Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2/*
3 * Performance events:
4 *
5 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
8 *
9 * Data type definitions, declarations, prototypes.
10 *
11 * Started by: Thomas Gleixner and Ingo Molnar
12 *
13 * For licencing details see kernel-base/COPYING
14 */
15#ifndef _UAPI_LINUX_PERF_EVENT_H
16#define _UAPI_LINUX_PERF_EVENT_H
17
18#include <linux/types.h>
19#include <linux/ioctl.h>
20#include <asm/byteorder.h>
21
22/*
23 * User-space ABI bits:
24 */
25
26/*
27 * attr.type
28 */
29enum perf_type_id {
30 PERF_TYPE_HARDWARE = 0,
31 PERF_TYPE_SOFTWARE = 1,
32 PERF_TYPE_TRACEPOINT = 2,
33 PERF_TYPE_HW_CACHE = 3,
34 PERF_TYPE_RAW = 4,
35 PERF_TYPE_BREAKPOINT = 5,
36
37 PERF_TYPE_MAX, /* non-ABI */
38};
39
40/*
41 * attr.config layout for type PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
42 * PERF_TYPE_HARDWARE: 0xEEEEEEEE000000AA
43 * AA: hardware event ID
44 * EEEEEEEE: PMU type ID
45 * PERF_TYPE_HW_CACHE: 0xEEEEEEEE00DDCCBB
46 * BB: hardware cache ID
47 * CC: hardware cache op ID
48 * DD: hardware cache op result ID
49 * EEEEEEEE: PMU type ID
50 * If the PMU type ID is 0, the PERF_TYPE_RAW will be applied.
51 */
52#define PERF_PMU_TYPE_SHIFT 32
53#define PERF_HW_EVENT_MASK 0xffffffff
54
55/*
56 * Generalized performance event event_id types, used by the
57 * attr.event_id parameter of the sys_perf_event_open()
58 * syscall:
59 */
60enum perf_hw_id {
61 /*
62 * Common hardware events, generalized by the kernel:
63 */
64 PERF_COUNT_HW_CPU_CYCLES = 0,
65 PERF_COUNT_HW_INSTRUCTIONS = 1,
66 PERF_COUNT_HW_CACHE_REFERENCES = 2,
67 PERF_COUNT_HW_CACHE_MISSES = 3,
68 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
69 PERF_COUNT_HW_BRANCH_MISSES = 5,
70 PERF_COUNT_HW_BUS_CYCLES = 6,
71 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
72 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
73 PERF_COUNT_HW_REF_CPU_CYCLES = 9,
74
75 PERF_COUNT_HW_MAX, /* non-ABI */
76};
77
78/*
79 * Generalized hardware cache events:
80 *
81 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
82 * { read, write, prefetch } x
83 * { accesses, misses }
84 */
85enum perf_hw_cache_id {
86 PERF_COUNT_HW_CACHE_L1D = 0,
87 PERF_COUNT_HW_CACHE_L1I = 1,
88 PERF_COUNT_HW_CACHE_LL = 2,
89 PERF_COUNT_HW_CACHE_DTLB = 3,
90 PERF_COUNT_HW_CACHE_ITLB = 4,
91 PERF_COUNT_HW_CACHE_BPU = 5,
92 PERF_COUNT_HW_CACHE_NODE = 6,
93
94 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
95};
96
97enum perf_hw_cache_op_id {
98 PERF_COUNT_HW_CACHE_OP_READ = 0,
99 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
100 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
101
102 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
103};
104
105enum perf_hw_cache_op_result_id {
106 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
107 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
108
109 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
110};
111
112/*
113 * Special "software" events provided by the kernel, even if the hardware
114 * does not support performance events. These events measure various
115 * physical and sw events of the kernel (and allow the profiling of them as
116 * well):
117 */
118enum perf_sw_ids {
119 PERF_COUNT_SW_CPU_CLOCK = 0,
120 PERF_COUNT_SW_TASK_CLOCK = 1,
121 PERF_COUNT_SW_PAGE_FAULTS = 2,
122 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
123 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
124 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
125 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
126 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
127 PERF_COUNT_SW_EMULATION_FAULTS = 8,
128 PERF_COUNT_SW_DUMMY = 9,
129 PERF_COUNT_SW_BPF_OUTPUT = 10,
130 PERF_COUNT_SW_CGROUP_SWITCHES = 11,
131
132 PERF_COUNT_SW_MAX, /* non-ABI */
133};
134
135/*
136 * Bits that can be set in attr.sample_type to request information
137 * in the overflow packets.
138 */
139enum perf_event_sample_format {
140 PERF_SAMPLE_IP = 1U << 0,
141 PERF_SAMPLE_TID = 1U << 1,
142 PERF_SAMPLE_TIME = 1U << 2,
143 PERF_SAMPLE_ADDR = 1U << 3,
144 PERF_SAMPLE_READ = 1U << 4,
145 PERF_SAMPLE_CALLCHAIN = 1U << 5,
146 PERF_SAMPLE_ID = 1U << 6,
147 PERF_SAMPLE_CPU = 1U << 7,
148 PERF_SAMPLE_PERIOD = 1U << 8,
149 PERF_SAMPLE_STREAM_ID = 1U << 9,
150 PERF_SAMPLE_RAW = 1U << 10,
151 PERF_SAMPLE_BRANCH_STACK = 1U << 11,
152 PERF_SAMPLE_REGS_USER = 1U << 12,
153 PERF_SAMPLE_STACK_USER = 1U << 13,
154 PERF_SAMPLE_WEIGHT = 1U << 14,
155 PERF_SAMPLE_DATA_SRC = 1U << 15,
156 PERF_SAMPLE_IDENTIFIER = 1U << 16,
157 PERF_SAMPLE_TRANSACTION = 1U << 17,
158 PERF_SAMPLE_REGS_INTR = 1U << 18,
159 PERF_SAMPLE_PHYS_ADDR = 1U << 19,
160 PERF_SAMPLE_AUX = 1U << 20,
161 PERF_SAMPLE_CGROUP = 1U << 21,
162 PERF_SAMPLE_DATA_PAGE_SIZE = 1U << 22,
163 PERF_SAMPLE_CODE_PAGE_SIZE = 1U << 23,
164 PERF_SAMPLE_WEIGHT_STRUCT = 1U << 24,
165
166 PERF_SAMPLE_MAX = 1U << 25, /* non-ABI */
167
168 __PERF_SAMPLE_CALLCHAIN_EARLY = 1ULL << 63, /* non-ABI; internal use */
169};
170
171#define PERF_SAMPLE_WEIGHT_TYPE (PERF_SAMPLE_WEIGHT | PERF_SAMPLE_WEIGHT_STRUCT)
172/*
173 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
174 *
175 * If the user does not pass priv level information via branch_sample_type,
176 * the kernel uses the event's priv level. Branch and event priv levels do
177 * not have to match. Branch priv level is checked for permissions.
178 *
179 * The branch types can be combined, however BRANCH_ANY covers all types
180 * of branches and therefore it supersedes all the other types.
181 */
182enum perf_branch_sample_type_shift {
183 PERF_SAMPLE_BRANCH_USER_SHIFT = 0, /* user branches */
184 PERF_SAMPLE_BRANCH_KERNEL_SHIFT = 1, /* kernel branches */
185 PERF_SAMPLE_BRANCH_HV_SHIFT = 2, /* hypervisor branches */
186
187 PERF_SAMPLE_BRANCH_ANY_SHIFT = 3, /* any branch types */
188 PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT = 4, /* any call branch */
189 PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT = 5, /* any return branch */
190 PERF_SAMPLE_BRANCH_IND_CALL_SHIFT = 6, /* indirect calls */
191 PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT = 7, /* transaction aborts */
192 PERF_SAMPLE_BRANCH_IN_TX_SHIFT = 8, /* in transaction */
193 PERF_SAMPLE_BRANCH_NO_TX_SHIFT = 9, /* not in transaction */
194 PERF_SAMPLE_BRANCH_COND_SHIFT = 10, /* conditional branches */
195
196 PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT = 11, /* call/ret stack */
197 PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT = 12, /* indirect jumps */
198 PERF_SAMPLE_BRANCH_CALL_SHIFT = 13, /* direct call */
199
200 PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT = 14, /* no flags */
201 PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT = 15, /* no cycles */
202
203 PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT = 16, /* save branch type */
204
205 PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT = 17, /* save low level index of raw branch records */
206
207 PERF_SAMPLE_BRANCH_MAX_SHIFT /* non-ABI */
208};
209
210enum perf_branch_sample_type {
211 PERF_SAMPLE_BRANCH_USER = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
212 PERF_SAMPLE_BRANCH_KERNEL = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
213 PERF_SAMPLE_BRANCH_HV = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
214
215 PERF_SAMPLE_BRANCH_ANY = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
216 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
217 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
218 PERF_SAMPLE_BRANCH_IND_CALL = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
219 PERF_SAMPLE_BRANCH_ABORT_TX = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
220 PERF_SAMPLE_BRANCH_IN_TX = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
221 PERF_SAMPLE_BRANCH_NO_TX = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
222 PERF_SAMPLE_BRANCH_COND = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
223
224 PERF_SAMPLE_BRANCH_CALL_STACK = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
225 PERF_SAMPLE_BRANCH_IND_JUMP = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
226 PERF_SAMPLE_BRANCH_CALL = 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
227
228 PERF_SAMPLE_BRANCH_NO_FLAGS = 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
229 PERF_SAMPLE_BRANCH_NO_CYCLES = 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
230
231 PERF_SAMPLE_BRANCH_TYPE_SAVE =
232 1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT,
233
234 PERF_SAMPLE_BRANCH_HW_INDEX = 1U << PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT,
235
236 PERF_SAMPLE_BRANCH_MAX = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
237};
238
239/*
240 * Common flow change classification
241 */
242enum {
243 PERF_BR_UNKNOWN = 0, /* unknown */
244 PERF_BR_COND = 1, /* conditional */
245 PERF_BR_UNCOND = 2, /* unconditional */
246 PERF_BR_IND = 3, /* indirect */
247 PERF_BR_CALL = 4, /* function call */
248 PERF_BR_IND_CALL = 5, /* indirect function call */
249 PERF_BR_RET = 6, /* function return */
250 PERF_BR_SYSCALL = 7, /* syscall */
251 PERF_BR_SYSRET = 8, /* syscall return */
252 PERF_BR_COND_CALL = 9, /* conditional function call */
253 PERF_BR_COND_RET = 10, /* conditional function return */
254 PERF_BR_ERET = 11, /* exception return */
255 PERF_BR_IRQ = 12, /* irq */
256 PERF_BR_MAX,
257};
258
259#define PERF_SAMPLE_BRANCH_PLM_ALL \
260 (PERF_SAMPLE_BRANCH_USER|\
261 PERF_SAMPLE_BRANCH_KERNEL|\
262 PERF_SAMPLE_BRANCH_HV)
263
264/*
265 * Values to determine ABI of the registers dump.
266 */
267enum perf_sample_regs_abi {
268 PERF_SAMPLE_REGS_ABI_NONE = 0,
269 PERF_SAMPLE_REGS_ABI_32 = 1,
270 PERF_SAMPLE_REGS_ABI_64 = 2,
271};
272
273/*
274 * Values for the memory transaction event qualifier, mostly for
275 * abort events. Multiple bits can be set.
276 */
277enum {
278 PERF_TXN_ELISION = (1 << 0), /* From elision */
279 PERF_TXN_TRANSACTION = (1 << 1), /* From transaction */
280 PERF_TXN_SYNC = (1 << 2), /* Instruction is related */
281 PERF_TXN_ASYNC = (1 << 3), /* Instruction not related */
282 PERF_TXN_RETRY = (1 << 4), /* Retry possible */
283 PERF_TXN_CONFLICT = (1 << 5), /* Conflict abort */
284 PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
285 PERF_TXN_CAPACITY_READ = (1 << 7), /* Capacity read abort */
286
287 PERF_TXN_MAX = (1 << 8), /* non-ABI */
288
289 /* bits 32..63 are reserved for the abort code */
290
291 PERF_TXN_ABORT_MASK = (0xffffffffULL << 32),
292 PERF_TXN_ABORT_SHIFT = 32,
293};
294
295/*
296 * The format of the data returned by read() on a perf event fd,
297 * as specified by attr.read_format:
298 *
299 * struct read_format {
300 * { u64 value;
301 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
302 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
303 * { u64 id; } && PERF_FORMAT_ID
304 * } && !PERF_FORMAT_GROUP
305 *
306 * { u64 nr;
307 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
308 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
309 * { u64 value;
310 * { u64 id; } && PERF_FORMAT_ID
311 * } cntr[nr];
312 * } && PERF_FORMAT_GROUP
313 * };
314 */
315enum perf_event_read_format {
316 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
317 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
318 PERF_FORMAT_ID = 1U << 2,
319 PERF_FORMAT_GROUP = 1U << 3,
320
321 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
322};
323
324#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
325#define PERF_ATTR_SIZE_VER1 72 /* add: config2 */
326#define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */
327#define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */
328 /* add: sample_stack_user */
329#define PERF_ATTR_SIZE_VER4 104 /* add: sample_regs_intr */
330#define PERF_ATTR_SIZE_VER5 112 /* add: aux_watermark */
331#define PERF_ATTR_SIZE_VER6 120 /* add: aux_sample_size */
332#define PERF_ATTR_SIZE_VER7 128 /* add: sig_data */
333
334/*
335 * Hardware event_id to monitor via a performance monitoring event:
336 *
337 * @sample_max_stack: Max number of frame pointers in a callchain,
338 * should be < /proc/sys/kernel/perf_event_max_stack
339 */
340struct perf_event_attr {
341
342 /*
343 * Major type: hardware/software/tracepoint/etc.
344 */
345 __u32 type;
346
347 /*
348 * Size of the attr structure, for fwd/bwd compat.
349 */
350 __u32 size;
351
352 /*
353 * Type specific configuration information.
354 */
355 __u64 config;
356
357 union {
358 __u64 sample_period;
359 __u64 sample_freq;
360 };
361
362 __u64 sample_type;
363 __u64 read_format;
364
365 __u64 disabled : 1, /* off by default */
366 inherit : 1, /* children inherit it */
367 pinned : 1, /* must always be on PMU */
368 exclusive : 1, /* only group on PMU */
369 exclude_user : 1, /* don't count user */
370 exclude_kernel : 1, /* ditto kernel */
371 exclude_hv : 1, /* ditto hypervisor */
372 exclude_idle : 1, /* don't count when idle */
373 mmap : 1, /* include mmap data */
374 comm : 1, /* include comm data */
375 freq : 1, /* use freq, not period */
376 inherit_stat : 1, /* per task counts */
377 enable_on_exec : 1, /* next exec enables */
378 task : 1, /* trace fork/exit */
379 watermark : 1, /* wakeup_watermark */
380 /*
381 * precise_ip:
382 *
383 * 0 - SAMPLE_IP can have arbitrary skid
384 * 1 - SAMPLE_IP must have constant skid
385 * 2 - SAMPLE_IP requested to have 0 skid
386 * 3 - SAMPLE_IP must have 0 skid
387 *
388 * See also PERF_RECORD_MISC_EXACT_IP
389 */
390 precise_ip : 2, /* skid constraint */
391 mmap_data : 1, /* non-exec mmap data */
392 sample_id_all : 1, /* sample_type all events */
393
394 exclude_host : 1, /* don't count in host */
395 exclude_guest : 1, /* don't count in guest */
396
397 exclude_callchain_kernel : 1, /* exclude kernel callchains */
398 exclude_callchain_user : 1, /* exclude user callchains */
399 mmap2 : 1, /* include mmap with inode data */
400 comm_exec : 1, /* flag comm events that are due to an exec */
401 use_clockid : 1, /* use @clockid for time fields */
402 context_switch : 1, /* context switch data */
403 write_backward : 1, /* Write ring buffer from end to beginning */
404 namespaces : 1, /* include namespaces data */
405 ksymbol : 1, /* include ksymbol events */
406 bpf_event : 1, /* include bpf events */
407 aux_output : 1, /* generate AUX records instead of events */
408 cgroup : 1, /* include cgroup events */
409 text_poke : 1, /* include text poke events */
410 build_id : 1, /* use build id in mmap2 events */
411 inherit_thread : 1, /* children only inherit if cloned with CLONE_THREAD */
412 remove_on_exec : 1, /* event is removed from task on exec */
413 sigtrap : 1, /* send synchronous SIGTRAP on event */
414 __reserved_1 : 26;
415
416 union {
417 __u32 wakeup_events; /* wakeup every n events */
418 __u32 wakeup_watermark; /* bytes before wakeup */
419 };
420
421 __u32 bp_type;
422 union {
423 __u64 bp_addr;
424 __u64 kprobe_func; /* for perf_kprobe */
425 __u64 uprobe_path; /* for perf_uprobe */
426 __u64 config1; /* extension of config */
427 };
428 union {
429 __u64 bp_len;
430 __u64 kprobe_addr; /* when kprobe_func == NULL */
431 __u64 probe_offset; /* for perf_[k,u]probe */
432 __u64 config2; /* extension of config1 */
433 };
434 __u64 branch_sample_type; /* enum perf_branch_sample_type */
435
436 /*
437 * Defines set of user regs to dump on samples.
438 * See asm/perf_regs.h for details.
439 */
440 __u64 sample_regs_user;
441
442 /*
443 * Defines size of the user stack to dump on samples.
444 */
445 __u32 sample_stack_user;
446
447 __s32 clockid;
448 /*
449 * Defines set of regs to dump for each sample
450 * state captured on:
451 * - precise = 0: PMU interrupt
452 * - precise > 0: sampled instruction
453 *
454 * See asm/perf_regs.h for details.
455 */
456 __u64 sample_regs_intr;
457
458 /*
459 * Wakeup watermark for AUX area
460 */
461 __u32 aux_watermark;
462 __u16 sample_max_stack;
463 __u16 __reserved_2;
464 __u32 aux_sample_size;
465 __u32 __reserved_3;
466
467 /*
468 * User provided data if sigtrap=1, passed back to user via
469 * siginfo_t::si_perf_data, e.g. to permit user to identify the event.
470 * Note, siginfo_t::si_perf_data is long-sized, and sig_data will be
471 * truncated accordingly on 32 bit architectures.
472 */
473 __u64 sig_data;
474};
475
476/*
477 * Structure used by below PERF_EVENT_IOC_QUERY_BPF command
478 * to query bpf programs attached to the same perf tracepoint
479 * as the given perf event.
480 */
481struct perf_event_query_bpf {
482 /*
483 * The below ids array length
484 */
485 __u32 ids_len;
486 /*
487 * Set by the kernel to indicate the number of
488 * available programs
489 */
490 __u32 prog_cnt;
491 /*
492 * User provided buffer to store program ids
493 */
494 __u32 ids[0];
495};
496
497/*
498 * Ioctls that can be done on a perf event fd:
499 */
500#define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
501#define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
502#define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
503#define PERF_EVENT_IOC_RESET _IO ('$', 3)
504#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
505#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
506#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
507#define PERF_EVENT_IOC_ID _IOR('$', 7, __u64 *)
508#define PERF_EVENT_IOC_SET_BPF _IOW('$', 8, __u32)
509#define PERF_EVENT_IOC_PAUSE_OUTPUT _IOW('$', 9, __u32)
510#define PERF_EVENT_IOC_QUERY_BPF _IOWR('$', 10, struct perf_event_query_bpf *)
511#define PERF_EVENT_IOC_MODIFY_ATTRIBUTES _IOW('$', 11, struct perf_event_attr *)
512
513enum perf_event_ioc_flags {
514 PERF_IOC_FLAG_GROUP = 1U << 0,
515};
516
517/*
518 * Structure of the page that can be mapped via mmap
519 */
520struct perf_event_mmap_page {
521 __u32 version; /* version number of this structure */
522 __u32 compat_version; /* lowest version this is compat with */
523
524 /*
525 * Bits needed to read the hw events in user-space.
526 *
527 * u32 seq, time_mult, time_shift, index, width;
528 * u64 count, enabled, running;
529 * u64 cyc, time_offset;
530 * s64 pmc = 0;
531 *
532 * do {
533 * seq = pc->lock;
534 * barrier()
535 *
536 * enabled = pc->time_enabled;
537 * running = pc->time_running;
538 *
539 * if (pc->cap_usr_time && enabled != running) {
540 * cyc = rdtsc();
541 * time_offset = pc->time_offset;
542 * time_mult = pc->time_mult;
543 * time_shift = pc->time_shift;
544 * }
545 *
546 * index = pc->index;
547 * count = pc->offset;
548 * if (pc->cap_user_rdpmc && index) {
549 * width = pc->pmc_width;
550 * pmc = rdpmc(index - 1);
551 * }
552 *
553 * barrier();
554 * } while (pc->lock != seq);
555 *
556 * NOTE: for obvious reason this only works on self-monitoring
557 * processes.
558 */
559 __u32 lock; /* seqlock for synchronization */
560 __u32 index; /* hardware event identifier */
561 __s64 offset; /* add to hardware event value */
562 __u64 time_enabled; /* time event active */
563 __u64 time_running; /* time event on cpu */
564 union {
565 __u64 capabilities;
566 struct {
567 __u64 cap_bit0 : 1, /* Always 0, deprecated, see commit 860f085b74e9 */
568 cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */
569
570 cap_user_rdpmc : 1, /* The RDPMC instruction can be used to read counts */
571 cap_user_time : 1, /* The time_{shift,mult,offset} fields are used */
572 cap_user_time_zero : 1, /* The time_zero field is used */
573 cap_user_time_short : 1, /* the time_{cycle,mask} fields are used */
574 cap_____res : 58;
575 };
576 };
577
578 /*
579 * If cap_user_rdpmc this field provides the bit-width of the value
580 * read using the rdpmc() or equivalent instruction. This can be used
581 * to sign extend the result like:
582 *
583 * pmc <<= 64 - width;
584 * pmc >>= 64 - width; // signed shift right
585 * count += pmc;
586 */
587 __u16 pmc_width;
588
589 /*
590 * If cap_usr_time the below fields can be used to compute the time
591 * delta since time_enabled (in ns) using rdtsc or similar.
592 *
593 * u64 quot, rem;
594 * u64 delta;
595 *
596 * quot = (cyc >> time_shift);
597 * rem = cyc & (((u64)1 << time_shift) - 1);
598 * delta = time_offset + quot * time_mult +
599 * ((rem * time_mult) >> time_shift);
600 *
601 * Where time_offset,time_mult,time_shift and cyc are read in the
602 * seqcount loop described above. This delta can then be added to
603 * enabled and possible running (if index), improving the scaling:
604 *
605 * enabled += delta;
606 * if (index)
607 * running += delta;
608 *
609 * quot = count / running;
610 * rem = count % running;
611 * count = quot * enabled + (rem * enabled) / running;
612 */
613 __u16 time_shift;
614 __u32 time_mult;
615 __u64 time_offset;
616 /*
617 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
618 * from sample timestamps.
619 *
620 * time = timestamp - time_zero;
621 * quot = time / time_mult;
622 * rem = time % time_mult;
623 * cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
624 *
625 * And vice versa:
626 *
627 * quot = cyc >> time_shift;
628 * rem = cyc & (((u64)1 << time_shift) - 1);
629 * timestamp = time_zero + quot * time_mult +
630 * ((rem * time_mult) >> time_shift);
631 */
632 __u64 time_zero;
633
634 __u32 size; /* Header size up to __reserved[] fields. */
635 __u32 __reserved_1;
636
637 /*
638 * If cap_usr_time_short, the hardware clock is less than 64bit wide
639 * and we must compute the 'cyc' value, as used by cap_usr_time, as:
640 *
641 * cyc = time_cycles + ((cyc - time_cycles) & time_mask)
642 *
643 * NOTE: this form is explicitly chosen such that cap_usr_time_short
644 * is a correction on top of cap_usr_time, and code that doesn't
645 * know about cap_usr_time_short still works under the assumption
646 * the counter doesn't wrap.
647 */
648 __u64 time_cycles;
649 __u64 time_mask;
650
651 /*
652 * Hole for extension of the self monitor capabilities
653 */
654
655 __u8 __reserved[116*8]; /* align to 1k. */
656
657 /*
658 * Control data for the mmap() data buffer.
659 *
660 * User-space reading the @data_head value should issue an smp_rmb(),
661 * after reading this value.
662 *
663 * When the mapping is PROT_WRITE the @data_tail value should be
664 * written by userspace to reflect the last read data, after issueing
665 * an smp_mb() to separate the data read from the ->data_tail store.
666 * In this case the kernel will not over-write unread data.
667 *
668 * See perf_output_put_handle() for the data ordering.
669 *
670 * data_{offset,size} indicate the location and size of the perf record
671 * buffer within the mmapped area.
672 */
673 __u64 data_head; /* head in the data section */
674 __u64 data_tail; /* user-space written tail */
675 __u64 data_offset; /* where the buffer starts */
676 __u64 data_size; /* data buffer size */
677
678 /*
679 * AUX area is defined by aux_{offset,size} fields that should be set
680 * by the userspace, so that
681 *
682 * aux_offset >= data_offset + data_size
683 *
684 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
685 *
686 * Ring buffer pointers aux_{head,tail} have the same semantics as
687 * data_{head,tail} and same ordering rules apply.
688 */
689 __u64 aux_head;
690 __u64 aux_tail;
691 __u64 aux_offset;
692 __u64 aux_size;
693};
694
695/*
696 * The current state of perf_event_header::misc bits usage:
697 * ('|' used bit, '-' unused bit)
698 *
699 * 012 CDEF
700 * |||---------||||
701 *
702 * Where:
703 * 0-2 CPUMODE_MASK
704 *
705 * C PROC_MAP_PARSE_TIMEOUT
706 * D MMAP_DATA / COMM_EXEC / FORK_EXEC / SWITCH_OUT
707 * E MMAP_BUILD_ID / EXACT_IP / SCHED_OUT_PREEMPT
708 * F (reserved)
709 */
710
711#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
712#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
713#define PERF_RECORD_MISC_KERNEL (1 << 0)
714#define PERF_RECORD_MISC_USER (2 << 0)
715#define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
716#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
717#define PERF_RECORD_MISC_GUEST_USER (5 << 0)
718
719/*
720 * Indicates that /proc/PID/maps parsing are truncated by time out.
721 */
722#define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12)
723/*
724 * Following PERF_RECORD_MISC_* are used on different
725 * events, so can reuse the same bit position:
726 *
727 * PERF_RECORD_MISC_MMAP_DATA - PERF_RECORD_MMAP* events
728 * PERF_RECORD_MISC_COMM_EXEC - PERF_RECORD_COMM event
729 * PERF_RECORD_MISC_FORK_EXEC - PERF_RECORD_FORK event (perf internal)
730 * PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events
731 */
732#define PERF_RECORD_MISC_MMAP_DATA (1 << 13)
733#define PERF_RECORD_MISC_COMM_EXEC (1 << 13)
734#define PERF_RECORD_MISC_FORK_EXEC (1 << 13)
735#define PERF_RECORD_MISC_SWITCH_OUT (1 << 13)
736/*
737 * These PERF_RECORD_MISC_* flags below are safely reused
738 * for the following events:
739 *
740 * PERF_RECORD_MISC_EXACT_IP - PERF_RECORD_SAMPLE of precise events
741 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT - PERF_RECORD_SWITCH* events
742 * PERF_RECORD_MISC_MMAP_BUILD_ID - PERF_RECORD_MMAP2 event
743 *
744 *
745 * PERF_RECORD_MISC_EXACT_IP:
746 * Indicates that the content of PERF_SAMPLE_IP points to
747 * the actual instruction that triggered the event. See also
748 * perf_event_attr::precise_ip.
749 *
750 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT:
751 * Indicates that thread was preempted in TASK_RUNNING state.
752 *
753 * PERF_RECORD_MISC_MMAP_BUILD_ID:
754 * Indicates that mmap2 event carries build id data.
755 */
756#define PERF_RECORD_MISC_EXACT_IP (1 << 14)
757#define PERF_RECORD_MISC_SWITCH_OUT_PREEMPT (1 << 14)
758#define PERF_RECORD_MISC_MMAP_BUILD_ID (1 << 14)
759/*
760 * Reserve the last bit to indicate some extended misc field
761 */
762#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
763
764struct perf_event_header {
765 __u32 type;
766 __u16 misc;
767 __u16 size;
768};
769
770struct perf_ns_link_info {
771 __u64 dev;
772 __u64 ino;
773};
774
775enum {
776 NET_NS_INDEX = 0,
777 UTS_NS_INDEX = 1,
778 IPC_NS_INDEX = 2,
779 PID_NS_INDEX = 3,
780 USER_NS_INDEX = 4,
781 MNT_NS_INDEX = 5,
782 CGROUP_NS_INDEX = 6,
783
784 NR_NAMESPACES, /* number of available namespaces */
785};
786
787enum perf_event_type {
788
789 /*
790 * If perf_event_attr.sample_id_all is set then all event types will
791 * have the sample_type selected fields related to where/when
792 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
793 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
794 * just after the perf_event_header and the fields already present for
795 * the existing fields, i.e. at the end of the payload. That way a newer
796 * perf.data file will be supported by older perf tools, with these new
797 * optional fields being ignored.
798 *
799 * struct sample_id {
800 * { u32 pid, tid; } && PERF_SAMPLE_TID
801 * { u64 time; } && PERF_SAMPLE_TIME
802 * { u64 id; } && PERF_SAMPLE_ID
803 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
804 * { u32 cpu, res; } && PERF_SAMPLE_CPU
805 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
806 * } && perf_event_attr::sample_id_all
807 *
808 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. The
809 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
810 * relative to header.size.
811 */
812
813 /*
814 * The MMAP events record the PROT_EXEC mappings so that we can
815 * correlate userspace IPs to code. They have the following structure:
816 *
817 * struct {
818 * struct perf_event_header header;
819 *
820 * u32 pid, tid;
821 * u64 addr;
822 * u64 len;
823 * u64 pgoff;
824 * char filename[];
825 * struct sample_id sample_id;
826 * };
827 */
828 PERF_RECORD_MMAP = 1,
829
830 /*
831 * struct {
832 * struct perf_event_header header;
833 * u64 id;
834 * u64 lost;
835 * struct sample_id sample_id;
836 * };
837 */
838 PERF_RECORD_LOST = 2,
839
840 /*
841 * struct {
842 * struct perf_event_header header;
843 *
844 * u32 pid, tid;
845 * char comm[];
846 * struct sample_id sample_id;
847 * };
848 */
849 PERF_RECORD_COMM = 3,
850
851 /*
852 * struct {
853 * struct perf_event_header header;
854 * u32 pid, ppid;
855 * u32 tid, ptid;
856 * u64 time;
857 * struct sample_id sample_id;
858 * };
859 */
860 PERF_RECORD_EXIT = 4,
861
862 /*
863 * struct {
864 * struct perf_event_header header;
865 * u64 time;
866 * u64 id;
867 * u64 stream_id;
868 * struct sample_id sample_id;
869 * };
870 */
871 PERF_RECORD_THROTTLE = 5,
872 PERF_RECORD_UNTHROTTLE = 6,
873
874 /*
875 * struct {
876 * struct perf_event_header header;
877 * u32 pid, ppid;
878 * u32 tid, ptid;
879 * u64 time;
880 * struct sample_id sample_id;
881 * };
882 */
883 PERF_RECORD_FORK = 7,
884
885 /*
886 * struct {
887 * struct perf_event_header header;
888 * u32 pid, tid;
889 *
890 * struct read_format values;
891 * struct sample_id sample_id;
892 * };
893 */
894 PERF_RECORD_READ = 8,
895
896 /*
897 * struct {
898 * struct perf_event_header header;
899 *
900 * #
901 * # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
902 * # The advantage of PERF_SAMPLE_IDENTIFIER is that its position
903 * # is fixed relative to header.
904 * #
905 *
906 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
907 * { u64 ip; } && PERF_SAMPLE_IP
908 * { u32 pid, tid; } && PERF_SAMPLE_TID
909 * { u64 time; } && PERF_SAMPLE_TIME
910 * { u64 addr; } && PERF_SAMPLE_ADDR
911 * { u64 id; } && PERF_SAMPLE_ID
912 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
913 * { u32 cpu, res; } && PERF_SAMPLE_CPU
914 * { u64 period; } && PERF_SAMPLE_PERIOD
915 *
916 * { struct read_format values; } && PERF_SAMPLE_READ
917 *
918 * { u64 nr,
919 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
920 *
921 * #
922 * # The RAW record below is opaque data wrt the ABI
923 * #
924 * # That is, the ABI doesn't make any promises wrt to
925 * # the stability of its content, it may vary depending
926 * # on event, hardware, kernel version and phase of
927 * # the moon.
928 * #
929 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
930 * #
931 *
932 * { u32 size;
933 * char data[size];}&& PERF_SAMPLE_RAW
934 *
935 * { u64 nr;
936 * { u64 hw_idx; } && PERF_SAMPLE_BRANCH_HW_INDEX
937 * { u64 from, to, flags } lbr[nr];
938 * } && PERF_SAMPLE_BRANCH_STACK
939 *
940 * { u64 abi; # enum perf_sample_regs_abi
941 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
942 *
943 * { u64 size;
944 * char data[size];
945 * u64 dyn_size; } && PERF_SAMPLE_STACK_USER
946 *
947 * { union perf_sample_weight
948 * {
949 * u64 full; && PERF_SAMPLE_WEIGHT
950 * #if defined(__LITTLE_ENDIAN_BITFIELD)
951 * struct {
952 * u32 var1_dw;
953 * u16 var2_w;
954 * u16 var3_w;
955 * } && PERF_SAMPLE_WEIGHT_STRUCT
956 * #elif defined(__BIG_ENDIAN_BITFIELD)
957 * struct {
958 * u16 var3_w;
959 * u16 var2_w;
960 * u32 var1_dw;
961 * } && PERF_SAMPLE_WEIGHT_STRUCT
962 * #endif
963 * }
964 * }
965 * { u64 data_src; } && PERF_SAMPLE_DATA_SRC
966 * { u64 transaction; } && PERF_SAMPLE_TRANSACTION
967 * { u64 abi; # enum perf_sample_regs_abi
968 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
969 * { u64 phys_addr;} && PERF_SAMPLE_PHYS_ADDR
970 * { u64 size;
971 * char data[size]; } && PERF_SAMPLE_AUX
972 * { u64 data_page_size;} && PERF_SAMPLE_DATA_PAGE_SIZE
973 * { u64 code_page_size;} && PERF_SAMPLE_CODE_PAGE_SIZE
974 * };
975 */
976 PERF_RECORD_SAMPLE = 9,
977
978 /*
979 * The MMAP2 records are an augmented version of MMAP, they add
980 * maj, min, ino numbers to be used to uniquely identify each mapping
981 *
982 * struct {
983 * struct perf_event_header header;
984 *
985 * u32 pid, tid;
986 * u64 addr;
987 * u64 len;
988 * u64 pgoff;
989 * union {
990 * struct {
991 * u32 maj;
992 * u32 min;
993 * u64 ino;
994 * u64 ino_generation;
995 * };
996 * struct {
997 * u8 build_id_size;
998 * u8 __reserved_1;
999 * u16 __reserved_2;
1000 * u8 build_id[20];
1001 * };
1002 * };
1003 * u32 prot, flags;
1004 * char filename[];
1005 * struct sample_id sample_id;
1006 * };
1007 */
1008 PERF_RECORD_MMAP2 = 10,
1009
1010 /*
1011 * Records that new data landed in the AUX buffer part.
1012 *
1013 * struct {
1014 * struct perf_event_header header;
1015 *
1016 * u64 aux_offset;
1017 * u64 aux_size;
1018 * u64 flags;
1019 * struct sample_id sample_id;
1020 * };
1021 */
1022 PERF_RECORD_AUX = 11,
1023
1024 /*
1025 * Indicates that instruction trace has started
1026 *
1027 * struct {
1028 * struct perf_event_header header;
1029 * u32 pid;
1030 * u32 tid;
1031 * struct sample_id sample_id;
1032 * };
1033 */
1034 PERF_RECORD_ITRACE_START = 12,
1035
1036 /*
1037 * Records the dropped/lost sample number.
1038 *
1039 * struct {
1040 * struct perf_event_header header;
1041 *
1042 * u64 lost;
1043 * struct sample_id sample_id;
1044 * };
1045 */
1046 PERF_RECORD_LOST_SAMPLES = 13,
1047
1048 /*
1049 * Records a context switch in or out (flagged by
1050 * PERF_RECORD_MISC_SWITCH_OUT). See also
1051 * PERF_RECORD_SWITCH_CPU_WIDE.
1052 *
1053 * struct {
1054 * struct perf_event_header header;
1055 * struct sample_id sample_id;
1056 * };
1057 */
1058 PERF_RECORD_SWITCH = 14,
1059
1060 /*
1061 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
1062 * next_prev_tid that are the next (switching out) or previous
1063 * (switching in) pid/tid.
1064 *
1065 * struct {
1066 * struct perf_event_header header;
1067 * u32 next_prev_pid;
1068 * u32 next_prev_tid;
1069 * struct sample_id sample_id;
1070 * };
1071 */
1072 PERF_RECORD_SWITCH_CPU_WIDE = 15,
1073
1074 /*
1075 * struct {
1076 * struct perf_event_header header;
1077 * u32 pid;
1078 * u32 tid;
1079 * u64 nr_namespaces;
1080 * { u64 dev, inode; } [nr_namespaces];
1081 * struct sample_id sample_id;
1082 * };
1083 */
1084 PERF_RECORD_NAMESPACES = 16,
1085
1086 /*
1087 * Record ksymbol register/unregister events:
1088 *
1089 * struct {
1090 * struct perf_event_header header;
1091 * u64 addr;
1092 * u32 len;
1093 * u16 ksym_type;
1094 * u16 flags;
1095 * char name[];
1096 * struct sample_id sample_id;
1097 * };
1098 */
1099 PERF_RECORD_KSYMBOL = 17,
1100
1101 /*
1102 * Record bpf events:
1103 * enum perf_bpf_event_type {
1104 * PERF_BPF_EVENT_UNKNOWN = 0,
1105 * PERF_BPF_EVENT_PROG_LOAD = 1,
1106 * PERF_BPF_EVENT_PROG_UNLOAD = 2,
1107 * };
1108 *
1109 * struct {
1110 * struct perf_event_header header;
1111 * u16 type;
1112 * u16 flags;
1113 * u32 id;
1114 * u8 tag[BPF_TAG_SIZE];
1115 * struct sample_id sample_id;
1116 * };
1117 */
1118 PERF_RECORD_BPF_EVENT = 18,
1119
1120 /*
1121 * struct {
1122 * struct perf_event_header header;
1123 * u64 id;
1124 * char path[];
1125 * struct sample_id sample_id;
1126 * };
1127 */
1128 PERF_RECORD_CGROUP = 19,
1129
1130 /*
1131 * Records changes to kernel text i.e. self-modified code. 'old_len' is
1132 * the number of old bytes, 'new_len' is the number of new bytes. Either
1133 * 'old_len' or 'new_len' may be zero to indicate, for example, the
1134 * addition or removal of a trampoline. 'bytes' contains the old bytes
1135 * followed immediately by the new bytes.
1136 *
1137 * struct {
1138 * struct perf_event_header header;
1139 * u64 addr;
1140 * u16 old_len;
1141 * u16 new_len;
1142 * u8 bytes[];
1143 * struct sample_id sample_id;
1144 * };
1145 */
1146 PERF_RECORD_TEXT_POKE = 20,
1147
1148 /*
1149 * Data written to the AUX area by hardware due to aux_output, may need
1150 * to be matched to the event by an architecture-specific hardware ID.
1151 * This records the hardware ID, but requires sample_id to provide the
1152 * event ID. e.g. Intel PT uses this record to disambiguate PEBS-via-PT
1153 * records from multiple events.
1154 *
1155 * struct {
1156 * struct perf_event_header header;
1157 * u64 hw_id;
1158 * struct sample_id sample_id;
1159 * };
1160 */
1161 PERF_RECORD_AUX_OUTPUT_HW_ID = 21,
1162
1163 PERF_RECORD_MAX, /* non-ABI */
1164};
1165
1166enum perf_record_ksymbol_type {
1167 PERF_RECORD_KSYMBOL_TYPE_UNKNOWN = 0,
1168 PERF_RECORD_KSYMBOL_TYPE_BPF = 1,
1169 /*
1170 * Out of line code such as kprobe-replaced instructions or optimized
1171 * kprobes or ftrace trampolines.
1172 */
1173 PERF_RECORD_KSYMBOL_TYPE_OOL = 2,
1174 PERF_RECORD_KSYMBOL_TYPE_MAX /* non-ABI */
1175};
1176
1177#define PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER (1 << 0)
1178
1179enum perf_bpf_event_type {
1180 PERF_BPF_EVENT_UNKNOWN = 0,
1181 PERF_BPF_EVENT_PROG_LOAD = 1,
1182 PERF_BPF_EVENT_PROG_UNLOAD = 2,
1183 PERF_BPF_EVENT_MAX, /* non-ABI */
1184};
1185
1186#define PERF_MAX_STACK_DEPTH 127
1187#define PERF_MAX_CONTEXTS_PER_STACK 8
1188
1189enum perf_callchain_context {
1190 PERF_CONTEXT_HV = (__u64)-32,
1191 PERF_CONTEXT_KERNEL = (__u64)-128,
1192 PERF_CONTEXT_USER = (__u64)-512,
1193
1194 PERF_CONTEXT_GUEST = (__u64)-2048,
1195 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
1196 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
1197
1198 PERF_CONTEXT_MAX = (__u64)-4095,
1199};
1200
1201/**
1202 * PERF_RECORD_AUX::flags bits
1203 */
1204#define PERF_AUX_FLAG_TRUNCATED 0x01 /* record was truncated to fit */
1205#define PERF_AUX_FLAG_OVERWRITE 0x02 /* snapshot from overwrite mode */
1206#define PERF_AUX_FLAG_PARTIAL 0x04 /* record contains gaps */
1207#define PERF_AUX_FLAG_COLLISION 0x08 /* sample collided with another */
1208#define PERF_AUX_FLAG_PMU_FORMAT_TYPE_MASK 0xff00 /* PMU specific trace format type */
1209
1210/* CoreSight PMU AUX buffer formats */
1211#define PERF_AUX_FLAG_CORESIGHT_FORMAT_CORESIGHT 0x0000 /* Default for backward compatibility */
1212#define PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW 0x0100 /* Raw format of the source */
1213
1214#define PERF_FLAG_FD_NO_GROUP (1UL << 0)
1215#define PERF_FLAG_FD_OUTPUT (1UL << 1)
1216#define PERF_FLAG_PID_CGROUP (1UL << 2) /* pid=cgroup id, per-cpu mode only */
1217#define PERF_FLAG_FD_CLOEXEC (1UL << 3) /* O_CLOEXEC */
1218
1219#if defined(__LITTLE_ENDIAN_BITFIELD)
1220union perf_mem_data_src {
1221 __u64 val;
1222 struct {
1223 __u64 mem_op:5, /* type of opcode */
1224 mem_lvl:14, /* memory hierarchy level */
1225 mem_snoop:5, /* snoop mode */
1226 mem_lock:2, /* lock instr */
1227 mem_dtlb:7, /* tlb access */
1228 mem_lvl_num:4, /* memory hierarchy level number */
1229 mem_remote:1, /* remote */
1230 mem_snoopx:2, /* snoop mode, ext */
1231 mem_blk:3, /* access blocked */
1232 mem_hops:3, /* hop level */
1233 mem_rsvd:18;
1234 };
1235};
1236#elif defined(__BIG_ENDIAN_BITFIELD)
1237union perf_mem_data_src {
1238 __u64 val;
1239 struct {
1240 __u64 mem_rsvd:18,
1241 mem_hops:3, /* hop level */
1242 mem_blk:3, /* access blocked */
1243 mem_snoopx:2, /* snoop mode, ext */
1244 mem_remote:1, /* remote */
1245 mem_lvl_num:4, /* memory hierarchy level number */
1246 mem_dtlb:7, /* tlb access */
1247 mem_lock:2, /* lock instr */
1248 mem_snoop:5, /* snoop mode */
1249 mem_lvl:14, /* memory hierarchy level */
1250 mem_op:5; /* type of opcode */
1251 };
1252};
1253#else
1254#error "Unknown endianness"
1255#endif
1256
1257/* type of opcode (load/store/prefetch,code) */
1258#define PERF_MEM_OP_NA 0x01 /* not available */
1259#define PERF_MEM_OP_LOAD 0x02 /* load instruction */
1260#define PERF_MEM_OP_STORE 0x04 /* store instruction */
1261#define PERF_MEM_OP_PFETCH 0x08 /* prefetch */
1262#define PERF_MEM_OP_EXEC 0x10 /* code (execution) */
1263#define PERF_MEM_OP_SHIFT 0
1264
1265/*
1266 * PERF_MEM_LVL_* namespace being depricated to some extent in the
1267 * favour of newer composite PERF_MEM_{LVLNUM_,REMOTE_,SNOOPX_} fields.
1268 * Supporting this namespace inorder to not break defined ABIs.
1269 *
1270 * memory hierarchy (memory level, hit or miss)
1271 */
1272#define PERF_MEM_LVL_NA 0x01 /* not available */
1273#define PERF_MEM_LVL_HIT 0x02 /* hit level */
1274#define PERF_MEM_LVL_MISS 0x04 /* miss level */
1275#define PERF_MEM_LVL_L1 0x08 /* L1 */
1276#define PERF_MEM_LVL_LFB 0x10 /* Line Fill Buffer */
1277#define PERF_MEM_LVL_L2 0x20 /* L2 */
1278#define PERF_MEM_LVL_L3 0x40 /* L3 */
1279#define PERF_MEM_LVL_LOC_RAM 0x80 /* Local DRAM */
1280#define PERF_MEM_LVL_REM_RAM1 0x100 /* Remote DRAM (1 hop) */
1281#define PERF_MEM_LVL_REM_RAM2 0x200 /* Remote DRAM (2 hops) */
1282#define PERF_MEM_LVL_REM_CCE1 0x400 /* Remote Cache (1 hop) */
1283#define PERF_MEM_LVL_REM_CCE2 0x800 /* Remote Cache (2 hops) */
1284#define PERF_MEM_LVL_IO 0x1000 /* I/O memory */
1285#define PERF_MEM_LVL_UNC 0x2000 /* Uncached memory */
1286#define PERF_MEM_LVL_SHIFT 5
1287
1288#define PERF_MEM_REMOTE_REMOTE 0x01 /* Remote */
1289#define PERF_MEM_REMOTE_SHIFT 37
1290
1291#define PERF_MEM_LVLNUM_L1 0x01 /* L1 */
1292#define PERF_MEM_LVLNUM_L2 0x02 /* L2 */
1293#define PERF_MEM_LVLNUM_L3 0x03 /* L3 */
1294#define PERF_MEM_LVLNUM_L4 0x04 /* L4 */
1295/* 5-0xa available */
1296#define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */
1297#define PERF_MEM_LVLNUM_LFB 0x0c /* LFB */
1298#define PERF_MEM_LVLNUM_RAM 0x0d /* RAM */
1299#define PERF_MEM_LVLNUM_PMEM 0x0e /* PMEM */
1300#define PERF_MEM_LVLNUM_NA 0x0f /* N/A */
1301
1302#define PERF_MEM_LVLNUM_SHIFT 33
1303
1304/* snoop mode */
1305#define PERF_MEM_SNOOP_NA 0x01 /* not available */
1306#define PERF_MEM_SNOOP_NONE 0x02 /* no snoop */
1307#define PERF_MEM_SNOOP_HIT 0x04 /* snoop hit */
1308#define PERF_MEM_SNOOP_MISS 0x08 /* snoop miss */
1309#define PERF_MEM_SNOOP_HITM 0x10 /* snoop hit modified */
1310#define PERF_MEM_SNOOP_SHIFT 19
1311
1312#define PERF_MEM_SNOOPX_FWD 0x01 /* forward */
1313/* 1 free */
1314#define PERF_MEM_SNOOPX_SHIFT 38
1315
1316/* locked instruction */
1317#define PERF_MEM_LOCK_NA 0x01 /* not available */
1318#define PERF_MEM_LOCK_LOCKED 0x02 /* locked transaction */
1319#define PERF_MEM_LOCK_SHIFT 24
1320
1321/* TLB access */
1322#define PERF_MEM_TLB_NA 0x01 /* not available */
1323#define PERF_MEM_TLB_HIT 0x02 /* hit level */
1324#define PERF_MEM_TLB_MISS 0x04 /* miss level */
1325#define PERF_MEM_TLB_L1 0x08 /* L1 */
1326#define PERF_MEM_TLB_L2 0x10 /* L2 */
1327#define PERF_MEM_TLB_WK 0x20 /* Hardware Walker*/
1328#define PERF_MEM_TLB_OS 0x40 /* OS fault handler */
1329#define PERF_MEM_TLB_SHIFT 26
1330
1331/* Access blocked */
1332#define PERF_MEM_BLK_NA 0x01 /* not available */
1333#define PERF_MEM_BLK_DATA 0x02 /* data could not be forwarded */
1334#define PERF_MEM_BLK_ADDR 0x04 /* address conflict */
1335#define PERF_MEM_BLK_SHIFT 40
1336
1337/* hop level */
1338#define PERF_MEM_HOPS_0 0x01 /* remote core, same node */
1339#define PERF_MEM_HOPS_1 0x02 /* remote node, same socket */
1340#define PERF_MEM_HOPS_2 0x03 /* remote socket, same board */
1341#define PERF_MEM_HOPS_3 0x04 /* remote board */
1342/* 5-7 available */
1343#define PERF_MEM_HOPS_SHIFT 43
1344
1345#define PERF_MEM_S(a, s) \
1346 (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
1347
1348/*
1349 * single taken branch record layout:
1350 *
1351 * from: source instruction (may not always be a branch insn)
1352 * to: branch target
1353 * mispred: branch target was mispredicted
1354 * predicted: branch target was predicted
1355 *
1356 * support for mispred, predicted is optional. In case it
1357 * is not supported mispred = predicted = 0.
1358 *
1359 * in_tx: running in a hardware transaction
1360 * abort: aborting a hardware transaction
1361 * cycles: cycles from last branch (or 0 if not supported)
1362 * type: branch type
1363 */
1364struct perf_branch_entry {
1365 __u64 from;
1366 __u64 to;
1367 __u64 mispred:1, /* target mispredicted */
1368 predicted:1,/* target predicted */
1369 in_tx:1, /* in transaction */
1370 abort:1, /* transaction abort */
1371 cycles:16, /* cycle count to last branch */
1372 type:4, /* branch type */
1373 reserved:40;
1374};
1375
1376union perf_sample_weight {
1377 __u64 full;
1378#if defined(__LITTLE_ENDIAN_BITFIELD)
1379 struct {
1380 __u32 var1_dw;
1381 __u16 var2_w;
1382 __u16 var3_w;
1383 };
1384#elif defined(__BIG_ENDIAN_BITFIELD)
1385 struct {
1386 __u16 var3_w;
1387 __u16 var2_w;
1388 __u32 var1_dw;
1389 };
1390#else
1391#error "Unknown endianness"
1392#endif
1393};
1394
1395#endif /* _UAPI_LINUX_PERF_EVENT_H */