given index */
2515static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2516 struct xps_dev_maps *new_dev_maps, int index,
2517 int tc, bool skip_tc)
2518{
2519 int i, tci = index * dev_maps->num_tc;
2520 struct xps_map *map;
2521
2522 /* copy maps belonging to foreign traffic classes */
2523 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2524 if (i == tc && skip_tc)
2525 continue;
2526
2527 /* fill in the new device map from the old device map */
2528 map = xmap_dereference(dev_maps->attr_map[tci]);
2529 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2530 }
2531}
2532
2533/* Must be called under cpus_read_lock */
2534int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2535 u16 index, enum xps_map_type type)
2536{
2537 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2538 const unsigned long *online_mask = NULL;
2539 bool active = false, copy = false;
2540 int i, j, tci, numa_node_id = -2;
2541 int maps_sz, num_tc = 1, tc = 0;
2542 struct xps_map *map, *new_map;
2543 unsigned int nr_ids;
2544
2545 if (dev->num_tc) {
2546 /* Do not allow XPS on subordinate device directly */
2547 num_tc = dev->num_tc;
2548 if (num_tc < 0)
2549 return -EINVAL;
2550
2551 /* If queue belongs to subordinate dev use its map */
2552 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2553
2554 tc = netdev_txq_to_tc(dev, index);
2555 if (tc < 0)
2556 return -EINVAL;
2557 }
2558
2559 mutex_lock(&xps_map_mutex);
2560
2561 dev_maps = xmap_dereference(dev->xps_maps[type]);
2562 if (type == XPS_RXQS) {
2563 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2564 nr_ids = dev->num_rx_queues;
2565 } else {
2566 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2567 if (num_possible_cpus() > 1)
2568 online_mask = cpumask_bits(cpu_online_mask);
2569 nr_ids = nr_cpu_ids;
2570 }
2571
2572 if (maps_sz < L1_CACHE_BYTES)
2573 maps_sz = L1_CACHE_BYTES;
2574
2575 /* The old dev_maps could be larger or smaller than the one we're
2576 * setting up now, as dev->num_tc or nr_ids could have been updated in
2577 * between. We could try to be smart, but let's be safe instead and only
2578 * copy foreign traffic classes if the two map sizes match.
2579 */
2580 if (dev_maps &&
2581 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2582 copy = true;
2583
2584 /* allocate memory for queue storage */
2585 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2586 j < nr_ids;) {
2587 if (!new_dev_maps) {
2588 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2589 if (!new_dev_maps) {
2590 mutex_unlock(&xps_map_mutex);
2591 return -ENOMEM;
2592 }
2593
2594 new_dev_maps->nr_ids = nr_ids;
2595 new_dev_maps->num_tc = num_tc;
2596 }
2597
2598 tci = j * num_tc + tc;
2599 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2600
2601 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2602 if (!map)
2603 goto error;
2604
2605 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2606 }
2607
2608 if (!new_dev_maps)
2609 goto out_no_new_maps;
2610
2611 if (!dev_maps) {
2612 /* Increment static keys at most once per type */
2613 static_key_slow_inc_cpuslocked(&xps_needed);
2614 if (type == XPS_RXQS)
2615 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2616 }
2617
2618 for (j = 0; j < nr_ids; j++) {
2619 bool skip_tc = false;
2620
2621 tci = j * num_tc + tc;
2622 if (netif_attr_test_mask(j, mask, nr_ids) &&
2623 netif_attr_test_online(j, online_mask, nr_ids)) {
2624 /* add tx-queue to CPU/rx-queue maps */
2625 int pos = 0;
2626
2627 skip_tc = true;
2628
2629 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2630 while ((pos < map->len) && (map->queues[pos] != index))
2631 pos++;
2632
2633 if (pos == map->len)
2634 map->queues[map->len++] = index;
2635#ifdef CONFIG_NUMA
2636 if (type == XPS_CPUS) {
2637 if (numa_node_id == -2)
2638 numa_node_id = cpu_to_node(j);
2639 else if (numa_node_id != cpu_to_node(j))
2640 numa_node_id = -1;
2641 }
2642#endif
2643 }
2644
2645 if (copy)
2646 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2647 skip_tc);
2648 }
2649
2650 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2651
2652 /* Cleanup old maps */
2653 if (!dev_maps)
2654 goto out_no_old_maps;
2655
2656 for (j = 0; j < dev_maps->nr_ids; j++) {
2657 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2658 map = xmap_dereference(dev_maps->attr_map[tci]);
2659 if (!map)
2660 continue;
2661
2662 if (copy) {
2663 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2664 if (map == new_map)
2665 continue;
2666 }
2667
2668 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2669 kfree_rcu(map, rcu);
2670 }
2671 }
2672
2673 old_dev_maps = dev_maps;
2674
2675out_no_old_maps:
2676 dev_maps = new_dev_maps;
2677 active = true;
2678
2679out_no_new_maps:
2680 if (type == XPS_CPUS)
2681 /* update Tx queue numa node */
2682 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2683 (numa_node_id >= 0) ?
2684 numa_node_id : NUMA_NO_NODE);
2685
2686 if (!dev_maps)
2687 goto out_no_maps;
2688
2689 /* removes tx-queue from unused CPUs/rx-queues */
2690 for (j = 0; j < dev_maps->nr_ids; j++) {
2691 tci = j * dev_maps->num_tc;
2692
2693 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2694 if (i == tc &&
2695 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2696 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2697 continue;
2698
2699 active |= remove_xps_queue(dev_maps,
2700 copy ? old_dev_maps : NULL,
2701 tci, index);
2702 }
2703 }
2704
2705 if (old_dev_maps)
2706 kfree_rcu(old_dev_maps, rcu);
2707
2708 /* free map if not active */
2709 if (!active)
2710 reset_xps_maps(dev, dev_maps, type);
2711
2712out_no_maps:
2713 mutex_unlock(&xps_map_mutex);
2714
2715 return 0;
2716error:
2717 /* remove any maps that we added */
2718 for (j = 0; j < nr_ids; j++) {
2719 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2720 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2721 map = copy ?
2722 xmap_dereference(dev_maps->attr_map[tci]) :
2723 NULL;
2724 if (new_map && new_map != map)
2725 kfree(new_map);
2726 }
2727 }
2728
2729 mutex_unlock(&xps_map_mutex);
2730
2731 kfree(new_dev_maps);
2732 return -ENOMEM;
2733}
2734EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2735
2736int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2737 u16 index)
2738{
2739 int ret;
2740
2741 cpus_read_lock();
2742 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2743 cpus_read_unlock();
2744
2745 return ret;
2746}
2747EXPORT_SYMBOL(netif_set_xps_queue);
2748
2749#endif
2750static void netdev_unbind_all_sb_channels(struct net_device *dev)
2751{
2752 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2753
2754 /* Unbind any subordinate channels */
2755 while (txq-- != &dev->_tx[0]) {
2756 if (txq->sb_dev)
2757 netdev_unbind_sb_channel(dev, txq->sb_dev);
2758 }
2759}
2760
2761void netdev_reset_tc(struct net_device *dev)
2762{
2763#ifdef CONFIG_XPS
2764 netif_reset_xps_queues_gt(dev, 0);
2765#endif
2766 netdev_unbind_all_sb_channels(dev);
2767
2768 /* Reset TC configuration of device */
2769 dev->num_tc = 0;
2770 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2771 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2772}
2773EXPORT_SYMBOL(netdev_reset_tc);
2774
2775int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2776{
2777 if (tc >= dev->num_tc)
2778 return -EINVAL;
2779
2780#ifdef CONFIG_XPS
2781 netif_reset_xps_queues(dev, offset, count);
2782#endif
2783 dev->tc_to_txq[tc].count = count;
2784 dev->tc_to_txq[tc].offset = offset;
2785 return 0;
2786}
2787EXPORT_SYMBOL(netdev_set_tc_queue);
2788
2789int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2790{
2791 if (num_tc > TC_MAX_QUEUE)
2792 return -EINVAL;
2793
2794#ifdef CONFIG_XPS
2795 netif_reset_xps_queues_gt(dev, 0);
2796#endif
2797 netdev_unbind_all_sb_channels(dev);
2798
2799 dev->num_tc = num_tc;
2800 return 0;
2801}
2802EXPORT_SYMBOL(netdev_set_num_tc);
2803
2804void netdev_unbind_sb_channel(struct net_device *dev,
2805 struct net_device *sb_dev)
2806{
2807 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2808
2809#ifdef CONFIG_XPS
2810 netif_reset_xps_queues_gt(sb_dev, 0);
2811#endif
2812 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2813 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2814
2815 while (txq-- != &dev->_tx[0]) {
2816 if (txq->sb_dev == sb_dev)
2817 txq->sb_dev = NULL;
2818 }
2819}
2820EXPORT_SYMBOL(netdev_unbind_sb_channel);
2821
2822int netdev_bind_sb_channel_queue(struct net_device *dev,
2823 struct net_device *sb_dev,
2824 u8 tc, u16 count, u16 offset)
2825{
2826 /* Make certain the sb_dev and dev are already configured */
2827 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2828 return -EINVAL;
2829
2830 /* We cannot hand out queues we don't have */
2831 if ((offset + count) > dev->real_num_tx_queues)
2832 return -EINVAL;
2833
2834 /* Record the mapping */
2835 sb_dev->tc_to_txq[tc].count = count;
2836 sb_dev->tc_to_txq[tc].offset = offset;
2837
2838 /* Provide a way for Tx queue to find the tc_to_txq map or
2839 * XPS map for itself.
2840 */
2841 while (count--)
2842 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2843
2844 return 0;
2845}
2846EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2847
2848int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2849{
2850 /* Do not use a multiqueue device to represent a subordinate channel */
2851 if (netif_is_multiqueue(dev))
2852 return -ENODEV;
2853
2854 /* We allow channels 1 - 32767 to be used for subordinate channels.
2855 * Channel 0 is meant to be "native" mode and used only to represent
2856 * the main root device. We allow writing 0 to reset the device back
2857 * to normal mode after being used as a subordinate channel.
2858 */
2859 if (channel > S16_MAX)
2860 return -EINVAL;
2861
2862 dev->num_tc = -channel;
2863
2864 return 0;
2865}
2866EXPORT_SYMBOL(netdev_set_sb_channel);
2867
2868/*
2869 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2870 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2871 */
2872int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2873{
2874 bool disabling;
2875 int rc;
2876
2877 disabling = txq < dev->real_num_tx_queues;
2878
2879 if (txq < 1 || txq > dev->num_tx_queues)
2880 return -EINVAL;
2881
2882 if (dev->reg_state == NETREG_REGISTERED ||
2883 dev->reg_state == NETREG_UNREGISTERING) {
2884 ASSERT_RTNL();
2885
2886 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2887 txq);
2888 if (rc)
2889 return rc;
2890
2891 if (dev->num_tc)
2892 netif_setup_tc(dev, txq);
2893
2894 dev_qdisc_change_real_num_tx(dev, txq);
2895
2896 dev->real_num_tx_queues = txq;
2897
2898 if (disabling) {
2899 synchronize_net();
2900 qdisc_reset_all_tx_gt(dev, txq);
2901#ifdef CONFIG_XPS
2902 netif_reset_xps_queues_gt(dev, txq);
2903#endif
2904 }
2905 } else {
2906 dev->real_num_tx_queues = txq;
2907 }
2908
2909 return 0;
2910}
2911EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2912
2913#ifdef CONFIG_SYSFS
2914/**
2915 * netif_set_real_num_rx_queues - set actual number of RX queues used
2916 * @dev: Network device
2917 * @rxq: Actual number of RX queues
2918 *
2919 * This must be called either with the rtnl_lock held or before
2920 * registration of the net device. Returns 0 on success, or a
2921 * negative error code. If called before registration, it always
2922 * succeeds.
2923 */
2924int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2925{
2926 int rc;
2927
2928 if (rxq < 1 || rxq > dev->num_rx_queues)
2929 return -EINVAL;
2930
2931 if (dev->reg_state == NETREG_REGISTERED) {
2932 ASSERT_RTNL();
2933
2934 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2935 rxq);
2936 if (rc)
2937 return rc;
2938 }
2939
2940 dev->real_num_rx_queues = rxq;
2941 return 0;
2942}
2943EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2944#endif
2945
2946/**
2947 * netif_set_real_num_queues - set actual number of RX and TX queues used
2948 * @dev: Network device
2949 * @txq: Actual number of TX queues
2950 * @rxq: Actual number of RX queues
2951 *
2952 * Set the real number of both TX and RX queues.
2953 * Does nothing if the number of queues is already correct.
2954 */
2955int netif_set_real_num_queues(struct net_device *dev,
2956 unsigned int txq, unsigned int rxq)
2957{
2958 unsigned int old_rxq = dev->real_num_rx_queues;
2959 int err;
2960
2961 if (txq < 1 || txq > dev->num_tx_queues ||
2962 rxq < 1 || rxq > dev->num_rx_queues)
2963 return -EINVAL;
2964
2965 /* Start from increases, so the error path only does decreases -
2966 * decreases can't fail.
2967 */
2968 if (rxq > dev->real_num_rx_queues) {
2969 err = netif_set_real_num_rx_queues(dev, rxq);
2970 if (err)
2971 return err;
2972 }
2973 if (txq > dev->real_num_tx_queues) {
2974 err = netif_set_real_num_tx_queues(dev, txq);
2975 if (err)
2976 goto undo_rx;
2977 }
2978 if (rxq < dev->real_num_rx_queues)
2979 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2980 if (txq < dev->real_num_tx_queues)
2981 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2982
2983 return 0;
2984undo_rx:
2985 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2986 return err;
2987}
2988EXPORT_SYMBOL(netif_set_real_num_queues);
2989
2990/**
2991 * netif_get_num_default_rss_queues - default number of RSS queues
2992 *
2993 * Default value is the number of physical cores if there are only 1 or 2, or
2994 * divided by 2 if there are more.
2995 */
2996int netif_get_num_default_rss_queues(void)
2997{
2998 cpumask_var_t cpus;
2999 int cpu, count = 0;
3000
3001 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3002 return 1;
3003
3004 cpumask_copy(cpus, cpu_online_mask);
3005 for_each_cpu(cpu, cpus) {
3006 ++count;
3007 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3008 }
3009 free_cpumask_var(cpus);
3010
3011 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3012}
3013EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3014
3015static void __netif_reschedule(struct Qdisc *q)
3016{
3017 struct softnet_data *sd;
3018 unsigned long flags;
3019
3020 local_irq_save(flags);
3021 sd = this_cpu_ptr(&softnet_data);
3022 q->next_sched = NULL;
3023 *sd->output_queue_tailp = q;
3024 sd->output_queue_tailp = &q->next_sched;
3025 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3026 local_irq_restore(flags);
3027}
3028
3029void __netif_schedule(struct Qdisc *q)
3030{
3031 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3032 __netif_reschedule(q);
3033}
3034EXPORT_SYMBOL(__netif_schedule);
3035
3036struct dev_kfree_skb_cb {
3037 enum skb_free_reason reason;
3038};
3039
3040static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3041{
3042 return (struct dev_kfree_skb_cb *)skb->cb;
3043}
3044
3045void netif_schedule_queue(struct netdev_queue *txq)
3046{
3047 rcu_read_lock();
3048 if (!netif_xmit_stopped(txq)) {
3049 struct Qdisc *q = rcu_dereference(txq->qdisc);
3050
3051 __netif_schedule(q);
3052 }
3053 rcu_read_unlock();
3054}
3055EXPORT_SYMBOL(netif_schedule_queue);
3056
3057void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3058{
3059 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3060 struct Qdisc *q;
3061
3062 rcu_read_lock();
3063 q = rcu_dereference(dev_queue->qdisc);
3064 __netif_schedule(q);
3065 rcu_read_unlock();
3066 }
3067}
3068EXPORT_SYMBOL(netif_tx_wake_queue);
3069
3070void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3071{
3072 unsigned long flags;
3073
3074 if (unlikely(!skb))
3075 return;
3076
3077 if (likely(refcount_read(&skb->users) == 1)) {
3078 smp_rmb();
3079 refcount_set(&skb->users, 0);
3080 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3081 return;
3082 }
3083 get_kfree_skb_cb(skb)->reason = reason;
3084 local_irq_save(flags);
3085 skb->next = __this_cpu_read(softnet_data.completion_queue);
3086 __this_cpu_write(softnet_data.completion_queue, skb);
3087 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3088 local_irq_restore(flags);
3089}
3090EXPORT_SYMBOL(__dev_kfree_skb_irq);
3091
3092void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3093{
3094 if (in_hardirq() || irqs_disabled())
3095 __dev_kfree_skb_irq(skb, reason);
3096 else
3097 dev_kfree_skb(skb);
3098}
3099EXPORT_SYMBOL(__dev_kfree_skb_any);
3100
3101
3102/**
3103 * netif_device_detach - mark device as removed
3104 * @dev: network device
3105 *
3106 * Mark device as removed from system and therefore no longer available.
3107 */
3108void netif_device_detach(struct net_device *dev)
3109{
3110 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3111 netif_running(dev)) {
3112 netif_tx_stop_all_queues(dev);
3113 }
3114}
3115EXPORT_SYMBOL(netif_device_detach);
3116
3117/**
3118 * netif_device_attach - mark device as attached
3119 * @dev: network device
3120 *
3121 * Mark device as attached from system and restart if needed.
3122 */
3123void netif_device_attach(struct net_device *dev)
3124{
3125 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3126 netif_running(dev)) {
3127 netif_tx_wake_all_queues(dev);
3128 __netdev_watchdog_up(dev);
3129 }
3130}
3131EXPORT_SYMBOL(netif_device_attach);
3132
3133/*
3134 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3135 * to be used as a distribution range.
3136 */
3137static u16 skb_tx_hash(const struct net_device *dev,
3138 const struct net_device *sb_dev,
3139 struct sk_buff *skb)
3140{
3141 u32 hash;
3142 u16 qoffset = 0;
3143 u16 qcount = dev->real_num_tx_queues;
3144
3145 if (dev->num_tc) {
3146 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3147
3148 qoffset = sb_dev->tc_to_txq[tc].offset;
3149 qcount = sb_dev->tc_to_txq[tc].count;
3150 if (unlikely(!qcount)) {
3151 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3152 sb_dev->name, qoffset, tc);
3153 qoffset = 0;
3154 qcount = dev->real_num_tx_queues;
3155 }
3156 }
3157
3158 if (skb_rx_queue_recorded(skb)) {
3159 hash = skb_get_rx_queue(skb);
3160 if (hash >= qoffset)
3161 hash -= qoffset;
3162 while (unlikely(hash >= qcount))
3163 hash -= qcount;
3164 return hash + qoffset;
3165 }
3166
3167 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3168}
3169
3170static void skb_warn_bad_offload(const struct sk_buff *skb)
3171{
3172 static const netdev_features_t null_features;
3173 struct net_device *dev = skb->dev;
3174 const char *name = "";
3175
3176 if (!net_ratelimit())
3177 return;
3178
3179 if (dev) {
3180 if (dev->dev.parent)
3181 name = dev_driver_string(dev->dev.parent);
3182 else
3183 name = netdev_name(dev);
3184 }
3185 skb_dump(KERN_WARNING, skb, false);
3186 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3187 name, dev ? &dev->features : &null_features,
3188 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3189}
3190
3191/*
3192 * Invalidate hardware checksum when packet is to be mangled, and
3193 * complete checksum manually on outgoing path.
3194 */
3195int skb_checksum_help(struct sk_buff *skb)
3196{
3197 __wsum csum;
3198 int ret = 0, offset;
3199
3200 if (skb->ip_summed == CHECKSUM_COMPLETE)
3201 goto out_set_summed;
3202
3203 if (unlikely(skb_is_gso(skb))) {
3204 skb_warn_bad_offload(skb);
3205 return -EINVAL;
3206 }
3207
3208 /* Before computing a checksum, we should make sure no frag could
3209 * be modified by an external entity : checksum could be wrong.
3210 */
3211 if (skb_has_shared_frag(skb)) {
3212 ret = __skb_linearize(skb);
3213 if (ret)
3214 goto out;
3215 }
3216
3217 offset = skb_checksum_start_offset(skb);
3218 BUG_ON(offset >= skb_headlen(skb));
3219 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3220
3221 offset += skb->csum_offset;
3222 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3223
3224 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3225 if (ret)
3226 goto out;
3227
3228 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3229out_set_summed:
3230 skb->ip_summed = CHECKSUM_NONE;
3231out:
3232 return ret;
3233}
3234EXPORT_SYMBOL(skb_checksum_help);
3235
3236int skb_crc32c_csum_help(struct sk_buff *skb)
3237{
3238 __le32 crc32c_csum;
3239 int ret = 0, offset, start;
3240
3241 if (skb->ip_summed != CHECKSUM_PARTIAL)
3242 goto out;
3243
3244 if (unlikely(skb_is_gso(skb)))
3245 goto out;
3246
3247 /* Before computing a checksum, we should make sure no frag could
3248 * be modified by an external entity : checksum could be wrong.
3249 */
3250 if (unlikely(skb_has_shared_frag(skb))) {
3251 ret = __skb_linearize(skb);
3252 if (ret)
3253 goto out;
3254 }
3255 start = skb_checksum_start_offset(skb);
3256 offset = start + offsetof(struct sctphdr, checksum);
3257 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3258 ret = -EINVAL;
3259 goto out;
3260 }
3261
3262 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3263 if (ret)
3264 goto out;
3265
3266 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3267 skb->len - start, ~(__u32)0,
3268 crc32c_csum_stub));
3269 *(__le32 *)(skb->data + offset) = crc32c_csum;
3270 skb->ip_summed = CHECKSUM_NONE;
3271 skb->csum_not_inet = 0;
3272out:
3273 return ret;
3274}
3275
3276__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3277{
3278 __be16 type = skb->protocol;
3279
3280 /* Tunnel gso handlers can set protocol to ethernet. */
3281 if (type == htons(ETH_P_TEB)) {
3282 struct ethhdr *eth;
3283
3284 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3285 return 0;
3286
3287 eth = (struct ethhdr *)skb->data;
3288 type = eth->h_proto;
3289 }
3290
3291 return __vlan_get_protocol(skb, type, depth);
3292}
3293
3294/* openvswitch calls this on rx path, so we need a different check.
3295 */
3296static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3297{
3298 if (tx_path)
3299 return skb->ip_summed != CHECKSUM_PARTIAL &&
3300 skb->ip_summed != CHECKSUM_UNNECESSARY;
3301
3302 return skb->ip_summed == CHECKSUM_NONE;
3303}
3304
3305/**
3306 * __skb_gso_segment - Perform segmentation on skb.
3307 * @skb: buffer to segment
3308 * @features: features for the output path (see dev->features)
3309 * @tx_path: whether it is called in TX path
3310 *
3311 * This function segments the given skb and returns a list of segments.
3312 *
3313 * It may return NULL if the skb requires no segmentation. This is
3314 * only possible when GSO is used for verifying header integrity.
3315 *
3316 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3317 */
3318struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3319 netdev_features_t features, bool tx_path)
3320{
3321 struct sk_buff *segs;
3322
3323 if (unlikely(skb_needs_check(skb, tx_path))) {
3324 int err;
3325
3326 /* We're going to init ->check field in TCP or UDP header */
3327 err = skb_cow_head(skb, 0);
3328 if (err < 0)
3329 return ERR_PTR(err);
3330 }
3331
3332 /* Only report GSO partial support if it will enable us to
3333 * support segmentation on this frame without needing additional
3334 * work.
3335 */
3336 if (features & NETIF_F_GSO_PARTIAL) {
3337 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3338 struct net_device *dev = skb->dev;
3339
3340 partial_features |= dev->features & dev->gso_partial_features;
3341 if (!skb_gso_ok(skb, features | partial_features))
3342 features &= ~NETIF_F_GSO_PARTIAL;
3343 }
3344
3345 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3346 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3347
3348 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3349 SKB_GSO_CB(skb)->encap_level = 0;
3350
3351 skb_reset_mac_header(skb);
3352 skb_reset_mac_len(skb);
3353
3354 segs = skb_mac_gso_segment(skb, features);
3355
3356 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3357 skb_warn_bad_offload(skb);
3358
3359 return segs;
3360}
3361EXPORT_SYMBOL(__skb_gso_segment);
3362
3363/* Take action when hardware reception checksum errors are detected. */
3364#ifdef CONFIG_BUG
3365static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3366{
3367 netdev_err(dev, "hw csum failure\n");
3368 skb_dump(KERN_ERR, skb, true);
3369 dump_stack();
3370}
3371
3372void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3373{
3374 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3375}
3376EXPORT_SYMBOL(netdev_rx_csum_fault);
3377#endif
3378
3379/* XXX: check that highmem exists at all on the given machine. */
3380static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3381{
3382#ifdef CONFIG_HIGHMEM
3383 int i;
3384
3385 if (!(dev->features & NETIF_F_HIGHDMA)) {
3386 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3387 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3388
3389 if (PageHighMem(skb_frag_page(frag)))
3390 return 1;
3391 }
3392 }
3393#endif
3394 return 0;
3395}
3396
3397/* If MPLS offload request, verify we are testing hardware MPLS features
3398 * instead of standard features for the netdev.
3399 */
3400#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3401static netdev_features_t net_mpls_features(struct sk_buff *skb,
3402 netdev_features_t features,
3403 __be16 type)
3404{
3405 if (eth_p_mpls(type))
3406 features &= skb->dev->mpls_features;
3407
3408 return features;
3409}
3410#else
3411static netdev_features_t net_mpls_features(struct sk_buff *skb,
3412 netdev_features_t features,
3413 __be16 type)
3414{
3415 return features;
3416}
3417#endif
3418
3419static netdev_features_t harmonize_features(struct sk_buff *skb,
3420 netdev_features_t features)
3421{
3422 __be16 type;
3423
3424 type = skb_network_protocol(skb, NULL);
3425 features = net_mpls_features(skb, features, type);
3426
3427 if (skb->ip_summed != CHECKSUM_NONE &&
3428 !can_checksum_protocol(features, type)) {
3429 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3430 }
3431 if (illegal_highdma(skb->dev, skb))
3432 features &= ~NETIF_F_SG;
3433
3434 return features;
3435}
3436
3437netdev_features_t passthru_features_check(struct sk_buff *skb,
3438 struct net_device *dev,
3439 netdev_features_t features)
3440{
3441 return features;
3442}
3443EXPORT_SYMBOL(passthru_features_check);
3444
3445static netdev_features_t dflt_features_check(struct sk_buff *skb,
3446 struct net_device *dev,
3447 netdev_features_t features)
3448{
3449 return vlan_features_check(skb, features);
3450}
3451
3452static netdev_features_t gso_features_check(const struct sk_buff *skb,
3453 struct net_device *dev,
3454 netdev_features_t features)
3455{
3456 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3457
3458 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3459 return features & ~NETIF_F_GSO_MASK;
3460
3461 if (!skb_shinfo(skb)->gso_type) {
3462 skb_warn_bad_offload(skb);
3463 return features & ~NETIF_F_GSO_MASK;
3464 }
3465
3466 /* Support for GSO partial features requires software
3467 * intervention before we can actually process the packets
3468 * so we need to strip support for any partial features now
3469 * and we can pull them back in after we have partially
3470 * segmented the frame.
3471 */
3472 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3473 features &= ~dev->gso_partial_features;
3474
3475 /* Make sure to clear the IPv4 ID mangling feature if the
3476 * IPv4 header has the potential to be fragmented.
3477 */
3478 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3479 struct iphdr *iph = skb->encapsulation ?
3480 inner_ip_hdr(skb) : ip_hdr(skb);
3481
3482 if (!(iph->frag_off & htons(IP_DF)))
3483 features &= ~NETIF_F_TSO_MANGLEID;
3484 }
3485
3486 return features;
3487}
3488
3489netdev_features_t netif_skb_features(struct sk_buff *skb)
3490{
3491 struct net_device *dev = skb->dev;
3492 netdev_features_t features = dev->features;
3493
3494 if (skb_is_gso(skb))
3495 features = gso_features_check(skb, dev, features);
3496
3497 /* If encapsulation offload request, verify we are testing
3498 * hardware encapsulation features instead of standard
3499 * features for the netdev
3500 */
3501 if (skb->encapsulation)
3502 features &= dev->hw_enc_features;
3503
3504 if (skb_vlan_tagged(skb))
3505 features = netdev_intersect_features(features,
3506 dev->vlan_features |
3507 NETIF_F_HW_VLAN_CTAG_TX |
3508 NETIF_F_HW_VLAN_STAG_TX);
3509
3510 if (dev->netdev_ops->ndo_features_check)
3511 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3512 features);
3513 else
3514 features &= dflt_features_check(skb, dev, features);
3515
3516 return harmonize_features(skb, features);
3517}
3518EXPORT_SYMBOL(netif_skb_features);
3519
3520static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3521 struct netdev_queue *txq, bool more)
3522{
3523 unsigned int len;
3524 int rc;
3525
3526 if (dev_nit_active(dev))
3527 dev_queue_xmit_nit(skb, dev);
3528
3529 len = skb->len;
3530 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3531 trace_net_dev_start_xmit(skb, dev);
3532 rc = netdev_start_xmit(skb, dev, txq, more);
3533 trace_net_dev_xmit(skb, rc, dev, len);
3534
3535 return rc;
3536}
3537
3538struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3539 struct netdev_queue *txq, int *ret)
3540{
3541 struct sk_buff *skb = first;
3542 int rc = NETDEV_TX_OK;
3543
3544 while (skb) {
3545 struct sk_buff *next = skb->next;
3546
3547 skb_mark_not_on_list(skb);
3548 rc = xmit_one(skb, dev, txq, next != NULL);
3549 if (unlikely(!dev_xmit_complete(rc))) {
3550 skb->next = next;
3551 goto out;
3552 }
3553
3554 skb = next;
3555 if (netif_tx_queue_stopped(txq) && skb) {
3556 rc = NETDEV_TX_BUSY;
3557 break;
3558 }
3559 }
3560
3561out:
3562 *ret = rc;
3563 return skb;
3564}
3565
3566static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3567 netdev_features_t features)
3568{
3569 if (skb_vlan_tag_present(skb) &&
3570 !vlan_hw_offload_capable(features, skb->vlan_proto))
3571 skb = __vlan_hwaccel_push_inside(skb);
3572 return skb;
3573}
3574
3575int skb_csum_hwoffload_help(struct sk_buff *skb,
3576 const netdev_features_t features)
3577{
3578 if (unlikely(skb_csum_is_sctp(skb)))
3579 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3580 skb_crc32c_csum_help(skb);
3581
3582 if (features & NETIF_F_HW_CSUM)
3583 return 0;
3584
3585 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3586 switch (skb->csum_offset) {
3587 case offsetof(struct tcphdr, check):
3588 case offsetof(struct udphdr, check):
3589 return 0;
3590 }
3591 }
3592
3593 return skb_checksum_help(skb);
3594}
3595EXPORT_SYMBOL(skb_csum_hwoffload_help);
3596
3597static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3598{
3599 netdev_features_t features;
3600
3601 features = netif_skb_features(skb);
3602 skb = validate_xmit_vlan(skb, features);
3603 if (unlikely(!skb))
3604 goto out_null;
3605
3606 skb = sk_validate_xmit_skb(skb, dev);
3607 if (unlikely(!skb))
3608 goto out_null;
3609
3610 if (netif_needs_gso(skb, features)) {
3611 struct sk_buff *segs;
3612
3613 segs = skb_gso_segment(skb, features);
3614 if (IS_ERR(segs)) {
3615 goto out_kfree_skb;
3616 } else if (segs) {
3617 consume_skb(skb);
3618 skb = segs;
3619 }
3620 } else {
3621 if (skb_needs_linearize(skb, features) &&
3622 __skb_linearize(skb))
3623 goto out_kfree_skb;
3624
3625 /* If packet is not checksummed and device does not
3626 * support checksumming for this protocol, complete
3627 * checksumming here.
3628 */
3629 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3630 if (skb->encapsulation)
3631 skb_set_inner_transport_header(skb,
3632 skb_checksum_start_offset(skb));
3633 else
3634 skb_set_transport_header(skb,
3635 skb_checksum_start_offset(skb));
3636 if (skb_csum_hwoffload_help(skb, features))
3637 goto out_kfree_skb;
3638 }
3639 }
3640
3641 skb = validate_xmit_xfrm(skb, features, again);
3642
3643 return skb;
3644
3645out_kfree_skb:
3646 kfree_skb(skb);
3647out_null:
3648 dev_core_stats_tx_dropped_inc(dev);
3649 return NULL;
3650}
3651
3652struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3653{
3654 struct sk_buff *next, *head = NULL, *tail;
3655
3656 for (; skb != NULL; skb = next) {
3657 next = skb->next;
3658 skb_mark_not_on_list(skb);
3659
3660 /* in case skb wont be segmented, point to itself */
3661 skb->prev = skb;
3662
3663 skb = validate_xmit_skb(skb, dev, again);
3664 if (!skb)
3665 continue;
3666
3667 if (!head)
3668 head = skb;
3669 else
3670 tail->next = skb;
3671 /* If skb was segmented, skb->prev points to
3672 * the last segment. If not, it still contains skb.
3673 */
3674 tail = skb->prev;
3675 }
3676 return head;
3677}
3678EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3679
3680static void qdisc_pkt_len_init(struct sk_buff *skb)
3681{
3682 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3683
3684 qdisc_skb_cb(skb)->pkt_len = skb->len;
3685
3686 /* To get more precise estimation of bytes sent on wire,
3687 * we add to pkt_len the headers size of all segments
3688 */
3689 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3690 unsigned int hdr_len;
3691 u16 gso_segs = shinfo->gso_segs;
3692
3693 /* mac layer + network layer */
3694 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3695
3696 /* + transport layer */
3697 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3698 const struct tcphdr *th;
3699 struct tcphdr _tcphdr;
3700
3701 th = skb_header_pointer(skb, skb_transport_offset(skb),
3702 sizeof(_tcphdr), &_tcphdr);
3703 if (likely(th))
3704 hdr_len += __tcp_hdrlen(th);
3705 } else {
3706 struct udphdr _udphdr;
3707
3708 if (skb_header_pointer(skb, skb_transport_offset(skb),
3709 sizeof(_udphdr), &_udphdr))
3710 hdr_len += sizeof(struct udphdr);
3711 }
3712
3713 if (shinfo->gso_type & SKB_GSO_DODGY)
3714 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3715 shinfo->gso_size);
3716
3717 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3718 }
3719}
3720
3721static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3722 struct sk_buff **to_free,
3723 struct netdev_queue *txq)
3724{
3725 int rc;
3726
3727 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3728 if (rc == NET_XMIT_SUCCESS)
3729 trace_qdisc_enqueue(q, txq, skb);
3730 return rc;
3731}
3732
3733static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3734 struct net_device *dev,
3735 struct netdev_queue *txq)
3736{
3737 spinlock_t *root_lock = qdisc_lock(q);
3738 struct sk_buff *to_free = NULL;
3739 bool contended;
3740 int rc;
3741
3742 qdisc_calculate_pkt_len(skb, q);
3743
3744 if (q->flags & TCQ_F_NOLOCK) {
3745 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3746 qdisc_run_begin(q)) {
3747 /* Retest nolock_qdisc_is_empty() within the protection
3748 * of q->seqlock to protect from racing with requeuing.
3749 */
3750 if (unlikely(!nolock_qdisc_is_empty(q))) {
3751 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3752 __qdisc_run(q);
3753 qdisc_run_end(q);
3754
3755 goto no_lock_out;
3756 }
3757
3758 qdisc_bstats_cpu_update(q, skb);
3759 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3760 !nolock_qdisc_is_empty(q))
3761 __qdisc_run(q);
3762
3763 qdisc_run_end(q);
3764 return NET_XMIT_SUCCESS;
3765 }
3766
3767 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3768 qdisc_run(q);
3769
3770no_lock_out:
3771 if (unlikely(to_free))
3772 kfree_skb_list_reason(to_free,
3773 SKB_DROP_REASON_QDISC_DROP);
3774 return rc;
3775 }
3776
3777 /*
3778 * Heuristic to force contended enqueues to serialize on a
3779 * separate lock before trying to get qdisc main lock.
3780 * This permits qdisc->running owner to get the lock more
3781 * often and dequeue packets faster.
3782 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3783 * and then other tasks will only enqueue packets. The packets will be
3784 * sent after the qdisc owner is scheduled again. To prevent this
3785 * scenario the task always serialize on the lock.
3786 */
3787 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3788 if (unlikely(contended))
3789 spin_lock(&q->busylock);
3790
3791 spin_lock(root_lock);
3792 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3793 __qdisc_drop(skb, &to_free);
3794 rc = NET_XMIT_DROP;
3795 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3796 qdisc_run_begin(q)) {
3797 /*
3798 * This is a work-conserving queue; there are no old skbs
3799 * waiting to be sent out; and the qdisc is not running -
3800 * xmit the skb directly.
3801 */
3802
3803 qdisc_bstats_update(q, skb);
3804
3805 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3806 if (unlikely(contended)) {
3807 spin_unlock(&q->busylock);
3808 contended = false;
3809 }
3810 __qdisc_run(q);
3811 }
3812
3813 qdisc_run_end(q);
3814 rc = NET_XMIT_SUCCESS;
3815 } else {
3816 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3817 if (qdisc_run_begin(q)) {
3818 if (unlikely(contended)) {
3819 spin_unlock(&q->busylock);
3820 contended = false;
3821 }
3822 __qdisc_run(q);
3823 qdisc_run_end(q);
3824 }
3825 }
3826 spin_unlock(root_lock);
3827 if (unlikely(to_free))
3828 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3829 if (unlikely(contended))
3830 spin_unlock(&q->busylock);
3831 return rc;
3832}
3833
3834#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3835static void skb_update_prio(struct sk_buff *skb)
3836{
3837 const struct netprio_map *map;
3838 const struct sock *sk;
3839 unsigned int prioidx;
3840
3841 if (skb->priority)
3842 return;
3843 map = rcu_dereference_bh(skb->dev->priomap);
3844 if (!map)
3845 return;
3846 sk = skb_to_full_sk(skb);
3847 if (!sk)
3848 return;
3849
3850 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3851
3852 if (prioidx < map->priomap_len)
3853 skb->priority = map->priomap[prioidx];
3854}
3855#else
3856#define skb_update_prio(skb)
3857#endif
3858
3859/**
3860 * dev_loopback_xmit - loop back @skb
3861 * @net: network namespace this loopback is happening in
3862 * @sk: sk needed to be a netfilter okfn
3863 * @skb: buffer to transmit
3864 */
3865int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3866{
3867 skb_reset_mac_header(skb);
3868 __skb_pull(skb, skb_network_offset(skb));
3869 skb->pkt_type = PACKET_LOOPBACK;
3870 if (skb->ip_summed == CHECKSUM_NONE)
3871 skb->ip_summed = CHECKSUM_UNNECESSARY;
3872 WARN_ON(!skb_dst(skb));
3873 skb_dst_force(skb);
3874 netif_rx(skb);
3875 return 0;
3876}
3877EXPORT_SYMBOL(dev_loopback_xmit);
3878
3879#ifdef CONFIG_NET_EGRESS
3880static struct sk_buff *
3881sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3882{
3883#ifdef CONFIG_NET_CLS_ACT
3884 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3885 struct tcf_result cl_res;
3886
3887 if (!miniq)
3888 return skb;
3889
3890 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3891 tc_skb_cb(skb)->mru = 0;
3892 tc_skb_cb(skb)->post_ct = false;
3893 mini_qdisc_bstats_cpu_update(miniq, skb);
3894
3895 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3896 case TC_ACT_OK:
3897 case TC_ACT_RECLASSIFY:
3898 skb->tc_index = TC_H_MIN(cl_res.classid);
3899 break;
3900 case TC_ACT_SHOT:
3901 mini_qdisc_qstats_cpu_drop(miniq);
3902 *ret = NET_XMIT_DROP;
3903 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3904 return NULL;
3905 case TC_ACT_STOLEN:
3906 case TC_ACT_QUEUED:
3907 case TC_ACT_TRAP:
3908 *ret = NET_XMIT_SUCCESS;
3909 consume_skb(skb);
3910 return NULL;
3911 case TC_ACT_REDIRECT:
3912 /* No need to push/pop skb's mac_header here on egress! */
3913 skb_do_redirect(skb);
3914 *ret = NET_XMIT_SUCCESS;
3915 return NULL;
3916 default:
3917 break;
3918 }
3919#endif /* CONFIG_NET_CLS_ACT */
3920
3921 return skb;
3922}
3923#endif /* CONFIG_NET_EGRESS */
3924
3925#ifdef CONFIG_XPS
3926static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3927 struct xps_dev_maps *dev_maps, unsigned int tci)
3928{
3929 int tc = netdev_get_prio_tc_map(dev, skb->priority);
3930 struct xps_map *map;
3931 int queue_index = -1;
3932
3933 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3934 return queue_index;
3935
3936 tci *= dev_maps->num_tc;
3937 tci += tc;
3938
3939 map = rcu_dereference(dev_maps->attr_map[tci]);
3940 if (map) {
3941 if (map->len == 1)
3942 queue_index = map->queues[0];
3943 else
3944 queue_index = map->queues[reciprocal_scale(
3945 skb_get_hash(skb), map->len)];
3946 if (unlikely(queue_index >= dev->real_num_tx_queues))
3947 queue_index = -1;
3948 }
3949 return queue_index;
3950}
3951#endif
3952
3953static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3954 struct sk_buff *skb)
3955{
3956#ifdef CONFIG_XPS
3957 struct xps_dev_maps *dev_maps;
3958 struct sock *sk = skb->sk;
3959 int queue_index = -1;
3960
3961 if (!static_key_false(&xps_needed))
3962 return -1;
3963
3964 rcu_read_lock();
3965 if (!static_key_false(&xps_rxqs_needed))
3966 goto get_cpus_map;
3967
3968 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
3969 if (dev_maps) {
3970 int tci = sk_rx_queue_get(sk);
3971
3972 if (tci >= 0)
3973 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3974 tci);
3975 }
3976
3977get_cpus_map:
3978 if (queue_index < 0) {
3979 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
3980 if (dev_maps) {
3981 unsigned int tci = skb->sender_cpu - 1;
3982
3983 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3984 tci);
3985 }
3986 }
3987 rcu_read_unlock();
3988
3989 return queue_index;
3990#else
3991 return -1;
3992#endif
3993}
3994
3995u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3996 struct net_device *sb_dev)
3997{
3998 return 0;
3999}
4000EXPORT_SYMBOL(dev_pick_tx_zero);
4001
4002u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4003 struct net_device *sb_dev)
4004{
4005 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4006}
4007EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4008
4009u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4010 struct net_device *sb_dev)
4011{
4012 struct sock *sk = skb->sk;
4013 int queue_index = sk_tx_queue_get(sk);
4014
4015 sb_dev = sb_dev ? : dev;
4016
4017 if (queue_index < 0 || skb->ooo_okay ||
4018 queue_index >= dev->real_num_tx_queues) {
4019 int new_index = get_xps_queue(dev, sb_dev, skb);
4020
4021 if (new_index < 0)
4022 new_index = skb_tx_hash(dev, sb_dev, skb);
4023
4024 if (queue_index != new_index && sk &&
4025 sk_fullsock(sk) &&
4026 rcu_access_pointer(sk->sk_dst_cache))
4027 sk_tx_queue_set(sk, new_index);
4028
4029 queue_index = new_index;
4030 }
4031
4032 return queue_index;
4033}
4034EXPORT_SYMBOL(netdev_pick_tx);
4035
4036struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4037 struct sk_buff *skb,
4038 struct net_device *sb_dev)
4039{
4040 int queue_index = 0;
4041
4042#ifdef CONFIG_XPS
4043 u32 sender_cpu = skb->sender_cpu - 1;
4044
4045 if (sender_cpu >= (u32)NR_CPUS)
4046 skb->sender_cpu = raw_smp_processor_id() + 1;
4047#endif
4048
4049 if (dev->real_num_tx_queues != 1) {
4050 const struct net_device_ops *ops = dev->netdev_ops;
4051
4052 if (ops->ndo_select_queue)
4053 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4054 else
4055 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4056
4057 queue_index = netdev_cap_txqueue(dev, queue_index);
4058 }
4059
4060 skb_set_queue_mapping(skb, queue_index);
4061 return netdev_get_tx_queue(dev, queue_index);
4062}
4063
4064/**
4065 * __dev_queue_xmit - transmit a buffer
4066 * @skb: buffer to transmit
4067 * @sb_dev: suboordinate device used for L2 forwarding offload
4068 *
4069 * Queue a buffer for transmission to a network device. The caller must
4070 * have set the device and priority and built the buffer before calling
4071 * this function. The function can be called from an interrupt.
4072 *
4073 * A negative errno code is returned on a failure. A success does not
4074 * guarantee the frame will be transmitted as it may be dropped due
4075 * to congestion or traffic shaping.
4076 *
4077 * -----------------------------------------------------------------------------------
4078 * I notice this method can also return errors from the queue disciplines,
4079 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4080 * be positive.
4081 *
4082 * Regardless of the return value, the skb is consumed, so it is currently
4083 * difficult to retry a send to this method. (You can bump the ref count
4084 * before sending to hold a reference for retry if you are careful.)
4085 *
4086 * When calling this method, interrupts MUST be enabled. This is because
4087 * the BH enable code must have IRQs enabled so that it will not deadlock.
4088 * --BLG
4089 */
4090static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4091{
4092 struct net_device *dev = skb->dev;
4093 struct netdev_queue *txq;
4094 struct Qdisc *q;
4095 int rc = -ENOMEM;
4096 bool again = false;
4097
4098 skb_reset_mac_header(skb);
4099
4100 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4101 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4102
4103 /* Disable soft irqs for various locks below. Also
4104 * stops preemption for RCU.
4105 */
4106 rcu_read_lock_bh();
4107
4108 skb_update_prio(skb);
4109
4110 qdisc_pkt_len_init(skb);
4111#ifdef CONFIG_NET_CLS_ACT
4112 skb->tc_at_ingress = 0;
4113#endif
4114#ifdef CONFIG_NET_EGRESS
4115 if (static_branch_unlikely(&egress_needed_key)) {
4116 if (nf_hook_egress_active()) {
4117 skb = nf_hook_egress(skb, &rc, dev);
4118 if (!skb)
4119 goto out;
4120 }
4121 nf_skip_egress(skb, true);
4122 skb = sch_handle_egress(skb, &rc, dev);
4123 if (!skb)
4124 goto out;
4125 nf_skip_egress(skb, false);
4126 }
4127#endif
4128 /* If device/qdisc don't need skb->dst, release it right now while
4129 * its hot in this cpu cache.
4130 */
4131 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4132 skb_dst_drop(skb);
4133 else
4134 skb_dst_force(skb);
4135
4136 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4137 q = rcu_dereference_bh(txq->qdisc);
4138
4139 trace_net_dev_queue(skb);
4140 if (q->enqueue) {
4141 rc = __dev_xmit_skb(skb, q, dev, txq);
4142 goto out;
4143 }
4144
4145 /* The device has no queue. Common case for software devices:
4146 * loopback, all the sorts of tunnels...
4147
4148 * Really, it is unlikely that netif_tx_lock protection is necessary
4149 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4150 * counters.)
4151 * However, it is possible, that they rely on protection
4152 * made by us here.
4153
4154 * Check this and shot the lock. It is not prone from deadlocks.
4155 *Either shot noqueue qdisc, it is even simpler 8)
4156 */
4157 if (dev->flags & IFF_UP) {
4158 int cpu = smp_processor_id(); /* ok because BHs are off */
4159
4160 /* Other cpus might concurrently change txq->xmit_lock_owner
4161 * to -1 or to their cpu id, but not to our id.
4162 */
4163 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4164 if (dev_xmit_recursion())
4165 goto recursion_alert;
4166
4167 skb = validate_xmit_skb(skb, dev, &again);
4168 if (!skb)
4169 goto out;
4170
4171 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4172 HARD_TX_LOCK(dev, txq, cpu);
4173
4174 if (!netif_xmit_stopped(txq)) {
4175 dev_xmit_recursion_inc();
4176 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4177 dev_xmit_recursion_dec();
4178 if (dev_xmit_complete(rc)) {
4179 HARD_TX_UNLOCK(dev, txq);
4180 goto out;
4181 }
4182 }
4183 HARD_TX_UNLOCK(dev, txq);
4184 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4185 dev->name);
4186 } else {
4187 /* Recursion is detected! It is possible,
4188 * unfortunately
4189 */
4190recursion_alert:
4191 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4192 dev->name);
4193 }
4194 }
4195
4196 rc = -ENETDOWN;
4197 rcu_read_unlock_bh();
4198
4199 dev_core_stats_tx_dropped_inc(dev);
4200 kfree_skb_list(skb);
4201 return rc;
4202out:
4203 rcu_read_unlock_bh();
4204 return rc;
4205}
4206
4207int dev_queue_xmit(struct sk_buff *skb)
4208{
4209 return __dev_queue_xmit(skb, NULL);
4210}
4211EXPORT_SYMBOL(dev_queue_xmit);
4212
4213int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4214{
4215 return __dev_queue_xmit(skb, sb_dev);
4216}
4217EXPORT_SYMBOL(dev_queue_xmit_accel);
4218
4219int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4220{
4221 struct net_device *dev = skb->dev;
4222 struct sk_buff *orig_skb = skb;
4223 struct netdev_queue *txq;
4224 int ret = NETDEV_TX_BUSY;
4225 bool again = false;
4226
4227 if (unlikely(!netif_running(dev) ||
4228 !netif_carrier_ok(dev)))
4229 goto drop;
4230
4231 skb = validate_xmit_skb_list(skb, dev, &again);
4232 if (skb != orig_skb)
4233 goto drop;
4234
4235 skb_set_queue_mapping(skb, queue_id);
4236 txq = skb_get_tx_queue(dev, skb);
4237 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4238
4239 local_bh_disable();
4240
4241 dev_xmit_recursion_inc();
4242 HARD_TX_LOCK(dev, txq, smp_processor_id());
4243 if (!netif_xmit_frozen_or_drv_stopped(txq))
4244 ret = netdev_start_xmit(skb, dev, txq, false);
4245 HARD_TX_UNLOCK(dev, txq);
4246 dev_xmit_recursion_dec();
4247
4248 local_bh_enable();
4249 return ret;
4250drop:
4251 dev_core_stats_tx_dropped_inc(dev);
4252 kfree_skb_list(skb);
4253 return NET_XMIT_DROP;
4254}
4255EXPORT_SYMBOL(__dev_direct_xmit);
4256
4257/*************************************************************************
4258 * Receiver routines
4259 *************************************************************************/
4260
4261int netdev_max_backlog __read_mostly = 1000;
4262EXPORT_SYMBOL(netdev_max_backlog);
4263
4264int netdev_tstamp_prequeue __read_mostly = 1;
4265int netdev_budget __read_mostly = 300;
4266/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4267unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4268int weight_p __read_mostly = 64; /* old backlog weight */
4269int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4270int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4271int dev_rx_weight __read_mostly = 64;
4272int dev_tx_weight __read_mostly = 64;
4273
4274/* Called with irq disabled */
4275static inline void ____napi_schedule(struct softnet_data *sd,
4276 struct napi_struct *napi)
4277{
4278 struct task_struct *thread;
4279
4280 lockdep_assert_irqs_disabled();
4281
4282 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4283 /* Paired with smp_mb__before_atomic() in
4284 * napi_enable()/dev_set_threaded().
4285 * Use READ_ONCE() to guarantee a complete
4286 * read on napi->thread. Only call
4287 * wake_up_process() when it's not NULL.
4288 */
4289 thread = READ_ONCE(napi->thread);
4290 if (thread) {
4291 /* Avoid doing set_bit() if the thread is in
4292 * INTERRUPTIBLE state, cause napi_thread_wait()
4293 * makes sure to proceed with napi polling
4294 * if the thread is explicitly woken from here.
4295 */
4296 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4297 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4298 wake_up_process(thread);
4299 return;
4300 }
4301 }
4302
4303 list_add_tail(&napi->poll_list, &sd->poll_list);
4304 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4305}
4306
4307#ifdef CONFIG_RPS
4308
4309/* One global table that all flow-based protocols share. */
4310struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4311EXPORT_SYMBOL(rps_sock_flow_table);
4312u32 rps_cpu_mask __read_mostly;
4313EXPORT_SYMBOL(rps_cpu_mask);
4314
4315struct static_key_false rps_needed __read_mostly;
4316EXPORT_SYMBOL(rps_needed);
4317struct static_key_false rfs_needed __read_mostly;
4318EXPORT_SYMBOL(rfs_needed);
4319
4320static struct rps_dev_flow *
4321set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4322 struct rps_dev_flow *rflow, u16 next_cpu)
4323{
4324 if (next_cpu < nr_cpu_ids) {
4325#ifdef CONFIG_RFS_ACCEL
4326 struct netdev_rx_queue *rxqueue;
4327 struct rps_dev_flow_table *flow_table;
4328 struct rps_dev_flow *old_rflow;
4329 u32 flow_id;
4330 u16 rxq_index;
4331 int rc;
4332
4333 /* Should we steer this flow to a different hardware queue? */
4334 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4335 !(dev->features & NETIF_F_NTUPLE))
4336 goto out;
4337 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4338 if (rxq_index == skb_get_rx_queue(skb))
4339 goto out;
4340
4341 rxqueue = dev->_rx + rxq_index;
4342 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4343 if (!flow_table)
4344 goto out;
4345 flow_id = skb_get_hash(skb) & flow_table->mask;
4346 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4347 rxq_index, flow_id);
4348 if (rc < 0)
4349 goto out;
4350 old_rflow = rflow;
4351 rflow = &flow_table->flows[flow_id];
4352 rflow->filter = rc;
4353 if (old_rflow->filter == rflow->filter)
4354 old_rflow->filter = RPS_NO_FILTER;
4355 out:
4356#endif
4357 rflow->last_qtail =
4358 per_cpu(softnet_data, next_cpu).input_queue_head;
4359 }
4360
4361 rflow->cpu = next_cpu;
4362 return rflow;
4363}
4364
4365/*
4366 * get_rps_cpu is called from netif_receive_skb and returns the target
4367 * CPU from the RPS map of the receiving queue for a given skb.
4368 * rcu_read_lock must be held on entry.
4369 */
4370static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4371 struct rps_dev_flow **rflowp)
4372{
4373 const struct rps_sock_flow_table *sock_flow_table;
4374 struct netdev_rx_queue *rxqueue = dev->_rx;
4375 struct rps_dev_flow_table *flow_table;
4376 struct rps_map *map;
4377 int cpu = -1;
4378 u32 tcpu;
4379 u32 hash;
4380
4381 if (skb_rx_queue_recorded(skb)) {
4382 u16 index = skb_get_rx_queue(skb);
4383
4384 if (unlikely(index >= dev->real_num_rx_queues)) {
4385 WARN_ONCE(dev->real_num_rx_queues > 1,
4386 "%s received packet on queue %u, but number "
4387 "of RX queues is %u\n",
4388 dev->name, index, dev->real_num_rx_queues);
4389 goto done;
4390 }
4391 rxqueue += index;
4392 }
4393
4394 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4395
4396 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4397 map = rcu_dereference(rxqueue->rps_map);
4398 if (!flow_table && !map)
4399 goto done;
4400
4401 skb_reset_network_header(skb);
4402 hash = skb_get_hash(skb);
4403 if (!hash)
4404 goto done;
4405
4406 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4407 if (flow_table && sock_flow_table) {
4408 struct rps_dev_flow *rflow;
4409 u32 next_cpu;
4410 u32 ident;
4411
4412 /* First check into global flow table if there is a match */
4413 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4414 if ((ident ^ hash) & ~rps_cpu_mask)
4415 goto try_rps;
4416
4417 next_cpu = ident & rps_cpu_mask;
4418
4419 /* OK, now we know there is a match,
4420 * we can look at the local (per receive queue) flow table
4421 */
4422 rflow = &flow_table->flows[hash & flow_table->mask];
4423 tcpu = rflow->cpu;
4424
4425 /*
4426 * If the desired CPU (where last recvmsg was done) is
4427 * different from current CPU (one in the rx-queue flow
4428 * table entry), switch if one of the following holds:
4429 * - Current CPU is unset (>= nr_cpu_ids).
4430 * - Current CPU is offline.
4431 * - The current CPU's queue tail has advanced beyond the
4432 * last packet that was enqueued using this table entry.
4433 * This guarantees that all previous packets for the flow
4434 * have been dequeued, thus preserving in order delivery.
4435 */
4436 if (unlikely(tcpu != next_cpu) &&
4437 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4438 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4439 rflow->last_qtail)) >= 0)) {
4440 tcpu = next_cpu;
4441 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4442 }
4443
4444 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4445 *rflowp = rflow;
4446 cpu = tcpu;
4447 goto done;
4448 }
4449 }
4450
4451try_rps:
4452
4453 if (map) {
4454 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4455 if (cpu_online(tcpu)) {
4456 cpu = tcpu;
4457 goto done;
4458 }
4459 }
4460
4461done:
4462 return cpu;
4463}
4464
4465#ifdef CONFIG_RFS_ACCEL
4466
4467/**
4468 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4469 * @dev: Device on which the filter was set
4470 * @rxq_index: RX queue index
4471 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4472 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4473 *
4474 * Drivers that implement ndo_rx_flow_steer() should periodically call
4475 * this function for each installed filter and remove the filters for
4476 * which it returns %true.
4477 */
4478bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4479 u32 flow_id, u16 filter_id)
4480{
4481 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4482 struct rps_dev_flow_table *flow_table;
4483 struct rps_dev_flow *rflow;
4484 bool expire = true;
4485 unsigned int cpu;
4486
4487 rcu_read_lock();
4488 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4489 if (flow_table && flow_id <= flow_table->mask) {
4490 rflow = &flow_table->flows[flow_id];
4491 cpu = READ_ONCE(rflow->cpu);
4492 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4493 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4494 rflow->last_qtail) <
4495 (int)(10 * flow_table->mask)))
4496 expire = false;
4497 }
4498 rcu_read_unlock();
4499 return expire;
4500}
4501EXPORT_SYMBOL(rps_may_expire_flow);
4502
4503#endif /* CONFIG_RFS_ACCEL */
4504
4505/* Called from hardirq (IPI) context */
4506static void rps_trigger_softirq(void *data)
4507{
4508 struct softnet_data *sd = data;
4509
4510 ____napi_schedule(sd, &sd->backlog);
4511 sd->received_rps++;
4512}
4513
4514#endif /* CONFIG_RPS */
4515
4516/*
4517 * Check if this softnet_data structure is another cpu one
4518 * If yes, queue it to our IPI list and return 1
4519 * If no, return 0
4520 */
4521static int napi_schedule_rps(struct softnet_data *sd)
4522{
4523 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4524
4525#ifdef CONFIG_RPS
4526 if (sd != mysd) {
4527 sd->rps_ipi_next = mysd->rps_ipi_list;
4528 mysd->rps_ipi_list = sd;
4529
4530 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4531 return 1;
4532 }
4533#endif /* CONFIG_RPS */
4534 __napi_schedule_irqoff(&mysd->backlog);
4535 return 0;
4536}
4537
4538#ifdef CONFIG_NET_FLOW_LIMIT
4539int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4540#endif
4541
4542static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4543{
4544#ifdef CONFIG_NET_FLOW_LIMIT
4545 struct sd_flow_limit *fl;
4546 struct softnet_data *sd;
4547 unsigned int old_flow, new_flow;
4548
4549 if (qlen < (netdev_max_backlog >> 1))
4550 return false;
4551
4552 sd = this_cpu_ptr(&softnet_data);
4553
4554 rcu_read_lock();
4555 fl = rcu_dereference(sd->flow_limit);
4556 if (fl) {
4557 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4558 old_flow = fl->history[fl->history_head];
4559 fl->history[fl->history_head] = new_flow;
4560
4561 fl->history_head++;
4562 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4563
4564 if (likely(fl->buckets[old_flow]))
4565 fl->buckets[old_flow]--;
4566
4567 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4568 fl->count++;
4569 rcu_read_unlock();
4570 return true;
4571 }
4572 }
4573 rcu_read_unlock();
4574#endif
4575 return false;
4576}
4577
4578/*
4579 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4580 * queue (may be a remote CPU queue).
4581 */
4582static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4583 unsigned int *qtail)
4584{
4585 enum skb_drop_reason reason;
4586 struct softnet_data *sd;
4587 unsigned long flags;
4588 unsigned int qlen;
4589
4590 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4591 sd = &per_cpu(softnet_data, cpu);
4592
4593 rps_lock_irqsave(sd, &flags);
4594 if (!netif_running(skb->dev))
4595 goto drop;
4596 qlen = skb_queue_len(&sd->input_pkt_queue);
4597 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4598 if (qlen) {
4599enqueue:
4600 __skb_queue_tail(&sd->input_pkt_queue, skb);
4601 input_queue_tail_incr_save(sd, qtail);
4602 rps_unlock_irq_restore(sd, &flags);
4603 return NET_RX_SUCCESS;
4604 }
4605
4606 /* Schedule NAPI for backlog device
4607 * We can use non atomic operation since we own the queue lock
4608 */
4609 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4610 napi_schedule_rps(sd);
4611 goto enqueue;
4612 }
4613 reason = SKB_DROP_REASON_CPU_BACKLOG;
4614
4615drop:
4616 sd->dropped++;
4617 rps_unlock_irq_restore(sd, &flags);
4618
4619 dev_core_stats_rx_dropped_inc(skb->dev);
4620 kfree_skb_reason(skb, reason);
4621 return NET_RX_DROP;
4622}
4623
4624static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4625{
4626 struct net_device *dev = skb->dev;
4627 struct netdev_rx_queue *rxqueue;
4628
4629 rxqueue = dev->_rx;
4630
4631 if (skb_rx_queue_recorded(skb)) {
4632 u16 index = skb_get_rx_queue(skb);
4633
4634 if (unlikely(index >= dev->real_num_rx_queues)) {
4635 WARN_ONCE(dev->real_num_rx_queues > 1,
4636 "%s received packet on queue %u, but number "
4637 "of RX queues is %u\n",
4638 dev->name, index, dev->real_num_rx_queues);
4639
4640 return rxqueue; /* Return first rxqueue */
4641 }
4642 rxqueue += index;
4643 }
4644 return rxqueue;
4645}
4646
4647u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4648 struct bpf_prog *xdp_prog)
4649{
4650 void *orig_data, *orig_data_end, *hard_start;
4651 struct netdev_rx_queue *rxqueue;
4652 bool orig_bcast, orig_host;
4653 u32 mac_len, frame_sz;
4654 __be16 orig_eth_type;
4655 struct ethhdr *eth;
4656 u32 metalen, act;
4657 int off;
4658
4659 /* The XDP program wants to see the packet starting at the MAC
4660 * header.
4661 */
4662 mac_len = skb->data - skb_mac_header(skb);
4663 hard_start = skb->data - skb_headroom(skb);
4664
4665 /* SKB "head" area always have tailroom for skb_shared_info */
4666 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4667 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4668
4669 rxqueue = netif_get_rxqueue(skb);
4670 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4671 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4672 skb_headlen(skb) + mac_len, true);
4673
4674 orig_data_end = xdp->data_end;
4675 orig_data = xdp->data;
4676 eth = (struct ethhdr *)xdp->data;
4677 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4678 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4679 orig_eth_type = eth->h_proto;
4680
4681 act = bpf_prog_run_xdp(xdp_prog, xdp);
4682
4683 /* check if bpf_xdp_adjust_head was used */
4684 off = xdp->data - orig_data;
4685 if (off) {
4686 if (off > 0)
4687 __skb_pull(skb, off);
4688 else if (off < 0)
4689 __skb_push(skb, -off);
4690
4691 skb->mac_header += off;
4692 skb_reset_network_header(skb);
4693 }
4694
4695 /* check if bpf_xdp_adjust_tail was used */
4696 off = xdp->data_end - orig_data_end;
4697 if (off != 0) {
4698 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4699 skb->len += off; /* positive on grow, negative on shrink */
4700 }
4701
4702 /* check if XDP changed eth hdr such SKB needs update */
4703 eth = (struct ethhdr *)xdp->data;
4704 if ((orig_eth_type != eth->h_proto) ||
4705 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4706 skb->dev->dev_addr)) ||
4707 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4708 __skb_push(skb, ETH_HLEN);
4709 skb->pkt_type = PACKET_HOST;
4710 skb->protocol = eth_type_trans(skb, skb->dev);
4711 }
4712
4713 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4714 * before calling us again on redirect path. We do not call do_redirect
4715 * as we leave that up to the caller.
4716 *
4717 * Caller is responsible for managing lifetime of skb (i.e. calling
4718 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4719 */
4720 switch (act) {
4721 case XDP_REDIRECT:
4722 case XDP_TX:
4723 __skb_push(skb, mac_len);
4724 break;
4725 case XDP_PASS:
4726 metalen = xdp->data - xdp->data_meta;
4727 if (metalen)
4728 skb_metadata_set(skb, metalen);
4729 break;
4730 }
4731
4732 return act;
4733}
4734
4735static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4736 struct xdp_buff *xdp,
4737 struct bpf_prog *xdp_prog)
4738{
4739 u32 act = XDP_DROP;
4740
4741 /* Reinjected packets coming from act_mirred or similar should
4742 * not get XDP generic processing.
4743 */
4744 if (skb_is_redirected(skb))
4745 return XDP_PASS;
4746
4747 /* XDP packets must be linear and must have sufficient headroom
4748 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4749 * native XDP provides, thus we need to do it here as well.
4750 */
4751 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4752 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4753 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4754 int troom = skb->tail + skb->data_len - skb->end;
4755
4756 /* In case we have to go down the path and also linearize,
4757 * then lets do the pskb_expand_head() work just once here.
4758 */
4759 if (pskb_expand_head(skb,
4760 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4761 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4762 goto do_drop;
4763 if (skb_linearize(skb))
4764 goto do_drop;
4765 }
4766
4767 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4768 switch (act) {
4769 case XDP_REDIRECT:
4770 case XDP_TX:
4771 case XDP_PASS:
4772 break;
4773 default:
4774 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4775 fallthrough;
4776 case XDP_ABORTED:
4777 trace_xdp_exception(skb->dev, xdp_prog, act);
4778 fallthrough;
4779 case XDP_DROP:
4780 do_drop:
4781 kfree_skb(skb);
4782 break;
4783 }
4784
4785 return act;
4786}
4787
4788/* When doing generic XDP we have to bypass the qdisc layer and the
4789 * network taps in order to match in-driver-XDP behavior.
4790 */
4791void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4792{
4793 struct net_device *dev = skb->dev;
4794 struct netdev_queue *txq;
4795 bool free_skb = true;
4796 int cpu, rc;
4797
4798 txq = netdev_core_pick_tx(dev, skb, NULL);
4799 cpu = smp_processor_id();
4800 HARD_TX_LOCK(dev, txq, cpu);
4801 if (!netif_xmit_stopped(txq)) {
4802 rc = netdev_start_xmit(skb, dev, txq, 0);
4803 if (dev_xmit_complete(rc))
4804 free_skb = false;
4805 }
4806 HARD_TX_UNLOCK(dev, txq);
4807 if (free_skb) {
4808 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4809 kfree_skb(skb);
4810 }
4811}
4812
4813static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4814
4815int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4816{
4817 if (xdp_prog) {
4818 struct xdp_buff xdp;
4819 u32 act;
4820 int err;
4821
4822 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4823 if (act != XDP_PASS) {
4824 switch (act) {
4825 case XDP_REDIRECT:
4826 err = xdp_do_generic_redirect(skb->dev, skb,
4827 &xdp, xdp_prog);
4828 if (err)
4829 goto out_redir;
4830 break;
4831 case XDP_TX:
4832 generic_xdp_tx(skb, xdp_prog);
4833 break;
4834 }
4835 return XDP_DROP;
4836 }
4837 }
4838 return XDP_PASS;
4839out_redir:
4840 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4841 return XDP_DROP;
4842}
4843EXPORT_SYMBOL_GPL(do_xdp_generic);
4844
4845static int netif_rx_internal(struct sk_buff *skb)
4846{
4847 int ret;
4848
4849 net_timestamp_check(netdev_tstamp_prequeue, skb);
4850
4851 trace_netif_rx(skb);
4852
4853#ifdef CONFIG_RPS
4854 if (static_branch_unlikely(&rps_needed)) {
4855 struct rps_dev_flow voidflow, *rflow = &voidflow;
4856 int cpu;
4857
4858 rcu_read_lock();
4859
4860 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4861 if (cpu < 0)
4862 cpu = smp_processor_id();
4863
4864 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4865
4866 rcu_read_unlock();
4867 } else
4868#endif
4869 {
4870 unsigned int qtail;
4871
4872 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4873 }
4874 return ret;
4875}
4876
4877/**
4878 * __netif_rx - Slightly optimized version of netif_rx
4879 * @skb: buffer to post
4880 *
4881 * This behaves as netif_rx except that it does not disable bottom halves.
4882 * As a result this function may only be invoked from the interrupt context
4883 * (either hard or soft interrupt).
4884 */
4885int __netif_rx(struct sk_buff *skb)
4886{
4887 int ret;
4888
4889 lockdep_assert_once(hardirq_count() | softirq_count());
4890
4891 trace_netif_rx_entry(skb);
4892 ret = netif_rx_internal(skb);
4893 trace_netif_rx_exit(ret);
4894 return ret;
4895}
4896EXPORT_SYMBOL(__netif_rx);
4897
4898/**
4899 * netif_rx - post buffer to the network code
4900 * @skb: buffer to post
4901 *
4902 * This function receives a packet from a device driver and queues it for
4903 * the upper (protocol) levels to process via the backlog NAPI device. It
4904 * always succeeds. The buffer may be dropped during processing for
4905 * congestion control or by the protocol layers.
4906 * The network buffer is passed via the backlog NAPI device. Modern NIC
4907 * driver should use NAPI and GRO.
4908 * This function can used from interrupt and from process context. The
4909 * caller from process context must not disable interrupts before invoking
4910 * this function.
4911 *
4912 * return values:
4913 * NET_RX_SUCCESS (no congestion)
4914 * NET_RX_DROP (packet was dropped)
4915 *
4916 */
4917int netif_rx(struct sk_buff *skb)
4918{
4919 bool need_bh_off = !(hardirq_count() | softirq_count());
4920 int ret;
4921
4922 if (need_bh_off)
4923 local_bh_disable();
4924 trace_netif_rx_entry(skb);
4925 ret = netif_rx_internal(skb);
4926 trace_netif_rx_exit(ret);
4927 if (need_bh_off)
4928 local_bh_enable();
4929 return ret;
4930}
4931EXPORT_SYMBOL(netif_rx);
4932
4933static __latent_entropy void net_tx_action(struct softirq_action *h)
4934{
4935 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4936
4937 if (sd->completion_queue) {
4938 struct sk_buff *clist;
4939
4940 local_irq_disable();
4941 clist = sd->completion_queue;
4942 sd->completion_queue = NULL;
4943 local_irq_enable();
4944
4945 while (clist) {
4946 struct sk_buff *skb = clist;
4947
4948 clist = clist->next;
4949
4950 WARN_ON(refcount_read(&skb->users));
4951 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4952 trace_consume_skb(skb);
4953 else
4954 trace_kfree_skb(skb, net_tx_action,
4955 SKB_DROP_REASON_NOT_SPECIFIED);
4956
4957 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4958 __kfree_skb(skb);
4959 else
4960 __kfree_skb_defer(skb);
4961 }
4962 }
4963
4964 if (sd->output_queue) {
4965 struct Qdisc *head;
4966
4967 local_irq_disable();
4968 head = sd->output_queue;
4969 sd->output_queue = NULL;
4970 sd->output_queue_tailp = &sd->output_queue;
4971 local_irq_enable();
4972
4973 rcu_read_lock();
4974
4975 while (head) {
4976 struct Qdisc *q = head;
4977 spinlock_t *root_lock = NULL;
4978
4979 head = head->next_sched;
4980
4981 /* We need to make sure head->next_sched is read
4982 * before clearing __QDISC_STATE_SCHED
4983 */
4984 smp_mb__before_atomic();
4985
4986 if (!(q->flags & TCQ_F_NOLOCK)) {
4987 root_lock = qdisc_lock(q);
4988 spin_lock(root_lock);
4989 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4990 &q->state))) {
4991 /* There is a synchronize_net() between
4992 * STATE_DEACTIVATED flag being set and
4993 * qdisc_reset()/some_qdisc_is_busy() in
4994 * dev_deactivate(), so we can safely bail out
4995 * early here to avoid data race between
4996 * qdisc_deactivate() and some_qdisc_is_busy()
4997 * for lockless qdisc.
4998 */
4999 clear_bit(__QDISC_STATE_SCHED, &q->state);
5000 continue;
5001 }
5002
5003 clear_bit(__QDISC_STATE_SCHED, &q->state);
5004 qdisc_run(q);
5005 if (root_lock)
5006 spin_unlock(root_lock);
5007 }
5008
5009 rcu_read_unlock();
5010 }
5011
5012 xfrm_dev_backlog(sd);
5013}
5014
5015#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5016/* This hook is defined here for ATM LANE */
5017int (*br_fdb_test_addr_hook)(struct net_device *dev,
5018 unsigned char *addr) __read_mostly;
5019EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5020#endif
5021
5022static inline struct sk_buff *
5023sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5024 struct net_device *orig_dev, bool *another)
5025{
5026#ifdef CONFIG_NET_CLS_ACT
5027 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5028 struct tcf_result cl_res;
5029
5030 /* If there's at least one ingress present somewhere (so
5031 * we get here via enabled static key), remaining devices
5032 * that are not configured with an ingress qdisc will bail
5033 * out here.
5034 */
5035 if (!miniq)
5036 return skb;
5037
5038 if (*pt_prev) {
5039 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5040 *pt_prev = NULL;
5041 }
5042
5043 qdisc_skb_cb(skb)->pkt_len = skb->len;
5044 tc_skb_cb(skb)->mru = 0;
5045 tc_skb_cb(skb)->post_ct = false;
5046 skb->tc_at_ingress = 1;
5047 mini_qdisc_bstats_cpu_update(miniq, skb);
5048
5049 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5050 case TC_ACT_OK:
5051 case TC_ACT_RECLASSIFY:
5052 skb->tc_index = TC_H_MIN(cl_res.classid);
5053 break;
5054 case TC_ACT_SHOT:
5055 mini_qdisc_qstats_cpu_drop(miniq);
5056 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5057 return NULL;
5058 case TC_ACT_STOLEN:
5059 case TC_ACT_QUEUED:
5060 case TC_ACT_TRAP:
5061 consume_skb(skb);
5062 return NULL;
5063 case TC_ACT_REDIRECT:
5064 /* skb_mac_header check was done by cls/act_bpf, so
5065 * we can safely push the L2 header back before
5066 * redirecting to another netdev
5067 */
5068 __skb_push(skb, skb->mac_len);
5069 if (skb_do_redirect(skb) == -EAGAIN) {
5070 __skb_pull(skb, skb->mac_len);
5071 *another = true;
5072 break;
5073 }
5074 return NULL;
5075 case TC_ACT_CONSUMED:
5076 return NULL;
5077 default:
5078 break;
5079 }
5080#endif /* CONFIG_NET_CLS_ACT */
5081 return skb;
5082}
5083
5084/**
5085 * netdev_is_rx_handler_busy - check if receive handler is registered
5086 * @dev: device to check
5087 *
5088 * Check if a receive handler is already registered for a given device.
5089 * Return true if there one.
5090 *
5091 * The caller must hold the rtnl_mutex.
5092 */
5093bool netdev_is_rx_handler_busy(struct net_device *dev)
5094{
5095 ASSERT_RTNL();
5096 return dev && rtnl_dereference(dev->rx_handler);
5097}
5098EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5099
5100/**
5101 * netdev_rx_handler_register - register receive handler
5102 * @dev: device to register a handler for
5103 * @rx_handler: receive handler to register
5104 * @rx_handler_data: data pointer that is used by rx handler
5105 *
5106 * Register a receive handler for a device. This handler will then be
5107 * called from __netif_receive_skb. A negative errno code is returned
5108 * on a failure.
5109 *
5110 * The caller must hold the rtnl_mutex.
5111 *
5112 * For a general description of rx_handler, see enum rx_handler_result.
5113 */
5114int netdev_rx_handler_register(struct net_device *dev,
5115 rx_handler_func_t *rx_handler,
5116 void *rx_handler_data)
5117{
5118 if (netdev_is_rx_handler_busy(dev))
5119 return -EBUSY;
5120
5121 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5122 return -EINVAL;
5123
5124 /* Note: rx_handler_data must be set before rx_handler */
5125 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5126 rcu_assign_pointer(dev->rx_handler, rx_handler);
5127
5128 return 0;
5129}
5130EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5131
5132/**
5133 * netdev_rx_handler_unregister - unregister receive handler
5134 * @dev: device to unregister a handler from
5135 *
5136 * Unregister a receive handler from a device.
5137 *
5138 * The caller must hold the rtnl_mutex.
5139 */
5140void netdev_rx_handler_unregister(struct net_device *dev)
5141{
5142
5143 ASSERT_RTNL();
5144 RCU_INIT_POINTER(dev->rx_handler, NULL);
5145 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5146 * section has a guarantee to see a non NULL rx_handler_data
5147 * as well.
5148 */
5149 synchronize_net();
5150 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5151}
5152EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5153
5154/*
5155 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5156 * the special handling of PFMEMALLOC skbs.
5157 */
5158static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5159{
5160 switch (skb->protocol) {
5161 case htons(ETH_P_ARP):
5162 case htons(ETH_P_IP):
5163 case htons(ETH_P_IPV6):
5164 case htons(ETH_P_8021Q):
5165 case htons(ETH_P_8021AD):
5166 return true;
5167 default:
5168 return false;
5169 }
5170}
5171
5172static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5173 int *ret, struct net_device *orig_dev)
5174{
5175 if (nf_hook_ingress_active(skb)) {
5176 int ingress_retval;
5177
5178 if (*pt_prev) {
5179 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5180 *pt_prev = NULL;
5181 }
5182
5183 rcu_read_lock();
5184 ingress_retval = nf_hook_ingress(skb);
5185 rcu_read_unlock();
5186 return ingress_retval;
5187 }
5188 return 0;
5189}
5190
5191static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5192 struct packet_type **ppt_prev)
5193{
5194 struct packet_type *ptype, *pt_prev;
5195 rx_handler_func_t *rx_handler;
5196 struct sk_buff *skb = *pskb;
5197 struct net_device *orig_dev;
5198 bool deliver_exact = false;
5199 int ret = NET_RX_DROP;
5200 __be16 type;
5201
5202 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5203
5204 trace_netif_receive_skb(skb);
5205
5206 orig_dev = skb->dev;
5207
5208 skb_reset_network_header(skb);
5209 if (!skb_transport_header_was_set(skb))
5210 skb_reset_transport_header(skb);
5211 skb_reset_mac_len(skb);
5212
5213 pt_prev = NULL;
5214
5215another_round:
5216 skb->skb_iif = skb->dev->ifindex;
5217
5218 __this_cpu_inc(softnet_data.processed);
5219
5220 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5221 int ret2;
5222
5223 migrate_disable();
5224 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5225 migrate_enable();
5226
5227 if (ret2 != XDP_PASS) {
5228 ret = NET_RX_DROP;
5229 goto out;
5230 }
5231 }
5232
5233 if (eth_type_vlan(skb->protocol)) {
5234 skb = skb_vlan_untag(skb);
5235 if (unlikely(!skb))
5236 goto out;
5237 }
5238
5239 if (skb_skip_tc_classify(skb))
5240 goto skip_classify;
5241
5242 if (pfmemalloc)
5243 goto skip_taps;
5244
5245 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5246 if (pt_prev)
5247 ret = deliver_skb(skb, pt_prev, orig_dev);
5248 pt_prev = ptype;
5249 }
5250
5251 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5252 if (pt_prev)
5253 ret = deliver_skb(skb, pt_prev, orig_dev);
5254 pt_prev = ptype;
5255 }
5256
5257skip_taps:
5258#ifdef CONFIG_NET_INGRESS
5259 if (static_branch_unlikely(&ingress_needed_key)) {
5260 bool another = false;
5261
5262 nf_skip_egress(skb, true);
5263 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5264 &another);
5265 if (another)
5266 goto another_round;
5267 if (!skb)
5268 goto out;
5269
5270 nf_skip_egress(skb, false);
5271 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5272 goto out;
5273 }
5274#endif
5275 skb_reset_redirect(skb);
5276skip_classify:
5277 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5278 goto drop;
5279
5280 if (skb_vlan_tag_present(skb)) {
5281 if (pt_prev) {
5282 ret = deliver_skb(skb, pt_prev, orig_dev);
5283 pt_prev = NULL;
5284 }
5285 if (vlan_do_receive(&skb))
5286 goto another_round;
5287 else if (unlikely(!skb))
5288 goto out;
5289 }
5290
5291 rx_handler = rcu_dereference(skb->dev->rx_handler);
5292 if (rx_handler) {
5293 if (pt_prev) {
5294 ret = deliver_skb(skb, pt_prev, orig_dev);
5295 pt_prev = NULL;
5296 }
5297 switch (rx_handler(&skb)) {
5298 case RX_HANDLER_CONSUMED:
5299 ret = NET_RX_SUCCESS;
5300 goto out;
5301 case RX_HANDLER_ANOTHER:
5302 goto another_round;
5303 case RX_HANDLER_EXACT:
5304 deliver_exact = true;
5305 break;
5306 case RX_HANDLER_PASS:
5307 break;
5308 default:
5309 BUG();
5310 }
5311 }
5312
5313 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5314check_vlan_id:
5315 if (skb_vlan_tag_get_id(skb)) {
5316 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5317 * find vlan device.
5318 */
5319 skb->pkt_type = PACKET_OTHERHOST;
5320 } else if (eth_type_vlan(skb->protocol)) {
5321 /* Outer header is 802.1P with vlan 0, inner header is
5322 * 802.1Q or 802.1AD and vlan_do_receive() above could
5323 * not find vlan dev for vlan id 0.
5324 */
5325 __vlan_hwaccel_clear_tag(skb);
5326 skb = skb_vlan_untag(skb);
5327 if (unlikely(!skb))
5328 goto out;
5329 if (vlan_do_receive(&skb))
5330 /* After stripping off 802.1P header with vlan 0
5331 * vlan dev is found for inner header.
5332 */
5333 goto another_round;
5334 else if (unlikely(!skb))
5335 goto out;
5336 else
5337 /* We have stripped outer 802.1P vlan 0 header.
5338 * But could not find vlan dev.
5339 * check again for vlan id to set OTHERHOST.
5340 */
5341 goto check_vlan_id;
5342 }
5343 /* Note: we might in the future use prio bits
5344 * and set skb->priority like in vlan_do_receive()
5345 * For the time being, just ignore Priority Code Point
5346 */
5347 __vlan_hwaccel_clear_tag(skb);
5348 }
5349
5350 type = skb->protocol;
5351
5352 /* deliver only exact match when indicated */
5353 if (likely(!deliver_exact)) {
5354 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5355 &ptype_base[ntohs(type) &
5356 PTYPE_HASH_MASK]);
5357 }
5358
5359 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5360 &orig_dev->ptype_specific);
5361
5362 if (unlikely(skb->dev != orig_dev)) {
5363 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5364 &skb->dev->ptype_specific);
5365 }
5366
5367 if (pt_prev) {
5368 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5369 goto drop;
5370 *ppt_prev = pt_prev;
5371 } else {
5372drop:
5373 if (!deliver_exact) {
5374 dev_core_stats_rx_dropped_inc(skb->dev);
5375 kfree_skb_reason(skb, SKB_DROP_REASON_PTYPE_ABSENT);
5376 } else {
5377 dev_core_stats_rx_nohandler_inc(skb->dev);
5378 kfree_skb(skb);
5379 }
5380 /* Jamal, now you will not able to escape explaining
5381 * me how you were going to use this. :-)
5382 */
5383 ret = NET_RX_DROP;
5384 }
5385
5386out:
5387 /* The invariant here is that if *ppt_prev is not NULL
5388 * then skb should also be non-NULL.
5389 *
5390 * Apparently *ppt_prev assignment above holds this invariant due to
5391 * skb dereferencing near it.
5392 */
5393 *pskb = skb;
5394 return ret;
5395}
5396
5397static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5398{
5399 struct net_device *orig_dev = skb->dev;
5400 struct packet_type *pt_prev = NULL;
5401 int ret;
5402
5403 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5404 if (pt_prev)
5405 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5406 skb->dev, pt_prev, orig_dev);
5407 return ret;
5408}
5409
5410/**
5411 * netif_receive_skb_core - special purpose version of netif_receive_skb
5412 * @skb: buffer to process
5413 *
5414 * More direct receive version of netif_receive_skb(). It should
5415 * only be used by callers that have a need to skip RPS and Generic XDP.
5416 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5417 *
5418 * This function may only be called from softirq context and interrupts
5419 * should be enabled.
5420 *
5421 * Return values (usually ignored):
5422 * NET_RX_SUCCESS: no congestion
5423 * NET_RX_DROP: packet was dropped
5424 */
5425int netif_receive_skb_core(struct sk_buff *skb)
5426{
5427 int ret;
5428
5429 rcu_read_lock();
5430 ret = __netif_receive_skb_one_core(skb, false);
5431 rcu_read_unlock();
5432
5433 return ret;
5434}
5435EXPORT_SYMBOL(netif_receive_skb_core);
5436
5437static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5438 struct packet_type *pt_prev,
5439 struct net_device *orig_dev)
5440{
5441 struct sk_buff *skb, *next;
5442
5443 if (!pt_prev)
5444 return;
5445 if (list_empty(head))
5446 return;
5447 if (pt_prev->list_func != NULL)
5448 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5449 ip_list_rcv, head, pt_prev, orig_dev);
5450 else
5451 list_for_each_entry_safe(skb, next, head, list) {
5452 skb_list_del_init(skb);
5453 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5454 }
5455}
5456
5457static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5458{
5459 /* Fast-path assumptions:
5460 * - There is no RX handler.
5461 * - Only one packet_type matches.
5462 * If either of these fails, we will end up doing some per-packet
5463 * processing in-line, then handling the 'last ptype' for the whole
5464 * sublist. This can't cause out-of-order delivery to any single ptype,
5465 * because the 'last ptype' must be constant across the sublist, and all
5466 * other ptypes are handled per-packet.
5467 */
5468 /* Current (common) ptype of sublist */
5469 struct packet_type *pt_curr = NULL;
5470 /* Current (common) orig_dev of sublist */
5471 struct net_device *od_curr = NULL;
5472 struct list_head sublist;
5473 struct sk_buff *skb, *next;
5474
5475 INIT_LIST_HEAD(&sublist);
5476 list_for_each_entry_safe(skb, next, head, list) {
5477 struct net_device *orig_dev = skb->dev;
5478 struct packet_type *pt_prev = NULL;
5479
5480 skb_list_del_init(skb);
5481 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5482 if (!pt_prev)
5483 continue;
5484 if (pt_curr != pt_prev || od_curr != orig_dev) {
5485 /* dispatch old sublist */
5486 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5487 /* start new sublist */
5488 INIT_LIST_HEAD(&sublist);
5489 pt_curr = pt_prev;
5490 od_curr = orig_dev;
5491 }
5492 list_add_tail(&skb->list, &sublist);
5493 }
5494
5495 /* dispatch final sublist */
5496 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5497}
5498
5499static int __netif_receive_skb(struct sk_buff *skb)
5500{
5501 int ret;
5502
5503 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5504 unsigned int noreclaim_flag;
5505
5506 /*
5507 * PFMEMALLOC skbs are special, they should
5508 * - be delivered to SOCK_MEMALLOC sockets only
5509 * - stay away from userspace
5510 * - have bounded memory usage
5511 *
5512 * Use PF_MEMALLOC as this saves us from propagating the allocation
5513 * context down to all allocation sites.
5514 */
5515 noreclaim_flag = memalloc_noreclaim_save();
5516 ret = __netif_receive_skb_one_core(skb, true);
5517 memalloc_noreclaim_restore(noreclaim_flag);
5518 } else
5519 ret = __netif_receive_skb_one_core(skb, false);
5520
5521 return ret;
5522}
5523
5524static void __netif_receive_skb_list(struct list_head *head)
5525{
5526 unsigned long noreclaim_flag = 0;
5527 struct sk_buff *skb, *next;
5528 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5529
5530 list_for_each_entry_safe(skb, next, head, list) {
5531 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5532 struct list_head sublist;
5533
5534 /* Handle the previous sublist */
5535 list_cut_before(&sublist, head, &skb->list);
5536 if (!list_empty(&sublist))
5537 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5538 pfmemalloc = !pfmemalloc;
5539 /* See comments in __netif_receive_skb */
5540 if (pfmemalloc)
5541 noreclaim_flag = memalloc_noreclaim_save();
5542 else
5543 memalloc_noreclaim_restore(noreclaim_flag);
5544 }
5545 }
5546 /* Handle the remaining sublist */
5547 if (!list_empty(head))
5548 __netif_receive_skb_list_core(head, pfmemalloc);
5549 /* Restore pflags */
5550 if (pfmemalloc)
5551 memalloc_noreclaim_restore(noreclaim_flag);
5552}
5553
5554static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5555{
5556 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5557 struct bpf_prog *new = xdp->prog;
5558 int ret = 0;
5559
5560 switch (xdp->command) {
5561 case XDP_SETUP_PROG:
5562 rcu_assign_pointer(dev->xdp_prog, new);
5563 if (old)
5564 bpf_prog_put(old);
5565
5566 if (old && !new) {
5567 static_branch_dec(&generic_xdp_needed_key);
5568 } else if (new && !old) {
5569 static_branch_inc(&generic_xdp_needed_key);
5570 dev_disable_lro(dev);
5571 dev_disable_gro_hw(dev);
5572 }
5573 break;
5574
5575 default:
5576 ret = -EINVAL;
5577 break;
5578 }
5579
5580 return ret;
5581}
5582
5583static int netif_receive_skb_internal(struct sk_buff *skb)
5584{
5585 int ret;
5586
5587 net_timestamp_check(netdev_tstamp_prequeue, skb);
5588
5589 if (skb_defer_rx_timestamp(skb))
5590 return NET_RX_SUCCESS;
5591
5592 rcu_read_lock();
5593#ifdef CONFIG_RPS
5594 if (static_branch_unlikely(&rps_needed)) {
5595 struct rps_dev_flow voidflow, *rflow = &voidflow;
5596 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5597
5598 if (cpu >= 0) {
5599 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5600 rcu_read_unlock();
5601 return ret;
5602 }
5603 }
5604#endif
5605 ret = __netif_receive_skb(skb);
5606 rcu_read_unlock();
5607 return ret;
5608}
5609
5610void netif_receive_skb_list_internal(struct list_head *head)
5611{
5612 struct sk_buff *skb, *next;
5613 struct list_head sublist;
5614
5615 INIT_LIST_HEAD(&sublist);
5616 list_for_each_entry_safe(skb, next, head, list) {
5617 net_timestamp_check(netdev_tstamp_prequeue, skb);
5618 skb_list_del_init(skb);
5619 if (!skb_defer_rx_timestamp(skb))
5620 list_add_tail(&skb->list, &sublist);
5621 }
5622 list_splice_init(&sublist, head);
5623
5624 rcu_read_lock();
5625#ifdef CONFIG_RPS
5626 if (static_branch_unlikely(&rps_needed)) {
5627 list_for_each_entry_safe(skb, next, head, list) {
5628 struct rps_dev_flow voidflow, *rflow = &voidflow;
5629 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5630
5631 if (cpu >= 0) {
5632 /* Will be handled, remove from list */
5633 skb_list_del_init(skb);
5634 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5635 }
5636 }
5637 }
5638#endif
5639 __netif_receive_skb_list(head);
5640 rcu_read_unlock();
5641}
5642
5643/**
5644 * netif_receive_skb - process receive buffer from network
5645 * @skb: buffer to process
5646 *
5647 * netif_receive_skb() is the main receive data processing function.
5648 * It always succeeds. The buffer may be dropped during processing
5649 * for congestion control or by the protocol layers.
5650 *
5651 * This function may only be called from softirq context and interrupts
5652 * should be enabled.
5653 *
5654 * Return values (usually ignored):
5655 * NET_RX_SUCCESS: no congestion
5656 * NET_RX_DROP: packet was dropped
5657 */
5658int netif_receive_skb(struct sk_buff *skb)
5659{
5660 int ret;
5661
5662 trace_netif_receive_skb_entry(skb);
5663
5664 ret = netif_receive_skb_internal(skb);
5665 trace_netif_receive_skb_exit(ret);
5666
5667 return ret;
5668}
5669EXPORT_SYMBOL(netif_receive_skb);
5670
5671/**
5672 * netif_receive_skb_list - process many receive buffers from network
5673 * @head: list of skbs to process.
5674 *
5675 * Since return value of netif_receive_skb() is normally ignored, and
5676 * wouldn't be meaningful for a list, this function returns void.
5677 *
5678 * This function may only be called from softirq context and interrupts
5679 * should be enabled.
5680 */
5681void netif_receive_skb_list(struct list_head *head)
5682{
5683 struct sk_buff *skb;
5684
5685 if (list_empty(head))
5686 return;
5687 if (trace_netif_receive_skb_list_entry_enabled()) {
5688 list_for_each_entry(skb, head, list)
5689 trace_netif_receive_skb_list_entry(skb);
5690 }
5691 netif_receive_skb_list_internal(head);
5692 trace_netif_receive_skb_list_exit(0);
5693}
5694EXPORT_SYMBOL(netif_receive_skb_list);
5695
5696static DEFINE_PER_CPU(struct work_struct, flush_works);
5697
5698/* Network device is going away, flush any packets still pending */
5699static void flush_backlog(struct work_struct *work)
5700{
5701 struct sk_buff *skb, *tmp;
5702 struct softnet_data *sd;
5703
5704 local_bh_disable();
5705 sd = this_cpu_ptr(&softnet_data);
5706
5707 rps_lock_irq_disable(sd);
5708 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5709 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5710 __skb_unlink(skb, &sd->input_pkt_queue);
5711 dev_kfree_skb_irq(skb);
5712 input_queue_head_incr(sd);
5713 }
5714 }
5715 rps_unlock_irq_enable(sd);
5716
5717 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5718 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5719 __skb_unlink(skb, &sd->process_queue);
5720 kfree_skb(skb);
5721 input_queue_head_incr(sd);
5722 }
5723 }
5724 local_bh_enable();
5725}
5726
5727static bool flush_required(int cpu)
5728{
5729#if IS_ENABLED(CONFIG_RPS)
5730 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5731 bool do_flush;
5732
5733 rps_lock_irq_disable(sd);
5734
5735 /* as insertion into process_queue happens with the rps lock held,
5736 * process_queue access may race only with dequeue
5737 */
5738 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5739 !skb_queue_empty_lockless(&sd->process_queue);
5740 rps_unlock_irq_enable(sd);
5741
5742 return do_flush;
5743#endif
5744 /* without RPS we can't safely check input_pkt_queue: during a
5745 * concurrent remote skb_queue_splice() we can detect as empty both
5746 * input_pkt_queue and process_queue even if the latter could end-up
5747 * containing a lot of packets.
5748 */
5749 return true;
5750}
5751
5752static void flush_all_backlogs(void)
5753{
5754 static cpumask_t flush_cpus;
5755 unsigned int cpu;
5756
5757 /* since we are under rtnl lock protection we can use static data
5758 * for the cpumask and avoid allocating on stack the possibly
5759 * large mask
5760 */
5761 ASSERT_RTNL();
5762
5763 cpus_read_lock();
5764
5765 cpumask_clear(&flush_cpus);
5766 for_each_online_cpu(cpu) {
5767 if (flush_required(cpu)) {
5768 queue_work_on(cpu, system_highpri_wq,
5769 per_cpu_ptr(&flush_works, cpu));
5770 cpumask_set_cpu(cpu, &flush_cpus);
5771 }
5772 }
5773
5774 /* we can have in flight packet[s] on the cpus we are not flushing,
5775 * synchronize_net() in unregister_netdevice_many() will take care of
5776 * them
5777 */
5778 for_each_cpu(cpu, &flush_cpus)
5779 flush_work(per_cpu_ptr(&flush_works, cpu));
5780
5781 cpus_read_unlock();
5782}
5783
5784static void net_rps_send_ipi(struct softnet_data *remsd)
5785{
5786#ifdef CONFIG_RPS
5787 while (remsd) {
5788 struct softnet_data *next = remsd->rps_ipi_next;
5789
5790 if (cpu_online(remsd->cpu))
5791 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5792 remsd = next;
5793 }
5794#endif
5795}
5796
5797/*
5798 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5799 * Note: called with local irq disabled, but exits with local irq enabled.
5800 */
5801static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5802{
5803#ifdef CONFIG_RPS
5804 struct softnet_data *remsd = sd->rps_ipi_list;
5805
5806 if (remsd) {
5807 sd->rps_ipi_list = NULL;
5808
5809 local_irq_enable();
5810
5811 /* Send pending IPI's to kick RPS processing on remote cpus. */
5812 net_rps_send_ipi(remsd);
5813 } else
5814#endif
5815 local_irq_enable();
5816}
5817
5818static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5819{
5820#ifdef CONFIG_RPS
5821 return sd->rps_ipi_list != NULL;
5822#else
5823 return false;
5824#endif
5825}
5826
5827static int process_backlog(struct napi_struct *napi, int quota)
5828{
5829 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5830 bool again = true;
5831 int work = 0;
5832
5833 /* Check if we have pending ipi, its better to send them now,
5834 * not waiting net_rx_action() end.
5835 */
5836 if (sd_has_rps_ipi_waiting(sd)) {
5837 local_irq_disable();
5838 net_rps_action_and_irq_enable(sd);
5839 }
5840
5841 napi->weight = dev_rx_weight;
5842 while (again) {
5843 struct sk_buff *skb;
5844
5845 while ((skb = __skb_dequeue(&sd->process_queue))) {
5846 rcu_read_lock();
5847 __netif_receive_skb(skb);
5848 rcu_read_unlock();
5849 input_queue_head_incr(sd);
5850 if (++work >= quota)
5851 return work;
5852
5853 }
5854
5855 rps_lock_irq_disable(sd);
5856 if (skb_queue_empty(&sd->input_pkt_queue)) {
5857 /*
5858 * Inline a custom version of __napi_complete().
5859 * only current cpu owns and manipulates this napi,
5860 * and NAPI_STATE_SCHED is the only possible flag set
5861 * on backlog.
5862 * We can use a plain write instead of clear_bit(),
5863 * and we dont need an smp_mb() memory barrier.
5864 */
5865 napi->state = 0;
5866 again = false;
5867 } else {
5868 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5869 &sd->process_queue);
5870 }
5871 rps_unlock_irq_enable(sd);
5872 }
5873
5874 return work;
5875}
5876
5877/**
5878 * __napi_schedule - schedule for receive
5879 * @n: entry to schedule
5880 *
5881 * The entry's receive function will be scheduled to run.
5882 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5883 */
5884void __napi_schedule(struct napi_struct *n)
5885{
5886 unsigned long flags;
5887
5888 local_irq_save(flags);
5889 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5890 local_irq_restore(flags);
5891}
5892EXPORT_SYMBOL(__napi_schedule);
5893
5894/**
5895 * napi_schedule_prep - check if napi can be scheduled
5896 * @n: napi context
5897 *
5898 * Test if NAPI routine is already running, and if not mark
5899 * it as running. This is used as a condition variable to
5900 * insure only one NAPI poll instance runs. We also make
5901 * sure there is no pending NAPI disable.
5902 */
5903bool napi_schedule_prep(struct napi_struct *n)
5904{
5905 unsigned long val, new;
5906
5907 do {
5908 val = READ_ONCE(n->state);
5909 if (unlikely(val & NAPIF_STATE_DISABLE))
5910 return false;
5911 new = val | NAPIF_STATE_SCHED;
5912
5913 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5914 * This was suggested by Alexander Duyck, as compiler
5915 * emits better code than :
5916 * if (val & NAPIF_STATE_SCHED)
5917 * new |= NAPIF_STATE_MISSED;
5918 */
5919 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5920 NAPIF_STATE_MISSED;
5921 } while (cmpxchg(&n->state, val, new) != val);
5922
5923 return !(val & NAPIF_STATE_SCHED);
5924}
5925EXPORT_SYMBOL(napi_schedule_prep);
5926
5927/**
5928 * __napi_schedule_irqoff - schedule for receive
5929 * @n: entry to schedule
5930 *
5931 * Variant of __napi_schedule() assuming hard irqs are masked.
5932 *
5933 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5934 * because the interrupt disabled assumption might not be true
5935 * due to force-threaded interrupts and spinlock substitution.
5936 */
5937void __napi_schedule_irqoff(struct napi_struct *n)
5938{
5939 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5940 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5941 else
5942 __napi_schedule(n);
5943}
5944EXPORT_SYMBOL(__napi_schedule_irqoff);
5945
5946bool napi_complete_done(struct napi_struct *n, int work_done)
5947{
5948 unsigned long flags, val, new, timeout = 0;
5949 bool ret = true;
5950
5951 /*
5952 * 1) Don't let napi dequeue from the cpu poll list
5953 * just in case its running on a different cpu.
5954 * 2) If we are busy polling, do nothing here, we have
5955 * the guarantee we will be called later.
5956 */
5957 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5958 NAPIF_STATE_IN_BUSY_POLL)))
5959 return false;
5960
5961 if (work_done) {
5962 if (n->gro_bitmask)
5963 timeout = READ_ONCE(n->dev->gro_flush_timeout);
5964 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
5965 }
5966 if (n->defer_hard_irqs_count > 0) {
5967 n->defer_hard_irqs_count--;
5968 timeout = READ_ONCE(n->dev->gro_flush_timeout);
5969 if (timeout)
5970 ret = false;
5971 }
5972 if (n->gro_bitmask) {
5973 /* When the NAPI instance uses a timeout and keeps postponing
5974 * it, we need to bound somehow the time packets are kept in
5975 * the GRO layer
5976 */
5977 napi_gro_flush(n, !!timeout);
5978 }
5979
5980 gro_normal_list(n);
5981
5982 if (unlikely(!list_empty(&n->poll_list))) {
5983 /* If n->poll_list is not empty, we need to mask irqs */
5984 local_irq_save(flags);
5985 list_del_init(&n->poll_list);
5986 local_irq_restore(flags);
5987 }
5988
5989 do {
5990 val = READ_ONCE(n->state);
5991
5992 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5993
5994 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
5995 NAPIF_STATE_SCHED_THREADED |
5996 NAPIF_STATE_PREFER_BUSY_POLL);
5997
5998 /* If STATE_MISSED was set, leave STATE_SCHED set,
5999 * because we will call napi->poll() one more time.
6000 * This C code was suggested by Alexander Duyck to help gcc.
6001 */
6002 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6003 NAPIF_STATE_SCHED;
6004 } while (cmpxchg(&n->state, val, new) != val);
6005
6006 if (unlikely(val & NAPIF_STATE_MISSED)) {
6007 __napi_schedule(n);
6008 return false;
6009 }
6010
6011 if (timeout)
6012 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6013 HRTIMER_MODE_REL_PINNED);
6014 return ret;
6015}
6016EXPORT_SYMBOL(napi_complete_done);
6017
6018/* must be called under rcu_read_lock(), as we dont take a reference */
6019static struct napi_struct *napi_by_id(unsigned int napi_id)
6020{
6021 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6022 struct napi_struct *napi;
6023
6024 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6025 if (napi->napi_id == napi_id)
6026 return napi;
6027
6028 return NULL;
6029}
6030
6031#if defined(CONFIG_NET_RX_BUSY_POLL)
6032
6033static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6034{
6035 if (!skip_schedule) {
6036 gro_normal_list(napi);
6037 __napi_schedule(napi);
6038 return;
6039 }
6040
6041 if (napi->gro_bitmask) {
6042 /* flush too old packets
6043 * If HZ < 1000, flush all packets.
6044 */
6045 napi_gro_flush(napi, HZ >= 1000);
6046 }
6047
6048 gro_normal_list(napi);
6049 clear_bit(NAPI_STATE_SCHED, &napi->state);
6050}
6051
6052static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6053 u16 budget)
6054{
6055 bool skip_schedule = false;
6056 unsigned long timeout;
6057 int rc;
6058
6059 /* Busy polling means there is a high chance device driver hard irq
6060 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6061 * set in napi_schedule_prep().
6062 * Since we are about to call napi->poll() once more, we can safely
6063 * clear NAPI_STATE_MISSED.
6064 *
6065 * Note: x86 could use a single "lock and ..." instruction
6066 * to perform these two clear_bit()
6067 */
6068 clear_bit(NAPI_STATE_MISSED, &napi->state);
6069 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6070
6071 local_bh_disable();
6072
6073 if (prefer_busy_poll) {
6074 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6075 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6076 if (napi->defer_hard_irqs_count && timeout) {
6077 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6078 skip_schedule = true;
6079 }
6080 }
6081
6082 /* All we really want here is to re-enable device interrupts.
6083 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6084 */
6085 rc = napi->poll(napi, budget);
6086 /* We can't gro_normal_list() here, because napi->poll() might have
6087 * rearmed the napi (napi_complete_done()) in which case it could
6088 * already be running on another CPU.
6089 */
6090 trace_napi_poll(napi, rc, budget);
6091 netpoll_poll_unlock(have_poll_lock);
6092 if (rc == budget)
6093 __busy_poll_stop(napi, skip_schedule);
6094 local_bh_enable();
6095}
6096
6097void napi_busy_loop(unsigned int napi_id,
6098 bool (*loop_end)(void *, unsigned long),
6099 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6100{
6101 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6102 int (*napi_poll)(struct napi_struct *napi, int budget);
6103 void *have_poll_lock = NULL;
6104 struct napi_struct *napi;
6105
6106restart:
6107 napi_poll = NULL;
6108
6109 rcu_read_lock();
6110
6111 napi = napi_by_id(napi_id);
6112 if (!napi)
6113 goto out;
6114
6115 preempt_disable();
6116 for (;;) {
6117 int work = 0;
6118
6119 local_bh_disable();
6120 if (!napi_poll) {
6121 unsigned long val = READ_ONCE(napi->state);
6122
6123 /* If multiple threads are competing for this napi,
6124 * we avoid dirtying napi->state as much as we can.
6125 */
6126 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6127 NAPIF_STATE_IN_BUSY_POLL)) {
6128 if (prefer_busy_poll)
6129 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6130 goto count;
6131 }
6132 if (cmpxchg(&napi->state, val,
6133 val | NAPIF_STATE_IN_BUSY_POLL |
6134 NAPIF_STATE_SCHED) != val) {
6135 if (prefer_busy_poll)
6136 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6137 goto count;
6138 }
6139 have_poll_lock = netpoll_poll_lock(napi);
6140 napi_poll = napi->poll;
6141 }
6142 work = napi_poll(napi, budget);
6143 trace_napi_poll(napi, work, budget);
6144 gro_normal_list(napi);
6145count:
6146 if (work > 0)
6147 __NET_ADD_STATS(dev_net(napi->dev),
6148 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6149 local_bh_enable();
6150
6151 if (!loop_end || loop_end(loop_end_arg, start_time))
6152 break;
6153
6154 if (unlikely(need_resched())) {
6155 if (napi_poll)
6156 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6157 preempt_enable();
6158 rcu_read_unlock();
6159 cond_resched();
6160 if (loop_end(loop_end_arg, start_time))
6161 return;
6162 goto restart;
6163 }
6164 cpu_relax();
6165 }
6166 if (napi_poll)
6167 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6168 preempt_enable();
6169out:
6170 rcu_read_unlock();
6171}
6172EXPORT_SYMBOL(napi_busy_loop);
6173
6174#endif /* CONFIG_NET_RX_BUSY_POLL */
6175
6176static void napi_hash_add(struct napi_struct *napi)
6177{
6178 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6179 return;
6180
6181 spin_lock(&napi_hash_lock);
6182
6183 /* 0..NR_CPUS range is reserved for sender_cpu use */
6184 do {
6185 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6186 napi_gen_id = MIN_NAPI_ID;
6187 } while (napi_by_id(napi_gen_id));
6188 napi->napi_id = napi_gen_id;
6189
6190 hlist_add_head_rcu(&napi->napi_hash_node,
6191 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6192
6193 spin_unlock(&napi_hash_lock);
6194}
6195
6196/* Warning : caller is responsible to make sure rcu grace period
6197 * is respected before freeing memory containing @napi
6198 */
6199static void napi_hash_del(struct napi_struct *napi)
6200{
6201 spin_lock(&napi_hash_lock);
6202
6203 hlist_del_init_rcu(&napi->napi_hash_node);
6204
6205 spin_unlock(&napi_hash_lock);
6206}
6207
6208static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6209{
6210 struct napi_struct *napi;
6211
6212 napi = container_of(timer, struct napi_struct, timer);
6213
6214 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6215 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6216 */
6217 if (!napi_disable_pending(napi) &&
6218 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6219 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6220 __napi_schedule_irqoff(napi);
6221 }
6222
6223 return HRTIMER_NORESTART;
6224}
6225
6226static void init_gro_hash(struct napi_struct *napi)
6227{
6228 int i;
6229
6230 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6231 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6232 napi->gro_hash[i].count = 0;
6233 }
6234 napi->gro_bitmask = 0;
6235}
6236
6237int dev_set_threaded(struct net_device *dev, bool threaded)
6238{
6239 struct napi_struct *napi;
6240 int err = 0;
6241
6242 if (dev->threaded == threaded)
6243 return 0;
6244
6245 if (threaded) {
6246 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6247 if (!napi->thread) {
6248 err = napi_kthread_create(napi);
6249 if (err) {
6250 threaded = false;
6251 break;
6252 }
6253 }
6254 }
6255 }
6256
6257 dev->threaded = threaded;
6258
6259 /* Make sure kthread is created before THREADED bit
6260 * is set.
6261 */
6262 smp_mb__before_atomic();
6263
6264 /* Setting/unsetting threaded mode on a napi might not immediately
6265 * take effect, if the current napi instance is actively being
6266 * polled. In this case, the switch between threaded mode and
6267 * softirq mode will happen in the next round of napi_schedule().
6268 * This should not cause hiccups/stalls to the live traffic.
6269 */
6270 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6271 if (threaded)
6272 set_bit(NAPI_STATE_THREADED, &napi->state);
6273 else
6274 clear_bit(NAPI_STATE_THREADED, &napi->state);
6275 }
6276
6277 return err;
6278}
6279EXPORT_SYMBOL(dev_set_threaded);
6280
6281void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6282 int (*poll)(struct napi_struct *, int), int weight)
6283{
6284 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6285 return;
6286
6287 INIT_LIST_HEAD(&napi->poll_list);
6288 INIT_HLIST_NODE(&napi->napi_hash_node);
6289 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6290 napi->timer.function = napi_watchdog;
6291 init_gro_hash(napi);
6292 napi->skb = NULL;
6293 INIT_LIST_HEAD(&napi->rx_list);
6294 napi->rx_count = 0;
6295 napi->poll = poll;
6296 if (weight > NAPI_POLL_WEIGHT)
6297 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6298 weight);
6299 napi->weight = weight;
6300 napi->dev = dev;
6301#ifdef CONFIG_NETPOLL
6302 napi->poll_owner = -1;
6303#endif
6304 set_bit(NAPI_STATE_SCHED, &napi->state);
6305 set_bit(NAPI_STATE_NPSVC, &napi->state);
6306 list_add_rcu(&napi->dev_list, &dev->napi_list);
6307 napi_hash_add(napi);
6308 /* Create kthread for this napi if dev->threaded is set.
6309 * Clear dev->threaded if kthread creation failed so that
6310 * threaded mode will not be enabled in napi_enable().
6311 */
6312 if (dev->threaded && napi_kthread_create(napi))
6313 dev->threaded = 0;
6314}
6315EXPORT_SYMBOL(netif_napi_add);
6316
6317void napi_disable(struct napi_struct *n)
6318{
6319 unsigned long val, new;
6320
6321 might_sleep();
6322 set_bit(NAPI_STATE_DISABLE, &n->state);
6323
6324 for ( ; ; ) {
6325 val = READ_ONCE(n->state);
6326 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6327 usleep_range(20, 200);
6328 continue;
6329 }
6330
6331 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6332 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6333
6334 if (cmpxchg(&n->state, val, new) == val)
6335 break;
6336 }
6337
6338 hrtimer_cancel(&n->timer);
6339
6340 clear_bit(NAPI_STATE_DISABLE, &n->state);
6341}
6342EXPORT_SYMBOL(napi_disable);
6343
6344/**
6345 * napi_enable - enable NAPI scheduling
6346 * @n: NAPI context
6347 *
6348 * Resume NAPI from being scheduled on this context.
6349 * Must be paired with napi_disable.
6350 */
6351void napi_enable(struct napi_struct *n)
6352{
6353 unsigned long val, new;
6354
6355 do {
6356 val = READ_ONCE(n->state);
6357 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6358
6359 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6360 if (n->dev->threaded && n->thread)
6361 new |= NAPIF_STATE_THREADED;
6362 } while (cmpxchg(&n->state, val, new) != val);
6363}
6364EXPORT_SYMBOL(napi_enable);
6365
6366static void flush_gro_hash(struct napi_struct *napi)
6367{
6368 int i;
6369
6370 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6371 struct sk_buff *skb, *n;
6372
6373 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6374 kfree_skb(skb);
6375 napi->gro_hash[i].count = 0;
6376 }
6377}
6378
6379/* Must be called in process context */
6380void __netif_napi_del(struct napi_struct *napi)
6381{
6382 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6383 return;
6384
6385 napi_hash_del(napi);
6386 list_del_rcu(&napi->dev_list);
6387 napi_free_frags(napi);
6388
6389 flush_gro_hash(napi);
6390 napi->gro_bitmask = 0;
6391
6392 if (napi->thread) {
6393 kthread_stop(napi->thread);
6394 napi->thread = NULL;
6395 }
6396}
6397EXPORT_SYMBOL(__netif_napi_del);
6398
6399static int __napi_poll(struct napi_struct *n, bool *repoll)
6400{
6401 int work, weight;
6402
6403 weight = n->weight;
6404
6405 /* This NAPI_STATE_SCHED test is for avoiding a race
6406 * with netpoll's poll_napi(). Only the entity which
6407 * obtains the lock and sees NAPI_STATE_SCHED set will
6408 * actually make the ->poll() call. Therefore we avoid
6409 * accidentally calling ->poll() when NAPI is not scheduled.
6410 */
6411 work = 0;
6412 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6413 work = n->poll(n, weight);
6414 trace_napi_poll(n, work, weight);
6415 }
6416
6417 if (unlikely(work > weight))
6418 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6419 n->poll, work, weight);
6420
6421 if (likely(work < weight))
6422 return work;
6423
6424 /* Drivers must not modify the NAPI state if they
6425 * consume the entire weight. In such cases this code
6426 * still "owns" the NAPI instance and therefore can
6427 * move the instance around on the list at-will.
6428 */
6429 if (unlikely(napi_disable_pending(n))) {
6430 napi_complete(n);
6431 return work;
6432 }
6433
6434 /* The NAPI context has more processing work, but busy-polling
6435 * is preferred. Exit early.
6436 */
6437 if (napi_prefer_busy_poll(n)) {
6438 if (napi_complete_done(n, work)) {
6439 /* If timeout is not set, we need to make sure
6440 * that the NAPI is re-scheduled.
6441 */
6442 napi_schedule(n);
6443 }
6444 return work;
6445 }
6446
6447 if (n->gro_bitmask) {
6448 /* flush too old packets
6449 * If HZ < 1000, flush all packets.
6450 */
6451 napi_gro_flush(n, HZ >= 1000);
6452 }
6453
6454 gro_normal_list(n);
6455
6456 /* Some drivers may have called napi_schedule
6457 * prior to exhausting their budget.
6458 */
6459 if (unlikely(!list_empty(&n->poll_list))) {
6460 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6461 n->dev ? n->dev->name : "backlog");
6462 return work;
6463 }
6464
6465 *repoll = true;
6466
6467 return work;
6468}
6469
6470static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6471{
6472 bool do_repoll = false;
6473 void *have;
6474 int work;
6475
6476 list_del_init(&n->poll_list);
6477
6478 have = netpoll_poll_lock(n);
6479
6480 work = __napi_poll(n, &do_repoll);
6481
6482 if (do_repoll)
6483 list_add_tail(&n->poll_list, repoll);
6484
6485 netpoll_poll_unlock(have);
6486
6487 return work;
6488}
6489
6490static int napi_thread_wait(struct napi_struct *napi)
6491{
6492 bool woken = false;
6493
6494 set_current_state(TASK_INTERRUPTIBLE);
6495
6496 while (!kthread_should_stop()) {
6497 /* Testing SCHED_THREADED bit here to make sure the current
6498 * kthread owns this napi and could poll on this napi.
6499 * Testing SCHED bit is not enough because SCHED bit might be
6500 * set by some other busy poll thread or by napi_disable().
6501 */
6502 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6503 WARN_ON(!list_empty(&napi->poll_list));
6504 __set_current_state(TASK_RUNNING);
6505 return 0;
6506 }
6507
6508 schedule();
6509 /* woken being true indicates this thread owns this napi. */
6510 woken = true;
6511 set_current_state(TASK_INTERRUPTIBLE);
6512 }
6513 __set_current_state(TASK_RUNNING);
6514
6515 return -1;
6516}
6517
6518static int napi_threaded_poll(void *data)
6519{
6520 struct napi_struct *napi = data;
6521 void *have;
6522
6523 while (!napi_thread_wait(napi)) {
6524 for (;;) {
6525 bool repoll = false;
6526
6527 local_bh_disable();
6528
6529 have = netpoll_poll_lock(napi);
6530 __napi_poll(napi, &repoll);
6531 netpoll_poll_unlock(have);
6532
6533 local_bh_enable();
6534
6535 if (!repoll)
6536 break;
6537
6538 cond_resched();
6539 }
6540 }
6541 return 0;
6542}
6543
6544static __latent_entropy void net_rx_action(struct softirq_action *h)
6545{
6546 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6547 unsigned long time_limit = jiffies +
6548 usecs_to_jiffies(netdev_budget_usecs);
6549 int budget = netdev_budget;
6550 LIST_HEAD(list);
6551 LIST_HEAD(repoll);
6552
6553 local_irq_disable();
6554 list_splice_init(&sd->poll_list, &list);
6555 local_irq_enable();
6556
6557 for (;;) {
6558 struct napi_struct *n;
6559
6560 if (list_empty(&list)) {
6561 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6562 return;
6563 break;
6564 }
6565
6566 n = list_first_entry(&list, struct napi_struct, poll_list);
6567 budget -= napi_poll(n, &repoll);
6568
6569 /* If softirq window is exhausted then punt.
6570 * Allow this to run for 2 jiffies since which will allow
6571 * an average latency of 1.5/HZ.
6572 */
6573 if (unlikely(budget <= 0 ||
6574 time_after_eq(jiffies, time_limit))) {
6575 sd->time_squeeze++;
6576 break;
6577 }
6578 }
6579
6580 local_irq_disable();
6581
6582 list_splice_tail_init(&sd->poll_list, &list);
6583 list_splice_tail(&repoll, &list);
6584 list_splice(&list, &sd->poll_list);
6585 if (!list_empty(&sd->poll_list))
6586 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6587
6588 net_rps_action_and_irq_enable(sd);
6589}
6590
6591struct netdev_adjacent {
6592 struct net_device *dev;
6593 netdevice_tracker dev_tracker;
6594
6595 /* upper master flag, there can only be one master device per list */
6596 bool master;
6597
6598 /* lookup ignore flag */
6599 bool ignore;
6600
6601 /* counter for the number of times this device was added to us */
6602 u16 ref_nr;
6603
6604 /* private field for the users */
6605 void *private;
6606
6607 struct list_head list;
6608 struct rcu_head rcu;
6609};
6610
6611static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6612 struct list_head *adj_list)
6613{
6614 struct netdev_adjacent *adj;
6615
6616 list_for_each_entry(adj, adj_list, list) {
6617 if (adj->dev == adj_dev)
6618 return adj;
6619 }
6620 return NULL;
6621}
6622
6623static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6624 struct netdev_nested_priv *priv)
6625{
6626 struct net_device *dev = (struct net_device *)priv->data;
6627
6628 return upper_dev == dev;
6629}
6630
6631/**
6632 * netdev_has_upper_dev - Check if device is linked to an upper device
6633 * @dev: device
6634 * @upper_dev: upper device to check
6635 *
6636 * Find out if a device is linked to specified upper device and return true
6637 * in case it is. Note that this checks only immediate upper device,
6638 * not through a complete stack of devices. The caller must hold the RTNL lock.
6639 */
6640bool netdev_has_upper_dev(struct net_device *dev,
6641 struct net_device *upper_dev)
6642{
6643 struct netdev_nested_priv priv = {
6644 .data = (void *)upper_dev,
6645 };
6646
6647 ASSERT_RTNL();
6648
6649 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6650 &priv);
6651}
6652EXPORT_SYMBOL(netdev_has_upper_dev);
6653
6654/**
6655 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6656 * @dev: device
6657 * @upper_dev: upper device to check
6658 *
6659 * Find out if a device is linked to specified upper device and return true
6660 * in case it is. Note that this checks the entire upper device chain.
6661 * The caller must hold rcu lock.
6662 */
6663
6664bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6665 struct net_device *upper_dev)
6666{
6667 struct netdev_nested_priv priv = {
6668 .data = (void *)upper_dev,
6669 };
6670
6671 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6672 &priv);
6673}
6674EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6675
6676/**
6677 * netdev_has_any_upper_dev - Check if device is linked to some device
6678 * @dev: device
6679 *
6680 * Find out if a device is linked to an upper device and return true in case
6681 * it is. The caller must hold the RTNL lock.
6682 */
6683bool netdev_has_any_upper_dev(struct net_device *dev)
6684{
6685 ASSERT_RTNL();
6686
6687 return !list_empty(&dev->adj_list.upper);
6688}
6689EXPORT_SYMBOL(netdev_has_any_upper_dev);
6690
6691/**
6692 * netdev_master_upper_dev_get - Get master upper device
6693 * @dev: device
6694 *
6695 * Find a master upper device and return pointer to it or NULL in case
6696 * it's not there. The caller must hold the RTNL lock.
6697 */
6698struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6699{
6700 struct netdev_adjacent *upper;
6701
6702 ASSERT_RTNL();
6703
6704 if (list_empty(&dev->adj_list.upper))
6705 return NULL;
6706
6707 upper = list_first_entry(&dev->adj_list.upper,
6708 struct netdev_adjacent, list);
6709 if (likely(upper->master))
6710 return upper->dev;
6711 return NULL;
6712}
6713EXPORT_SYMBOL(netdev_master_upper_dev_get);
6714
6715static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6716{
6717 struct netdev_adjacent *upper;
6718
6719 ASSERT_RTNL();
6720
6721 if (list_empty(&dev->adj_list.upper))
6722 return NULL;
6723
6724 upper = list_first_entry(&dev->adj_list.upper,
6725 struct netdev_adjacent, list);
6726 if (likely(upper->master) && !upper->ignore)
6727 return upper->dev;
6728 return NULL;
6729}
6730
6731/**
6732 * netdev_has_any_lower_dev - Check if device is linked to some device
6733 * @dev: device
6734 *
6735 * Find out if a device is linked to a lower device and return true in case
6736 * it is. The caller must hold the RTNL lock.
6737 */
6738static bool netdev_has_any_lower_dev(struct net_device *dev)
6739{
6740 ASSERT_RTNL();
6741
6742 return !list_empty(&dev->adj_list.lower);
6743}
6744
6745void *netdev_adjacent_get_private(struct list_head *adj_list)
6746{
6747 struct netdev_adjacent *adj;
6748
6749 adj = list_entry(adj_list, struct netdev_adjacent, list);
6750
6751 return adj->private;
6752}
6753EXPORT_SYMBOL(netdev_adjacent_get_private);
6754
6755/**
6756 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6757 * @dev: device
6758 * @iter: list_head ** of the current position
6759 *
6760 * Gets the next device from the dev's upper list, starting from iter
6761 * position. The caller must hold RCU read lock.
6762 */
6763struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6764 struct list_head **iter)
6765{
6766 struct netdev_adjacent *upper;
6767
6768 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6769
6770 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6771
6772 if (&upper->list == &dev->adj_list.upper)
6773 return NULL;
6774
6775 *iter = &upper->list;
6776
6777 return upper->dev;
6778}
6779EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6780
6781static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6782 struct list_head **iter,
6783 bool *ignore)
6784{
6785 struct netdev_adjacent *upper;
6786
6787 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6788
6789 if (&upper->list == &dev->adj_list.upper)
6790 return NULL;
6791
6792 *iter = &upper->list;
6793 *ignore = upper->ignore;
6794
6795 return upper->dev;
6796}
6797
6798static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6799 struct list_head **iter)
6800{
6801 struct netdev_adjacent *upper;
6802
6803 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6804
6805 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6806
6807 if (&upper->list == &dev->adj_list.upper)
6808 return NULL;
6809
6810 *iter = &upper->list;
6811
6812 return upper->dev;
6813}
6814
6815static int __netdev_walk_all_upper_dev(struct net_device *dev,
6816 int (*fn)(struct net_device *dev,
6817 struct netdev_nested_priv *priv),
6818 struct netdev_nested_priv *priv)
6819{
6820 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6821 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6822 int ret, cur = 0;
6823 bool ignore;
6824
6825 now = dev;
6826 iter = &dev->adj_list.upper;
6827
6828 while (1) {
6829 if (now != dev) {
6830 ret = fn(now, priv);
6831 if (ret)
6832 return ret;
6833 }
6834
6835 next = NULL;
6836 while (1) {
6837 udev = __netdev_next_upper_dev(now, &iter, &ignore);
6838 if (!udev)
6839 break;
6840 if (ignore)
6841 continue;
6842
6843 next = udev;
6844 niter = &udev->adj_list.upper;
6845 dev_stack[cur] = now;
6846 iter_stack[cur++] = iter;
6847 break;
6848 }
6849
6850 if (!next) {
6851 if (!cur)
6852 return 0;
6853 next = dev_stack[--cur];
6854 niter = iter_stack[cur];
6855 }
6856
6857 now = next;
6858 iter = niter;
6859 }
6860
6861 return 0;
6862}
6863
6864int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6865 int (*fn)(struct net_device *dev,
6866 struct netdev_nested_priv *priv),
6867 struct netdev_nested_priv *priv)
6868{
6869 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6870 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6871 int ret, cur = 0;
6872
6873 now = dev;
6874 iter = &dev->adj_list.upper;
6875
6876 while (1) {
6877 if (now != dev) {
6878 ret = fn(now, priv);
6879 if (ret)
6880 return ret;
6881 }
6882
6883 next = NULL;
6884 while (1) {
6885 udev = netdev_next_upper_dev_rcu(now, &iter);
6886 if (!udev)
6887 break;
6888
6889 next = udev;
6890 niter = &udev->adj_list.upper;
6891 dev_stack[cur] = now;
6892 iter_stack[cur++] = iter;
6893 break;
6894 }
6895
6896 if (!next) {
6897 if (!cur)
6898 return 0;
6899 next = dev_stack[--cur];
6900 niter = iter_stack[cur];
6901 }
6902
6903 now = next;
6904 iter = niter;
6905 }
6906
6907 return 0;
6908}
6909EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6910
6911static bool __netdev_has_upper_dev(struct net_device *dev,
6912 struct net_device *upper_dev)
6913{
6914 struct netdev_nested_priv priv = {
6915 .flags = 0,
6916 .data = (void *)upper_dev,
6917 };
6918
6919 ASSERT_RTNL();
6920
6921 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6922 &priv);
6923}
6924
6925/**
6926 * netdev_lower_get_next_private - Get the next ->private from the
6927 * lower neighbour list
6928 * @dev: device
6929 * @iter: list_head ** of the current position
6930 *
6931 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6932 * list, starting from iter position. The caller must hold either hold the
6933 * RTNL lock or its own locking that guarantees that the neighbour lower
6934 * list will remain unchanged.
6935 */
6936void *netdev_lower_get_next_private(struct net_device *dev,
6937 struct list_head **iter)
6938{
6939 struct netdev_adjacent *lower;
6940
6941 lower = list_entry(*iter, struct netdev_adjacent, list);
6942
6943 if (&lower->list == &dev->adj_list.lower)
6944 return NULL;
6945
6946 *iter = lower->list.next;
6947
6948 return lower->private;
6949}
6950EXPORT_SYMBOL(netdev_lower_get_next_private);
6951
6952/**
6953 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6954 * lower neighbour list, RCU
6955 * variant
6956 * @dev: device
6957 * @iter: list_head ** of the current position
6958 *
6959 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6960 * list, starting from iter position. The caller must hold RCU read lock.
6961 */
6962void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6963 struct list_head **iter)
6964{
6965 struct netdev_adjacent *lower;
6966
6967 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
6968
6969 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6970
6971 if (&lower->list == &dev->adj_list.lower)
6972 return NULL;
6973
6974 *iter = &lower->list;
6975
6976 return lower->private;
6977}
6978EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6979
6980/**
6981 * netdev_lower_get_next - Get the next device from the lower neighbour
6982 * list
6983 * @dev: device
6984 * @iter: list_head ** of the current position
6985 *
6986 * Gets the next netdev_adjacent from the dev's lower neighbour
6987 * list, starting from iter position. The caller must hold RTNL lock or
6988 * its own locking that guarantees that the neighbour lower
6989 * list will remain unchanged.
6990 */
6991void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6992{
6993 struct netdev_adjacent *lower;
6994
6995 lower = list_entry(*iter, struct netdev_adjacent, list);
6996
6997 if (&lower->list == &dev->adj_list.lower)
6998 return NULL;
6999
7000 *iter = lower->list.next;
7001
7002 return lower->dev;
7003}
7004EXPORT_SYMBOL(netdev_lower_get_next);
7005
7006static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7007 struct list_head **iter)
7008{
7009 struct netdev_adjacent *lower;
7010
7011 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7012
7013 if (&lower->list == &dev->adj_list.lower)
7014 return NULL;
7015
7016 *iter = &lower->list;
7017
7018 return lower->dev;
7019}
7020
7021static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7022 struct list_head **iter,
7023 bool *ignore)
7024{
7025 struct netdev_adjacent *lower;
7026
7027 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7028
7029 if (&lower->list == &dev->adj_list.lower)
7030 return NULL;
7031
7032 *iter = &lower->list;
7033 *ignore = lower->ignore;
7034
7035 return lower->dev;
7036}
7037
7038int netdev_walk_all_lower_dev(struct net_device *dev,
7039 int (*fn)(struct net_device *dev,
7040 struct netdev_nested_priv *priv),
7041 struct netdev_nested_priv *priv)
7042{
7043 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7044 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7045 int ret, cur = 0;
7046
7047 now = dev;
7048 iter = &dev->adj_list.lower;
7049
7050 while (1) {
7051 if (now != dev) {
7052 ret = fn(now, priv);
7053 if (ret)
7054 return ret;
7055 }
7056
7057 next = NULL;
7058 while (1) {
7059 ldev = netdev_next_lower_dev(now, &iter);
7060 if (!ldev)
7061 break;
7062
7063 next = ldev;
7064 niter = &ldev->adj_list.lower;
7065 dev_stack[cur] = now;
7066 iter_stack[cur++] = iter;
7067 break;
7068 }
7069
7070 if (!next) {
7071 if (!cur)
7072 return 0;
7073 next = dev_stack[--cur];
7074 niter = iter_stack[cur];
7075 }
7076
7077 now = next;
7078 iter = niter;
7079 }
7080
7081 return 0;
7082}
7083EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7084
7085static int __netdev_walk_all_lower_dev(struct net_device *dev,
7086 int (*fn)(struct net_device *dev,
7087 struct netdev_nested_priv *priv),
7088 struct netdev_nested_priv *priv)
7089{
7090 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7091 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7092 int ret, cur = 0;
7093 bool ignore;
7094
7095 now = dev;
7096 iter = &dev->adj_list.lower;
7097
7098 while (1) {
7099 if (now != dev) {
7100 ret = fn(now, priv);
7101 if (ret)
7102 return ret;
7103 }
7104
7105 next = NULL;
7106 while (1) {
7107 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7108 if (!ldev)
7109 break;
7110 if (ignore)
7111 continue;
7112
7113 next = ldev;
7114 niter = &ldev->adj_list.lower;
7115 dev_stack[cur] = now;
7116 iter_stack[cur++] = iter;
7117 break;
7118 }
7119
7120 if (!next) {
7121 if (!cur)
7122 return 0;
7123 next = dev_stack[--cur];
7124 niter = iter_stack[cur];
7125 }
7126
7127 now = next;
7128 iter = niter;
7129 }
7130
7131 return 0;
7132}
7133
7134struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7135 struct list_head **iter)
7136{
7137 struct netdev_adjacent *lower;
7138
7139 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7140 if (&lower->list == &dev->adj_list.lower)
7141 return NULL;
7142
7143 *iter = &lower->list;
7144
7145 return lower->dev;
7146}
7147EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7148
7149static u8 __netdev_upper_depth(struct net_device *dev)
7150{
7151 struct net_device *udev;
7152 struct list_head *iter;
7153 u8 max_depth = 0;
7154 bool ignore;
7155
7156 for (iter = &dev->adj_list.upper,
7157 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7158 udev;
7159 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7160 if (ignore)
7161 continue;
7162 if (max_depth < udev->upper_level)
7163 max_depth = udev->upper_level;
7164 }
7165
7166 return max_depth;
7167}
7168
7169static u8 __netdev_lower_depth(struct net_device *dev)
7170{
7171 struct net_device *ldev;
7172 struct list_head *iter;
7173 u8 max_depth = 0;
7174 bool ignore;
7175
7176 for (iter = &dev->adj_list.lower,
7177 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7178 ldev;
7179 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7180 if (ignore)
7181 continue;
7182 if (max_depth < ldev->lower_level)
7183 max_depth = ldev->lower_level;
7184 }
7185
7186 return max_depth;
7187}
7188
7189static int __netdev_update_upper_level(struct net_device *dev,
7190 struct netdev_nested_priv *__unused)
7191{
7192 dev->upper_level = __netdev_upper_depth(dev) + 1;
7193 return 0;
7194}
7195
7196#ifdef CONFIG_LOCKDEP
7197static LIST_HEAD(net_unlink_list);
7198
7199static void net_unlink_todo(struct net_device *dev)
7200{
7201 if (list_empty(&dev->unlink_list))
7202 list_add_tail(&dev->unlink_list, &net_unlink_list);
7203}
7204#endif
7205
7206static int __netdev_update_lower_level(struct net_device *dev,
7207 struct netdev_nested_priv *priv)
7208{
7209 dev->lower_level = __netdev_lower_depth(dev) + 1;
7210
7211#ifdef CONFIG_LOCKDEP
7212 if (!priv)
7213 return 0;
7214
7215 if (priv->flags & NESTED_SYNC_IMM)
7216 dev->nested_level = dev->lower_level - 1;
7217 if (priv->flags & NESTED_SYNC_TODO)
7218 net_unlink_todo(dev);
7219#endif
7220 return 0;
7221}
7222
7223int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7224 int (*fn)(struct net_device *dev,
7225 struct netdev_nested_priv *priv),
7226 struct netdev_nested_priv *priv)
7227{
7228 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7229 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7230 int ret, cur = 0;
7231
7232 now = dev;
7233 iter = &dev->adj_list.lower;
7234
7235 while (1) {
7236 if (now != dev) {
7237 ret = fn(now, priv);
7238 if (ret)
7239 return ret;
7240 }
7241
7242 next = NULL;
7243 while (1) {
7244 ldev = netdev_next_lower_dev_rcu(now, &iter);
7245 if (!ldev)
7246 break;
7247
7248 next = ldev;
7249 niter = &ldev->adj_list.lower;
7250 dev_stack[cur] = now;
7251 iter_stack[cur++] = iter;
7252 break;
7253 }
7254
7255 if (!next) {
7256 if (!cur)
7257 return 0;
7258 next = dev_stack[--cur];
7259 niter = iter_stack[cur];
7260 }
7261
7262 now = next;
7263 iter = niter;
7264 }
7265
7266 return 0;
7267}
7268EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7269
7270/**
7271 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7272 * lower neighbour list, RCU
7273 * variant
7274 * @dev: device
7275 *
7276 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7277 * list. The caller must hold RCU read lock.
7278 */
7279void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7280{
7281 struct netdev_adjacent *lower;
7282
7283 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7284 struct netdev_adjacent, list);
7285 if (lower)
7286 return lower->private;
7287 return NULL;
7288}
7289EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7290
7291/**
7292 * netdev_master_upper_dev_get_rcu - Get master upper device
7293 * @dev: device
7294 *
7295 * Find a master upper device and return pointer to it or NULL in case
7296 * it's not there. The caller must hold the RCU read lock.
7297 */
7298struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7299{
7300 struct netdev_adjacent *upper;
7301
7302 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7303 struct netdev_adjacent, list);
7304 if (upper && likely(upper->master))
7305 return upper->dev;
7306 return NULL;
7307}
7308EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7309
7310static int netdev_adjacent_sysfs_add(struct net_device *dev,
7311 struct net_device *adj_dev,
7312 struct list_head *dev_list)
7313{
7314 char linkname[IFNAMSIZ+7];
7315
7316 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7317 "upper_%s" : "lower_%s", adj_dev->name);
7318 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7319 linkname);
7320}
7321static void netdev_adjacent_sysfs_del(struct net_device *dev,
7322 char *name,
7323 struct list_head *dev_list)
7324{
7325 char linkname[IFNAMSIZ+7];
7326
7327 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7328 "upper_%s" : "lower_%s", name);
7329 sysfs_remove_link(&(dev->dev.kobj), linkname);
7330}
7331
7332static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7333 struct net_device *adj_dev,
7334 struct list_head *dev_list)
7335{
7336 return (dev_list == &dev->adj_list.upper ||
7337 dev_list == &dev->adj_list.lower) &&
7338 net_eq(dev_net(dev), dev_net(adj_dev));
7339}
7340
7341static int __netdev_adjacent_dev_insert(struct net_device *dev,
7342 struct net_device *adj_dev,
7343 struct list_head *dev_list,
7344 void *private, bool master)
7345{
7346 struct netdev_adjacent *adj;
7347 int ret;
7348
7349 adj = __netdev_find_adj(adj_dev, dev_list);
7350
7351 if (adj) {
7352 adj->ref_nr += 1;
7353 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7354 dev->name, adj_dev->name, adj->ref_nr);
7355
7356 return 0;
7357 }
7358
7359 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7360 if (!adj)
7361 return -ENOMEM;
7362
7363 adj->dev = adj_dev;
7364 adj->master = master;
7365 adj->ref_nr = 1;
7366 adj->private = private;
7367 adj->ignore = false;
7368 dev_hold_track(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7369
7370 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7371 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7372
7373 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7374 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7375 if (ret)
7376 goto free_adj;
7377 }
7378
7379 /* Ensure that master link is always the first item in list. */
7380 if (master) {
7381 ret = sysfs_create_link(&(dev->dev.kobj),
7382 &(adj_dev->dev.kobj), "master");
7383 if (ret)
7384 goto remove_symlinks;
7385
7386 list_add_rcu(&adj->list, dev_list);
7387 } else {
7388 list_add_tail_rcu(&adj->list, dev_list);
7389 }
7390
7391 return 0;
7392
7393remove_symlinks:
7394 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7395 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7396free_adj:
7397 dev_put_track(adj_dev, &adj->dev_tracker);
7398 kfree(adj);
7399
7400 return ret;
7401}
7402
7403static void __netdev_adjacent_dev_remove(struct net_device *dev,
7404 struct net_device *adj_dev,
7405 u16 ref_nr,
7406 struct list_head *dev_list)
7407{
7408 struct netdev_adjacent *adj;
7409
7410 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7411 dev->name, adj_dev->name, ref_nr);
7412
7413 adj = __netdev_find_adj(adj_dev, dev_list);
7414
7415 if (!adj) {
7416 pr_err("Adjacency does not exist for device %s from %s\n",
7417 dev->name, adj_dev->name);
7418 WARN_ON(1);
7419 return;
7420 }
7421
7422 if (adj->ref_nr > ref_nr) {
7423 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7424 dev->name, adj_dev->name, ref_nr,
7425 adj->ref_nr - ref_nr);
7426 adj->ref_nr -= ref_nr;
7427 return;
7428 }
7429
7430 if (adj->master)
7431 sysfs_remove_link(&(dev->dev.kobj), "master");
7432
7433 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7434 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7435
7436 list_del_rcu(&adj->list);
7437 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7438 adj_dev->name, dev->name, adj_dev->name);
7439 dev_put_track(adj_dev, &adj->dev_tracker);
7440 kfree_rcu(adj, rcu);
7441}
7442
7443static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7444 struct net_device *upper_dev,
7445 struct list_head *up_list,
7446 struct list_head *down_list,
7447 void *private, bool master)
7448{
7449 int ret;
7450
7451 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7452 private, master);
7453 if (ret)
7454 return ret;
7455
7456 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7457 private, false);
7458 if (ret) {
7459 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7460 return ret;
7461 }
7462
7463 return 0;
7464}
7465
7466static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7467 struct net_device *upper_dev,
7468 u16 ref_nr,
7469 struct list_head *up_list,
7470 struct list_head *down_list)
7471{
7472 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7473 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7474}
7475
7476static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7477 struct net_device *upper_dev,
7478 void *private, bool master)
7479{
7480 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7481 &dev->adj_list.upper,
7482 &upper_dev->adj_list.lower,
7483 private, master);
7484}
7485
7486static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7487 struct net_device *upper_dev)
7488{
7489 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7490 &dev->adj_list.upper,
7491 &upper_dev->adj_list.lower);
7492}
7493
7494static int __netdev_upper_dev_link(struct net_device *dev,
7495 struct net_device *upper_dev, bool master,
7496 void *upper_priv, void *upper_info,
7497 struct netdev_nested_priv *priv,
7498 struct netlink_ext_ack *extack)
7499{
7500 struct netdev_notifier_changeupper_info changeupper_info = {
7501 .info = {
7502 .dev = dev,
7503 .extack = extack,
7504 },
7505 .upper_dev = upper_dev,
7506 .master = master,
7507 .linking = true,
7508 .upper_info = upper_info,
7509 };
7510 struct net_device *master_dev;
7511 int ret = 0;
7512
7513 ASSERT_RTNL();
7514
7515 if (dev == upper_dev)
7516 return -EBUSY;
7517
7518 /* To prevent loops, check if dev is not upper device to upper_dev. */
7519 if (__netdev_has_upper_dev(upper_dev, dev))
7520 return -EBUSY;
7521
7522 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7523 return -EMLINK;
7524
7525 if (!master) {
7526 if (__netdev_has_upper_dev(dev, upper_dev))
7527 return -EEXIST;
7528 } else {
7529 master_dev = __netdev_master_upper_dev_get(dev);
7530 if (master_dev)
7531 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7532 }
7533
7534 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7535 &changeupper_info.info);
7536 ret = notifier_to_errno(ret);
7537 if (ret)
7538 return ret;
7539
7540 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7541 master);
7542 if (ret)
7543 return ret;
7544
7545 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7546 &changeupper_info.info);
7547 ret = notifier_to_errno(ret);
7548 if (ret)
7549 goto rollback;
7550
7551 __netdev_update_upper_level(dev, NULL);
7552 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7553
7554 __netdev_update_lower_level(upper_dev, priv);
7555 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7556 priv);
7557
7558 return 0;
7559
7560rollback:
7561 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7562
7563 return ret;
7564}
7565
7566/**
7567 * netdev_upper_dev_link - Add a link to the upper device
7568 * @dev: device
7569 * @upper_dev: new upper device
7570 * @extack: netlink extended ack
7571 *
7572 * Adds a link to device which is upper to this one. The caller must hold
7573 * the RTNL lock. On a failure a negative errno code is returned.
7574 * On success the reference counts are adjusted and the function
7575 * returns zero.
7576 */
7577int netdev_upper_dev_link(struct net_device *dev,
7578 struct net_device *upper_dev,
7579 struct netlink_ext_ack *extack)
7580{
7581 struct netdev_nested_priv priv = {
7582 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7583 .data = NULL,
7584 };
7585
7586 return __netdev_upper_dev_link(dev, upper_dev, false,
7587 NULL, NULL, &priv, extack);
7588}
7589EXPORT_SYMBOL(netdev_upper_dev_link);
7590
7591/**
7592 * netdev_master_upper_dev_link - Add a master link to the upper device
7593 * @dev: device
7594 * @upper_dev: new upper device
7595 * @upper_priv: upper device private
7596 * @upper_info: upper info to be passed down via notifier
7597 * @extack: netlink extended ack
7598 *
7599 * Adds a link to device which is upper to this one. In this case, only
7600 * one master upper device can be linked, although other non-master devices
7601 * might be linked as well. The caller must hold the RTNL lock.
7602 * On a failure a negative errno code is returned. On success the reference
7603 * counts are adjusted and the function returns zero.
7604 */
7605int netdev_master_upper_dev_link(struct net_device *dev,
7606 struct net_device *upper_dev,
7607 void *upper_priv, void *upper_info,
7608 struct netlink_ext_ack *extack)
7609{
7610 struct netdev_nested_priv priv = {
7611 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7612 .data = NULL,
7613 };
7614
7615 return __netdev_upper_dev_link(dev, upper_dev, true,
7616 upper_priv, upper_info, &priv, extack);
7617}
7618EXPORT_SYMBOL(netdev_master_upper_dev_link);
7619
7620static void __netdev_upper_dev_unlink(struct net_device *dev,
7621 struct net_device *upper_dev,
7622 struct netdev_nested_priv *priv)
7623{
7624 struct netdev_notifier_changeupper_info changeupper_info = {
7625 .info = {
7626 .dev = dev,
7627 },
7628 .upper_dev = upper_dev,
7629 .linking = false,
7630 };
7631
7632 ASSERT_RTNL();
7633
7634 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7635
7636 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7637 &changeupper_info.info);
7638
7639 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7640
7641 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7642 &changeupper_info.info);
7643
7644 __netdev_update_upper_level(dev, NULL);
7645 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7646
7647 __netdev_update_lower_level(upper_dev, priv);
7648 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7649 priv);
7650}
7651
7652/**
7653 * netdev_upper_dev_unlink - Removes a link to upper device
7654 * @dev: device
7655 * @upper_dev: new upper device
7656 *
7657 * Removes a link to device which is upper to this one. The caller must hold
7658 * the RTNL lock.
7659 */
7660void netdev_upper_dev_unlink(struct net_device *dev,
7661 struct net_device *upper_dev)
7662{
7663 struct netdev_nested_priv priv = {
7664 .flags = NESTED_SYNC_TODO,
7665 .data = NULL,
7666 };
7667
7668 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7669}
7670EXPORT_SYMBOL(netdev_upper_dev_unlink);
7671
7672static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7673 struct net_device *lower_dev,
7674 bool val)
7675{
7676 struct netdev_adjacent *adj;
7677
7678 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7679 if (adj)
7680 adj->ignore = val;
7681
7682 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7683 if (adj)
7684 adj->ignore = val;
7685}
7686
7687static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7688 struct net_device *lower_dev)
7689{
7690 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7691}
7692
7693static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7694 struct net_device *lower_dev)
7695{
7696 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7697}
7698
7699int netdev_adjacent_change_prepare(struct net_device *old_dev,
7700 struct net_device *new_dev,
7701 struct net_device *dev,
7702 struct netlink_ext_ack *extack)
7703{
7704 struct netdev_nested_priv priv = {
7705 .flags = 0,
7706 .data = NULL,
7707 };
7708 int err;
7709
7710 if (!new_dev)
7711 return 0;
7712
7713 if (old_dev && new_dev != old_dev)
7714 netdev_adjacent_dev_disable(dev, old_dev);
7715 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7716 extack);
7717 if (err) {
7718 if (old_dev && new_dev != old_dev)
7719 netdev_adjacent_dev_enable(dev, old_dev);
7720 return err;
7721 }
7722
7723 return 0;
7724}
7725EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7726
7727void netdev_adjacent_change_commit(struct net_device *old_dev,
7728 struct net_device *new_dev,
7729 struct net_device *dev)
7730{
7731 struct netdev_nested_priv priv = {
7732 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7733 .data = NULL,
7734 };
7735
7736 if (!new_dev || !old_dev)
7737 return;
7738
7739 if (new_dev == old_dev)
7740 return;
7741
7742 netdev_adjacent_dev_enable(dev, old_dev);
7743 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7744}
7745EXPORT_SYMBOL(netdev_adjacent_change_commit);
7746
7747void netdev_adjacent_change_abort(struct net_device *old_dev,
7748 struct net_device *new_dev,
7749 struct net_device *dev)
7750{
7751 struct netdev_nested_priv priv = {
7752 .flags = 0,
7753 .data = NULL,
7754 };
7755
7756 if (!new_dev)
7757 return;
7758
7759 if (old_dev && new_dev != old_dev)
7760 netdev_adjacent_dev_enable(dev, old_dev);
7761
7762 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7763}
7764EXPORT_SYMBOL(netdev_adjacent_change_abort);
7765
7766/**
7767 * netdev_bonding_info_change - Dispatch event about slave change
7768 * @dev: device
7769 * @bonding_info: info to dispatch
7770 *
7771 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7772 * The caller must hold the RTNL lock.
7773 */
7774void netdev_bonding_info_change(struct net_device *dev,
7775 struct netdev_bonding_info *bonding_info)
7776{
7777 struct netdev_notifier_bonding_info info = {
7778 .info.dev = dev,
7779 };
7780
7781 memcpy(&info.bonding_info, bonding_info,
7782 sizeof(struct netdev_bonding_info));
7783 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7784 &info.info);
7785}
7786EXPORT_SYMBOL(netdev_bonding_info_change);
7787
7788static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7789 struct netlink_ext_ack *extack)
7790{
7791 struct netdev_notifier_offload_xstats_info info = {
7792 .info.dev = dev,
7793 .info.extack = extack,
7794 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7795 };
7796 int err;
7797 int rc;
7798
7799 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7800 GFP_KERNEL);
7801 if (!dev->offload_xstats_l3)
7802 return -ENOMEM;
7803
7804 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7805 NETDEV_OFFLOAD_XSTATS_DISABLE,
7806 &info.info);
7807 err = notifier_to_errno(rc);
7808 if (err)
7809 goto free_stats;
7810
7811 return 0;
7812
7813free_stats:
7814 kfree(dev->offload_xstats_l3);
7815 dev->offload_xstats_l3 = NULL;
7816 return err;
7817}
7818
7819int netdev_offload_xstats_enable(struct net_device *dev,
7820 enum netdev_offload_xstats_type type,
7821 struct netlink_ext_ack *extack)
7822{
7823 ASSERT_RTNL();
7824
7825 if (netdev_offload_xstats_enabled(dev, type))
7826 return -EALREADY;
7827
7828 switch (type) {
7829 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7830 return netdev_offload_xstats_enable_l3(dev, extack);
7831 }
7832
7833 WARN_ON(1);
7834 return -EINVAL;
7835}
7836EXPORT_SYMBOL(netdev_offload_xstats_enable);
7837
7838static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7839{
7840 struct netdev_notifier_offload_xstats_info info = {
7841 .info.dev = dev,
7842 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7843 };
7844
7845 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7846 &info.info);
7847 kfree(dev->offload_xstats_l3);
7848 dev->offload_xstats_l3 = NULL;
7849}
7850
7851int netdev_offload_xstats_disable(struct net_device *dev,
7852 enum netdev_offload_xstats_type type)
7853{
7854 ASSERT_RTNL();
7855
7856 if (!netdev_offload_xstats_enabled(dev, type))
7857 return -EALREADY;
7858
7859 switch (type) {
7860 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7861 netdev_offload_xstats_disable_l3(dev);
7862 return 0;
7863 }
7864
7865 WARN_ON(1);
7866 return -EINVAL;
7867}
7868EXPORT_SYMBOL(netdev_offload_xstats_disable);
7869
7870static void netdev_offload_xstats_disable_all(struct net_device *dev)
7871{
7872 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7873}
7874
7875static struct rtnl_hw_stats64 *
7876netdev_offload_xstats_get_ptr(const struct net_device *dev,
7877 enum netdev_offload_xstats_type type)
7878{
7879 switch (type) {
7880 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7881 return dev->offload_xstats_l3;
7882 }
7883
7884 WARN_ON(1);
7885 return NULL;
7886}
7887
7888bool netdev_offload_xstats_enabled(const struct net_device *dev,
7889 enum netdev_offload_xstats_type type)
7890{
7891 ASSERT_RTNL();
7892
7893 return netdev_offload_xstats_get_ptr(dev, type);
7894}
7895EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7896
7897struct netdev_notifier_offload_xstats_ru {
7898 bool used;
7899};
7900
7901struct netdev_notifier_offload_xstats_rd {
7902 struct rtnl_hw_stats64 stats;
7903 bool used;
7904};
7905
7906static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
7907 const struct rtnl_hw_stats64 *src)
7908{
7909 dest->rx_packets += src->rx_packets;
7910 dest->tx_packets += src->tx_packets;
7911 dest->rx_bytes += src->rx_bytes;
7912 dest->tx_bytes += src->tx_bytes;
7913 dest->rx_errors += src->rx_errors;
7914 dest->tx_errors += src->tx_errors;
7915 dest->rx_dropped += src->rx_dropped;
7916 dest->tx_dropped += src->tx_dropped;
7917 dest->multicast += src->multicast;
7918}
7919
7920static int netdev_offload_xstats_get_used(struct net_device *dev,
7921 enum netdev_offload_xstats_type type,
7922 bool *p_used,
7923 struct netlink_ext_ack *extack)
7924{
7925 struct netdev_notifier_offload_xstats_ru report_used = {};
7926 struct netdev_notifier_offload_xstats_info info = {
7927 .info.dev = dev,
7928 .info.extack = extack,
7929 .type = type,
7930 .report_used = &report_used,
7931 };
7932 int rc;
7933
7934 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
7935 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
7936 &info.info);
7937 *p_used = report_used.used;
7938 return notifier_to_errno(rc);
7939}
7940
7941static int netdev_offload_xstats_get_stats(struct net_device *dev,
7942 enum netdev_offload_xstats_type type,
7943 struct rtnl_hw_stats64 *p_stats,
7944 bool *p_used,
7945 struct netlink_ext_ack *extack)
7946{
7947 struct netdev_notifier_offload_xstats_rd report_delta = {};
7948 struct netdev_notifier_offload_xstats_info info = {
7949 .info.dev = dev,
7950 .info.extack = extack,
7951 .type = type,
7952 .report_delta = &report_delta,
7953 };
7954 struct rtnl_hw_stats64 *stats;
7955 int rc;
7956
7957 stats = netdev_offload_xstats_get_ptr(dev, type);
7958 if (WARN_ON(!stats))
7959 return -EINVAL;
7960
7961 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
7962 &info.info);
7963
7964 /* Cache whatever we got, even if there was an error, otherwise the
7965 * successful stats retrievals would get lost.
7966 */
7967 netdev_hw_stats64_add(stats, &report_delta.stats);
7968
7969 if (p_stats)
7970 *p_stats = *stats;
7971 *p_used = report_delta.used;
7972
7973 return notifier_to_errno(rc);
7974}
7975
7976int netdev_offload_xstats_get(struct net_device *dev,
7977 enum netdev_offload_xstats_type type,
7978 struct rtnl_hw_stats64 *p_stats, bool *p_used,
7979 struct netlink_ext_ack *extack)
7980{
7981 ASSERT_RTNL();
7982
7983 if (p_stats)
7984 return netdev_offload_xstats_get_stats(dev, type, p_stats,
7985 p_used, extack);
7986 else
7987 return netdev_offload_xstats_get_used(dev, type, p_used,
7988 extack);
7989}
7990EXPORT_SYMBOL(netdev_offload_xstats_get);
7991
7992void
7993netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
7994 const struct rtnl_hw_stats64 *stats)
7995{
7996 report_delta->used = true;
7997 netdev_hw_stats64_add(&report_delta->stats, stats);
7998}
7999EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8000
8001void
8002netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8003{
8004 report_used->used = true;
8005}
8006EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8007
8008void netdev_offload_xstats_push_delta(struct net_device *dev,
8009 enum netdev_offload_xstats_type type,
8010 const struct rtnl_hw_stats64 *p_stats)
8011{
8012 struct rtnl_hw_stats64 *stats;
8013
8014 ASSERT_RTNL();
8015
8016 stats = netdev_offload_xstats_get_ptr(dev, type);
8017 if (WARN_ON(!stats))
8018 return;
8019
8020 netdev_hw_stats64_add(stats, p_stats);
8021}
8022EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8023
8024/**
8025 * netdev_get_xmit_slave - Get the xmit slave of master device
8026 * @dev: device
8027 * @skb: The packet
8028 * @all_slaves: assume all the slaves are active
8029 *
8030 * The reference counters are not incremented so the caller must be
8031 * careful with locks. The caller must hold RCU lock.
8032 * %NULL is returned if no slave is found.
8033 */
8034
8035struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8036 struct sk_buff *skb,
8037 bool all_slaves)
8038{
8039 const struct net_device_ops *ops = dev->netdev_ops;
8040
8041 if (!ops->ndo_get_xmit_slave)
8042 return NULL;
8043 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8044}
8045EXPORT_SYMBOL(netdev_get_xmit_slave);
8046
8047static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8048 struct sock *sk)
8049{
8050 const struct net_device_ops *ops = dev->netdev_ops;
8051
8052 if (!ops->ndo_sk_get_lower_dev)
8053 return NULL;
8054 return ops->ndo_sk_get_lower_dev(dev, sk);
8055}
8056
8057/**
8058 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8059 * @dev: device
8060 * @sk: the socket
8061 *
8062 * %NULL is returned if no lower device is found.
8063 */
8064
8065struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8066 struct sock *sk)
8067{
8068 struct net_device *lower;
8069
8070 lower = netdev_sk_get_lower_dev(dev, sk);
8071 while (lower) {
8072 dev = lower;
8073 lower = netdev_sk_get_lower_dev(dev, sk);
8074 }
8075
8076 return dev;
8077}
8078EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8079
8080static void netdev_adjacent_add_links(struct net_device *dev)
8081{
8082 struct netdev_adjacent *iter;
8083
8084 struct net *net = dev_net(dev);
8085
8086 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8087 if (!net_eq(net, dev_net(iter->dev)))
8088 continue;
8089 netdev_adjacent_sysfs_add(iter->dev, dev,
8090 &iter->dev->adj_list.lower);
8091 netdev_adjacent_sysfs_add(dev, iter->dev,
8092 &dev->adj_list.upper);
8093 }
8094
8095 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8096 if (!net_eq(net, dev_net(iter->dev)))
8097 continue;
8098 netdev_adjacent_sysfs_add(iter->dev, dev,
8099 &iter->dev->adj_list.upper);
8100 netdev_adjacent_sysfs_add(dev, iter->dev,
8101 &dev->adj_list.lower);
8102 }
8103}
8104
8105static void netdev_adjacent_del_links(struct net_device *dev)
8106{
8107 struct netdev_adjacent *iter;
8108
8109 struct net *net = dev_net(dev);
8110
8111 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8112 if (!net_eq(net, dev_net(iter->dev)))
8113 continue;
8114 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8115 &iter->dev->adj_list.lower);
8116 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8117 &dev->adj_list.upper);
8118 }
8119
8120 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8121 if (!net_eq(net, dev_net(iter->dev)))
8122 continue;
8123 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8124 &iter->dev->adj_list.upper);
8125 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8126 &dev->adj_list.lower);
8127 }
8128}
8129
8130void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8131{
8132 struct netdev_adjacent *iter;
8133
8134 struct net *net = dev_net(dev);
8135
8136 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8137 if (!net_eq(net, dev_net(iter->dev)))
8138 continue;
8139 netdev_adjacent_sysfs_del(iter->dev, oldname,
8140 &iter->dev->adj_list.lower);
8141 netdev_adjacent_sysfs_add(iter->dev, dev,
8142 &iter->dev->adj_list.lower);
8143 }
8144
8145 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8146 if (!net_eq(net, dev_net(iter->dev)))
8147 continue;
8148 netdev_adjacent_sysfs_del(iter->dev, oldname,
8149 &iter->dev->adj_list.upper);
8150 netdev_adjacent_sysfs_add(iter->dev, dev,
8151 &iter->dev->adj_list.upper);
8152 }
8153}
8154
8155void *netdev_lower_dev_get_private(struct net_device *dev,
8156 struct net_device *lower_dev)
8157{
8158 struct netdev_adjacent *lower;
8159
8160 if (!lower_dev)
8161 return NULL;
8162 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8163 if (!lower)
8164 return NULL;
8165
8166 return lower->private;
8167}
8168EXPORT_SYMBOL(netdev_lower_dev_get_private);
8169
8170
8171/**
8172 * netdev_lower_state_changed - Dispatch event about lower device state change
8173 * @lower_dev: device
8174 * @lower_state_info: state to dispatch
8175 *
8176 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8177 * The caller must hold the RTNL lock.
8178 */
8179void netdev_lower_state_changed(struct net_device *lower_dev,
8180 void *lower_state_info)
8181{
8182 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8183 .info.dev = lower_dev,
8184 };
8185
8186 ASSERT_RTNL();
8187 changelowerstate_info.lower_state_info = lower_state_info;
8188 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8189 &changelowerstate_info.info);
8190}
8191EXPORT_SYMBOL(netdev_lower_state_changed);
8192
8193static void dev_change_rx_flags(struct net_device *dev, int flags)
8194{
8195 const struct net_device_ops *ops = dev->netdev_ops;
8196
8197 if (ops->ndo_change_rx_flags)
8198 ops->ndo_change_rx_flags(dev, flags);
8199}
8200
8201static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8202{
8203 unsigned int old_flags = dev->flags;
8204 kuid_t uid;
8205 kgid_t gid;
8206
8207 ASSERT_RTNL();
8208
8209 dev->flags |= IFF_PROMISC;
8210 dev->promiscuity += inc;
8211 if (dev->promiscuity == 0) {
8212 /*
8213 * Avoid overflow.
8214 * If inc causes overflow, untouch promisc and return error.
8215 */
8216 if (inc < 0)
8217 dev->flags &= ~IFF_PROMISC;
8218 else {
8219 dev->promiscuity -= inc;
8220 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8221 return -EOVERFLOW;
8222 }
8223 }
8224 if (dev->flags != old_flags) {
8225 pr_info("device %s %s promiscuous mode\n",
8226 dev->name,
8227 dev->flags & IFF_PROMISC ? "entered" : "left");
8228 if (audit_enabled) {
8229 current_uid_gid(&uid, &gid);
8230 audit_log(audit_context(), GFP_ATOMIC,
8231 AUDIT_ANOM_PROMISCUOUS,
8232 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8233 dev->name, (dev->flags & IFF_PROMISC),
8234 (old_flags & IFF_PROMISC),
8235 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8236 from_kuid(&init_user_ns, uid),
8237 from_kgid(&init_user_ns, gid),
8238 audit_get_sessionid(current));
8239 }
8240
8241 dev_change_rx_flags(dev, IFF_PROMISC);
8242 }
8243 if (notify)
8244 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8245 return 0;
8246}
8247
8248/**
8249 * dev_set_promiscuity - update promiscuity count on a device
8250 * @dev: device
8251 * @inc: modifier
8252 *
8253 * Add or remove promiscuity from a device. While the count in the device
8254 * remains above zero the interface remains promiscuous. Once it hits zero
8255 * the device reverts back to normal filtering operation. A negative inc
8256 * value is used to drop promiscuity on the device.
8257 * Return 0 if successful or a negative errno code on error.
8258 */
8259int dev_set_promiscuity(struct net_device *dev, int inc)
8260{
8261 unsigned int old_flags = dev->flags;
8262 int err;
8263
8264 err = __dev_set_promiscuity(dev, inc, true);
8265 if (err < 0)
8266 return err;
8267 if (dev->flags != old_flags)
8268 dev_set_rx_mode(dev);
8269 return err;
8270}
8271EXPORT_SYMBOL(dev_set_promiscuity);
8272
8273static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8274{
8275 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8276
8277 ASSERT_RTNL();
8278
8279 dev->flags |= IFF_ALLMULTI;
8280 dev->allmulti += inc;
8281 if (dev->allmulti == 0) {
8282 /*
8283 * Avoid overflow.
8284 * If inc causes overflow, untouch allmulti and return error.
8285 */
8286 if (inc < 0)
8287 dev->flags &= ~IFF_ALLMULTI;
8288 else {
8289 dev->allmulti -= inc;
8290 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8291 return -EOVERFLOW;
8292 }
8293 }
8294 if (dev->flags ^ old_flags) {
8295 dev_change_rx_flags(dev, IFF_ALLMULTI);
8296 dev_set_rx_mode(dev);
8297 if (notify)
8298 __dev_notify_flags(dev, old_flags,
8299 dev->gflags ^ old_gflags);
8300 }
8301 return 0;
8302}
8303
8304/**
8305 * dev_set_allmulti - update allmulti count on a device
8306 * @dev: device
8307 * @inc: modifier
8308 *
8309 * Add or remove reception of all multicast frames to a device. While the
8310 * count in the device remains above zero the interface remains listening
8311 * to all interfaces. Once it hits zero the device reverts back to normal
8312 * filtering operation. A negative @inc value is used to drop the counter
8313 * when releasing a resource needing all multicasts.
8314 * Return 0 if successful or a negative errno code on error.
8315 */
8316
8317int dev_set_allmulti(struct net_device *dev, int inc)
8318{
8319 return __dev_set_allmulti(dev, inc, true);
8320}
8321EXPORT_SYMBOL(dev_set_allmulti);
8322
8323/*
8324 * Upload unicast and multicast address lists to device and
8325 * configure RX filtering. When the device doesn't support unicast
8326 * filtering it is put in promiscuous mode while unicast addresses
8327 * are present.
8328 */
8329void __dev_set_rx_mode(struct net_device *dev)
8330{
8331 const struct net_device_ops *ops = dev->netdev_ops;
8332
8333 /* dev_open will call this function so the list will stay sane. */
8334 if (!(dev->flags&IFF_UP))
8335 return;
8336
8337 if (!netif_device_present(dev))
8338 return;
8339
8340 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8341 /* Unicast addresses changes may only happen under the rtnl,
8342 * therefore calling __dev_set_promiscuity here is safe.
8343 */
8344 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8345 __dev_set_promiscuity(dev, 1, false);
8346 dev->uc_promisc = true;
8347 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8348 __dev_set_promiscuity(dev, -1, false);
8349 dev->uc_promisc = false;
8350 }
8351 }
8352
8353 if (ops->ndo_set_rx_mode)
8354 ops->ndo_set_rx_mode(dev);
8355}
8356
8357void dev_set_rx_mode(struct net_device *dev)
8358{
8359 netif_addr_lock_bh(dev);
8360 __dev_set_rx_mode(dev);
8361 netif_addr_unlock_bh(dev);
8362}
8363
8364/**
8365 * dev_get_flags - get flags reported to userspace
8366 * @dev: device
8367 *
8368 * Get the combination of flag bits exported through APIs to userspace.
8369 */
8370unsigned int dev_get_flags(const struct net_device *dev)
8371{
8372 unsigned int flags;
8373
8374 flags = (dev->flags & ~(IFF_PROMISC |
8375 IFF_ALLMULTI |
8376 IFF_RUNNING |
8377 IFF_LOWER_UP |
8378 IFF_DORMANT)) |
8379 (dev->gflags & (IFF_PROMISC |
8380 IFF_ALLMULTI));
8381
8382 if (netif_running(dev)) {
8383 if (netif_oper_up(dev))
8384 flags |= IFF_RUNNING;
8385 if (netif_carrier_ok(dev))
8386 flags |= IFF_LOWER_UP;
8387 if (netif_dormant(dev))
8388 flags |= IFF_DORMANT;
8389 }
8390
8391 return flags;
8392}
8393EXPORT_SYMBOL(dev_get_flags);
8394
8395int __dev_change_flags(struct net_device *dev, unsigned int flags,
8396 struct netlink_ext_ack *extack)
8397{
8398 unsigned int old_flags = dev->flags;
8399 int ret;
8400
8401 ASSERT_RTNL();
8402
8403 /*
8404 * Set the flags on our device.
8405 */
8406
8407 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8408 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8409 IFF_AUTOMEDIA)) |
8410 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8411 IFF_ALLMULTI));
8412
8413 /*
8414 * Load in the correct multicast list now the flags have changed.
8415 */
8416
8417 if ((old_flags ^ flags) & IFF_MULTICAST)
8418 dev_change_rx_flags(dev, IFF_MULTICAST);
8419
8420 dev_set_rx_mode(dev);
8421
8422 /*
8423 * Have we downed the interface. We handle IFF_UP ourselves
8424 * according to user attempts to set it, rather than blindly
8425 * setting it.
8426 */
8427
8428 ret = 0;
8429 if ((old_flags ^ flags) & IFF_UP) {
8430 if (old_flags & IFF_UP)
8431 __dev_close(dev);
8432 else
8433 ret = __dev_open(dev, extack);
8434 }
8435
8436 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8437 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8438 unsigned int old_flags = dev->flags;
8439
8440 dev->gflags ^= IFF_PROMISC;
8441
8442 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8443 if (dev->flags != old_flags)
8444 dev_set_rx_mode(dev);
8445 }
8446
8447 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8448 * is important. Some (broken) drivers set IFF_PROMISC, when
8449 * IFF_ALLMULTI is requested not asking us and not reporting.
8450 */
8451 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8452 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8453
8454 dev->gflags ^= IFF_ALLMULTI;
8455 __dev_set_allmulti(dev, inc, false);
8456 }
8457
8458 return ret;
8459}
8460
8461void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8462 unsigned int gchanges)
8463{
8464 unsigned int changes = dev->flags ^ old_flags;
8465
8466 if (gchanges)
8467 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8468
8469 if (changes & IFF_UP) {
8470 if (dev->flags & IFF_UP)
8471 call_netdevice_notifiers(NETDEV_UP, dev);
8472 else
8473 call_netdevice_notifiers(NETDEV_DOWN, dev);
8474 }
8475
8476 if (dev->flags & IFF_UP &&
8477 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8478 struct netdev_notifier_change_info change_info = {
8479 .info = {
8480 .dev = dev,
8481 },
8482 .flags_changed = changes,
8483 };
8484
8485 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8486 }
8487}
8488
8489/**
8490 * dev_change_flags - change device settings
8491 * @dev: device
8492 * @flags: device state flags
8493 * @extack: netlink extended ack
8494 *
8495 * Change settings on device based state flags. The flags are
8496 * in the userspace exported format.
8497 */
8498int dev_change_flags(struct net_device *dev, unsigned int flags,
8499 struct netlink_ext_ack *extack)
8500{
8501 int ret;
8502 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8503
8504 ret = __dev_change_flags(dev, flags, extack);
8505 if (ret < 0)
8506 return ret;
8507
8508 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8509 __dev_notify_flags(dev, old_flags, changes);
8510 return ret;
8511}
8512EXPORT_SYMBOL(dev_change_flags);
8513
8514int __dev_set_mtu(struct net_device *dev, int new_mtu)
8515{
8516 const struct net_device_ops *ops = dev->netdev_ops;
8517
8518 if (ops->ndo_change_mtu)
8519 return ops->ndo_change_mtu(dev, new_mtu);
8520
8521 /* Pairs with all the lockless reads of dev->mtu in the stack */
8522 WRITE_ONCE(dev->mtu, new_mtu);
8523 return 0;
8524}
8525EXPORT_SYMBOL(__dev_set_mtu);
8526
8527int dev_validate_mtu(struct net_device *dev, int new_mtu,
8528 struct netlink_ext_ack *extack)
8529{
8530 /* MTU must be positive, and in range */
8531 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8532 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8533 return -EINVAL;
8534 }
8535
8536 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8537 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8538 return -EINVAL;
8539 }
8540 return 0;
8541}
8542
8543/**
8544 * dev_set_mtu_ext - Change maximum transfer unit
8545 * @dev: device
8546 * @new_mtu: new transfer unit
8547 * @extack: netlink extended ack
8548 *
8549 * Change the maximum transfer size of the network device.
8550 */
8551int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8552 struct netlink_ext_ack *extack)
8553{
8554 int err, orig_mtu;
8555
8556 if (new_mtu == dev->mtu)
8557 return 0;
8558
8559 err = dev_validate_mtu(dev, new_mtu, extack);
8560 if (err)
8561 return err;
8562
8563 if (!netif_device_present(dev))
8564 return -ENODEV;
8565
8566 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8567 err = notifier_to_errno(err);
8568 if (err)
8569 return err;
8570
8571 orig_mtu = dev->mtu;
8572 err = __dev_set_mtu(dev, new_mtu);
8573
8574 if (!err) {
8575 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8576 orig_mtu);
8577 err = notifier_to_errno(err);
8578 if (err) {
8579 /* setting mtu back and notifying everyone again,
8580 * so that they have a chance to revert changes.
8581 */
8582 __dev_set_mtu(dev, orig_mtu);
8583 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8584 new_mtu);
8585 }
8586 }
8587 return err;
8588}
8589
8590int dev_set_mtu(struct net_device *dev, int new_mtu)
8591{
8592 struct netlink_ext_ack extack;
8593 int err;
8594
8595 memset(&extack, 0, sizeof(extack));
8596 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8597 if (err && extack._msg)
8598 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8599 return err;
8600}
8601EXPORT_SYMBOL(dev_set_mtu);
8602
8603/**
8604 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8605 * @dev: device
8606 * @new_len: new tx queue length
8607 */
8608int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8609{
8610 unsigned int orig_len = dev->tx_queue_len;
8611 int res;
8612
8613 if (new_len != (unsigned int)new_len)
8614 return -ERANGE;
8615
8616 if (new_len != orig_len) {
8617 dev->tx_queue_len = new_len;
8618 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8619 res = notifier_to_errno(res);
8620 if (res)
8621 goto err_rollback;
8622 res = dev_qdisc_change_tx_queue_len(dev);
8623 if (res)
8624 goto err_rollback;
8625 }
8626
8627 return 0;
8628
8629err_rollback:
8630 netdev_err(dev, "refused to change device tx_queue_len\n");
8631 dev->tx_queue_len = orig_len;
8632 return res;
8633}
8634
8635/**
8636 * dev_set_group - Change group this device belongs to
8637 * @dev: device
8638 * @new_group: group this device should belong to
8639 */
8640void dev_set_group(struct net_device *dev, int new_group)
8641{
8642 dev->group = new_group;
8643}
8644EXPORT_SYMBOL(dev_set_group);
8645
8646/**
8647 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8648 * @dev: device
8649 * @addr: new address
8650 * @extack: netlink extended ack
8651 */
8652int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8653 struct netlink_ext_ack *extack)
8654{
8655 struct netdev_notifier_pre_changeaddr_info info = {
8656 .info.dev = dev,
8657 .info.extack = extack,
8658 .dev_addr = addr,
8659 };
8660 int rc;
8661
8662 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8663 return notifier_to_errno(rc);
8664}
8665EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8666
8667/**
8668 * dev_set_mac_address - Change Media Access Control Address
8669 * @dev: device
8670 * @sa: new address
8671 * @extack: netlink extended ack
8672 *
8673 * Change the hardware (MAC) address of the device
8674 */
8675int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8676 struct netlink_ext_ack *extack)
8677{
8678 const struct net_device_ops *ops = dev->netdev_ops;
8679 int err;
8680
8681 if (!ops->ndo_set_mac_address)
8682 return -EOPNOTSUPP;
8683 if (sa->sa_family != dev->type)
8684 return -EINVAL;
8685 if (!netif_device_present(dev))
8686 return -ENODEV;
8687 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8688 if (err)
8689 return err;
8690 err = ops->ndo_set_mac_address(dev, sa);
8691 if (err)
8692 return err;
8693 dev->addr_assign_type = NET_ADDR_SET;
8694 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8695 add_device_randomness(dev->dev_addr, dev->addr_len);
8696 return 0;
8697}
8698EXPORT_SYMBOL(dev_set_mac_address);
8699
8700static DECLARE_RWSEM(dev_addr_sem);
8701
8702int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8703 struct netlink_ext_ack *extack)
8704{
8705 int ret;
8706
8707 down_write(&dev_addr_sem);
8708 ret = dev_set_mac_address(dev, sa, extack);
8709 up_write(&dev_addr_sem);
8710 return ret;
8711}
8712EXPORT_SYMBOL(dev_set_mac_address_user);
8713
8714int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8715{
8716 size_t size = sizeof(sa->sa_data);
8717 struct net_device *dev;
8718 int ret = 0;
8719
8720 down_read(&dev_addr_sem);
8721 rcu_read_lock();
8722
8723 dev = dev_get_by_name_rcu(net, dev_name);
8724 if (!dev) {
8725 ret = -ENODEV;
8726 goto unlock;
8727 }
8728 if (!dev->addr_len)
8729 memset(sa->sa_data, 0, size);
8730 else
8731 memcpy(sa->sa_data, dev->dev_addr,
8732 min_t(size_t, size, dev->addr_len));
8733 sa->sa_family = dev->type;
8734
8735unlock:
8736 rcu_read_unlock();
8737 up_read(&dev_addr_sem);
8738 return ret;
8739}
8740EXPORT_SYMBOL(dev_get_mac_address);
8741
8742/**
8743 * dev_change_carrier - Change device carrier
8744 * @dev: device
8745 * @new_carrier: new value
8746 *
8747 * Change device carrier
8748 */
8749int dev_change_carrier(struct net_device *dev, bool new_carrier)
8750{
8751 const struct net_device_ops *ops = dev->netdev_ops;
8752
8753 if (!ops->ndo_change_carrier)
8754 return -EOPNOTSUPP;
8755 if (!netif_device_present(dev))
8756 return -ENODEV;
8757 return ops->ndo_change_carrier(dev, new_carrier);
8758}
8759EXPORT_SYMBOL(dev_change_carrier);
8760
8761/**
8762 * dev_get_phys_port_id - Get device physical port ID
8763 * @dev: device
8764 * @ppid: port ID
8765 *
8766 * Get device physical port ID
8767 */
8768int dev_get_phys_port_id(struct net_device *dev,
8769 struct netdev_phys_item_id *ppid)
8770{
8771 const struct net_device_ops *ops = dev->netdev_ops;
8772
8773 if (!ops->ndo_get_phys_port_id)
8774 return -EOPNOTSUPP;
8775 return ops->ndo_get_phys_port_id(dev, ppid);
8776}
8777EXPORT_SYMBOL(dev_get_phys_port_id);
8778
8779/**
8780 * dev_get_phys_port_name - Get device physical port name
8781 * @dev: device
8782 * @name: port name
8783 * @len: limit of bytes to copy to name
8784 *
8785 * Get device physical port name
8786 */
8787int dev_get_phys_port_name(struct net_device *dev,
8788 char *name, size_t len)
8789{
8790 const struct net_device_ops *ops = dev->netdev_ops;
8791 int err;
8792
8793 if (ops->ndo_get_phys_port_name) {
8794 err = ops->ndo_get_phys_port_name(dev, name, len);
8795 if (err != -EOPNOTSUPP)
8796 return err;
8797 }
8798 return devlink_compat_phys_port_name_get(dev, name, len);
8799}
8800EXPORT_SYMBOL(dev_get_phys_port_name);
8801
8802/**
8803 * dev_get_port_parent_id - Get the device's port parent identifier
8804 * @dev: network device
8805 * @ppid: pointer to a storage for the port's parent identifier
8806 * @recurse: allow/disallow recursion to lower devices
8807 *
8808 * Get the devices's port parent identifier
8809 */
8810int dev_get_port_parent_id(struct net_device *dev,
8811 struct netdev_phys_item_id *ppid,
8812 bool recurse)
8813{
8814 const struct net_device_ops *ops = dev->netdev_ops;
8815 struct netdev_phys_item_id first = { };
8816 struct net_device *lower_dev;
8817 struct list_head *iter;
8818 int err;
8819
8820 if (ops->ndo_get_port_parent_id) {
8821 err = ops->ndo_get_port_parent_id(dev, ppid);
8822 if (err != -EOPNOTSUPP)
8823 return err;
8824 }
8825
8826 err = devlink_compat_switch_id_get(dev, ppid);
8827 if (!recurse || err != -EOPNOTSUPP)
8828 return err;
8829
8830 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8831 err = dev_get_port_parent_id(lower_dev, ppid, true);
8832 if (err)
8833 break;
8834 if (!first.id_len)
8835 first = *ppid;
8836 else if (memcmp(&first, ppid, sizeof(*ppid)))
8837 return -EOPNOTSUPP;
8838 }
8839
8840 return err;
8841}
8842EXPORT_SYMBOL(dev_get_port_parent_id);
8843
8844/**
8845 * netdev_port_same_parent_id - Indicate if two network devices have
8846 * the same port parent identifier
8847 * @a: first network device
8848 * @b: second network device
8849 */
8850bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8851{
8852 struct netdev_phys_item_id a_id = { };
8853 struct netdev_phys_item_id b_id = { };
8854
8855 if (dev_get_port_parent_id(a, &a_id, true) ||
8856 dev_get_port_parent_id(b, &b_id, true))
8857 return false;
8858
8859 return netdev_phys_item_id_same(&a_id, &b_id);
8860}
8861EXPORT_SYMBOL(netdev_port_same_parent_id);
8862
8863/**
8864 * dev_change_proto_down - set carrier according to proto_down.
8865 *
8866 * @dev: device
8867 * @proto_down: new value
8868 */
8869int dev_change_proto_down(struct net_device *dev, bool proto_down)
8870{
8871 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8872 return -EOPNOTSUPP;
8873 if (!netif_device_present(dev))
8874 return -ENODEV;
8875 if (proto_down)
8876 netif_carrier_off(dev);
8877 else
8878 netif_carrier_on(dev);
8879 dev->proto_down = proto_down;
8880 return 0;
8881}
8882EXPORT_SYMBOL(dev_change_proto_down);
8883
8884/**
8885 * dev_change_proto_down_reason - proto down reason
8886 *
8887 * @dev: device
8888 * @mask: proto down mask
8889 * @value: proto down value
8890 */
8891void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8892 u32 value)
8893{
8894 int b;
8895
8896 if (!mask) {
8897 dev->proto_down_reason = value;
8898 } else {
8899 for_each_set_bit(b, &mask, 32) {
8900 if (value & (1 << b))
8901 dev->proto_down_reason |= BIT(b);
8902 else
8903 dev->proto_down_reason &= ~BIT(b);
8904 }
8905 }
8906}
8907EXPORT_SYMBOL(dev_change_proto_down_reason);
8908
8909struct bpf_xdp_link {
8910 struct bpf_link link;
8911 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8912 int flags;
8913};
8914
8915static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8916{
8917 if (flags & XDP_FLAGS_HW_MODE)
8918 return XDP_MODE_HW;
8919 if (flags & XDP_FLAGS_DRV_MODE)
8920 return XDP_MODE_DRV;
8921 if (flags & XDP_FLAGS_SKB_MODE)
8922 return XDP_MODE_SKB;
8923 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8924}
8925
8926static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8927{
8928 switch (mode) {
8929 case XDP_MODE_SKB:
8930 return generic_xdp_install;
8931 case XDP_MODE_DRV:
8932 case XDP_MODE_HW:
8933 return dev->netdev_ops->ndo_bpf;
8934 default:
8935 return NULL;
8936 }
8937}
8938
8939static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8940 enum bpf_xdp_mode mode)
8941{
8942 return dev->xdp_state[mode].link;
8943}
8944
8945static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8946 enum bpf_xdp_mode mode)
8947{
8948 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8949
8950 if (link)
8951 return link->link.prog;
8952 return dev->xdp_state[mode].prog;
8953}
8954
8955u8 dev_xdp_prog_count(struct net_device *dev)
8956{
8957 u8 count = 0;
8958 int i;
8959
8960 for (i = 0; i < __MAX_XDP_MODE; i++)
8961 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8962 count++;
8963 return count;
8964}
8965EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
8966
8967u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8968{
8969 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8970
8971 return prog ? prog->aux->id : 0;
8972}
8973
8974static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8975 struct bpf_xdp_link *link)
8976{
8977 dev->xdp_state[mode].link = link;
8978 dev->xdp_state[mode].prog = NULL;
8979}
8980
8981static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8982 struct bpf_prog *prog)
8983{
8984 dev->xdp_state[mode].link = NULL;
8985 dev->xdp_state[mode].prog = prog;
8986}
8987
8988static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8989 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8990 u32 flags, struct bpf_prog *prog)
8991{
8992 struct netdev_bpf xdp;
8993 int err;
8994
8995 memset(&xdp, 0, sizeof(xdp));
8996 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8997 xdp.extack = extack;
8998 xdp.flags = flags;
8999 xdp.prog = prog;
9000
9001 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9002 * "moved" into driver), so they don't increment it on their own, but
9003 * they do decrement refcnt when program is detached or replaced.
9004 * Given net_device also owns link/prog, we need to bump refcnt here
9005 * to prevent drivers from underflowing it.
9006 */
9007 if (prog)
9008 bpf_prog_inc(prog);
9009 err = bpf_op(dev, &xdp);
9010 if (err) {
9011 if (prog)
9012 bpf_prog_put(prog);
9013 return err;
9014 }
9015
9016 if (mode != XDP_MODE_HW)
9017 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9018
9019 return 0;
9020}
9021
9022static void dev_xdp_uninstall(struct net_device *dev)
9023{
9024 struct bpf_xdp_link *link;
9025 struct bpf_prog *prog;
9026 enum bpf_xdp_mode mode;
9027 bpf_op_t bpf_op;
9028
9029 ASSERT_RTNL();
9030
9031 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9032 prog = dev_xdp_prog(dev, mode);
9033 if (!prog)
9034 continue;
9035
9036 bpf_op = dev_xdp_bpf_op(dev, mode);
9037 if (!bpf_op)
9038 continue;
9039
9040 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9041
9042 /* auto-detach link from net device */
9043 link = dev_xdp_link(dev, mode);
9044 if (link)
9045 link->dev = NULL;
9046 else
9047 bpf_prog_put(prog);
9048
9049 dev_xdp_set_link(dev, mode, NULL);
9050 }
9051}
9052
9053static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9054 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9055 struct bpf_prog *old_prog, u32 flags)
9056{
9057 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9058 struct bpf_prog *cur_prog;
9059 struct net_device *upper;
9060 struct list_head *iter;
9061 enum bpf_xdp_mode mode;
9062 bpf_op_t bpf_op;
9063 int err;
9064
9065 ASSERT_RTNL();
9066
9067 /* either link or prog attachment, never both */
9068 if (link && (new_prog || old_prog))
9069 return -EINVAL;
9070 /* link supports only XDP mode flags */
9071 if (link && (flags & ~XDP_FLAGS_MODES)) {
9072 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9073 return -EINVAL;
9074 }
9075 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9076 if (num_modes > 1) {
9077 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9078 return -EINVAL;
9079 }
9080 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9081 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9082 NL_SET_ERR_MSG(extack,
9083 "More than one program loaded, unset mode is ambiguous");
9084 return -EINVAL;
9085 }
9086 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9087 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9088 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9089 return -EINVAL;
9090 }
9091
9092 mode = dev_xdp_mode(dev, flags);
9093 /* can't replace attached link */
9094 if (dev_xdp_link(dev, mode)) {
9095 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9096 return -EBUSY;
9097 }
9098
9099 /* don't allow if an upper device already has a program */
9100 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9101 if (dev_xdp_prog_count(upper) > 0) {
9102 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9103 return -EEXIST;
9104 }
9105 }
9106
9107 cur_prog = dev_xdp_prog(dev, mode);
9108 /* can't replace attached prog with link */
9109 if (link && cur_prog) {
9110 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9111 return -EBUSY;
9112 }
9113 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9114 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9115 return -EEXIST;
9116 }
9117
9118 /* put effective new program into new_prog */
9119 if (link)
9120 new_prog = link->link.prog;
9121
9122 if (new_prog) {
9123 bool offload = mode == XDP_MODE_HW;
9124 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9125 ? XDP_MODE_DRV : XDP_MODE_SKB;
9126
9127 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9128 NL_SET_ERR_MSG(extack, "XDP program already attached");
9129 return -EBUSY;
9130 }
9131 if (!offload && dev_xdp_prog(dev, other_mode)) {
9132 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9133 return -EEXIST;
9134 }
9135 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9136 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9137 return -EINVAL;
9138 }
9139 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9140 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9141 return -EINVAL;
9142 }
9143 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9144 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9145 return -EINVAL;
9146 }
9147 }
9148
9149 /* don't call drivers if the effective program didn't change */
9150 if (new_prog != cur_prog) {
9151 bpf_op = dev_xdp_bpf_op(dev, mode);
9152 if (!bpf_op) {
9153 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9154 return -EOPNOTSUPP;
9155 }
9156
9157 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9158 if (err)
9159 return err;
9160 }
9161
9162 if (link)
9163 dev_xdp_set_link(dev, mode, link);
9164 else
9165 dev_xdp_set_prog(dev, mode, new_prog);
9166 if (cur_prog)
9167 bpf_prog_put(cur_prog);
9168
9169 return 0;
9170}
9171
9172static int dev_xdp_attach_link(struct net_device *dev,
9173 struct netlink_ext_ack *extack,
9174 struct bpf_xdp_link *link)
9175{
9176 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9177}
9178
9179static int dev_xdp_detach_link(struct net_device *dev,
9180 struct netlink_ext_ack *extack,
9181 struct bpf_xdp_link *link)
9182{
9183 enum bpf_xdp_mode mode;
9184 bpf_op_t bpf_op;
9185
9186 ASSERT_RTNL();
9187
9188 mode = dev_xdp_mode(dev, link->flags);
9189 if (dev_xdp_link(dev, mode) != link)
9190 return -EINVAL;
9191
9192 bpf_op = dev_xdp_bpf_op(dev, mode);
9193 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9194 dev_xdp_set_link(dev, mode, NULL);
9195 return 0;
9196}
9197
9198static void bpf_xdp_link_release(struct bpf_link *link)
9199{
9200 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9201
9202 rtnl_lock();
9203
9204 /* if racing with net_device's tear down, xdp_link->dev might be
9205 * already NULL, in which case link was already auto-detached
9206 */
9207 if (xdp_link->dev) {
9208 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9209 xdp_link->dev = NULL;
9210 }
9211
9212 rtnl_unlock();
9213}
9214
9215static int bpf_xdp_link_detach(struct bpf_link *link)
9216{
9217 bpf_xdp_link_release(link);
9218 return 0;
9219}
9220
9221static void bpf_xdp_link_dealloc(struct bpf_link *link)
9222{
9223 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9224
9225 kfree(xdp_link);
9226}
9227
9228static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9229 struct seq_file *seq)
9230{
9231 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9232 u32 ifindex = 0;
9233
9234 rtnl_lock();
9235 if (xdp_link->dev)
9236 ifindex = xdp_link->dev->ifindex;
9237 rtnl_unlock();
9238
9239 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9240}
9241
9242static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9243 struct bpf_link_info *info)
9244{
9245 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9246 u32 ifindex = 0;
9247
9248 rtnl_lock();
9249 if (xdp_link->dev)
9250 ifindex = xdp_link->dev->ifindex;
9251 rtnl_unlock();
9252
9253 info->xdp.ifindex = ifindex;
9254 return 0;
9255}
9256
9257static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9258 struct bpf_prog *old_prog)
9259{
9260 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9261 enum bpf_xdp_mode mode;
9262 bpf_op_t bpf_op;
9263 int err = 0;
9264
9265 rtnl_lock();
9266
9267 /* link might have been auto-released already, so fail */
9268 if (!xdp_link->dev) {
9269 err = -ENOLINK;
9270 goto out_unlock;
9271 }
9272
9273 if (old_prog && link->prog != old_prog) {
9274 err = -EPERM;
9275 goto out_unlock;
9276 }
9277 old_prog = link->prog;
9278 if (old_prog->type != new_prog->type ||
9279 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9280 err = -EINVAL;
9281 goto out_unlock;
9282 }
9283
9284 if (old_prog == new_prog) {
9285 /* no-op, don't disturb drivers */
9286 bpf_prog_put(new_prog);
9287 goto out_unlock;
9288 }
9289
9290 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9291 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9292 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9293 xdp_link->flags, new_prog);
9294 if (err)
9295 goto out_unlock;
9296
9297 old_prog = xchg(&link->prog, new_prog);
9298 bpf_prog_put(old_prog);
9299
9300out_unlock:
9301 rtnl_unlock();
9302 return err;
9303}
9304
9305static const struct bpf_link_ops bpf_xdp_link_lops = {
9306 .release = bpf_xdp_link_release,
9307 .dealloc = bpf_xdp_link_dealloc,
9308 .detach = bpf_xdp_link_detach,
9309 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9310 .fill_link_info = bpf_xdp_link_fill_link_info,
9311 .update_prog = bpf_xdp_link_update,
9312};
9313
9314int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9315{
9316 struct net *net = current->nsproxy->net_ns;
9317 struct bpf_link_primer link_primer;
9318 struct bpf_xdp_link *link;
9319 struct net_device *dev;
9320 int err, fd;
9321
9322 rtnl_lock();
9323 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9324 if (!dev) {
9325 rtnl_unlock();
9326 return -EINVAL;
9327 }
9328
9329 link = kzalloc(sizeof(*link), GFP_USER);
9330 if (!link) {
9331 err = -ENOMEM;
9332 goto unlock;
9333 }
9334
9335 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9336 link->dev = dev;
9337 link->flags = attr->link_create.flags;
9338
9339 err = bpf_link_prime(&link->link, &link_primer);
9340 if (err) {
9341 kfree(link);
9342 goto unlock;
9343 }
9344
9345 err = dev_xdp_attach_link(dev, NULL, link);
9346 rtnl_unlock();
9347
9348 if (err) {
9349 link->dev = NULL;
9350 bpf_link_cleanup(&link_primer);
9351 goto out_put_dev;
9352 }
9353
9354 fd = bpf_link_settle(&link_primer);
9355 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9356 dev_put(dev);
9357 return fd;
9358
9359unlock:
9360 rtnl_unlock();
9361
9362out_put_dev:
9363 dev_put(dev);
9364 return err;
9365}
9366
9367/**
9368 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9369 * @dev: device
9370 * @extack: netlink extended ack
9371 * @fd: new program fd or negative value to clear
9372 * @expected_fd: old program fd that userspace expects to replace or clear
9373 * @flags: xdp-related flags
9374 *
9375 * Set or clear a bpf program for a device
9376 */
9377int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9378 int fd, int expected_fd, u32 flags)
9379{
9380 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9381 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9382 int err;
9383
9384 ASSERT_RTNL();
9385
9386 if (fd >= 0) {
9387 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9388 mode != XDP_MODE_SKB);
9389 if (IS_ERR(new_prog))
9390 return PTR_ERR(new_prog);
9391 }
9392
9393 if (expected_fd >= 0) {
9394 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9395 mode != XDP_MODE_SKB);
9396 if (IS_ERR(old_prog)) {
9397 err = PTR_ERR(old_prog);
9398 old_prog = NULL;
9399 goto err_out;
9400 }
9401 }
9402
9403 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9404
9405err_out:
9406 if (err && new_prog)
9407 bpf_prog_put(new_prog);
9408 if (old_prog)
9409 bpf_prog_put(old_prog);
9410 return err;
9411}
9412
9413/**
9414 * dev_new_index - allocate an ifindex
9415 * @net: the applicable net namespace
9416 *
9417 * Returns a suitable unique value for a new device interface
9418 * number. The caller must hold the rtnl semaphore or the
9419 * dev_base_lock to be sure it remains unique.
9420 */
9421static int dev_new_index(struct net *net)
9422{
9423 int ifindex = net->ifindex;
9424
9425 for (;;) {
9426 if (++ifindex <= 0)
9427 ifindex = 1;
9428 if (!__dev_get_by_index(net, ifindex))
9429 return net->ifindex = ifindex;
9430 }
9431}
9432
9433/* Delayed registration/unregisteration */
9434static LIST_HEAD(net_todo_list);
9435DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9436
9437static void net_set_todo(struct net_device *dev)
9438{
9439 list_add_tail(&dev->todo_list, &net_todo_list);
9440 atomic_inc(&dev_net(dev)->dev_unreg_count);
9441}
9442
9443static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9444 struct net_device *upper, netdev_features_t features)
9445{
9446 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9447 netdev_features_t feature;
9448 int feature_bit;
9449
9450 for_each_netdev_feature(upper_disables, feature_bit) {
9451 feature = __NETIF_F_BIT(feature_bit);
9452 if (!(upper->wanted_features & feature)
9453 && (features & feature)) {
9454 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9455 &feature, upper->name);
9456 features &= ~feature;
9457 }
9458 }
9459
9460 return features;
9461}
9462
9463static void netdev_sync_lower_features(struct net_device *upper,
9464 struct net_device *lower, netdev_features_t features)
9465{
9466 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9467 netdev_features_t feature;
9468 int feature_bit;
9469
9470 for_each_netdev_feature(upper_disables, feature_bit) {
9471 feature = __NETIF_F_BIT(feature_bit);
9472 if (!(features & feature) && (lower->features & feature)) {
9473 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9474 &feature, lower->name);
9475 lower->wanted_features &= ~feature;
9476 __netdev_update_features(lower);
9477
9478 if (unlikely(lower->features & feature))
9479 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9480 &feature, lower->name);
9481 else
9482 netdev_features_change(lower);
9483 }
9484 }
9485}
9486
9487static netdev_features_t netdev_fix_features(struct net_device *dev,
9488 netdev_features_t features)
9489{
9490 /* Fix illegal checksum combinations */
9491 if ((features & NETIF_F_HW_CSUM) &&
9492 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9493 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9494 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9495 }
9496
9497 /* TSO requires that SG is present as well. */
9498 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9499 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9500 features &= ~NETIF_F_ALL_TSO;
9501 }
9502
9503 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9504 !(features & NETIF_F_IP_CSUM)) {
9505 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9506 features &= ~NETIF_F_TSO;
9507 features &= ~NETIF_F_TSO_ECN;
9508 }
9509
9510 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9511 !(features & NETIF_F_IPV6_CSUM)) {
9512 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9513 features &= ~NETIF_F_TSO6;
9514 }
9515
9516 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9517 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9518 features &= ~NETIF_F_TSO_MANGLEID;
9519
9520 /* TSO ECN requires that TSO is present as well. */
9521 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9522 features &= ~NETIF_F_TSO_ECN;
9523
9524 /* Software GSO depends on SG. */
9525 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9526 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9527 features &= ~NETIF_F_GSO;
9528 }
9529
9530 /* GSO partial features require GSO partial be set */
9531 if ((features & dev->gso_partial_features) &&
9532 !(features & NETIF_F_GSO_PARTIAL)) {
9533 netdev_dbg(dev,
9534 "Dropping partially supported GSO features since no GSO partial.\n");
9535 features &= ~dev->gso_partial_features;
9536 }
9537
9538 if (!(features & NETIF_F_RXCSUM)) {
9539 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9540 * successfully merged by hardware must also have the
9541 * checksum verified by hardware. If the user does not
9542 * want to enable RXCSUM, logically, we should disable GRO_HW.
9543 */
9544 if (features & NETIF_F_GRO_HW) {
9545 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9546 features &= ~NETIF_F_GRO_HW;
9547 }
9548 }
9549
9550 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9551 if (features & NETIF_F_RXFCS) {
9552 if (features & NETIF_F_LRO) {
9553 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9554 features &= ~NETIF_F_LRO;
9555 }
9556
9557 if (features & NETIF_F_GRO_HW) {
9558 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9559 features &= ~NETIF_F_GRO_HW;
9560 }
9561 }
9562
9563 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9564 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9565 features &= ~NETIF_F_LRO;
9566 }
9567
9568 if (features & NETIF_F_HW_TLS_TX) {
9569 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9570 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9571 bool hw_csum = features & NETIF_F_HW_CSUM;
9572
9573 if (!ip_csum && !hw_csum) {
9574 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9575 features &= ~NETIF_F_HW_TLS_TX;
9576 }
9577 }
9578
9579 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9580 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9581 features &= ~NETIF_F_HW_TLS_RX;
9582 }
9583
9584 return features;
9585}
9586
9587int __netdev_update_features(struct net_device *dev)
9588{
9589 struct net_device *upper, *lower;
9590 netdev_features_t features;
9591 struct list_head *iter;
9592 int err = -1;
9593
9594 ASSERT_RTNL();
9595
9596 features = netdev_get_wanted_features(dev);
9597
9598 if (dev->netdev_ops->ndo_fix_features)
9599 features = dev->netdev_ops->ndo_fix_features(dev, features);
9600
9601 /* driver might be less strict about feature dependencies */
9602 features = netdev_fix_features(dev, features);
9603
9604 /* some features can't be enabled if they're off on an upper device */
9605 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9606 features = netdev_sync_upper_features(dev, upper, features);
9607
9608 if (dev->features == features)
9609 goto sync_lower;
9610
9611 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9612 &dev->features, &features);
9613
9614 if (dev->netdev_ops->ndo_set_features)
9615 err = dev->netdev_ops->ndo_set_features(dev, features);
9616 else
9617 err = 0;
9618
9619 if (unlikely(err < 0)) {
9620 netdev_err(dev,
9621 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9622 err, &features, &dev->features);
9623 /* return non-0 since some features might have changed and
9624 * it's better to fire a spurious notification than miss it
9625 */
9626 return -1;
9627 }
9628
9629sync_lower:
9630 /* some features must be disabled on lower devices when disabled
9631 * on an upper device (think: bonding master or bridge)
9632 */
9633 netdev_for_each_lower_dev(dev, lower, iter)
9634 netdev_sync_lower_features(dev, lower, features);
9635
9636 if (!err) {
9637 netdev_features_t diff = features ^ dev->features;
9638
9639 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9640 /* udp_tunnel_{get,drop}_rx_info both need
9641 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9642 * device, or they won't do anything.
9643 * Thus we need to update dev->features
9644 * *before* calling udp_tunnel_get_rx_info,
9645 * but *after* calling udp_tunnel_drop_rx_info.
9646 */
9647 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9648 dev->features = features;
9649 udp_tunnel_get_rx_info(dev);
9650 } else {
9651 udp_tunnel_drop_rx_info(dev);
9652 }
9653 }
9654
9655 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9656 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9657 dev->features = features;
9658 err |= vlan_get_rx_ctag_filter_info(dev);
9659 } else {
9660 vlan_drop_rx_ctag_filter_info(dev);
9661 }
9662 }
9663
9664 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9665 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9666 dev->features = features;
9667 err |= vlan_get_rx_stag_filter_info(dev);
9668 } else {
9669 vlan_drop_rx_stag_filter_info(dev);
9670 }
9671 }
9672
9673 dev->features = features;
9674 }
9675
9676 return err < 0 ? 0 : 1;
9677}
9678
9679/**
9680 * netdev_update_features - recalculate device features
9681 * @dev: the device to check
9682 *
9683 * Recalculate dev->features set and send notifications if it
9684 * has changed. Should be called after driver or hardware dependent
9685 * conditions might have changed that influence the features.
9686 */
9687void netdev_update_features(struct net_device *dev)
9688{
9689 if (__netdev_update_features(dev))
9690 netdev_features_change(dev);
9691}
9692EXPORT_SYMBOL(netdev_update_features);
9693
9694/**
9695 * netdev_change_features - recalculate device features
9696 * @dev: the device to check
9697 *
9698 * Recalculate dev->features set and send notifications even
9699 * if they have not changed. Should be called instead of
9700 * netdev_update_features() if also dev->vlan_features might
9701 * have changed to allow the changes to be propagated to stacked
9702 * VLAN devices.
9703 */
9704void netdev_change_features(struct net_device *dev)
9705{
9706 __netdev_update_features(dev);
9707 netdev_features_change(dev);
9708}
9709EXPORT_SYMBOL(netdev_change_features);
9710
9711/**
9712 * netif_stacked_transfer_operstate - transfer operstate
9713 * @rootdev: the root or lower level device to transfer state from
9714 * @dev: the device to transfer operstate to
9715 *
9716 * Transfer operational state from root to device. This is normally
9717 * called when a stacking relationship exists between the root
9718 * device and the device(a leaf device).
9719 */
9720void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9721 struct net_device *dev)
9722{
9723 if (rootdev->operstate == IF_OPER_DORMANT)
9724 netif_dormant_on(dev);
9725 else
9726 netif_dormant_off(dev);
9727
9728 if (rootdev->operstate == IF_OPER_TESTING)
9729 netif_testing_on(dev);
9730 else
9731 netif_testing_off(dev);
9732
9733 if (netif_carrier_ok(rootdev))
9734 netif_carrier_on(dev);
9735 else
9736 netif_carrier_off(dev);
9737}
9738EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9739
9740static int netif_alloc_rx_queues(struct net_device *dev)
9741{
9742 unsigned int i, count = dev->num_rx_queues;
9743 struct netdev_rx_queue *rx;
9744 size_t sz = count * sizeof(*rx);
9745 int err = 0;
9746
9747 BUG_ON(count < 1);
9748
9749 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9750 if (!rx)
9751 return -ENOMEM;
9752
9753 dev->_rx = rx;
9754
9755 for (i = 0; i < count; i++) {
9756 rx[i].dev = dev;
9757
9758 /* XDP RX-queue setup */
9759 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9760 if (err < 0)
9761 goto err_rxq_info;
9762 }
9763 return 0;
9764
9765err_rxq_info:
9766 /* Rollback successful reg's and free other resources */
9767 while (i--)
9768 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9769 kvfree(dev->_rx);
9770 dev->_rx = NULL;
9771 return err;
9772}
9773
9774static void netif_free_rx_queues(struct net_device *dev)
9775{
9776 unsigned int i, count = dev->num_rx_queues;
9777
9778 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9779 if (!dev->_rx)
9780 return;
9781
9782 for (i = 0; i < count; i++)
9783 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9784
9785 kvfree(dev->_rx);
9786}
9787
9788static void netdev_init_one_queue(struct net_device *dev,
9789 struct netdev_queue *queue, void *_unused)
9790{
9791 /* Initialize queue lock */
9792 spin_lock_init(&queue->_xmit_lock);
9793 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9794 queue->xmit_lock_owner = -1;
9795 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9796 queue->dev = dev;
9797#ifdef CONFIG_BQL
9798 dql_init(&queue->dql, HZ);
9799#endif
9800}
9801
9802static void netif_free_tx_queues(struct net_device *dev)
9803{
9804 kvfree(dev->_tx);
9805}
9806
9807static int netif_alloc_netdev_queues(struct net_device *dev)
9808{
9809 unsigned int count = dev->num_tx_queues;
9810 struct netdev_queue *tx;
9811 size_t sz = count * sizeof(*tx);
9812
9813 if (count < 1 || count > 0xffff)
9814 return -EINVAL;
9815
9816 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9817 if (!tx)
9818 return -ENOMEM;
9819
9820 dev->_tx = tx;
9821
9822 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9823 spin_lock_init(&dev->tx_global_lock);
9824
9825 return 0;
9826}
9827
9828void netif_tx_stop_all_queues(struct net_device *dev)
9829{
9830 unsigned int i;
9831
9832 for (i = 0; i < dev->num_tx_queues; i++) {
9833 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9834
9835 netif_tx_stop_queue(txq);
9836 }
9837}
9838EXPORT_SYMBOL(netif_tx_stop_all_queues);
9839
9840/**
9841 * register_netdevice - register a network device
9842 * @dev: device to register
9843 *
9844 * Take a completed network device structure and add it to the kernel
9845 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9846 * chain. 0 is returned on success. A negative errno code is returned
9847 * on a failure to set up the device, or if the name is a duplicate.
9848 *
9849 * Callers must hold the rtnl semaphore. You may want
9850 * register_netdev() instead of this.
9851 *
9852 * BUGS:
9853 * The locking appears insufficient to guarantee two parallel registers
9854 * will not get the same name.
9855 */
9856
9857int register_netdevice(struct net_device *dev)
9858{
9859 int ret;
9860 struct net *net = dev_net(dev);
9861
9862 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9863 NETDEV_FEATURE_COUNT);
9864 BUG_ON(dev_boot_phase);
9865 ASSERT_RTNL();
9866
9867 might_sleep();
9868
9869 /* When net_device's are persistent, this will be fatal. */
9870 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9871 BUG_ON(!net);
9872
9873 ret = ethtool_check_ops(dev->ethtool_ops);
9874 if (ret)
9875 return ret;
9876
9877 spin_lock_init(&dev->addr_list_lock);
9878 netdev_set_addr_lockdep_class(dev);
9879
9880 ret = dev_get_valid_name(net, dev, dev->name);
9881 if (ret < 0)
9882 goto out;
9883
9884 ret = -ENOMEM;
9885 dev->name_node = netdev_name_node_head_alloc(dev);
9886 if (!dev->name_node)
9887 goto out;
9888
9889 /* Init, if this function is available */
9890 if (dev->netdev_ops->ndo_init) {
9891 ret = dev->netdev_ops->ndo_init(dev);
9892 if (ret) {
9893 if (ret > 0)
9894 ret = -EIO;
9895 goto err_free_name;
9896 }
9897 }
9898
9899 if (((dev->hw_features | dev->features) &
9900 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9901 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9902 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9903 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9904 ret = -EINVAL;
9905 goto err_uninit;
9906 }
9907
9908 ret = -EBUSY;
9909 if (!dev->ifindex)
9910 dev->ifindex = dev_new_index(net);
9911 else if (__dev_get_by_index(net, dev->ifindex))
9912 goto err_uninit;
9913
9914 /* Transfer changeable features to wanted_features and enable
9915 * software offloads (GSO and GRO).
9916 */
9917 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9918 dev->features |= NETIF_F_SOFT_FEATURES;
9919
9920 if (dev->udp_tunnel_nic_info) {
9921 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9922 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9923 }
9924
9925 dev->wanted_features = dev->features & dev->hw_features;
9926
9927 if (!(dev->flags & IFF_LOOPBACK))
9928 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9929
9930 /* If IPv4 TCP segmentation offload is supported we should also
9931 * allow the device to enable segmenting the frame with the option
9932 * of ignoring a static IP ID value. This doesn't enable the
9933 * feature itself but allows the user to enable it later.
9934 */
9935 if (dev->hw_features & NETIF_F_TSO)
9936 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9937 if (dev->vlan_features & NETIF_F_TSO)
9938 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9939 if (dev->mpls_features & NETIF_F_TSO)
9940 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9941 if (dev->hw_enc_features & NETIF_F_TSO)
9942 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9943
9944 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9945 */
9946 dev->vlan_features |= NETIF_F_HIGHDMA;
9947
9948 /* Make NETIF_F_SG inheritable to tunnel devices.
9949 */
9950 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9951
9952 /* Make NETIF_F_SG inheritable to MPLS.
9953 */
9954 dev->mpls_features |= NETIF_F_SG;
9955
9956 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9957 ret = notifier_to_errno(ret);
9958 if (ret)
9959 goto err_uninit;
9960
9961 ret = netdev_register_kobject(dev);
9962 if (ret) {
9963 dev->reg_state = NETREG_UNREGISTERED;
9964 goto err_uninit;
9965 }
9966 dev->reg_state = NETREG_REGISTERED;
9967
9968 __netdev_update_features(dev);
9969
9970 /*
9971 * Default initial state at registry is that the
9972 * device is present.
9973 */
9974
9975 set_bit(__LINK_STATE_PRESENT, &dev->state);
9976
9977 linkwatch_init_dev(dev);
9978
9979 dev_init_scheduler(dev);
9980
9981 dev_hold_track(dev, &dev->dev_registered_tracker, GFP_KERNEL);
9982 list_netdevice(dev);
9983
9984 add_device_randomness(dev->dev_addr, dev->addr_len);
9985
9986 /* If the device has permanent device address, driver should
9987 * set dev_addr and also addr_assign_type should be set to
9988 * NET_ADDR_PERM (default value).
9989 */
9990 if (dev->addr_assign_type == NET_ADDR_PERM)
9991 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9992
9993 /* Notify protocols, that a new device appeared. */
9994 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9995 ret = notifier_to_errno(ret);
9996 if (ret) {
9997 /* Expect explicit free_netdev() on failure */
9998 dev->needs_free_netdev = false;
9999 unregister_netdevice_queue(dev, NULL);
10000 goto out;
10001 }
10002 /*
10003 * Prevent userspace races by waiting until the network
10004 * device is fully setup before sending notifications.
10005 */
10006 if (!dev->rtnl_link_ops ||
10007 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10008 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10009
10010out:
10011 return ret;
10012
10013err_uninit:
10014 if (dev->netdev_ops->ndo_uninit)
10015 dev->netdev_ops->ndo_uninit(dev);
10016 if (dev->priv_destructor)
10017 dev->priv_destructor(dev);
10018err_free_name:
10019 netdev_name_node_free(dev->name_node);
10020 goto out;
10021}
10022EXPORT_SYMBOL(register_netdevice);
10023
10024/**
10025 * init_dummy_netdev - init a dummy network device for NAPI
10026 * @dev: device to init
10027 *
10028 * This takes a network device structure and initialize the minimum
10029 * amount of fields so it can be used to schedule NAPI polls without
10030 * registering a full blown interface. This is to be used by drivers
10031 * that need to tie several hardware interfaces to a single NAPI
10032 * poll scheduler due to HW limitations.
10033 */
10034int init_dummy_netdev(struct net_device *dev)
10035{
10036 /* Clear everything. Note we don't initialize spinlocks
10037 * are they aren't supposed to be taken by any of the
10038 * NAPI code and this dummy netdev is supposed to be
10039 * only ever used for NAPI polls
10040 */
10041 memset(dev, 0, sizeof(struct net_device));
10042
10043 /* make sure we BUG if trying to hit standard
10044 * register/unregister code path
10045 */
10046 dev->reg_state = NETREG_DUMMY;
10047
10048 /* NAPI wants this */
10049 INIT_LIST_HEAD(&dev->napi_list);
10050
10051 /* a dummy interface is started by default */
10052 set_bit(__LINK_STATE_PRESENT, &dev->state);
10053 set_bit(__LINK_STATE_START, &dev->state);
10054
10055 /* napi_busy_loop stats accounting wants this */
10056 dev_net_set(dev, &init_net);
10057
10058 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10059 * because users of this 'device' dont need to change
10060 * its refcount.
10061 */
10062
10063 return 0;
10064}
10065EXPORT_SYMBOL_GPL(init_dummy_netdev);
10066
10067
10068/**
10069 * register_netdev - register a network device
10070 * @dev: device to register
10071 *
10072 * Take a completed network device structure and add it to the kernel
10073 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10074 * chain. 0 is returned on success. A negative errno code is returned
10075 * on a failure to set up the device, or if the name is a duplicate.
10076 *
10077 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10078 * and expands the device name if you passed a format string to
10079 * alloc_netdev.
10080 */
10081int register_netdev(struct net_device *dev)
10082{
10083 int err;
10084
10085 if (rtnl_lock_killable())
10086 return -EINTR;
10087 err = register_netdevice(dev);
10088 rtnl_unlock();
10089 return err;
10090}
10091EXPORT_SYMBOL(register_netdev);
10092
10093int netdev_refcnt_read(const struct net_device *dev)
10094{
10095#ifdef CONFIG_PCPU_DEV_REFCNT
10096 int i, refcnt = 0;
10097
10098 for_each_possible_cpu(i)
10099 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10100 return refcnt;
10101#else
10102 return refcount_read(&dev->dev_refcnt);
10103#endif
10104}
10105EXPORT_SYMBOL(netdev_refcnt_read);
10106
10107int netdev_unregister_timeout_secs __read_mostly = 10;
10108
10109#define WAIT_REFS_MIN_MSECS 1
10110#define WAIT_REFS_MAX_MSECS 250
10111/**
10112 * netdev_wait_allrefs_any - wait until all references are gone.
10113 * @list: list of net_devices to wait on
10114 *
10115 * This is called when unregistering network devices.
10116 *
10117 * Any protocol or device that holds a reference should register
10118 * for netdevice notification, and cleanup and put back the
10119 * reference if they receive an UNREGISTER event.
10120 * We can get stuck here if buggy protocols don't correctly
10121 * call dev_put.
10122 */
10123static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10124{
10125 unsigned long rebroadcast_time, warning_time;
10126 struct net_device *dev;
10127 int wait = 0;
10128
10129 rebroadcast_time = warning_time = jiffies;
10130
10131 list_for_each_entry(dev, list, todo_list)
10132 if (netdev_refcnt_read(dev) == 1)
10133 return dev;
10134
10135 while (true) {
10136 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10137 rtnl_lock();
10138
10139 /* Rebroadcast unregister notification */
10140 list_for_each_entry(dev, list, todo_list)
10141 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10142
10143 __rtnl_unlock();
10144 rcu_barrier();
10145 rtnl_lock();
10146
10147 list_for_each_entry(dev, list, todo_list)
10148 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10149 &dev->state)) {
10150 /* We must not have linkwatch events
10151 * pending on unregister. If this
10152 * happens, we simply run the queue
10153 * unscheduled, resulting in a noop
10154 * for this device.
10155 */
10156 linkwatch_run_queue();
10157 break;
10158 }
10159
10160 __rtnl_unlock();
10161
10162 rebroadcast_time = jiffies;
10163 }
10164
10165 if (!wait) {
10166 rcu_barrier();
10167 wait = WAIT_REFS_MIN_MSECS;
10168 } else {
10169 msleep(wait);
10170 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10171 }
10172
10173 list_for_each_entry(dev, list, todo_list)
10174 if (netdev_refcnt_read(dev) == 1)
10175 return dev;
10176
10177 if (time_after(jiffies, warning_time +
10178 netdev_unregister_timeout_secs * HZ)) {
10179 list_for_each_entry(dev, list, todo_list) {
10180 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10181 dev->name, netdev_refcnt_read(dev));
10182 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10183 }
10184
10185 warning_time = jiffies;
10186 }
10187 }
10188}
10189
10190/* The sequence is:
10191 *
10192 * rtnl_lock();
10193 * ...
10194 * register_netdevice(x1);
10195 * register_netdevice(x2);
10196 * ...
10197 * unregister_netdevice(y1);
10198 * unregister_netdevice(y2);
10199 * ...
10200 * rtnl_unlock();
10201 * free_netdev(y1);
10202 * free_netdev(y2);
10203 *
10204 * We are invoked by rtnl_unlock().
10205 * This allows us to deal with problems:
10206 * 1) We can delete sysfs objects which invoke hotplug
10207 * without deadlocking with linkwatch via keventd.
10208 * 2) Since we run with the RTNL semaphore not held, we can sleep
10209 * safely in order to wait for the netdev refcnt to drop to zero.
10210 *
10211 * We must not return until all unregister events added during
10212 * the interval the lock was held have been completed.
10213 */
10214void netdev_run_todo(void)
10215{
10216 struct net_device *dev, *tmp;
10217 struct list_head list;
10218#ifdef CONFIG_LOCKDEP
10219 struct list_head unlink_list;
10220
10221 list_replace_init(&net_unlink_list, &unlink_list);
10222
10223 while (!list_empty(&unlink_list)) {
10224 struct net_device *dev = list_first_entry(&unlink_list,
10225 struct net_device,
10226 unlink_list);
10227 list_del_init(&dev->unlink_list);
10228 dev->nested_level = dev->lower_level - 1;
10229 }
10230#endif
10231
10232 /* Snapshot list, allow later requests */
10233 list_replace_init(&net_todo_list, &list);
10234
10235 __rtnl_unlock();
10236
10237 /* Wait for rcu callbacks to finish before next phase */
10238 if (!list_empty(&list))
10239 rcu_barrier();
10240
10241 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10242 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10243 netdev_WARN(dev, "run_todo but not unregistering\n");
10244 list_del(&dev->todo_list);
10245 continue;
10246 }
10247
10248 dev->reg_state = NETREG_UNREGISTERED;
10249 linkwatch_forget_dev(dev);
10250 }
10251
10252 while (!list_empty(&list)) {
10253 dev = netdev_wait_allrefs_any(&list);
10254 list_del(&dev->todo_list);
10255
10256 /* paranoia */
10257 BUG_ON(netdev_refcnt_read(dev) != 1);
10258 BUG_ON(!list_empty(&dev->ptype_all));
10259 BUG_ON(!list_empty(&dev->ptype_specific));
10260 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10261 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10262#if IS_ENABLED(CONFIG_DECNET)
10263 WARN_ON(dev->dn_ptr);
10264#endif
10265 if (dev->priv_destructor)
10266 dev->priv_destructor(dev);
10267 if (dev->needs_free_netdev)
10268 free_netdev(dev);
10269
10270 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10271 wake_up(&netdev_unregistering_wq);
10272
10273 /* Free network device */
10274 kobject_put(&dev->dev.kobj);
10275 }
10276}
10277
10278/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10279 * all the same fields in the same order as net_device_stats, with only
10280 * the type differing, but rtnl_link_stats64 may have additional fields
10281 * at the end for newer counters.
10282 */
10283void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10284 const struct net_device_stats *netdev_stats)
10285{
10286#if BITS_PER_LONG == 64
10287 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10288 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10289 /* zero out counters that only exist in rtnl_link_stats64 */
10290 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10291 sizeof(*stats64) - sizeof(*netdev_stats));
10292#else
10293 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10294 const unsigned long *src = (const unsigned long *)netdev_stats;
10295 u64 *dst = (u64 *)stats64;
10296
10297 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10298 for (i = 0; i < n; i++)
10299 dst[i] = src[i];
10300 /* zero out counters that only exist in rtnl_link_stats64 */
10301 memset((char *)stats64 + n * sizeof(u64), 0,
10302 sizeof(*stats64) - n * sizeof(u64));
10303#endif
10304}
10305EXPORT_SYMBOL(netdev_stats_to_stats64);
10306
10307struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10308{
10309 struct net_device_core_stats __percpu *p;
10310
10311 p = alloc_percpu_gfp(struct net_device_core_stats,
10312 GFP_ATOMIC | __GFP_NOWARN);
10313
10314 if (p && cmpxchg(&dev->core_stats, NULL, p))
10315 free_percpu(p);
10316
10317 /* This READ_ONCE() pairs with the cmpxchg() above */
10318 return READ_ONCE(dev->core_stats);
10319}
10320EXPORT_SYMBOL(netdev_core_stats_alloc);
10321
10322/**
10323 * dev_get_stats - get network device statistics
10324 * @dev: device to get statistics from
10325 * @storage: place to store stats
10326 *
10327 * Get network statistics from device. Return @storage.
10328 * The device driver may provide its own method by setting
10329 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10330 * otherwise the internal statistics structure is used.
10331 */
10332struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10333 struct rtnl_link_stats64 *storage)
10334{
10335 const struct net_device_ops *ops = dev->netdev_ops;
10336 const struct net_device_core_stats __percpu *p;
10337
10338 if (ops->ndo_get_stats64) {
10339 memset(storage, 0, sizeof(*storage));
10340 ops->ndo_get_stats64(dev, storage);
10341 } else if (ops->ndo_get_stats) {
10342 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10343 } else {
10344 netdev_stats_to_stats64(storage, &dev->stats);
10345 }
10346
10347 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10348 p = READ_ONCE(dev->core_stats);
10349 if (p) {
10350 const struct net_device_core_stats *core_stats;
10351 int i;
10352
10353 for_each_possible_cpu(i) {
10354 core_stats = per_cpu_ptr(p, i);
10355 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10356 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10357 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10358 }
10359 }
10360 return storage;
10361}
10362EXPORT_SYMBOL(dev_get_stats);
10363
10364/**
10365 * dev_fetch_sw_netstats - get per-cpu network device statistics
10366 * @s: place to store stats
10367 * @netstats: per-cpu network stats to read from
10368 *
10369 * Read per-cpu network statistics and populate the related fields in @s.
10370 */
10371void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10372 const struct pcpu_sw_netstats __percpu *netstats)
10373{
10374 int cpu;
10375
10376 for_each_possible_cpu(cpu) {
10377 const struct pcpu_sw_netstats *stats;
10378 struct pcpu_sw_netstats tmp;
10379 unsigned int start;
10380
10381 stats = per_cpu_ptr(netstats, cpu);
10382 do {
10383 start = u64_stats_fetch_begin_irq(&stats->syncp);
10384 tmp.rx_packets = stats->rx_packets;
10385 tmp.rx_bytes = stats->rx_bytes;
10386 tmp.tx_packets = stats->tx_packets;
10387 tmp.tx_bytes = stats->tx_bytes;
10388 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10389
10390 s->rx_packets += tmp.rx_packets;
10391 s->rx_bytes += tmp.rx_bytes;
10392 s->tx_packets += tmp.tx_packets;
10393 s->tx_bytes += tmp.tx_bytes;
10394 }
10395}
10396EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10397
10398/**
10399 * dev_get_tstats64 - ndo_get_stats64 implementation
10400 * @dev: device to get statistics from
10401 * @s: place to store stats
10402 *
10403 * Populate @s from dev->stats and dev->tstats. Can be used as
10404 * ndo_get_stats64() callback.
10405 */
10406void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10407{
10408 netdev_stats_to_stats64(s, &dev->stats);
10409 dev_fetch_sw_netstats(s, dev->tstats);
10410}
10411EXPORT_SYMBOL_GPL(dev_get_tstats64);
10412
10413struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10414{
10415 struct netdev_queue *queue = dev_ingress_queue(dev);
10416
10417#ifdef CONFIG_NET_CLS_ACT
10418 if (queue)
10419 return queue;
10420 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10421 if (!queue)
10422 return NULL;
10423 netdev_init_one_queue(dev, queue, NULL);
10424 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10425 queue->qdisc_sleeping = &noop_qdisc;
10426 rcu_assign_pointer(dev->ingress_queue, queue);
10427#endif
10428 return queue;
10429}
10430
10431static const struct ethtool_ops default_ethtool_ops;
10432
10433void netdev_set_default_ethtool_ops(struct net_device *dev,
10434 const struct ethtool_ops *ops)
10435{
10436 if (dev->ethtool_ops == &default_ethtool_ops)
10437 dev->ethtool_ops = ops;
10438}
10439EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10440
10441void netdev_freemem(struct net_device *dev)
10442{
10443 char *addr = (char *)dev - dev->padded;
10444
10445 kvfree(addr);
10446}
10447
10448/**
10449 * alloc_netdev_mqs - allocate network device
10450 * @sizeof_priv: size of private data to allocate space for
10451 * @name: device name format string
10452 * @name_assign_type: origin of device name
10453 * @setup: callback to initialize device
10454 * @txqs: the number of TX subqueues to allocate
10455 * @rxqs: the number of RX subqueues to allocate
10456 *
10457 * Allocates a struct net_device with private data area for driver use
10458 * and performs basic initialization. Also allocates subqueue structs
10459 * for each queue on the device.
10460 */
10461struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10462 unsigned char name_assign_type,
10463 void (*setup)(struct net_device *),
10464 unsigned int txqs, unsigned int rxqs)
10465{
10466 struct net_device *dev;
10467 unsigned int alloc_size;
10468 struct net_device *p;
10469
10470 BUG_ON(strlen(name) >= sizeof(dev->name));
10471
10472 if (txqs < 1) {
10473 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10474 return NULL;
10475 }
10476
10477 if (rxqs < 1) {
10478 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10479 return NULL;
10480 }
10481
10482 alloc_size = sizeof(struct net_device);
10483 if (sizeof_priv) {
10484 /* ensure 32-byte alignment of private area */
10485 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10486 alloc_size += sizeof_priv;
10487 }
10488 /* ensure 32-byte alignment of whole construct */
10489 alloc_size += NETDEV_ALIGN - 1;
10490
10491 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10492 if (!p)
10493 return NULL;
10494
10495 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10496 dev->padded = (char *)dev - (char *)p;
10497
10498 ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10499#ifdef CONFIG_PCPU_DEV_REFCNT
10500 dev->pcpu_refcnt = alloc_percpu(int);
10501 if (!dev->pcpu_refcnt)
10502 goto free_dev;
10503 __dev_hold(dev);
10504#else
10505 refcount_set(&dev->dev_refcnt, 1);
10506#endif
10507
10508 if (dev_addr_init(dev))
10509 goto free_pcpu;
10510
10511 dev_mc_init(dev);
10512 dev_uc_init(dev);
10513
10514 dev_net_set(dev, &init_net);
10515
10516 dev->gso_max_size = GSO_MAX_SIZE;
10517 dev->gso_max_segs = GSO_MAX_SEGS;
10518 dev->gro_max_size = GRO_MAX_SIZE;
10519 dev->upper_level = 1;
10520 dev->lower_level = 1;
10521#ifdef CONFIG_LOCKDEP
10522 dev->nested_level = 0;
10523 INIT_LIST_HEAD(&dev->unlink_list);
10524#endif
10525
10526 INIT_LIST_HEAD(&dev->napi_list);
10527 INIT_LIST_HEAD(&dev->unreg_list);
10528 INIT_LIST_HEAD(&dev->close_list);
10529 INIT_LIST_HEAD(&dev->link_watch_list);
10530 INIT_LIST_HEAD(&dev->adj_list.upper);
10531 INIT_LIST_HEAD(&dev->adj_list.lower);
10532 INIT_LIST_HEAD(&dev->ptype_all);
10533 INIT_LIST_HEAD(&dev->ptype_specific);
10534 INIT_LIST_HEAD(&dev->net_notifier_list);
10535#ifdef CONFIG_NET_SCHED
10536 hash_init(dev->qdisc_hash);
10537#endif
10538 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10539 setup(dev);
10540
10541 if (!dev->tx_queue_len) {
10542 dev->priv_flags |= IFF_NO_QUEUE;
10543 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10544 }
10545
10546 dev->num_tx_queues = txqs;
10547 dev->real_num_tx_queues = txqs;
10548 if (netif_alloc_netdev_queues(dev))
10549 goto free_all;
10550
10551 dev->num_rx_queues = rxqs;
10552 dev->real_num_rx_queues = rxqs;
10553 if (netif_alloc_rx_queues(dev))
10554 goto free_all;
10555
10556 strcpy(dev->name, name);
10557 dev->name_assign_type = name_assign_type;
10558 dev->group = INIT_NETDEV_GROUP;
10559 if (!dev->ethtool_ops)
10560 dev->ethtool_ops = &default_ethtool_ops;
10561
10562 nf_hook_netdev_init(dev);
10563
10564 return dev;
10565
10566free_all:
10567 free_netdev(dev);
10568 return NULL;
10569
10570free_pcpu:
10571#ifdef CONFIG_PCPU_DEV_REFCNT
10572 free_percpu(dev->pcpu_refcnt);
10573free_dev:
10574#endif
10575 netdev_freemem(dev);
10576 return NULL;
10577}
10578EXPORT_SYMBOL(alloc_netdev_mqs);
10579
10580/**
10581 * free_netdev - free network device
10582 * @dev: device
10583 *
10584 * This function does the last stage of destroying an allocated device
10585 * interface. The reference to the device object is released. If this
10586 * is the last reference then it will be freed.Must be called in process
10587 * context.
10588 */
10589void free_netdev(struct net_device *dev)
10590{
10591 struct napi_struct *p, *n;
10592
10593 might_sleep();
10594
10595 /* When called immediately after register_netdevice() failed the unwind
10596 * handling may still be dismantling the device. Handle that case by
10597 * deferring the free.
10598 */
10599 if (dev->reg_state == NETREG_UNREGISTERING) {
10600 ASSERT_RTNL();
10601 dev->needs_free_netdev = true;
10602 return;
10603 }
10604
10605 netif_free_tx_queues(dev);
10606 netif_free_rx_queues(dev);
10607
10608 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10609
10610 /* Flush device addresses */
10611 dev_addr_flush(dev);
10612
10613 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10614 netif_napi_del(p);
10615
10616 ref_tracker_dir_exit(&dev->refcnt_tracker);
10617#ifdef CONFIG_PCPU_DEV_REFCNT
10618 free_percpu(dev->pcpu_refcnt);
10619 dev->pcpu_refcnt = NULL;
10620#endif
10621 free_percpu(dev->core_stats);
10622 dev->core_stats = NULL;
10623 free_percpu(dev->xdp_bulkq);
10624 dev->xdp_bulkq = NULL;
10625
10626 /* Compatibility with error handling in drivers */
10627 if (dev->reg_state == NETREG_UNINITIALIZED) {
10628 netdev_freemem(dev);
10629 return;
10630 }
10631
10632 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10633 dev->reg_state = NETREG_RELEASED;
10634
10635 /* will free via device release */
10636 put_device(&dev->dev);
10637}
10638EXPORT_SYMBOL(free_netdev);
10639
10640/**
10641 * synchronize_net - Synchronize with packet receive processing
10642 *
10643 * Wait for packets currently being received to be done.
10644 * Does not block later packets from starting.
10645 */
10646void synchronize_net(void)
10647{
10648 might_sleep();
10649 if (rtnl_is_locked())
10650 synchronize_rcu_expedited();
10651 else
10652 synchronize_rcu();
10653}
10654EXPORT_SYMBOL(synchronize_net);
10655
10656/**
10657 * unregister_netdevice_queue - remove device from the kernel
10658 * @dev: device
10659 * @head: list
10660 *
10661 * This function shuts down a device interface and removes it
10662 * from the kernel tables.
10663 * If head not NULL, device is queued to be unregistered later.
10664 *
10665 * Callers must hold the rtnl semaphore. You may want
10666 * unregister_netdev() instead of this.
10667 */
10668
10669void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10670{
10671 ASSERT_RTNL();
10672
10673 if (head) {
10674 list_move_tail(&dev->unreg_list, head);
10675 } else {
10676 LIST_HEAD(single);
10677
10678 list_add(&dev->unreg_list, &single);
10679 unregister_netdevice_many(&single);
10680 }
10681}
10682EXPORT_SYMBOL(unregister_netdevice_queue);
10683
10684/**
10685 * unregister_netdevice_many - unregister many devices
10686 * @head: list of devices
10687 *
10688 * Note: As most callers use a stack allocated list_head,
10689 * we force a list_del() to make sure stack wont be corrupted later.
10690 */
10691void unregister_netdevice_many(struct list_head *head)
10692{
10693 struct net_device *dev, *tmp;
10694 LIST_HEAD(close_head);
10695
10696 BUG_ON(dev_boot_phase);
10697 ASSERT_RTNL();
10698
10699 if (list_empty(head))
10700 return;
10701
10702 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10703 /* Some devices call without registering
10704 * for initialization unwind. Remove those
10705 * devices and proceed with the remaining.
10706 */
10707 if (dev->reg_state == NETREG_UNINITIALIZED) {
10708 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10709 dev->name, dev);
10710
10711 WARN_ON(1);
10712 list_del(&dev->unreg_list);
10713 continue;
10714 }
10715 dev->dismantle = true;
10716 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10717 }
10718
10719 /* If device is running, close it first. */
10720 list_for_each_entry(dev, head, unreg_list)
10721 list_add_tail(&dev->close_list, &close_head);
10722 dev_close_many(&close_head, true);
10723
10724 list_for_each_entry(dev, head, unreg_list) {
10725 /* And unlink it from device chain. */
10726 unlist_netdevice(dev);
10727
10728 dev->reg_state = NETREG_UNREGISTERING;
10729 }
10730 flush_all_backlogs();
10731
10732 synchronize_net();
10733
10734 list_for_each_entry(dev, head, unreg_list) {
10735 struct sk_buff *skb = NULL;
10736
10737 /* Shutdown queueing discipline. */
10738 dev_shutdown(dev);
10739
10740 dev_xdp_uninstall(dev);
10741
10742 netdev_offload_xstats_disable_all(dev);
10743
10744 /* Notify protocols, that we are about to destroy
10745 * this device. They should clean all the things.
10746 */
10747 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10748
10749 if (!dev->rtnl_link_ops ||
10750 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10751 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10752 GFP_KERNEL, NULL, 0);
10753
10754 /*
10755 * Flush the unicast and multicast chains
10756 */
10757 dev_uc_flush(dev);
10758 dev_mc_flush(dev);
10759
10760 netdev_name_node_alt_flush(dev);
10761 netdev_name_node_free(dev->name_node);
10762
10763 if (dev->netdev_ops->ndo_uninit)
10764 dev->netdev_ops->ndo_uninit(dev);
10765
10766 if (skb)
10767 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10768
10769 /* Notifier chain MUST detach us all upper devices. */
10770 WARN_ON(netdev_has_any_upper_dev(dev));
10771 WARN_ON(netdev_has_any_lower_dev(dev));
10772
10773 /* Remove entries from kobject tree */
10774 netdev_unregister_kobject(dev);
10775#ifdef CONFIG_XPS
10776 /* Remove XPS queueing entries */
10777 netif_reset_xps_queues_gt(dev, 0);
10778#endif
10779 }
10780
10781 synchronize_net();
10782
10783 list_for_each_entry(dev, head, unreg_list) {
10784 dev_put_track(dev, &dev->dev_registered_tracker);
10785 net_set_todo(dev);
10786 }
10787
10788 list_del(head);
10789}
10790EXPORT_SYMBOL(unregister_netdevice_many);
10791
10792/**
10793 * unregister_netdev - remove device from the kernel
10794 * @dev: device
10795 *
10796 * This function shuts down a device interface and removes it
10797 * from the kernel tables.
10798 *
10799 * This is just a wrapper for unregister_netdevice that takes
10800 * the rtnl semaphore. In general you want to use this and not
10801 * unregister_netdevice.
10802 */
10803void unregister_netdev(struct net_device *dev)
10804{
10805 rtnl_lock();
10806 unregister_netdevice(dev);
10807 rtnl_unlock();
10808}
10809EXPORT_SYMBOL(unregister_netdev);
10810
10811/**
10812 * __dev_change_net_namespace - move device to different nethost namespace
10813 * @dev: device
10814 * @net: network namespace
10815 * @pat: If not NULL name pattern to try if the current device name
10816 * is already taken in the destination network namespace.
10817 * @new_ifindex: If not zero, specifies device index in the target
10818 * namespace.
10819 *
10820 * This function shuts down a device interface and moves it
10821 * to a new network namespace. On success 0 is returned, on
10822 * a failure a netagive errno code is returned.
10823 *
10824 * Callers must hold the rtnl semaphore.
10825 */
10826
10827int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10828 const char *pat, int new_ifindex)
10829{
10830 struct net *net_old = dev_net(dev);
10831 int err, new_nsid;
10832
10833 ASSERT_RTNL();
10834
10835 /* Don't allow namespace local devices to be moved. */
10836 err = -EINVAL;
10837 if (dev->features & NETIF_F_NETNS_LOCAL)
10838 goto out;
10839
10840 /* Ensure the device has been registrered */
10841 if (dev->reg_state != NETREG_REGISTERED)
10842 goto out;
10843
10844 /* Get out if there is nothing todo */
10845 err = 0;
10846 if (net_eq(net_old, net))
10847 goto out;
10848
10849 /* Pick the destination device name, and ensure
10850 * we can use it in the destination network namespace.
10851 */
10852 err = -EEXIST;
10853 if (netdev_name_in_use(net, dev->name)) {
10854 /* We get here if we can't use the current device name */
10855 if (!pat)
10856 goto out;
10857 err = dev_get_valid_name(net, dev, pat);
10858 if (err < 0)
10859 goto out;
10860 }
10861
10862 /* Check that new_ifindex isn't used yet. */
10863 err = -EBUSY;
10864 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10865 goto out;
10866
10867 /*
10868 * And now a mini version of register_netdevice unregister_netdevice.
10869 */
10870
10871 /* If device is running close it first. */
10872 dev_close(dev);
10873
10874 /* And unlink it from device chain */
10875 unlist_netdevice(dev);
10876
10877 synchronize_net();
10878
10879 /* Shutdown queueing discipline. */
10880 dev_shutdown(dev);
10881
10882 /* Notify protocols, that we are about to destroy
10883 * this device. They should clean all the things.
10884 *
10885 * Note that dev->reg_state stays at NETREG_REGISTERED.
10886 * This is wanted because this way 8021q and macvlan know
10887 * the device is just moving and can keep their slaves up.
10888 */
10889 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10890 rcu_barrier();
10891
10892 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10893 /* If there is an ifindex conflict assign a new one */
10894 if (!new_ifindex) {
10895 if (__dev_get_by_index(net, dev->ifindex))
10896 new_ifindex = dev_new_index(net);
10897 else
10898 new_ifindex = dev->ifindex;
10899 }
10900
10901 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10902 new_ifindex);
10903
10904 /*
10905 * Flush the unicast and multicast chains
10906 */
10907 dev_uc_flush(dev);
10908 dev_mc_flush(dev);
10909
10910 /* Send a netdev-removed uevent to the old namespace */
10911 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10912 netdev_adjacent_del_links(dev);
10913
10914 /* Move per-net netdevice notifiers that are following the netdevice */
10915 move_netdevice_notifiers_dev_net(dev, net);
10916
10917 /* Actually switch the network namespace */
10918 dev_net_set(dev, net);
10919 dev->ifindex = new_ifindex;
10920
10921 /* Send a netdev-add uevent to the new namespace */
10922 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10923 netdev_adjacent_add_links(dev);
10924
10925 /* Fixup kobjects */
10926 err = device_rename(&dev->dev, dev->name);
10927 WARN_ON(err);
10928
10929 /* Adapt owner in case owning user namespace of target network
10930 * namespace is different from the original one.
10931 */
10932 err = netdev_change_owner(dev, net_old, net);
10933 WARN_ON(err);
10934
10935 /* Add the device back in the hashes */
10936 list_netdevice(dev);
10937
10938 /* Notify protocols, that a new device appeared. */
10939 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10940
10941 /*
10942 * Prevent userspace races by waiting until the network
10943 * device is fully setup before sending notifications.
10944 */
10945 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10946
10947 synchronize_net();
10948 err = 0;
10949out:
10950 return err;
10951}
10952EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
10953
10954static int dev_cpu_dead(unsigned int oldcpu)
10955{
10956 struct sk_buff **list_skb;
10957 struct sk_buff *skb;
10958 unsigned int cpu;
10959 struct softnet_data *sd, *oldsd, *remsd = NULL;
10960
10961 local_irq_disable();
10962 cpu = smp_processor_id();
10963 sd = &per_cpu(softnet_data, cpu);
10964 oldsd = &per_cpu(softnet_data, oldcpu);
10965
10966 /* Find end of our completion_queue. */
10967 list_skb = &sd->completion_queue;
10968 while (*list_skb)
10969 list_skb = &(*list_skb)->next;
10970 /* Append completion queue from offline CPU. */
10971 *list_skb = oldsd->completion_queue;
10972 oldsd->completion_queue = NULL;
10973
10974 /* Append output queue from offline CPU. */
10975 if (oldsd->output_queue) {
10976 *sd->output_queue_tailp = oldsd->output_queue;
10977 sd->output_queue_tailp = oldsd->output_queue_tailp;
10978 oldsd->output_queue = NULL;
10979 oldsd->output_queue_tailp = &oldsd->output_queue;
10980 }
10981 /* Append NAPI poll list from offline CPU, with one exception :
10982 * process_backlog() must be called by cpu owning percpu backlog.
10983 * We properly handle process_queue & input_pkt_queue later.
10984 */
10985 while (!list_empty(&oldsd->poll_list)) {
10986 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10987 struct napi_struct,
10988 poll_list);
10989
10990 list_del_init(&napi->poll_list);
10991 if (napi->poll == process_backlog)
10992 napi->state = 0;
10993 else
10994 ____napi_schedule(sd, napi);
10995 }
10996
10997 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10998 local_irq_enable();
10999
11000#ifdef CONFIG_RPS
11001 remsd = oldsd->rps_ipi_list;
11002 oldsd->rps_ipi_list = NULL;
11003#endif
11004 /* send out pending IPI's on offline CPU */
11005 net_rps_send_ipi(remsd);
11006
11007 /* Process offline CPU's input_pkt_queue */
11008 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11009 netif_rx(skb);
11010 input_queue_head_incr(oldsd);
11011 }
11012 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11013 netif_rx(skb);
11014 input_queue_head_incr(oldsd);
11015 }
11016
11017 return 0;
11018}
11019
11020/**
11021 * netdev_increment_features - increment feature set by one
11022 * @all: current feature set
11023 * @one: new feature set
11024 * @mask: mask feature set
11025 *
11026 * Computes a new feature set after adding a device with feature set
11027 * @one to the master device with current feature set @all. Will not
11028 * enable anything that is off in @mask. Returns the new feature set.
11029 */
11030netdev_features_t netdev_increment_features(netdev_features_t all,
11031 netdev_features_t one, netdev_features_t mask)
11032{
11033 if (mask & NETIF_F_HW_CSUM)
11034 mask |= NETIF_F_CSUM_MASK;
11035 mask |= NETIF_F_VLAN_CHALLENGED;
11036
11037 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11038 all &= one | ~NETIF_F_ALL_FOR_ALL;
11039
11040 /* If one device supports hw checksumming, set for all. */
11041 if (all & NETIF_F_HW_CSUM)
11042 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11043
11044 return all;
11045}
11046EXPORT_SYMBOL(netdev_increment_features);
11047
11048static struct hlist_head * __net_init netdev_create_hash(void)
11049{
11050 int i;
11051 struct hlist_head *hash;
11052
11053 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11054 if (hash != NULL)
11055 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11056 INIT_HLIST_HEAD(&hash[i]);
11057
11058 return hash;
11059}
11060
11061/* Initialize per network namespace state */
11062static int __net_init netdev_init(struct net *net)
11063{
11064 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11065 8 * sizeof_field(struct napi_struct, gro_bitmask));
11066
11067 INIT_LIST_HEAD(&net->dev_base_head);
11068
11069 net->dev_name_head = netdev_create_hash();
11070 if (net->dev_name_head == NULL)
11071 goto err_name;
11072
11073 net->dev_index_head = netdev_create_hash();
11074 if (net->dev_index_head == NULL)
11075 goto err_idx;
11076
11077 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11078
11079 return 0;
11080
11081err_idx:
11082 kfree(net->dev_name_head);
11083err_name:
11084 return -ENOMEM;
11085}
11086
11087/**
11088 * netdev_drivername - network driver for the device
11089 * @dev: network device
11090 *
11091 * Determine network driver for device.
11092 */
11093const char *netdev_drivername(const struct net_device *dev)
11094{
11095 const struct device_driver *driver;
11096 const struct device *parent;
11097 const char *empty = "";
11098
11099 parent = dev->dev.parent;
11100 if (!parent)
11101 return empty;
11102
11103 driver = parent->driver;
11104 if (driver && driver->name)
11105 return driver->name;
11106 return empty;
11107}
11108
11109static void __netdev_printk(const char *level, const struct net_device *dev,
11110 struct va_format *vaf)
11111{
11112 if (dev && dev->dev.parent) {
11113 dev_printk_emit(level[1] - '0',
11114 dev->dev.parent,
11115 "%s %s %s%s: %pV",
11116 dev_driver_string(dev->dev.parent),
11117 dev_name(dev->dev.parent),
11118 netdev_name(dev), netdev_reg_state(dev),
11119 vaf);
11120 } else if (dev) {
11121 printk("%s%s%s: %pV",
11122 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11123 } else {
11124 printk("%s(NULL net_device): %pV", level, vaf);
11125 }
11126}
11127
11128void netdev_printk(const char *level, const struct net_device *dev,
11129 const char *format, ...)
11130{
11131 struct va_format vaf;
11132 va_list args;
11133
11134 va_start(args, format);
11135
11136 vaf.fmt = format;
11137 vaf.va = &args;
11138
11139 __netdev_printk(level, dev, &vaf);
11140
11141 va_end(args);
11142}
11143EXPORT_SYMBOL(netdev_printk);
11144
11145#define define_netdev_printk_level(func, level) \
11146void func(const struct net_device *dev, const char *fmt, ...) \
11147{ \
11148 struct va_format vaf; \
11149 va_list args; \
11150 \
11151 va_start(args, fmt); \
11152 \
11153 vaf.fmt = fmt; \
11154 vaf.va = &args; \
11155 \
11156 __netdev_printk(level, dev, &vaf); \
11157 \
11158 va_end(args); \
11159} \
11160EXPORT_SYMBOL(func);
11161
11162define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11163define_netdev_printk_level(netdev_alert, KERN_ALERT);
11164define_netdev_printk_level(netdev_crit, KERN_CRIT);
11165define_netdev_printk_level(netdev_err, KERN_ERR);
11166define_netdev_printk_level(netdev_warn, KERN_WARNING);
11167define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11168define_netdev_printk_level(netdev_info, KERN_INFO);
11169
11170static void __net_exit netdev_exit(struct net *net)
11171{
11172 kfree(net->dev_name_head);
11173 kfree(net->dev_index_head);
11174 if (net != &init_net)
11175 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11176}
11177
11178static struct pernet_operations __net_initdata netdev_net_ops = {
11179 .init = netdev_init,
11180 .exit = netdev_exit,
11181};
11182
11183static void __net_exit default_device_exit_net(struct net *net)
11184{
11185 struct net_device *dev, *aux;
11186 /*
11187 * Push all migratable network devices back to the
11188 * initial network namespace
11189 */
11190 ASSERT_RTNL();
11191 for_each_netdev_safe(net, dev, aux) {
11192 int err;
11193 char fb_name[IFNAMSIZ];
11194
11195 /* Ignore unmoveable devices (i.e. loopback) */
11196 if (dev->features & NETIF_F_NETNS_LOCAL)
11197 continue;
11198
11199 /* Leave virtual devices for the generic cleanup */
11200 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11201 continue;
11202
11203 /* Push remaining network devices to init_net */
11204 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11205 if (netdev_name_in_use(&init_net, fb_name))
11206 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11207 err = dev_change_net_namespace(dev, &init_net, fb_name);
11208 if (err) {
11209 pr_emerg("%s: failed to move %s to init_net: %d\n",
11210 __func__, dev->name, err);
11211 BUG();
11212 }
11213 }
11214}
11215
11216static void __net_exit default_device_exit_batch(struct list_head *net_list)
11217{
11218 /* At exit all network devices most be removed from a network
11219 * namespace. Do this in the reverse order of registration.
11220 * Do this across as many network namespaces as possible to
11221 * improve batching efficiency.
11222 */
11223 struct net_device *dev;
11224 struct net *net;
11225 LIST_HEAD(dev_kill_list);
11226
11227 rtnl_lock();
11228 list_for_each_entry(net, net_list, exit_list) {
11229 default_device_exit_net(net);
11230 cond_resched();
11231 }
11232
11233 list_for_each_entry(net, net_list, exit_list) {
11234 for_each_netdev_reverse(net, dev) {
11235 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11236 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11237 else
11238 unregister_netdevice_queue(dev, &dev_kill_list);
11239 }
11240 }
11241 unregister_netdevice_many(&dev_kill_list);
11242 rtnl_unlock();
11243}
11244
11245static struct pernet_operations __net_initdata default_device_ops = {
11246 .exit_batch = default_device_exit_batch,
11247};
11248
11249/*
11250 * Initialize the DEV module. At boot time this walks the device list and
11251 * unhooks any devices that fail to initialise (normally hardware not
11252 * present) and leaves us with a valid list of present and active devices.
11253 *
11254 */
11255
11256/*
11257 * This is called single threaded during boot, so no need
11258 * to take the rtnl semaphore.
11259 */
11260static int __init net_dev_init(void)
11261{
11262 int i, rc = -ENOMEM;
11263
11264 BUG_ON(!dev_boot_phase);
11265
11266 if (dev_proc_init())
11267 goto out;
11268
11269 if (netdev_kobject_init())
11270 goto out;
11271
11272 INIT_LIST_HEAD(&ptype_all);
11273 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11274 INIT_LIST_HEAD(&ptype_base[i]);
11275
11276 if (register_pernet_subsys(&netdev_net_ops))
11277 goto out;
11278
11279 /*
11280 * Initialise the packet receive queues.
11281 */
11282
11283 for_each_possible_cpu(i) {
11284 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11285 struct softnet_data *sd = &per_cpu(softnet_data, i);
11286
11287 INIT_WORK(flush, flush_backlog);
11288
11289 skb_queue_head_init(&sd->input_pkt_queue);
11290 skb_queue_head_init(&sd->process_queue);
11291#ifdef CONFIG_XFRM_OFFLOAD
11292 skb_queue_head_init(&sd->xfrm_backlog);
11293#endif
11294 INIT_LIST_HEAD(&sd->poll_list);
11295 sd->output_queue_tailp = &sd->output_queue;
11296#ifdef CONFIG_RPS
11297 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11298 sd->cpu = i;
11299#endif
11300
11301 init_gro_hash(&sd->backlog);
11302 sd->backlog.poll = process_backlog;
11303 sd->backlog.weight = weight_p;
11304 }
11305
11306 dev_boot_phase = 0;
11307
11308 /* The loopback device is special if any other network devices
11309 * is present in a network namespace the loopback device must
11310 * be present. Since we now dynamically allocate and free the
11311 * loopback device ensure this invariant is maintained by
11312 * keeping the loopback device as the first device on the
11313 * list of network devices. Ensuring the loopback devices
11314 * is the first device that appears and the last network device
11315 * that disappears.
11316 */
11317 if (register_pernet_device(&loopback_net_ops))
11318 goto out;
11319
11320 if (register_pernet_device(&default_device_ops))
11321 goto out;
11322
11323 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11324 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11325
11326 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11327 NULL, dev_cpu_dead);
11328 WARN_ON(rc < 0);
11329 rc = 0;
11330out:
11331 return rc;
11332}
11333
11334subsys_initcall(net_dev_init);