Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 */
9
10#ifndef _LINUX_SKBUFF_H
11#define _LINUX_SKBUFF_H
12
13#include <linux/kernel.h>
14#include <linux/compiler.h>
15#include <linux/time.h>
16#include <linux/bug.h>
17#include <linux/bvec.h>
18#include <linux/cache.h>
19#include <linux/rbtree.h>
20#include <linux/socket.h>
21#include <linux/refcount.h>
22
23#include <linux/atomic.h>
24#include <asm/types.h>
25#include <linux/spinlock.h>
26#include <linux/net.h>
27#include <linux/textsearch.h>
28#include <net/checksum.h>
29#include <linux/rcupdate.h>
30#include <linux/hrtimer.h>
31#include <linux/dma-mapping.h>
32#include <linux/netdev_features.h>
33#include <linux/sched.h>
34#include <linux/sched/clock.h>
35#include <net/flow_dissector.h>
36#include <linux/splice.h>
37#include <linux/in6.h>
38#include <linux/if_packet.h>
39#include <linux/llist.h>
40#include <net/flow.h>
41#include <net/page_pool.h>
42#if IS_ENABLED(CONFIG_NF_CONNTRACK)
43#include <linux/netfilter/nf_conntrack_common.h>
44#endif
45
46/* The interface for checksum offload between the stack and networking drivers
47 * is as follows...
48 *
49 * A. IP checksum related features
50 *
51 * Drivers advertise checksum offload capabilities in the features of a device.
52 * From the stack's point of view these are capabilities offered by the driver.
53 * A driver typically only advertises features that it is capable of offloading
54 * to its device.
55 *
56 * The checksum related features are:
57 *
58 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
59 * IP (one's complement) checksum for any combination
60 * of protocols or protocol layering. The checksum is
61 * computed and set in a packet per the CHECKSUM_PARTIAL
62 * interface (see below).
63 *
64 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
65 * TCP or UDP packets over IPv4. These are specifically
66 * unencapsulated packets of the form IPv4|TCP or
67 * IPv4|UDP where the Protocol field in the IPv4 header
68 * is TCP or UDP. The IPv4 header may contain IP options.
69 * This feature cannot be set in features for a device
70 * with NETIF_F_HW_CSUM also set. This feature is being
71 * DEPRECATED (see below).
72 *
73 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
74 * TCP or UDP packets over IPv6. These are specifically
75 * unencapsulated packets of the form IPv6|TCP or
76 * IPv6|UDP where the Next Header field in the IPv6
77 * header is either TCP or UDP. IPv6 extension headers
78 * are not supported with this feature. This feature
79 * cannot be set in features for a device with
80 * NETIF_F_HW_CSUM also set. This feature is being
81 * DEPRECATED (see below).
82 *
83 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
84 * This flag is only used to disable the RX checksum
85 * feature for a device. The stack will accept receive
86 * checksum indication in packets received on a device
87 * regardless of whether NETIF_F_RXCSUM is set.
88 *
89 * B. Checksumming of received packets by device. Indication of checksum
90 * verification is set in skb->ip_summed. Possible values are:
91 *
92 * CHECKSUM_NONE:
93 *
94 * Device did not checksum this packet e.g. due to lack of capabilities.
95 * The packet contains full (though not verified) checksum in packet but
96 * not in skb->csum. Thus, skb->csum is undefined in this case.
97 *
98 * CHECKSUM_UNNECESSARY:
99 *
100 * The hardware you're dealing with doesn't calculate the full checksum
101 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
102 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
103 * if their checksums are okay. skb->csum is still undefined in this case
104 * though. A driver or device must never modify the checksum field in the
105 * packet even if checksum is verified.
106 *
107 * CHECKSUM_UNNECESSARY is applicable to following protocols:
108 * TCP: IPv6 and IPv4.
109 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
110 * zero UDP checksum for either IPv4 or IPv6, the networking stack
111 * may perform further validation in this case.
112 * GRE: only if the checksum is present in the header.
113 * SCTP: indicates the CRC in SCTP header has been validated.
114 * FCOE: indicates the CRC in FC frame has been validated.
115 *
116 * skb->csum_level indicates the number of consecutive checksums found in
117 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
118 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
119 * and a device is able to verify the checksums for UDP (possibly zero),
120 * GRE (checksum flag is set) and TCP, skb->csum_level would be set to
121 * two. If the device were only able to verify the UDP checksum and not
122 * GRE, either because it doesn't support GRE checksum or because GRE
123 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
124 * not considered in this case).
125 *
126 * CHECKSUM_COMPLETE:
127 *
128 * This is the most generic way. The device supplied checksum of the _whole_
129 * packet as seen by netif_rx() and fills in skb->csum. This means the
130 * hardware doesn't need to parse L3/L4 headers to implement this.
131 *
132 * Notes:
133 * - Even if device supports only some protocols, but is able to produce
134 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
135 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
136 *
137 * CHECKSUM_PARTIAL:
138 *
139 * A checksum is set up to be offloaded to a device as described in the
140 * output description for CHECKSUM_PARTIAL. This may occur on a packet
141 * received directly from another Linux OS, e.g., a virtualized Linux kernel
142 * on the same host, or it may be set in the input path in GRO or remote
143 * checksum offload. For the purposes of checksum verification, the checksum
144 * referred to by skb->csum_start + skb->csum_offset and any preceding
145 * checksums in the packet are considered verified. Any checksums in the
146 * packet that are after the checksum being offloaded are not considered to
147 * be verified.
148 *
149 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
150 * in the skb->ip_summed for a packet. Values are:
151 *
152 * CHECKSUM_PARTIAL:
153 *
154 * The driver is required to checksum the packet as seen by hard_start_xmit()
155 * from skb->csum_start up to the end, and to record/write the checksum at
156 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
157 * csum_start and csum_offset values are valid values given the length and
158 * offset of the packet, but it should not attempt to validate that the
159 * checksum refers to a legitimate transport layer checksum -- it is the
160 * purview of the stack to validate that csum_start and csum_offset are set
161 * correctly.
162 *
163 * When the stack requests checksum offload for a packet, the driver MUST
164 * ensure that the checksum is set correctly. A driver can either offload the
165 * checksum calculation to the device, or call skb_checksum_help (in the case
166 * that the device does not support offload for a particular checksum).
167 *
168 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
169 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
170 * checksum offload capability.
171 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
172 * on network device checksumming capabilities: if a packet does not match
173 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
174 * csum_not_inet, see item D.) is called to resolve the checksum.
175 *
176 * CHECKSUM_NONE:
177 *
178 * The skb was already checksummed by the protocol, or a checksum is not
179 * required.
180 *
181 * CHECKSUM_UNNECESSARY:
182 *
183 * This has the same meaning as CHECKSUM_NONE for checksum offload on
184 * output.
185 *
186 * CHECKSUM_COMPLETE:
187 * Not used in checksum output. If a driver observes a packet with this value
188 * set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
189 *
190 * D. Non-IP checksum (CRC) offloads
191 *
192 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
193 * offloading the SCTP CRC in a packet. To perform this offload the stack
194 * will set csum_start and csum_offset accordingly, set ip_summed to
195 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
196 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
197 * A driver that supports both IP checksum offload and SCTP CRC32c offload
198 * must verify which offload is configured for a packet by testing the
199 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
200 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
201 *
202 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
203 * offloading the FCOE CRC in a packet. To perform this offload the stack
204 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
205 * accordingly. Note that there is no indication in the skbuff that the
206 * CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
207 * both IP checksum offload and FCOE CRC offload must verify which offload
208 * is configured for a packet, presumably by inspecting packet headers.
209 *
210 * E. Checksumming on output with GSO.
211 *
212 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
213 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
214 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
215 * part of the GSO operation is implied. If a checksum is being offloaded
216 * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
217 * csum_offset are set to refer to the outermost checksum being offloaded
218 * (two offloaded checksums are possible with UDP encapsulation).
219 */
220
221/* Don't change this without changing skb_csum_unnecessary! */
222#define CHECKSUM_NONE 0
223#define CHECKSUM_UNNECESSARY 1
224#define CHECKSUM_COMPLETE 2
225#define CHECKSUM_PARTIAL 3
226
227/* Maximum value in skb->csum_level */
228#define SKB_MAX_CSUM_LEVEL 3
229
230#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
231#define SKB_WITH_OVERHEAD(X) \
232 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
233#define SKB_MAX_ORDER(X, ORDER) \
234 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
235#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
236#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
237
238/* return minimum truesize of one skb containing X bytes of data */
239#define SKB_TRUESIZE(X) ((X) + \
240 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
241 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
242
243struct ahash_request;
244struct net_device;
245struct scatterlist;
246struct pipe_inode_info;
247struct iov_iter;
248struct napi_struct;
249struct bpf_prog;
250union bpf_attr;
251struct skb_ext;
252
253#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254struct nf_bridge_info {
255 enum {
256 BRNF_PROTO_UNCHANGED,
257 BRNF_PROTO_8021Q,
258 BRNF_PROTO_PPPOE
259 } orig_proto:8;
260 u8 pkt_otherhost:1;
261 u8 in_prerouting:1;
262 u8 bridged_dnat:1;
263 __u16 frag_max_size;
264 struct net_device *physindev;
265
266 /* always valid & non-NULL from FORWARD on, for physdev match */
267 struct net_device *physoutdev;
268 union {
269 /* prerouting: detect dnat in orig/reply direction */
270 __be32 ipv4_daddr;
271 struct in6_addr ipv6_daddr;
272
273 /* after prerouting + nat detected: store original source
274 * mac since neigh resolution overwrites it, only used while
275 * skb is out in neigh layer.
276 */
277 char neigh_header[8];
278 };
279};
280#endif
281
282#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
283/* Chain in tc_skb_ext will be used to share the tc chain with
284 * ovs recirc_id. It will be set to the current chain by tc
285 * and read by ovs to recirc_id.
286 */
287struct tc_skb_ext {
288 __u32 chain;
289 __u16 mru;
290 __u16 zone;
291 u8 post_ct:1;
292 u8 post_ct_snat:1;
293 u8 post_ct_dnat:1;
294};
295#endif
296
297struct sk_buff_head {
298 /* These two members must be first to match sk_buff. */
299 struct_group_tagged(sk_buff_list, list,
300 struct sk_buff *next;
301 struct sk_buff *prev;
302 );
303
304 __u32 qlen;
305 spinlock_t lock;
306};
307
308struct sk_buff;
309
310/* The reason of skb drop, which is used in kfree_skb_reason().
311 * en...maybe they should be splited by group?
312 *
313 * Each item here should also be in 'TRACE_SKB_DROP_REASON', which is
314 * used to translate the reason to string.
315 */
316enum skb_drop_reason {
317 SKB_NOT_DROPPED_YET = 0,
318 SKB_DROP_REASON_NOT_SPECIFIED, /* drop reason is not specified */
319 SKB_DROP_REASON_NO_SOCKET, /* socket not found */
320 SKB_DROP_REASON_PKT_TOO_SMALL, /* packet size is too small */
321 SKB_DROP_REASON_TCP_CSUM, /* TCP checksum error */
322 SKB_DROP_REASON_SOCKET_FILTER, /* dropped by socket filter */
323 SKB_DROP_REASON_UDP_CSUM, /* UDP checksum error */
324 SKB_DROP_REASON_NETFILTER_DROP, /* dropped by netfilter */
325 SKB_DROP_REASON_OTHERHOST, /* packet don't belong to current
326 * host (interface is in promisc
327 * mode)
328 */
329 SKB_DROP_REASON_IP_CSUM, /* IP checksum error */
330 SKB_DROP_REASON_IP_INHDR, /* there is something wrong with
331 * IP header (see
332 * IPSTATS_MIB_INHDRERRORS)
333 */
334 SKB_DROP_REASON_IP_RPFILTER, /* IP rpfilter validate failed.
335 * see the document for rp_filter
336 * in ip-sysctl.rst for more
337 * information
338 */
339 SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST, /* destination address of L2
340 * is multicast, but L3 is
341 * unicast.
342 */
343 SKB_DROP_REASON_XFRM_POLICY, /* xfrm policy check failed */
344 SKB_DROP_REASON_IP_NOPROTO, /* no support for IP protocol */
345 SKB_DROP_REASON_SOCKET_RCVBUFF, /* socket receive buff is full */
346 SKB_DROP_REASON_PROTO_MEM, /* proto memory limition, such as
347 * udp packet drop out of
348 * udp_memory_allocated.
349 */
350 SKB_DROP_REASON_TCP_MD5NOTFOUND, /* no MD5 hash and one
351 * expected, corresponding
352 * to LINUX_MIB_TCPMD5NOTFOUND
353 */
354 SKB_DROP_REASON_TCP_MD5UNEXPECTED, /* MD5 hash and we're not
355 * expecting one, corresponding
356 * to LINUX_MIB_TCPMD5UNEXPECTED
357 */
358 SKB_DROP_REASON_TCP_MD5FAILURE, /* MD5 hash and its wrong,
359 * corresponding to
360 * LINUX_MIB_TCPMD5FAILURE
361 */
362 SKB_DROP_REASON_SOCKET_BACKLOG, /* failed to add skb to socket
363 * backlog (see
364 * LINUX_MIB_TCPBACKLOGDROP)
365 */
366 SKB_DROP_REASON_TCP_FLAGS, /* TCP flags invalid */
367 SKB_DROP_REASON_TCP_ZEROWINDOW, /* TCP receive window size is zero,
368 * see LINUX_MIB_TCPZEROWINDOWDROP
369 */
370 SKB_DROP_REASON_TCP_OLD_DATA, /* the TCP data reveived is already
371 * received before (spurious retrans
372 * may happened), see
373 * LINUX_MIB_DELAYEDACKLOST
374 */
375 SKB_DROP_REASON_TCP_OVERWINDOW, /* the TCP data is out of window,
376 * the seq of the first byte exceed
377 * the right edges of receive
378 * window
379 */
380 SKB_DROP_REASON_TCP_OFOMERGE, /* the data of skb is already in
381 * the ofo queue, corresponding to
382 * LINUX_MIB_TCPOFOMERGE
383 */
384 SKB_DROP_REASON_IP_OUTNOROUTES, /* route lookup failed */
385 SKB_DROP_REASON_BPF_CGROUP_EGRESS, /* dropped by
386 * BPF_PROG_TYPE_CGROUP_SKB
387 * eBPF program
388 */
389 SKB_DROP_REASON_IPV6DISABLED, /* IPv6 is disabled on the device */
390 SKB_DROP_REASON_NEIGH_CREATEFAIL, /* failed to create neigh
391 * entry
392 */
393 SKB_DROP_REASON_NEIGH_FAILED, /* neigh entry in failed state */
394 SKB_DROP_REASON_NEIGH_QUEUEFULL, /* arp_queue for neigh
395 * entry is full
396 */
397 SKB_DROP_REASON_NEIGH_DEAD, /* neigh entry is dead */
398 SKB_DROP_REASON_TC_EGRESS, /* dropped in TC egress HOOK */
399 SKB_DROP_REASON_QDISC_DROP, /* dropped by qdisc when packet
400 * outputting (failed to enqueue to
401 * current qdisc)
402 */
403 SKB_DROP_REASON_CPU_BACKLOG, /* failed to enqueue the skb to
404 * the per CPU backlog queue. This
405 * can be caused by backlog queue
406 * full (see netdev_max_backlog in
407 * net.rst) or RPS flow limit
408 */
409 SKB_DROP_REASON_XDP, /* dropped by XDP in input path */
410 SKB_DROP_REASON_TC_INGRESS, /* dropped in TC ingress HOOK */
411 SKB_DROP_REASON_PTYPE_ABSENT, /* not packet_type found to handle
412 * the skb. For an etner packet,
413 * this means that L3 protocol is
414 * not supported
415 */
416 SKB_DROP_REASON_SKB_CSUM, /* sk_buff checksum computation
417 * error
418 */
419 SKB_DROP_REASON_SKB_GSO_SEG, /* gso segmentation error */
420 SKB_DROP_REASON_SKB_UCOPY_FAULT, /* failed to copy data from
421 * user space, e.g., via
422 * zerocopy_sg_from_iter()
423 * or skb_orphan_frags_rx()
424 */
425 SKB_DROP_REASON_DEV_HDR, /* device driver specific
426 * header/metadata is invalid
427 */
428 /* the device is not ready to xmit/recv due to any of its data
429 * structure that is not up/ready/initialized, e.g., the IFF_UP is
430 * not set, or driver specific tun->tfiles[txq] is not initialized
431 */
432 SKB_DROP_REASON_DEV_READY,
433 SKB_DROP_REASON_FULL_RING, /* ring buffer is full */
434 SKB_DROP_REASON_NOMEM, /* error due to OOM */
435 SKB_DROP_REASON_HDR_TRUNC, /* failed to trunc/extract the header
436 * from networking data, e.g., failed
437 * to pull the protocol header from
438 * frags via pskb_may_pull()
439 */
440 SKB_DROP_REASON_TAP_FILTER, /* dropped by (ebpf) filter directly
441 * attached to tun/tap, e.g., via
442 * TUNSETFILTEREBPF
443 */
444 SKB_DROP_REASON_TAP_TXFILTER, /* dropped by tx filter implemented
445 * at tun/tap, e.g., check_filter()
446 */
447 SKB_DROP_REASON_MAX,
448};
449
450/* To allow 64K frame to be packed as single skb without frag_list we
451 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
452 * buffers which do not start on a page boundary.
453 *
454 * Since GRO uses frags we allocate at least 16 regardless of page
455 * size.
456 */
457#if (65536/PAGE_SIZE + 1) < 16
458#define MAX_SKB_FRAGS 16UL
459#else
460#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
461#endif
462extern int sysctl_max_skb_frags;
463
464/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
465 * segment using its current segmentation instead.
466 */
467#define GSO_BY_FRAGS 0xFFFF
468
469typedef struct bio_vec skb_frag_t;
470
471/**
472 * skb_frag_size() - Returns the size of a skb fragment
473 * @frag: skb fragment
474 */
475static inline unsigned int skb_frag_size(const skb_frag_t *frag)
476{
477 return frag->bv_len;
478}
479
480/**
481 * skb_frag_size_set() - Sets the size of a skb fragment
482 * @frag: skb fragment
483 * @size: size of fragment
484 */
485static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
486{
487 frag->bv_len = size;
488}
489
490/**
491 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
492 * @frag: skb fragment
493 * @delta: value to add
494 */
495static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
496{
497 frag->bv_len += delta;
498}
499
500/**
501 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
502 * @frag: skb fragment
503 * @delta: value to subtract
504 */
505static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
506{
507 frag->bv_len -= delta;
508}
509
510/**
511 * skb_frag_must_loop - Test if %p is a high memory page
512 * @p: fragment's page
513 */
514static inline bool skb_frag_must_loop(struct page *p)
515{
516#if defined(CONFIG_HIGHMEM)
517 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
518 return true;
519#endif
520 return false;
521}
522
523/**
524 * skb_frag_foreach_page - loop over pages in a fragment
525 *
526 * @f: skb frag to operate on
527 * @f_off: offset from start of f->bv_page
528 * @f_len: length from f_off to loop over
529 * @p: (temp var) current page
530 * @p_off: (temp var) offset from start of current page,
531 * non-zero only on first page.
532 * @p_len: (temp var) length in current page,
533 * < PAGE_SIZE only on first and last page.
534 * @copied: (temp var) length so far, excluding current p_len.
535 *
536 * A fragment can hold a compound page, in which case per-page
537 * operations, notably kmap_atomic, must be called for each
538 * regular page.
539 */
540#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
541 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
542 p_off = (f_off) & (PAGE_SIZE - 1), \
543 p_len = skb_frag_must_loop(p) ? \
544 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
545 copied = 0; \
546 copied < f_len; \
547 copied += p_len, p++, p_off = 0, \
548 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
549
550#define HAVE_HW_TIME_STAMP
551
552/**
553 * struct skb_shared_hwtstamps - hardware time stamps
554 * @hwtstamp: hardware time stamp transformed into duration
555 * since arbitrary point in time
556 *
557 * Software time stamps generated by ktime_get_real() are stored in
558 * skb->tstamp.
559 *
560 * hwtstamps can only be compared against other hwtstamps from
561 * the same device.
562 *
563 * This structure is attached to packets as part of the
564 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
565 */
566struct skb_shared_hwtstamps {
567 ktime_t hwtstamp;
568};
569
570/* Definitions for tx_flags in struct skb_shared_info */
571enum {
572 /* generate hardware time stamp */
573 SKBTX_HW_TSTAMP = 1 << 0,
574
575 /* generate software time stamp when queueing packet to NIC */
576 SKBTX_SW_TSTAMP = 1 << 1,
577
578 /* device driver is going to provide hardware time stamp */
579 SKBTX_IN_PROGRESS = 1 << 2,
580
581 /* generate wifi status information (where possible) */
582 SKBTX_WIFI_STATUS = 1 << 4,
583
584 /* generate software time stamp when entering packet scheduling */
585 SKBTX_SCHED_TSTAMP = 1 << 6,
586};
587
588#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
589 SKBTX_SCHED_TSTAMP)
590#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
591
592/* Definitions for flags in struct skb_shared_info */
593enum {
594 /* use zcopy routines */
595 SKBFL_ZEROCOPY_ENABLE = BIT(0),
596
597 /* This indicates at least one fragment might be overwritten
598 * (as in vmsplice(), sendfile() ...)
599 * If we need to compute a TX checksum, we'll need to copy
600 * all frags to avoid possible bad checksum
601 */
602 SKBFL_SHARED_FRAG = BIT(1),
603
604 /* segment contains only zerocopy data and should not be
605 * charged to the kernel memory.
606 */
607 SKBFL_PURE_ZEROCOPY = BIT(2),
608};
609
610#define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
611#define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY)
612
613/*
614 * The callback notifies userspace to release buffers when skb DMA is done in
615 * lower device, the skb last reference should be 0 when calling this.
616 * The zerocopy_success argument is true if zero copy transmit occurred,
617 * false on data copy or out of memory error caused by data copy attempt.
618 * The ctx field is used to track device context.
619 * The desc field is used to track userspace buffer index.
620 */
621struct ubuf_info {
622 void (*callback)(struct sk_buff *, struct ubuf_info *,
623 bool zerocopy_success);
624 union {
625 struct {
626 unsigned long desc;
627 void *ctx;
628 };
629 struct {
630 u32 id;
631 u16 len;
632 u16 zerocopy:1;
633 u32 bytelen;
634 };
635 };
636 refcount_t refcnt;
637 u8 flags;
638
639 struct mmpin {
640 struct user_struct *user;
641 unsigned int num_pg;
642 } mmp;
643};
644
645#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
646
647int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
648void mm_unaccount_pinned_pages(struct mmpin *mmp);
649
650struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size);
651struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
652 struct ubuf_info *uarg);
653
654void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
655
656void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
657 bool success);
658
659int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
660int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
661 struct msghdr *msg, int len,
662 struct ubuf_info *uarg);
663
664/* This data is invariant across clones and lives at
665 * the end of the header data, ie. at skb->end.
666 */
667struct skb_shared_info {
668 __u8 flags;
669 __u8 meta_len;
670 __u8 nr_frags;
671 __u8 tx_flags;
672 unsigned short gso_size;
673 /* Warning: this field is not always filled in (UFO)! */
674 unsigned short gso_segs;
675 struct sk_buff *frag_list;
676 struct skb_shared_hwtstamps hwtstamps;
677 unsigned int gso_type;
678 u32 tskey;
679
680 /*
681 * Warning : all fields before dataref are cleared in __alloc_skb()
682 */
683 atomic_t dataref;
684 unsigned int xdp_frags_size;
685
686 /* Intermediate layers must ensure that destructor_arg
687 * remains valid until skb destructor */
688 void * destructor_arg;
689
690 /* must be last field, see pskb_expand_head() */
691 skb_frag_t frags[MAX_SKB_FRAGS];
692};
693
694/* We divide dataref into two halves. The higher 16 bits hold references
695 * to the payload part of skb->data. The lower 16 bits hold references to
696 * the entire skb->data. A clone of a headerless skb holds the length of
697 * the header in skb->hdr_len.
698 *
699 * All users must obey the rule that the skb->data reference count must be
700 * greater than or equal to the payload reference count.
701 *
702 * Holding a reference to the payload part means that the user does not
703 * care about modifications to the header part of skb->data.
704 */
705#define SKB_DATAREF_SHIFT 16
706#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
707
708
709enum {
710 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
711 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
712 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
713};
714
715enum {
716 SKB_GSO_TCPV4 = 1 << 0,
717
718 /* This indicates the skb is from an untrusted source. */
719 SKB_GSO_DODGY = 1 << 1,
720
721 /* This indicates the tcp segment has CWR set. */
722 SKB_GSO_TCP_ECN = 1 << 2,
723
724 SKB_GSO_TCP_FIXEDID = 1 << 3,
725
726 SKB_GSO_TCPV6 = 1 << 4,
727
728 SKB_GSO_FCOE = 1 << 5,
729
730 SKB_GSO_GRE = 1 << 6,
731
732 SKB_GSO_GRE_CSUM = 1 << 7,
733
734 SKB_GSO_IPXIP4 = 1 << 8,
735
736 SKB_GSO_IPXIP6 = 1 << 9,
737
738 SKB_GSO_UDP_TUNNEL = 1 << 10,
739
740 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
741
742 SKB_GSO_PARTIAL = 1 << 12,
743
744 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
745
746 SKB_GSO_SCTP = 1 << 14,
747
748 SKB_GSO_ESP = 1 << 15,
749
750 SKB_GSO_UDP = 1 << 16,
751
752 SKB_GSO_UDP_L4 = 1 << 17,
753
754 SKB_GSO_FRAGLIST = 1 << 18,
755};
756
757#if BITS_PER_LONG > 32
758#define NET_SKBUFF_DATA_USES_OFFSET 1
759#endif
760
761#ifdef NET_SKBUFF_DATA_USES_OFFSET
762typedef unsigned int sk_buff_data_t;
763#else
764typedef unsigned char *sk_buff_data_t;
765#endif
766
767/**
768 * struct sk_buff - socket buffer
769 * @next: Next buffer in list
770 * @prev: Previous buffer in list
771 * @tstamp: Time we arrived/left
772 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
773 * for retransmit timer
774 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
775 * @list: queue head
776 * @ll_node: anchor in an llist (eg socket defer_list)
777 * @sk: Socket we are owned by
778 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
779 * fragmentation management
780 * @dev: Device we arrived on/are leaving by
781 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
782 * @cb: Control buffer. Free for use by every layer. Put private vars here
783 * @_skb_refdst: destination entry (with norefcount bit)
784 * @sp: the security path, used for xfrm
785 * @len: Length of actual data
786 * @data_len: Data length
787 * @mac_len: Length of link layer header
788 * @hdr_len: writable header length of cloned skb
789 * @csum: Checksum (must include start/offset pair)
790 * @csum_start: Offset from skb->head where checksumming should start
791 * @csum_offset: Offset from csum_start where checksum should be stored
792 * @priority: Packet queueing priority
793 * @ignore_df: allow local fragmentation
794 * @cloned: Head may be cloned (check refcnt to be sure)
795 * @ip_summed: Driver fed us an IP checksum
796 * @nohdr: Payload reference only, must not modify header
797 * @pkt_type: Packet class
798 * @fclone: skbuff clone status
799 * @ipvs_property: skbuff is owned by ipvs
800 * @inner_protocol_type: whether the inner protocol is
801 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
802 * @remcsum_offload: remote checksum offload is enabled
803 * @offload_fwd_mark: Packet was L2-forwarded in hardware
804 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
805 * @tc_skip_classify: do not classify packet. set by IFB device
806 * @tc_at_ingress: used within tc_classify to distinguish in/egress
807 * @redirected: packet was redirected by packet classifier
808 * @from_ingress: packet was redirected from the ingress path
809 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
810 * @peeked: this packet has been seen already, so stats have been
811 * done for it, don't do them again
812 * @nf_trace: netfilter packet trace flag
813 * @protocol: Packet protocol from driver
814 * @destructor: Destruct function
815 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
816 * @_sk_redir: socket redirection information for skmsg
817 * @_nfct: Associated connection, if any (with nfctinfo bits)
818 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
819 * @skb_iif: ifindex of device we arrived on
820 * @tc_index: Traffic control index
821 * @hash: the packet hash
822 * @queue_mapping: Queue mapping for multiqueue devices
823 * @head_frag: skb was allocated from page fragments,
824 * not allocated by kmalloc() or vmalloc().
825 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
826 * @pp_recycle: mark the packet for recycling instead of freeing (implies
827 * page_pool support on driver)
828 * @active_extensions: active extensions (skb_ext_id types)
829 * @ndisc_nodetype: router type (from link layer)
830 * @ooo_okay: allow the mapping of a socket to a queue to be changed
831 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
832 * ports.
833 * @sw_hash: indicates hash was computed in software stack
834 * @wifi_acked_valid: wifi_acked was set
835 * @wifi_acked: whether frame was acked on wifi or not
836 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
837 * @encapsulation: indicates the inner headers in the skbuff are valid
838 * @encap_hdr_csum: software checksum is needed
839 * @csum_valid: checksum is already valid
840 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
841 * @csum_complete_sw: checksum was completed by software
842 * @csum_level: indicates the number of consecutive checksums found in
843 * the packet minus one that have been verified as
844 * CHECKSUM_UNNECESSARY (max 3)
845 * @dst_pending_confirm: need to confirm neighbour
846 * @decrypted: Decrypted SKB
847 * @slow_gro: state present at GRO time, slower prepare step required
848 * @mono_delivery_time: When set, skb->tstamp has the
849 * delivery_time in mono clock base (i.e. EDT). Otherwise, the
850 * skb->tstamp has the (rcv) timestamp at ingress and
851 * delivery_time at egress.
852 * @napi_id: id of the NAPI struct this skb came from
853 * @sender_cpu: (aka @napi_id) source CPU in XPS
854 * @secmark: security marking
855 * @mark: Generic packet mark
856 * @reserved_tailroom: (aka @mark) number of bytes of free space available
857 * at the tail of an sk_buff
858 * @vlan_present: VLAN tag is present
859 * @vlan_proto: vlan encapsulation protocol
860 * @vlan_tci: vlan tag control information
861 * @inner_protocol: Protocol (encapsulation)
862 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
863 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
864 * @inner_transport_header: Inner transport layer header (encapsulation)
865 * @inner_network_header: Network layer header (encapsulation)
866 * @inner_mac_header: Link layer header (encapsulation)
867 * @transport_header: Transport layer header
868 * @network_header: Network layer header
869 * @mac_header: Link layer header
870 * @kcov_handle: KCOV remote handle for remote coverage collection
871 * @tail: Tail pointer
872 * @end: End pointer
873 * @head: Head of buffer
874 * @data: Data head pointer
875 * @truesize: Buffer size
876 * @users: User count - see {datagram,tcp}.c
877 * @extensions: allocated extensions, valid if active_extensions is nonzero
878 */
879
880struct sk_buff {
881 union {
882 struct {
883 /* These two members must be first to match sk_buff_head. */
884 struct sk_buff *next;
885 struct sk_buff *prev;
886
887 union {
888 struct net_device *dev;
889 /* Some protocols might use this space to store information,
890 * while device pointer would be NULL.
891 * UDP receive path is one user.
892 */
893 unsigned long dev_scratch;
894 };
895 };
896 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
897 struct list_head list;
898 struct llist_node ll_node;
899 };
900
901 union {
902 struct sock *sk;
903 int ip_defrag_offset;
904 };
905
906 union {
907 ktime_t tstamp;
908 u64 skb_mstamp_ns; /* earliest departure time */
909 };
910 /*
911 * This is the control buffer. It is free to use for every
912 * layer. Please put your private variables there. If you
913 * want to keep them across layers you have to do a skb_clone()
914 * first. This is owned by whoever has the skb queued ATM.
915 */
916 char cb[48] __aligned(8);
917
918 union {
919 struct {
920 unsigned long _skb_refdst;
921 void (*destructor)(struct sk_buff *skb);
922 };
923 struct list_head tcp_tsorted_anchor;
924#ifdef CONFIG_NET_SOCK_MSG
925 unsigned long _sk_redir;
926#endif
927 };
928
929#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
930 unsigned long _nfct;
931#endif
932 unsigned int len,
933 data_len;
934 __u16 mac_len,
935 hdr_len;
936
937 /* Following fields are _not_ copied in __copy_skb_header()
938 * Note that queue_mapping is here mostly to fill a hole.
939 */
940 __u16 queue_mapping;
941
942/* if you move cloned around you also must adapt those constants */
943#ifdef __BIG_ENDIAN_BITFIELD
944#define CLONED_MASK (1 << 7)
945#else
946#define CLONED_MASK 1
947#endif
948#define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset)
949
950 /* private: */
951 __u8 __cloned_offset[0];
952 /* public: */
953 __u8 cloned:1,
954 nohdr:1,
955 fclone:2,
956 peeked:1,
957 head_frag:1,
958 pfmemalloc:1,
959 pp_recycle:1; /* page_pool recycle indicator */
960#ifdef CONFIG_SKB_EXTENSIONS
961 __u8 active_extensions;
962#endif
963
964 /* Fields enclosed in headers group are copied
965 * using a single memcpy() in __copy_skb_header()
966 */
967 struct_group(headers,
968
969 /* private: */
970 __u8 __pkt_type_offset[0];
971 /* public: */
972 __u8 pkt_type:3; /* see PKT_TYPE_MAX */
973 __u8 ignore_df:1;
974 __u8 nf_trace:1;
975 __u8 ip_summed:2;
976 __u8 ooo_okay:1;
977
978 __u8 l4_hash:1;
979 __u8 sw_hash:1;
980 __u8 wifi_acked_valid:1;
981 __u8 wifi_acked:1;
982 __u8 no_fcs:1;
983 /* Indicates the inner headers are valid in the skbuff. */
984 __u8 encapsulation:1;
985 __u8 encap_hdr_csum:1;
986 __u8 csum_valid:1;
987
988 /* private: */
989 __u8 __pkt_vlan_present_offset[0];
990 /* public: */
991 __u8 vlan_present:1; /* See PKT_VLAN_PRESENT_BIT */
992 __u8 csum_complete_sw:1;
993 __u8 csum_level:2;
994 __u8 dst_pending_confirm:1;
995 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */
996#ifdef CONFIG_NET_CLS_ACT
997 __u8 tc_skip_classify:1;
998 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */
999#endif
1000#ifdef CONFIG_IPV6_NDISC_NODETYPE
1001 __u8 ndisc_nodetype:2;
1002#endif
1003
1004 __u8 ipvs_property:1;
1005 __u8 inner_protocol_type:1;
1006 __u8 remcsum_offload:1;
1007#ifdef CONFIG_NET_SWITCHDEV
1008 __u8 offload_fwd_mark:1;
1009 __u8 offload_l3_fwd_mark:1;
1010#endif
1011 __u8 redirected:1;
1012#ifdef CONFIG_NET_REDIRECT
1013 __u8 from_ingress:1;
1014#endif
1015#ifdef CONFIG_NETFILTER_SKIP_EGRESS
1016 __u8 nf_skip_egress:1;
1017#endif
1018#ifdef CONFIG_TLS_DEVICE
1019 __u8 decrypted:1;
1020#endif
1021 __u8 slow_gro:1;
1022 __u8 csum_not_inet:1;
1023
1024#ifdef CONFIG_NET_SCHED
1025 __u16 tc_index; /* traffic control index */
1026#endif
1027
1028 union {
1029 __wsum csum;
1030 struct {
1031 __u16 csum_start;
1032 __u16 csum_offset;
1033 };
1034 };
1035 __u32 priority;
1036 int skb_iif;
1037 __u32 hash;
1038 __be16 vlan_proto;
1039 __u16 vlan_tci;
1040#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1041 union {
1042 unsigned int napi_id;
1043 unsigned int sender_cpu;
1044 };
1045#endif
1046#ifdef CONFIG_NETWORK_SECMARK
1047 __u32 secmark;
1048#endif
1049
1050 union {
1051 __u32 mark;
1052 __u32 reserved_tailroom;
1053 };
1054
1055 union {
1056 __be16 inner_protocol;
1057 __u8 inner_ipproto;
1058 };
1059
1060 __u16 inner_transport_header;
1061 __u16 inner_network_header;
1062 __u16 inner_mac_header;
1063
1064 __be16 protocol;
1065 __u16 transport_header;
1066 __u16 network_header;
1067 __u16 mac_header;
1068
1069#ifdef CONFIG_KCOV
1070 u64 kcov_handle;
1071#endif
1072
1073 ); /* end headers group */
1074
1075 /* These elements must be at the end, see alloc_skb() for details. */
1076 sk_buff_data_t tail;
1077 sk_buff_data_t end;
1078 unsigned char *head,
1079 *data;
1080 unsigned int truesize;
1081 refcount_t users;
1082
1083#ifdef CONFIG_SKB_EXTENSIONS
1084 /* only useable after checking ->active_extensions != 0 */
1085 struct skb_ext *extensions;
1086#endif
1087};
1088
1089/* if you move pkt_type around you also must adapt those constants */
1090#ifdef __BIG_ENDIAN_BITFIELD
1091#define PKT_TYPE_MAX (7 << 5)
1092#else
1093#define PKT_TYPE_MAX 7
1094#endif
1095#define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset)
1096
1097/* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time
1098 * around, you also must adapt these constants.
1099 */
1100#ifdef __BIG_ENDIAN_BITFIELD
1101#define PKT_VLAN_PRESENT_BIT 7
1102#define TC_AT_INGRESS_MASK (1 << 0)
1103#define SKB_MONO_DELIVERY_TIME_MASK (1 << 2)
1104#else
1105#define PKT_VLAN_PRESENT_BIT 0
1106#define TC_AT_INGRESS_MASK (1 << 7)
1107#define SKB_MONO_DELIVERY_TIME_MASK (1 << 5)
1108#endif
1109#define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset)
1110
1111#ifdef __KERNEL__
1112/*
1113 * Handling routines are only of interest to the kernel
1114 */
1115
1116#define SKB_ALLOC_FCLONE 0x01
1117#define SKB_ALLOC_RX 0x02
1118#define SKB_ALLOC_NAPI 0x04
1119
1120/**
1121 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1122 * @skb: buffer
1123 */
1124static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1125{
1126 return unlikely(skb->pfmemalloc);
1127}
1128
1129/*
1130 * skb might have a dst pointer attached, refcounted or not.
1131 * _skb_refdst low order bit is set if refcount was _not_ taken
1132 */
1133#define SKB_DST_NOREF 1UL
1134#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
1135
1136/**
1137 * skb_dst - returns skb dst_entry
1138 * @skb: buffer
1139 *
1140 * Returns skb dst_entry, regardless of reference taken or not.
1141 */
1142static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1143{
1144 /* If refdst was not refcounted, check we still are in a
1145 * rcu_read_lock section
1146 */
1147 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1148 !rcu_read_lock_held() &&
1149 !rcu_read_lock_bh_held());
1150 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1151}
1152
1153/**
1154 * skb_dst_set - sets skb dst
1155 * @skb: buffer
1156 * @dst: dst entry
1157 *
1158 * Sets skb dst, assuming a reference was taken on dst and should
1159 * be released by skb_dst_drop()
1160 */
1161static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1162{
1163 skb->slow_gro |= !!dst;
1164 skb->_skb_refdst = (unsigned long)dst;
1165}
1166
1167/**
1168 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1169 * @skb: buffer
1170 * @dst: dst entry
1171 *
1172 * Sets skb dst, assuming a reference was not taken on dst.
1173 * If dst entry is cached, we do not take reference and dst_release
1174 * will be avoided by refdst_drop. If dst entry is not cached, we take
1175 * reference, so that last dst_release can destroy the dst immediately.
1176 */
1177static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1178{
1179 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1180 skb->slow_gro |= !!dst;
1181 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1182}
1183
1184/**
1185 * skb_dst_is_noref - Test if skb dst isn't refcounted
1186 * @skb: buffer
1187 */
1188static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1189{
1190 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1191}
1192
1193/**
1194 * skb_rtable - Returns the skb &rtable
1195 * @skb: buffer
1196 */
1197static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1198{
1199 return (struct rtable *)skb_dst(skb);
1200}
1201
1202/* For mangling skb->pkt_type from user space side from applications
1203 * such as nft, tc, etc, we only allow a conservative subset of
1204 * possible pkt_types to be set.
1205*/
1206static inline bool skb_pkt_type_ok(u32 ptype)
1207{
1208 return ptype <= PACKET_OTHERHOST;
1209}
1210
1211/**
1212 * skb_napi_id - Returns the skb's NAPI id
1213 * @skb: buffer
1214 */
1215static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1216{
1217#ifdef CONFIG_NET_RX_BUSY_POLL
1218 return skb->napi_id;
1219#else
1220 return 0;
1221#endif
1222}
1223
1224/**
1225 * skb_unref - decrement the skb's reference count
1226 * @skb: buffer
1227 *
1228 * Returns true if we can free the skb.
1229 */
1230static inline bool skb_unref(struct sk_buff *skb)
1231{
1232 if (unlikely(!skb))
1233 return false;
1234 if (likely(refcount_read(&skb->users) == 1))
1235 smp_rmb();
1236 else if (likely(!refcount_dec_and_test(&skb->users)))
1237 return false;
1238
1239 return true;
1240}
1241
1242void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1243
1244/**
1245 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1246 * @skb: buffer to free
1247 */
1248static inline void kfree_skb(struct sk_buff *skb)
1249{
1250 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1251}
1252
1253void skb_release_head_state(struct sk_buff *skb);
1254void kfree_skb_list_reason(struct sk_buff *segs,
1255 enum skb_drop_reason reason);
1256void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1257void skb_tx_error(struct sk_buff *skb);
1258
1259static inline void kfree_skb_list(struct sk_buff *segs)
1260{
1261 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1262}
1263
1264#ifdef CONFIG_TRACEPOINTS
1265void consume_skb(struct sk_buff *skb);
1266#else
1267static inline void consume_skb(struct sk_buff *skb)
1268{
1269 return kfree_skb(skb);
1270}
1271#endif
1272
1273void __consume_stateless_skb(struct sk_buff *skb);
1274void __kfree_skb(struct sk_buff *skb);
1275extern struct kmem_cache *skbuff_head_cache;
1276
1277void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1278bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1279 bool *fragstolen, int *delta_truesize);
1280
1281struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1282 int node);
1283struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1284struct sk_buff *build_skb(void *data, unsigned int frag_size);
1285struct sk_buff *build_skb_around(struct sk_buff *skb,
1286 void *data, unsigned int frag_size);
1287
1288struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1289
1290/**
1291 * alloc_skb - allocate a network buffer
1292 * @size: size to allocate
1293 * @priority: allocation mask
1294 *
1295 * This function is a convenient wrapper around __alloc_skb().
1296 */
1297static inline struct sk_buff *alloc_skb(unsigned int size,
1298 gfp_t priority)
1299{
1300 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1301}
1302
1303struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1304 unsigned long data_len,
1305 int max_page_order,
1306 int *errcode,
1307 gfp_t gfp_mask);
1308struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1309
1310/* Layout of fast clones : [skb1][skb2][fclone_ref] */
1311struct sk_buff_fclones {
1312 struct sk_buff skb1;
1313
1314 struct sk_buff skb2;
1315
1316 refcount_t fclone_ref;
1317};
1318
1319/**
1320 * skb_fclone_busy - check if fclone is busy
1321 * @sk: socket
1322 * @skb: buffer
1323 *
1324 * Returns true if skb is a fast clone, and its clone is not freed.
1325 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1326 * so we also check that this didnt happen.
1327 */
1328static inline bool skb_fclone_busy(const struct sock *sk,
1329 const struct sk_buff *skb)
1330{
1331 const struct sk_buff_fclones *fclones;
1332
1333 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1334
1335 return skb->fclone == SKB_FCLONE_ORIG &&
1336 refcount_read(&fclones->fclone_ref) > 1 &&
1337 READ_ONCE(fclones->skb2.sk) == sk;
1338}
1339
1340/**
1341 * alloc_skb_fclone - allocate a network buffer from fclone cache
1342 * @size: size to allocate
1343 * @priority: allocation mask
1344 *
1345 * This function is a convenient wrapper around __alloc_skb().
1346 */
1347static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1348 gfp_t priority)
1349{
1350 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1351}
1352
1353struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1354void skb_headers_offset_update(struct sk_buff *skb, int off);
1355int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1356struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1357void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1358struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1359struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1360 gfp_t gfp_mask, bool fclone);
1361static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1362 gfp_t gfp_mask)
1363{
1364 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1365}
1366
1367int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1368struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1369 unsigned int headroom);
1370struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1371struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1372 int newtailroom, gfp_t priority);
1373int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1374 int offset, int len);
1375int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1376 int offset, int len);
1377int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1378int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1379
1380/**
1381 * skb_pad - zero pad the tail of an skb
1382 * @skb: buffer to pad
1383 * @pad: space to pad
1384 *
1385 * Ensure that a buffer is followed by a padding area that is zero
1386 * filled. Used by network drivers which may DMA or transfer data
1387 * beyond the buffer end onto the wire.
1388 *
1389 * May return error in out of memory cases. The skb is freed on error.
1390 */
1391static inline int skb_pad(struct sk_buff *skb, int pad)
1392{
1393 return __skb_pad(skb, pad, true);
1394}
1395#define dev_kfree_skb(a) consume_skb(a)
1396
1397int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1398 int offset, size_t size);
1399
1400struct skb_seq_state {
1401 __u32 lower_offset;
1402 __u32 upper_offset;
1403 __u32 frag_idx;
1404 __u32 stepped_offset;
1405 struct sk_buff *root_skb;
1406 struct sk_buff *cur_skb;
1407 __u8 *frag_data;
1408 __u32 frag_off;
1409};
1410
1411void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1412 unsigned int to, struct skb_seq_state *st);
1413unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1414 struct skb_seq_state *st);
1415void skb_abort_seq_read(struct skb_seq_state *st);
1416
1417unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1418 unsigned int to, struct ts_config *config);
1419
1420/*
1421 * Packet hash types specify the type of hash in skb_set_hash.
1422 *
1423 * Hash types refer to the protocol layer addresses which are used to
1424 * construct a packet's hash. The hashes are used to differentiate or identify
1425 * flows of the protocol layer for the hash type. Hash types are either
1426 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1427 *
1428 * Properties of hashes:
1429 *
1430 * 1) Two packets in different flows have different hash values
1431 * 2) Two packets in the same flow should have the same hash value
1432 *
1433 * A hash at a higher layer is considered to be more specific. A driver should
1434 * set the most specific hash possible.
1435 *
1436 * A driver cannot indicate a more specific hash than the layer at which a hash
1437 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1438 *
1439 * A driver may indicate a hash level which is less specific than the
1440 * actual layer the hash was computed on. For instance, a hash computed
1441 * at L4 may be considered an L3 hash. This should only be done if the
1442 * driver can't unambiguously determine that the HW computed the hash at
1443 * the higher layer. Note that the "should" in the second property above
1444 * permits this.
1445 */
1446enum pkt_hash_types {
1447 PKT_HASH_TYPE_NONE, /* Undefined type */
1448 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1449 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1450 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1451};
1452
1453static inline void skb_clear_hash(struct sk_buff *skb)
1454{
1455 skb->hash = 0;
1456 skb->sw_hash = 0;
1457 skb->l4_hash = 0;
1458}
1459
1460static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1461{
1462 if (!skb->l4_hash)
1463 skb_clear_hash(skb);
1464}
1465
1466static inline void
1467__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1468{
1469 skb->l4_hash = is_l4;
1470 skb->sw_hash = is_sw;
1471 skb->hash = hash;
1472}
1473
1474static inline void
1475skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1476{
1477 /* Used by drivers to set hash from HW */
1478 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1479}
1480
1481static inline void
1482__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1483{
1484 __skb_set_hash(skb, hash, true, is_l4);
1485}
1486
1487void __skb_get_hash(struct sk_buff *skb);
1488u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1489u32 skb_get_poff(const struct sk_buff *skb);
1490u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1491 const struct flow_keys_basic *keys, int hlen);
1492__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1493 const void *data, int hlen_proto);
1494
1495static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1496 int thoff, u8 ip_proto)
1497{
1498 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1499}
1500
1501void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1502 const struct flow_dissector_key *key,
1503 unsigned int key_count);
1504
1505struct bpf_flow_dissector;
1506bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1507 __be16 proto, int nhoff, int hlen, unsigned int flags);
1508
1509bool __skb_flow_dissect(const struct net *net,
1510 const struct sk_buff *skb,
1511 struct flow_dissector *flow_dissector,
1512 void *target_container, const void *data,
1513 __be16 proto, int nhoff, int hlen, unsigned int flags);
1514
1515static inline bool skb_flow_dissect(const struct sk_buff *skb,
1516 struct flow_dissector *flow_dissector,
1517 void *target_container, unsigned int flags)
1518{
1519 return __skb_flow_dissect(NULL, skb, flow_dissector,
1520 target_container, NULL, 0, 0, 0, flags);
1521}
1522
1523static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1524 struct flow_keys *flow,
1525 unsigned int flags)
1526{
1527 memset(flow, 0, sizeof(*flow));
1528 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1529 flow, NULL, 0, 0, 0, flags);
1530}
1531
1532static inline bool
1533skb_flow_dissect_flow_keys_basic(const struct net *net,
1534 const struct sk_buff *skb,
1535 struct flow_keys_basic *flow,
1536 const void *data, __be16 proto,
1537 int nhoff, int hlen, unsigned int flags)
1538{
1539 memset(flow, 0, sizeof(*flow));
1540 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1541 data, proto, nhoff, hlen, flags);
1542}
1543
1544void skb_flow_dissect_meta(const struct sk_buff *skb,
1545 struct flow_dissector *flow_dissector,
1546 void *target_container);
1547
1548/* Gets a skb connection tracking info, ctinfo map should be a
1549 * map of mapsize to translate enum ip_conntrack_info states
1550 * to user states.
1551 */
1552void
1553skb_flow_dissect_ct(const struct sk_buff *skb,
1554 struct flow_dissector *flow_dissector,
1555 void *target_container,
1556 u16 *ctinfo_map, size_t mapsize,
1557 bool post_ct, u16 zone);
1558void
1559skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1560 struct flow_dissector *flow_dissector,
1561 void *target_container);
1562
1563void skb_flow_dissect_hash(const struct sk_buff *skb,
1564 struct flow_dissector *flow_dissector,
1565 void *target_container);
1566
1567static inline __u32 skb_get_hash(struct sk_buff *skb)
1568{
1569 if (!skb->l4_hash && !skb->sw_hash)
1570 __skb_get_hash(skb);
1571
1572 return skb->hash;
1573}
1574
1575static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1576{
1577 if (!skb->l4_hash && !skb->sw_hash) {
1578 struct flow_keys keys;
1579 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1580
1581 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1582 }
1583
1584 return skb->hash;
1585}
1586
1587__u32 skb_get_hash_perturb(const struct sk_buff *skb,
1588 const siphash_key_t *perturb);
1589
1590static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1591{
1592 return skb->hash;
1593}
1594
1595static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1596{
1597 to->hash = from->hash;
1598 to->sw_hash = from->sw_hash;
1599 to->l4_hash = from->l4_hash;
1600};
1601
1602static inline void skb_copy_decrypted(struct sk_buff *to,
1603 const struct sk_buff *from)
1604{
1605#ifdef CONFIG_TLS_DEVICE
1606 to->decrypted = from->decrypted;
1607#endif
1608}
1609
1610#ifdef NET_SKBUFF_DATA_USES_OFFSET
1611static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1612{
1613 return skb->head + skb->end;
1614}
1615
1616static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1617{
1618 return skb->end;
1619}
1620
1621static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1622{
1623 skb->end = offset;
1624}
1625#else
1626static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1627{
1628 return skb->end;
1629}
1630
1631static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1632{
1633 return skb->end - skb->head;
1634}
1635
1636static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1637{
1638 skb->end = skb->head + offset;
1639}
1640#endif
1641
1642/* Internal */
1643#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1644
1645static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1646{
1647 return &skb_shinfo(skb)->hwtstamps;
1648}
1649
1650static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1651{
1652 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1653
1654 return is_zcopy ? skb_uarg(skb) : NULL;
1655}
1656
1657static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1658{
1659 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1660}
1661
1662static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1663 const struct sk_buff *skb2)
1664{
1665 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1666}
1667
1668static inline void net_zcopy_get(struct ubuf_info *uarg)
1669{
1670 refcount_inc(&uarg->refcnt);
1671}
1672
1673static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1674{
1675 skb_shinfo(skb)->destructor_arg = uarg;
1676 skb_shinfo(skb)->flags |= uarg->flags;
1677}
1678
1679static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1680 bool *have_ref)
1681{
1682 if (skb && uarg && !skb_zcopy(skb)) {
1683 if (unlikely(have_ref && *have_ref))
1684 *have_ref = false;
1685 else
1686 net_zcopy_get(uarg);
1687 skb_zcopy_init(skb, uarg);
1688 }
1689}
1690
1691static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1692{
1693 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1694 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1695}
1696
1697static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1698{
1699 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1700}
1701
1702static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1703{
1704 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1705}
1706
1707static inline void net_zcopy_put(struct ubuf_info *uarg)
1708{
1709 if (uarg)
1710 uarg->callback(NULL, uarg, true);
1711}
1712
1713static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1714{
1715 if (uarg) {
1716 if (uarg->callback == msg_zerocopy_callback)
1717 msg_zerocopy_put_abort(uarg, have_uref);
1718 else if (have_uref)
1719 net_zcopy_put(uarg);
1720 }
1721}
1722
1723/* Release a reference on a zerocopy structure */
1724static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1725{
1726 struct ubuf_info *uarg = skb_zcopy(skb);
1727
1728 if (uarg) {
1729 if (!skb_zcopy_is_nouarg(skb))
1730 uarg->callback(skb, uarg, zerocopy_success);
1731
1732 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1733 }
1734}
1735
1736static inline void skb_mark_not_on_list(struct sk_buff *skb)
1737{
1738 skb->next = NULL;
1739}
1740
1741/* Iterate through singly-linked GSO fragments of an skb. */
1742#define skb_list_walk_safe(first, skb, next_skb) \
1743 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1744 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1745
1746static inline void skb_list_del_init(struct sk_buff *skb)
1747{
1748 __list_del_entry(&skb->list);
1749 skb_mark_not_on_list(skb);
1750}
1751
1752/**
1753 * skb_queue_empty - check if a queue is empty
1754 * @list: queue head
1755 *
1756 * Returns true if the queue is empty, false otherwise.
1757 */
1758static inline int skb_queue_empty(const struct sk_buff_head *list)
1759{
1760 return list->next == (const struct sk_buff *) list;
1761}
1762
1763/**
1764 * skb_queue_empty_lockless - check if a queue is empty
1765 * @list: queue head
1766 *
1767 * Returns true if the queue is empty, false otherwise.
1768 * This variant can be used in lockless contexts.
1769 */
1770static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1771{
1772 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1773}
1774
1775
1776/**
1777 * skb_queue_is_last - check if skb is the last entry in the queue
1778 * @list: queue head
1779 * @skb: buffer
1780 *
1781 * Returns true if @skb is the last buffer on the list.
1782 */
1783static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1784 const struct sk_buff *skb)
1785{
1786 return skb->next == (const struct sk_buff *) list;
1787}
1788
1789/**
1790 * skb_queue_is_first - check if skb is the first entry in the queue
1791 * @list: queue head
1792 * @skb: buffer
1793 *
1794 * Returns true if @skb is the first buffer on the list.
1795 */
1796static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1797 const struct sk_buff *skb)
1798{
1799 return skb->prev == (const struct sk_buff *) list;
1800}
1801
1802/**
1803 * skb_queue_next - return the next packet in the queue
1804 * @list: queue head
1805 * @skb: current buffer
1806 *
1807 * Return the next packet in @list after @skb. It is only valid to
1808 * call this if skb_queue_is_last() evaluates to false.
1809 */
1810static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1811 const struct sk_buff *skb)
1812{
1813 /* This BUG_ON may seem severe, but if we just return then we
1814 * are going to dereference garbage.
1815 */
1816 BUG_ON(skb_queue_is_last(list, skb));
1817 return skb->next;
1818}
1819
1820/**
1821 * skb_queue_prev - return the prev packet in the queue
1822 * @list: queue head
1823 * @skb: current buffer
1824 *
1825 * Return the prev packet in @list before @skb. It is only valid to
1826 * call this if skb_queue_is_first() evaluates to false.
1827 */
1828static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1829 const struct sk_buff *skb)
1830{
1831 /* This BUG_ON may seem severe, but if we just return then we
1832 * are going to dereference garbage.
1833 */
1834 BUG_ON(skb_queue_is_first(list, skb));
1835 return skb->prev;
1836}
1837
1838/**
1839 * skb_get - reference buffer
1840 * @skb: buffer to reference
1841 *
1842 * Makes another reference to a socket buffer and returns a pointer
1843 * to the buffer.
1844 */
1845static inline struct sk_buff *skb_get(struct sk_buff *skb)
1846{
1847 refcount_inc(&skb->users);
1848 return skb;
1849}
1850
1851/*
1852 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1853 */
1854
1855/**
1856 * skb_cloned - is the buffer a clone
1857 * @skb: buffer to check
1858 *
1859 * Returns true if the buffer was generated with skb_clone() and is
1860 * one of multiple shared copies of the buffer. Cloned buffers are
1861 * shared data so must not be written to under normal circumstances.
1862 */
1863static inline int skb_cloned(const struct sk_buff *skb)
1864{
1865 return skb->cloned &&
1866 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1867}
1868
1869static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1870{
1871 might_sleep_if(gfpflags_allow_blocking(pri));
1872
1873 if (skb_cloned(skb))
1874 return pskb_expand_head(skb, 0, 0, pri);
1875
1876 return 0;
1877}
1878
1879/* This variant of skb_unclone() makes sure skb->truesize
1880 * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1881 *
1882 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1883 * when various debugging features are in place.
1884 */
1885int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1886static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1887{
1888 might_sleep_if(gfpflags_allow_blocking(pri));
1889
1890 if (skb_cloned(skb))
1891 return __skb_unclone_keeptruesize(skb, pri);
1892 return 0;
1893}
1894
1895/**
1896 * skb_header_cloned - is the header a clone
1897 * @skb: buffer to check
1898 *
1899 * Returns true if modifying the header part of the buffer requires
1900 * the data to be copied.
1901 */
1902static inline int skb_header_cloned(const struct sk_buff *skb)
1903{
1904 int dataref;
1905
1906 if (!skb->cloned)
1907 return 0;
1908
1909 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1910 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1911 return dataref != 1;
1912}
1913
1914static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1915{
1916 might_sleep_if(gfpflags_allow_blocking(pri));
1917
1918 if (skb_header_cloned(skb))
1919 return pskb_expand_head(skb, 0, 0, pri);
1920
1921 return 0;
1922}
1923
1924/**
1925 * __skb_header_release - release reference to header
1926 * @skb: buffer to operate on
1927 */
1928static inline void __skb_header_release(struct sk_buff *skb)
1929{
1930 skb->nohdr = 1;
1931 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1932}
1933
1934
1935/**
1936 * skb_shared - is the buffer shared
1937 * @skb: buffer to check
1938 *
1939 * Returns true if more than one person has a reference to this
1940 * buffer.
1941 */
1942static inline int skb_shared(const struct sk_buff *skb)
1943{
1944 return refcount_read(&skb->users) != 1;
1945}
1946
1947/**
1948 * skb_share_check - check if buffer is shared and if so clone it
1949 * @skb: buffer to check
1950 * @pri: priority for memory allocation
1951 *
1952 * If the buffer is shared the buffer is cloned and the old copy
1953 * drops a reference. A new clone with a single reference is returned.
1954 * If the buffer is not shared the original buffer is returned. When
1955 * being called from interrupt status or with spinlocks held pri must
1956 * be GFP_ATOMIC.
1957 *
1958 * NULL is returned on a memory allocation failure.
1959 */
1960static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1961{
1962 might_sleep_if(gfpflags_allow_blocking(pri));
1963 if (skb_shared(skb)) {
1964 struct sk_buff *nskb = skb_clone(skb, pri);
1965
1966 if (likely(nskb))
1967 consume_skb(skb);
1968 else
1969 kfree_skb(skb);
1970 skb = nskb;
1971 }
1972 return skb;
1973}
1974
1975/*
1976 * Copy shared buffers into a new sk_buff. We effectively do COW on
1977 * packets to handle cases where we have a local reader and forward
1978 * and a couple of other messy ones. The normal one is tcpdumping
1979 * a packet thats being forwarded.
1980 */
1981
1982/**
1983 * skb_unshare - make a copy of a shared buffer
1984 * @skb: buffer to check
1985 * @pri: priority for memory allocation
1986 *
1987 * If the socket buffer is a clone then this function creates a new
1988 * copy of the data, drops a reference count on the old copy and returns
1989 * the new copy with the reference count at 1. If the buffer is not a clone
1990 * the original buffer is returned. When called with a spinlock held or
1991 * from interrupt state @pri must be %GFP_ATOMIC
1992 *
1993 * %NULL is returned on a memory allocation failure.
1994 */
1995static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1996 gfp_t pri)
1997{
1998 might_sleep_if(gfpflags_allow_blocking(pri));
1999 if (skb_cloned(skb)) {
2000 struct sk_buff *nskb = skb_copy(skb, pri);
2001
2002 /* Free our shared copy */
2003 if (likely(nskb))
2004 consume_skb(skb);
2005 else
2006 kfree_skb(skb);
2007 skb = nskb;
2008 }
2009 return skb;
2010}
2011
2012/**
2013 * skb_peek - peek at the head of an &sk_buff_head
2014 * @list_: list to peek at
2015 *
2016 * Peek an &sk_buff. Unlike most other operations you _MUST_
2017 * be careful with this one. A peek leaves the buffer on the
2018 * list and someone else may run off with it. You must hold
2019 * the appropriate locks or have a private queue to do this.
2020 *
2021 * Returns %NULL for an empty list or a pointer to the head element.
2022 * The reference count is not incremented and the reference is therefore
2023 * volatile. Use with caution.
2024 */
2025static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2026{
2027 struct sk_buff *skb = list_->next;
2028
2029 if (skb == (struct sk_buff *)list_)
2030 skb = NULL;
2031 return skb;
2032}
2033
2034/**
2035 * __skb_peek - peek at the head of a non-empty &sk_buff_head
2036 * @list_: list to peek at
2037 *
2038 * Like skb_peek(), but the caller knows that the list is not empty.
2039 */
2040static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2041{
2042 return list_->next;
2043}
2044
2045/**
2046 * skb_peek_next - peek skb following the given one from a queue
2047 * @skb: skb to start from
2048 * @list_: list to peek at
2049 *
2050 * Returns %NULL when the end of the list is met or a pointer to the
2051 * next element. The reference count is not incremented and the
2052 * reference is therefore volatile. Use with caution.
2053 */
2054static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2055 const struct sk_buff_head *list_)
2056{
2057 struct sk_buff *next = skb->next;
2058
2059 if (next == (struct sk_buff *)list_)
2060 next = NULL;
2061 return next;
2062}
2063
2064/**
2065 * skb_peek_tail - peek at the tail of an &sk_buff_head
2066 * @list_: list to peek at
2067 *
2068 * Peek an &sk_buff. Unlike most other operations you _MUST_
2069 * be careful with this one. A peek leaves the buffer on the
2070 * list and someone else may run off with it. You must hold
2071 * the appropriate locks or have a private queue to do this.
2072 *
2073 * Returns %NULL for an empty list or a pointer to the tail element.
2074 * The reference count is not incremented and the reference is therefore
2075 * volatile. Use with caution.
2076 */
2077static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2078{
2079 struct sk_buff *skb = READ_ONCE(list_->prev);
2080
2081 if (skb == (struct sk_buff *)list_)
2082 skb = NULL;
2083 return skb;
2084
2085}
2086
2087/**
2088 * skb_queue_len - get queue length
2089 * @list_: list to measure
2090 *
2091 * Return the length of an &sk_buff queue.
2092 */
2093static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2094{
2095 return list_->qlen;
2096}
2097
2098/**
2099 * skb_queue_len_lockless - get queue length
2100 * @list_: list to measure
2101 *
2102 * Return the length of an &sk_buff queue.
2103 * This variant can be used in lockless contexts.
2104 */
2105static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2106{
2107 return READ_ONCE(list_->qlen);
2108}
2109
2110/**
2111 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2112 * @list: queue to initialize
2113 *
2114 * This initializes only the list and queue length aspects of
2115 * an sk_buff_head object. This allows to initialize the list
2116 * aspects of an sk_buff_head without reinitializing things like
2117 * the spinlock. It can also be used for on-stack sk_buff_head
2118 * objects where the spinlock is known to not be used.
2119 */
2120static inline void __skb_queue_head_init(struct sk_buff_head *list)
2121{
2122 list->prev = list->next = (struct sk_buff *)list;
2123 list->qlen = 0;
2124}
2125
2126/*
2127 * This function creates a split out lock class for each invocation;
2128 * this is needed for now since a whole lot of users of the skb-queue
2129 * infrastructure in drivers have different locking usage (in hardirq)
2130 * than the networking core (in softirq only). In the long run either the
2131 * network layer or drivers should need annotation to consolidate the
2132 * main types of usage into 3 classes.
2133 */
2134static inline void skb_queue_head_init(struct sk_buff_head *list)
2135{
2136 spin_lock_init(&list->lock);
2137 __skb_queue_head_init(list);
2138}
2139
2140static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2141 struct lock_class_key *class)
2142{
2143 skb_queue_head_init(list);
2144 lockdep_set_class(&list->lock, class);
2145}
2146
2147/*
2148 * Insert an sk_buff on a list.
2149 *
2150 * The "__skb_xxxx()" functions are the non-atomic ones that
2151 * can only be called with interrupts disabled.
2152 */
2153static inline void __skb_insert(struct sk_buff *newsk,
2154 struct sk_buff *prev, struct sk_buff *next,
2155 struct sk_buff_head *list)
2156{
2157 /* See skb_queue_empty_lockless() and skb_peek_tail()
2158 * for the opposite READ_ONCE()
2159 */
2160 WRITE_ONCE(newsk->next, next);
2161 WRITE_ONCE(newsk->prev, prev);
2162 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2163 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2164 WRITE_ONCE(list->qlen, list->qlen + 1);
2165}
2166
2167static inline void __skb_queue_splice(const struct sk_buff_head *list,
2168 struct sk_buff *prev,
2169 struct sk_buff *next)
2170{
2171 struct sk_buff *first = list->next;
2172 struct sk_buff *last = list->prev;
2173
2174 WRITE_ONCE(first->prev, prev);
2175 WRITE_ONCE(prev->next, first);
2176
2177 WRITE_ONCE(last->next, next);
2178 WRITE_ONCE(next->prev, last);
2179}
2180
2181/**
2182 * skb_queue_splice - join two skb lists, this is designed for stacks
2183 * @list: the new list to add
2184 * @head: the place to add it in the first list
2185 */
2186static inline void skb_queue_splice(const struct sk_buff_head *list,
2187 struct sk_buff_head *head)
2188{
2189 if (!skb_queue_empty(list)) {
2190 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2191 head->qlen += list->qlen;
2192 }
2193}
2194
2195/**
2196 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2197 * @list: the new list to add
2198 * @head: the place to add it in the first list
2199 *
2200 * The list at @list is reinitialised
2201 */
2202static inline void skb_queue_splice_init(struct sk_buff_head *list,
2203 struct sk_buff_head *head)
2204{
2205 if (!skb_queue_empty(list)) {
2206 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2207 head->qlen += list->qlen;
2208 __skb_queue_head_init(list);
2209 }
2210}
2211
2212/**
2213 * skb_queue_splice_tail - join two skb lists, each list being a queue
2214 * @list: the new list to add
2215 * @head: the place to add it in the first list
2216 */
2217static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2218 struct sk_buff_head *head)
2219{
2220 if (!skb_queue_empty(list)) {
2221 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2222 head->qlen += list->qlen;
2223 }
2224}
2225
2226/**
2227 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2228 * @list: the new list to add
2229 * @head: the place to add it in the first list
2230 *
2231 * Each of the lists is a queue.
2232 * The list at @list is reinitialised
2233 */
2234static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2235 struct sk_buff_head *head)
2236{
2237 if (!skb_queue_empty(list)) {
2238 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2239 head->qlen += list->qlen;
2240 __skb_queue_head_init(list);
2241 }
2242}
2243
2244/**
2245 * __skb_queue_after - queue a buffer at the list head
2246 * @list: list to use
2247 * @prev: place after this buffer
2248 * @newsk: buffer to queue
2249 *
2250 * Queue a buffer int the middle of a list. This function takes no locks
2251 * and you must therefore hold required locks before calling it.
2252 *
2253 * A buffer cannot be placed on two lists at the same time.
2254 */
2255static inline void __skb_queue_after(struct sk_buff_head *list,
2256 struct sk_buff *prev,
2257 struct sk_buff *newsk)
2258{
2259 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2260}
2261
2262void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2263 struct sk_buff_head *list);
2264
2265static inline void __skb_queue_before(struct sk_buff_head *list,
2266 struct sk_buff *next,
2267 struct sk_buff *newsk)
2268{
2269 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2270}
2271
2272/**
2273 * __skb_queue_head - queue a buffer at the list head
2274 * @list: list to use
2275 * @newsk: buffer to queue
2276 *
2277 * Queue a buffer at the start of a list. This function takes no locks
2278 * and you must therefore hold required locks before calling it.
2279 *
2280 * A buffer cannot be placed on two lists at the same time.
2281 */
2282static inline void __skb_queue_head(struct sk_buff_head *list,
2283 struct sk_buff *newsk)
2284{
2285 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2286}
2287void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2288
2289/**
2290 * __skb_queue_tail - queue a buffer at the list tail
2291 * @list: list to use
2292 * @newsk: buffer to queue
2293 *
2294 * Queue a buffer at the end of a list. This function takes no locks
2295 * and you must therefore hold required locks before calling it.
2296 *
2297 * A buffer cannot be placed on two lists at the same time.
2298 */
2299static inline void __skb_queue_tail(struct sk_buff_head *list,
2300 struct sk_buff *newsk)
2301{
2302 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2303}
2304void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2305
2306/*
2307 * remove sk_buff from list. _Must_ be called atomically, and with
2308 * the list known..
2309 */
2310void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2311static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2312{
2313 struct sk_buff *next, *prev;
2314
2315 WRITE_ONCE(list->qlen, list->qlen - 1);
2316 next = skb->next;
2317 prev = skb->prev;
2318 skb->next = skb->prev = NULL;
2319 WRITE_ONCE(next->prev, prev);
2320 WRITE_ONCE(prev->next, next);
2321}
2322
2323/**
2324 * __skb_dequeue - remove from the head of the queue
2325 * @list: list to dequeue from
2326 *
2327 * Remove the head of the list. This function does not take any locks
2328 * so must be used with appropriate locks held only. The head item is
2329 * returned or %NULL if the list is empty.
2330 */
2331static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2332{
2333 struct sk_buff *skb = skb_peek(list);
2334 if (skb)
2335 __skb_unlink(skb, list);
2336 return skb;
2337}
2338struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2339
2340/**
2341 * __skb_dequeue_tail - remove from the tail of the queue
2342 * @list: list to dequeue from
2343 *
2344 * Remove the tail of the list. This function does not take any locks
2345 * so must be used with appropriate locks held only. The tail item is
2346 * returned or %NULL if the list is empty.
2347 */
2348static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2349{
2350 struct sk_buff *skb = skb_peek_tail(list);
2351 if (skb)
2352 __skb_unlink(skb, list);
2353 return skb;
2354}
2355struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2356
2357
2358static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2359{
2360 return skb->data_len;
2361}
2362
2363static inline unsigned int skb_headlen(const struct sk_buff *skb)
2364{
2365 return skb->len - skb->data_len;
2366}
2367
2368static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2369{
2370 unsigned int i, len = 0;
2371
2372 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2373 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2374 return len;
2375}
2376
2377static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2378{
2379 return skb_headlen(skb) + __skb_pagelen(skb);
2380}
2381
2382/**
2383 * __skb_fill_page_desc - initialise a paged fragment in an skb
2384 * @skb: buffer containing fragment to be initialised
2385 * @i: paged fragment index to initialise
2386 * @page: the page to use for this fragment
2387 * @off: the offset to the data with @page
2388 * @size: the length of the data
2389 *
2390 * Initialises the @i'th fragment of @skb to point to &size bytes at
2391 * offset @off within @page.
2392 *
2393 * Does not take any additional reference on the fragment.
2394 */
2395static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2396 struct page *page, int off, int size)
2397{
2398 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2399
2400 /*
2401 * Propagate page pfmemalloc to the skb if we can. The problem is
2402 * that not all callers have unique ownership of the page but rely
2403 * on page_is_pfmemalloc doing the right thing(tm).
2404 */
2405 frag->bv_page = page;
2406 frag->bv_offset = off;
2407 skb_frag_size_set(frag, size);
2408
2409 page = compound_head(page);
2410 if (page_is_pfmemalloc(page))
2411 skb->pfmemalloc = true;
2412}
2413
2414/**
2415 * skb_fill_page_desc - initialise a paged fragment in an skb
2416 * @skb: buffer containing fragment to be initialised
2417 * @i: paged fragment index to initialise
2418 * @page: the page to use for this fragment
2419 * @off: the offset to the data with @page
2420 * @size: the length of the data
2421 *
2422 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2423 * @skb to point to @size bytes at offset @off within @page. In
2424 * addition updates @skb such that @i is the last fragment.
2425 *
2426 * Does not take any additional reference on the fragment.
2427 */
2428static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2429 struct page *page, int off, int size)
2430{
2431 __skb_fill_page_desc(skb, i, page, off, size);
2432 skb_shinfo(skb)->nr_frags = i + 1;
2433}
2434
2435void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2436 int size, unsigned int truesize);
2437
2438void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2439 unsigned int truesize);
2440
2441#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2442
2443#ifdef NET_SKBUFF_DATA_USES_OFFSET
2444static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2445{
2446 return skb->head + skb->tail;
2447}
2448
2449static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2450{
2451 skb->tail = skb->data - skb->head;
2452}
2453
2454static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2455{
2456 skb_reset_tail_pointer(skb);
2457 skb->tail += offset;
2458}
2459
2460#else /* NET_SKBUFF_DATA_USES_OFFSET */
2461static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2462{
2463 return skb->tail;
2464}
2465
2466static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2467{
2468 skb->tail = skb->data;
2469}
2470
2471static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2472{
2473 skb->tail = skb->data + offset;
2474}
2475
2476#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2477
2478/*
2479 * Add data to an sk_buff
2480 */
2481void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2482void *skb_put(struct sk_buff *skb, unsigned int len);
2483static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2484{
2485 void *tmp = skb_tail_pointer(skb);
2486 SKB_LINEAR_ASSERT(skb);
2487 skb->tail += len;
2488 skb->len += len;
2489 return tmp;
2490}
2491
2492static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2493{
2494 void *tmp = __skb_put(skb, len);
2495
2496 memset(tmp, 0, len);
2497 return tmp;
2498}
2499
2500static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2501 unsigned int len)
2502{
2503 void *tmp = __skb_put(skb, len);
2504
2505 memcpy(tmp, data, len);
2506 return tmp;
2507}
2508
2509static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2510{
2511 *(u8 *)__skb_put(skb, 1) = val;
2512}
2513
2514static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2515{
2516 void *tmp = skb_put(skb, len);
2517
2518 memset(tmp, 0, len);
2519
2520 return tmp;
2521}
2522
2523static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2524 unsigned int len)
2525{
2526 void *tmp = skb_put(skb, len);
2527
2528 memcpy(tmp, data, len);
2529
2530 return tmp;
2531}
2532
2533static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2534{
2535 *(u8 *)skb_put(skb, 1) = val;
2536}
2537
2538void *skb_push(struct sk_buff *skb, unsigned int len);
2539static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2540{
2541 skb->data -= len;
2542 skb->len += len;
2543 return skb->data;
2544}
2545
2546void *skb_pull(struct sk_buff *skb, unsigned int len);
2547static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2548{
2549 skb->len -= len;
2550 BUG_ON(skb->len < skb->data_len);
2551 return skb->data += len;
2552}
2553
2554static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2555{
2556 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2557}
2558
2559void *skb_pull_data(struct sk_buff *skb, size_t len);
2560
2561void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2562
2563static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2564{
2565 if (len > skb_headlen(skb) &&
2566 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2567 return NULL;
2568 skb->len -= len;
2569 return skb->data += len;
2570}
2571
2572static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2573{
2574 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2575}
2576
2577static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2578{
2579 if (likely(len <= skb_headlen(skb)))
2580 return true;
2581 if (unlikely(len > skb->len))
2582 return false;
2583 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2584}
2585
2586void skb_condense(struct sk_buff *skb);
2587
2588/**
2589 * skb_headroom - bytes at buffer head
2590 * @skb: buffer to check
2591 *
2592 * Return the number of bytes of free space at the head of an &sk_buff.
2593 */
2594static inline unsigned int skb_headroom(const struct sk_buff *skb)
2595{
2596 return skb->data - skb->head;
2597}
2598
2599/**
2600 * skb_tailroom - bytes at buffer end
2601 * @skb: buffer to check
2602 *
2603 * Return the number of bytes of free space at the tail of an sk_buff
2604 */
2605static inline int skb_tailroom(const struct sk_buff *skb)
2606{
2607 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2608}
2609
2610/**
2611 * skb_availroom - bytes at buffer end
2612 * @skb: buffer to check
2613 *
2614 * Return the number of bytes of free space at the tail of an sk_buff
2615 * allocated by sk_stream_alloc()
2616 */
2617static inline int skb_availroom(const struct sk_buff *skb)
2618{
2619 if (skb_is_nonlinear(skb))
2620 return 0;
2621
2622 return skb->end - skb->tail - skb->reserved_tailroom;
2623}
2624
2625/**
2626 * skb_reserve - adjust headroom
2627 * @skb: buffer to alter
2628 * @len: bytes to move
2629 *
2630 * Increase the headroom of an empty &sk_buff by reducing the tail
2631 * room. This is only allowed for an empty buffer.
2632 */
2633static inline void skb_reserve(struct sk_buff *skb, int len)
2634{
2635 skb->data += len;
2636 skb->tail += len;
2637}
2638
2639/**
2640 * skb_tailroom_reserve - adjust reserved_tailroom
2641 * @skb: buffer to alter
2642 * @mtu: maximum amount of headlen permitted
2643 * @needed_tailroom: minimum amount of reserved_tailroom
2644 *
2645 * Set reserved_tailroom so that headlen can be as large as possible but
2646 * not larger than mtu and tailroom cannot be smaller than
2647 * needed_tailroom.
2648 * The required headroom should already have been reserved before using
2649 * this function.
2650 */
2651static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2652 unsigned int needed_tailroom)
2653{
2654 SKB_LINEAR_ASSERT(skb);
2655 if (mtu < skb_tailroom(skb) - needed_tailroom)
2656 /* use at most mtu */
2657 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2658 else
2659 /* use up to all available space */
2660 skb->reserved_tailroom = needed_tailroom;
2661}
2662
2663#define ENCAP_TYPE_ETHER 0
2664#define ENCAP_TYPE_IPPROTO 1
2665
2666static inline void skb_set_inner_protocol(struct sk_buff *skb,
2667 __be16 protocol)
2668{
2669 skb->inner_protocol = protocol;
2670 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2671}
2672
2673static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2674 __u8 ipproto)
2675{
2676 skb->inner_ipproto = ipproto;
2677 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2678}
2679
2680static inline void skb_reset_inner_headers(struct sk_buff *skb)
2681{
2682 skb->inner_mac_header = skb->mac_header;
2683 skb->inner_network_header = skb->network_header;
2684 skb->inner_transport_header = skb->transport_header;
2685}
2686
2687static inline void skb_reset_mac_len(struct sk_buff *skb)
2688{
2689 skb->mac_len = skb->network_header - skb->mac_header;
2690}
2691
2692static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2693 *skb)
2694{
2695 return skb->head + skb->inner_transport_header;
2696}
2697
2698static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2699{
2700 return skb_inner_transport_header(skb) - skb->data;
2701}
2702
2703static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2704{
2705 skb->inner_transport_header = skb->data - skb->head;
2706}
2707
2708static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2709 const int offset)
2710{
2711 skb_reset_inner_transport_header(skb);
2712 skb->inner_transport_header += offset;
2713}
2714
2715static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2716{
2717 return skb->head + skb->inner_network_header;
2718}
2719
2720static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2721{
2722 skb->inner_network_header = skb->data - skb->head;
2723}
2724
2725static inline void skb_set_inner_network_header(struct sk_buff *skb,
2726 const int offset)
2727{
2728 skb_reset_inner_network_header(skb);
2729 skb->inner_network_header += offset;
2730}
2731
2732static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2733{
2734 return skb->head + skb->inner_mac_header;
2735}
2736
2737static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2738{
2739 skb->inner_mac_header = skb->data - skb->head;
2740}
2741
2742static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2743 const int offset)
2744{
2745 skb_reset_inner_mac_header(skb);
2746 skb->inner_mac_header += offset;
2747}
2748static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2749{
2750 return skb->transport_header != (typeof(skb->transport_header))~0U;
2751}
2752
2753static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2754{
2755 return skb->head + skb->transport_header;
2756}
2757
2758static inline void skb_reset_transport_header(struct sk_buff *skb)
2759{
2760 skb->transport_header = skb->data - skb->head;
2761}
2762
2763static inline void skb_set_transport_header(struct sk_buff *skb,
2764 const int offset)
2765{
2766 skb_reset_transport_header(skb);
2767 skb->transport_header += offset;
2768}
2769
2770static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2771{
2772 return skb->head + skb->network_header;
2773}
2774
2775static inline void skb_reset_network_header(struct sk_buff *skb)
2776{
2777 skb->network_header = skb->data - skb->head;
2778}
2779
2780static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2781{
2782 skb_reset_network_header(skb);
2783 skb->network_header += offset;
2784}
2785
2786static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2787{
2788 return skb->head + skb->mac_header;
2789}
2790
2791static inline int skb_mac_offset(const struct sk_buff *skb)
2792{
2793 return skb_mac_header(skb) - skb->data;
2794}
2795
2796static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2797{
2798 return skb->network_header - skb->mac_header;
2799}
2800
2801static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2802{
2803 return skb->mac_header != (typeof(skb->mac_header))~0U;
2804}
2805
2806static inline void skb_unset_mac_header(struct sk_buff *skb)
2807{
2808 skb->mac_header = (typeof(skb->mac_header))~0U;
2809}
2810
2811static inline void skb_reset_mac_header(struct sk_buff *skb)
2812{
2813 skb->mac_header = skb->data - skb->head;
2814}
2815
2816static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2817{
2818 skb_reset_mac_header(skb);
2819 skb->mac_header += offset;
2820}
2821
2822static inline void skb_pop_mac_header(struct sk_buff *skb)
2823{
2824 skb->mac_header = skb->network_header;
2825}
2826
2827static inline void skb_probe_transport_header(struct sk_buff *skb)
2828{
2829 struct flow_keys_basic keys;
2830
2831 if (skb_transport_header_was_set(skb))
2832 return;
2833
2834 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2835 NULL, 0, 0, 0, 0))
2836 skb_set_transport_header(skb, keys.control.thoff);
2837}
2838
2839static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2840{
2841 if (skb_mac_header_was_set(skb)) {
2842 const unsigned char *old_mac = skb_mac_header(skb);
2843
2844 skb_set_mac_header(skb, -skb->mac_len);
2845 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2846 }
2847}
2848
2849static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2850{
2851 return skb->csum_start - skb_headroom(skb);
2852}
2853
2854static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2855{
2856 return skb->head + skb->csum_start;
2857}
2858
2859static inline int skb_transport_offset(const struct sk_buff *skb)
2860{
2861 return skb_transport_header(skb) - skb->data;
2862}
2863
2864static inline u32 skb_network_header_len(const struct sk_buff *skb)
2865{
2866 return skb->transport_header - skb->network_header;
2867}
2868
2869static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2870{
2871 return skb->inner_transport_header - skb->inner_network_header;
2872}
2873
2874static inline int skb_network_offset(const struct sk_buff *skb)
2875{
2876 return skb_network_header(skb) - skb->data;
2877}
2878
2879static inline int skb_inner_network_offset(const struct sk_buff *skb)
2880{
2881 return skb_inner_network_header(skb) - skb->data;
2882}
2883
2884static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2885{
2886 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2887}
2888
2889/*
2890 * CPUs often take a performance hit when accessing unaligned memory
2891 * locations. The actual performance hit varies, it can be small if the
2892 * hardware handles it or large if we have to take an exception and fix it
2893 * in software.
2894 *
2895 * Since an ethernet header is 14 bytes network drivers often end up with
2896 * the IP header at an unaligned offset. The IP header can be aligned by
2897 * shifting the start of the packet by 2 bytes. Drivers should do this
2898 * with:
2899 *
2900 * skb_reserve(skb, NET_IP_ALIGN);
2901 *
2902 * The downside to this alignment of the IP header is that the DMA is now
2903 * unaligned. On some architectures the cost of an unaligned DMA is high
2904 * and this cost outweighs the gains made by aligning the IP header.
2905 *
2906 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2907 * to be overridden.
2908 */
2909#ifndef NET_IP_ALIGN
2910#define NET_IP_ALIGN 2
2911#endif
2912
2913/*
2914 * The networking layer reserves some headroom in skb data (via
2915 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2916 * the header has to grow. In the default case, if the header has to grow
2917 * 32 bytes or less we avoid the reallocation.
2918 *
2919 * Unfortunately this headroom changes the DMA alignment of the resulting
2920 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2921 * on some architectures. An architecture can override this value,
2922 * perhaps setting it to a cacheline in size (since that will maintain
2923 * cacheline alignment of the DMA). It must be a power of 2.
2924 *
2925 * Various parts of the networking layer expect at least 32 bytes of
2926 * headroom, you should not reduce this.
2927 *
2928 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2929 * to reduce average number of cache lines per packet.
2930 * get_rps_cpu() for example only access one 64 bytes aligned block :
2931 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2932 */
2933#ifndef NET_SKB_PAD
2934#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2935#endif
2936
2937int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2938
2939static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2940{
2941 if (WARN_ON(skb_is_nonlinear(skb)))
2942 return;
2943 skb->len = len;
2944 skb_set_tail_pointer(skb, len);
2945}
2946
2947static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2948{
2949 __skb_set_length(skb, len);
2950}
2951
2952void skb_trim(struct sk_buff *skb, unsigned int len);
2953
2954static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2955{
2956 if (skb->data_len)
2957 return ___pskb_trim(skb, len);
2958 __skb_trim(skb, len);
2959 return 0;
2960}
2961
2962static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2963{
2964 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2965}
2966
2967/**
2968 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2969 * @skb: buffer to alter
2970 * @len: new length
2971 *
2972 * This is identical to pskb_trim except that the caller knows that
2973 * the skb is not cloned so we should never get an error due to out-
2974 * of-memory.
2975 */
2976static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2977{
2978 int err = pskb_trim(skb, len);
2979 BUG_ON(err);
2980}
2981
2982static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2983{
2984 unsigned int diff = len - skb->len;
2985
2986 if (skb_tailroom(skb) < diff) {
2987 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2988 GFP_ATOMIC);
2989 if (ret)
2990 return ret;
2991 }
2992 __skb_set_length(skb, len);
2993 return 0;
2994}
2995
2996/**
2997 * skb_orphan - orphan a buffer
2998 * @skb: buffer to orphan
2999 *
3000 * If a buffer currently has an owner then we call the owner's
3001 * destructor function and make the @skb unowned. The buffer continues
3002 * to exist but is no longer charged to its former owner.
3003 */
3004static inline void skb_orphan(struct sk_buff *skb)
3005{
3006 if (skb->destructor) {
3007 skb->destructor(skb);
3008 skb->destructor = NULL;
3009 skb->sk = NULL;
3010 } else {
3011 BUG_ON(skb->sk);
3012 }
3013}
3014
3015/**
3016 * skb_orphan_frags - orphan the frags contained in a buffer
3017 * @skb: buffer to orphan frags from
3018 * @gfp_mask: allocation mask for replacement pages
3019 *
3020 * For each frag in the SKB which needs a destructor (i.e. has an
3021 * owner) create a copy of that frag and release the original
3022 * page by calling the destructor.
3023 */
3024static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3025{
3026 if (likely(!skb_zcopy(skb)))
3027 return 0;
3028 if (!skb_zcopy_is_nouarg(skb) &&
3029 skb_uarg(skb)->callback == msg_zerocopy_callback)
3030 return 0;
3031 return skb_copy_ubufs(skb, gfp_mask);
3032}
3033
3034/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3035static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3036{
3037 if (likely(!skb_zcopy(skb)))
3038 return 0;
3039 return skb_copy_ubufs(skb, gfp_mask);
3040}
3041
3042/**
3043 * __skb_queue_purge - empty a list
3044 * @list: list to empty
3045 *
3046 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3047 * the list and one reference dropped. This function does not take the
3048 * list lock and the caller must hold the relevant locks to use it.
3049 */
3050static inline void __skb_queue_purge(struct sk_buff_head *list)
3051{
3052 struct sk_buff *skb;
3053 while ((skb = __skb_dequeue(list)) != NULL)
3054 kfree_skb(skb);
3055}
3056void skb_queue_purge(struct sk_buff_head *list);
3057
3058unsigned int skb_rbtree_purge(struct rb_root *root);
3059
3060void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3061
3062/**
3063 * netdev_alloc_frag - allocate a page fragment
3064 * @fragsz: fragment size
3065 *
3066 * Allocates a frag from a page for receive buffer.
3067 * Uses GFP_ATOMIC allocations.
3068 */
3069static inline void *netdev_alloc_frag(unsigned int fragsz)
3070{
3071 return __netdev_alloc_frag_align(fragsz, ~0u);
3072}
3073
3074static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3075 unsigned int align)
3076{
3077 WARN_ON_ONCE(!is_power_of_2(align));
3078 return __netdev_alloc_frag_align(fragsz, -align);
3079}
3080
3081struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3082 gfp_t gfp_mask);
3083
3084/**
3085 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
3086 * @dev: network device to receive on
3087 * @length: length to allocate
3088 *
3089 * Allocate a new &sk_buff and assign it a usage count of one. The
3090 * buffer has unspecified headroom built in. Users should allocate
3091 * the headroom they think they need without accounting for the
3092 * built in space. The built in space is used for optimisations.
3093 *
3094 * %NULL is returned if there is no free memory. Although this function
3095 * allocates memory it can be called from an interrupt.
3096 */
3097static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3098 unsigned int length)
3099{
3100 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3101}
3102
3103/* legacy helper around __netdev_alloc_skb() */
3104static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3105 gfp_t gfp_mask)
3106{
3107 return __netdev_alloc_skb(NULL, length, gfp_mask);
3108}
3109
3110/* legacy helper around netdev_alloc_skb() */
3111static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3112{
3113 return netdev_alloc_skb(NULL, length);
3114}
3115
3116
3117static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3118 unsigned int length, gfp_t gfp)
3119{
3120 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3121
3122 if (NET_IP_ALIGN && skb)
3123 skb_reserve(skb, NET_IP_ALIGN);
3124 return skb;
3125}
3126
3127static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3128 unsigned int length)
3129{
3130 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3131}
3132
3133static inline void skb_free_frag(void *addr)
3134{
3135 page_frag_free(addr);
3136}
3137
3138void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3139
3140static inline void *napi_alloc_frag(unsigned int fragsz)
3141{
3142 return __napi_alloc_frag_align(fragsz, ~0u);
3143}
3144
3145static inline void *napi_alloc_frag_align(unsigned int fragsz,
3146 unsigned int align)
3147{
3148 WARN_ON_ONCE(!is_power_of_2(align));
3149 return __napi_alloc_frag_align(fragsz, -align);
3150}
3151
3152struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3153 unsigned int length, gfp_t gfp_mask);
3154static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3155 unsigned int length)
3156{
3157 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3158}
3159void napi_consume_skb(struct sk_buff *skb, int budget);
3160
3161void napi_skb_free_stolen_head(struct sk_buff *skb);
3162void __kfree_skb_defer(struct sk_buff *skb);
3163
3164/**
3165 * __dev_alloc_pages - allocate page for network Rx
3166 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3167 * @order: size of the allocation
3168 *
3169 * Allocate a new page.
3170 *
3171 * %NULL is returned if there is no free memory.
3172*/
3173static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3174 unsigned int order)
3175{
3176 /* This piece of code contains several assumptions.
3177 * 1. This is for device Rx, therefor a cold page is preferred.
3178 * 2. The expectation is the user wants a compound page.
3179 * 3. If requesting a order 0 page it will not be compound
3180 * due to the check to see if order has a value in prep_new_page
3181 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3182 * code in gfp_to_alloc_flags that should be enforcing this.
3183 */
3184 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3185
3186 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3187}
3188
3189static inline struct page *dev_alloc_pages(unsigned int order)
3190{
3191 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3192}
3193
3194/**
3195 * __dev_alloc_page - allocate a page for network Rx
3196 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3197 *
3198 * Allocate a new page.
3199 *
3200 * %NULL is returned if there is no free memory.
3201 */
3202static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3203{
3204 return __dev_alloc_pages(gfp_mask, 0);
3205}
3206
3207static inline struct page *dev_alloc_page(void)
3208{
3209 return dev_alloc_pages(0);
3210}
3211
3212/**
3213 * dev_page_is_reusable - check whether a page can be reused for network Rx
3214 * @page: the page to test
3215 *
3216 * A page shouldn't be considered for reusing/recycling if it was allocated
3217 * under memory pressure or at a distant memory node.
3218 *
3219 * Returns false if this page should be returned to page allocator, true
3220 * otherwise.
3221 */
3222static inline bool dev_page_is_reusable(const struct page *page)
3223{
3224 return likely(page_to_nid(page) == numa_mem_id() &&
3225 !page_is_pfmemalloc(page));
3226}
3227
3228/**
3229 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3230 * @page: The page that was allocated from skb_alloc_page
3231 * @skb: The skb that may need pfmemalloc set
3232 */
3233static inline void skb_propagate_pfmemalloc(const struct page *page,
3234 struct sk_buff *skb)
3235{
3236 if (page_is_pfmemalloc(page))
3237 skb->pfmemalloc = true;
3238}
3239
3240/**
3241 * skb_frag_off() - Returns the offset of a skb fragment
3242 * @frag: the paged fragment
3243 */
3244static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3245{
3246 return frag->bv_offset;
3247}
3248
3249/**
3250 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3251 * @frag: skb fragment
3252 * @delta: value to add
3253 */
3254static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3255{
3256 frag->bv_offset += delta;
3257}
3258
3259/**
3260 * skb_frag_off_set() - Sets the offset of a skb fragment
3261 * @frag: skb fragment
3262 * @offset: offset of fragment
3263 */
3264static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3265{
3266 frag->bv_offset = offset;
3267}
3268
3269/**
3270 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3271 * @fragto: skb fragment where offset is set
3272 * @fragfrom: skb fragment offset is copied from
3273 */
3274static inline void skb_frag_off_copy(skb_frag_t *fragto,
3275 const skb_frag_t *fragfrom)
3276{
3277 fragto->bv_offset = fragfrom->bv_offset;
3278}
3279
3280/**
3281 * skb_frag_page - retrieve the page referred to by a paged fragment
3282 * @frag: the paged fragment
3283 *
3284 * Returns the &struct page associated with @frag.
3285 */
3286static inline struct page *skb_frag_page(const skb_frag_t *frag)
3287{
3288 return frag->bv_page;
3289}
3290
3291/**
3292 * __skb_frag_ref - take an addition reference on a paged fragment.
3293 * @frag: the paged fragment
3294 *
3295 * Takes an additional reference on the paged fragment @frag.
3296 */
3297static inline void __skb_frag_ref(skb_frag_t *frag)
3298{
3299 get_page(skb_frag_page(frag));
3300}
3301
3302/**
3303 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3304 * @skb: the buffer
3305 * @f: the fragment offset.
3306 *
3307 * Takes an additional reference on the @f'th paged fragment of @skb.
3308 */
3309static inline void skb_frag_ref(struct sk_buff *skb, int f)
3310{
3311 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3312}
3313
3314/**
3315 * __skb_frag_unref - release a reference on a paged fragment.
3316 * @frag: the paged fragment
3317 * @recycle: recycle the page if allocated via page_pool
3318 *
3319 * Releases a reference on the paged fragment @frag
3320 * or recycles the page via the page_pool API.
3321 */
3322static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3323{
3324 struct page *page = skb_frag_page(frag);
3325
3326#ifdef CONFIG_PAGE_POOL
3327 if (recycle && page_pool_return_skb_page(page))
3328 return;
3329#endif
3330 put_page(page);
3331}
3332
3333/**
3334 * skb_frag_unref - release a reference on a paged fragment of an skb.
3335 * @skb: the buffer
3336 * @f: the fragment offset
3337 *
3338 * Releases a reference on the @f'th paged fragment of @skb.
3339 */
3340static inline void skb_frag_unref(struct sk_buff *skb, int f)
3341{
3342 __skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle);
3343}
3344
3345/**
3346 * skb_frag_address - gets the address of the data contained in a paged fragment
3347 * @frag: the paged fragment buffer
3348 *
3349 * Returns the address of the data within @frag. The page must already
3350 * be mapped.
3351 */
3352static inline void *skb_frag_address(const skb_frag_t *frag)
3353{
3354 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3355}
3356
3357/**
3358 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3359 * @frag: the paged fragment buffer
3360 *
3361 * Returns the address of the data within @frag. Checks that the page
3362 * is mapped and returns %NULL otherwise.
3363 */
3364static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3365{
3366 void *ptr = page_address(skb_frag_page(frag));
3367 if (unlikely(!ptr))
3368 return NULL;
3369
3370 return ptr + skb_frag_off(frag);
3371}
3372
3373/**
3374 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3375 * @fragto: skb fragment where page is set
3376 * @fragfrom: skb fragment page is copied from
3377 */
3378static inline void skb_frag_page_copy(skb_frag_t *fragto,
3379 const skb_frag_t *fragfrom)
3380{
3381 fragto->bv_page = fragfrom->bv_page;
3382}
3383
3384/**
3385 * __skb_frag_set_page - sets the page contained in a paged fragment
3386 * @frag: the paged fragment
3387 * @page: the page to set
3388 *
3389 * Sets the fragment @frag to contain @page.
3390 */
3391static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3392{
3393 frag->bv_page = page;
3394}
3395
3396/**
3397 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3398 * @skb: the buffer
3399 * @f: the fragment offset
3400 * @page: the page to set
3401 *
3402 * Sets the @f'th fragment of @skb to contain @page.
3403 */
3404static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3405 struct page *page)
3406{
3407 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3408}
3409
3410bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3411
3412/**
3413 * skb_frag_dma_map - maps a paged fragment via the DMA API
3414 * @dev: the device to map the fragment to
3415 * @frag: the paged fragment to map
3416 * @offset: the offset within the fragment (starting at the
3417 * fragment's own offset)
3418 * @size: the number of bytes to map
3419 * @dir: the direction of the mapping (``PCI_DMA_*``)
3420 *
3421 * Maps the page associated with @frag to @device.
3422 */
3423static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3424 const skb_frag_t *frag,
3425 size_t offset, size_t size,
3426 enum dma_data_direction dir)
3427{
3428 return dma_map_page(dev, skb_frag_page(frag),
3429 skb_frag_off(frag) + offset, size, dir);
3430}
3431
3432static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3433 gfp_t gfp_mask)
3434{
3435 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3436}
3437
3438
3439static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3440 gfp_t gfp_mask)
3441{
3442 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3443}
3444
3445
3446/**
3447 * skb_clone_writable - is the header of a clone writable
3448 * @skb: buffer to check
3449 * @len: length up to which to write
3450 *
3451 * Returns true if modifying the header part of the cloned buffer
3452 * does not requires the data to be copied.
3453 */
3454static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3455{
3456 return !skb_header_cloned(skb) &&
3457 skb_headroom(skb) + len <= skb->hdr_len;
3458}
3459
3460static inline int skb_try_make_writable(struct sk_buff *skb,
3461 unsigned int write_len)
3462{
3463 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3464 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3465}
3466
3467static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3468 int cloned)
3469{
3470 int delta = 0;
3471
3472 if (headroom > skb_headroom(skb))
3473 delta = headroom - skb_headroom(skb);
3474
3475 if (delta || cloned)
3476 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3477 GFP_ATOMIC);
3478 return 0;
3479}
3480
3481/**
3482 * skb_cow - copy header of skb when it is required
3483 * @skb: buffer to cow
3484 * @headroom: needed headroom
3485 *
3486 * If the skb passed lacks sufficient headroom or its data part
3487 * is shared, data is reallocated. If reallocation fails, an error
3488 * is returned and original skb is not changed.
3489 *
3490 * The result is skb with writable area skb->head...skb->tail
3491 * and at least @headroom of space at head.
3492 */
3493static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3494{
3495 return __skb_cow(skb, headroom, skb_cloned(skb));
3496}
3497
3498/**
3499 * skb_cow_head - skb_cow but only making the head writable
3500 * @skb: buffer to cow
3501 * @headroom: needed headroom
3502 *
3503 * This function is identical to skb_cow except that we replace the
3504 * skb_cloned check by skb_header_cloned. It should be used when
3505 * you only need to push on some header and do not need to modify
3506 * the data.
3507 */
3508static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3509{
3510 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3511}
3512
3513/**
3514 * skb_padto - pad an skbuff up to a minimal size
3515 * @skb: buffer to pad
3516 * @len: minimal length
3517 *
3518 * Pads up a buffer to ensure the trailing bytes exist and are
3519 * blanked. If the buffer already contains sufficient data it
3520 * is untouched. Otherwise it is extended. Returns zero on
3521 * success. The skb is freed on error.
3522 */
3523static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3524{
3525 unsigned int size = skb->len;
3526 if (likely(size >= len))
3527 return 0;
3528 return skb_pad(skb, len - size);
3529}
3530
3531/**
3532 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3533 * @skb: buffer to pad
3534 * @len: minimal length
3535 * @free_on_error: free buffer on error
3536 *
3537 * Pads up a buffer to ensure the trailing bytes exist and are
3538 * blanked. If the buffer already contains sufficient data it
3539 * is untouched. Otherwise it is extended. Returns zero on
3540 * success. The skb is freed on error if @free_on_error is true.
3541 */
3542static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3543 unsigned int len,
3544 bool free_on_error)
3545{
3546 unsigned int size = skb->len;
3547
3548 if (unlikely(size < len)) {
3549 len -= size;
3550 if (__skb_pad(skb, len, free_on_error))
3551 return -ENOMEM;
3552 __skb_put(skb, len);
3553 }
3554 return 0;
3555}
3556
3557/**
3558 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3559 * @skb: buffer to pad
3560 * @len: minimal length
3561 *
3562 * Pads up a buffer to ensure the trailing bytes exist and are
3563 * blanked. If the buffer already contains sufficient data it
3564 * is untouched. Otherwise it is extended. Returns zero on
3565 * success. The skb is freed on error.
3566 */
3567static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3568{
3569 return __skb_put_padto(skb, len, true);
3570}
3571
3572static inline int skb_add_data(struct sk_buff *skb,
3573 struct iov_iter *from, int copy)
3574{
3575 const int off = skb->len;
3576
3577 if (skb->ip_summed == CHECKSUM_NONE) {
3578 __wsum csum = 0;
3579 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3580 &csum, from)) {
3581 skb->csum = csum_block_add(skb->csum, csum, off);
3582 return 0;
3583 }
3584 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3585 return 0;
3586
3587 __skb_trim(skb, off);
3588 return -EFAULT;
3589}
3590
3591static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3592 const struct page *page, int off)
3593{
3594 if (skb_zcopy(skb))
3595 return false;
3596 if (i) {
3597 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3598
3599 return page == skb_frag_page(frag) &&
3600 off == skb_frag_off(frag) + skb_frag_size(frag);
3601 }
3602 return false;
3603}
3604
3605static inline int __skb_linearize(struct sk_buff *skb)
3606{
3607 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3608}
3609
3610/**
3611 * skb_linearize - convert paged skb to linear one
3612 * @skb: buffer to linarize
3613 *
3614 * If there is no free memory -ENOMEM is returned, otherwise zero
3615 * is returned and the old skb data released.
3616 */
3617static inline int skb_linearize(struct sk_buff *skb)
3618{
3619 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3620}
3621
3622/**
3623 * skb_has_shared_frag - can any frag be overwritten
3624 * @skb: buffer to test
3625 *
3626 * Return true if the skb has at least one frag that might be modified
3627 * by an external entity (as in vmsplice()/sendfile())
3628 */
3629static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3630{
3631 return skb_is_nonlinear(skb) &&
3632 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3633}
3634
3635/**
3636 * skb_linearize_cow - make sure skb is linear and writable
3637 * @skb: buffer to process
3638 *
3639 * If there is no free memory -ENOMEM is returned, otherwise zero
3640 * is returned and the old skb data released.
3641 */
3642static inline int skb_linearize_cow(struct sk_buff *skb)
3643{
3644 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3645 __skb_linearize(skb) : 0;
3646}
3647
3648static __always_inline void
3649__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3650 unsigned int off)
3651{
3652 if (skb->ip_summed == CHECKSUM_COMPLETE)
3653 skb->csum = csum_block_sub(skb->csum,
3654 csum_partial(start, len, 0), off);
3655 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3656 skb_checksum_start_offset(skb) < 0)
3657 skb->ip_summed = CHECKSUM_NONE;
3658}
3659
3660/**
3661 * skb_postpull_rcsum - update checksum for received skb after pull
3662 * @skb: buffer to update
3663 * @start: start of data before pull
3664 * @len: length of data pulled
3665 *
3666 * After doing a pull on a received packet, you need to call this to
3667 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3668 * CHECKSUM_NONE so that it can be recomputed from scratch.
3669 */
3670static inline void skb_postpull_rcsum(struct sk_buff *skb,
3671 const void *start, unsigned int len)
3672{
3673 if (skb->ip_summed == CHECKSUM_COMPLETE)
3674 skb->csum = wsum_negate(csum_partial(start, len,
3675 wsum_negate(skb->csum)));
3676 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3677 skb_checksum_start_offset(skb) < 0)
3678 skb->ip_summed = CHECKSUM_NONE;
3679}
3680
3681static __always_inline void
3682__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3683 unsigned int off)
3684{
3685 if (skb->ip_summed == CHECKSUM_COMPLETE)
3686 skb->csum = csum_block_add(skb->csum,
3687 csum_partial(start, len, 0), off);
3688}
3689
3690/**
3691 * skb_postpush_rcsum - update checksum for received skb after push
3692 * @skb: buffer to update
3693 * @start: start of data after push
3694 * @len: length of data pushed
3695 *
3696 * After doing a push on a received packet, you need to call this to
3697 * update the CHECKSUM_COMPLETE checksum.
3698 */
3699static inline void skb_postpush_rcsum(struct sk_buff *skb,
3700 const void *start, unsigned int len)
3701{
3702 __skb_postpush_rcsum(skb, start, len, 0);
3703}
3704
3705void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3706
3707/**
3708 * skb_push_rcsum - push skb and update receive checksum
3709 * @skb: buffer to update
3710 * @len: length of data pulled
3711 *
3712 * This function performs an skb_push on the packet and updates
3713 * the CHECKSUM_COMPLETE checksum. It should be used on
3714 * receive path processing instead of skb_push unless you know
3715 * that the checksum difference is zero (e.g., a valid IP header)
3716 * or you are setting ip_summed to CHECKSUM_NONE.
3717 */
3718static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3719{
3720 skb_push(skb, len);
3721 skb_postpush_rcsum(skb, skb->data, len);
3722 return skb->data;
3723}
3724
3725int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3726/**
3727 * pskb_trim_rcsum - trim received skb and update checksum
3728 * @skb: buffer to trim
3729 * @len: new length
3730 *
3731 * This is exactly the same as pskb_trim except that it ensures the
3732 * checksum of received packets are still valid after the operation.
3733 * It can change skb pointers.
3734 */
3735
3736static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3737{
3738 if (likely(len >= skb->len))
3739 return 0;
3740 return pskb_trim_rcsum_slow(skb, len);
3741}
3742
3743static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3744{
3745 if (skb->ip_summed == CHECKSUM_COMPLETE)
3746 skb->ip_summed = CHECKSUM_NONE;
3747 __skb_trim(skb, len);
3748 return 0;
3749}
3750
3751static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3752{
3753 if (skb->ip_summed == CHECKSUM_COMPLETE)
3754 skb->ip_summed = CHECKSUM_NONE;
3755 return __skb_grow(skb, len);
3756}
3757
3758#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3759#define skb_rb_first(root) rb_to_skb(rb_first(root))
3760#define skb_rb_last(root) rb_to_skb(rb_last(root))
3761#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3762#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3763
3764#define skb_queue_walk(queue, skb) \
3765 for (skb = (queue)->next; \
3766 skb != (struct sk_buff *)(queue); \
3767 skb = skb->next)
3768
3769#define skb_queue_walk_safe(queue, skb, tmp) \
3770 for (skb = (queue)->next, tmp = skb->next; \
3771 skb != (struct sk_buff *)(queue); \
3772 skb = tmp, tmp = skb->next)
3773
3774#define skb_queue_walk_from(queue, skb) \
3775 for (; skb != (struct sk_buff *)(queue); \
3776 skb = skb->next)
3777
3778#define skb_rbtree_walk(skb, root) \
3779 for (skb = skb_rb_first(root); skb != NULL; \
3780 skb = skb_rb_next(skb))
3781
3782#define skb_rbtree_walk_from(skb) \
3783 for (; skb != NULL; \
3784 skb = skb_rb_next(skb))
3785
3786#define skb_rbtree_walk_from_safe(skb, tmp) \
3787 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3788 skb = tmp)
3789
3790#define skb_queue_walk_from_safe(queue, skb, tmp) \
3791 for (tmp = skb->next; \
3792 skb != (struct sk_buff *)(queue); \
3793 skb = tmp, tmp = skb->next)
3794
3795#define skb_queue_reverse_walk(queue, skb) \
3796 for (skb = (queue)->prev; \
3797 skb != (struct sk_buff *)(queue); \
3798 skb = skb->prev)
3799
3800#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3801 for (skb = (queue)->prev, tmp = skb->prev; \
3802 skb != (struct sk_buff *)(queue); \
3803 skb = tmp, tmp = skb->prev)
3804
3805#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3806 for (tmp = skb->prev; \
3807 skb != (struct sk_buff *)(queue); \
3808 skb = tmp, tmp = skb->prev)
3809
3810static inline bool skb_has_frag_list(const struct sk_buff *skb)
3811{
3812 return skb_shinfo(skb)->frag_list != NULL;
3813}
3814
3815static inline void skb_frag_list_init(struct sk_buff *skb)
3816{
3817 skb_shinfo(skb)->frag_list = NULL;
3818}
3819
3820#define skb_walk_frags(skb, iter) \
3821 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3822
3823
3824int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3825 int *err, long *timeo_p,
3826 const struct sk_buff *skb);
3827struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3828 struct sk_buff_head *queue,
3829 unsigned int flags,
3830 int *off, int *err,
3831 struct sk_buff **last);
3832struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3833 struct sk_buff_head *queue,
3834 unsigned int flags, int *off, int *err,
3835 struct sk_buff **last);
3836struct sk_buff *__skb_recv_datagram(struct sock *sk,
3837 struct sk_buff_head *sk_queue,
3838 unsigned int flags, int *off, int *err);
3839struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3840 int *err);
3841__poll_t datagram_poll(struct file *file, struct socket *sock,
3842 struct poll_table_struct *wait);
3843int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3844 struct iov_iter *to, int size);
3845static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3846 struct msghdr *msg, int size)
3847{
3848 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3849}
3850int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3851 struct msghdr *msg);
3852int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3853 struct iov_iter *to, int len,
3854 struct ahash_request *hash);
3855int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3856 struct iov_iter *from, int len);
3857int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3858void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3859void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3860static inline void skb_free_datagram_locked(struct sock *sk,
3861 struct sk_buff *skb)
3862{
3863 __skb_free_datagram_locked(sk, skb, 0);
3864}
3865int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3866int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3867int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3868__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3869 int len);
3870int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3871 struct pipe_inode_info *pipe, unsigned int len,
3872 unsigned int flags);
3873int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3874 int len);
3875int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3876void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3877unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3878int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3879 int len, int hlen);
3880void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3881int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3882void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3883bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3884bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3885struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3886struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3887 unsigned int offset);
3888struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3889int skb_ensure_writable(struct sk_buff *skb, int write_len);
3890int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3891int skb_vlan_pop(struct sk_buff *skb);
3892int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3893int skb_eth_pop(struct sk_buff *skb);
3894int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3895 const unsigned char *src);
3896int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3897 int mac_len, bool ethernet);
3898int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3899 bool ethernet);
3900int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3901int skb_mpls_dec_ttl(struct sk_buff *skb);
3902struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3903 gfp_t gfp);
3904
3905static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3906{
3907 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3908}
3909
3910static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3911{
3912 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3913}
3914
3915struct skb_checksum_ops {
3916 __wsum (*update)(const void *mem, int len, __wsum wsum);
3917 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3918};
3919
3920extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3921
3922__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3923 __wsum csum, const struct skb_checksum_ops *ops);
3924__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3925 __wsum csum);
3926
3927static inline void * __must_check
3928__skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3929 const void *data, int hlen, void *buffer)
3930{
3931 if (likely(hlen - offset >= len))
3932 return (void *)data + offset;
3933
3934 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3935 return NULL;
3936
3937 return buffer;
3938}
3939
3940static inline void * __must_check
3941skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3942{
3943 return __skb_header_pointer(skb, offset, len, skb->data,
3944 skb_headlen(skb), buffer);
3945}
3946
3947/**
3948 * skb_needs_linearize - check if we need to linearize a given skb
3949 * depending on the given device features.
3950 * @skb: socket buffer to check
3951 * @features: net device features
3952 *
3953 * Returns true if either:
3954 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3955 * 2. skb is fragmented and the device does not support SG.
3956 */
3957static inline bool skb_needs_linearize(struct sk_buff *skb,
3958 netdev_features_t features)
3959{
3960 return skb_is_nonlinear(skb) &&
3961 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3962 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3963}
3964
3965static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3966 void *to,
3967 const unsigned int len)
3968{
3969 memcpy(to, skb->data, len);
3970}
3971
3972static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3973 const int offset, void *to,
3974 const unsigned int len)
3975{
3976 memcpy(to, skb->data + offset, len);
3977}
3978
3979static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3980 const void *from,
3981 const unsigned int len)
3982{
3983 memcpy(skb->data, from, len);
3984}
3985
3986static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3987 const int offset,
3988 const void *from,
3989 const unsigned int len)
3990{
3991 memcpy(skb->data + offset, from, len);
3992}
3993
3994void skb_init(void);
3995
3996static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3997{
3998 return skb->tstamp;
3999}
4000
4001/**
4002 * skb_get_timestamp - get timestamp from a skb
4003 * @skb: skb to get stamp from
4004 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
4005 *
4006 * Timestamps are stored in the skb as offsets to a base timestamp.
4007 * This function converts the offset back to a struct timeval and stores
4008 * it in stamp.
4009 */
4010static inline void skb_get_timestamp(const struct sk_buff *skb,
4011 struct __kernel_old_timeval *stamp)
4012{
4013 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
4014}
4015
4016static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4017 struct __kernel_sock_timeval *stamp)
4018{
4019 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4020
4021 stamp->tv_sec = ts.tv_sec;
4022 stamp->tv_usec = ts.tv_nsec / 1000;
4023}
4024
4025static inline void skb_get_timestampns(const struct sk_buff *skb,
4026 struct __kernel_old_timespec *stamp)
4027{
4028 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4029
4030 stamp->tv_sec = ts.tv_sec;
4031 stamp->tv_nsec = ts.tv_nsec;
4032}
4033
4034static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4035 struct __kernel_timespec *stamp)
4036{
4037 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4038
4039 stamp->tv_sec = ts.tv_sec;
4040 stamp->tv_nsec = ts.tv_nsec;
4041}
4042
4043static inline void __net_timestamp(struct sk_buff *skb)
4044{
4045 skb->tstamp = ktime_get_real();
4046 skb->mono_delivery_time = 0;
4047}
4048
4049static inline ktime_t net_timedelta(ktime_t t)
4050{
4051 return ktime_sub(ktime_get_real(), t);
4052}
4053
4054static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4055 bool mono)
4056{
4057 skb->tstamp = kt;
4058 skb->mono_delivery_time = kt && mono;
4059}
4060
4061DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4062
4063/* It is used in the ingress path to clear the delivery_time.
4064 * If needed, set the skb->tstamp to the (rcv) timestamp.
4065 */
4066static inline void skb_clear_delivery_time(struct sk_buff *skb)
4067{
4068 if (skb->mono_delivery_time) {
4069 skb->mono_delivery_time = 0;
4070 if (static_branch_unlikely(&netstamp_needed_key))
4071 skb->tstamp = ktime_get_real();
4072 else
4073 skb->tstamp = 0;
4074 }
4075}
4076
4077static inline void skb_clear_tstamp(struct sk_buff *skb)
4078{
4079 if (skb->mono_delivery_time)
4080 return;
4081
4082 skb->tstamp = 0;
4083}
4084
4085static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4086{
4087 if (skb->mono_delivery_time)
4088 return 0;
4089
4090 return skb->tstamp;
4091}
4092
4093static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4094{
4095 if (!skb->mono_delivery_time && skb->tstamp)
4096 return skb->tstamp;
4097
4098 if (static_branch_unlikely(&netstamp_needed_key) || cond)
4099 return ktime_get_real();
4100
4101 return 0;
4102}
4103
4104static inline u8 skb_metadata_len(const struct sk_buff *skb)
4105{
4106 return skb_shinfo(skb)->meta_len;
4107}
4108
4109static inline void *skb_metadata_end(const struct sk_buff *skb)
4110{
4111 return skb_mac_header(skb);
4112}
4113
4114static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4115 const struct sk_buff *skb_b,
4116 u8 meta_len)
4117{
4118 const void *a = skb_metadata_end(skb_a);
4119 const void *b = skb_metadata_end(skb_b);
4120 /* Using more efficient varaiant than plain call to memcmp(). */
4121#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4122 u64 diffs = 0;
4123
4124 switch (meta_len) {
4125#define __it(x, op) (x -= sizeof(u##op))
4126#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4127 case 32: diffs |= __it_diff(a, b, 64);
4128 fallthrough;
4129 case 24: diffs |= __it_diff(a, b, 64);
4130 fallthrough;
4131 case 16: diffs |= __it_diff(a, b, 64);
4132 fallthrough;
4133 case 8: diffs |= __it_diff(a, b, 64);
4134 break;
4135 case 28: diffs |= __it_diff(a, b, 64);
4136 fallthrough;
4137 case 20: diffs |= __it_diff(a, b, 64);
4138 fallthrough;
4139 case 12: diffs |= __it_diff(a, b, 64);
4140 fallthrough;
4141 case 4: diffs |= __it_diff(a, b, 32);
4142 break;
4143 }
4144 return diffs;
4145#else
4146 return memcmp(a - meta_len, b - meta_len, meta_len);
4147#endif
4148}
4149
4150static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4151 const struct sk_buff *skb_b)
4152{
4153 u8 len_a = skb_metadata_len(skb_a);
4154 u8 len_b = skb_metadata_len(skb_b);
4155
4156 if (!(len_a | len_b))
4157 return false;
4158
4159 return len_a != len_b ?
4160 true : __skb_metadata_differs(skb_a, skb_b, len_a);
4161}
4162
4163static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4164{
4165 skb_shinfo(skb)->meta_len = meta_len;
4166}
4167
4168static inline void skb_metadata_clear(struct sk_buff *skb)
4169{
4170 skb_metadata_set(skb, 0);
4171}
4172
4173struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4174
4175#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4176
4177void skb_clone_tx_timestamp(struct sk_buff *skb);
4178bool skb_defer_rx_timestamp(struct sk_buff *skb);
4179
4180#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4181
4182static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4183{
4184}
4185
4186static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4187{
4188 return false;
4189}
4190
4191#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4192
4193/**
4194 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4195 *
4196 * PHY drivers may accept clones of transmitted packets for
4197 * timestamping via their phy_driver.txtstamp method. These drivers
4198 * must call this function to return the skb back to the stack with a
4199 * timestamp.
4200 *
4201 * @skb: clone of the original outgoing packet
4202 * @hwtstamps: hardware time stamps
4203 *
4204 */
4205void skb_complete_tx_timestamp(struct sk_buff *skb,
4206 struct skb_shared_hwtstamps *hwtstamps);
4207
4208void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4209 struct skb_shared_hwtstamps *hwtstamps,
4210 struct sock *sk, int tstype);
4211
4212/**
4213 * skb_tstamp_tx - queue clone of skb with send time stamps
4214 * @orig_skb: the original outgoing packet
4215 * @hwtstamps: hardware time stamps, may be NULL if not available
4216 *
4217 * If the skb has a socket associated, then this function clones the
4218 * skb (thus sharing the actual data and optional structures), stores
4219 * the optional hardware time stamping information (if non NULL) or
4220 * generates a software time stamp (otherwise), then queues the clone
4221 * to the error queue of the socket. Errors are silently ignored.
4222 */
4223void skb_tstamp_tx(struct sk_buff *orig_skb,
4224 struct skb_shared_hwtstamps *hwtstamps);
4225
4226/**
4227 * skb_tx_timestamp() - Driver hook for transmit timestamping
4228 *
4229 * Ethernet MAC Drivers should call this function in their hard_xmit()
4230 * function immediately before giving the sk_buff to the MAC hardware.
4231 *
4232 * Specifically, one should make absolutely sure that this function is
4233 * called before TX completion of this packet can trigger. Otherwise
4234 * the packet could potentially already be freed.
4235 *
4236 * @skb: A socket buffer.
4237 */
4238static inline void skb_tx_timestamp(struct sk_buff *skb)
4239{
4240 skb_clone_tx_timestamp(skb);
4241 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4242 skb_tstamp_tx(skb, NULL);
4243}
4244
4245/**
4246 * skb_complete_wifi_ack - deliver skb with wifi status
4247 *
4248 * @skb: the original outgoing packet
4249 * @acked: ack status
4250 *
4251 */
4252void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4253
4254__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4255__sum16 __skb_checksum_complete(struct sk_buff *skb);
4256
4257static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4258{
4259 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4260 skb->csum_valid ||
4261 (skb->ip_summed == CHECKSUM_PARTIAL &&
4262 skb_checksum_start_offset(skb) >= 0));
4263}
4264
4265/**
4266 * skb_checksum_complete - Calculate checksum of an entire packet
4267 * @skb: packet to process
4268 *
4269 * This function calculates the checksum over the entire packet plus
4270 * the value of skb->csum. The latter can be used to supply the
4271 * checksum of a pseudo header as used by TCP/UDP. It returns the
4272 * checksum.
4273 *
4274 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
4275 * this function can be used to verify that checksum on received
4276 * packets. In that case the function should return zero if the
4277 * checksum is correct. In particular, this function will return zero
4278 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4279 * hardware has already verified the correctness of the checksum.
4280 */
4281static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4282{
4283 return skb_csum_unnecessary(skb) ?
4284 0 : __skb_checksum_complete(skb);
4285}
4286
4287static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4288{
4289 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4290 if (skb->csum_level == 0)
4291 skb->ip_summed = CHECKSUM_NONE;
4292 else
4293 skb->csum_level--;
4294 }
4295}
4296
4297static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4298{
4299 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4300 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4301 skb->csum_level++;
4302 } else if (skb->ip_summed == CHECKSUM_NONE) {
4303 skb->ip_summed = CHECKSUM_UNNECESSARY;
4304 skb->csum_level = 0;
4305 }
4306}
4307
4308static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4309{
4310 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4311 skb->ip_summed = CHECKSUM_NONE;
4312 skb->csum_level = 0;
4313 }
4314}
4315
4316/* Check if we need to perform checksum complete validation.
4317 *
4318 * Returns true if checksum complete is needed, false otherwise
4319 * (either checksum is unnecessary or zero checksum is allowed).
4320 */
4321static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4322 bool zero_okay,
4323 __sum16 check)
4324{
4325 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4326 skb->csum_valid = 1;
4327 __skb_decr_checksum_unnecessary(skb);
4328 return false;
4329 }
4330
4331 return true;
4332}
4333
4334/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4335 * in checksum_init.
4336 */
4337#define CHECKSUM_BREAK 76
4338
4339/* Unset checksum-complete
4340 *
4341 * Unset checksum complete can be done when packet is being modified
4342 * (uncompressed for instance) and checksum-complete value is
4343 * invalidated.
4344 */
4345static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4346{
4347 if (skb->ip_summed == CHECKSUM_COMPLETE)
4348 skb->ip_summed = CHECKSUM_NONE;
4349}
4350
4351/* Validate (init) checksum based on checksum complete.
4352 *
4353 * Return values:
4354 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
4355 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4356 * checksum is stored in skb->csum for use in __skb_checksum_complete
4357 * non-zero: value of invalid checksum
4358 *
4359 */
4360static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4361 bool complete,
4362 __wsum psum)
4363{
4364 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4365 if (!csum_fold(csum_add(psum, skb->csum))) {
4366 skb->csum_valid = 1;
4367 return 0;
4368 }
4369 }
4370
4371 skb->csum = psum;
4372
4373 if (complete || skb->len <= CHECKSUM_BREAK) {
4374 __sum16 csum;
4375
4376 csum = __skb_checksum_complete(skb);
4377 skb->csum_valid = !csum;
4378 return csum;
4379 }
4380
4381 return 0;
4382}
4383
4384static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4385{
4386 return 0;
4387}
4388
4389/* Perform checksum validate (init). Note that this is a macro since we only
4390 * want to calculate the pseudo header which is an input function if necessary.
4391 * First we try to validate without any computation (checksum unnecessary) and
4392 * then calculate based on checksum complete calling the function to compute
4393 * pseudo header.
4394 *
4395 * Return values:
4396 * 0: checksum is validated or try to in skb_checksum_complete
4397 * non-zero: value of invalid checksum
4398 */
4399#define __skb_checksum_validate(skb, proto, complete, \
4400 zero_okay, check, compute_pseudo) \
4401({ \
4402 __sum16 __ret = 0; \
4403 skb->csum_valid = 0; \
4404 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4405 __ret = __skb_checksum_validate_complete(skb, \
4406 complete, compute_pseudo(skb, proto)); \
4407 __ret; \
4408})
4409
4410#define skb_checksum_init(skb, proto, compute_pseudo) \
4411 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4412
4413#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4414 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4415
4416#define skb_checksum_validate(skb, proto, compute_pseudo) \
4417 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4418
4419#define skb_checksum_validate_zero_check(skb, proto, check, \
4420 compute_pseudo) \
4421 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4422
4423#define skb_checksum_simple_validate(skb) \
4424 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4425
4426static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4427{
4428 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4429}
4430
4431static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4432{
4433 skb->csum = ~pseudo;
4434 skb->ip_summed = CHECKSUM_COMPLETE;
4435}
4436
4437#define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4438do { \
4439 if (__skb_checksum_convert_check(skb)) \
4440 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4441} while (0)
4442
4443static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4444 u16 start, u16 offset)
4445{
4446 skb->ip_summed = CHECKSUM_PARTIAL;
4447 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4448 skb->csum_offset = offset - start;
4449}
4450
4451/* Update skbuf and packet to reflect the remote checksum offload operation.
4452 * When called, ptr indicates the starting point for skb->csum when
4453 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4454 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4455 */
4456static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4457 int start, int offset, bool nopartial)
4458{
4459 __wsum delta;
4460
4461 if (!nopartial) {
4462 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4463 return;
4464 }
4465
4466 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4467 __skb_checksum_complete(skb);
4468 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4469 }
4470
4471 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4472
4473 /* Adjust skb->csum since we changed the packet */
4474 skb->csum = csum_add(skb->csum, delta);
4475}
4476
4477static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4478{
4479#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4480 return (void *)(skb->_nfct & NFCT_PTRMASK);
4481#else
4482 return NULL;
4483#endif
4484}
4485
4486static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4487{
4488#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4489 return skb->_nfct;
4490#else
4491 return 0UL;
4492#endif
4493}
4494
4495static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4496{
4497#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4498 skb->slow_gro |= !!nfct;
4499 skb->_nfct = nfct;
4500#endif
4501}
4502
4503#ifdef CONFIG_SKB_EXTENSIONS
4504enum skb_ext_id {
4505#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4506 SKB_EXT_BRIDGE_NF,
4507#endif
4508#ifdef CONFIG_XFRM
4509 SKB_EXT_SEC_PATH,
4510#endif
4511#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4512 TC_SKB_EXT,
4513#endif
4514#if IS_ENABLED(CONFIG_MPTCP)
4515 SKB_EXT_MPTCP,
4516#endif
4517#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4518 SKB_EXT_MCTP,
4519#endif
4520 SKB_EXT_NUM, /* must be last */
4521};
4522
4523/**
4524 * struct skb_ext - sk_buff extensions
4525 * @refcnt: 1 on allocation, deallocated on 0
4526 * @offset: offset to add to @data to obtain extension address
4527 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4528 * @data: start of extension data, variable sized
4529 *
4530 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4531 * to use 'u8' types while allowing up to 2kb worth of extension data.
4532 */
4533struct skb_ext {
4534 refcount_t refcnt;
4535 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4536 u8 chunks; /* same */
4537 char data[] __aligned(8);
4538};
4539
4540struct skb_ext *__skb_ext_alloc(gfp_t flags);
4541void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4542 struct skb_ext *ext);
4543void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4544void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4545void __skb_ext_put(struct skb_ext *ext);
4546
4547static inline void skb_ext_put(struct sk_buff *skb)
4548{
4549 if (skb->active_extensions)
4550 __skb_ext_put(skb->extensions);
4551}
4552
4553static inline void __skb_ext_copy(struct sk_buff *dst,
4554 const struct sk_buff *src)
4555{
4556 dst->active_extensions = src->active_extensions;
4557
4558 if (src->active_extensions) {
4559 struct skb_ext *ext = src->extensions;
4560
4561 refcount_inc(&ext->refcnt);
4562 dst->extensions = ext;
4563 }
4564}
4565
4566static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4567{
4568 skb_ext_put(dst);
4569 __skb_ext_copy(dst, src);
4570}
4571
4572static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4573{
4574 return !!ext->offset[i];
4575}
4576
4577static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4578{
4579 return skb->active_extensions & (1 << id);
4580}
4581
4582static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4583{
4584 if (skb_ext_exist(skb, id))
4585 __skb_ext_del(skb, id);
4586}
4587
4588static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4589{
4590 if (skb_ext_exist(skb, id)) {
4591 struct skb_ext *ext = skb->extensions;
4592
4593 return (void *)ext + (ext->offset[id] << 3);
4594 }
4595
4596 return NULL;
4597}
4598
4599static inline void skb_ext_reset(struct sk_buff *skb)
4600{
4601 if (unlikely(skb->active_extensions)) {
4602 __skb_ext_put(skb->extensions);
4603 skb->active_extensions = 0;
4604 }
4605}
4606
4607static inline bool skb_has_extensions(struct sk_buff *skb)
4608{
4609 return unlikely(skb->active_extensions);
4610}
4611#else
4612static inline void skb_ext_put(struct sk_buff *skb) {}
4613static inline void skb_ext_reset(struct sk_buff *skb) {}
4614static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4615static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4616static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4617static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4618#endif /* CONFIG_SKB_EXTENSIONS */
4619
4620static inline void nf_reset_ct(struct sk_buff *skb)
4621{
4622#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4623 nf_conntrack_put(skb_nfct(skb));
4624 skb->_nfct = 0;
4625#endif
4626}
4627
4628static inline void nf_reset_trace(struct sk_buff *skb)
4629{
4630#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4631 skb->nf_trace = 0;
4632#endif
4633}
4634
4635static inline void ipvs_reset(struct sk_buff *skb)
4636{
4637#if IS_ENABLED(CONFIG_IP_VS)
4638 skb->ipvs_property = 0;
4639#endif
4640}
4641
4642/* Note: This doesn't put any conntrack info in dst. */
4643static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4644 bool copy)
4645{
4646#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4647 dst->_nfct = src->_nfct;
4648 nf_conntrack_get(skb_nfct(src));
4649#endif
4650#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4651 if (copy)
4652 dst->nf_trace = src->nf_trace;
4653#endif
4654}
4655
4656static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4657{
4658#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4659 nf_conntrack_put(skb_nfct(dst));
4660#endif
4661 dst->slow_gro = src->slow_gro;
4662 __nf_copy(dst, src, true);
4663}
4664
4665#ifdef CONFIG_NETWORK_SECMARK
4666static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4667{
4668 to->secmark = from->secmark;
4669}
4670
4671static inline void skb_init_secmark(struct sk_buff *skb)
4672{
4673 skb->secmark = 0;
4674}
4675#else
4676static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4677{ }
4678
4679static inline void skb_init_secmark(struct sk_buff *skb)
4680{ }
4681#endif
4682
4683static inline int secpath_exists(const struct sk_buff *skb)
4684{
4685#ifdef CONFIG_XFRM
4686 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4687#else
4688 return 0;
4689#endif
4690}
4691
4692static inline bool skb_irq_freeable(const struct sk_buff *skb)
4693{
4694 return !skb->destructor &&
4695 !secpath_exists(skb) &&
4696 !skb_nfct(skb) &&
4697 !skb->_skb_refdst &&
4698 !skb_has_frag_list(skb);
4699}
4700
4701static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4702{
4703 skb->queue_mapping = queue_mapping;
4704}
4705
4706static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4707{
4708 return skb->queue_mapping;
4709}
4710
4711static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4712{
4713 to->queue_mapping = from->queue_mapping;
4714}
4715
4716static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4717{
4718 skb->queue_mapping = rx_queue + 1;
4719}
4720
4721static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4722{
4723 return skb->queue_mapping - 1;
4724}
4725
4726static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4727{
4728 return skb->queue_mapping != 0;
4729}
4730
4731static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4732{
4733 skb->dst_pending_confirm = val;
4734}
4735
4736static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4737{
4738 return skb->dst_pending_confirm != 0;
4739}
4740
4741static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4742{
4743#ifdef CONFIG_XFRM
4744 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4745#else
4746 return NULL;
4747#endif
4748}
4749
4750/* Keeps track of mac header offset relative to skb->head.
4751 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4752 * For non-tunnel skb it points to skb_mac_header() and for
4753 * tunnel skb it points to outer mac header.
4754 * Keeps track of level of encapsulation of network headers.
4755 */
4756struct skb_gso_cb {
4757 union {
4758 int mac_offset;
4759 int data_offset;
4760 };
4761 int encap_level;
4762 __wsum csum;
4763 __u16 csum_start;
4764};
4765#define SKB_GSO_CB_OFFSET 32
4766#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4767
4768static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4769{
4770 return (skb_mac_header(inner_skb) - inner_skb->head) -
4771 SKB_GSO_CB(inner_skb)->mac_offset;
4772}
4773
4774static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4775{
4776 int new_headroom, headroom;
4777 int ret;
4778
4779 headroom = skb_headroom(skb);
4780 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4781 if (ret)
4782 return ret;
4783
4784 new_headroom = skb_headroom(skb);
4785 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4786 return 0;
4787}
4788
4789static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4790{
4791 /* Do not update partial checksums if remote checksum is enabled. */
4792 if (skb->remcsum_offload)
4793 return;
4794
4795 SKB_GSO_CB(skb)->csum = res;
4796 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4797}
4798
4799/* Compute the checksum for a gso segment. First compute the checksum value
4800 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4801 * then add in skb->csum (checksum from csum_start to end of packet).
4802 * skb->csum and csum_start are then updated to reflect the checksum of the
4803 * resultant packet starting from the transport header-- the resultant checksum
4804 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4805 * header.
4806 */
4807static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4808{
4809 unsigned char *csum_start = skb_transport_header(skb);
4810 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4811 __wsum partial = SKB_GSO_CB(skb)->csum;
4812
4813 SKB_GSO_CB(skb)->csum = res;
4814 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4815
4816 return csum_fold(csum_partial(csum_start, plen, partial));
4817}
4818
4819static inline bool skb_is_gso(const struct sk_buff *skb)
4820{
4821 return skb_shinfo(skb)->gso_size;
4822}
4823
4824/* Note: Should be called only if skb_is_gso(skb) is true */
4825static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4826{
4827 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4828}
4829
4830/* Note: Should be called only if skb_is_gso(skb) is true */
4831static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4832{
4833 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4834}
4835
4836/* Note: Should be called only if skb_is_gso(skb) is true */
4837static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4838{
4839 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4840}
4841
4842static inline void skb_gso_reset(struct sk_buff *skb)
4843{
4844 skb_shinfo(skb)->gso_size = 0;
4845 skb_shinfo(skb)->gso_segs = 0;
4846 skb_shinfo(skb)->gso_type = 0;
4847}
4848
4849static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4850 u16 increment)
4851{
4852 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4853 return;
4854 shinfo->gso_size += increment;
4855}
4856
4857static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4858 u16 decrement)
4859{
4860 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4861 return;
4862 shinfo->gso_size -= decrement;
4863}
4864
4865void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4866
4867static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4868{
4869 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4870 * wanted then gso_type will be set. */
4871 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4872
4873 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4874 unlikely(shinfo->gso_type == 0)) {
4875 __skb_warn_lro_forwarding(skb);
4876 return true;
4877 }
4878 return false;
4879}
4880
4881static inline void skb_forward_csum(struct sk_buff *skb)
4882{
4883 /* Unfortunately we don't support this one. Any brave souls? */
4884 if (skb->ip_summed == CHECKSUM_COMPLETE)
4885 skb->ip_summed = CHECKSUM_NONE;
4886}
4887
4888/**
4889 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4890 * @skb: skb to check
4891 *
4892 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4893 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4894 * use this helper, to document places where we make this assertion.
4895 */
4896static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4897{
4898#ifdef DEBUG
4899 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4900#endif
4901}
4902
4903bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4904
4905int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4906struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4907 unsigned int transport_len,
4908 __sum16(*skb_chkf)(struct sk_buff *skb));
4909
4910/**
4911 * skb_head_is_locked - Determine if the skb->head is locked down
4912 * @skb: skb to check
4913 *
4914 * The head on skbs build around a head frag can be removed if they are
4915 * not cloned. This function returns true if the skb head is locked down
4916 * due to either being allocated via kmalloc, or by being a clone with
4917 * multiple references to the head.
4918 */
4919static inline bool skb_head_is_locked(const struct sk_buff *skb)
4920{
4921 return !skb->head_frag || skb_cloned(skb);
4922}
4923
4924/* Local Checksum Offload.
4925 * Compute outer checksum based on the assumption that the
4926 * inner checksum will be offloaded later.
4927 * See Documentation/networking/checksum-offloads.rst for
4928 * explanation of how this works.
4929 * Fill in outer checksum adjustment (e.g. with sum of outer
4930 * pseudo-header) before calling.
4931 * Also ensure that inner checksum is in linear data area.
4932 */
4933static inline __wsum lco_csum(struct sk_buff *skb)
4934{
4935 unsigned char *csum_start = skb_checksum_start(skb);
4936 unsigned char *l4_hdr = skb_transport_header(skb);
4937 __wsum partial;
4938
4939 /* Start with complement of inner checksum adjustment */
4940 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4941 skb->csum_offset));
4942
4943 /* Add in checksum of our headers (incl. outer checksum
4944 * adjustment filled in by caller) and return result.
4945 */
4946 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4947}
4948
4949static inline bool skb_is_redirected(const struct sk_buff *skb)
4950{
4951 return skb->redirected;
4952}
4953
4954static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4955{
4956 skb->redirected = 1;
4957#ifdef CONFIG_NET_REDIRECT
4958 skb->from_ingress = from_ingress;
4959 if (skb->from_ingress)
4960 skb_clear_tstamp(skb);
4961#endif
4962}
4963
4964static inline void skb_reset_redirect(struct sk_buff *skb)
4965{
4966 skb->redirected = 0;
4967}
4968
4969static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4970{
4971 return skb->csum_not_inet;
4972}
4973
4974static inline void skb_set_kcov_handle(struct sk_buff *skb,
4975 const u64 kcov_handle)
4976{
4977#ifdef CONFIG_KCOV
4978 skb->kcov_handle = kcov_handle;
4979#endif
4980}
4981
4982static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4983{
4984#ifdef CONFIG_KCOV
4985 return skb->kcov_handle;
4986#else
4987 return 0;
4988#endif
4989}
4990
4991#ifdef CONFIG_PAGE_POOL
4992static inline void skb_mark_for_recycle(struct sk_buff *skb)
4993{
4994 skb->pp_recycle = 1;
4995}
4996#endif
4997
4998static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
4999{
5000 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
5001 return false;
5002 return page_pool_return_skb_page(virt_to_page(data));
5003}
5004
5005#endif /* __KERNEL__ */
5006#endif /* _LINUX_SKBUFF_H */