at v5.18 45 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PGTABLE_H 3#define _LINUX_PGTABLE_H 4 5#include <linux/pfn.h> 6#include <asm/pgtable.h> 7 8#ifndef __ASSEMBLY__ 9#ifdef CONFIG_MMU 10 11#include <linux/mm_types.h> 12#include <linux/bug.h> 13#include <linux/errno.h> 14#include <asm-generic/pgtable_uffd.h> 15 16#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ 17 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS 18#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED 19#endif 20 21/* 22 * On almost all architectures and configurations, 0 can be used as the 23 * upper ceiling to free_pgtables(): on many architectures it has the same 24 * effect as using TASK_SIZE. However, there is one configuration which 25 * must impose a more careful limit, to avoid freeing kernel pgtables. 26 */ 27#ifndef USER_PGTABLES_CEILING 28#define USER_PGTABLES_CEILING 0UL 29#endif 30 31/* 32 * This defines the first usable user address. Platforms 33 * can override its value with custom FIRST_USER_ADDRESS 34 * defined in their respective <asm/pgtable.h>. 35 */ 36#ifndef FIRST_USER_ADDRESS 37#define FIRST_USER_ADDRESS 0UL 38#endif 39 40/* 41 * This defines the generic helper for accessing PMD page 42 * table page. Although platforms can still override this 43 * via their respective <asm/pgtable.h>. 44 */ 45#ifndef pmd_pgtable 46#define pmd_pgtable(pmd) pmd_page(pmd) 47#endif 48 49/* 50 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] 51 * 52 * The pXx_index() functions return the index of the entry in the page 53 * table page which would control the given virtual address 54 * 55 * As these functions may be used by the same code for different levels of 56 * the page table folding, they are always available, regardless of 57 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 58 * because in such cases PTRS_PER_PxD equals 1. 59 */ 60 61static inline unsigned long pte_index(unsigned long address) 62{ 63 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 64} 65#define pte_index pte_index 66 67#ifndef pmd_index 68static inline unsigned long pmd_index(unsigned long address) 69{ 70 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 71} 72#define pmd_index pmd_index 73#endif 74 75#ifndef pud_index 76static inline unsigned long pud_index(unsigned long address) 77{ 78 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 79} 80#define pud_index pud_index 81#endif 82 83#ifndef pgd_index 84/* Must be a compile-time constant, so implement it as a macro */ 85#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 86#endif 87 88#ifndef pte_offset_kernel 89static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 90{ 91 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 92} 93#define pte_offset_kernel pte_offset_kernel 94#endif 95 96#if defined(CONFIG_HIGHPTE) 97#define pte_offset_map(dir, address) \ 98 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \ 99 pte_index((address))) 100#define pte_unmap(pte) kunmap_atomic((pte)) 101#else 102#define pte_offset_map(dir, address) pte_offset_kernel((dir), (address)) 103#define pte_unmap(pte) ((void)(pte)) /* NOP */ 104#endif 105 106/* Find an entry in the second-level page table.. */ 107#ifndef pmd_offset 108static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 109{ 110 return pud_pgtable(*pud) + pmd_index(address); 111} 112#define pmd_offset pmd_offset 113#endif 114 115#ifndef pud_offset 116static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 117{ 118 return p4d_pgtable(*p4d) + pud_index(address); 119} 120#define pud_offset pud_offset 121#endif 122 123static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) 124{ 125 return (pgd + pgd_index(address)); 126}; 127 128/* 129 * a shortcut to get a pgd_t in a given mm 130 */ 131#ifndef pgd_offset 132#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) 133#endif 134 135/* 136 * a shortcut which implies the use of the kernel's pgd, instead 137 * of a process's 138 */ 139#ifndef pgd_offset_k 140#define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 141#endif 142 143/* 144 * In many cases it is known that a virtual address is mapped at PMD or PTE 145 * level, so instead of traversing all the page table levels, we can get a 146 * pointer to the PMD entry in user or kernel page table or translate a virtual 147 * address to the pointer in the PTE in the kernel page tables with simple 148 * helpers. 149 */ 150static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) 151{ 152 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); 153} 154 155static inline pmd_t *pmd_off_k(unsigned long va) 156{ 157 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); 158} 159 160static inline pte_t *virt_to_kpte(unsigned long vaddr) 161{ 162 pmd_t *pmd = pmd_off_k(vaddr); 163 164 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); 165} 166 167#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 168extern int ptep_set_access_flags(struct vm_area_struct *vma, 169 unsigned long address, pte_t *ptep, 170 pte_t entry, int dirty); 171#endif 172 173#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 174#ifdef CONFIG_TRANSPARENT_HUGEPAGE 175extern int pmdp_set_access_flags(struct vm_area_struct *vma, 176 unsigned long address, pmd_t *pmdp, 177 pmd_t entry, int dirty); 178extern int pudp_set_access_flags(struct vm_area_struct *vma, 179 unsigned long address, pud_t *pudp, 180 pud_t entry, int dirty); 181#else 182static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 183 unsigned long address, pmd_t *pmdp, 184 pmd_t entry, int dirty) 185{ 186 BUILD_BUG(); 187 return 0; 188} 189static inline int pudp_set_access_flags(struct vm_area_struct *vma, 190 unsigned long address, pud_t *pudp, 191 pud_t entry, int dirty) 192{ 193 BUILD_BUG(); 194 return 0; 195} 196#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 197#endif 198 199#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 200static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 201 unsigned long address, 202 pte_t *ptep) 203{ 204 pte_t pte = *ptep; 205 int r = 1; 206 if (!pte_young(pte)) 207 r = 0; 208 else 209 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 210 return r; 211} 212#endif 213 214#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 215#ifdef CONFIG_TRANSPARENT_HUGEPAGE 216static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 217 unsigned long address, 218 pmd_t *pmdp) 219{ 220 pmd_t pmd = *pmdp; 221 int r = 1; 222 if (!pmd_young(pmd)) 223 r = 0; 224 else 225 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 226 return r; 227} 228#else 229static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 230 unsigned long address, 231 pmd_t *pmdp) 232{ 233 BUILD_BUG(); 234 return 0; 235} 236#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 237#endif 238 239#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 240int ptep_clear_flush_young(struct vm_area_struct *vma, 241 unsigned long address, pte_t *ptep); 242#endif 243 244#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 245#ifdef CONFIG_TRANSPARENT_HUGEPAGE 246extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 247 unsigned long address, pmd_t *pmdp); 248#else 249/* 250 * Despite relevant to THP only, this API is called from generic rmap code 251 * under PageTransHuge(), hence needs a dummy implementation for !THP 252 */ 253static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 254 unsigned long address, pmd_t *pmdp) 255{ 256 BUILD_BUG(); 257 return 0; 258} 259#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 260#endif 261 262#ifndef __HAVE_ARCH_PTEP_CLEAR 263static inline void ptep_clear(struct mm_struct *mm, unsigned long addr, 264 pte_t *ptep) 265{ 266 pte_clear(mm, addr, ptep); 267} 268#endif 269 270#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 271static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 272 unsigned long address, 273 pte_t *ptep) 274{ 275 pte_t pte = *ptep; 276 pte_clear(mm, address, ptep); 277 return pte; 278} 279#endif 280 281#ifndef __HAVE_ARCH_PTEP_GET 282static inline pte_t ptep_get(pte_t *ptep) 283{ 284 return READ_ONCE(*ptep); 285} 286#endif 287 288#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH 289/* 290 * WARNING: only to be used in the get_user_pages_fast() implementation. 291 * 292 * With get_user_pages_fast(), we walk down the pagetables without taking any 293 * locks. For this we would like to load the pointers atomically, but sometimes 294 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What 295 * we do have is the guarantee that a PTE will only either go from not present 296 * to present, or present to not present or both -- it will not switch to a 297 * completely different present page without a TLB flush in between; something 298 * that we are blocking by holding interrupts off. 299 * 300 * Setting ptes from not present to present goes: 301 * 302 * ptep->pte_high = h; 303 * smp_wmb(); 304 * ptep->pte_low = l; 305 * 306 * And present to not present goes: 307 * 308 * ptep->pte_low = 0; 309 * smp_wmb(); 310 * ptep->pte_high = 0; 311 * 312 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 313 * We load pte_high *after* loading pte_low, which ensures we don't see an older 314 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 315 * picked up a changed pte high. We might have gotten rubbish values from 316 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 317 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 318 * operates on present ptes we're safe. 319 */ 320static inline pte_t ptep_get_lockless(pte_t *ptep) 321{ 322 pte_t pte; 323 324 do { 325 pte.pte_low = ptep->pte_low; 326 smp_rmb(); 327 pte.pte_high = ptep->pte_high; 328 smp_rmb(); 329 } while (unlikely(pte.pte_low != ptep->pte_low)); 330 331 return pte; 332} 333#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 334/* 335 * We require that the PTE can be read atomically. 336 */ 337static inline pte_t ptep_get_lockless(pte_t *ptep) 338{ 339 return ptep_get(ptep); 340} 341#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 342 343#ifdef CONFIG_TRANSPARENT_HUGEPAGE 344#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 345static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 346 unsigned long address, 347 pmd_t *pmdp) 348{ 349 pmd_t pmd = *pmdp; 350 pmd_clear(pmdp); 351 return pmd; 352} 353#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ 354#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 355static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 356 unsigned long address, 357 pud_t *pudp) 358{ 359 pud_t pud = *pudp; 360 361 pud_clear(pudp); 362 return pud; 363} 364#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ 365#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 366 367#ifdef CONFIG_TRANSPARENT_HUGEPAGE 368#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 369static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 370 unsigned long address, pmd_t *pmdp, 371 int full) 372{ 373 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 374} 375#endif 376 377#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL 378static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm, 379 unsigned long address, pud_t *pudp, 380 int full) 381{ 382 return pudp_huge_get_and_clear(mm, address, pudp); 383} 384#endif 385#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 386 387#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 388static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 389 unsigned long address, pte_t *ptep, 390 int full) 391{ 392 pte_t pte; 393 pte = ptep_get_and_clear(mm, address, ptep); 394 return pte; 395} 396#endif 397 398 399/* 400 * If two threads concurrently fault at the same page, the thread that 401 * won the race updates the PTE and its local TLB/Cache. The other thread 402 * gives up, simply does nothing, and continues; on architectures where 403 * software can update TLB, local TLB can be updated here to avoid next page 404 * fault. This function updates TLB only, do nothing with cache or others. 405 * It is the difference with function update_mmu_cache. 406 */ 407#ifndef __HAVE_ARCH_UPDATE_MMU_TLB 408static inline void update_mmu_tlb(struct vm_area_struct *vma, 409 unsigned long address, pte_t *ptep) 410{ 411} 412#define __HAVE_ARCH_UPDATE_MMU_TLB 413#endif 414 415/* 416 * Some architectures may be able to avoid expensive synchronization 417 * primitives when modifications are made to PTE's which are already 418 * not present, or in the process of an address space destruction. 419 */ 420#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 421static inline void pte_clear_not_present_full(struct mm_struct *mm, 422 unsigned long address, 423 pte_t *ptep, 424 int full) 425{ 426 pte_clear(mm, address, ptep); 427} 428#endif 429 430#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 431extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 432 unsigned long address, 433 pte_t *ptep); 434#endif 435 436#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 437extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 438 unsigned long address, 439 pmd_t *pmdp); 440extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, 441 unsigned long address, 442 pud_t *pudp); 443#endif 444 445#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 446struct mm_struct; 447static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 448{ 449 pte_t old_pte = *ptep; 450 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 451} 452#endif 453 454/* 455 * On some architectures hardware does not set page access bit when accessing 456 * memory page, it is responsibility of software setting this bit. It brings 457 * out extra page fault penalty to track page access bit. For optimization page 458 * access bit can be set during all page fault flow on these arches. 459 * To be differentiate with macro pte_mkyoung, this macro is used on platforms 460 * where software maintains page access bit. 461 */ 462#ifndef pte_sw_mkyoung 463static inline pte_t pte_sw_mkyoung(pte_t pte) 464{ 465 return pte; 466} 467#define pte_sw_mkyoung pte_sw_mkyoung 468#endif 469 470#ifndef pte_savedwrite 471#define pte_savedwrite pte_write 472#endif 473 474#ifndef pte_mk_savedwrite 475#define pte_mk_savedwrite pte_mkwrite 476#endif 477 478#ifndef pte_clear_savedwrite 479#define pte_clear_savedwrite pte_wrprotect 480#endif 481 482#ifndef pmd_savedwrite 483#define pmd_savedwrite pmd_write 484#endif 485 486#ifndef pmd_mk_savedwrite 487#define pmd_mk_savedwrite pmd_mkwrite 488#endif 489 490#ifndef pmd_clear_savedwrite 491#define pmd_clear_savedwrite pmd_wrprotect 492#endif 493 494#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 495#ifdef CONFIG_TRANSPARENT_HUGEPAGE 496static inline void pmdp_set_wrprotect(struct mm_struct *mm, 497 unsigned long address, pmd_t *pmdp) 498{ 499 pmd_t old_pmd = *pmdp; 500 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 501} 502#else 503static inline void pmdp_set_wrprotect(struct mm_struct *mm, 504 unsigned long address, pmd_t *pmdp) 505{ 506 BUILD_BUG(); 507} 508#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 509#endif 510#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT 511#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 512static inline void pudp_set_wrprotect(struct mm_struct *mm, 513 unsigned long address, pud_t *pudp) 514{ 515 pud_t old_pud = *pudp; 516 517 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); 518} 519#else 520static inline void pudp_set_wrprotect(struct mm_struct *mm, 521 unsigned long address, pud_t *pudp) 522{ 523 BUILD_BUG(); 524} 525#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 526#endif 527 528#ifndef pmdp_collapse_flush 529#ifdef CONFIG_TRANSPARENT_HUGEPAGE 530extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 531 unsigned long address, pmd_t *pmdp); 532#else 533static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 534 unsigned long address, 535 pmd_t *pmdp) 536{ 537 BUILD_BUG(); 538 return *pmdp; 539} 540#define pmdp_collapse_flush pmdp_collapse_flush 541#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 542#endif 543 544#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 545extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 546 pgtable_t pgtable); 547#endif 548 549#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 550extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 551#endif 552 553#ifdef CONFIG_TRANSPARENT_HUGEPAGE 554/* 555 * This is an implementation of pmdp_establish() that is only suitable for an 556 * architecture that doesn't have hardware dirty/accessed bits. In this case we 557 * can't race with CPU which sets these bits and non-atomic approach is fine. 558 */ 559static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, 560 unsigned long address, pmd_t *pmdp, pmd_t pmd) 561{ 562 pmd_t old_pmd = *pmdp; 563 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 564 return old_pmd; 565} 566#endif 567 568#ifndef __HAVE_ARCH_PMDP_INVALIDATE 569extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 570 pmd_t *pmdp); 571#endif 572 573#ifndef __HAVE_ARCH_PTE_SAME 574static inline int pte_same(pte_t pte_a, pte_t pte_b) 575{ 576 return pte_val(pte_a) == pte_val(pte_b); 577} 578#endif 579 580#ifndef __HAVE_ARCH_PTE_UNUSED 581/* 582 * Some architectures provide facilities to virtualization guests 583 * so that they can flag allocated pages as unused. This allows the 584 * host to transparently reclaim unused pages. This function returns 585 * whether the pte's page is unused. 586 */ 587static inline int pte_unused(pte_t pte) 588{ 589 return 0; 590} 591#endif 592 593#ifndef pte_access_permitted 594#define pte_access_permitted(pte, write) \ 595 (pte_present(pte) && (!(write) || pte_write(pte))) 596#endif 597 598#ifndef pmd_access_permitted 599#define pmd_access_permitted(pmd, write) \ 600 (pmd_present(pmd) && (!(write) || pmd_write(pmd))) 601#endif 602 603#ifndef pud_access_permitted 604#define pud_access_permitted(pud, write) \ 605 (pud_present(pud) && (!(write) || pud_write(pud))) 606#endif 607 608#ifndef p4d_access_permitted 609#define p4d_access_permitted(p4d, write) \ 610 (p4d_present(p4d) && (!(write) || p4d_write(p4d))) 611#endif 612 613#ifndef pgd_access_permitted 614#define pgd_access_permitted(pgd, write) \ 615 (pgd_present(pgd) && (!(write) || pgd_write(pgd))) 616#endif 617 618#ifndef __HAVE_ARCH_PMD_SAME 619static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 620{ 621 return pmd_val(pmd_a) == pmd_val(pmd_b); 622} 623 624static inline int pud_same(pud_t pud_a, pud_t pud_b) 625{ 626 return pud_val(pud_a) == pud_val(pud_b); 627} 628#endif 629 630#ifndef __HAVE_ARCH_P4D_SAME 631static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) 632{ 633 return p4d_val(p4d_a) == p4d_val(p4d_b); 634} 635#endif 636 637#ifndef __HAVE_ARCH_PGD_SAME 638static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) 639{ 640 return pgd_val(pgd_a) == pgd_val(pgd_b); 641} 642#endif 643 644/* 645 * Use set_p*_safe(), and elide TLB flushing, when confident that *no* 646 * TLB flush will be required as a result of the "set". For example, use 647 * in scenarios where it is known ahead of time that the routine is 648 * setting non-present entries, or re-setting an existing entry to the 649 * same value. Otherwise, use the typical "set" helpers and flush the 650 * TLB. 651 */ 652#define set_pte_safe(ptep, pte) \ 653({ \ 654 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ 655 set_pte(ptep, pte); \ 656}) 657 658#define set_pmd_safe(pmdp, pmd) \ 659({ \ 660 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ 661 set_pmd(pmdp, pmd); \ 662}) 663 664#define set_pud_safe(pudp, pud) \ 665({ \ 666 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ 667 set_pud(pudp, pud); \ 668}) 669 670#define set_p4d_safe(p4dp, p4d) \ 671({ \ 672 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ 673 set_p4d(p4dp, p4d); \ 674}) 675 676#define set_pgd_safe(pgdp, pgd) \ 677({ \ 678 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ 679 set_pgd(pgdp, pgd); \ 680}) 681 682#ifndef __HAVE_ARCH_DO_SWAP_PAGE 683/* 684 * Some architectures support metadata associated with a page. When a 685 * page is being swapped out, this metadata must be saved so it can be 686 * restored when the page is swapped back in. SPARC M7 and newer 687 * processors support an ADI (Application Data Integrity) tag for the 688 * page as metadata for the page. arch_do_swap_page() can restore this 689 * metadata when a page is swapped back in. 690 */ 691static inline void arch_do_swap_page(struct mm_struct *mm, 692 struct vm_area_struct *vma, 693 unsigned long addr, 694 pte_t pte, pte_t oldpte) 695{ 696 697} 698#endif 699 700#ifndef __HAVE_ARCH_UNMAP_ONE 701/* 702 * Some architectures support metadata associated with a page. When a 703 * page is being swapped out, this metadata must be saved so it can be 704 * restored when the page is swapped back in. SPARC M7 and newer 705 * processors support an ADI (Application Data Integrity) tag for the 706 * page as metadata for the page. arch_unmap_one() can save this 707 * metadata on a swap-out of a page. 708 */ 709static inline int arch_unmap_one(struct mm_struct *mm, 710 struct vm_area_struct *vma, 711 unsigned long addr, 712 pte_t orig_pte) 713{ 714 return 0; 715} 716#endif 717 718/* 719 * Allow architectures to preserve additional metadata associated with 720 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function 721 * prototypes must be defined in the arch-specific asm/pgtable.h file. 722 */ 723#ifndef __HAVE_ARCH_PREPARE_TO_SWAP 724static inline int arch_prepare_to_swap(struct page *page) 725{ 726 return 0; 727} 728#endif 729 730#ifndef __HAVE_ARCH_SWAP_INVALIDATE 731static inline void arch_swap_invalidate_page(int type, pgoff_t offset) 732{ 733} 734 735static inline void arch_swap_invalidate_area(int type) 736{ 737} 738#endif 739 740#ifndef __HAVE_ARCH_SWAP_RESTORE 741static inline void arch_swap_restore(swp_entry_t entry, struct page *page) 742{ 743} 744#endif 745 746#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 747#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 748#endif 749 750#ifndef __HAVE_ARCH_MOVE_PTE 751#define move_pte(pte, prot, old_addr, new_addr) (pte) 752#endif 753 754#ifndef pte_accessible 755# define pte_accessible(mm, pte) ((void)(pte), 1) 756#endif 757 758#ifndef flush_tlb_fix_spurious_fault 759#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) 760#endif 761 762/* 763 * When walking page tables, get the address of the next boundary, 764 * or the end address of the range if that comes earlier. Although no 765 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 766 */ 767 768#define pgd_addr_end(addr, end) \ 769({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 770 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 771}) 772 773#ifndef p4d_addr_end 774#define p4d_addr_end(addr, end) \ 775({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ 776 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 777}) 778#endif 779 780#ifndef pud_addr_end 781#define pud_addr_end(addr, end) \ 782({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 783 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 784}) 785#endif 786 787#ifndef pmd_addr_end 788#define pmd_addr_end(addr, end) \ 789({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 790 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 791}) 792#endif 793 794/* 795 * When walking page tables, we usually want to skip any p?d_none entries; 796 * and any p?d_bad entries - reporting the error before resetting to none. 797 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 798 */ 799void pgd_clear_bad(pgd_t *); 800 801#ifndef __PAGETABLE_P4D_FOLDED 802void p4d_clear_bad(p4d_t *); 803#else 804#define p4d_clear_bad(p4d) do { } while (0) 805#endif 806 807#ifndef __PAGETABLE_PUD_FOLDED 808void pud_clear_bad(pud_t *); 809#else 810#define pud_clear_bad(p4d) do { } while (0) 811#endif 812 813void pmd_clear_bad(pmd_t *); 814 815static inline int pgd_none_or_clear_bad(pgd_t *pgd) 816{ 817 if (pgd_none(*pgd)) 818 return 1; 819 if (unlikely(pgd_bad(*pgd))) { 820 pgd_clear_bad(pgd); 821 return 1; 822 } 823 return 0; 824} 825 826static inline int p4d_none_or_clear_bad(p4d_t *p4d) 827{ 828 if (p4d_none(*p4d)) 829 return 1; 830 if (unlikely(p4d_bad(*p4d))) { 831 p4d_clear_bad(p4d); 832 return 1; 833 } 834 return 0; 835} 836 837static inline int pud_none_or_clear_bad(pud_t *pud) 838{ 839 if (pud_none(*pud)) 840 return 1; 841 if (unlikely(pud_bad(*pud))) { 842 pud_clear_bad(pud); 843 return 1; 844 } 845 return 0; 846} 847 848static inline int pmd_none_or_clear_bad(pmd_t *pmd) 849{ 850 if (pmd_none(*pmd)) 851 return 1; 852 if (unlikely(pmd_bad(*pmd))) { 853 pmd_clear_bad(pmd); 854 return 1; 855 } 856 return 0; 857} 858 859static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, 860 unsigned long addr, 861 pte_t *ptep) 862{ 863 /* 864 * Get the current pte state, but zero it out to make it 865 * non-present, preventing the hardware from asynchronously 866 * updating it. 867 */ 868 return ptep_get_and_clear(vma->vm_mm, addr, ptep); 869} 870 871static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, 872 unsigned long addr, 873 pte_t *ptep, pte_t pte) 874{ 875 /* 876 * The pte is non-present, so there's no hardware state to 877 * preserve. 878 */ 879 set_pte_at(vma->vm_mm, addr, ptep, pte); 880} 881 882#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 883/* 884 * Start a pte protection read-modify-write transaction, which 885 * protects against asynchronous hardware modifications to the pte. 886 * The intention is not to prevent the hardware from making pte 887 * updates, but to prevent any updates it may make from being lost. 888 * 889 * This does not protect against other software modifications of the 890 * pte; the appropriate pte lock must be held over the transaction. 891 * 892 * Note that this interface is intended to be batchable, meaning that 893 * ptep_modify_prot_commit may not actually update the pte, but merely 894 * queue the update to be done at some later time. The update must be 895 * actually committed before the pte lock is released, however. 896 */ 897static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 898 unsigned long addr, 899 pte_t *ptep) 900{ 901 return __ptep_modify_prot_start(vma, addr, ptep); 902} 903 904/* 905 * Commit an update to a pte, leaving any hardware-controlled bits in 906 * the PTE unmodified. 907 */ 908static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, 909 unsigned long addr, 910 pte_t *ptep, pte_t old_pte, pte_t pte) 911{ 912 __ptep_modify_prot_commit(vma, addr, ptep, pte); 913} 914#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 915#endif /* CONFIG_MMU */ 916 917/* 918 * No-op macros that just return the current protection value. Defined here 919 * because these macros can be used even if CONFIG_MMU is not defined. 920 */ 921 922#ifndef pgprot_nx 923#define pgprot_nx(prot) (prot) 924#endif 925 926#ifndef pgprot_noncached 927#define pgprot_noncached(prot) (prot) 928#endif 929 930#ifndef pgprot_writecombine 931#define pgprot_writecombine pgprot_noncached 932#endif 933 934#ifndef pgprot_writethrough 935#define pgprot_writethrough pgprot_noncached 936#endif 937 938#ifndef pgprot_device 939#define pgprot_device pgprot_noncached 940#endif 941 942#ifndef pgprot_mhp 943#define pgprot_mhp(prot) (prot) 944#endif 945 946#ifdef CONFIG_MMU 947#ifndef pgprot_modify 948#define pgprot_modify pgprot_modify 949static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 950{ 951 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) 952 newprot = pgprot_noncached(newprot); 953 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) 954 newprot = pgprot_writecombine(newprot); 955 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) 956 newprot = pgprot_device(newprot); 957 return newprot; 958} 959#endif 960#endif /* CONFIG_MMU */ 961 962#ifndef pgprot_encrypted 963#define pgprot_encrypted(prot) (prot) 964#endif 965 966#ifndef pgprot_decrypted 967#define pgprot_decrypted(prot) (prot) 968#endif 969 970/* 971 * A facility to provide lazy MMU batching. This allows PTE updates and 972 * page invalidations to be delayed until a call to leave lazy MMU mode 973 * is issued. Some architectures may benefit from doing this, and it is 974 * beneficial for both shadow and direct mode hypervisors, which may batch 975 * the PTE updates which happen during this window. Note that using this 976 * interface requires that read hazards be removed from the code. A read 977 * hazard could result in the direct mode hypervisor case, since the actual 978 * write to the page tables may not yet have taken place, so reads though 979 * a raw PTE pointer after it has been modified are not guaranteed to be 980 * up to date. This mode can only be entered and left under the protection of 981 * the page table locks for all page tables which may be modified. In the UP 982 * case, this is required so that preemption is disabled, and in the SMP case, 983 * it must synchronize the delayed page table writes properly on other CPUs. 984 */ 985#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 986#define arch_enter_lazy_mmu_mode() do {} while (0) 987#define arch_leave_lazy_mmu_mode() do {} while (0) 988#define arch_flush_lazy_mmu_mode() do {} while (0) 989#endif 990 991/* 992 * A facility to provide batching of the reload of page tables and 993 * other process state with the actual context switch code for 994 * paravirtualized guests. By convention, only one of the batched 995 * update (lazy) modes (CPU, MMU) should be active at any given time, 996 * entry should never be nested, and entry and exits should always be 997 * paired. This is for sanity of maintaining and reasoning about the 998 * kernel code. In this case, the exit (end of the context switch) is 999 * in architecture-specific code, and so doesn't need a generic 1000 * definition. 1001 */ 1002#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 1003#define arch_start_context_switch(prev) do {} while (0) 1004#endif 1005 1006#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1007#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION 1008static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1009{ 1010 return pmd; 1011} 1012 1013static inline int pmd_swp_soft_dirty(pmd_t pmd) 1014{ 1015 return 0; 1016} 1017 1018static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1019{ 1020 return pmd; 1021} 1022#endif 1023#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ 1024static inline int pte_soft_dirty(pte_t pte) 1025{ 1026 return 0; 1027} 1028 1029static inline int pmd_soft_dirty(pmd_t pmd) 1030{ 1031 return 0; 1032} 1033 1034static inline pte_t pte_mksoft_dirty(pte_t pte) 1035{ 1036 return pte; 1037} 1038 1039static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 1040{ 1041 return pmd; 1042} 1043 1044static inline pte_t pte_clear_soft_dirty(pte_t pte) 1045{ 1046 return pte; 1047} 1048 1049static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 1050{ 1051 return pmd; 1052} 1053 1054static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 1055{ 1056 return pte; 1057} 1058 1059static inline int pte_swp_soft_dirty(pte_t pte) 1060{ 1061 return 0; 1062} 1063 1064static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 1065{ 1066 return pte; 1067} 1068 1069static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1070{ 1071 return pmd; 1072} 1073 1074static inline int pmd_swp_soft_dirty(pmd_t pmd) 1075{ 1076 return 0; 1077} 1078 1079static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1080{ 1081 return pmd; 1082} 1083#endif 1084 1085#ifndef __HAVE_PFNMAP_TRACKING 1086/* 1087 * Interfaces that can be used by architecture code to keep track of 1088 * memory type of pfn mappings specified by the remap_pfn_range, 1089 * vmf_insert_pfn. 1090 */ 1091 1092/* 1093 * track_pfn_remap is called when a _new_ pfn mapping is being established 1094 * by remap_pfn_range() for physical range indicated by pfn and size. 1095 */ 1096static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1097 unsigned long pfn, unsigned long addr, 1098 unsigned long size) 1099{ 1100 return 0; 1101} 1102 1103/* 1104 * track_pfn_insert is called when a _new_ single pfn is established 1105 * by vmf_insert_pfn(). 1106 */ 1107static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1108 pfn_t pfn) 1109{ 1110} 1111 1112/* 1113 * track_pfn_copy is called when vma that is covering the pfnmap gets 1114 * copied through copy_page_range(). 1115 */ 1116static inline int track_pfn_copy(struct vm_area_struct *vma) 1117{ 1118 return 0; 1119} 1120 1121/* 1122 * untrack_pfn is called while unmapping a pfnmap for a region. 1123 * untrack can be called for a specific region indicated by pfn and size or 1124 * can be for the entire vma (in which case pfn, size are zero). 1125 */ 1126static inline void untrack_pfn(struct vm_area_struct *vma, 1127 unsigned long pfn, unsigned long size) 1128{ 1129} 1130 1131/* 1132 * untrack_pfn_moved is called while mremapping a pfnmap for a new region. 1133 */ 1134static inline void untrack_pfn_moved(struct vm_area_struct *vma) 1135{ 1136} 1137#else 1138extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1139 unsigned long pfn, unsigned long addr, 1140 unsigned long size); 1141extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1142 pfn_t pfn); 1143extern int track_pfn_copy(struct vm_area_struct *vma); 1144extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 1145 unsigned long size); 1146extern void untrack_pfn_moved(struct vm_area_struct *vma); 1147#endif 1148 1149#ifdef CONFIG_MMU 1150#ifdef __HAVE_COLOR_ZERO_PAGE 1151static inline int is_zero_pfn(unsigned long pfn) 1152{ 1153 extern unsigned long zero_pfn; 1154 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 1155 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 1156} 1157 1158#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 1159 1160#else 1161static inline int is_zero_pfn(unsigned long pfn) 1162{ 1163 extern unsigned long zero_pfn; 1164 return pfn == zero_pfn; 1165} 1166 1167static inline unsigned long my_zero_pfn(unsigned long addr) 1168{ 1169 extern unsigned long zero_pfn; 1170 return zero_pfn; 1171} 1172#endif 1173#else 1174static inline int is_zero_pfn(unsigned long pfn) 1175{ 1176 return 0; 1177} 1178 1179static inline unsigned long my_zero_pfn(unsigned long addr) 1180{ 1181 return 0; 1182} 1183#endif /* CONFIG_MMU */ 1184 1185#ifdef CONFIG_MMU 1186 1187#ifndef CONFIG_TRANSPARENT_HUGEPAGE 1188static inline int pmd_trans_huge(pmd_t pmd) 1189{ 1190 return 0; 1191} 1192#ifndef pmd_write 1193static inline int pmd_write(pmd_t pmd) 1194{ 1195 BUG(); 1196 return 0; 1197} 1198#endif /* pmd_write */ 1199#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1200 1201#ifndef pud_write 1202static inline int pud_write(pud_t pud) 1203{ 1204 BUG(); 1205 return 0; 1206} 1207#endif /* pud_write */ 1208 1209#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 1210static inline int pmd_devmap(pmd_t pmd) 1211{ 1212 return 0; 1213} 1214static inline int pud_devmap(pud_t pud) 1215{ 1216 return 0; 1217} 1218static inline int pgd_devmap(pgd_t pgd) 1219{ 1220 return 0; 1221} 1222#endif 1223 1224#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ 1225 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1226 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)) 1227static inline int pud_trans_huge(pud_t pud) 1228{ 1229 return 0; 1230} 1231#endif 1232 1233/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */ 1234static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud) 1235{ 1236 pud_t pudval = READ_ONCE(*pud); 1237 1238 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) 1239 return 1; 1240 if (unlikely(pud_bad(pudval))) { 1241 pud_clear_bad(pud); 1242 return 1; 1243 } 1244 return 0; 1245} 1246 1247/* See pmd_trans_unstable for discussion. */ 1248static inline int pud_trans_unstable(pud_t *pud) 1249{ 1250#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1251 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1252 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud); 1253#else 1254 return 0; 1255#endif 1256} 1257 1258#ifndef pmd_read_atomic 1259static inline pmd_t pmd_read_atomic(pmd_t *pmdp) 1260{ 1261 /* 1262 * Depend on compiler for an atomic pmd read. NOTE: this is 1263 * only going to work, if the pmdval_t isn't larger than 1264 * an unsigned long. 1265 */ 1266 return *pmdp; 1267} 1268#endif 1269 1270#ifndef arch_needs_pgtable_deposit 1271#define arch_needs_pgtable_deposit() (false) 1272#endif 1273/* 1274 * This function is meant to be used by sites walking pagetables with 1275 * the mmap_lock held in read mode to protect against MADV_DONTNEED and 1276 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd 1277 * into a null pmd and the transhuge page fault can convert a null pmd 1278 * into an hugepmd or into a regular pmd (if the hugepage allocation 1279 * fails). While holding the mmap_lock in read mode the pmd becomes 1280 * stable and stops changing under us only if it's not null and not a 1281 * transhuge pmd. When those races occurs and this function makes a 1282 * difference vs the standard pmd_none_or_clear_bad, the result is 1283 * undefined so behaving like if the pmd was none is safe (because it 1284 * can return none anyway). The compiler level barrier() is critically 1285 * important to compute the two checks atomically on the same pmdval. 1286 * 1287 * For 32bit kernels with a 64bit large pmd_t this automatically takes 1288 * care of reading the pmd atomically to avoid SMP race conditions 1289 * against pmd_populate() when the mmap_lock is hold for reading by the 1290 * caller (a special atomic read not done by "gcc" as in the generic 1291 * version above, is also needed when THP is disabled because the page 1292 * fault can populate the pmd from under us). 1293 */ 1294static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 1295{ 1296 pmd_t pmdval = pmd_read_atomic(pmd); 1297 /* 1298 * The barrier will stabilize the pmdval in a register or on 1299 * the stack so that it will stop changing under the code. 1300 * 1301 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, 1302 * pmd_read_atomic is allowed to return a not atomic pmdval 1303 * (for example pointing to an hugepage that has never been 1304 * mapped in the pmd). The below checks will only care about 1305 * the low part of the pmd with 32bit PAE x86 anyway, with the 1306 * exception of pmd_none(). So the important thing is that if 1307 * the low part of the pmd is found null, the high part will 1308 * be also null or the pmd_none() check below would be 1309 * confused. 1310 */ 1311#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1312 barrier(); 1313#endif 1314 /* 1315 * !pmd_present() checks for pmd migration entries 1316 * 1317 * The complete check uses is_pmd_migration_entry() in linux/swapops.h 1318 * But using that requires moving current function and pmd_trans_unstable() 1319 * to linux/swapops.h to resolve dependency, which is too much code move. 1320 * 1321 * !pmd_present() is equivalent to is_pmd_migration_entry() currently, 1322 * because !pmd_present() pages can only be under migration not swapped 1323 * out. 1324 * 1325 * pmd_none() is preserved for future condition checks on pmd migration 1326 * entries and not confusing with this function name, although it is 1327 * redundant with !pmd_present(). 1328 */ 1329 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) || 1330 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval))) 1331 return 1; 1332 if (unlikely(pmd_bad(pmdval))) { 1333 pmd_clear_bad(pmd); 1334 return 1; 1335 } 1336 return 0; 1337} 1338 1339/* 1340 * This is a noop if Transparent Hugepage Support is not built into 1341 * the kernel. Otherwise it is equivalent to 1342 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in 1343 * places that already verified the pmd is not none and they want to 1344 * walk ptes while holding the mmap sem in read mode (write mode don't 1345 * need this). If THP is not enabled, the pmd can't go away under the 1346 * code even if MADV_DONTNEED runs, but if THP is enabled we need to 1347 * run a pmd_trans_unstable before walking the ptes after 1348 * split_huge_pmd returns (because it may have run when the pmd become 1349 * null, but then a page fault can map in a THP and not a regular page). 1350 */ 1351static inline int pmd_trans_unstable(pmd_t *pmd) 1352{ 1353#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1354 return pmd_none_or_trans_huge_or_clear_bad(pmd); 1355#else 1356 return 0; 1357#endif 1358} 1359 1360/* 1361 * the ordering of these checks is important for pmds with _page_devmap set. 1362 * if we check pmd_trans_unstable() first we will trip the bad_pmd() check 1363 * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly 1364 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 1365 */ 1366static inline int pmd_devmap_trans_unstable(pmd_t *pmd) 1367{ 1368 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 1369} 1370 1371#ifndef CONFIG_NUMA_BALANCING 1372/* 1373 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but 1374 * the only case the kernel cares is for NUMA balancing and is only ever set 1375 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked 1376 * _PAGE_PROTNONE so by default, implement the helper as "always no". It 1377 * is the responsibility of the caller to distinguish between PROT_NONE 1378 * protections and NUMA hinting fault protections. 1379 */ 1380static inline int pte_protnone(pte_t pte) 1381{ 1382 return 0; 1383} 1384 1385static inline int pmd_protnone(pmd_t pmd) 1386{ 1387 return 0; 1388} 1389#endif /* CONFIG_NUMA_BALANCING */ 1390 1391#endif /* CONFIG_MMU */ 1392 1393#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 1394 1395#ifndef __PAGETABLE_P4D_FOLDED 1396int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); 1397int p4d_clear_huge(p4d_t *p4d); 1398#else 1399static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1400{ 1401 return 0; 1402} 1403static inline int p4d_clear_huge(p4d_t *p4d) 1404{ 1405 return 0; 1406} 1407#endif /* !__PAGETABLE_P4D_FOLDED */ 1408 1409int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); 1410int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); 1411int pud_clear_huge(pud_t *pud); 1412int pmd_clear_huge(pmd_t *pmd); 1413int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); 1414int pud_free_pmd_page(pud_t *pud, unsigned long addr); 1415int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); 1416#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 1417static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1418{ 1419 return 0; 1420} 1421static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 1422{ 1423 return 0; 1424} 1425static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 1426{ 1427 return 0; 1428} 1429static inline int p4d_clear_huge(p4d_t *p4d) 1430{ 1431 return 0; 1432} 1433static inline int pud_clear_huge(pud_t *pud) 1434{ 1435 return 0; 1436} 1437static inline int pmd_clear_huge(pmd_t *pmd) 1438{ 1439 return 0; 1440} 1441static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) 1442{ 1443 return 0; 1444} 1445static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) 1446{ 1447 return 0; 1448} 1449static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 1450{ 1451 return 0; 1452} 1453#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 1454 1455#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 1456#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1457/* 1458 * ARCHes with special requirements for evicting THP backing TLB entries can 1459 * implement this. Otherwise also, it can help optimize normal TLB flush in 1460 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the 1461 * entire TLB if flush span is greater than a threshold, which will 1462 * likely be true for a single huge page. Thus a single THP flush will 1463 * invalidate the entire TLB which is not desirable. 1464 * e.g. see arch/arc: flush_pmd_tlb_range 1465 */ 1466#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1467#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1468#else 1469#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() 1470#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() 1471#endif 1472#endif 1473 1474struct file; 1475int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, 1476 unsigned long size, pgprot_t *vma_prot); 1477 1478#ifndef CONFIG_X86_ESPFIX64 1479static inline void init_espfix_bsp(void) { } 1480#endif 1481 1482extern void __init pgtable_cache_init(void); 1483 1484#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED 1485static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) 1486{ 1487 return true; 1488} 1489 1490static inline bool arch_has_pfn_modify_check(void) 1491{ 1492 return false; 1493} 1494#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ 1495 1496/* 1497 * Architecture PAGE_KERNEL_* fallbacks 1498 * 1499 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either 1500 * because they really don't support them, or the port needs to be updated to 1501 * reflect the required functionality. Below are a set of relatively safe 1502 * fallbacks, as best effort, which we can count on in lieu of the architectures 1503 * not defining them on their own yet. 1504 */ 1505 1506#ifndef PAGE_KERNEL_RO 1507# define PAGE_KERNEL_RO PAGE_KERNEL 1508#endif 1509 1510#ifndef PAGE_KERNEL_EXEC 1511# define PAGE_KERNEL_EXEC PAGE_KERNEL 1512#endif 1513 1514/* 1515 * Page Table Modification bits for pgtbl_mod_mask. 1516 * 1517 * These are used by the p?d_alloc_track*() set of functions an in the generic 1518 * vmalloc/ioremap code to track at which page-table levels entries have been 1519 * modified. Based on that the code can better decide when vmalloc and ioremap 1520 * mapping changes need to be synchronized to other page-tables in the system. 1521 */ 1522#define __PGTBL_PGD_MODIFIED 0 1523#define __PGTBL_P4D_MODIFIED 1 1524#define __PGTBL_PUD_MODIFIED 2 1525#define __PGTBL_PMD_MODIFIED 3 1526#define __PGTBL_PTE_MODIFIED 4 1527 1528#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) 1529#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) 1530#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) 1531#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) 1532#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) 1533 1534/* Page-Table Modification Mask */ 1535typedef unsigned int pgtbl_mod_mask; 1536 1537#endif /* !__ASSEMBLY__ */ 1538 1539#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT) 1540#ifdef CONFIG_PHYS_ADDR_T_64BIT 1541/* 1542 * ZSMALLOC needs to know the highest PFN on 32-bit architectures 1543 * with physical address space extension, but falls back to 1544 * BITS_PER_LONG otherwise. 1545 */ 1546#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition 1547#else 1548#define MAX_POSSIBLE_PHYSMEM_BITS 32 1549#endif 1550#endif 1551 1552#ifndef has_transparent_hugepage 1553#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1554#define has_transparent_hugepage() 1 1555#else 1556#define has_transparent_hugepage() 0 1557#endif 1558#endif 1559 1560/* 1561 * On some architectures it depends on the mm if the p4d/pud or pmd 1562 * layer of the page table hierarchy is folded or not. 1563 */ 1564#ifndef mm_p4d_folded 1565#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) 1566#endif 1567 1568#ifndef mm_pud_folded 1569#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) 1570#endif 1571 1572#ifndef mm_pmd_folded 1573#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) 1574#endif 1575 1576#ifndef p4d_offset_lockless 1577#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address) 1578#endif 1579#ifndef pud_offset_lockless 1580#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address) 1581#endif 1582#ifndef pmd_offset_lockless 1583#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address) 1584#endif 1585 1586/* 1587 * p?d_leaf() - true if this entry is a final mapping to a physical address. 1588 * This differs from p?d_huge() by the fact that they are always available (if 1589 * the architecture supports large pages at the appropriate level) even 1590 * if CONFIG_HUGETLB_PAGE is not defined. 1591 * Only meaningful when called on a valid entry. 1592 */ 1593#ifndef pgd_leaf 1594#define pgd_leaf(x) 0 1595#endif 1596#ifndef p4d_leaf 1597#define p4d_leaf(x) 0 1598#endif 1599#ifndef pud_leaf 1600#define pud_leaf(x) 0 1601#endif 1602#ifndef pmd_leaf 1603#define pmd_leaf(x) 0 1604#endif 1605 1606#ifndef pgd_leaf_size 1607#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT) 1608#endif 1609#ifndef p4d_leaf_size 1610#define p4d_leaf_size(x) P4D_SIZE 1611#endif 1612#ifndef pud_leaf_size 1613#define pud_leaf_size(x) PUD_SIZE 1614#endif 1615#ifndef pmd_leaf_size 1616#define pmd_leaf_size(x) PMD_SIZE 1617#endif 1618#ifndef pte_leaf_size 1619#define pte_leaf_size(x) PAGE_SIZE 1620#endif 1621 1622/* 1623 * Some architectures have MMUs that are configurable or selectable at boot 1624 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it 1625 * helps to have a static maximum value. 1626 */ 1627 1628#ifndef MAX_PTRS_PER_PTE 1629#define MAX_PTRS_PER_PTE PTRS_PER_PTE 1630#endif 1631 1632#ifndef MAX_PTRS_PER_PMD 1633#define MAX_PTRS_PER_PMD PTRS_PER_PMD 1634#endif 1635 1636#ifndef MAX_PTRS_PER_PUD 1637#define MAX_PTRS_PER_PUD PTRS_PER_PUD 1638#endif 1639 1640#ifndef MAX_PTRS_PER_P4D 1641#define MAX_PTRS_PER_P4D PTRS_PER_P4D 1642#endif 1643 1644#endif /* _LINUX_PGTABLE_H */