Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
44#include <linux/mm_inline.h>
45#include <linux/sched/mm.h>
46#include <linux/sched/coredump.h>
47#include <linux/sched/numa_balancing.h>
48#include <linux/sched/task.h>
49#include <linux/hugetlb.h>
50#include <linux/mman.h>
51#include <linux/swap.h>
52#include <linux/highmem.h>
53#include <linux/pagemap.h>
54#include <linux/memremap.h>
55#include <linux/ksm.h>
56#include <linux/rmap.h>
57#include <linux/export.h>
58#include <linux/delayacct.h>
59#include <linux/init.h>
60#include <linux/pfn_t.h>
61#include <linux/writeback.h>
62#include <linux/memcontrol.h>
63#include <linux/mmu_notifier.h>
64#include <linux/swapops.h>
65#include <linux/elf.h>
66#include <linux/gfp.h>
67#include <linux/migrate.h>
68#include <linux/string.h>
69#include <linux/debugfs.h>
70#include <linux/userfaultfd_k.h>
71#include <linux/dax.h>
72#include <linux/oom.h>
73#include <linux/numa.h>
74#include <linux/perf_event.h>
75#include <linux/ptrace.h>
76#include <linux/vmalloc.h>
77
78#include <trace/events/kmem.h>
79
80#include <asm/io.h>
81#include <asm/mmu_context.h>
82#include <asm/pgalloc.h>
83#include <linux/uaccess.h>
84#include <asm/tlb.h>
85#include <asm/tlbflush.h>
86
87#include "pgalloc-track.h"
88#include "internal.h"
89
90#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
91#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
92#endif
93
94#ifndef CONFIG_NUMA
95unsigned long max_mapnr;
96EXPORT_SYMBOL(max_mapnr);
97
98struct page *mem_map;
99EXPORT_SYMBOL(mem_map);
100#endif
101
102/*
103 * A number of key systems in x86 including ioremap() rely on the assumption
104 * that high_memory defines the upper bound on direct map memory, then end
105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107 * and ZONE_HIGHMEM.
108 */
109void *high_memory;
110EXPORT_SYMBOL(high_memory);
111
112/*
113 * Randomize the address space (stacks, mmaps, brk, etc.).
114 *
115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116 * as ancient (libc5 based) binaries can segfault. )
117 */
118int randomize_va_space __read_mostly =
119#ifdef CONFIG_COMPAT_BRK
120 1;
121#else
122 2;
123#endif
124
125#ifndef arch_faults_on_old_pte
126static inline bool arch_faults_on_old_pte(void)
127{
128 /*
129 * Those arches which don't have hw access flag feature need to
130 * implement their own helper. By default, "true" means pagefault
131 * will be hit on old pte.
132 */
133 return true;
134}
135#endif
136
137#ifndef arch_wants_old_prefaulted_pte
138static inline bool arch_wants_old_prefaulted_pte(void)
139{
140 /*
141 * Transitioning a PTE from 'old' to 'young' can be expensive on
142 * some architectures, even if it's performed in hardware. By
143 * default, "false" means prefaulted entries will be 'young'.
144 */
145 return false;
146}
147#endif
148
149static int __init disable_randmaps(char *s)
150{
151 randomize_va_space = 0;
152 return 1;
153}
154__setup("norandmaps", disable_randmaps);
155
156unsigned long zero_pfn __read_mostly;
157EXPORT_SYMBOL(zero_pfn);
158
159unsigned long highest_memmap_pfn __read_mostly;
160
161/*
162 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163 */
164static int __init init_zero_pfn(void)
165{
166 zero_pfn = page_to_pfn(ZERO_PAGE(0));
167 return 0;
168}
169early_initcall(init_zero_pfn);
170
171void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
172{
173 trace_rss_stat(mm, member, count);
174}
175
176#if defined(SPLIT_RSS_COUNTING)
177
178void sync_mm_rss(struct mm_struct *mm)
179{
180 int i;
181
182 for (i = 0; i < NR_MM_COUNTERS; i++) {
183 if (current->rss_stat.count[i]) {
184 add_mm_counter(mm, i, current->rss_stat.count[i]);
185 current->rss_stat.count[i] = 0;
186 }
187 }
188 current->rss_stat.events = 0;
189}
190
191static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192{
193 struct task_struct *task = current;
194
195 if (likely(task->mm == mm))
196 task->rss_stat.count[member] += val;
197 else
198 add_mm_counter(mm, member, val);
199}
200#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202
203/* sync counter once per 64 page faults */
204#define TASK_RSS_EVENTS_THRESH (64)
205static void check_sync_rss_stat(struct task_struct *task)
206{
207 if (unlikely(task != current))
208 return;
209 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
210 sync_mm_rss(task->mm);
211}
212#else /* SPLIT_RSS_COUNTING */
213
214#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216
217static void check_sync_rss_stat(struct task_struct *task)
218{
219}
220
221#endif /* SPLIT_RSS_COUNTING */
222
223/*
224 * Note: this doesn't free the actual pages themselves. That
225 * has been handled earlier when unmapping all the memory regions.
226 */
227static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228 unsigned long addr)
229{
230 pgtable_t token = pmd_pgtable(*pmd);
231 pmd_clear(pmd);
232 pte_free_tlb(tlb, token, addr);
233 mm_dec_nr_ptes(tlb->mm);
234}
235
236static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237 unsigned long addr, unsigned long end,
238 unsigned long floor, unsigned long ceiling)
239{
240 pmd_t *pmd;
241 unsigned long next;
242 unsigned long start;
243
244 start = addr;
245 pmd = pmd_offset(pud, addr);
246 do {
247 next = pmd_addr_end(addr, end);
248 if (pmd_none_or_clear_bad(pmd))
249 continue;
250 free_pte_range(tlb, pmd, addr);
251 } while (pmd++, addr = next, addr != end);
252
253 start &= PUD_MASK;
254 if (start < floor)
255 return;
256 if (ceiling) {
257 ceiling &= PUD_MASK;
258 if (!ceiling)
259 return;
260 }
261 if (end - 1 > ceiling - 1)
262 return;
263
264 pmd = pmd_offset(pud, start);
265 pud_clear(pud);
266 pmd_free_tlb(tlb, pmd, start);
267 mm_dec_nr_pmds(tlb->mm);
268}
269
270static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
271 unsigned long addr, unsigned long end,
272 unsigned long floor, unsigned long ceiling)
273{
274 pud_t *pud;
275 unsigned long next;
276 unsigned long start;
277
278 start = addr;
279 pud = pud_offset(p4d, addr);
280 do {
281 next = pud_addr_end(addr, end);
282 if (pud_none_or_clear_bad(pud))
283 continue;
284 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
285 } while (pud++, addr = next, addr != end);
286
287 start &= P4D_MASK;
288 if (start < floor)
289 return;
290 if (ceiling) {
291 ceiling &= P4D_MASK;
292 if (!ceiling)
293 return;
294 }
295 if (end - 1 > ceiling - 1)
296 return;
297
298 pud = pud_offset(p4d, start);
299 p4d_clear(p4d);
300 pud_free_tlb(tlb, pud, start);
301 mm_dec_nr_puds(tlb->mm);
302}
303
304static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
307{
308 p4d_t *p4d;
309 unsigned long next;
310 unsigned long start;
311
312 start = addr;
313 p4d = p4d_offset(pgd, addr);
314 do {
315 next = p4d_addr_end(addr, end);
316 if (p4d_none_or_clear_bad(p4d))
317 continue;
318 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319 } while (p4d++, addr = next, addr != end);
320
321 start &= PGDIR_MASK;
322 if (start < floor)
323 return;
324 if (ceiling) {
325 ceiling &= PGDIR_MASK;
326 if (!ceiling)
327 return;
328 }
329 if (end - 1 > ceiling - 1)
330 return;
331
332 p4d = p4d_offset(pgd, start);
333 pgd_clear(pgd);
334 p4d_free_tlb(tlb, p4d, start);
335}
336
337/*
338 * This function frees user-level page tables of a process.
339 */
340void free_pgd_range(struct mmu_gather *tlb,
341 unsigned long addr, unsigned long end,
342 unsigned long floor, unsigned long ceiling)
343{
344 pgd_t *pgd;
345 unsigned long next;
346
347 /*
348 * The next few lines have given us lots of grief...
349 *
350 * Why are we testing PMD* at this top level? Because often
351 * there will be no work to do at all, and we'd prefer not to
352 * go all the way down to the bottom just to discover that.
353 *
354 * Why all these "- 1"s? Because 0 represents both the bottom
355 * of the address space and the top of it (using -1 for the
356 * top wouldn't help much: the masks would do the wrong thing).
357 * The rule is that addr 0 and floor 0 refer to the bottom of
358 * the address space, but end 0 and ceiling 0 refer to the top
359 * Comparisons need to use "end - 1" and "ceiling - 1" (though
360 * that end 0 case should be mythical).
361 *
362 * Wherever addr is brought up or ceiling brought down, we must
363 * be careful to reject "the opposite 0" before it confuses the
364 * subsequent tests. But what about where end is brought down
365 * by PMD_SIZE below? no, end can't go down to 0 there.
366 *
367 * Whereas we round start (addr) and ceiling down, by different
368 * masks at different levels, in order to test whether a table
369 * now has no other vmas using it, so can be freed, we don't
370 * bother to round floor or end up - the tests don't need that.
371 */
372
373 addr &= PMD_MASK;
374 if (addr < floor) {
375 addr += PMD_SIZE;
376 if (!addr)
377 return;
378 }
379 if (ceiling) {
380 ceiling &= PMD_MASK;
381 if (!ceiling)
382 return;
383 }
384 if (end - 1 > ceiling - 1)
385 end -= PMD_SIZE;
386 if (addr > end - 1)
387 return;
388 /*
389 * We add page table cache pages with PAGE_SIZE,
390 * (see pte_free_tlb()), flush the tlb if we need
391 */
392 tlb_change_page_size(tlb, PAGE_SIZE);
393 pgd = pgd_offset(tlb->mm, addr);
394 do {
395 next = pgd_addr_end(addr, end);
396 if (pgd_none_or_clear_bad(pgd))
397 continue;
398 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
399 } while (pgd++, addr = next, addr != end);
400}
401
402void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
403 unsigned long floor, unsigned long ceiling)
404{
405 while (vma) {
406 struct vm_area_struct *next = vma->vm_next;
407 unsigned long addr = vma->vm_start;
408
409 /*
410 * Hide vma from rmap and truncate_pagecache before freeing
411 * pgtables
412 */
413 unlink_anon_vmas(vma);
414 unlink_file_vma(vma);
415
416 if (is_vm_hugetlb_page(vma)) {
417 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
418 floor, next ? next->vm_start : ceiling);
419 } else {
420 /*
421 * Optimization: gather nearby vmas into one call down
422 */
423 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
424 && !is_vm_hugetlb_page(next)) {
425 vma = next;
426 next = vma->vm_next;
427 unlink_anon_vmas(vma);
428 unlink_file_vma(vma);
429 }
430 free_pgd_range(tlb, addr, vma->vm_end,
431 floor, next ? next->vm_start : ceiling);
432 }
433 vma = next;
434 }
435}
436
437void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
438{
439 spinlock_t *ptl = pmd_lock(mm, pmd);
440
441 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
442 mm_inc_nr_ptes(mm);
443 /*
444 * Ensure all pte setup (eg. pte page lock and page clearing) are
445 * visible before the pte is made visible to other CPUs by being
446 * put into page tables.
447 *
448 * The other side of the story is the pointer chasing in the page
449 * table walking code (when walking the page table without locking;
450 * ie. most of the time). Fortunately, these data accesses consist
451 * of a chain of data-dependent loads, meaning most CPUs (alpha
452 * being the notable exception) will already guarantee loads are
453 * seen in-order. See the alpha page table accessors for the
454 * smp_rmb() barriers in page table walking code.
455 */
456 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457 pmd_populate(mm, pmd, *pte);
458 *pte = NULL;
459 }
460 spin_unlock(ptl);
461}
462
463int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
464{
465 pgtable_t new = pte_alloc_one(mm);
466 if (!new)
467 return -ENOMEM;
468
469 pmd_install(mm, pmd, &new);
470 if (new)
471 pte_free(mm, new);
472 return 0;
473}
474
475int __pte_alloc_kernel(pmd_t *pmd)
476{
477 pte_t *new = pte_alloc_one_kernel(&init_mm);
478 if (!new)
479 return -ENOMEM;
480
481 spin_lock(&init_mm.page_table_lock);
482 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
483 smp_wmb(); /* See comment in pmd_install() */
484 pmd_populate_kernel(&init_mm, pmd, new);
485 new = NULL;
486 }
487 spin_unlock(&init_mm.page_table_lock);
488 if (new)
489 pte_free_kernel(&init_mm, new);
490 return 0;
491}
492
493static inline void init_rss_vec(int *rss)
494{
495 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
496}
497
498static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
499{
500 int i;
501
502 if (current->mm == mm)
503 sync_mm_rss(mm);
504 for (i = 0; i < NR_MM_COUNTERS; i++)
505 if (rss[i])
506 add_mm_counter(mm, i, rss[i]);
507}
508
509/*
510 * This function is called to print an error when a bad pte
511 * is found. For example, we might have a PFN-mapped pte in
512 * a region that doesn't allow it.
513 *
514 * The calling function must still handle the error.
515 */
516static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
517 pte_t pte, struct page *page)
518{
519 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
520 p4d_t *p4d = p4d_offset(pgd, addr);
521 pud_t *pud = pud_offset(p4d, addr);
522 pmd_t *pmd = pmd_offset(pud, addr);
523 struct address_space *mapping;
524 pgoff_t index;
525 static unsigned long resume;
526 static unsigned long nr_shown;
527 static unsigned long nr_unshown;
528
529 /*
530 * Allow a burst of 60 reports, then keep quiet for that minute;
531 * or allow a steady drip of one report per second.
532 */
533 if (nr_shown == 60) {
534 if (time_before(jiffies, resume)) {
535 nr_unshown++;
536 return;
537 }
538 if (nr_unshown) {
539 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
540 nr_unshown);
541 nr_unshown = 0;
542 }
543 nr_shown = 0;
544 }
545 if (nr_shown++ == 0)
546 resume = jiffies + 60 * HZ;
547
548 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
549 index = linear_page_index(vma, addr);
550
551 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
552 current->comm,
553 (long long)pte_val(pte), (long long)pmd_val(*pmd));
554 if (page)
555 dump_page(page, "bad pte");
556 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
557 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
558 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
559 vma->vm_file,
560 vma->vm_ops ? vma->vm_ops->fault : NULL,
561 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
562 mapping ? mapping->a_ops->readpage : NULL);
563 dump_stack();
564 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
565}
566
567/*
568 * vm_normal_page -- This function gets the "struct page" associated with a pte.
569 *
570 * "Special" mappings do not wish to be associated with a "struct page" (either
571 * it doesn't exist, or it exists but they don't want to touch it). In this
572 * case, NULL is returned here. "Normal" mappings do have a struct page.
573 *
574 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
575 * pte bit, in which case this function is trivial. Secondly, an architecture
576 * may not have a spare pte bit, which requires a more complicated scheme,
577 * described below.
578 *
579 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
580 * special mapping (even if there are underlying and valid "struct pages").
581 * COWed pages of a VM_PFNMAP are always normal.
582 *
583 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
584 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
585 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
586 * mapping will always honor the rule
587 *
588 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
589 *
590 * And for normal mappings this is false.
591 *
592 * This restricts such mappings to be a linear translation from virtual address
593 * to pfn. To get around this restriction, we allow arbitrary mappings so long
594 * as the vma is not a COW mapping; in that case, we know that all ptes are
595 * special (because none can have been COWed).
596 *
597 *
598 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
599 *
600 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
601 * page" backing, however the difference is that _all_ pages with a struct
602 * page (that is, those where pfn_valid is true) are refcounted and considered
603 * normal pages by the VM. The disadvantage is that pages are refcounted
604 * (which can be slower and simply not an option for some PFNMAP users). The
605 * advantage is that we don't have to follow the strict linearity rule of
606 * PFNMAP mappings in order to support COWable mappings.
607 *
608 */
609struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
610 pte_t pte)
611{
612 unsigned long pfn = pte_pfn(pte);
613
614 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
615 if (likely(!pte_special(pte)))
616 goto check_pfn;
617 if (vma->vm_ops && vma->vm_ops->find_special_page)
618 return vma->vm_ops->find_special_page(vma, addr);
619 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
620 return NULL;
621 if (is_zero_pfn(pfn))
622 return NULL;
623 if (pte_devmap(pte))
624 return NULL;
625
626 print_bad_pte(vma, addr, pte, NULL);
627 return NULL;
628 }
629
630 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
631
632 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
633 if (vma->vm_flags & VM_MIXEDMAP) {
634 if (!pfn_valid(pfn))
635 return NULL;
636 goto out;
637 } else {
638 unsigned long off;
639 off = (addr - vma->vm_start) >> PAGE_SHIFT;
640 if (pfn == vma->vm_pgoff + off)
641 return NULL;
642 if (!is_cow_mapping(vma->vm_flags))
643 return NULL;
644 }
645 }
646
647 if (is_zero_pfn(pfn))
648 return NULL;
649
650check_pfn:
651 if (unlikely(pfn > highest_memmap_pfn)) {
652 print_bad_pte(vma, addr, pte, NULL);
653 return NULL;
654 }
655
656 /*
657 * NOTE! We still have PageReserved() pages in the page tables.
658 * eg. VDSO mappings can cause them to exist.
659 */
660out:
661 return pfn_to_page(pfn);
662}
663
664#ifdef CONFIG_TRANSPARENT_HUGEPAGE
665struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
666 pmd_t pmd)
667{
668 unsigned long pfn = pmd_pfn(pmd);
669
670 /*
671 * There is no pmd_special() but there may be special pmds, e.g.
672 * in a direct-access (dax) mapping, so let's just replicate the
673 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
674 */
675 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
676 if (vma->vm_flags & VM_MIXEDMAP) {
677 if (!pfn_valid(pfn))
678 return NULL;
679 goto out;
680 } else {
681 unsigned long off;
682 off = (addr - vma->vm_start) >> PAGE_SHIFT;
683 if (pfn == vma->vm_pgoff + off)
684 return NULL;
685 if (!is_cow_mapping(vma->vm_flags))
686 return NULL;
687 }
688 }
689
690 if (pmd_devmap(pmd))
691 return NULL;
692 if (is_huge_zero_pmd(pmd))
693 return NULL;
694 if (unlikely(pfn > highest_memmap_pfn))
695 return NULL;
696
697 /*
698 * NOTE! We still have PageReserved() pages in the page tables.
699 * eg. VDSO mappings can cause them to exist.
700 */
701out:
702 return pfn_to_page(pfn);
703}
704#endif
705
706static void restore_exclusive_pte(struct vm_area_struct *vma,
707 struct page *page, unsigned long address,
708 pte_t *ptep)
709{
710 pte_t pte;
711 swp_entry_t entry;
712
713 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
714 if (pte_swp_soft_dirty(*ptep))
715 pte = pte_mksoft_dirty(pte);
716
717 entry = pte_to_swp_entry(*ptep);
718 if (pte_swp_uffd_wp(*ptep))
719 pte = pte_mkuffd_wp(pte);
720 else if (is_writable_device_exclusive_entry(entry))
721 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
722
723 /*
724 * No need to take a page reference as one was already
725 * created when the swap entry was made.
726 */
727 if (PageAnon(page))
728 page_add_anon_rmap(page, vma, address, false);
729 else
730 /*
731 * Currently device exclusive access only supports anonymous
732 * memory so the entry shouldn't point to a filebacked page.
733 */
734 WARN_ON_ONCE(!PageAnon(page));
735
736 set_pte_at(vma->vm_mm, address, ptep, pte);
737
738 /*
739 * No need to invalidate - it was non-present before. However
740 * secondary CPUs may have mappings that need invalidating.
741 */
742 update_mmu_cache(vma, address, ptep);
743}
744
745/*
746 * Tries to restore an exclusive pte if the page lock can be acquired without
747 * sleeping.
748 */
749static int
750try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
751 unsigned long addr)
752{
753 swp_entry_t entry = pte_to_swp_entry(*src_pte);
754 struct page *page = pfn_swap_entry_to_page(entry);
755
756 if (trylock_page(page)) {
757 restore_exclusive_pte(vma, page, addr, src_pte);
758 unlock_page(page);
759 return 0;
760 }
761
762 return -EBUSY;
763}
764
765/*
766 * copy one vm_area from one task to the other. Assumes the page tables
767 * already present in the new task to be cleared in the whole range
768 * covered by this vma.
769 */
770
771static unsigned long
772copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
773 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
774 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
775{
776 unsigned long vm_flags = dst_vma->vm_flags;
777 pte_t pte = *src_pte;
778 struct page *page;
779 swp_entry_t entry = pte_to_swp_entry(pte);
780
781 if (likely(!non_swap_entry(entry))) {
782 if (swap_duplicate(entry) < 0)
783 return -EIO;
784
785 /* make sure dst_mm is on swapoff's mmlist. */
786 if (unlikely(list_empty(&dst_mm->mmlist))) {
787 spin_lock(&mmlist_lock);
788 if (list_empty(&dst_mm->mmlist))
789 list_add(&dst_mm->mmlist,
790 &src_mm->mmlist);
791 spin_unlock(&mmlist_lock);
792 }
793 rss[MM_SWAPENTS]++;
794 } else if (is_migration_entry(entry)) {
795 page = pfn_swap_entry_to_page(entry);
796
797 rss[mm_counter(page)]++;
798
799 if (is_writable_migration_entry(entry) &&
800 is_cow_mapping(vm_flags)) {
801 /*
802 * COW mappings require pages in both
803 * parent and child to be set to read.
804 */
805 entry = make_readable_migration_entry(
806 swp_offset(entry));
807 pte = swp_entry_to_pte(entry);
808 if (pte_swp_soft_dirty(*src_pte))
809 pte = pte_swp_mksoft_dirty(pte);
810 if (pte_swp_uffd_wp(*src_pte))
811 pte = pte_swp_mkuffd_wp(pte);
812 set_pte_at(src_mm, addr, src_pte, pte);
813 }
814 } else if (is_device_private_entry(entry)) {
815 page = pfn_swap_entry_to_page(entry);
816
817 /*
818 * Update rss count even for unaddressable pages, as
819 * they should treated just like normal pages in this
820 * respect.
821 *
822 * We will likely want to have some new rss counters
823 * for unaddressable pages, at some point. But for now
824 * keep things as they are.
825 */
826 get_page(page);
827 rss[mm_counter(page)]++;
828 page_dup_rmap(page, false);
829
830 /*
831 * We do not preserve soft-dirty information, because so
832 * far, checkpoint/restore is the only feature that
833 * requires that. And checkpoint/restore does not work
834 * when a device driver is involved (you cannot easily
835 * save and restore device driver state).
836 */
837 if (is_writable_device_private_entry(entry) &&
838 is_cow_mapping(vm_flags)) {
839 entry = make_readable_device_private_entry(
840 swp_offset(entry));
841 pte = swp_entry_to_pte(entry);
842 if (pte_swp_uffd_wp(*src_pte))
843 pte = pte_swp_mkuffd_wp(pte);
844 set_pte_at(src_mm, addr, src_pte, pte);
845 }
846 } else if (is_device_exclusive_entry(entry)) {
847 /*
848 * Make device exclusive entries present by restoring the
849 * original entry then copying as for a present pte. Device
850 * exclusive entries currently only support private writable
851 * (ie. COW) mappings.
852 */
853 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
854 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
855 return -EBUSY;
856 return -ENOENT;
857 }
858 if (!userfaultfd_wp(dst_vma))
859 pte = pte_swp_clear_uffd_wp(pte);
860 set_pte_at(dst_mm, addr, dst_pte, pte);
861 return 0;
862}
863
864/*
865 * Copy a present and normal page if necessary.
866 *
867 * NOTE! The usual case is that this doesn't need to do
868 * anything, and can just return a positive value. That
869 * will let the caller know that it can just increase
870 * the page refcount and re-use the pte the traditional
871 * way.
872 *
873 * But _if_ we need to copy it because it needs to be
874 * pinned in the parent (and the child should get its own
875 * copy rather than just a reference to the same page),
876 * we'll do that here and return zero to let the caller
877 * know we're done.
878 *
879 * And if we need a pre-allocated page but don't yet have
880 * one, return a negative error to let the preallocation
881 * code know so that it can do so outside the page table
882 * lock.
883 */
884static inline int
885copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
886 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
887 struct page **prealloc, pte_t pte, struct page *page)
888{
889 struct page *new_page;
890
891 /*
892 * What we want to do is to check whether this page may
893 * have been pinned by the parent process. If so,
894 * instead of wrprotect the pte on both sides, we copy
895 * the page immediately so that we'll always guarantee
896 * the pinned page won't be randomly replaced in the
897 * future.
898 *
899 * The page pinning checks are just "has this mm ever
900 * seen pinning", along with the (inexact) check of
901 * the page count. That might give false positives for
902 * for pinning, but it will work correctly.
903 */
904 if (likely(!page_needs_cow_for_dma(src_vma, page)))
905 return 1;
906
907 new_page = *prealloc;
908 if (!new_page)
909 return -EAGAIN;
910
911 /*
912 * We have a prealloc page, all good! Take it
913 * over and copy the page & arm it.
914 */
915 *prealloc = NULL;
916 copy_user_highpage(new_page, page, addr, src_vma);
917 __SetPageUptodate(new_page);
918 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
919 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
920 rss[mm_counter(new_page)]++;
921
922 /* All done, just insert the new page copy in the child */
923 pte = mk_pte(new_page, dst_vma->vm_page_prot);
924 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
925 if (userfaultfd_pte_wp(dst_vma, *src_pte))
926 /* Uffd-wp needs to be delivered to dest pte as well */
927 pte = pte_wrprotect(pte_mkuffd_wp(pte));
928 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
929 return 0;
930}
931
932/*
933 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
934 * is required to copy this pte.
935 */
936static inline int
937copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
938 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
939 struct page **prealloc)
940{
941 struct mm_struct *src_mm = src_vma->vm_mm;
942 unsigned long vm_flags = src_vma->vm_flags;
943 pte_t pte = *src_pte;
944 struct page *page;
945
946 page = vm_normal_page(src_vma, addr, pte);
947 if (page) {
948 int retval;
949
950 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
951 addr, rss, prealloc, pte, page);
952 if (retval <= 0)
953 return retval;
954
955 get_page(page);
956 page_dup_rmap(page, false);
957 rss[mm_counter(page)]++;
958 }
959
960 /*
961 * If it's a COW mapping, write protect it both
962 * in the parent and the child
963 */
964 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
965 ptep_set_wrprotect(src_mm, addr, src_pte);
966 pte = pte_wrprotect(pte);
967 }
968
969 /*
970 * If it's a shared mapping, mark it clean in
971 * the child
972 */
973 if (vm_flags & VM_SHARED)
974 pte = pte_mkclean(pte);
975 pte = pte_mkold(pte);
976
977 if (!userfaultfd_wp(dst_vma))
978 pte = pte_clear_uffd_wp(pte);
979
980 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
981 return 0;
982}
983
984static inline struct page *
985page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
986 unsigned long addr)
987{
988 struct page *new_page;
989
990 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
991 if (!new_page)
992 return NULL;
993
994 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
995 put_page(new_page);
996 return NULL;
997 }
998 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
999
1000 return new_page;
1001}
1002
1003static int
1004copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1005 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1006 unsigned long end)
1007{
1008 struct mm_struct *dst_mm = dst_vma->vm_mm;
1009 struct mm_struct *src_mm = src_vma->vm_mm;
1010 pte_t *orig_src_pte, *orig_dst_pte;
1011 pte_t *src_pte, *dst_pte;
1012 spinlock_t *src_ptl, *dst_ptl;
1013 int progress, ret = 0;
1014 int rss[NR_MM_COUNTERS];
1015 swp_entry_t entry = (swp_entry_t){0};
1016 struct page *prealloc = NULL;
1017
1018again:
1019 progress = 0;
1020 init_rss_vec(rss);
1021
1022 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1023 if (!dst_pte) {
1024 ret = -ENOMEM;
1025 goto out;
1026 }
1027 src_pte = pte_offset_map(src_pmd, addr);
1028 src_ptl = pte_lockptr(src_mm, src_pmd);
1029 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1030 orig_src_pte = src_pte;
1031 orig_dst_pte = dst_pte;
1032 arch_enter_lazy_mmu_mode();
1033
1034 do {
1035 /*
1036 * We are holding two locks at this point - either of them
1037 * could generate latencies in another task on another CPU.
1038 */
1039 if (progress >= 32) {
1040 progress = 0;
1041 if (need_resched() ||
1042 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1043 break;
1044 }
1045 if (pte_none(*src_pte)) {
1046 progress++;
1047 continue;
1048 }
1049 if (unlikely(!pte_present(*src_pte))) {
1050 ret = copy_nonpresent_pte(dst_mm, src_mm,
1051 dst_pte, src_pte,
1052 dst_vma, src_vma,
1053 addr, rss);
1054 if (ret == -EIO) {
1055 entry = pte_to_swp_entry(*src_pte);
1056 break;
1057 } else if (ret == -EBUSY) {
1058 break;
1059 } else if (!ret) {
1060 progress += 8;
1061 continue;
1062 }
1063
1064 /*
1065 * Device exclusive entry restored, continue by copying
1066 * the now present pte.
1067 */
1068 WARN_ON_ONCE(ret != -ENOENT);
1069 }
1070 /* copy_present_pte() will clear `*prealloc' if consumed */
1071 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1072 addr, rss, &prealloc);
1073 /*
1074 * If we need a pre-allocated page for this pte, drop the
1075 * locks, allocate, and try again.
1076 */
1077 if (unlikely(ret == -EAGAIN))
1078 break;
1079 if (unlikely(prealloc)) {
1080 /*
1081 * pre-alloc page cannot be reused by next time so as
1082 * to strictly follow mempolicy (e.g., alloc_page_vma()
1083 * will allocate page according to address). This
1084 * could only happen if one pinned pte changed.
1085 */
1086 put_page(prealloc);
1087 prealloc = NULL;
1088 }
1089 progress += 8;
1090 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1091
1092 arch_leave_lazy_mmu_mode();
1093 spin_unlock(src_ptl);
1094 pte_unmap(orig_src_pte);
1095 add_mm_rss_vec(dst_mm, rss);
1096 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1097 cond_resched();
1098
1099 if (ret == -EIO) {
1100 VM_WARN_ON_ONCE(!entry.val);
1101 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1102 ret = -ENOMEM;
1103 goto out;
1104 }
1105 entry.val = 0;
1106 } else if (ret == -EBUSY) {
1107 goto out;
1108 } else if (ret == -EAGAIN) {
1109 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1110 if (!prealloc)
1111 return -ENOMEM;
1112 } else if (ret) {
1113 VM_WARN_ON_ONCE(1);
1114 }
1115
1116 /* We've captured and resolved the error. Reset, try again. */
1117 ret = 0;
1118
1119 if (addr != end)
1120 goto again;
1121out:
1122 if (unlikely(prealloc))
1123 put_page(prealloc);
1124 return ret;
1125}
1126
1127static inline int
1128copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1129 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1130 unsigned long end)
1131{
1132 struct mm_struct *dst_mm = dst_vma->vm_mm;
1133 struct mm_struct *src_mm = src_vma->vm_mm;
1134 pmd_t *src_pmd, *dst_pmd;
1135 unsigned long next;
1136
1137 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1138 if (!dst_pmd)
1139 return -ENOMEM;
1140 src_pmd = pmd_offset(src_pud, addr);
1141 do {
1142 next = pmd_addr_end(addr, end);
1143 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1144 || pmd_devmap(*src_pmd)) {
1145 int err;
1146 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1147 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1148 addr, dst_vma, src_vma);
1149 if (err == -ENOMEM)
1150 return -ENOMEM;
1151 if (!err)
1152 continue;
1153 /* fall through */
1154 }
1155 if (pmd_none_or_clear_bad(src_pmd))
1156 continue;
1157 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1158 addr, next))
1159 return -ENOMEM;
1160 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1161 return 0;
1162}
1163
1164static inline int
1165copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1166 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1167 unsigned long end)
1168{
1169 struct mm_struct *dst_mm = dst_vma->vm_mm;
1170 struct mm_struct *src_mm = src_vma->vm_mm;
1171 pud_t *src_pud, *dst_pud;
1172 unsigned long next;
1173
1174 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1175 if (!dst_pud)
1176 return -ENOMEM;
1177 src_pud = pud_offset(src_p4d, addr);
1178 do {
1179 next = pud_addr_end(addr, end);
1180 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1181 int err;
1182
1183 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1184 err = copy_huge_pud(dst_mm, src_mm,
1185 dst_pud, src_pud, addr, src_vma);
1186 if (err == -ENOMEM)
1187 return -ENOMEM;
1188 if (!err)
1189 continue;
1190 /* fall through */
1191 }
1192 if (pud_none_or_clear_bad(src_pud))
1193 continue;
1194 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1195 addr, next))
1196 return -ENOMEM;
1197 } while (dst_pud++, src_pud++, addr = next, addr != end);
1198 return 0;
1199}
1200
1201static inline int
1202copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1203 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1204 unsigned long end)
1205{
1206 struct mm_struct *dst_mm = dst_vma->vm_mm;
1207 p4d_t *src_p4d, *dst_p4d;
1208 unsigned long next;
1209
1210 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1211 if (!dst_p4d)
1212 return -ENOMEM;
1213 src_p4d = p4d_offset(src_pgd, addr);
1214 do {
1215 next = p4d_addr_end(addr, end);
1216 if (p4d_none_or_clear_bad(src_p4d))
1217 continue;
1218 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1219 addr, next))
1220 return -ENOMEM;
1221 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1222 return 0;
1223}
1224
1225int
1226copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1227{
1228 pgd_t *src_pgd, *dst_pgd;
1229 unsigned long next;
1230 unsigned long addr = src_vma->vm_start;
1231 unsigned long end = src_vma->vm_end;
1232 struct mm_struct *dst_mm = dst_vma->vm_mm;
1233 struct mm_struct *src_mm = src_vma->vm_mm;
1234 struct mmu_notifier_range range;
1235 bool is_cow;
1236 int ret;
1237
1238 /*
1239 * Don't copy ptes where a page fault will fill them correctly.
1240 * Fork becomes much lighter when there are big shared or private
1241 * readonly mappings. The tradeoff is that copy_page_range is more
1242 * efficient than faulting.
1243 */
1244 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1245 !src_vma->anon_vma)
1246 return 0;
1247
1248 if (is_vm_hugetlb_page(src_vma))
1249 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1250
1251 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1252 /*
1253 * We do not free on error cases below as remove_vma
1254 * gets called on error from higher level routine
1255 */
1256 ret = track_pfn_copy(src_vma);
1257 if (ret)
1258 return ret;
1259 }
1260
1261 /*
1262 * We need to invalidate the secondary MMU mappings only when
1263 * there could be a permission downgrade on the ptes of the
1264 * parent mm. And a permission downgrade will only happen if
1265 * is_cow_mapping() returns true.
1266 */
1267 is_cow = is_cow_mapping(src_vma->vm_flags);
1268
1269 if (is_cow) {
1270 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1271 0, src_vma, src_mm, addr, end);
1272 mmu_notifier_invalidate_range_start(&range);
1273 /*
1274 * Disabling preemption is not needed for the write side, as
1275 * the read side doesn't spin, but goes to the mmap_lock.
1276 *
1277 * Use the raw variant of the seqcount_t write API to avoid
1278 * lockdep complaining about preemptibility.
1279 */
1280 mmap_assert_write_locked(src_mm);
1281 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1282 }
1283
1284 ret = 0;
1285 dst_pgd = pgd_offset(dst_mm, addr);
1286 src_pgd = pgd_offset(src_mm, addr);
1287 do {
1288 next = pgd_addr_end(addr, end);
1289 if (pgd_none_or_clear_bad(src_pgd))
1290 continue;
1291 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1292 addr, next))) {
1293 ret = -ENOMEM;
1294 break;
1295 }
1296 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1297
1298 if (is_cow) {
1299 raw_write_seqcount_end(&src_mm->write_protect_seq);
1300 mmu_notifier_invalidate_range_end(&range);
1301 }
1302 return ret;
1303}
1304
1305/*
1306 * Parameter block passed down to zap_pte_range in exceptional cases.
1307 */
1308struct zap_details {
1309 struct folio *single_folio; /* Locked folio to be unmapped */
1310 bool even_cows; /* Zap COWed private pages too? */
1311};
1312
1313/* Whether we should zap all COWed (private) pages too */
1314static inline bool should_zap_cows(struct zap_details *details)
1315{
1316 /* By default, zap all pages */
1317 if (!details)
1318 return true;
1319
1320 /* Or, we zap COWed pages only if the caller wants to */
1321 return details->even_cows;
1322}
1323
1324/* Decides whether we should zap this page with the page pointer specified */
1325static inline bool should_zap_page(struct zap_details *details, struct page *page)
1326{
1327 /* If we can make a decision without *page.. */
1328 if (should_zap_cows(details))
1329 return true;
1330
1331 /* E.g. the caller passes NULL for the case of a zero page */
1332 if (!page)
1333 return true;
1334
1335 /* Otherwise we should only zap non-anon pages */
1336 return !PageAnon(page);
1337}
1338
1339static unsigned long zap_pte_range(struct mmu_gather *tlb,
1340 struct vm_area_struct *vma, pmd_t *pmd,
1341 unsigned long addr, unsigned long end,
1342 struct zap_details *details)
1343{
1344 struct mm_struct *mm = tlb->mm;
1345 int force_flush = 0;
1346 int rss[NR_MM_COUNTERS];
1347 spinlock_t *ptl;
1348 pte_t *start_pte;
1349 pte_t *pte;
1350 swp_entry_t entry;
1351
1352 tlb_change_page_size(tlb, PAGE_SIZE);
1353again:
1354 init_rss_vec(rss);
1355 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1356 pte = start_pte;
1357 flush_tlb_batched_pending(mm);
1358 arch_enter_lazy_mmu_mode();
1359 do {
1360 pte_t ptent = *pte;
1361 struct page *page;
1362
1363 if (pte_none(ptent))
1364 continue;
1365
1366 if (need_resched())
1367 break;
1368
1369 if (pte_present(ptent)) {
1370 page = vm_normal_page(vma, addr, ptent);
1371 if (unlikely(!should_zap_page(details, page)))
1372 continue;
1373 ptent = ptep_get_and_clear_full(mm, addr, pte,
1374 tlb->fullmm);
1375 tlb_remove_tlb_entry(tlb, pte, addr);
1376 if (unlikely(!page))
1377 continue;
1378
1379 if (!PageAnon(page)) {
1380 if (pte_dirty(ptent)) {
1381 force_flush = 1;
1382 set_page_dirty(page);
1383 }
1384 if (pte_young(ptent) &&
1385 likely(!(vma->vm_flags & VM_SEQ_READ)))
1386 mark_page_accessed(page);
1387 }
1388 rss[mm_counter(page)]--;
1389 page_remove_rmap(page, vma, false);
1390 if (unlikely(page_mapcount(page) < 0))
1391 print_bad_pte(vma, addr, ptent, page);
1392 if (unlikely(__tlb_remove_page(tlb, page))) {
1393 force_flush = 1;
1394 addr += PAGE_SIZE;
1395 break;
1396 }
1397 continue;
1398 }
1399
1400 entry = pte_to_swp_entry(ptent);
1401 if (is_device_private_entry(entry) ||
1402 is_device_exclusive_entry(entry)) {
1403 page = pfn_swap_entry_to_page(entry);
1404 if (unlikely(!should_zap_page(details, page)))
1405 continue;
1406 rss[mm_counter(page)]--;
1407 if (is_device_private_entry(entry))
1408 page_remove_rmap(page, vma, false);
1409 put_page(page);
1410 } else if (!non_swap_entry(entry)) {
1411 /* Genuine swap entry, hence a private anon page */
1412 if (!should_zap_cows(details))
1413 continue;
1414 rss[MM_SWAPENTS]--;
1415 if (unlikely(!free_swap_and_cache(entry)))
1416 print_bad_pte(vma, addr, ptent, NULL);
1417 } else if (is_migration_entry(entry)) {
1418 page = pfn_swap_entry_to_page(entry);
1419 if (!should_zap_page(details, page))
1420 continue;
1421 rss[mm_counter(page)]--;
1422 } else if (is_hwpoison_entry(entry)) {
1423 if (!should_zap_cows(details))
1424 continue;
1425 } else {
1426 /* We should have covered all the swap entry types */
1427 WARN_ON_ONCE(1);
1428 }
1429 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1430 } while (pte++, addr += PAGE_SIZE, addr != end);
1431
1432 add_mm_rss_vec(mm, rss);
1433 arch_leave_lazy_mmu_mode();
1434
1435 /* Do the actual TLB flush before dropping ptl */
1436 if (force_flush)
1437 tlb_flush_mmu_tlbonly(tlb);
1438 pte_unmap_unlock(start_pte, ptl);
1439
1440 /*
1441 * If we forced a TLB flush (either due to running out of
1442 * batch buffers or because we needed to flush dirty TLB
1443 * entries before releasing the ptl), free the batched
1444 * memory too. Restart if we didn't do everything.
1445 */
1446 if (force_flush) {
1447 force_flush = 0;
1448 tlb_flush_mmu(tlb);
1449 }
1450
1451 if (addr != end) {
1452 cond_resched();
1453 goto again;
1454 }
1455
1456 return addr;
1457}
1458
1459static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1460 struct vm_area_struct *vma, pud_t *pud,
1461 unsigned long addr, unsigned long end,
1462 struct zap_details *details)
1463{
1464 pmd_t *pmd;
1465 unsigned long next;
1466
1467 pmd = pmd_offset(pud, addr);
1468 do {
1469 next = pmd_addr_end(addr, end);
1470 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1471 if (next - addr != HPAGE_PMD_SIZE)
1472 __split_huge_pmd(vma, pmd, addr, false, NULL);
1473 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1474 goto next;
1475 /* fall through */
1476 } else if (details && details->single_folio &&
1477 folio_test_pmd_mappable(details->single_folio) &&
1478 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1479 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1480 /*
1481 * Take and drop THP pmd lock so that we cannot return
1482 * prematurely, while zap_huge_pmd() has cleared *pmd,
1483 * but not yet decremented compound_mapcount().
1484 */
1485 spin_unlock(ptl);
1486 }
1487
1488 /*
1489 * Here there can be other concurrent MADV_DONTNEED or
1490 * trans huge page faults running, and if the pmd is
1491 * none or trans huge it can change under us. This is
1492 * because MADV_DONTNEED holds the mmap_lock in read
1493 * mode.
1494 */
1495 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1496 goto next;
1497 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1498next:
1499 cond_resched();
1500 } while (pmd++, addr = next, addr != end);
1501
1502 return addr;
1503}
1504
1505static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1506 struct vm_area_struct *vma, p4d_t *p4d,
1507 unsigned long addr, unsigned long end,
1508 struct zap_details *details)
1509{
1510 pud_t *pud;
1511 unsigned long next;
1512
1513 pud = pud_offset(p4d, addr);
1514 do {
1515 next = pud_addr_end(addr, end);
1516 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1517 if (next - addr != HPAGE_PUD_SIZE) {
1518 mmap_assert_locked(tlb->mm);
1519 split_huge_pud(vma, pud, addr);
1520 } else if (zap_huge_pud(tlb, vma, pud, addr))
1521 goto next;
1522 /* fall through */
1523 }
1524 if (pud_none_or_clear_bad(pud))
1525 continue;
1526 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1527next:
1528 cond_resched();
1529 } while (pud++, addr = next, addr != end);
1530
1531 return addr;
1532}
1533
1534static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1535 struct vm_area_struct *vma, pgd_t *pgd,
1536 unsigned long addr, unsigned long end,
1537 struct zap_details *details)
1538{
1539 p4d_t *p4d;
1540 unsigned long next;
1541
1542 p4d = p4d_offset(pgd, addr);
1543 do {
1544 next = p4d_addr_end(addr, end);
1545 if (p4d_none_or_clear_bad(p4d))
1546 continue;
1547 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1548 } while (p4d++, addr = next, addr != end);
1549
1550 return addr;
1551}
1552
1553void unmap_page_range(struct mmu_gather *tlb,
1554 struct vm_area_struct *vma,
1555 unsigned long addr, unsigned long end,
1556 struct zap_details *details)
1557{
1558 pgd_t *pgd;
1559 unsigned long next;
1560
1561 BUG_ON(addr >= end);
1562 tlb_start_vma(tlb, vma);
1563 pgd = pgd_offset(vma->vm_mm, addr);
1564 do {
1565 next = pgd_addr_end(addr, end);
1566 if (pgd_none_or_clear_bad(pgd))
1567 continue;
1568 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1569 } while (pgd++, addr = next, addr != end);
1570 tlb_end_vma(tlb, vma);
1571}
1572
1573
1574static void unmap_single_vma(struct mmu_gather *tlb,
1575 struct vm_area_struct *vma, unsigned long start_addr,
1576 unsigned long end_addr,
1577 struct zap_details *details)
1578{
1579 unsigned long start = max(vma->vm_start, start_addr);
1580 unsigned long end;
1581
1582 if (start >= vma->vm_end)
1583 return;
1584 end = min(vma->vm_end, end_addr);
1585 if (end <= vma->vm_start)
1586 return;
1587
1588 if (vma->vm_file)
1589 uprobe_munmap(vma, start, end);
1590
1591 if (unlikely(vma->vm_flags & VM_PFNMAP))
1592 untrack_pfn(vma, 0, 0);
1593
1594 if (start != end) {
1595 if (unlikely(is_vm_hugetlb_page(vma))) {
1596 /*
1597 * It is undesirable to test vma->vm_file as it
1598 * should be non-null for valid hugetlb area.
1599 * However, vm_file will be NULL in the error
1600 * cleanup path of mmap_region. When
1601 * hugetlbfs ->mmap method fails,
1602 * mmap_region() nullifies vma->vm_file
1603 * before calling this function to clean up.
1604 * Since no pte has actually been setup, it is
1605 * safe to do nothing in this case.
1606 */
1607 if (vma->vm_file) {
1608 i_mmap_lock_write(vma->vm_file->f_mapping);
1609 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1610 i_mmap_unlock_write(vma->vm_file->f_mapping);
1611 }
1612 } else
1613 unmap_page_range(tlb, vma, start, end, details);
1614 }
1615}
1616
1617/**
1618 * unmap_vmas - unmap a range of memory covered by a list of vma's
1619 * @tlb: address of the caller's struct mmu_gather
1620 * @vma: the starting vma
1621 * @start_addr: virtual address at which to start unmapping
1622 * @end_addr: virtual address at which to end unmapping
1623 *
1624 * Unmap all pages in the vma list.
1625 *
1626 * Only addresses between `start' and `end' will be unmapped.
1627 *
1628 * The VMA list must be sorted in ascending virtual address order.
1629 *
1630 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1631 * range after unmap_vmas() returns. So the only responsibility here is to
1632 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1633 * drops the lock and schedules.
1634 */
1635void unmap_vmas(struct mmu_gather *tlb,
1636 struct vm_area_struct *vma, unsigned long start_addr,
1637 unsigned long end_addr)
1638{
1639 struct mmu_notifier_range range;
1640
1641 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1642 start_addr, end_addr);
1643 mmu_notifier_invalidate_range_start(&range);
1644 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1645 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1646 mmu_notifier_invalidate_range_end(&range);
1647}
1648
1649/**
1650 * zap_page_range - remove user pages in a given range
1651 * @vma: vm_area_struct holding the applicable pages
1652 * @start: starting address of pages to zap
1653 * @size: number of bytes to zap
1654 *
1655 * Caller must protect the VMA list
1656 */
1657void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1658 unsigned long size)
1659{
1660 struct mmu_notifier_range range;
1661 struct mmu_gather tlb;
1662
1663 lru_add_drain();
1664 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1665 start, start + size);
1666 tlb_gather_mmu(&tlb, vma->vm_mm);
1667 update_hiwater_rss(vma->vm_mm);
1668 mmu_notifier_invalidate_range_start(&range);
1669 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1670 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1671 mmu_notifier_invalidate_range_end(&range);
1672 tlb_finish_mmu(&tlb);
1673}
1674
1675/**
1676 * zap_page_range_single - remove user pages in a given range
1677 * @vma: vm_area_struct holding the applicable pages
1678 * @address: starting address of pages to zap
1679 * @size: number of bytes to zap
1680 * @details: details of shared cache invalidation
1681 *
1682 * The range must fit into one VMA.
1683 */
1684static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1685 unsigned long size, struct zap_details *details)
1686{
1687 struct mmu_notifier_range range;
1688 struct mmu_gather tlb;
1689
1690 lru_add_drain();
1691 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1692 address, address + size);
1693 tlb_gather_mmu(&tlb, vma->vm_mm);
1694 update_hiwater_rss(vma->vm_mm);
1695 mmu_notifier_invalidate_range_start(&range);
1696 unmap_single_vma(&tlb, vma, address, range.end, details);
1697 mmu_notifier_invalidate_range_end(&range);
1698 tlb_finish_mmu(&tlb);
1699}
1700
1701/**
1702 * zap_vma_ptes - remove ptes mapping the vma
1703 * @vma: vm_area_struct holding ptes to be zapped
1704 * @address: starting address of pages to zap
1705 * @size: number of bytes to zap
1706 *
1707 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1708 *
1709 * The entire address range must be fully contained within the vma.
1710 *
1711 */
1712void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1713 unsigned long size)
1714{
1715 if (!range_in_vma(vma, address, address + size) ||
1716 !(vma->vm_flags & VM_PFNMAP))
1717 return;
1718
1719 zap_page_range_single(vma, address, size, NULL);
1720}
1721EXPORT_SYMBOL_GPL(zap_vma_ptes);
1722
1723static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1724{
1725 pgd_t *pgd;
1726 p4d_t *p4d;
1727 pud_t *pud;
1728 pmd_t *pmd;
1729
1730 pgd = pgd_offset(mm, addr);
1731 p4d = p4d_alloc(mm, pgd, addr);
1732 if (!p4d)
1733 return NULL;
1734 pud = pud_alloc(mm, p4d, addr);
1735 if (!pud)
1736 return NULL;
1737 pmd = pmd_alloc(mm, pud, addr);
1738 if (!pmd)
1739 return NULL;
1740
1741 VM_BUG_ON(pmd_trans_huge(*pmd));
1742 return pmd;
1743}
1744
1745pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1746 spinlock_t **ptl)
1747{
1748 pmd_t *pmd = walk_to_pmd(mm, addr);
1749
1750 if (!pmd)
1751 return NULL;
1752 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1753}
1754
1755static int validate_page_before_insert(struct page *page)
1756{
1757 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1758 return -EINVAL;
1759 flush_dcache_page(page);
1760 return 0;
1761}
1762
1763static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1764 unsigned long addr, struct page *page, pgprot_t prot)
1765{
1766 if (!pte_none(*pte))
1767 return -EBUSY;
1768 /* Ok, finally just insert the thing.. */
1769 get_page(page);
1770 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1771 page_add_file_rmap(page, vma, false);
1772 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1773 return 0;
1774}
1775
1776/*
1777 * This is the old fallback for page remapping.
1778 *
1779 * For historical reasons, it only allows reserved pages. Only
1780 * old drivers should use this, and they needed to mark their
1781 * pages reserved for the old functions anyway.
1782 */
1783static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1784 struct page *page, pgprot_t prot)
1785{
1786 int retval;
1787 pte_t *pte;
1788 spinlock_t *ptl;
1789
1790 retval = validate_page_before_insert(page);
1791 if (retval)
1792 goto out;
1793 retval = -ENOMEM;
1794 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1795 if (!pte)
1796 goto out;
1797 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1798 pte_unmap_unlock(pte, ptl);
1799out:
1800 return retval;
1801}
1802
1803#ifdef pte_index
1804static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1805 unsigned long addr, struct page *page, pgprot_t prot)
1806{
1807 int err;
1808
1809 if (!page_count(page))
1810 return -EINVAL;
1811 err = validate_page_before_insert(page);
1812 if (err)
1813 return err;
1814 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1815}
1816
1817/* insert_pages() amortizes the cost of spinlock operations
1818 * when inserting pages in a loop. Arch *must* define pte_index.
1819 */
1820static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1821 struct page **pages, unsigned long *num, pgprot_t prot)
1822{
1823 pmd_t *pmd = NULL;
1824 pte_t *start_pte, *pte;
1825 spinlock_t *pte_lock;
1826 struct mm_struct *const mm = vma->vm_mm;
1827 unsigned long curr_page_idx = 0;
1828 unsigned long remaining_pages_total = *num;
1829 unsigned long pages_to_write_in_pmd;
1830 int ret;
1831more:
1832 ret = -EFAULT;
1833 pmd = walk_to_pmd(mm, addr);
1834 if (!pmd)
1835 goto out;
1836
1837 pages_to_write_in_pmd = min_t(unsigned long,
1838 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1839
1840 /* Allocate the PTE if necessary; takes PMD lock once only. */
1841 ret = -ENOMEM;
1842 if (pte_alloc(mm, pmd))
1843 goto out;
1844
1845 while (pages_to_write_in_pmd) {
1846 int pte_idx = 0;
1847 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1848
1849 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1850 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1851 int err = insert_page_in_batch_locked(vma, pte,
1852 addr, pages[curr_page_idx], prot);
1853 if (unlikely(err)) {
1854 pte_unmap_unlock(start_pte, pte_lock);
1855 ret = err;
1856 remaining_pages_total -= pte_idx;
1857 goto out;
1858 }
1859 addr += PAGE_SIZE;
1860 ++curr_page_idx;
1861 }
1862 pte_unmap_unlock(start_pte, pte_lock);
1863 pages_to_write_in_pmd -= batch_size;
1864 remaining_pages_total -= batch_size;
1865 }
1866 if (remaining_pages_total)
1867 goto more;
1868 ret = 0;
1869out:
1870 *num = remaining_pages_total;
1871 return ret;
1872}
1873#endif /* ifdef pte_index */
1874
1875/**
1876 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1877 * @vma: user vma to map to
1878 * @addr: target start user address of these pages
1879 * @pages: source kernel pages
1880 * @num: in: number of pages to map. out: number of pages that were *not*
1881 * mapped. (0 means all pages were successfully mapped).
1882 *
1883 * Preferred over vm_insert_page() when inserting multiple pages.
1884 *
1885 * In case of error, we may have mapped a subset of the provided
1886 * pages. It is the caller's responsibility to account for this case.
1887 *
1888 * The same restrictions apply as in vm_insert_page().
1889 */
1890int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1891 struct page **pages, unsigned long *num)
1892{
1893#ifdef pte_index
1894 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1895
1896 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1897 return -EFAULT;
1898 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1899 BUG_ON(mmap_read_trylock(vma->vm_mm));
1900 BUG_ON(vma->vm_flags & VM_PFNMAP);
1901 vma->vm_flags |= VM_MIXEDMAP;
1902 }
1903 /* Defer page refcount checking till we're about to map that page. */
1904 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1905#else
1906 unsigned long idx = 0, pgcount = *num;
1907 int err = -EINVAL;
1908
1909 for (; idx < pgcount; ++idx) {
1910 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1911 if (err)
1912 break;
1913 }
1914 *num = pgcount - idx;
1915 return err;
1916#endif /* ifdef pte_index */
1917}
1918EXPORT_SYMBOL(vm_insert_pages);
1919
1920/**
1921 * vm_insert_page - insert single page into user vma
1922 * @vma: user vma to map to
1923 * @addr: target user address of this page
1924 * @page: source kernel page
1925 *
1926 * This allows drivers to insert individual pages they've allocated
1927 * into a user vma.
1928 *
1929 * The page has to be a nice clean _individual_ kernel allocation.
1930 * If you allocate a compound page, you need to have marked it as
1931 * such (__GFP_COMP), or manually just split the page up yourself
1932 * (see split_page()).
1933 *
1934 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1935 * took an arbitrary page protection parameter. This doesn't allow
1936 * that. Your vma protection will have to be set up correctly, which
1937 * means that if you want a shared writable mapping, you'd better
1938 * ask for a shared writable mapping!
1939 *
1940 * The page does not need to be reserved.
1941 *
1942 * Usually this function is called from f_op->mmap() handler
1943 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1944 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1945 * function from other places, for example from page-fault handler.
1946 *
1947 * Return: %0 on success, negative error code otherwise.
1948 */
1949int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1950 struct page *page)
1951{
1952 if (addr < vma->vm_start || addr >= vma->vm_end)
1953 return -EFAULT;
1954 if (!page_count(page))
1955 return -EINVAL;
1956 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1957 BUG_ON(mmap_read_trylock(vma->vm_mm));
1958 BUG_ON(vma->vm_flags & VM_PFNMAP);
1959 vma->vm_flags |= VM_MIXEDMAP;
1960 }
1961 return insert_page(vma, addr, page, vma->vm_page_prot);
1962}
1963EXPORT_SYMBOL(vm_insert_page);
1964
1965/*
1966 * __vm_map_pages - maps range of kernel pages into user vma
1967 * @vma: user vma to map to
1968 * @pages: pointer to array of source kernel pages
1969 * @num: number of pages in page array
1970 * @offset: user's requested vm_pgoff
1971 *
1972 * This allows drivers to map range of kernel pages into a user vma.
1973 *
1974 * Return: 0 on success and error code otherwise.
1975 */
1976static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1977 unsigned long num, unsigned long offset)
1978{
1979 unsigned long count = vma_pages(vma);
1980 unsigned long uaddr = vma->vm_start;
1981 int ret, i;
1982
1983 /* Fail if the user requested offset is beyond the end of the object */
1984 if (offset >= num)
1985 return -ENXIO;
1986
1987 /* Fail if the user requested size exceeds available object size */
1988 if (count > num - offset)
1989 return -ENXIO;
1990
1991 for (i = 0; i < count; i++) {
1992 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1993 if (ret < 0)
1994 return ret;
1995 uaddr += PAGE_SIZE;
1996 }
1997
1998 return 0;
1999}
2000
2001/**
2002 * vm_map_pages - maps range of kernel pages starts with non zero offset
2003 * @vma: user vma to map to
2004 * @pages: pointer to array of source kernel pages
2005 * @num: number of pages in page array
2006 *
2007 * Maps an object consisting of @num pages, catering for the user's
2008 * requested vm_pgoff
2009 *
2010 * If we fail to insert any page into the vma, the function will return
2011 * immediately leaving any previously inserted pages present. Callers
2012 * from the mmap handler may immediately return the error as their caller
2013 * will destroy the vma, removing any successfully inserted pages. Other
2014 * callers should make their own arrangements for calling unmap_region().
2015 *
2016 * Context: Process context. Called by mmap handlers.
2017 * Return: 0 on success and error code otherwise.
2018 */
2019int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2020 unsigned long num)
2021{
2022 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2023}
2024EXPORT_SYMBOL(vm_map_pages);
2025
2026/**
2027 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2028 * @vma: user vma to map to
2029 * @pages: pointer to array of source kernel pages
2030 * @num: number of pages in page array
2031 *
2032 * Similar to vm_map_pages(), except that it explicitly sets the offset
2033 * to 0. This function is intended for the drivers that did not consider
2034 * vm_pgoff.
2035 *
2036 * Context: Process context. Called by mmap handlers.
2037 * Return: 0 on success and error code otherwise.
2038 */
2039int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2040 unsigned long num)
2041{
2042 return __vm_map_pages(vma, pages, num, 0);
2043}
2044EXPORT_SYMBOL(vm_map_pages_zero);
2045
2046static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2047 pfn_t pfn, pgprot_t prot, bool mkwrite)
2048{
2049 struct mm_struct *mm = vma->vm_mm;
2050 pte_t *pte, entry;
2051 spinlock_t *ptl;
2052
2053 pte = get_locked_pte(mm, addr, &ptl);
2054 if (!pte)
2055 return VM_FAULT_OOM;
2056 if (!pte_none(*pte)) {
2057 if (mkwrite) {
2058 /*
2059 * For read faults on private mappings the PFN passed
2060 * in may not match the PFN we have mapped if the
2061 * mapped PFN is a writeable COW page. In the mkwrite
2062 * case we are creating a writable PTE for a shared
2063 * mapping and we expect the PFNs to match. If they
2064 * don't match, we are likely racing with block
2065 * allocation and mapping invalidation so just skip the
2066 * update.
2067 */
2068 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2069 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2070 goto out_unlock;
2071 }
2072 entry = pte_mkyoung(*pte);
2073 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2074 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2075 update_mmu_cache(vma, addr, pte);
2076 }
2077 goto out_unlock;
2078 }
2079
2080 /* Ok, finally just insert the thing.. */
2081 if (pfn_t_devmap(pfn))
2082 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2083 else
2084 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2085
2086 if (mkwrite) {
2087 entry = pte_mkyoung(entry);
2088 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2089 }
2090
2091 set_pte_at(mm, addr, pte, entry);
2092 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2093
2094out_unlock:
2095 pte_unmap_unlock(pte, ptl);
2096 return VM_FAULT_NOPAGE;
2097}
2098
2099/**
2100 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2101 * @vma: user vma to map to
2102 * @addr: target user address of this page
2103 * @pfn: source kernel pfn
2104 * @pgprot: pgprot flags for the inserted page
2105 *
2106 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2107 * to override pgprot on a per-page basis.
2108 *
2109 * This only makes sense for IO mappings, and it makes no sense for
2110 * COW mappings. In general, using multiple vmas is preferable;
2111 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2112 * impractical.
2113 *
2114 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2115 * a value of @pgprot different from that of @vma->vm_page_prot.
2116 *
2117 * Context: Process context. May allocate using %GFP_KERNEL.
2118 * Return: vm_fault_t value.
2119 */
2120vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2121 unsigned long pfn, pgprot_t pgprot)
2122{
2123 /*
2124 * Technically, architectures with pte_special can avoid all these
2125 * restrictions (same for remap_pfn_range). However we would like
2126 * consistency in testing and feature parity among all, so we should
2127 * try to keep these invariants in place for everybody.
2128 */
2129 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2130 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2131 (VM_PFNMAP|VM_MIXEDMAP));
2132 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2133 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2134
2135 if (addr < vma->vm_start || addr >= vma->vm_end)
2136 return VM_FAULT_SIGBUS;
2137
2138 if (!pfn_modify_allowed(pfn, pgprot))
2139 return VM_FAULT_SIGBUS;
2140
2141 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2142
2143 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2144 false);
2145}
2146EXPORT_SYMBOL(vmf_insert_pfn_prot);
2147
2148/**
2149 * vmf_insert_pfn - insert single pfn into user vma
2150 * @vma: user vma to map to
2151 * @addr: target user address of this page
2152 * @pfn: source kernel pfn
2153 *
2154 * Similar to vm_insert_page, this allows drivers to insert individual pages
2155 * they've allocated into a user vma. Same comments apply.
2156 *
2157 * This function should only be called from a vm_ops->fault handler, and
2158 * in that case the handler should return the result of this function.
2159 *
2160 * vma cannot be a COW mapping.
2161 *
2162 * As this is called only for pages that do not currently exist, we
2163 * do not need to flush old virtual caches or the TLB.
2164 *
2165 * Context: Process context. May allocate using %GFP_KERNEL.
2166 * Return: vm_fault_t value.
2167 */
2168vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2169 unsigned long pfn)
2170{
2171 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2172}
2173EXPORT_SYMBOL(vmf_insert_pfn);
2174
2175static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2176{
2177 /* these checks mirror the abort conditions in vm_normal_page */
2178 if (vma->vm_flags & VM_MIXEDMAP)
2179 return true;
2180 if (pfn_t_devmap(pfn))
2181 return true;
2182 if (pfn_t_special(pfn))
2183 return true;
2184 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2185 return true;
2186 return false;
2187}
2188
2189static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2190 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2191 bool mkwrite)
2192{
2193 int err;
2194
2195 BUG_ON(!vm_mixed_ok(vma, pfn));
2196
2197 if (addr < vma->vm_start || addr >= vma->vm_end)
2198 return VM_FAULT_SIGBUS;
2199
2200 track_pfn_insert(vma, &pgprot, pfn);
2201
2202 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2203 return VM_FAULT_SIGBUS;
2204
2205 /*
2206 * If we don't have pte special, then we have to use the pfn_valid()
2207 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2208 * refcount the page if pfn_valid is true (hence insert_page rather
2209 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2210 * without pte special, it would there be refcounted as a normal page.
2211 */
2212 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2213 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2214 struct page *page;
2215
2216 /*
2217 * At this point we are committed to insert_page()
2218 * regardless of whether the caller specified flags that
2219 * result in pfn_t_has_page() == false.
2220 */
2221 page = pfn_to_page(pfn_t_to_pfn(pfn));
2222 err = insert_page(vma, addr, page, pgprot);
2223 } else {
2224 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2225 }
2226
2227 if (err == -ENOMEM)
2228 return VM_FAULT_OOM;
2229 if (err < 0 && err != -EBUSY)
2230 return VM_FAULT_SIGBUS;
2231
2232 return VM_FAULT_NOPAGE;
2233}
2234
2235/**
2236 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2237 * @vma: user vma to map to
2238 * @addr: target user address of this page
2239 * @pfn: source kernel pfn
2240 * @pgprot: pgprot flags for the inserted page
2241 *
2242 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2243 * to override pgprot on a per-page basis.
2244 *
2245 * Typically this function should be used by drivers to set caching- and
2246 * encryption bits different than those of @vma->vm_page_prot, because
2247 * the caching- or encryption mode may not be known at mmap() time.
2248 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2249 * to set caching and encryption bits for those vmas (except for COW pages).
2250 * This is ensured by core vm only modifying these page table entries using
2251 * functions that don't touch caching- or encryption bits, using pte_modify()
2252 * if needed. (See for example mprotect()).
2253 * Also when new page-table entries are created, this is only done using the
2254 * fault() callback, and never using the value of vma->vm_page_prot,
2255 * except for page-table entries that point to anonymous pages as the result
2256 * of COW.
2257 *
2258 * Context: Process context. May allocate using %GFP_KERNEL.
2259 * Return: vm_fault_t value.
2260 */
2261vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2262 pfn_t pfn, pgprot_t pgprot)
2263{
2264 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2265}
2266EXPORT_SYMBOL(vmf_insert_mixed_prot);
2267
2268vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2269 pfn_t pfn)
2270{
2271 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2272}
2273EXPORT_SYMBOL(vmf_insert_mixed);
2274
2275/*
2276 * If the insertion of PTE failed because someone else already added a
2277 * different entry in the mean time, we treat that as success as we assume
2278 * the same entry was actually inserted.
2279 */
2280vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2281 unsigned long addr, pfn_t pfn)
2282{
2283 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2284}
2285EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2286
2287/*
2288 * maps a range of physical memory into the requested pages. the old
2289 * mappings are removed. any references to nonexistent pages results
2290 * in null mappings (currently treated as "copy-on-access")
2291 */
2292static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2293 unsigned long addr, unsigned long end,
2294 unsigned long pfn, pgprot_t prot)
2295{
2296 pte_t *pte, *mapped_pte;
2297 spinlock_t *ptl;
2298 int err = 0;
2299
2300 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2301 if (!pte)
2302 return -ENOMEM;
2303 arch_enter_lazy_mmu_mode();
2304 do {
2305 BUG_ON(!pte_none(*pte));
2306 if (!pfn_modify_allowed(pfn, prot)) {
2307 err = -EACCES;
2308 break;
2309 }
2310 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2311 pfn++;
2312 } while (pte++, addr += PAGE_SIZE, addr != end);
2313 arch_leave_lazy_mmu_mode();
2314 pte_unmap_unlock(mapped_pte, ptl);
2315 return err;
2316}
2317
2318static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2319 unsigned long addr, unsigned long end,
2320 unsigned long pfn, pgprot_t prot)
2321{
2322 pmd_t *pmd;
2323 unsigned long next;
2324 int err;
2325
2326 pfn -= addr >> PAGE_SHIFT;
2327 pmd = pmd_alloc(mm, pud, addr);
2328 if (!pmd)
2329 return -ENOMEM;
2330 VM_BUG_ON(pmd_trans_huge(*pmd));
2331 do {
2332 next = pmd_addr_end(addr, end);
2333 err = remap_pte_range(mm, pmd, addr, next,
2334 pfn + (addr >> PAGE_SHIFT), prot);
2335 if (err)
2336 return err;
2337 } while (pmd++, addr = next, addr != end);
2338 return 0;
2339}
2340
2341static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2342 unsigned long addr, unsigned long end,
2343 unsigned long pfn, pgprot_t prot)
2344{
2345 pud_t *pud;
2346 unsigned long next;
2347 int err;
2348
2349 pfn -= addr >> PAGE_SHIFT;
2350 pud = pud_alloc(mm, p4d, addr);
2351 if (!pud)
2352 return -ENOMEM;
2353 do {
2354 next = pud_addr_end(addr, end);
2355 err = remap_pmd_range(mm, pud, addr, next,
2356 pfn + (addr >> PAGE_SHIFT), prot);
2357 if (err)
2358 return err;
2359 } while (pud++, addr = next, addr != end);
2360 return 0;
2361}
2362
2363static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2364 unsigned long addr, unsigned long end,
2365 unsigned long pfn, pgprot_t prot)
2366{
2367 p4d_t *p4d;
2368 unsigned long next;
2369 int err;
2370
2371 pfn -= addr >> PAGE_SHIFT;
2372 p4d = p4d_alloc(mm, pgd, addr);
2373 if (!p4d)
2374 return -ENOMEM;
2375 do {
2376 next = p4d_addr_end(addr, end);
2377 err = remap_pud_range(mm, p4d, addr, next,
2378 pfn + (addr >> PAGE_SHIFT), prot);
2379 if (err)
2380 return err;
2381 } while (p4d++, addr = next, addr != end);
2382 return 0;
2383}
2384
2385/*
2386 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2387 * must have pre-validated the caching bits of the pgprot_t.
2388 */
2389int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2390 unsigned long pfn, unsigned long size, pgprot_t prot)
2391{
2392 pgd_t *pgd;
2393 unsigned long next;
2394 unsigned long end = addr + PAGE_ALIGN(size);
2395 struct mm_struct *mm = vma->vm_mm;
2396 int err;
2397
2398 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2399 return -EINVAL;
2400
2401 /*
2402 * Physically remapped pages are special. Tell the
2403 * rest of the world about it:
2404 * VM_IO tells people not to look at these pages
2405 * (accesses can have side effects).
2406 * VM_PFNMAP tells the core MM that the base pages are just
2407 * raw PFN mappings, and do not have a "struct page" associated
2408 * with them.
2409 * VM_DONTEXPAND
2410 * Disable vma merging and expanding with mremap().
2411 * VM_DONTDUMP
2412 * Omit vma from core dump, even when VM_IO turned off.
2413 *
2414 * There's a horrible special case to handle copy-on-write
2415 * behaviour that some programs depend on. We mark the "original"
2416 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2417 * See vm_normal_page() for details.
2418 */
2419 if (is_cow_mapping(vma->vm_flags)) {
2420 if (addr != vma->vm_start || end != vma->vm_end)
2421 return -EINVAL;
2422 vma->vm_pgoff = pfn;
2423 }
2424
2425 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2426
2427 BUG_ON(addr >= end);
2428 pfn -= addr >> PAGE_SHIFT;
2429 pgd = pgd_offset(mm, addr);
2430 flush_cache_range(vma, addr, end);
2431 do {
2432 next = pgd_addr_end(addr, end);
2433 err = remap_p4d_range(mm, pgd, addr, next,
2434 pfn + (addr >> PAGE_SHIFT), prot);
2435 if (err)
2436 return err;
2437 } while (pgd++, addr = next, addr != end);
2438
2439 return 0;
2440}
2441
2442/**
2443 * remap_pfn_range - remap kernel memory to userspace
2444 * @vma: user vma to map to
2445 * @addr: target page aligned user address to start at
2446 * @pfn: page frame number of kernel physical memory address
2447 * @size: size of mapping area
2448 * @prot: page protection flags for this mapping
2449 *
2450 * Note: this is only safe if the mm semaphore is held when called.
2451 *
2452 * Return: %0 on success, negative error code otherwise.
2453 */
2454int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2455 unsigned long pfn, unsigned long size, pgprot_t prot)
2456{
2457 int err;
2458
2459 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2460 if (err)
2461 return -EINVAL;
2462
2463 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2464 if (err)
2465 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2466 return err;
2467}
2468EXPORT_SYMBOL(remap_pfn_range);
2469
2470/**
2471 * vm_iomap_memory - remap memory to userspace
2472 * @vma: user vma to map to
2473 * @start: start of the physical memory to be mapped
2474 * @len: size of area
2475 *
2476 * This is a simplified io_remap_pfn_range() for common driver use. The
2477 * driver just needs to give us the physical memory range to be mapped,
2478 * we'll figure out the rest from the vma information.
2479 *
2480 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2481 * whatever write-combining details or similar.
2482 *
2483 * Return: %0 on success, negative error code otherwise.
2484 */
2485int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2486{
2487 unsigned long vm_len, pfn, pages;
2488
2489 /* Check that the physical memory area passed in looks valid */
2490 if (start + len < start)
2491 return -EINVAL;
2492 /*
2493 * You *really* shouldn't map things that aren't page-aligned,
2494 * but we've historically allowed it because IO memory might
2495 * just have smaller alignment.
2496 */
2497 len += start & ~PAGE_MASK;
2498 pfn = start >> PAGE_SHIFT;
2499 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2500 if (pfn + pages < pfn)
2501 return -EINVAL;
2502
2503 /* We start the mapping 'vm_pgoff' pages into the area */
2504 if (vma->vm_pgoff > pages)
2505 return -EINVAL;
2506 pfn += vma->vm_pgoff;
2507 pages -= vma->vm_pgoff;
2508
2509 /* Can we fit all of the mapping? */
2510 vm_len = vma->vm_end - vma->vm_start;
2511 if (vm_len >> PAGE_SHIFT > pages)
2512 return -EINVAL;
2513
2514 /* Ok, let it rip */
2515 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2516}
2517EXPORT_SYMBOL(vm_iomap_memory);
2518
2519static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2520 unsigned long addr, unsigned long end,
2521 pte_fn_t fn, void *data, bool create,
2522 pgtbl_mod_mask *mask)
2523{
2524 pte_t *pte, *mapped_pte;
2525 int err = 0;
2526 spinlock_t *ptl;
2527
2528 if (create) {
2529 mapped_pte = pte = (mm == &init_mm) ?
2530 pte_alloc_kernel_track(pmd, addr, mask) :
2531 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2532 if (!pte)
2533 return -ENOMEM;
2534 } else {
2535 mapped_pte = pte = (mm == &init_mm) ?
2536 pte_offset_kernel(pmd, addr) :
2537 pte_offset_map_lock(mm, pmd, addr, &ptl);
2538 }
2539
2540 BUG_ON(pmd_huge(*pmd));
2541
2542 arch_enter_lazy_mmu_mode();
2543
2544 if (fn) {
2545 do {
2546 if (create || !pte_none(*pte)) {
2547 err = fn(pte++, addr, data);
2548 if (err)
2549 break;
2550 }
2551 } while (addr += PAGE_SIZE, addr != end);
2552 }
2553 *mask |= PGTBL_PTE_MODIFIED;
2554
2555 arch_leave_lazy_mmu_mode();
2556
2557 if (mm != &init_mm)
2558 pte_unmap_unlock(mapped_pte, ptl);
2559 return err;
2560}
2561
2562static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2563 unsigned long addr, unsigned long end,
2564 pte_fn_t fn, void *data, bool create,
2565 pgtbl_mod_mask *mask)
2566{
2567 pmd_t *pmd;
2568 unsigned long next;
2569 int err = 0;
2570
2571 BUG_ON(pud_huge(*pud));
2572
2573 if (create) {
2574 pmd = pmd_alloc_track(mm, pud, addr, mask);
2575 if (!pmd)
2576 return -ENOMEM;
2577 } else {
2578 pmd = pmd_offset(pud, addr);
2579 }
2580 do {
2581 next = pmd_addr_end(addr, end);
2582 if (pmd_none(*pmd) && !create)
2583 continue;
2584 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2585 return -EINVAL;
2586 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2587 if (!create)
2588 continue;
2589 pmd_clear_bad(pmd);
2590 }
2591 err = apply_to_pte_range(mm, pmd, addr, next,
2592 fn, data, create, mask);
2593 if (err)
2594 break;
2595 } while (pmd++, addr = next, addr != end);
2596
2597 return err;
2598}
2599
2600static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2601 unsigned long addr, unsigned long end,
2602 pte_fn_t fn, void *data, bool create,
2603 pgtbl_mod_mask *mask)
2604{
2605 pud_t *pud;
2606 unsigned long next;
2607 int err = 0;
2608
2609 if (create) {
2610 pud = pud_alloc_track(mm, p4d, addr, mask);
2611 if (!pud)
2612 return -ENOMEM;
2613 } else {
2614 pud = pud_offset(p4d, addr);
2615 }
2616 do {
2617 next = pud_addr_end(addr, end);
2618 if (pud_none(*pud) && !create)
2619 continue;
2620 if (WARN_ON_ONCE(pud_leaf(*pud)))
2621 return -EINVAL;
2622 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2623 if (!create)
2624 continue;
2625 pud_clear_bad(pud);
2626 }
2627 err = apply_to_pmd_range(mm, pud, addr, next,
2628 fn, data, create, mask);
2629 if (err)
2630 break;
2631 } while (pud++, addr = next, addr != end);
2632
2633 return err;
2634}
2635
2636static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2637 unsigned long addr, unsigned long end,
2638 pte_fn_t fn, void *data, bool create,
2639 pgtbl_mod_mask *mask)
2640{
2641 p4d_t *p4d;
2642 unsigned long next;
2643 int err = 0;
2644
2645 if (create) {
2646 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2647 if (!p4d)
2648 return -ENOMEM;
2649 } else {
2650 p4d = p4d_offset(pgd, addr);
2651 }
2652 do {
2653 next = p4d_addr_end(addr, end);
2654 if (p4d_none(*p4d) && !create)
2655 continue;
2656 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2657 return -EINVAL;
2658 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2659 if (!create)
2660 continue;
2661 p4d_clear_bad(p4d);
2662 }
2663 err = apply_to_pud_range(mm, p4d, addr, next,
2664 fn, data, create, mask);
2665 if (err)
2666 break;
2667 } while (p4d++, addr = next, addr != end);
2668
2669 return err;
2670}
2671
2672static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2673 unsigned long size, pte_fn_t fn,
2674 void *data, bool create)
2675{
2676 pgd_t *pgd;
2677 unsigned long start = addr, next;
2678 unsigned long end = addr + size;
2679 pgtbl_mod_mask mask = 0;
2680 int err = 0;
2681
2682 if (WARN_ON(addr >= end))
2683 return -EINVAL;
2684
2685 pgd = pgd_offset(mm, addr);
2686 do {
2687 next = pgd_addr_end(addr, end);
2688 if (pgd_none(*pgd) && !create)
2689 continue;
2690 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2691 return -EINVAL;
2692 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2693 if (!create)
2694 continue;
2695 pgd_clear_bad(pgd);
2696 }
2697 err = apply_to_p4d_range(mm, pgd, addr, next,
2698 fn, data, create, &mask);
2699 if (err)
2700 break;
2701 } while (pgd++, addr = next, addr != end);
2702
2703 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2704 arch_sync_kernel_mappings(start, start + size);
2705
2706 return err;
2707}
2708
2709/*
2710 * Scan a region of virtual memory, filling in page tables as necessary
2711 * and calling a provided function on each leaf page table.
2712 */
2713int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2714 unsigned long size, pte_fn_t fn, void *data)
2715{
2716 return __apply_to_page_range(mm, addr, size, fn, data, true);
2717}
2718EXPORT_SYMBOL_GPL(apply_to_page_range);
2719
2720/*
2721 * Scan a region of virtual memory, calling a provided function on
2722 * each leaf page table where it exists.
2723 *
2724 * Unlike apply_to_page_range, this does _not_ fill in page tables
2725 * where they are absent.
2726 */
2727int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2728 unsigned long size, pte_fn_t fn, void *data)
2729{
2730 return __apply_to_page_range(mm, addr, size, fn, data, false);
2731}
2732EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2733
2734/*
2735 * handle_pte_fault chooses page fault handler according to an entry which was
2736 * read non-atomically. Before making any commitment, on those architectures
2737 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2738 * parts, do_swap_page must check under lock before unmapping the pte and
2739 * proceeding (but do_wp_page is only called after already making such a check;
2740 * and do_anonymous_page can safely check later on).
2741 */
2742static inline int pte_unmap_same(struct vm_fault *vmf)
2743{
2744 int same = 1;
2745#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2746 if (sizeof(pte_t) > sizeof(unsigned long)) {
2747 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2748 spin_lock(ptl);
2749 same = pte_same(*vmf->pte, vmf->orig_pte);
2750 spin_unlock(ptl);
2751 }
2752#endif
2753 pte_unmap(vmf->pte);
2754 vmf->pte = NULL;
2755 return same;
2756}
2757
2758static inline bool cow_user_page(struct page *dst, struct page *src,
2759 struct vm_fault *vmf)
2760{
2761 bool ret;
2762 void *kaddr;
2763 void __user *uaddr;
2764 bool locked = false;
2765 struct vm_area_struct *vma = vmf->vma;
2766 struct mm_struct *mm = vma->vm_mm;
2767 unsigned long addr = vmf->address;
2768
2769 if (likely(src)) {
2770 copy_user_highpage(dst, src, addr, vma);
2771 return true;
2772 }
2773
2774 /*
2775 * If the source page was a PFN mapping, we don't have
2776 * a "struct page" for it. We do a best-effort copy by
2777 * just copying from the original user address. If that
2778 * fails, we just zero-fill it. Live with it.
2779 */
2780 kaddr = kmap_atomic(dst);
2781 uaddr = (void __user *)(addr & PAGE_MASK);
2782
2783 /*
2784 * On architectures with software "accessed" bits, we would
2785 * take a double page fault, so mark it accessed here.
2786 */
2787 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2788 pte_t entry;
2789
2790 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2791 locked = true;
2792 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2793 /*
2794 * Other thread has already handled the fault
2795 * and update local tlb only
2796 */
2797 update_mmu_tlb(vma, addr, vmf->pte);
2798 ret = false;
2799 goto pte_unlock;
2800 }
2801
2802 entry = pte_mkyoung(vmf->orig_pte);
2803 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2804 update_mmu_cache(vma, addr, vmf->pte);
2805 }
2806
2807 /*
2808 * This really shouldn't fail, because the page is there
2809 * in the page tables. But it might just be unreadable,
2810 * in which case we just give up and fill the result with
2811 * zeroes.
2812 */
2813 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2814 if (locked)
2815 goto warn;
2816
2817 /* Re-validate under PTL if the page is still mapped */
2818 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2819 locked = true;
2820 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2821 /* The PTE changed under us, update local tlb */
2822 update_mmu_tlb(vma, addr, vmf->pte);
2823 ret = false;
2824 goto pte_unlock;
2825 }
2826
2827 /*
2828 * The same page can be mapped back since last copy attempt.
2829 * Try to copy again under PTL.
2830 */
2831 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2832 /*
2833 * Give a warn in case there can be some obscure
2834 * use-case
2835 */
2836warn:
2837 WARN_ON_ONCE(1);
2838 clear_page(kaddr);
2839 }
2840 }
2841
2842 ret = true;
2843
2844pte_unlock:
2845 if (locked)
2846 pte_unmap_unlock(vmf->pte, vmf->ptl);
2847 kunmap_atomic(kaddr);
2848 flush_dcache_page(dst);
2849
2850 return ret;
2851}
2852
2853static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2854{
2855 struct file *vm_file = vma->vm_file;
2856
2857 if (vm_file)
2858 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2859
2860 /*
2861 * Special mappings (e.g. VDSO) do not have any file so fake
2862 * a default GFP_KERNEL for them.
2863 */
2864 return GFP_KERNEL;
2865}
2866
2867/*
2868 * Notify the address space that the page is about to become writable so that
2869 * it can prohibit this or wait for the page to get into an appropriate state.
2870 *
2871 * We do this without the lock held, so that it can sleep if it needs to.
2872 */
2873static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2874{
2875 vm_fault_t ret;
2876 struct page *page = vmf->page;
2877 unsigned int old_flags = vmf->flags;
2878
2879 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2880
2881 if (vmf->vma->vm_file &&
2882 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2883 return VM_FAULT_SIGBUS;
2884
2885 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2886 /* Restore original flags so that caller is not surprised */
2887 vmf->flags = old_flags;
2888 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2889 return ret;
2890 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2891 lock_page(page);
2892 if (!page->mapping) {
2893 unlock_page(page);
2894 return 0; /* retry */
2895 }
2896 ret |= VM_FAULT_LOCKED;
2897 } else
2898 VM_BUG_ON_PAGE(!PageLocked(page), page);
2899 return ret;
2900}
2901
2902/*
2903 * Handle dirtying of a page in shared file mapping on a write fault.
2904 *
2905 * The function expects the page to be locked and unlocks it.
2906 */
2907static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2908{
2909 struct vm_area_struct *vma = vmf->vma;
2910 struct address_space *mapping;
2911 struct page *page = vmf->page;
2912 bool dirtied;
2913 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2914
2915 dirtied = set_page_dirty(page);
2916 VM_BUG_ON_PAGE(PageAnon(page), page);
2917 /*
2918 * Take a local copy of the address_space - page.mapping may be zeroed
2919 * by truncate after unlock_page(). The address_space itself remains
2920 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2921 * release semantics to prevent the compiler from undoing this copying.
2922 */
2923 mapping = page_rmapping(page);
2924 unlock_page(page);
2925
2926 if (!page_mkwrite)
2927 file_update_time(vma->vm_file);
2928
2929 /*
2930 * Throttle page dirtying rate down to writeback speed.
2931 *
2932 * mapping may be NULL here because some device drivers do not
2933 * set page.mapping but still dirty their pages
2934 *
2935 * Drop the mmap_lock before waiting on IO, if we can. The file
2936 * is pinning the mapping, as per above.
2937 */
2938 if ((dirtied || page_mkwrite) && mapping) {
2939 struct file *fpin;
2940
2941 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2942 balance_dirty_pages_ratelimited(mapping);
2943 if (fpin) {
2944 fput(fpin);
2945 return VM_FAULT_RETRY;
2946 }
2947 }
2948
2949 return 0;
2950}
2951
2952/*
2953 * Handle write page faults for pages that can be reused in the current vma
2954 *
2955 * This can happen either due to the mapping being with the VM_SHARED flag,
2956 * or due to us being the last reference standing to the page. In either
2957 * case, all we need to do here is to mark the page as writable and update
2958 * any related book-keeping.
2959 */
2960static inline void wp_page_reuse(struct vm_fault *vmf)
2961 __releases(vmf->ptl)
2962{
2963 struct vm_area_struct *vma = vmf->vma;
2964 struct page *page = vmf->page;
2965 pte_t entry;
2966 /*
2967 * Clear the pages cpupid information as the existing
2968 * information potentially belongs to a now completely
2969 * unrelated process.
2970 */
2971 if (page)
2972 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2973
2974 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2975 entry = pte_mkyoung(vmf->orig_pte);
2976 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2977 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2978 update_mmu_cache(vma, vmf->address, vmf->pte);
2979 pte_unmap_unlock(vmf->pte, vmf->ptl);
2980 count_vm_event(PGREUSE);
2981}
2982
2983/*
2984 * Handle the case of a page which we actually need to copy to a new page.
2985 *
2986 * Called with mmap_lock locked and the old page referenced, but
2987 * without the ptl held.
2988 *
2989 * High level logic flow:
2990 *
2991 * - Allocate a page, copy the content of the old page to the new one.
2992 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2993 * - Take the PTL. If the pte changed, bail out and release the allocated page
2994 * - If the pte is still the way we remember it, update the page table and all
2995 * relevant references. This includes dropping the reference the page-table
2996 * held to the old page, as well as updating the rmap.
2997 * - In any case, unlock the PTL and drop the reference we took to the old page.
2998 */
2999static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3000{
3001 struct vm_area_struct *vma = vmf->vma;
3002 struct mm_struct *mm = vma->vm_mm;
3003 struct page *old_page = vmf->page;
3004 struct page *new_page = NULL;
3005 pte_t entry;
3006 int page_copied = 0;
3007 struct mmu_notifier_range range;
3008
3009 if (unlikely(anon_vma_prepare(vma)))
3010 goto oom;
3011
3012 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3013 new_page = alloc_zeroed_user_highpage_movable(vma,
3014 vmf->address);
3015 if (!new_page)
3016 goto oom;
3017 } else {
3018 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3019 vmf->address);
3020 if (!new_page)
3021 goto oom;
3022
3023 if (!cow_user_page(new_page, old_page, vmf)) {
3024 /*
3025 * COW failed, if the fault was solved by other,
3026 * it's fine. If not, userspace would re-fault on
3027 * the same address and we will handle the fault
3028 * from the second attempt.
3029 */
3030 put_page(new_page);
3031 if (old_page)
3032 put_page(old_page);
3033 return 0;
3034 }
3035 }
3036
3037 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3038 goto oom_free_new;
3039 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3040
3041 __SetPageUptodate(new_page);
3042
3043 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3044 vmf->address & PAGE_MASK,
3045 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3046 mmu_notifier_invalidate_range_start(&range);
3047
3048 /*
3049 * Re-check the pte - we dropped the lock
3050 */
3051 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3052 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3053 if (old_page) {
3054 if (!PageAnon(old_page)) {
3055 dec_mm_counter_fast(mm,
3056 mm_counter_file(old_page));
3057 inc_mm_counter_fast(mm, MM_ANONPAGES);
3058 }
3059 } else {
3060 inc_mm_counter_fast(mm, MM_ANONPAGES);
3061 }
3062 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3063 entry = mk_pte(new_page, vma->vm_page_prot);
3064 entry = pte_sw_mkyoung(entry);
3065 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3066
3067 /*
3068 * Clear the pte entry and flush it first, before updating the
3069 * pte with the new entry, to keep TLBs on different CPUs in
3070 * sync. This code used to set the new PTE then flush TLBs, but
3071 * that left a window where the new PTE could be loaded into
3072 * some TLBs while the old PTE remains in others.
3073 */
3074 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3075 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3076 lru_cache_add_inactive_or_unevictable(new_page, vma);
3077 /*
3078 * We call the notify macro here because, when using secondary
3079 * mmu page tables (such as kvm shadow page tables), we want the
3080 * new page to be mapped directly into the secondary page table.
3081 */
3082 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3083 update_mmu_cache(vma, vmf->address, vmf->pte);
3084 if (old_page) {
3085 /*
3086 * Only after switching the pte to the new page may
3087 * we remove the mapcount here. Otherwise another
3088 * process may come and find the rmap count decremented
3089 * before the pte is switched to the new page, and
3090 * "reuse" the old page writing into it while our pte
3091 * here still points into it and can be read by other
3092 * threads.
3093 *
3094 * The critical issue is to order this
3095 * page_remove_rmap with the ptp_clear_flush above.
3096 * Those stores are ordered by (if nothing else,)
3097 * the barrier present in the atomic_add_negative
3098 * in page_remove_rmap.
3099 *
3100 * Then the TLB flush in ptep_clear_flush ensures that
3101 * no process can access the old page before the
3102 * decremented mapcount is visible. And the old page
3103 * cannot be reused until after the decremented
3104 * mapcount is visible. So transitively, TLBs to
3105 * old page will be flushed before it can be reused.
3106 */
3107 page_remove_rmap(old_page, vma, false);
3108 }
3109
3110 /* Free the old page.. */
3111 new_page = old_page;
3112 page_copied = 1;
3113 } else {
3114 update_mmu_tlb(vma, vmf->address, vmf->pte);
3115 }
3116
3117 if (new_page)
3118 put_page(new_page);
3119
3120 pte_unmap_unlock(vmf->pte, vmf->ptl);
3121 /*
3122 * No need to double call mmu_notifier->invalidate_range() callback as
3123 * the above ptep_clear_flush_notify() did already call it.
3124 */
3125 mmu_notifier_invalidate_range_only_end(&range);
3126 if (old_page) {
3127 if (page_copied)
3128 free_swap_cache(old_page);
3129 put_page(old_page);
3130 }
3131 return page_copied ? VM_FAULT_WRITE : 0;
3132oom_free_new:
3133 put_page(new_page);
3134oom:
3135 if (old_page)
3136 put_page(old_page);
3137 return VM_FAULT_OOM;
3138}
3139
3140/**
3141 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3142 * writeable once the page is prepared
3143 *
3144 * @vmf: structure describing the fault
3145 *
3146 * This function handles all that is needed to finish a write page fault in a
3147 * shared mapping due to PTE being read-only once the mapped page is prepared.
3148 * It handles locking of PTE and modifying it.
3149 *
3150 * The function expects the page to be locked or other protection against
3151 * concurrent faults / writeback (such as DAX radix tree locks).
3152 *
3153 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3154 * we acquired PTE lock.
3155 */
3156vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3157{
3158 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3159 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3160 &vmf->ptl);
3161 /*
3162 * We might have raced with another page fault while we released the
3163 * pte_offset_map_lock.
3164 */
3165 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3166 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3167 pte_unmap_unlock(vmf->pte, vmf->ptl);
3168 return VM_FAULT_NOPAGE;
3169 }
3170 wp_page_reuse(vmf);
3171 return 0;
3172}
3173
3174/*
3175 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3176 * mapping
3177 */
3178static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3179{
3180 struct vm_area_struct *vma = vmf->vma;
3181
3182 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3183 vm_fault_t ret;
3184
3185 pte_unmap_unlock(vmf->pte, vmf->ptl);
3186 vmf->flags |= FAULT_FLAG_MKWRITE;
3187 ret = vma->vm_ops->pfn_mkwrite(vmf);
3188 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3189 return ret;
3190 return finish_mkwrite_fault(vmf);
3191 }
3192 wp_page_reuse(vmf);
3193 return VM_FAULT_WRITE;
3194}
3195
3196static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3197 __releases(vmf->ptl)
3198{
3199 struct vm_area_struct *vma = vmf->vma;
3200 vm_fault_t ret = VM_FAULT_WRITE;
3201
3202 get_page(vmf->page);
3203
3204 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3205 vm_fault_t tmp;
3206
3207 pte_unmap_unlock(vmf->pte, vmf->ptl);
3208 tmp = do_page_mkwrite(vmf);
3209 if (unlikely(!tmp || (tmp &
3210 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3211 put_page(vmf->page);
3212 return tmp;
3213 }
3214 tmp = finish_mkwrite_fault(vmf);
3215 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3216 unlock_page(vmf->page);
3217 put_page(vmf->page);
3218 return tmp;
3219 }
3220 } else {
3221 wp_page_reuse(vmf);
3222 lock_page(vmf->page);
3223 }
3224 ret |= fault_dirty_shared_page(vmf);
3225 put_page(vmf->page);
3226
3227 return ret;
3228}
3229
3230/*
3231 * This routine handles present pages, when users try to write
3232 * to a shared page. It is done by copying the page to a new address
3233 * and decrementing the shared-page counter for the old page.
3234 *
3235 * Note that this routine assumes that the protection checks have been
3236 * done by the caller (the low-level page fault routine in most cases).
3237 * Thus we can safely just mark it writable once we've done any necessary
3238 * COW.
3239 *
3240 * We also mark the page dirty at this point even though the page will
3241 * change only once the write actually happens. This avoids a few races,
3242 * and potentially makes it more efficient.
3243 *
3244 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3245 * but allow concurrent faults), with pte both mapped and locked.
3246 * We return with mmap_lock still held, but pte unmapped and unlocked.
3247 */
3248static vm_fault_t do_wp_page(struct vm_fault *vmf)
3249 __releases(vmf->ptl)
3250{
3251 struct vm_area_struct *vma = vmf->vma;
3252
3253 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3254 pte_unmap_unlock(vmf->pte, vmf->ptl);
3255 return handle_userfault(vmf, VM_UFFD_WP);
3256 }
3257
3258 /*
3259 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3260 * is flushed in this case before copying.
3261 */
3262 if (unlikely(userfaultfd_wp(vmf->vma) &&
3263 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3264 flush_tlb_page(vmf->vma, vmf->address);
3265
3266 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3267 if (!vmf->page) {
3268 /*
3269 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3270 * VM_PFNMAP VMA.
3271 *
3272 * We should not cow pages in a shared writeable mapping.
3273 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3274 */
3275 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3276 (VM_WRITE|VM_SHARED))
3277 return wp_pfn_shared(vmf);
3278
3279 pte_unmap_unlock(vmf->pte, vmf->ptl);
3280 return wp_page_copy(vmf);
3281 }
3282
3283 /*
3284 * Take out anonymous pages first, anonymous shared vmas are
3285 * not dirty accountable.
3286 */
3287 if (PageAnon(vmf->page)) {
3288 struct page *page = vmf->page;
3289
3290 /*
3291 * We have to verify under page lock: these early checks are
3292 * just an optimization to avoid locking the page and freeing
3293 * the swapcache if there is little hope that we can reuse.
3294 *
3295 * PageKsm() doesn't necessarily raise the page refcount.
3296 */
3297 if (PageKsm(page) || page_count(page) > 3)
3298 goto copy;
3299 if (!PageLRU(page))
3300 /*
3301 * Note: We cannot easily detect+handle references from
3302 * remote LRU pagevecs or references to PageLRU() pages.
3303 */
3304 lru_add_drain();
3305 if (page_count(page) > 1 + PageSwapCache(page))
3306 goto copy;
3307 if (!trylock_page(page))
3308 goto copy;
3309 if (PageSwapCache(page))
3310 try_to_free_swap(page);
3311 if (PageKsm(page) || page_count(page) != 1) {
3312 unlock_page(page);
3313 goto copy;
3314 }
3315 /*
3316 * Ok, we've got the only page reference from our mapping
3317 * and the page is locked, it's dark out, and we're wearing
3318 * sunglasses. Hit it.
3319 */
3320 unlock_page(page);
3321 wp_page_reuse(vmf);
3322 return VM_FAULT_WRITE;
3323 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3324 (VM_WRITE|VM_SHARED))) {
3325 return wp_page_shared(vmf);
3326 }
3327copy:
3328 /*
3329 * Ok, we need to copy. Oh, well..
3330 */
3331 get_page(vmf->page);
3332
3333 pte_unmap_unlock(vmf->pte, vmf->ptl);
3334 return wp_page_copy(vmf);
3335}
3336
3337static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3338 unsigned long start_addr, unsigned long end_addr,
3339 struct zap_details *details)
3340{
3341 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3342}
3343
3344static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3345 pgoff_t first_index,
3346 pgoff_t last_index,
3347 struct zap_details *details)
3348{
3349 struct vm_area_struct *vma;
3350 pgoff_t vba, vea, zba, zea;
3351
3352 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3353 vba = vma->vm_pgoff;
3354 vea = vba + vma_pages(vma) - 1;
3355 zba = max(first_index, vba);
3356 zea = min(last_index, vea);
3357
3358 unmap_mapping_range_vma(vma,
3359 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3360 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3361 details);
3362 }
3363}
3364
3365/**
3366 * unmap_mapping_folio() - Unmap single folio from processes.
3367 * @folio: The locked folio to be unmapped.
3368 *
3369 * Unmap this folio from any userspace process which still has it mmaped.
3370 * Typically, for efficiency, the range of nearby pages has already been
3371 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3372 * truncation or invalidation holds the lock on a folio, it may find that
3373 * the page has been remapped again: and then uses unmap_mapping_folio()
3374 * to unmap it finally.
3375 */
3376void unmap_mapping_folio(struct folio *folio)
3377{
3378 struct address_space *mapping = folio->mapping;
3379 struct zap_details details = { };
3380 pgoff_t first_index;
3381 pgoff_t last_index;
3382
3383 VM_BUG_ON(!folio_test_locked(folio));
3384
3385 first_index = folio->index;
3386 last_index = folio->index + folio_nr_pages(folio) - 1;
3387
3388 details.even_cows = false;
3389 details.single_folio = folio;
3390
3391 i_mmap_lock_read(mapping);
3392 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3393 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3394 last_index, &details);
3395 i_mmap_unlock_read(mapping);
3396}
3397
3398/**
3399 * unmap_mapping_pages() - Unmap pages from processes.
3400 * @mapping: The address space containing pages to be unmapped.
3401 * @start: Index of first page to be unmapped.
3402 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3403 * @even_cows: Whether to unmap even private COWed pages.
3404 *
3405 * Unmap the pages in this address space from any userspace process which
3406 * has them mmaped. Generally, you want to remove COWed pages as well when
3407 * a file is being truncated, but not when invalidating pages from the page
3408 * cache.
3409 */
3410void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3411 pgoff_t nr, bool even_cows)
3412{
3413 struct zap_details details = { };
3414 pgoff_t first_index = start;
3415 pgoff_t last_index = start + nr - 1;
3416
3417 details.even_cows = even_cows;
3418 if (last_index < first_index)
3419 last_index = ULONG_MAX;
3420
3421 i_mmap_lock_read(mapping);
3422 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3423 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3424 last_index, &details);
3425 i_mmap_unlock_read(mapping);
3426}
3427EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3428
3429/**
3430 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3431 * address_space corresponding to the specified byte range in the underlying
3432 * file.
3433 *
3434 * @mapping: the address space containing mmaps to be unmapped.
3435 * @holebegin: byte in first page to unmap, relative to the start of
3436 * the underlying file. This will be rounded down to a PAGE_SIZE
3437 * boundary. Note that this is different from truncate_pagecache(), which
3438 * must keep the partial page. In contrast, we must get rid of
3439 * partial pages.
3440 * @holelen: size of prospective hole in bytes. This will be rounded
3441 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3442 * end of the file.
3443 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3444 * but 0 when invalidating pagecache, don't throw away private data.
3445 */
3446void unmap_mapping_range(struct address_space *mapping,
3447 loff_t const holebegin, loff_t const holelen, int even_cows)
3448{
3449 pgoff_t hba = holebegin >> PAGE_SHIFT;
3450 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3451
3452 /* Check for overflow. */
3453 if (sizeof(holelen) > sizeof(hlen)) {
3454 long long holeend =
3455 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3456 if (holeend & ~(long long)ULONG_MAX)
3457 hlen = ULONG_MAX - hba + 1;
3458 }
3459
3460 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3461}
3462EXPORT_SYMBOL(unmap_mapping_range);
3463
3464/*
3465 * Restore a potential device exclusive pte to a working pte entry
3466 */
3467static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3468{
3469 struct page *page = vmf->page;
3470 struct vm_area_struct *vma = vmf->vma;
3471 struct mmu_notifier_range range;
3472
3473 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3474 return VM_FAULT_RETRY;
3475 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3476 vma->vm_mm, vmf->address & PAGE_MASK,
3477 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3478 mmu_notifier_invalidate_range_start(&range);
3479
3480 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3481 &vmf->ptl);
3482 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3483 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3484
3485 pte_unmap_unlock(vmf->pte, vmf->ptl);
3486 unlock_page(page);
3487
3488 mmu_notifier_invalidate_range_end(&range);
3489 return 0;
3490}
3491
3492static inline bool should_try_to_free_swap(struct page *page,
3493 struct vm_area_struct *vma,
3494 unsigned int fault_flags)
3495{
3496 if (!PageSwapCache(page))
3497 return false;
3498 if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) ||
3499 PageMlocked(page))
3500 return true;
3501 /*
3502 * If we want to map a page that's in the swapcache writable, we
3503 * have to detect via the refcount if we're really the exclusive
3504 * user. Try freeing the swapcache to get rid of the swapcache
3505 * reference only in case it's likely that we'll be the exlusive user.
3506 */
3507 return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3508 page_count(page) == 2;
3509}
3510
3511/*
3512 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3513 * but allow concurrent faults), and pte mapped but not yet locked.
3514 * We return with pte unmapped and unlocked.
3515 *
3516 * We return with the mmap_lock locked or unlocked in the same cases
3517 * as does filemap_fault().
3518 */
3519vm_fault_t do_swap_page(struct vm_fault *vmf)
3520{
3521 struct vm_area_struct *vma = vmf->vma;
3522 struct page *page = NULL, *swapcache;
3523 struct swap_info_struct *si = NULL;
3524 swp_entry_t entry;
3525 pte_t pte;
3526 int locked;
3527 int exclusive = 0;
3528 vm_fault_t ret = 0;
3529 void *shadow = NULL;
3530
3531 if (!pte_unmap_same(vmf))
3532 goto out;
3533
3534 entry = pte_to_swp_entry(vmf->orig_pte);
3535 if (unlikely(non_swap_entry(entry))) {
3536 if (is_migration_entry(entry)) {
3537 migration_entry_wait(vma->vm_mm, vmf->pmd,
3538 vmf->address);
3539 } else if (is_device_exclusive_entry(entry)) {
3540 vmf->page = pfn_swap_entry_to_page(entry);
3541 ret = remove_device_exclusive_entry(vmf);
3542 } else if (is_device_private_entry(entry)) {
3543 vmf->page = pfn_swap_entry_to_page(entry);
3544 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3545 } else if (is_hwpoison_entry(entry)) {
3546 ret = VM_FAULT_HWPOISON;
3547 } else {
3548 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3549 ret = VM_FAULT_SIGBUS;
3550 }
3551 goto out;
3552 }
3553
3554 /* Prevent swapoff from happening to us. */
3555 si = get_swap_device(entry);
3556 if (unlikely(!si))
3557 goto out;
3558
3559 page = lookup_swap_cache(entry, vma, vmf->address);
3560 swapcache = page;
3561
3562 if (!page) {
3563 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3564 __swap_count(entry) == 1) {
3565 /* skip swapcache */
3566 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3567 vmf->address);
3568 if (page) {
3569 __SetPageLocked(page);
3570 __SetPageSwapBacked(page);
3571
3572 if (mem_cgroup_swapin_charge_page(page,
3573 vma->vm_mm, GFP_KERNEL, entry)) {
3574 ret = VM_FAULT_OOM;
3575 goto out_page;
3576 }
3577 mem_cgroup_swapin_uncharge_swap(entry);
3578
3579 shadow = get_shadow_from_swap_cache(entry);
3580 if (shadow)
3581 workingset_refault(page_folio(page),
3582 shadow);
3583
3584 lru_cache_add(page);
3585
3586 /* To provide entry to swap_readpage() */
3587 set_page_private(page, entry.val);
3588 swap_readpage(page, true);
3589 set_page_private(page, 0);
3590 }
3591 } else {
3592 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3593 vmf);
3594 swapcache = page;
3595 }
3596
3597 if (!page) {
3598 /*
3599 * Back out if somebody else faulted in this pte
3600 * while we released the pte lock.
3601 */
3602 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3603 vmf->address, &vmf->ptl);
3604 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3605 ret = VM_FAULT_OOM;
3606 goto unlock;
3607 }
3608
3609 /* Had to read the page from swap area: Major fault */
3610 ret = VM_FAULT_MAJOR;
3611 count_vm_event(PGMAJFAULT);
3612 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3613 } else if (PageHWPoison(page)) {
3614 /*
3615 * hwpoisoned dirty swapcache pages are kept for killing
3616 * owner processes (which may be unknown at hwpoison time)
3617 */
3618 ret = VM_FAULT_HWPOISON;
3619 goto out_release;
3620 }
3621
3622 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3623
3624 if (!locked) {
3625 ret |= VM_FAULT_RETRY;
3626 goto out_release;
3627 }
3628
3629 if (swapcache) {
3630 /*
3631 * Make sure try_to_free_swap or swapoff did not release the
3632 * swapcache from under us. The page pin, and pte_same test
3633 * below, are not enough to exclude that. Even if it is still
3634 * swapcache, we need to check that the page's swap has not
3635 * changed.
3636 */
3637 if (unlikely(!PageSwapCache(page) ||
3638 page_private(page) != entry.val))
3639 goto out_page;
3640
3641 /*
3642 * KSM sometimes has to copy on read faults, for example, if
3643 * page->index of !PageKSM() pages would be nonlinear inside the
3644 * anon VMA -- PageKSM() is lost on actual swapout.
3645 */
3646 page = ksm_might_need_to_copy(page, vma, vmf->address);
3647 if (unlikely(!page)) {
3648 ret = VM_FAULT_OOM;
3649 page = swapcache;
3650 goto out_page;
3651 }
3652
3653 /*
3654 * If we want to map a page that's in the swapcache writable, we
3655 * have to detect via the refcount if we're really the exclusive
3656 * owner. Try removing the extra reference from the local LRU
3657 * pagevecs if required.
3658 */
3659 if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache &&
3660 !PageKsm(page) && !PageLRU(page))
3661 lru_add_drain();
3662 }
3663
3664 cgroup_throttle_swaprate(page, GFP_KERNEL);
3665
3666 /*
3667 * Back out if somebody else already faulted in this pte.
3668 */
3669 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3670 &vmf->ptl);
3671 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3672 goto out_nomap;
3673
3674 if (unlikely(!PageUptodate(page))) {
3675 ret = VM_FAULT_SIGBUS;
3676 goto out_nomap;
3677 }
3678
3679 /*
3680 * Remove the swap entry and conditionally try to free up the swapcache.
3681 * We're already holding a reference on the page but haven't mapped it
3682 * yet.
3683 */
3684 swap_free(entry);
3685 if (should_try_to_free_swap(page, vma, vmf->flags))
3686 try_to_free_swap(page);
3687
3688 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3689 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3690 pte = mk_pte(page, vma->vm_page_prot);
3691
3692 /*
3693 * Same logic as in do_wp_page(); however, optimize for fresh pages
3694 * that are certainly not shared because we just allocated them without
3695 * exposing them to the swapcache.
3696 */
3697 if ((vmf->flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3698 (page != swapcache || page_count(page) == 1)) {
3699 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3700 vmf->flags &= ~FAULT_FLAG_WRITE;
3701 ret |= VM_FAULT_WRITE;
3702 exclusive = RMAP_EXCLUSIVE;
3703 }
3704 flush_icache_page(vma, page);
3705 if (pte_swp_soft_dirty(vmf->orig_pte))
3706 pte = pte_mksoft_dirty(pte);
3707 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3708 pte = pte_mkuffd_wp(pte);
3709 pte = pte_wrprotect(pte);
3710 }
3711 vmf->orig_pte = pte;
3712
3713 /* ksm created a completely new copy */
3714 if (unlikely(page != swapcache && swapcache)) {
3715 page_add_new_anon_rmap(page, vma, vmf->address, false);
3716 lru_cache_add_inactive_or_unevictable(page, vma);
3717 } else {
3718 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3719 }
3720
3721 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3722 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3723
3724 unlock_page(page);
3725 if (page != swapcache && swapcache) {
3726 /*
3727 * Hold the lock to avoid the swap entry to be reused
3728 * until we take the PT lock for the pte_same() check
3729 * (to avoid false positives from pte_same). For
3730 * further safety release the lock after the swap_free
3731 * so that the swap count won't change under a
3732 * parallel locked swapcache.
3733 */
3734 unlock_page(swapcache);
3735 put_page(swapcache);
3736 }
3737
3738 if (vmf->flags & FAULT_FLAG_WRITE) {
3739 ret |= do_wp_page(vmf);
3740 if (ret & VM_FAULT_ERROR)
3741 ret &= VM_FAULT_ERROR;
3742 goto out;
3743 }
3744
3745 /* No need to invalidate - it was non-present before */
3746 update_mmu_cache(vma, vmf->address, vmf->pte);
3747unlock:
3748 pte_unmap_unlock(vmf->pte, vmf->ptl);
3749out:
3750 if (si)
3751 put_swap_device(si);
3752 return ret;
3753out_nomap:
3754 pte_unmap_unlock(vmf->pte, vmf->ptl);
3755out_page:
3756 unlock_page(page);
3757out_release:
3758 put_page(page);
3759 if (page != swapcache && swapcache) {
3760 unlock_page(swapcache);
3761 put_page(swapcache);
3762 }
3763 if (si)
3764 put_swap_device(si);
3765 return ret;
3766}
3767
3768/*
3769 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3770 * but allow concurrent faults), and pte mapped but not yet locked.
3771 * We return with mmap_lock still held, but pte unmapped and unlocked.
3772 */
3773static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3774{
3775 struct vm_area_struct *vma = vmf->vma;
3776 struct page *page;
3777 vm_fault_t ret = 0;
3778 pte_t entry;
3779
3780 /* File mapping without ->vm_ops ? */
3781 if (vma->vm_flags & VM_SHARED)
3782 return VM_FAULT_SIGBUS;
3783
3784 /*
3785 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3786 * pte_offset_map() on pmds where a huge pmd might be created
3787 * from a different thread.
3788 *
3789 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3790 * parallel threads are excluded by other means.
3791 *
3792 * Here we only have mmap_read_lock(mm).
3793 */
3794 if (pte_alloc(vma->vm_mm, vmf->pmd))
3795 return VM_FAULT_OOM;
3796
3797 /* See comment in handle_pte_fault() */
3798 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3799 return 0;
3800
3801 /* Use the zero-page for reads */
3802 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3803 !mm_forbids_zeropage(vma->vm_mm)) {
3804 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3805 vma->vm_page_prot));
3806 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3807 vmf->address, &vmf->ptl);
3808 if (!pte_none(*vmf->pte)) {
3809 update_mmu_tlb(vma, vmf->address, vmf->pte);
3810 goto unlock;
3811 }
3812 ret = check_stable_address_space(vma->vm_mm);
3813 if (ret)
3814 goto unlock;
3815 /* Deliver the page fault to userland, check inside PT lock */
3816 if (userfaultfd_missing(vma)) {
3817 pte_unmap_unlock(vmf->pte, vmf->ptl);
3818 return handle_userfault(vmf, VM_UFFD_MISSING);
3819 }
3820 goto setpte;
3821 }
3822
3823 /* Allocate our own private page. */
3824 if (unlikely(anon_vma_prepare(vma)))
3825 goto oom;
3826 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3827 if (!page)
3828 goto oom;
3829
3830 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
3831 goto oom_free_page;
3832 cgroup_throttle_swaprate(page, GFP_KERNEL);
3833
3834 /*
3835 * The memory barrier inside __SetPageUptodate makes sure that
3836 * preceding stores to the page contents become visible before
3837 * the set_pte_at() write.
3838 */
3839 __SetPageUptodate(page);
3840
3841 entry = mk_pte(page, vma->vm_page_prot);
3842 entry = pte_sw_mkyoung(entry);
3843 if (vma->vm_flags & VM_WRITE)
3844 entry = pte_mkwrite(pte_mkdirty(entry));
3845
3846 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3847 &vmf->ptl);
3848 if (!pte_none(*vmf->pte)) {
3849 update_mmu_cache(vma, vmf->address, vmf->pte);
3850 goto release;
3851 }
3852
3853 ret = check_stable_address_space(vma->vm_mm);
3854 if (ret)
3855 goto release;
3856
3857 /* Deliver the page fault to userland, check inside PT lock */
3858 if (userfaultfd_missing(vma)) {
3859 pte_unmap_unlock(vmf->pte, vmf->ptl);
3860 put_page(page);
3861 return handle_userfault(vmf, VM_UFFD_MISSING);
3862 }
3863
3864 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3865 page_add_new_anon_rmap(page, vma, vmf->address, false);
3866 lru_cache_add_inactive_or_unevictable(page, vma);
3867setpte:
3868 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3869
3870 /* No need to invalidate - it was non-present before */
3871 update_mmu_cache(vma, vmf->address, vmf->pte);
3872unlock:
3873 pte_unmap_unlock(vmf->pte, vmf->ptl);
3874 return ret;
3875release:
3876 put_page(page);
3877 goto unlock;
3878oom_free_page:
3879 put_page(page);
3880oom:
3881 return VM_FAULT_OOM;
3882}
3883
3884/*
3885 * The mmap_lock must have been held on entry, and may have been
3886 * released depending on flags and vma->vm_ops->fault() return value.
3887 * See filemap_fault() and __lock_page_retry().
3888 */
3889static vm_fault_t __do_fault(struct vm_fault *vmf)
3890{
3891 struct vm_area_struct *vma = vmf->vma;
3892 vm_fault_t ret;
3893
3894 /*
3895 * Preallocate pte before we take page_lock because this might lead to
3896 * deadlocks for memcg reclaim which waits for pages under writeback:
3897 * lock_page(A)
3898 * SetPageWriteback(A)
3899 * unlock_page(A)
3900 * lock_page(B)
3901 * lock_page(B)
3902 * pte_alloc_one
3903 * shrink_page_list
3904 * wait_on_page_writeback(A)
3905 * SetPageWriteback(B)
3906 * unlock_page(B)
3907 * # flush A, B to clear the writeback
3908 */
3909 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3910 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3911 if (!vmf->prealloc_pte)
3912 return VM_FAULT_OOM;
3913 }
3914
3915 ret = vma->vm_ops->fault(vmf);
3916 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3917 VM_FAULT_DONE_COW)))
3918 return ret;
3919
3920 if (unlikely(PageHWPoison(vmf->page))) {
3921 struct page *page = vmf->page;
3922 vm_fault_t poisonret = VM_FAULT_HWPOISON;
3923 if (ret & VM_FAULT_LOCKED) {
3924 if (page_mapped(page))
3925 unmap_mapping_pages(page_mapping(page),
3926 page->index, 1, false);
3927 /* Retry if a clean page was removed from the cache. */
3928 if (invalidate_inode_page(page))
3929 poisonret = VM_FAULT_NOPAGE;
3930 unlock_page(page);
3931 }
3932 put_page(page);
3933 vmf->page = NULL;
3934 return poisonret;
3935 }
3936
3937 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3938 lock_page(vmf->page);
3939 else
3940 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3941
3942 return ret;
3943}
3944
3945#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3946static void deposit_prealloc_pte(struct vm_fault *vmf)
3947{
3948 struct vm_area_struct *vma = vmf->vma;
3949
3950 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3951 /*
3952 * We are going to consume the prealloc table,
3953 * count that as nr_ptes.
3954 */
3955 mm_inc_nr_ptes(vma->vm_mm);
3956 vmf->prealloc_pte = NULL;
3957}
3958
3959vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3960{
3961 struct vm_area_struct *vma = vmf->vma;
3962 bool write = vmf->flags & FAULT_FLAG_WRITE;
3963 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3964 pmd_t entry;
3965 int i;
3966 vm_fault_t ret = VM_FAULT_FALLBACK;
3967
3968 if (!transhuge_vma_suitable(vma, haddr))
3969 return ret;
3970
3971 page = compound_head(page);
3972 if (compound_order(page) != HPAGE_PMD_ORDER)
3973 return ret;
3974
3975 /*
3976 * Just backoff if any subpage of a THP is corrupted otherwise
3977 * the corrupted page may mapped by PMD silently to escape the
3978 * check. This kind of THP just can be PTE mapped. Access to
3979 * the corrupted subpage should trigger SIGBUS as expected.
3980 */
3981 if (unlikely(PageHasHWPoisoned(page)))
3982 return ret;
3983
3984 /*
3985 * Archs like ppc64 need additional space to store information
3986 * related to pte entry. Use the preallocated table for that.
3987 */
3988 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3989 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3990 if (!vmf->prealloc_pte)
3991 return VM_FAULT_OOM;
3992 }
3993
3994 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3995 if (unlikely(!pmd_none(*vmf->pmd)))
3996 goto out;
3997
3998 for (i = 0; i < HPAGE_PMD_NR; i++)
3999 flush_icache_page(vma, page + i);
4000
4001 entry = mk_huge_pmd(page, vma->vm_page_prot);
4002 if (write)
4003 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4004
4005 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4006 page_add_file_rmap(page, vma, true);
4007
4008 /*
4009 * deposit and withdraw with pmd lock held
4010 */
4011 if (arch_needs_pgtable_deposit())
4012 deposit_prealloc_pte(vmf);
4013
4014 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4015
4016 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4017
4018 /* fault is handled */
4019 ret = 0;
4020 count_vm_event(THP_FILE_MAPPED);
4021out:
4022 spin_unlock(vmf->ptl);
4023 return ret;
4024}
4025#else
4026vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4027{
4028 return VM_FAULT_FALLBACK;
4029}
4030#endif
4031
4032void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4033{
4034 struct vm_area_struct *vma = vmf->vma;
4035 bool write = vmf->flags & FAULT_FLAG_WRITE;
4036 bool prefault = vmf->address != addr;
4037 pte_t entry;
4038
4039 flush_icache_page(vma, page);
4040 entry = mk_pte(page, vma->vm_page_prot);
4041
4042 if (prefault && arch_wants_old_prefaulted_pte())
4043 entry = pte_mkold(entry);
4044 else
4045 entry = pte_sw_mkyoung(entry);
4046
4047 if (write)
4048 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4049 /* copy-on-write page */
4050 if (write && !(vma->vm_flags & VM_SHARED)) {
4051 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4052 page_add_new_anon_rmap(page, vma, addr, false);
4053 lru_cache_add_inactive_or_unevictable(page, vma);
4054 } else {
4055 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4056 page_add_file_rmap(page, vma, false);
4057 }
4058 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4059}
4060
4061/**
4062 * finish_fault - finish page fault once we have prepared the page to fault
4063 *
4064 * @vmf: structure describing the fault
4065 *
4066 * This function handles all that is needed to finish a page fault once the
4067 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4068 * given page, adds reverse page mapping, handles memcg charges and LRU
4069 * addition.
4070 *
4071 * The function expects the page to be locked and on success it consumes a
4072 * reference of a page being mapped (for the PTE which maps it).
4073 *
4074 * Return: %0 on success, %VM_FAULT_ code in case of error.
4075 */
4076vm_fault_t finish_fault(struct vm_fault *vmf)
4077{
4078 struct vm_area_struct *vma = vmf->vma;
4079 struct page *page;
4080 vm_fault_t ret;
4081
4082 /* Did we COW the page? */
4083 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4084 page = vmf->cow_page;
4085 else
4086 page = vmf->page;
4087
4088 /*
4089 * check even for read faults because we might have lost our CoWed
4090 * page
4091 */
4092 if (!(vma->vm_flags & VM_SHARED)) {
4093 ret = check_stable_address_space(vma->vm_mm);
4094 if (ret)
4095 return ret;
4096 }
4097
4098 if (pmd_none(*vmf->pmd)) {
4099 if (PageTransCompound(page)) {
4100 ret = do_set_pmd(vmf, page);
4101 if (ret != VM_FAULT_FALLBACK)
4102 return ret;
4103 }
4104
4105 if (vmf->prealloc_pte)
4106 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4107 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4108 return VM_FAULT_OOM;
4109 }
4110
4111 /* See comment in handle_pte_fault() */
4112 if (pmd_devmap_trans_unstable(vmf->pmd))
4113 return 0;
4114
4115 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4116 vmf->address, &vmf->ptl);
4117 ret = 0;
4118 /* Re-check under ptl */
4119 if (likely(pte_none(*vmf->pte)))
4120 do_set_pte(vmf, page, vmf->address);
4121 else
4122 ret = VM_FAULT_NOPAGE;
4123
4124 update_mmu_tlb(vma, vmf->address, vmf->pte);
4125 pte_unmap_unlock(vmf->pte, vmf->ptl);
4126 return ret;
4127}
4128
4129static unsigned long fault_around_bytes __read_mostly =
4130 rounddown_pow_of_two(65536);
4131
4132#ifdef CONFIG_DEBUG_FS
4133static int fault_around_bytes_get(void *data, u64 *val)
4134{
4135 *val = fault_around_bytes;
4136 return 0;
4137}
4138
4139/*
4140 * fault_around_bytes must be rounded down to the nearest page order as it's
4141 * what do_fault_around() expects to see.
4142 */
4143static int fault_around_bytes_set(void *data, u64 val)
4144{
4145 if (val / PAGE_SIZE > PTRS_PER_PTE)
4146 return -EINVAL;
4147 if (val > PAGE_SIZE)
4148 fault_around_bytes = rounddown_pow_of_two(val);
4149 else
4150 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4151 return 0;
4152}
4153DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4154 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4155
4156static int __init fault_around_debugfs(void)
4157{
4158 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4159 &fault_around_bytes_fops);
4160 return 0;
4161}
4162late_initcall(fault_around_debugfs);
4163#endif
4164
4165/*
4166 * do_fault_around() tries to map few pages around the fault address. The hope
4167 * is that the pages will be needed soon and this will lower the number of
4168 * faults to handle.
4169 *
4170 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4171 * not ready to be mapped: not up-to-date, locked, etc.
4172 *
4173 * This function is called with the page table lock taken. In the split ptlock
4174 * case the page table lock only protects only those entries which belong to
4175 * the page table corresponding to the fault address.
4176 *
4177 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4178 * only once.
4179 *
4180 * fault_around_bytes defines how many bytes we'll try to map.
4181 * do_fault_around() expects it to be set to a power of two less than or equal
4182 * to PTRS_PER_PTE.
4183 *
4184 * The virtual address of the area that we map is naturally aligned to
4185 * fault_around_bytes rounded down to the machine page size
4186 * (and therefore to page order). This way it's easier to guarantee
4187 * that we don't cross page table boundaries.
4188 */
4189static vm_fault_t do_fault_around(struct vm_fault *vmf)
4190{
4191 unsigned long address = vmf->address, nr_pages, mask;
4192 pgoff_t start_pgoff = vmf->pgoff;
4193 pgoff_t end_pgoff;
4194 int off;
4195
4196 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4197 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4198
4199 address = max(address & mask, vmf->vma->vm_start);
4200 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4201 start_pgoff -= off;
4202
4203 /*
4204 * end_pgoff is either the end of the page table, the end of
4205 * the vma or nr_pages from start_pgoff, depending what is nearest.
4206 */
4207 end_pgoff = start_pgoff -
4208 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4209 PTRS_PER_PTE - 1;
4210 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4211 start_pgoff + nr_pages - 1);
4212
4213 if (pmd_none(*vmf->pmd)) {
4214 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4215 if (!vmf->prealloc_pte)
4216 return VM_FAULT_OOM;
4217 }
4218
4219 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4220}
4221
4222static vm_fault_t do_read_fault(struct vm_fault *vmf)
4223{
4224 struct vm_area_struct *vma = vmf->vma;
4225 vm_fault_t ret = 0;
4226
4227 /*
4228 * Let's call ->map_pages() first and use ->fault() as fallback
4229 * if page by the offset is not ready to be mapped (cold cache or
4230 * something).
4231 */
4232 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4233 if (likely(!userfaultfd_minor(vmf->vma))) {
4234 ret = do_fault_around(vmf);
4235 if (ret)
4236 return ret;
4237 }
4238 }
4239
4240 ret = __do_fault(vmf);
4241 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4242 return ret;
4243
4244 ret |= finish_fault(vmf);
4245 unlock_page(vmf->page);
4246 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4247 put_page(vmf->page);
4248 return ret;
4249}
4250
4251static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4252{
4253 struct vm_area_struct *vma = vmf->vma;
4254 vm_fault_t ret;
4255
4256 if (unlikely(anon_vma_prepare(vma)))
4257 return VM_FAULT_OOM;
4258
4259 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4260 if (!vmf->cow_page)
4261 return VM_FAULT_OOM;
4262
4263 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4264 GFP_KERNEL)) {
4265 put_page(vmf->cow_page);
4266 return VM_FAULT_OOM;
4267 }
4268 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4269
4270 ret = __do_fault(vmf);
4271 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4272 goto uncharge_out;
4273 if (ret & VM_FAULT_DONE_COW)
4274 return ret;
4275
4276 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4277 __SetPageUptodate(vmf->cow_page);
4278
4279 ret |= finish_fault(vmf);
4280 unlock_page(vmf->page);
4281 put_page(vmf->page);
4282 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4283 goto uncharge_out;
4284 return ret;
4285uncharge_out:
4286 put_page(vmf->cow_page);
4287 return ret;
4288}
4289
4290static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4291{
4292 struct vm_area_struct *vma = vmf->vma;
4293 vm_fault_t ret, tmp;
4294
4295 ret = __do_fault(vmf);
4296 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4297 return ret;
4298
4299 /*
4300 * Check if the backing address space wants to know that the page is
4301 * about to become writable
4302 */
4303 if (vma->vm_ops->page_mkwrite) {
4304 unlock_page(vmf->page);
4305 tmp = do_page_mkwrite(vmf);
4306 if (unlikely(!tmp ||
4307 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4308 put_page(vmf->page);
4309 return tmp;
4310 }
4311 }
4312
4313 ret |= finish_fault(vmf);
4314 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4315 VM_FAULT_RETRY))) {
4316 unlock_page(vmf->page);
4317 put_page(vmf->page);
4318 return ret;
4319 }
4320
4321 ret |= fault_dirty_shared_page(vmf);
4322 return ret;
4323}
4324
4325/*
4326 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4327 * but allow concurrent faults).
4328 * The mmap_lock may have been released depending on flags and our
4329 * return value. See filemap_fault() and __folio_lock_or_retry().
4330 * If mmap_lock is released, vma may become invalid (for example
4331 * by other thread calling munmap()).
4332 */
4333static vm_fault_t do_fault(struct vm_fault *vmf)
4334{
4335 struct vm_area_struct *vma = vmf->vma;
4336 struct mm_struct *vm_mm = vma->vm_mm;
4337 vm_fault_t ret;
4338
4339 /*
4340 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4341 */
4342 if (!vma->vm_ops->fault) {
4343 /*
4344 * If we find a migration pmd entry or a none pmd entry, which
4345 * should never happen, return SIGBUS
4346 */
4347 if (unlikely(!pmd_present(*vmf->pmd)))
4348 ret = VM_FAULT_SIGBUS;
4349 else {
4350 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4351 vmf->pmd,
4352 vmf->address,
4353 &vmf->ptl);
4354 /*
4355 * Make sure this is not a temporary clearing of pte
4356 * by holding ptl and checking again. A R/M/W update
4357 * of pte involves: take ptl, clearing the pte so that
4358 * we don't have concurrent modification by hardware
4359 * followed by an update.
4360 */
4361 if (unlikely(pte_none(*vmf->pte)))
4362 ret = VM_FAULT_SIGBUS;
4363 else
4364 ret = VM_FAULT_NOPAGE;
4365
4366 pte_unmap_unlock(vmf->pte, vmf->ptl);
4367 }
4368 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4369 ret = do_read_fault(vmf);
4370 else if (!(vma->vm_flags & VM_SHARED))
4371 ret = do_cow_fault(vmf);
4372 else
4373 ret = do_shared_fault(vmf);
4374
4375 /* preallocated pagetable is unused: free it */
4376 if (vmf->prealloc_pte) {
4377 pte_free(vm_mm, vmf->prealloc_pte);
4378 vmf->prealloc_pte = NULL;
4379 }
4380 return ret;
4381}
4382
4383int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4384 unsigned long addr, int page_nid, int *flags)
4385{
4386 get_page(page);
4387
4388 count_vm_numa_event(NUMA_HINT_FAULTS);
4389 if (page_nid == numa_node_id()) {
4390 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4391 *flags |= TNF_FAULT_LOCAL;
4392 }
4393
4394 return mpol_misplaced(page, vma, addr);
4395}
4396
4397static vm_fault_t do_numa_page(struct vm_fault *vmf)
4398{
4399 struct vm_area_struct *vma = vmf->vma;
4400 struct page *page = NULL;
4401 int page_nid = NUMA_NO_NODE;
4402 int last_cpupid;
4403 int target_nid;
4404 pte_t pte, old_pte;
4405 bool was_writable = pte_savedwrite(vmf->orig_pte);
4406 int flags = 0;
4407
4408 /*
4409 * The "pte" at this point cannot be used safely without
4410 * validation through pte_unmap_same(). It's of NUMA type but
4411 * the pfn may be screwed if the read is non atomic.
4412 */
4413 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4414 spin_lock(vmf->ptl);
4415 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4416 pte_unmap_unlock(vmf->pte, vmf->ptl);
4417 goto out;
4418 }
4419
4420 /* Get the normal PTE */
4421 old_pte = ptep_get(vmf->pte);
4422 pte = pte_modify(old_pte, vma->vm_page_prot);
4423
4424 page = vm_normal_page(vma, vmf->address, pte);
4425 if (!page)
4426 goto out_map;
4427
4428 /* TODO: handle PTE-mapped THP */
4429 if (PageCompound(page))
4430 goto out_map;
4431
4432 /*
4433 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4434 * much anyway since they can be in shared cache state. This misses
4435 * the case where a mapping is writable but the process never writes
4436 * to it but pte_write gets cleared during protection updates and
4437 * pte_dirty has unpredictable behaviour between PTE scan updates,
4438 * background writeback, dirty balancing and application behaviour.
4439 */
4440 if (!was_writable)
4441 flags |= TNF_NO_GROUP;
4442
4443 /*
4444 * Flag if the page is shared between multiple address spaces. This
4445 * is later used when determining whether to group tasks together
4446 */
4447 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4448 flags |= TNF_SHARED;
4449
4450 last_cpupid = page_cpupid_last(page);
4451 page_nid = page_to_nid(page);
4452 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4453 &flags);
4454 if (target_nid == NUMA_NO_NODE) {
4455 put_page(page);
4456 goto out_map;
4457 }
4458 pte_unmap_unlock(vmf->pte, vmf->ptl);
4459
4460 /* Migrate to the requested node */
4461 if (migrate_misplaced_page(page, vma, target_nid)) {
4462 page_nid = target_nid;
4463 flags |= TNF_MIGRATED;
4464 } else {
4465 flags |= TNF_MIGRATE_FAIL;
4466 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4467 spin_lock(vmf->ptl);
4468 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4469 pte_unmap_unlock(vmf->pte, vmf->ptl);
4470 goto out;
4471 }
4472 goto out_map;
4473 }
4474
4475out:
4476 if (page_nid != NUMA_NO_NODE)
4477 task_numa_fault(last_cpupid, page_nid, 1, flags);
4478 return 0;
4479out_map:
4480 /*
4481 * Make it present again, depending on how arch implements
4482 * non-accessible ptes, some can allow access by kernel mode.
4483 */
4484 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4485 pte = pte_modify(old_pte, vma->vm_page_prot);
4486 pte = pte_mkyoung(pte);
4487 if (was_writable)
4488 pte = pte_mkwrite(pte);
4489 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4490 update_mmu_cache(vma, vmf->address, vmf->pte);
4491 pte_unmap_unlock(vmf->pte, vmf->ptl);
4492 goto out;
4493}
4494
4495static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4496{
4497 if (vma_is_anonymous(vmf->vma))
4498 return do_huge_pmd_anonymous_page(vmf);
4499 if (vmf->vma->vm_ops->huge_fault)
4500 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4501 return VM_FAULT_FALLBACK;
4502}
4503
4504/* `inline' is required to avoid gcc 4.1.2 build error */
4505static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4506{
4507 if (vma_is_anonymous(vmf->vma)) {
4508 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4509 return handle_userfault(vmf, VM_UFFD_WP);
4510 return do_huge_pmd_wp_page(vmf);
4511 }
4512 if (vmf->vma->vm_ops->huge_fault) {
4513 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4514
4515 if (!(ret & VM_FAULT_FALLBACK))
4516 return ret;
4517 }
4518
4519 /* COW or write-notify handled on pte level: split pmd. */
4520 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4521
4522 return VM_FAULT_FALLBACK;
4523}
4524
4525static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4526{
4527#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4528 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4529 /* No support for anonymous transparent PUD pages yet */
4530 if (vma_is_anonymous(vmf->vma))
4531 goto split;
4532 if (vmf->vma->vm_ops->huge_fault) {
4533 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4534
4535 if (!(ret & VM_FAULT_FALLBACK))
4536 return ret;
4537 }
4538split:
4539 /* COW or write-notify not handled on PUD level: split pud.*/
4540 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4541#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4542 return VM_FAULT_FALLBACK;
4543}
4544
4545static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4546{
4547#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4548 /* No support for anonymous transparent PUD pages yet */
4549 if (vma_is_anonymous(vmf->vma))
4550 return VM_FAULT_FALLBACK;
4551 if (vmf->vma->vm_ops->huge_fault)
4552 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4553#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4554 return VM_FAULT_FALLBACK;
4555}
4556
4557/*
4558 * These routines also need to handle stuff like marking pages dirty
4559 * and/or accessed for architectures that don't do it in hardware (most
4560 * RISC architectures). The early dirtying is also good on the i386.
4561 *
4562 * There is also a hook called "update_mmu_cache()" that architectures
4563 * with external mmu caches can use to update those (ie the Sparc or
4564 * PowerPC hashed page tables that act as extended TLBs).
4565 *
4566 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4567 * concurrent faults).
4568 *
4569 * The mmap_lock may have been released depending on flags and our return value.
4570 * See filemap_fault() and __folio_lock_or_retry().
4571 */
4572static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4573{
4574 pte_t entry;
4575
4576 if (unlikely(pmd_none(*vmf->pmd))) {
4577 /*
4578 * Leave __pte_alloc() until later: because vm_ops->fault may
4579 * want to allocate huge page, and if we expose page table
4580 * for an instant, it will be difficult to retract from
4581 * concurrent faults and from rmap lookups.
4582 */
4583 vmf->pte = NULL;
4584 } else {
4585 /*
4586 * If a huge pmd materialized under us just retry later. Use
4587 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4588 * of pmd_trans_huge() to ensure the pmd didn't become
4589 * pmd_trans_huge under us and then back to pmd_none, as a
4590 * result of MADV_DONTNEED running immediately after a huge pmd
4591 * fault in a different thread of this mm, in turn leading to a
4592 * misleading pmd_trans_huge() retval. All we have to ensure is
4593 * that it is a regular pmd that we can walk with
4594 * pte_offset_map() and we can do that through an atomic read
4595 * in C, which is what pmd_trans_unstable() provides.
4596 */
4597 if (pmd_devmap_trans_unstable(vmf->pmd))
4598 return 0;
4599 /*
4600 * A regular pmd is established and it can't morph into a huge
4601 * pmd from under us anymore at this point because we hold the
4602 * mmap_lock read mode and khugepaged takes it in write mode.
4603 * So now it's safe to run pte_offset_map().
4604 */
4605 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4606 vmf->orig_pte = *vmf->pte;
4607
4608 /*
4609 * some architectures can have larger ptes than wordsize,
4610 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4611 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4612 * accesses. The code below just needs a consistent view
4613 * for the ifs and we later double check anyway with the
4614 * ptl lock held. So here a barrier will do.
4615 */
4616 barrier();
4617 if (pte_none(vmf->orig_pte)) {
4618 pte_unmap(vmf->pte);
4619 vmf->pte = NULL;
4620 }
4621 }
4622
4623 if (!vmf->pte) {
4624 if (vma_is_anonymous(vmf->vma))
4625 return do_anonymous_page(vmf);
4626 else
4627 return do_fault(vmf);
4628 }
4629
4630 if (!pte_present(vmf->orig_pte))
4631 return do_swap_page(vmf);
4632
4633 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4634 return do_numa_page(vmf);
4635
4636 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4637 spin_lock(vmf->ptl);
4638 entry = vmf->orig_pte;
4639 if (unlikely(!pte_same(*vmf->pte, entry))) {
4640 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4641 goto unlock;
4642 }
4643 if (vmf->flags & FAULT_FLAG_WRITE) {
4644 if (!pte_write(entry))
4645 return do_wp_page(vmf);
4646 entry = pte_mkdirty(entry);
4647 }
4648 entry = pte_mkyoung(entry);
4649 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4650 vmf->flags & FAULT_FLAG_WRITE)) {
4651 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4652 } else {
4653 /* Skip spurious TLB flush for retried page fault */
4654 if (vmf->flags & FAULT_FLAG_TRIED)
4655 goto unlock;
4656 /*
4657 * This is needed only for protection faults but the arch code
4658 * is not yet telling us if this is a protection fault or not.
4659 * This still avoids useless tlb flushes for .text page faults
4660 * with threads.
4661 */
4662 if (vmf->flags & FAULT_FLAG_WRITE)
4663 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4664 }
4665unlock:
4666 pte_unmap_unlock(vmf->pte, vmf->ptl);
4667 return 0;
4668}
4669
4670/*
4671 * By the time we get here, we already hold the mm semaphore
4672 *
4673 * The mmap_lock may have been released depending on flags and our
4674 * return value. See filemap_fault() and __folio_lock_or_retry().
4675 */
4676static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4677 unsigned long address, unsigned int flags)
4678{
4679 struct vm_fault vmf = {
4680 .vma = vma,
4681 .address = address & PAGE_MASK,
4682 .real_address = address,
4683 .flags = flags,
4684 .pgoff = linear_page_index(vma, address),
4685 .gfp_mask = __get_fault_gfp_mask(vma),
4686 };
4687 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4688 struct mm_struct *mm = vma->vm_mm;
4689 pgd_t *pgd;
4690 p4d_t *p4d;
4691 vm_fault_t ret;
4692
4693 pgd = pgd_offset(mm, address);
4694 p4d = p4d_alloc(mm, pgd, address);
4695 if (!p4d)
4696 return VM_FAULT_OOM;
4697
4698 vmf.pud = pud_alloc(mm, p4d, address);
4699 if (!vmf.pud)
4700 return VM_FAULT_OOM;
4701retry_pud:
4702 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4703 ret = create_huge_pud(&vmf);
4704 if (!(ret & VM_FAULT_FALLBACK))
4705 return ret;
4706 } else {
4707 pud_t orig_pud = *vmf.pud;
4708
4709 barrier();
4710 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4711
4712 /* NUMA case for anonymous PUDs would go here */
4713
4714 if (dirty && !pud_write(orig_pud)) {
4715 ret = wp_huge_pud(&vmf, orig_pud);
4716 if (!(ret & VM_FAULT_FALLBACK))
4717 return ret;
4718 } else {
4719 huge_pud_set_accessed(&vmf, orig_pud);
4720 return 0;
4721 }
4722 }
4723 }
4724
4725 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4726 if (!vmf.pmd)
4727 return VM_FAULT_OOM;
4728
4729 /* Huge pud page fault raced with pmd_alloc? */
4730 if (pud_trans_unstable(vmf.pud))
4731 goto retry_pud;
4732
4733 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4734 ret = create_huge_pmd(&vmf);
4735 if (!(ret & VM_FAULT_FALLBACK))
4736 return ret;
4737 } else {
4738 vmf.orig_pmd = *vmf.pmd;
4739
4740 barrier();
4741 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4742 VM_BUG_ON(thp_migration_supported() &&
4743 !is_pmd_migration_entry(vmf.orig_pmd));
4744 if (is_pmd_migration_entry(vmf.orig_pmd))
4745 pmd_migration_entry_wait(mm, vmf.pmd);
4746 return 0;
4747 }
4748 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4749 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4750 return do_huge_pmd_numa_page(&vmf);
4751
4752 if (dirty && !pmd_write(vmf.orig_pmd)) {
4753 ret = wp_huge_pmd(&vmf);
4754 if (!(ret & VM_FAULT_FALLBACK))
4755 return ret;
4756 } else {
4757 huge_pmd_set_accessed(&vmf);
4758 return 0;
4759 }
4760 }
4761 }
4762
4763 return handle_pte_fault(&vmf);
4764}
4765
4766/**
4767 * mm_account_fault - Do page fault accounting
4768 *
4769 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4770 * of perf event counters, but we'll still do the per-task accounting to
4771 * the task who triggered this page fault.
4772 * @address: the faulted address.
4773 * @flags: the fault flags.
4774 * @ret: the fault retcode.
4775 *
4776 * This will take care of most of the page fault accounting. Meanwhile, it
4777 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4778 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4779 * still be in per-arch page fault handlers at the entry of page fault.
4780 */
4781static inline void mm_account_fault(struct pt_regs *regs,
4782 unsigned long address, unsigned int flags,
4783 vm_fault_t ret)
4784{
4785 bool major;
4786
4787 /*
4788 * We don't do accounting for some specific faults:
4789 *
4790 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4791 * includes arch_vma_access_permitted() failing before reaching here.
4792 * So this is not a "this many hardware page faults" counter. We
4793 * should use the hw profiling for that.
4794 *
4795 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4796 * once they're completed.
4797 */
4798 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4799 return;
4800
4801 /*
4802 * We define the fault as a major fault when the final successful fault
4803 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4804 * handle it immediately previously).
4805 */
4806 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4807
4808 if (major)
4809 current->maj_flt++;
4810 else
4811 current->min_flt++;
4812
4813 /*
4814 * If the fault is done for GUP, regs will be NULL. We only do the
4815 * accounting for the per thread fault counters who triggered the
4816 * fault, and we skip the perf event updates.
4817 */
4818 if (!regs)
4819 return;
4820
4821 if (major)
4822 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4823 else
4824 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4825}
4826
4827/*
4828 * By the time we get here, we already hold the mm semaphore
4829 *
4830 * The mmap_lock may have been released depending on flags and our
4831 * return value. See filemap_fault() and __folio_lock_or_retry().
4832 */
4833vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4834 unsigned int flags, struct pt_regs *regs)
4835{
4836 vm_fault_t ret;
4837
4838 __set_current_state(TASK_RUNNING);
4839
4840 count_vm_event(PGFAULT);
4841 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4842
4843 /* do counter updates before entering really critical section. */
4844 check_sync_rss_stat(current);
4845
4846 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4847 flags & FAULT_FLAG_INSTRUCTION,
4848 flags & FAULT_FLAG_REMOTE))
4849 return VM_FAULT_SIGSEGV;
4850
4851 /*
4852 * Enable the memcg OOM handling for faults triggered in user
4853 * space. Kernel faults are handled more gracefully.
4854 */
4855 if (flags & FAULT_FLAG_USER)
4856 mem_cgroup_enter_user_fault();
4857
4858 if (unlikely(is_vm_hugetlb_page(vma)))
4859 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4860 else
4861 ret = __handle_mm_fault(vma, address, flags);
4862
4863 if (flags & FAULT_FLAG_USER) {
4864 mem_cgroup_exit_user_fault();
4865 /*
4866 * The task may have entered a memcg OOM situation but
4867 * if the allocation error was handled gracefully (no
4868 * VM_FAULT_OOM), there is no need to kill anything.
4869 * Just clean up the OOM state peacefully.
4870 */
4871 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4872 mem_cgroup_oom_synchronize(false);
4873 }
4874
4875 mm_account_fault(regs, address, flags, ret);
4876
4877 return ret;
4878}
4879EXPORT_SYMBOL_GPL(handle_mm_fault);
4880
4881#ifndef __PAGETABLE_P4D_FOLDED
4882/*
4883 * Allocate p4d page table.
4884 * We've already handled the fast-path in-line.
4885 */
4886int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4887{
4888 p4d_t *new = p4d_alloc_one(mm, address);
4889 if (!new)
4890 return -ENOMEM;
4891
4892 spin_lock(&mm->page_table_lock);
4893 if (pgd_present(*pgd)) { /* Another has populated it */
4894 p4d_free(mm, new);
4895 } else {
4896 smp_wmb(); /* See comment in pmd_install() */
4897 pgd_populate(mm, pgd, new);
4898 }
4899 spin_unlock(&mm->page_table_lock);
4900 return 0;
4901}
4902#endif /* __PAGETABLE_P4D_FOLDED */
4903
4904#ifndef __PAGETABLE_PUD_FOLDED
4905/*
4906 * Allocate page upper directory.
4907 * We've already handled the fast-path in-line.
4908 */
4909int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4910{
4911 pud_t *new = pud_alloc_one(mm, address);
4912 if (!new)
4913 return -ENOMEM;
4914
4915 spin_lock(&mm->page_table_lock);
4916 if (!p4d_present(*p4d)) {
4917 mm_inc_nr_puds(mm);
4918 smp_wmb(); /* See comment in pmd_install() */
4919 p4d_populate(mm, p4d, new);
4920 } else /* Another has populated it */
4921 pud_free(mm, new);
4922 spin_unlock(&mm->page_table_lock);
4923 return 0;
4924}
4925#endif /* __PAGETABLE_PUD_FOLDED */
4926
4927#ifndef __PAGETABLE_PMD_FOLDED
4928/*
4929 * Allocate page middle directory.
4930 * We've already handled the fast-path in-line.
4931 */
4932int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4933{
4934 spinlock_t *ptl;
4935 pmd_t *new = pmd_alloc_one(mm, address);
4936 if (!new)
4937 return -ENOMEM;
4938
4939 ptl = pud_lock(mm, pud);
4940 if (!pud_present(*pud)) {
4941 mm_inc_nr_pmds(mm);
4942 smp_wmb(); /* See comment in pmd_install() */
4943 pud_populate(mm, pud, new);
4944 } else { /* Another has populated it */
4945 pmd_free(mm, new);
4946 }
4947 spin_unlock(ptl);
4948 return 0;
4949}
4950#endif /* __PAGETABLE_PMD_FOLDED */
4951
4952int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4953 struct mmu_notifier_range *range, pte_t **ptepp,
4954 pmd_t **pmdpp, spinlock_t **ptlp)
4955{
4956 pgd_t *pgd;
4957 p4d_t *p4d;
4958 pud_t *pud;
4959 pmd_t *pmd;
4960 pte_t *ptep;
4961
4962 pgd = pgd_offset(mm, address);
4963 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4964 goto out;
4965
4966 p4d = p4d_offset(pgd, address);
4967 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4968 goto out;
4969
4970 pud = pud_offset(p4d, address);
4971 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4972 goto out;
4973
4974 pmd = pmd_offset(pud, address);
4975 VM_BUG_ON(pmd_trans_huge(*pmd));
4976
4977 if (pmd_huge(*pmd)) {
4978 if (!pmdpp)
4979 goto out;
4980
4981 if (range) {
4982 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4983 NULL, mm, address & PMD_MASK,
4984 (address & PMD_MASK) + PMD_SIZE);
4985 mmu_notifier_invalidate_range_start(range);
4986 }
4987 *ptlp = pmd_lock(mm, pmd);
4988 if (pmd_huge(*pmd)) {
4989 *pmdpp = pmd;
4990 return 0;
4991 }
4992 spin_unlock(*ptlp);
4993 if (range)
4994 mmu_notifier_invalidate_range_end(range);
4995 }
4996
4997 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4998 goto out;
4999
5000 if (range) {
5001 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
5002 address & PAGE_MASK,
5003 (address & PAGE_MASK) + PAGE_SIZE);
5004 mmu_notifier_invalidate_range_start(range);
5005 }
5006 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5007 if (!pte_present(*ptep))
5008 goto unlock;
5009 *ptepp = ptep;
5010 return 0;
5011unlock:
5012 pte_unmap_unlock(ptep, *ptlp);
5013 if (range)
5014 mmu_notifier_invalidate_range_end(range);
5015out:
5016 return -EINVAL;
5017}
5018
5019/**
5020 * follow_pte - look up PTE at a user virtual address
5021 * @mm: the mm_struct of the target address space
5022 * @address: user virtual address
5023 * @ptepp: location to store found PTE
5024 * @ptlp: location to store the lock for the PTE
5025 *
5026 * On a successful return, the pointer to the PTE is stored in @ptepp;
5027 * the corresponding lock is taken and its location is stored in @ptlp.
5028 * The contents of the PTE are only stable until @ptlp is released;
5029 * any further use, if any, must be protected against invalidation
5030 * with MMU notifiers.
5031 *
5032 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5033 * should be taken for read.
5034 *
5035 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5036 * it is not a good general-purpose API.
5037 *
5038 * Return: zero on success, -ve otherwise.
5039 */
5040int follow_pte(struct mm_struct *mm, unsigned long address,
5041 pte_t **ptepp, spinlock_t **ptlp)
5042{
5043 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
5044}
5045EXPORT_SYMBOL_GPL(follow_pte);
5046
5047/**
5048 * follow_pfn - look up PFN at a user virtual address
5049 * @vma: memory mapping
5050 * @address: user virtual address
5051 * @pfn: location to store found PFN
5052 *
5053 * Only IO mappings and raw PFN mappings are allowed.
5054 *
5055 * This function does not allow the caller to read the permissions
5056 * of the PTE. Do not use it.
5057 *
5058 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5059 */
5060int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5061 unsigned long *pfn)
5062{
5063 int ret = -EINVAL;
5064 spinlock_t *ptl;
5065 pte_t *ptep;
5066
5067 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5068 return ret;
5069
5070 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5071 if (ret)
5072 return ret;
5073 *pfn = pte_pfn(*ptep);
5074 pte_unmap_unlock(ptep, ptl);
5075 return 0;
5076}
5077EXPORT_SYMBOL(follow_pfn);
5078
5079#ifdef CONFIG_HAVE_IOREMAP_PROT
5080int follow_phys(struct vm_area_struct *vma,
5081 unsigned long address, unsigned int flags,
5082 unsigned long *prot, resource_size_t *phys)
5083{
5084 int ret = -EINVAL;
5085 pte_t *ptep, pte;
5086 spinlock_t *ptl;
5087
5088 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5089 goto out;
5090
5091 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5092 goto out;
5093 pte = *ptep;
5094
5095 if ((flags & FOLL_WRITE) && !pte_write(pte))
5096 goto unlock;
5097
5098 *prot = pgprot_val(pte_pgprot(pte));
5099 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5100
5101 ret = 0;
5102unlock:
5103 pte_unmap_unlock(ptep, ptl);
5104out:
5105 return ret;
5106}
5107
5108/**
5109 * generic_access_phys - generic implementation for iomem mmap access
5110 * @vma: the vma to access
5111 * @addr: userspace address, not relative offset within @vma
5112 * @buf: buffer to read/write
5113 * @len: length of transfer
5114 * @write: set to FOLL_WRITE when writing, otherwise reading
5115 *
5116 * This is a generic implementation for &vm_operations_struct.access for an
5117 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5118 * not page based.
5119 */
5120int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5121 void *buf, int len, int write)
5122{
5123 resource_size_t phys_addr;
5124 unsigned long prot = 0;
5125 void __iomem *maddr;
5126 pte_t *ptep, pte;
5127 spinlock_t *ptl;
5128 int offset = offset_in_page(addr);
5129 int ret = -EINVAL;
5130
5131 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5132 return -EINVAL;
5133
5134retry:
5135 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5136 return -EINVAL;
5137 pte = *ptep;
5138 pte_unmap_unlock(ptep, ptl);
5139
5140 prot = pgprot_val(pte_pgprot(pte));
5141 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5142
5143 if ((write & FOLL_WRITE) && !pte_write(pte))
5144 return -EINVAL;
5145
5146 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5147 if (!maddr)
5148 return -ENOMEM;
5149
5150 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5151 goto out_unmap;
5152
5153 if (!pte_same(pte, *ptep)) {
5154 pte_unmap_unlock(ptep, ptl);
5155 iounmap(maddr);
5156
5157 goto retry;
5158 }
5159
5160 if (write)
5161 memcpy_toio(maddr + offset, buf, len);
5162 else
5163 memcpy_fromio(buf, maddr + offset, len);
5164 ret = len;
5165 pte_unmap_unlock(ptep, ptl);
5166out_unmap:
5167 iounmap(maddr);
5168
5169 return ret;
5170}
5171EXPORT_SYMBOL_GPL(generic_access_phys);
5172#endif
5173
5174/*
5175 * Access another process' address space as given in mm.
5176 */
5177int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5178 int len, unsigned int gup_flags)
5179{
5180 struct vm_area_struct *vma;
5181 void *old_buf = buf;
5182 int write = gup_flags & FOLL_WRITE;
5183
5184 if (mmap_read_lock_killable(mm))
5185 return 0;
5186
5187 /* ignore errors, just check how much was successfully transferred */
5188 while (len) {
5189 int bytes, ret, offset;
5190 void *maddr;
5191 struct page *page = NULL;
5192
5193 ret = get_user_pages_remote(mm, addr, 1,
5194 gup_flags, &page, &vma, NULL);
5195 if (ret <= 0) {
5196#ifndef CONFIG_HAVE_IOREMAP_PROT
5197 break;
5198#else
5199 /*
5200 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5201 * we can access using slightly different code.
5202 */
5203 vma = vma_lookup(mm, addr);
5204 if (!vma)
5205 break;
5206 if (vma->vm_ops && vma->vm_ops->access)
5207 ret = vma->vm_ops->access(vma, addr, buf,
5208 len, write);
5209 if (ret <= 0)
5210 break;
5211 bytes = ret;
5212#endif
5213 } else {
5214 bytes = len;
5215 offset = addr & (PAGE_SIZE-1);
5216 if (bytes > PAGE_SIZE-offset)
5217 bytes = PAGE_SIZE-offset;
5218
5219 maddr = kmap(page);
5220 if (write) {
5221 copy_to_user_page(vma, page, addr,
5222 maddr + offset, buf, bytes);
5223 set_page_dirty_lock(page);
5224 } else {
5225 copy_from_user_page(vma, page, addr,
5226 buf, maddr + offset, bytes);
5227 }
5228 kunmap(page);
5229 put_page(page);
5230 }
5231 len -= bytes;
5232 buf += bytes;
5233 addr += bytes;
5234 }
5235 mmap_read_unlock(mm);
5236
5237 return buf - old_buf;
5238}
5239
5240/**
5241 * access_remote_vm - access another process' address space
5242 * @mm: the mm_struct of the target address space
5243 * @addr: start address to access
5244 * @buf: source or destination buffer
5245 * @len: number of bytes to transfer
5246 * @gup_flags: flags modifying lookup behaviour
5247 *
5248 * The caller must hold a reference on @mm.
5249 *
5250 * Return: number of bytes copied from source to destination.
5251 */
5252int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5253 void *buf, int len, unsigned int gup_flags)
5254{
5255 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5256}
5257
5258/*
5259 * Access another process' address space.
5260 * Source/target buffer must be kernel space,
5261 * Do not walk the page table directly, use get_user_pages
5262 */
5263int access_process_vm(struct task_struct *tsk, unsigned long addr,
5264 void *buf, int len, unsigned int gup_flags)
5265{
5266 struct mm_struct *mm;
5267 int ret;
5268
5269 mm = get_task_mm(tsk);
5270 if (!mm)
5271 return 0;
5272
5273 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5274
5275 mmput(mm);
5276
5277 return ret;
5278}
5279EXPORT_SYMBOL_GPL(access_process_vm);
5280
5281/*
5282 * Print the name of a VMA.
5283 */
5284void print_vma_addr(char *prefix, unsigned long ip)
5285{
5286 struct mm_struct *mm = current->mm;
5287 struct vm_area_struct *vma;
5288
5289 /*
5290 * we might be running from an atomic context so we cannot sleep
5291 */
5292 if (!mmap_read_trylock(mm))
5293 return;
5294
5295 vma = find_vma(mm, ip);
5296 if (vma && vma->vm_file) {
5297 struct file *f = vma->vm_file;
5298 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5299 if (buf) {
5300 char *p;
5301
5302 p = file_path(f, buf, PAGE_SIZE);
5303 if (IS_ERR(p))
5304 p = "?";
5305 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5306 vma->vm_start,
5307 vma->vm_end - vma->vm_start);
5308 free_page((unsigned long)buf);
5309 }
5310 }
5311 mmap_read_unlock(mm);
5312}
5313
5314#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5315void __might_fault(const char *file, int line)
5316{
5317 if (pagefault_disabled())
5318 return;
5319 __might_sleep(file, line);
5320#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5321 if (current->mm)
5322 might_lock_read(¤t->mm->mmap_lock);
5323#endif
5324}
5325EXPORT_SYMBOL(__might_fault);
5326#endif
5327
5328#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5329/*
5330 * Process all subpages of the specified huge page with the specified
5331 * operation. The target subpage will be processed last to keep its
5332 * cache lines hot.
5333 */
5334static inline void process_huge_page(
5335 unsigned long addr_hint, unsigned int pages_per_huge_page,
5336 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5337 void *arg)
5338{
5339 int i, n, base, l;
5340 unsigned long addr = addr_hint &
5341 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5342
5343 /* Process target subpage last to keep its cache lines hot */
5344 might_sleep();
5345 n = (addr_hint - addr) / PAGE_SIZE;
5346 if (2 * n <= pages_per_huge_page) {
5347 /* If target subpage in first half of huge page */
5348 base = 0;
5349 l = n;
5350 /* Process subpages at the end of huge page */
5351 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5352 cond_resched();
5353 process_subpage(addr + i * PAGE_SIZE, i, arg);
5354 }
5355 } else {
5356 /* If target subpage in second half of huge page */
5357 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5358 l = pages_per_huge_page - n;
5359 /* Process subpages at the begin of huge page */
5360 for (i = 0; i < base; i++) {
5361 cond_resched();
5362 process_subpage(addr + i * PAGE_SIZE, i, arg);
5363 }
5364 }
5365 /*
5366 * Process remaining subpages in left-right-left-right pattern
5367 * towards the target subpage
5368 */
5369 for (i = 0; i < l; i++) {
5370 int left_idx = base + i;
5371 int right_idx = base + 2 * l - 1 - i;
5372
5373 cond_resched();
5374 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5375 cond_resched();
5376 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5377 }
5378}
5379
5380static void clear_gigantic_page(struct page *page,
5381 unsigned long addr,
5382 unsigned int pages_per_huge_page)
5383{
5384 int i;
5385 struct page *p = page;
5386
5387 might_sleep();
5388 for (i = 0; i < pages_per_huge_page;
5389 i++, p = mem_map_next(p, page, i)) {
5390 cond_resched();
5391 clear_user_highpage(p, addr + i * PAGE_SIZE);
5392 }
5393}
5394
5395static void clear_subpage(unsigned long addr, int idx, void *arg)
5396{
5397 struct page *page = arg;
5398
5399 clear_user_highpage(page + idx, addr);
5400}
5401
5402void clear_huge_page(struct page *page,
5403 unsigned long addr_hint, unsigned int pages_per_huge_page)
5404{
5405 unsigned long addr = addr_hint &
5406 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5407
5408 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5409 clear_gigantic_page(page, addr, pages_per_huge_page);
5410 return;
5411 }
5412
5413 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5414}
5415
5416static void copy_user_gigantic_page(struct page *dst, struct page *src,
5417 unsigned long addr,
5418 struct vm_area_struct *vma,
5419 unsigned int pages_per_huge_page)
5420{
5421 int i;
5422 struct page *dst_base = dst;
5423 struct page *src_base = src;
5424
5425 for (i = 0; i < pages_per_huge_page; ) {
5426 cond_resched();
5427 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5428
5429 i++;
5430 dst = mem_map_next(dst, dst_base, i);
5431 src = mem_map_next(src, src_base, i);
5432 }
5433}
5434
5435struct copy_subpage_arg {
5436 struct page *dst;
5437 struct page *src;
5438 struct vm_area_struct *vma;
5439};
5440
5441static void copy_subpage(unsigned long addr, int idx, void *arg)
5442{
5443 struct copy_subpage_arg *copy_arg = arg;
5444
5445 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5446 addr, copy_arg->vma);
5447}
5448
5449void copy_user_huge_page(struct page *dst, struct page *src,
5450 unsigned long addr_hint, struct vm_area_struct *vma,
5451 unsigned int pages_per_huge_page)
5452{
5453 unsigned long addr = addr_hint &
5454 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5455 struct copy_subpage_arg arg = {
5456 .dst = dst,
5457 .src = src,
5458 .vma = vma,
5459 };
5460
5461 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5462 copy_user_gigantic_page(dst, src, addr, vma,
5463 pages_per_huge_page);
5464 return;
5465 }
5466
5467 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5468}
5469
5470long copy_huge_page_from_user(struct page *dst_page,
5471 const void __user *usr_src,
5472 unsigned int pages_per_huge_page,
5473 bool allow_pagefault)
5474{
5475 void *page_kaddr;
5476 unsigned long i, rc = 0;
5477 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5478 struct page *subpage = dst_page;
5479
5480 for (i = 0; i < pages_per_huge_page;
5481 i++, subpage = mem_map_next(subpage, dst_page, i)) {
5482 if (allow_pagefault)
5483 page_kaddr = kmap(subpage);
5484 else
5485 page_kaddr = kmap_atomic(subpage);
5486 rc = copy_from_user(page_kaddr,
5487 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5488 if (allow_pagefault)
5489 kunmap(subpage);
5490 else
5491 kunmap_atomic(page_kaddr);
5492
5493 ret_val -= (PAGE_SIZE - rc);
5494 if (rc)
5495 break;
5496
5497 flush_dcache_page(subpage);
5498
5499 cond_resched();
5500 }
5501 return ret_val;
5502}
5503#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5504
5505#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5506
5507static struct kmem_cache *page_ptl_cachep;
5508
5509void __init ptlock_cache_init(void)
5510{
5511 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5512 SLAB_PANIC, NULL);
5513}
5514
5515bool ptlock_alloc(struct page *page)
5516{
5517 spinlock_t *ptl;
5518
5519 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5520 if (!ptl)
5521 return false;
5522 page->ptl = ptl;
5523 return true;
5524}
5525
5526void ptlock_free(struct page *page)
5527{
5528 kmem_cache_free(page_ptl_cachep, page->ptl);
5529}
5530#endif