at v5.18 28 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_TYPES_H 3#define _LINUX_MM_TYPES_H 4 5#include <linux/mm_types_task.h> 6 7#include <linux/auxvec.h> 8#include <linux/kref.h> 9#include <linux/list.h> 10#include <linux/spinlock.h> 11#include <linux/rbtree.h> 12#include <linux/rwsem.h> 13#include <linux/completion.h> 14#include <linux/cpumask.h> 15#include <linux/uprobes.h> 16#include <linux/rcupdate.h> 17#include <linux/page-flags-layout.h> 18#include <linux/workqueue.h> 19#include <linux/seqlock.h> 20 21#include <asm/mmu.h> 22 23#ifndef AT_VECTOR_SIZE_ARCH 24#define AT_VECTOR_SIZE_ARCH 0 25#endif 26#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 27 28#define INIT_PASID 0 29 30struct address_space; 31struct mem_cgroup; 32 33/* 34 * Each physical page in the system has a struct page associated with 35 * it to keep track of whatever it is we are using the page for at the 36 * moment. Note that we have no way to track which tasks are using 37 * a page, though if it is a pagecache page, rmap structures can tell us 38 * who is mapping it. 39 * 40 * If you allocate the page using alloc_pages(), you can use some of the 41 * space in struct page for your own purposes. The five words in the main 42 * union are available, except for bit 0 of the first word which must be 43 * kept clear. Many users use this word to store a pointer to an object 44 * which is guaranteed to be aligned. If you use the same storage as 45 * page->mapping, you must restore it to NULL before freeing the page. 46 * 47 * If your page will not be mapped to userspace, you can also use the four 48 * bytes in the mapcount union, but you must call page_mapcount_reset() 49 * before freeing it. 50 * 51 * If you want to use the refcount field, it must be used in such a way 52 * that other CPUs temporarily incrementing and then decrementing the 53 * refcount does not cause problems. On receiving the page from 54 * alloc_pages(), the refcount will be positive. 55 * 56 * If you allocate pages of order > 0, you can use some of the fields 57 * in each subpage, but you may need to restore some of their values 58 * afterwards. 59 * 60 * SLUB uses cmpxchg_double() to atomically update its freelist and counters. 61 * That requires that freelist & counters in struct slab be adjacent and 62 * double-word aligned. Because struct slab currently just reinterprets the 63 * bits of struct page, we align all struct pages to double-word boundaries, 64 * and ensure that 'freelist' is aligned within struct slab. 65 */ 66#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 67#define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 68#else 69#define _struct_page_alignment 70#endif 71 72struct page { 73 unsigned long flags; /* Atomic flags, some possibly 74 * updated asynchronously */ 75 /* 76 * Five words (20/40 bytes) are available in this union. 77 * WARNING: bit 0 of the first word is used for PageTail(). That 78 * means the other users of this union MUST NOT use the bit to 79 * avoid collision and false-positive PageTail(). 80 */ 81 union { 82 struct { /* Page cache and anonymous pages */ 83 /** 84 * @lru: Pageout list, eg. active_list protected by 85 * lruvec->lru_lock. Sometimes used as a generic list 86 * by the page owner. 87 */ 88 union { 89 struct list_head lru; 90 /* Or, for the Unevictable "LRU list" slot */ 91 struct { 92 /* Always even, to negate PageTail */ 93 void *__filler; 94 /* Count page's or folio's mlocks */ 95 unsigned int mlock_count; 96 }; 97 }; 98 /* See page-flags.h for PAGE_MAPPING_FLAGS */ 99 struct address_space *mapping; 100 pgoff_t index; /* Our offset within mapping. */ 101 /** 102 * @private: Mapping-private opaque data. 103 * Usually used for buffer_heads if PagePrivate. 104 * Used for swp_entry_t if PageSwapCache. 105 * Indicates order in the buddy system if PageBuddy. 106 */ 107 unsigned long private; 108 }; 109 struct { /* page_pool used by netstack */ 110 /** 111 * @pp_magic: magic value to avoid recycling non 112 * page_pool allocated pages. 113 */ 114 unsigned long pp_magic; 115 struct page_pool *pp; 116 unsigned long _pp_mapping_pad; 117 unsigned long dma_addr; 118 union { 119 /** 120 * dma_addr_upper: might require a 64-bit 121 * value on 32-bit architectures. 122 */ 123 unsigned long dma_addr_upper; 124 /** 125 * For frag page support, not supported in 126 * 32-bit architectures with 64-bit DMA. 127 */ 128 atomic_long_t pp_frag_count; 129 }; 130 }; 131 struct { /* Tail pages of compound page */ 132 unsigned long compound_head; /* Bit zero is set */ 133 134 /* First tail page only */ 135 unsigned char compound_dtor; 136 unsigned char compound_order; 137 atomic_t compound_mapcount; 138 atomic_t compound_pincount; 139#ifdef CONFIG_64BIT 140 unsigned int compound_nr; /* 1 << compound_order */ 141#endif 142 }; 143 struct { /* Second tail page of compound page */ 144 unsigned long _compound_pad_1; /* compound_head */ 145 unsigned long _compound_pad_2; 146 /* For both global and memcg */ 147 struct list_head deferred_list; 148 }; 149 struct { /* Page table pages */ 150 unsigned long _pt_pad_1; /* compound_head */ 151 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 152 unsigned long _pt_pad_2; /* mapping */ 153 union { 154 struct mm_struct *pt_mm; /* x86 pgds only */ 155 atomic_t pt_frag_refcount; /* powerpc */ 156 }; 157#if ALLOC_SPLIT_PTLOCKS 158 spinlock_t *ptl; 159#else 160 spinlock_t ptl; 161#endif 162 }; 163 struct { /* ZONE_DEVICE pages */ 164 /** @pgmap: Points to the hosting device page map. */ 165 struct dev_pagemap *pgmap; 166 void *zone_device_data; 167 /* 168 * ZONE_DEVICE private pages are counted as being 169 * mapped so the next 3 words hold the mapping, index, 170 * and private fields from the source anonymous or 171 * page cache page while the page is migrated to device 172 * private memory. 173 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also 174 * use the mapping, index, and private fields when 175 * pmem backed DAX files are mapped. 176 */ 177 }; 178 179 /** @rcu_head: You can use this to free a page by RCU. */ 180 struct rcu_head rcu_head; 181 }; 182 183 union { /* This union is 4 bytes in size. */ 184 /* 185 * If the page can be mapped to userspace, encodes the number 186 * of times this page is referenced by a page table. 187 */ 188 atomic_t _mapcount; 189 190 /* 191 * If the page is neither PageSlab nor mappable to userspace, 192 * the value stored here may help determine what this page 193 * is used for. See page-flags.h for a list of page types 194 * which are currently stored here. 195 */ 196 unsigned int page_type; 197 }; 198 199 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 200 atomic_t _refcount; 201 202#ifdef CONFIG_MEMCG 203 unsigned long memcg_data; 204#endif 205 206 /* 207 * On machines where all RAM is mapped into kernel address space, 208 * we can simply calculate the virtual address. On machines with 209 * highmem some memory is mapped into kernel virtual memory 210 * dynamically, so we need a place to store that address. 211 * Note that this field could be 16 bits on x86 ... ;) 212 * 213 * Architectures with slow multiplication can define 214 * WANT_PAGE_VIRTUAL in asm/page.h 215 */ 216#if defined(WANT_PAGE_VIRTUAL) 217 void *virtual; /* Kernel virtual address (NULL if 218 not kmapped, ie. highmem) */ 219#endif /* WANT_PAGE_VIRTUAL */ 220 221#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 222 int _last_cpupid; 223#endif 224} _struct_page_alignment; 225 226/** 227 * struct folio - Represents a contiguous set of bytes. 228 * @flags: Identical to the page flags. 229 * @lru: Least Recently Used list; tracks how recently this folio was used. 230 * @mapping: The file this page belongs to, or refers to the anon_vma for 231 * anonymous memory. 232 * @index: Offset within the file, in units of pages. For anonymous memory, 233 * this is the index from the beginning of the mmap. 234 * @private: Filesystem per-folio data (see folio_attach_private()). 235 * Used for swp_entry_t if folio_test_swapcache(). 236 * @_mapcount: Do not access this member directly. Use folio_mapcount() to 237 * find out how many times this folio is mapped by userspace. 238 * @_refcount: Do not access this member directly. Use folio_ref_count() 239 * to find how many references there are to this folio. 240 * @memcg_data: Memory Control Group data. 241 * 242 * A folio is a physically, virtually and logically contiguous set 243 * of bytes. It is a power-of-two in size, and it is aligned to that 244 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is 245 * in the page cache, it is at a file offset which is a multiple of that 246 * power-of-two. It may be mapped into userspace at an address which is 247 * at an arbitrary page offset, but its kernel virtual address is aligned 248 * to its size. 249 */ 250struct folio { 251 /* private: don't document the anon union */ 252 union { 253 struct { 254 /* public: */ 255 unsigned long flags; 256 union { 257 struct list_head lru; 258 struct { 259 void *__filler; 260 unsigned int mlock_count; 261 }; 262 }; 263 struct address_space *mapping; 264 pgoff_t index; 265 void *private; 266 atomic_t _mapcount; 267 atomic_t _refcount; 268#ifdef CONFIG_MEMCG 269 unsigned long memcg_data; 270#endif 271 /* private: the union with struct page is transitional */ 272 }; 273 struct page page; 274 }; 275}; 276 277static_assert(sizeof(struct page) == sizeof(struct folio)); 278#define FOLIO_MATCH(pg, fl) \ 279 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl)) 280FOLIO_MATCH(flags, flags); 281FOLIO_MATCH(lru, lru); 282FOLIO_MATCH(mapping, mapping); 283FOLIO_MATCH(compound_head, lru); 284FOLIO_MATCH(index, index); 285FOLIO_MATCH(private, private); 286FOLIO_MATCH(_mapcount, _mapcount); 287FOLIO_MATCH(_refcount, _refcount); 288#ifdef CONFIG_MEMCG 289FOLIO_MATCH(memcg_data, memcg_data); 290#endif 291#undef FOLIO_MATCH 292 293static inline atomic_t *folio_mapcount_ptr(struct folio *folio) 294{ 295 struct page *tail = &folio->page + 1; 296 return &tail->compound_mapcount; 297} 298 299static inline atomic_t *compound_mapcount_ptr(struct page *page) 300{ 301 return &page[1].compound_mapcount; 302} 303 304static inline atomic_t *compound_pincount_ptr(struct page *page) 305{ 306 return &page[1].compound_pincount; 307} 308 309/* 310 * Used for sizing the vmemmap region on some architectures 311 */ 312#define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 313 314#define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 315#define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 316 317/* 318 * page_private can be used on tail pages. However, PagePrivate is only 319 * checked by the VM on the head page. So page_private on the tail pages 320 * should be used for data that's ancillary to the head page (eg attaching 321 * buffer heads to tail pages after attaching buffer heads to the head page) 322 */ 323#define page_private(page) ((page)->private) 324 325static inline void set_page_private(struct page *page, unsigned long private) 326{ 327 page->private = private; 328} 329 330static inline void *folio_get_private(struct folio *folio) 331{ 332 return folio->private; 333} 334 335struct page_frag_cache { 336 void * va; 337#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 338 __u16 offset; 339 __u16 size; 340#else 341 __u32 offset; 342#endif 343 /* we maintain a pagecount bias, so that we dont dirty cache line 344 * containing page->_refcount every time we allocate a fragment. 345 */ 346 unsigned int pagecnt_bias; 347 bool pfmemalloc; 348}; 349 350typedef unsigned long vm_flags_t; 351 352/* 353 * A region containing a mapping of a non-memory backed file under NOMMU 354 * conditions. These are held in a global tree and are pinned by the VMAs that 355 * map parts of them. 356 */ 357struct vm_region { 358 struct rb_node vm_rb; /* link in global region tree */ 359 vm_flags_t vm_flags; /* VMA vm_flags */ 360 unsigned long vm_start; /* start address of region */ 361 unsigned long vm_end; /* region initialised to here */ 362 unsigned long vm_top; /* region allocated to here */ 363 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 364 struct file *vm_file; /* the backing file or NULL */ 365 366 int vm_usage; /* region usage count (access under nommu_region_sem) */ 367 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 368 * this region */ 369}; 370 371#ifdef CONFIG_USERFAULTFD 372#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 373struct vm_userfaultfd_ctx { 374 struct userfaultfd_ctx *ctx; 375}; 376#else /* CONFIG_USERFAULTFD */ 377#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 378struct vm_userfaultfd_ctx {}; 379#endif /* CONFIG_USERFAULTFD */ 380 381struct anon_vma_name { 382 struct kref kref; 383 /* The name needs to be at the end because it is dynamically sized. */ 384 char name[]; 385}; 386 387/* 388 * This struct describes a virtual memory area. There is one of these 389 * per VM-area/task. A VM area is any part of the process virtual memory 390 * space that has a special rule for the page-fault handlers (ie a shared 391 * library, the executable area etc). 392 */ 393struct vm_area_struct { 394 /* The first cache line has the info for VMA tree walking. */ 395 396 unsigned long vm_start; /* Our start address within vm_mm. */ 397 unsigned long vm_end; /* The first byte after our end address 398 within vm_mm. */ 399 400 /* linked list of VM areas per task, sorted by address */ 401 struct vm_area_struct *vm_next, *vm_prev; 402 403 struct rb_node vm_rb; 404 405 /* 406 * Largest free memory gap in bytes to the left of this VMA. 407 * Either between this VMA and vma->vm_prev, or between one of the 408 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps 409 * get_unmapped_area find a free area of the right size. 410 */ 411 unsigned long rb_subtree_gap; 412 413 /* Second cache line starts here. */ 414 415 struct mm_struct *vm_mm; /* The address space we belong to. */ 416 417 /* 418 * Access permissions of this VMA. 419 * See vmf_insert_mixed_prot() for discussion. 420 */ 421 pgprot_t vm_page_prot; 422 unsigned long vm_flags; /* Flags, see mm.h. */ 423 424 /* 425 * For areas with an address space and backing store, 426 * linkage into the address_space->i_mmap interval tree. 427 * 428 * For private anonymous mappings, a pointer to a null terminated string 429 * containing the name given to the vma, or NULL if unnamed. 430 */ 431 432 union { 433 struct { 434 struct rb_node rb; 435 unsigned long rb_subtree_last; 436 } shared; 437 /* 438 * Serialized by mmap_sem. Never use directly because it is 439 * valid only when vm_file is NULL. Use anon_vma_name instead. 440 */ 441 struct anon_vma_name *anon_name; 442 }; 443 444 /* 445 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 446 * list, after a COW of one of the file pages. A MAP_SHARED vma 447 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 448 * or brk vma (with NULL file) can only be in an anon_vma list. 449 */ 450 struct list_head anon_vma_chain; /* Serialized by mmap_lock & 451 * page_table_lock */ 452 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 453 454 /* Function pointers to deal with this struct. */ 455 const struct vm_operations_struct *vm_ops; 456 457 /* Information about our backing store: */ 458 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 459 units */ 460 struct file * vm_file; /* File we map to (can be NULL). */ 461 void * vm_private_data; /* was vm_pte (shared mem) */ 462 463#ifdef CONFIG_SWAP 464 atomic_long_t swap_readahead_info; 465#endif 466#ifndef CONFIG_MMU 467 struct vm_region *vm_region; /* NOMMU mapping region */ 468#endif 469#ifdef CONFIG_NUMA 470 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 471#endif 472 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 473} __randomize_layout; 474 475struct kioctx_table; 476struct mm_struct { 477 struct { 478 struct vm_area_struct *mmap; /* list of VMAs */ 479 struct rb_root mm_rb; 480 u64 vmacache_seqnum; /* per-thread vmacache */ 481#ifdef CONFIG_MMU 482 unsigned long (*get_unmapped_area) (struct file *filp, 483 unsigned long addr, unsigned long len, 484 unsigned long pgoff, unsigned long flags); 485#endif 486 unsigned long mmap_base; /* base of mmap area */ 487 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 488#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 489 /* Base addresses for compatible mmap() */ 490 unsigned long mmap_compat_base; 491 unsigned long mmap_compat_legacy_base; 492#endif 493 unsigned long task_size; /* size of task vm space */ 494 unsigned long highest_vm_end; /* highest vma end address */ 495 pgd_t * pgd; 496 497#ifdef CONFIG_MEMBARRIER 498 /** 499 * @membarrier_state: Flags controlling membarrier behavior. 500 * 501 * This field is close to @pgd to hopefully fit in the same 502 * cache-line, which needs to be touched by switch_mm(). 503 */ 504 atomic_t membarrier_state; 505#endif 506 507 /** 508 * @mm_users: The number of users including userspace. 509 * 510 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 511 * drops to 0 (i.e. when the task exits and there are no other 512 * temporary reference holders), we also release a reference on 513 * @mm_count (which may then free the &struct mm_struct if 514 * @mm_count also drops to 0). 515 */ 516 atomic_t mm_users; 517 518 /** 519 * @mm_count: The number of references to &struct mm_struct 520 * (@mm_users count as 1). 521 * 522 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the 523 * &struct mm_struct is freed. 524 */ 525 atomic_t mm_count; 526 527#ifdef CONFIG_MMU 528 atomic_long_t pgtables_bytes; /* PTE page table pages */ 529#endif 530 int map_count; /* number of VMAs */ 531 532 spinlock_t page_table_lock; /* Protects page tables and some 533 * counters 534 */ 535 /* 536 * With some kernel config, the current mmap_lock's offset 537 * inside 'mm_struct' is at 0x120, which is very optimal, as 538 * its two hot fields 'count' and 'owner' sit in 2 different 539 * cachelines, and when mmap_lock is highly contended, both 540 * of the 2 fields will be accessed frequently, current layout 541 * will help to reduce cache bouncing. 542 * 543 * So please be careful with adding new fields before 544 * mmap_lock, which can easily push the 2 fields into one 545 * cacheline. 546 */ 547 struct rw_semaphore mmap_lock; 548 549 struct list_head mmlist; /* List of maybe swapped mm's. These 550 * are globally strung together off 551 * init_mm.mmlist, and are protected 552 * by mmlist_lock 553 */ 554 555 556 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 557 unsigned long hiwater_vm; /* High-water virtual memory usage */ 558 559 unsigned long total_vm; /* Total pages mapped */ 560 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 561 atomic64_t pinned_vm; /* Refcount permanently increased */ 562 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 563 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 564 unsigned long stack_vm; /* VM_STACK */ 565 unsigned long def_flags; 566 567 /** 568 * @write_protect_seq: Locked when any thread is write 569 * protecting pages mapped by this mm to enforce a later COW, 570 * for instance during page table copying for fork(). 571 */ 572 seqcount_t write_protect_seq; 573 574 spinlock_t arg_lock; /* protect the below fields */ 575 576 unsigned long start_code, end_code, start_data, end_data; 577 unsigned long start_brk, brk, start_stack; 578 unsigned long arg_start, arg_end, env_start, env_end; 579 580 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 581 582 /* 583 * Special counters, in some configurations protected by the 584 * page_table_lock, in other configurations by being atomic. 585 */ 586 struct mm_rss_stat rss_stat; 587 588 struct linux_binfmt *binfmt; 589 590 /* Architecture-specific MM context */ 591 mm_context_t context; 592 593 unsigned long flags; /* Must use atomic bitops to access */ 594 595#ifdef CONFIG_AIO 596 spinlock_t ioctx_lock; 597 struct kioctx_table __rcu *ioctx_table; 598#endif 599#ifdef CONFIG_MEMCG 600 /* 601 * "owner" points to a task that is regarded as the canonical 602 * user/owner of this mm. All of the following must be true in 603 * order for it to be changed: 604 * 605 * current == mm->owner 606 * current->mm != mm 607 * new_owner->mm == mm 608 * new_owner->alloc_lock is held 609 */ 610 struct task_struct __rcu *owner; 611#endif 612 struct user_namespace *user_ns; 613 614 /* store ref to file /proc/<pid>/exe symlink points to */ 615 struct file __rcu *exe_file; 616#ifdef CONFIG_MMU_NOTIFIER 617 struct mmu_notifier_subscriptions *notifier_subscriptions; 618#endif 619#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 620 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 621#endif 622#ifdef CONFIG_NUMA_BALANCING 623 /* 624 * numa_next_scan is the next time that the PTEs will be marked 625 * pte_numa. NUMA hinting faults will gather statistics and 626 * migrate pages to new nodes if necessary. 627 */ 628 unsigned long numa_next_scan; 629 630 /* Restart point for scanning and setting pte_numa */ 631 unsigned long numa_scan_offset; 632 633 /* numa_scan_seq prevents two threads setting pte_numa */ 634 int numa_scan_seq; 635#endif 636 /* 637 * An operation with batched TLB flushing is going on. Anything 638 * that can move process memory needs to flush the TLB when 639 * moving a PROT_NONE or PROT_NUMA mapped page. 640 */ 641 atomic_t tlb_flush_pending; 642#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 643 /* See flush_tlb_batched_pending() */ 644 atomic_t tlb_flush_batched; 645#endif 646 struct uprobes_state uprobes_state; 647#ifdef CONFIG_PREEMPT_RT 648 struct rcu_head delayed_drop; 649#endif 650#ifdef CONFIG_HUGETLB_PAGE 651 atomic_long_t hugetlb_usage; 652#endif 653 struct work_struct async_put_work; 654 655#ifdef CONFIG_IOMMU_SVA 656 u32 pasid; 657#endif 658 } __randomize_layout; 659 660 /* 661 * The mm_cpumask needs to be at the end of mm_struct, because it 662 * is dynamically sized based on nr_cpu_ids. 663 */ 664 unsigned long cpu_bitmap[]; 665}; 666 667extern struct mm_struct init_mm; 668 669/* Pointer magic because the dynamic array size confuses some compilers. */ 670static inline void mm_init_cpumask(struct mm_struct *mm) 671{ 672 unsigned long cpu_bitmap = (unsigned long)mm; 673 674 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 675 cpumask_clear((struct cpumask *)cpu_bitmap); 676} 677 678/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 679static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 680{ 681 return (struct cpumask *)&mm->cpu_bitmap; 682} 683 684struct mmu_gather; 685extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm); 686extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm); 687extern void tlb_finish_mmu(struct mmu_gather *tlb); 688 689struct vm_fault; 690 691/** 692 * typedef vm_fault_t - Return type for page fault handlers. 693 * 694 * Page fault handlers return a bitmask of %VM_FAULT values. 695 */ 696typedef __bitwise unsigned int vm_fault_t; 697 698/** 699 * enum vm_fault_reason - Page fault handlers return a bitmask of 700 * these values to tell the core VM what happened when handling the 701 * fault. Used to decide whether a process gets delivered SIGBUS or 702 * just gets major/minor fault counters bumped up. 703 * 704 * @VM_FAULT_OOM: Out Of Memory 705 * @VM_FAULT_SIGBUS: Bad access 706 * @VM_FAULT_MAJOR: Page read from storage 707 * @VM_FAULT_WRITE: Special case for get_user_pages 708 * @VM_FAULT_HWPOISON: Hit poisoned small page 709 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 710 * in upper bits 711 * @VM_FAULT_SIGSEGV: segmentation fault 712 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 713 * @VM_FAULT_LOCKED: ->fault locked the returned page 714 * @VM_FAULT_RETRY: ->fault blocked, must retry 715 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 716 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 717 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 718 * fsync() to complete (for synchronous page faults 719 * in DAX) 720 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 721 * 722 */ 723enum vm_fault_reason { 724 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 725 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 726 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 727 VM_FAULT_WRITE = (__force vm_fault_t)0x000008, 728 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 729 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 730 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 731 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 732 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 733 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 734 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 735 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 736 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 737 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 738}; 739 740/* Encode hstate index for a hwpoisoned large page */ 741#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 742#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 743 744#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 745 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 746 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 747 748#define VM_FAULT_RESULT_TRACE \ 749 { VM_FAULT_OOM, "OOM" }, \ 750 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 751 { VM_FAULT_MAJOR, "MAJOR" }, \ 752 { VM_FAULT_WRITE, "WRITE" }, \ 753 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 754 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 755 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 756 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 757 { VM_FAULT_LOCKED, "LOCKED" }, \ 758 { VM_FAULT_RETRY, "RETRY" }, \ 759 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 760 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 761 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 762 763struct vm_special_mapping { 764 const char *name; /* The name, e.g. "[vdso]". */ 765 766 /* 767 * If .fault is not provided, this points to a 768 * NULL-terminated array of pages that back the special mapping. 769 * 770 * This must not be NULL unless .fault is provided. 771 */ 772 struct page **pages; 773 774 /* 775 * If non-NULL, then this is called to resolve page faults 776 * on the special mapping. If used, .pages is not checked. 777 */ 778 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 779 struct vm_area_struct *vma, 780 struct vm_fault *vmf); 781 782 int (*mremap)(const struct vm_special_mapping *sm, 783 struct vm_area_struct *new_vma); 784}; 785 786enum tlb_flush_reason { 787 TLB_FLUSH_ON_TASK_SWITCH, 788 TLB_REMOTE_SHOOTDOWN, 789 TLB_LOCAL_SHOOTDOWN, 790 TLB_LOCAL_MM_SHOOTDOWN, 791 TLB_REMOTE_SEND_IPI, 792 NR_TLB_FLUSH_REASONS, 793}; 794 795 /* 796 * A swap entry has to fit into a "unsigned long", as the entry is hidden 797 * in the "index" field of the swapper address space. 798 */ 799typedef struct { 800 unsigned long val; 801} swp_entry_t; 802 803/** 804 * enum fault_flag - Fault flag definitions. 805 * @FAULT_FLAG_WRITE: Fault was a write fault. 806 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 807 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 808 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 809 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 810 * @FAULT_FLAG_TRIED: The fault has been tried once. 811 * @FAULT_FLAG_USER: The fault originated in userspace. 812 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 813 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 814 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 815 * 816 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 817 * whether we would allow page faults to retry by specifying these two 818 * fault flags correctly. Currently there can be three legal combinations: 819 * 820 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 821 * this is the first try 822 * 823 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 824 * we've already tried at least once 825 * 826 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 827 * 828 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 829 * be used. Note that page faults can be allowed to retry for multiple times, 830 * in which case we'll have an initial fault with flags (a) then later on 831 * continuous faults with flags (b). We should always try to detect pending 832 * signals before a retry to make sure the continuous page faults can still be 833 * interrupted if necessary. 834 */ 835enum fault_flag { 836 FAULT_FLAG_WRITE = 1 << 0, 837 FAULT_FLAG_MKWRITE = 1 << 1, 838 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 839 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 840 FAULT_FLAG_KILLABLE = 1 << 4, 841 FAULT_FLAG_TRIED = 1 << 5, 842 FAULT_FLAG_USER = 1 << 6, 843 FAULT_FLAG_REMOTE = 1 << 7, 844 FAULT_FLAG_INSTRUCTION = 1 << 8, 845 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 846}; 847 848#endif /* _LINUX_MM_TYPES_H */