Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Macros for manipulating and testing page->flags
4 */
5
6#ifndef PAGE_FLAGS_H
7#define PAGE_FLAGS_H
8
9#include <linux/types.h>
10#include <linux/bug.h>
11#include <linux/mmdebug.h>
12#ifndef __GENERATING_BOUNDS_H
13#include <linux/mm_types.h>
14#include <generated/bounds.h>
15#endif /* !__GENERATING_BOUNDS_H */
16
17/*
18 * Various page->flags bits:
19 *
20 * PG_reserved is set for special pages. The "struct page" of such a page
21 * should in general not be touched (e.g. set dirty) except by its owner.
22 * Pages marked as PG_reserved include:
23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24 * initrd, HW tables)
25 * - Pages reserved or allocated early during boot (before the page allocator
26 * was initialized). This includes (depending on the architecture) the
27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28 * much more. Once (if ever) freed, PG_reserved is cleared and they will
29 * be given to the page allocator.
30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31 * to read/write these pages might end badly. Don't touch!
32 * - The zero page(s)
33 * - Pages not added to the page allocator when onlining a section because
34 * they were excluded via the online_page_callback() or because they are
35 * PG_hwpoison.
36 * - Pages allocated in the context of kexec/kdump (loaded kernel image,
37 * control pages, vmcoreinfo)
38 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
39 * not marked PG_reserved (as they might be in use by somebody else who does
40 * not respect the caching strategy).
41 * - Pages part of an offline section (struct pages of offline sections should
42 * not be trusted as they will be initialized when first onlined).
43 * - MCA pages on ia64
44 * - Pages holding CPU notes for POWER Firmware Assisted Dump
45 * - Device memory (e.g. PMEM, DAX, HMM)
46 * Some PG_reserved pages will be excluded from the hibernation image.
47 * PG_reserved does in general not hinder anybody from dumping or swapping
48 * and is no longer required for remap_pfn_range(). ioremap might require it.
49 * Consequently, PG_reserved for a page mapped into user space can indicate
50 * the zero page, the vDSO, MMIO pages or device memory.
51 *
52 * The PG_private bitflag is set on pagecache pages if they contain filesystem
53 * specific data (which is normally at page->private). It can be used by
54 * private allocations for its own usage.
55 *
56 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
57 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
58 * is set before writeback starts and cleared when it finishes.
59 *
60 * PG_locked also pins a page in pagecache, and blocks truncation of the file
61 * while it is held.
62 *
63 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
64 * to become unlocked.
65 *
66 * PG_swapbacked is set when a page uses swap as a backing storage. This are
67 * usually PageAnon or shmem pages but please note that even anonymous pages
68 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
69 * a result of MADV_FREE).
70 *
71 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
72 * file-backed pagecache (see mm/vmscan.c).
73 *
74 * PG_error is set to indicate that an I/O error occurred on this page.
75 *
76 * PG_arch_1 is an architecture specific page state bit. The generic code
77 * guarantees that this bit is cleared for a page when it first is entered into
78 * the page cache.
79 *
80 * PG_hwpoison indicates that a page got corrupted in hardware and contains
81 * data with incorrect ECC bits that triggered a machine check. Accessing is
82 * not safe since it may cause another machine check. Don't touch!
83 */
84
85/*
86 * Don't use the pageflags directly. Use the PageFoo macros.
87 *
88 * The page flags field is split into two parts, the main flags area
89 * which extends from the low bits upwards, and the fields area which
90 * extends from the high bits downwards.
91 *
92 * | FIELD | ... | FLAGS |
93 * N-1 ^ 0
94 * (NR_PAGEFLAGS)
95 *
96 * The fields area is reserved for fields mapping zone, node (for NUMA) and
97 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
98 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
99 */
100enum pageflags {
101 PG_locked, /* Page is locked. Don't touch. */
102 PG_referenced,
103 PG_uptodate,
104 PG_dirty,
105 PG_lru,
106 PG_active,
107 PG_workingset,
108 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
109 PG_error,
110 PG_slab,
111 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/
112 PG_arch_1,
113 PG_reserved,
114 PG_private, /* If pagecache, has fs-private data */
115 PG_private_2, /* If pagecache, has fs aux data */
116 PG_writeback, /* Page is under writeback */
117 PG_head, /* A head page */
118 PG_mappedtodisk, /* Has blocks allocated on-disk */
119 PG_reclaim, /* To be reclaimed asap */
120 PG_swapbacked, /* Page is backed by RAM/swap */
121 PG_unevictable, /* Page is "unevictable" */
122#ifdef CONFIG_MMU
123 PG_mlocked, /* Page is vma mlocked */
124#endif
125#ifdef CONFIG_ARCH_USES_PG_UNCACHED
126 PG_uncached, /* Page has been mapped as uncached */
127#endif
128#ifdef CONFIG_MEMORY_FAILURE
129 PG_hwpoison, /* hardware poisoned page. Don't touch */
130#endif
131#if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
132 PG_young,
133 PG_idle,
134#endif
135#ifdef CONFIG_64BIT
136 PG_arch_2,
137#endif
138#ifdef CONFIG_KASAN_HW_TAGS
139 PG_skip_kasan_poison,
140#endif
141 __NR_PAGEFLAGS,
142
143 PG_readahead = PG_reclaim,
144
145 /* Filesystems */
146 PG_checked = PG_owner_priv_1,
147
148 /* SwapBacked */
149 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
150
151 /* Two page bits are conscripted by FS-Cache to maintain local caching
152 * state. These bits are set on pages belonging to the netfs's inodes
153 * when those inodes are being locally cached.
154 */
155 PG_fscache = PG_private_2, /* page backed by cache */
156
157 /* XEN */
158 /* Pinned in Xen as a read-only pagetable page. */
159 PG_pinned = PG_owner_priv_1,
160 /* Pinned as part of domain save (see xen_mm_pin_all()). */
161 PG_savepinned = PG_dirty,
162 /* Has a grant mapping of another (foreign) domain's page. */
163 PG_foreign = PG_owner_priv_1,
164 /* Remapped by swiotlb-xen. */
165 PG_xen_remapped = PG_owner_priv_1,
166
167 /* SLOB */
168 PG_slob_free = PG_private,
169
170 /* Compound pages. Stored in first tail page's flags */
171 PG_double_map = PG_workingset,
172
173#ifdef CONFIG_MEMORY_FAILURE
174 /*
175 * Compound pages. Stored in first tail page's flags.
176 * Indicates that at least one subpage is hwpoisoned in the
177 * THP.
178 */
179 PG_has_hwpoisoned = PG_mappedtodisk,
180#endif
181
182 /* non-lru isolated movable page */
183 PG_isolated = PG_reclaim,
184
185 /* Only valid for buddy pages. Used to track pages that are reported */
186 PG_reported = PG_uptodate,
187};
188
189#define PAGEFLAGS_MASK ((1UL << NR_PAGEFLAGS) - 1)
190
191#ifndef __GENERATING_BOUNDS_H
192
193#ifdef CONFIG_HUGETLB_PAGE_FREE_VMEMMAP
194DECLARE_STATIC_KEY_MAYBE(CONFIG_HUGETLB_PAGE_FREE_VMEMMAP_DEFAULT_ON,
195 hugetlb_free_vmemmap_enabled_key);
196
197static __always_inline bool hugetlb_free_vmemmap_enabled(void)
198{
199 return static_branch_maybe(CONFIG_HUGETLB_PAGE_FREE_VMEMMAP_DEFAULT_ON,
200 &hugetlb_free_vmemmap_enabled_key);
201}
202
203/*
204 * If the feature of freeing some vmemmap pages associated with each HugeTLB
205 * page is enabled, the head vmemmap page frame is reused and all of the tail
206 * vmemmap addresses map to the head vmemmap page frame (furture details can
207 * refer to the figure at the head of the mm/hugetlb_vmemmap.c). In other
208 * words, there are more than one page struct with PG_head associated with each
209 * HugeTLB page. We __know__ that there is only one head page struct, the tail
210 * page structs with PG_head are fake head page structs. We need an approach
211 * to distinguish between those two different types of page structs so that
212 * compound_head() can return the real head page struct when the parameter is
213 * the tail page struct but with PG_head.
214 *
215 * The page_fixed_fake_head() returns the real head page struct if the @page is
216 * fake page head, otherwise, returns @page which can either be a true page
217 * head or tail.
218 */
219static __always_inline const struct page *page_fixed_fake_head(const struct page *page)
220{
221 if (!hugetlb_free_vmemmap_enabled())
222 return page;
223
224 /*
225 * Only addresses aligned with PAGE_SIZE of struct page may be fake head
226 * struct page. The alignment check aims to avoid access the fields (
227 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly)
228 * cold cacheline in some cases.
229 */
230 if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) &&
231 test_bit(PG_head, &page->flags)) {
232 /*
233 * We can safely access the field of the @page[1] with PG_head
234 * because the @page is a compound page composed with at least
235 * two contiguous pages.
236 */
237 unsigned long head = READ_ONCE(page[1].compound_head);
238
239 if (likely(head & 1))
240 return (const struct page *)(head - 1);
241 }
242 return page;
243}
244#else
245static inline const struct page *page_fixed_fake_head(const struct page *page)
246{
247 return page;
248}
249
250static inline bool hugetlb_free_vmemmap_enabled(void)
251{
252 return false;
253}
254#endif
255
256static __always_inline int page_is_fake_head(struct page *page)
257{
258 return page_fixed_fake_head(page) != page;
259}
260
261static inline unsigned long _compound_head(const struct page *page)
262{
263 unsigned long head = READ_ONCE(page->compound_head);
264
265 if (unlikely(head & 1))
266 return head - 1;
267 return (unsigned long)page_fixed_fake_head(page);
268}
269
270#define compound_head(page) ((typeof(page))_compound_head(page))
271
272/**
273 * page_folio - Converts from page to folio.
274 * @p: The page.
275 *
276 * Every page is part of a folio. This function cannot be called on a
277 * NULL pointer.
278 *
279 * Context: No reference, nor lock is required on @page. If the caller
280 * does not hold a reference, this call may race with a folio split, so
281 * it should re-check the folio still contains this page after gaining
282 * a reference on the folio.
283 * Return: The folio which contains this page.
284 */
285#define page_folio(p) (_Generic((p), \
286 const struct page *: (const struct folio *)_compound_head(p), \
287 struct page *: (struct folio *)_compound_head(p)))
288
289/**
290 * folio_page - Return a page from a folio.
291 * @folio: The folio.
292 * @n: The page number to return.
293 *
294 * @n is relative to the start of the folio. This function does not
295 * check that the page number lies within @folio; the caller is presumed
296 * to have a reference to the page.
297 */
298#define folio_page(folio, n) nth_page(&(folio)->page, n)
299
300static __always_inline int PageTail(struct page *page)
301{
302 return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page);
303}
304
305static __always_inline int PageCompound(struct page *page)
306{
307 return test_bit(PG_head, &page->flags) ||
308 READ_ONCE(page->compound_head) & 1;
309}
310
311#define PAGE_POISON_PATTERN -1l
312static inline int PagePoisoned(const struct page *page)
313{
314 return READ_ONCE(page->flags) == PAGE_POISON_PATTERN;
315}
316
317#ifdef CONFIG_DEBUG_VM
318void page_init_poison(struct page *page, size_t size);
319#else
320static inline void page_init_poison(struct page *page, size_t size)
321{
322}
323#endif
324
325static unsigned long *folio_flags(struct folio *folio, unsigned n)
326{
327 struct page *page = &folio->page;
328
329 VM_BUG_ON_PGFLAGS(PageTail(page), page);
330 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
331 return &page[n].flags;
332}
333
334/*
335 * Page flags policies wrt compound pages
336 *
337 * PF_POISONED_CHECK
338 * check if this struct page poisoned/uninitialized
339 *
340 * PF_ANY:
341 * the page flag is relevant for small, head and tail pages.
342 *
343 * PF_HEAD:
344 * for compound page all operations related to the page flag applied to
345 * head page.
346 *
347 * PF_ONLY_HEAD:
348 * for compound page, callers only ever operate on the head page.
349 *
350 * PF_NO_TAIL:
351 * modifications of the page flag must be done on small or head pages,
352 * checks can be done on tail pages too.
353 *
354 * PF_NO_COMPOUND:
355 * the page flag is not relevant for compound pages.
356 *
357 * PF_SECOND:
358 * the page flag is stored in the first tail page.
359 */
360#define PF_POISONED_CHECK(page) ({ \
361 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \
362 page; })
363#define PF_ANY(page, enforce) PF_POISONED_CHECK(page)
364#define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page))
365#define PF_ONLY_HEAD(page, enforce) ({ \
366 VM_BUG_ON_PGFLAGS(PageTail(page), page); \
367 PF_POISONED_CHECK(page); })
368#define PF_NO_TAIL(page, enforce) ({ \
369 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \
370 PF_POISONED_CHECK(compound_head(page)); })
371#define PF_NO_COMPOUND(page, enforce) ({ \
372 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
373 PF_POISONED_CHECK(page); })
374#define PF_SECOND(page, enforce) ({ \
375 VM_BUG_ON_PGFLAGS(!PageHead(page), page); \
376 PF_POISONED_CHECK(&page[1]); })
377
378/* Which page is the flag stored in */
379#define FOLIO_PF_ANY 0
380#define FOLIO_PF_HEAD 0
381#define FOLIO_PF_ONLY_HEAD 0
382#define FOLIO_PF_NO_TAIL 0
383#define FOLIO_PF_NO_COMPOUND 0
384#define FOLIO_PF_SECOND 1
385
386/*
387 * Macros to create function definitions for page flags
388 */
389#define TESTPAGEFLAG(uname, lname, policy) \
390static __always_inline bool folio_test_##lname(struct folio *folio) \
391{ return test_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
392static __always_inline int Page##uname(struct page *page) \
393{ return test_bit(PG_##lname, &policy(page, 0)->flags); }
394
395#define SETPAGEFLAG(uname, lname, policy) \
396static __always_inline \
397void folio_set_##lname(struct folio *folio) \
398{ set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
399static __always_inline void SetPage##uname(struct page *page) \
400{ set_bit(PG_##lname, &policy(page, 1)->flags); }
401
402#define CLEARPAGEFLAG(uname, lname, policy) \
403static __always_inline \
404void folio_clear_##lname(struct folio *folio) \
405{ clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
406static __always_inline void ClearPage##uname(struct page *page) \
407{ clear_bit(PG_##lname, &policy(page, 1)->flags); }
408
409#define __SETPAGEFLAG(uname, lname, policy) \
410static __always_inline \
411void __folio_set_##lname(struct folio *folio) \
412{ __set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
413static __always_inline void __SetPage##uname(struct page *page) \
414{ __set_bit(PG_##lname, &policy(page, 1)->flags); }
415
416#define __CLEARPAGEFLAG(uname, lname, policy) \
417static __always_inline \
418void __folio_clear_##lname(struct folio *folio) \
419{ __clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
420static __always_inline void __ClearPage##uname(struct page *page) \
421{ __clear_bit(PG_##lname, &policy(page, 1)->flags); }
422
423#define TESTSETFLAG(uname, lname, policy) \
424static __always_inline \
425bool folio_test_set_##lname(struct folio *folio) \
426{ return test_and_set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
427static __always_inline int TestSetPage##uname(struct page *page) \
428{ return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
429
430#define TESTCLEARFLAG(uname, lname, policy) \
431static __always_inline \
432bool folio_test_clear_##lname(struct folio *folio) \
433{ return test_and_clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
434static __always_inline int TestClearPage##uname(struct page *page) \
435{ return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
436
437#define PAGEFLAG(uname, lname, policy) \
438 TESTPAGEFLAG(uname, lname, policy) \
439 SETPAGEFLAG(uname, lname, policy) \
440 CLEARPAGEFLAG(uname, lname, policy)
441
442#define __PAGEFLAG(uname, lname, policy) \
443 TESTPAGEFLAG(uname, lname, policy) \
444 __SETPAGEFLAG(uname, lname, policy) \
445 __CLEARPAGEFLAG(uname, lname, policy)
446
447#define TESTSCFLAG(uname, lname, policy) \
448 TESTSETFLAG(uname, lname, policy) \
449 TESTCLEARFLAG(uname, lname, policy)
450
451#define TESTPAGEFLAG_FALSE(uname, lname) \
452static inline bool folio_test_##lname(const struct folio *folio) { return false; } \
453static inline int Page##uname(const struct page *page) { return 0; }
454
455#define SETPAGEFLAG_NOOP(uname, lname) \
456static inline void folio_set_##lname(struct folio *folio) { } \
457static inline void SetPage##uname(struct page *page) { }
458
459#define CLEARPAGEFLAG_NOOP(uname, lname) \
460static inline void folio_clear_##lname(struct folio *folio) { } \
461static inline void ClearPage##uname(struct page *page) { }
462
463#define __CLEARPAGEFLAG_NOOP(uname, lname) \
464static inline void __folio_clear_##lname(struct folio *folio) { } \
465static inline void __ClearPage##uname(struct page *page) { }
466
467#define TESTSETFLAG_FALSE(uname, lname) \
468static inline bool folio_test_set_##lname(struct folio *folio) \
469{ return 0; } \
470static inline int TestSetPage##uname(struct page *page) { return 0; }
471
472#define TESTCLEARFLAG_FALSE(uname, lname) \
473static inline bool folio_test_clear_##lname(struct folio *folio) \
474{ return 0; } \
475static inline int TestClearPage##uname(struct page *page) { return 0; }
476
477#define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname) \
478 SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname)
479
480#define TESTSCFLAG_FALSE(uname, lname) \
481 TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname)
482
483__PAGEFLAG(Locked, locked, PF_NO_TAIL)
484PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
485PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
486PAGEFLAG(Referenced, referenced, PF_HEAD)
487 TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
488 __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
489PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
490 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
491PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
492 TESTCLEARFLAG(LRU, lru, PF_HEAD)
493PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
494 TESTCLEARFLAG(Active, active, PF_HEAD)
495PAGEFLAG(Workingset, workingset, PF_HEAD)
496 TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
497__PAGEFLAG(Slab, slab, PF_NO_TAIL)
498__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
499PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */
500
501/* Xen */
502PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
503 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
504PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
505PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
506PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
507 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
508
509PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
510 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
511 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
512PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
513 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
514 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
515
516/*
517 * Private page markings that may be used by the filesystem that owns the page
518 * for its own purposes.
519 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
520 */
521PAGEFLAG(Private, private, PF_ANY)
522PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
523PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
524 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
525
526/*
527 * Only test-and-set exist for PG_writeback. The unconditional operators are
528 * risky: they bypass page accounting.
529 */
530TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
531 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
532PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
533
534/* PG_readahead is only used for reads; PG_reclaim is only for writes */
535PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
536 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
537PAGEFLAG(Readahead, readahead, PF_NO_COMPOUND)
538 TESTCLEARFLAG(Readahead, readahead, PF_NO_COMPOUND)
539
540#ifdef CONFIG_HIGHMEM
541/*
542 * Must use a macro here due to header dependency issues. page_zone() is not
543 * available at this point.
544 */
545#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
546#else
547PAGEFLAG_FALSE(HighMem, highmem)
548#endif
549
550#ifdef CONFIG_SWAP
551static __always_inline bool folio_test_swapcache(struct folio *folio)
552{
553 return folio_test_swapbacked(folio) &&
554 test_bit(PG_swapcache, folio_flags(folio, 0));
555}
556
557static __always_inline bool PageSwapCache(struct page *page)
558{
559 return folio_test_swapcache(page_folio(page));
560}
561
562SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
563CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
564#else
565PAGEFLAG_FALSE(SwapCache, swapcache)
566#endif
567
568PAGEFLAG(Unevictable, unevictable, PF_HEAD)
569 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
570 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
571
572#ifdef CONFIG_MMU
573PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
574 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
575 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
576#else
577PAGEFLAG_FALSE(Mlocked, mlocked) __CLEARPAGEFLAG_NOOP(Mlocked, mlocked)
578 TESTSCFLAG_FALSE(Mlocked, mlocked)
579#endif
580
581#ifdef CONFIG_ARCH_USES_PG_UNCACHED
582PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
583#else
584PAGEFLAG_FALSE(Uncached, uncached)
585#endif
586
587#ifdef CONFIG_MEMORY_FAILURE
588PAGEFLAG(HWPoison, hwpoison, PF_ANY)
589TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
590#define __PG_HWPOISON (1UL << PG_hwpoison)
591#define MAGIC_HWPOISON 0x48575053U /* HWPS */
592extern void SetPageHWPoisonTakenOff(struct page *page);
593extern void ClearPageHWPoisonTakenOff(struct page *page);
594extern bool take_page_off_buddy(struct page *page);
595extern bool put_page_back_buddy(struct page *page);
596#else
597PAGEFLAG_FALSE(HWPoison, hwpoison)
598#define __PG_HWPOISON 0
599#endif
600
601#if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
602TESTPAGEFLAG(Young, young, PF_ANY)
603SETPAGEFLAG(Young, young, PF_ANY)
604TESTCLEARFLAG(Young, young, PF_ANY)
605PAGEFLAG(Idle, idle, PF_ANY)
606#endif
607
608#ifdef CONFIG_KASAN_HW_TAGS
609PAGEFLAG(SkipKASanPoison, skip_kasan_poison, PF_HEAD)
610#else
611PAGEFLAG_FALSE(SkipKASanPoison, skip_kasan_poison)
612#endif
613
614/*
615 * PageReported() is used to track reported free pages within the Buddy
616 * allocator. We can use the non-atomic version of the test and set
617 * operations as both should be shielded with the zone lock to prevent
618 * any possible races on the setting or clearing of the bit.
619 */
620__PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
621
622/*
623 * On an anonymous page mapped into a user virtual memory area,
624 * page->mapping points to its anon_vma, not to a struct address_space;
625 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
626 *
627 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
628 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
629 * bit; and then page->mapping points, not to an anon_vma, but to a private
630 * structure which KSM associates with that merged page. See ksm.h.
631 *
632 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
633 * page and then page->mapping points a struct address_space.
634 *
635 * Please note that, confusingly, "page_mapping" refers to the inode
636 * address_space which maps the page from disk; whereas "page_mapped"
637 * refers to user virtual address space into which the page is mapped.
638 */
639#define PAGE_MAPPING_ANON 0x1
640#define PAGE_MAPPING_MOVABLE 0x2
641#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
642#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
643
644static __always_inline int PageMappingFlags(struct page *page)
645{
646 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
647}
648
649static __always_inline bool folio_test_anon(struct folio *folio)
650{
651 return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0;
652}
653
654static __always_inline bool PageAnon(struct page *page)
655{
656 return folio_test_anon(page_folio(page));
657}
658
659static __always_inline int __PageMovable(struct page *page)
660{
661 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
662 PAGE_MAPPING_MOVABLE;
663}
664
665#ifdef CONFIG_KSM
666/*
667 * A KSM page is one of those write-protected "shared pages" or "merged pages"
668 * which KSM maps into multiple mms, wherever identical anonymous page content
669 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any
670 * anon_vma, but to that page's node of the stable tree.
671 */
672static __always_inline bool folio_test_ksm(struct folio *folio)
673{
674 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
675 PAGE_MAPPING_KSM;
676}
677
678static __always_inline bool PageKsm(struct page *page)
679{
680 return folio_test_ksm(page_folio(page));
681}
682#else
683TESTPAGEFLAG_FALSE(Ksm, ksm)
684#endif
685
686u64 stable_page_flags(struct page *page);
687
688/**
689 * folio_test_uptodate - Is this folio up to date?
690 * @folio: The folio.
691 *
692 * The uptodate flag is set on a folio when every byte in the folio is
693 * at least as new as the corresponding bytes on storage. Anonymous
694 * and CoW folios are always uptodate. If the folio is not uptodate,
695 * some of the bytes in it may be; see the is_partially_uptodate()
696 * address_space operation.
697 */
698static inline bool folio_test_uptodate(struct folio *folio)
699{
700 bool ret = test_bit(PG_uptodate, folio_flags(folio, 0));
701 /*
702 * Must ensure that the data we read out of the folio is loaded
703 * _after_ we've loaded folio->flags to check the uptodate bit.
704 * We can skip the barrier if the folio is not uptodate, because
705 * we wouldn't be reading anything from it.
706 *
707 * See folio_mark_uptodate() for the other side of the story.
708 */
709 if (ret)
710 smp_rmb();
711
712 return ret;
713}
714
715static inline int PageUptodate(struct page *page)
716{
717 return folio_test_uptodate(page_folio(page));
718}
719
720static __always_inline void __folio_mark_uptodate(struct folio *folio)
721{
722 smp_wmb();
723 __set_bit(PG_uptodate, folio_flags(folio, 0));
724}
725
726static __always_inline void folio_mark_uptodate(struct folio *folio)
727{
728 /*
729 * Memory barrier must be issued before setting the PG_uptodate bit,
730 * so that all previous stores issued in order to bring the folio
731 * uptodate are actually visible before folio_test_uptodate becomes true.
732 */
733 smp_wmb();
734 set_bit(PG_uptodate, folio_flags(folio, 0));
735}
736
737static __always_inline void __SetPageUptodate(struct page *page)
738{
739 __folio_mark_uptodate((struct folio *)page);
740}
741
742static __always_inline void SetPageUptodate(struct page *page)
743{
744 folio_mark_uptodate((struct folio *)page);
745}
746
747CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
748
749bool __folio_start_writeback(struct folio *folio, bool keep_write);
750bool set_page_writeback(struct page *page);
751
752#define folio_start_writeback(folio) \
753 __folio_start_writeback(folio, false)
754#define folio_start_writeback_keepwrite(folio) \
755 __folio_start_writeback(folio, true)
756
757static inline void set_page_writeback_keepwrite(struct page *page)
758{
759 folio_start_writeback_keepwrite(page_folio(page));
760}
761
762static inline bool test_set_page_writeback(struct page *page)
763{
764 return set_page_writeback(page);
765}
766
767static __always_inline bool folio_test_head(struct folio *folio)
768{
769 return test_bit(PG_head, folio_flags(folio, FOLIO_PF_ANY));
770}
771
772static __always_inline int PageHead(struct page *page)
773{
774 PF_POISONED_CHECK(page);
775 return test_bit(PG_head, &page->flags) && !page_is_fake_head(page);
776}
777
778__SETPAGEFLAG(Head, head, PF_ANY)
779__CLEARPAGEFLAG(Head, head, PF_ANY)
780CLEARPAGEFLAG(Head, head, PF_ANY)
781
782/**
783 * folio_test_large() - Does this folio contain more than one page?
784 * @folio: The folio to test.
785 *
786 * Return: True if the folio is larger than one page.
787 */
788static inline bool folio_test_large(struct folio *folio)
789{
790 return folio_test_head(folio);
791}
792
793static __always_inline void set_compound_head(struct page *page, struct page *head)
794{
795 WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
796}
797
798static __always_inline void clear_compound_head(struct page *page)
799{
800 WRITE_ONCE(page->compound_head, 0);
801}
802
803#ifdef CONFIG_TRANSPARENT_HUGEPAGE
804static inline void ClearPageCompound(struct page *page)
805{
806 BUG_ON(!PageHead(page));
807 ClearPageHead(page);
808}
809#endif
810
811#define PG_head_mask ((1UL << PG_head))
812
813#ifdef CONFIG_HUGETLB_PAGE
814int PageHuge(struct page *page);
815int PageHeadHuge(struct page *page);
816static inline bool folio_test_hugetlb(struct folio *folio)
817{
818 return PageHeadHuge(&folio->page);
819}
820#else
821TESTPAGEFLAG_FALSE(Huge, hugetlb)
822TESTPAGEFLAG_FALSE(HeadHuge, headhuge)
823#endif
824
825#ifdef CONFIG_TRANSPARENT_HUGEPAGE
826/*
827 * PageHuge() only returns true for hugetlbfs pages, but not for
828 * normal or transparent huge pages.
829 *
830 * PageTransHuge() returns true for both transparent huge and
831 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
832 * called only in the core VM paths where hugetlbfs pages can't exist.
833 */
834static inline int PageTransHuge(struct page *page)
835{
836 VM_BUG_ON_PAGE(PageTail(page), page);
837 return PageHead(page);
838}
839
840static inline bool folio_test_transhuge(struct folio *folio)
841{
842 return folio_test_head(folio);
843}
844
845/*
846 * PageTransCompound returns true for both transparent huge pages
847 * and hugetlbfs pages, so it should only be called when it's known
848 * that hugetlbfs pages aren't involved.
849 */
850static inline int PageTransCompound(struct page *page)
851{
852 return PageCompound(page);
853}
854
855/*
856 * PageTransTail returns true for both transparent huge pages
857 * and hugetlbfs pages, so it should only be called when it's known
858 * that hugetlbfs pages aren't involved.
859 */
860static inline int PageTransTail(struct page *page)
861{
862 return PageTail(page);
863}
864
865/*
866 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
867 * as PMDs.
868 *
869 * This is required for optimization of rmap operations for THP: we can postpone
870 * per small page mapcount accounting (and its overhead from atomic operations)
871 * until the first PMD split.
872 *
873 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
874 * by one. This reference will go away with last compound_mapcount.
875 *
876 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
877 */
878PAGEFLAG(DoubleMap, double_map, PF_SECOND)
879 TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
880#else
881TESTPAGEFLAG_FALSE(TransHuge, transhuge)
882TESTPAGEFLAG_FALSE(TransCompound, transcompound)
883TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap)
884TESTPAGEFLAG_FALSE(TransTail, transtail)
885PAGEFLAG_FALSE(DoubleMap, double_map)
886 TESTSCFLAG_FALSE(DoubleMap, double_map)
887#endif
888
889#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
890/*
891 * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
892 * compound page.
893 *
894 * This flag is set by hwpoison handler. Cleared by THP split or free page.
895 */
896PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
897 TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
898#else
899PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
900 TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
901#endif
902
903/*
904 * Check if a page is currently marked HWPoisoned. Note that this check is
905 * best effort only and inherently racy: there is no way to synchronize with
906 * failing hardware.
907 */
908static inline bool is_page_hwpoison(struct page *page)
909{
910 if (PageHWPoison(page))
911 return true;
912 return PageHuge(page) && PageHWPoison(compound_head(page));
913}
914
915/*
916 * For pages that are never mapped to userspace (and aren't PageSlab),
917 * page_type may be used. Because it is initialised to -1, we invert the
918 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
919 * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and
920 * low bits so that an underflow or overflow of page_mapcount() won't be
921 * mistaken for a page type value.
922 */
923
924#define PAGE_TYPE_BASE 0xf0000000
925/* Reserve 0x0000007f to catch underflows of page_mapcount */
926#define PAGE_MAPCOUNT_RESERVE -128
927#define PG_buddy 0x00000080
928#define PG_offline 0x00000100
929#define PG_table 0x00000200
930#define PG_guard 0x00000400
931
932#define PageType(page, flag) \
933 ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
934
935static inline int page_has_type(struct page *page)
936{
937 return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
938}
939
940#define PAGE_TYPE_OPS(uname, lname) \
941static __always_inline int Page##uname(struct page *page) \
942{ \
943 return PageType(page, PG_##lname); \
944} \
945static __always_inline void __SetPage##uname(struct page *page) \
946{ \
947 VM_BUG_ON_PAGE(!PageType(page, 0), page); \
948 page->page_type &= ~PG_##lname; \
949} \
950static __always_inline void __ClearPage##uname(struct page *page) \
951{ \
952 VM_BUG_ON_PAGE(!Page##uname(page), page); \
953 page->page_type |= PG_##lname; \
954}
955
956/*
957 * PageBuddy() indicates that the page is free and in the buddy system
958 * (see mm/page_alloc.c).
959 */
960PAGE_TYPE_OPS(Buddy, buddy)
961
962/*
963 * PageOffline() indicates that the page is logically offline although the
964 * containing section is online. (e.g. inflated in a balloon driver or
965 * not onlined when onlining the section).
966 * The content of these pages is effectively stale. Such pages should not
967 * be touched (read/write/dump/save) except by their owner.
968 *
969 * If a driver wants to allow to offline unmovable PageOffline() pages without
970 * putting them back to the buddy, it can do so via the memory notifier by
971 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
972 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
973 * pages (now with a reference count of zero) are treated like free pages,
974 * allowing the containing memory block to get offlined. A driver that
975 * relies on this feature is aware that re-onlining the memory block will
976 * require to re-set the pages PageOffline() and not giving them to the
977 * buddy via online_page_callback_t.
978 *
979 * There are drivers that mark a page PageOffline() and expect there won't be
980 * any further access to page content. PFN walkers that read content of random
981 * pages should check PageOffline() and synchronize with such drivers using
982 * page_offline_freeze()/page_offline_thaw().
983 */
984PAGE_TYPE_OPS(Offline, offline)
985
986extern void page_offline_freeze(void);
987extern void page_offline_thaw(void);
988extern void page_offline_begin(void);
989extern void page_offline_end(void);
990
991/*
992 * Marks pages in use as page tables.
993 */
994PAGE_TYPE_OPS(Table, table)
995
996/*
997 * Marks guardpages used with debug_pagealloc.
998 */
999PAGE_TYPE_OPS(Guard, guard)
1000
1001extern bool is_free_buddy_page(struct page *page);
1002
1003PAGEFLAG(Isolated, isolated, PF_ANY);
1004
1005#ifdef CONFIG_MMU
1006#define __PG_MLOCKED (1UL << PG_mlocked)
1007#else
1008#define __PG_MLOCKED 0
1009#endif
1010
1011/*
1012 * Flags checked when a page is freed. Pages being freed should not have
1013 * these flags set. If they are, there is a problem.
1014 */
1015#define PAGE_FLAGS_CHECK_AT_FREE \
1016 (1UL << PG_lru | 1UL << PG_locked | \
1017 1UL << PG_private | 1UL << PG_private_2 | \
1018 1UL << PG_writeback | 1UL << PG_reserved | \
1019 1UL << PG_slab | 1UL << PG_active | \
1020 1UL << PG_unevictable | __PG_MLOCKED)
1021
1022/*
1023 * Flags checked when a page is prepped for return by the page allocator.
1024 * Pages being prepped should not have these flags set. If they are set,
1025 * there has been a kernel bug or struct page corruption.
1026 *
1027 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
1028 * alloc-free cycle to prevent from reusing the page.
1029 */
1030#define PAGE_FLAGS_CHECK_AT_PREP \
1031 (PAGEFLAGS_MASK & ~__PG_HWPOISON)
1032
1033#define PAGE_FLAGS_PRIVATE \
1034 (1UL << PG_private | 1UL << PG_private_2)
1035/**
1036 * page_has_private - Determine if page has private stuff
1037 * @page: The page to be checked
1038 *
1039 * Determine if a page has private stuff, indicating that release routines
1040 * should be invoked upon it.
1041 */
1042static inline int page_has_private(struct page *page)
1043{
1044 return !!(page->flags & PAGE_FLAGS_PRIVATE);
1045}
1046
1047static inline bool folio_has_private(struct folio *folio)
1048{
1049 return page_has_private(&folio->page);
1050}
1051
1052#undef PF_ANY
1053#undef PF_HEAD
1054#undef PF_ONLY_HEAD
1055#undef PF_NO_TAIL
1056#undef PF_NO_COMPOUND
1057#undef PF_SECOND
1058#endif /* !__GENERATING_BOUNDS_H */
1059
1060#endif /* PAGE_FLAGS_H */