Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef LINUX_MM_INLINE_H
3#define LINUX_MM_INLINE_H
4
5#include <linux/atomic.h>
6#include <linux/huge_mm.h>
7#include <linux/swap.h>
8#include <linux/string.h>
9
10/**
11 * folio_is_file_lru - Should the folio be on a file LRU or anon LRU?
12 * @folio: The folio to test.
13 *
14 * We would like to get this info without a page flag, but the state
15 * needs to survive until the folio is last deleted from the LRU, which
16 * could be as far down as __page_cache_release.
17 *
18 * Return: An integer (not a boolean!) used to sort a folio onto the
19 * right LRU list and to account folios correctly.
20 * 1 if @folio is a regular filesystem backed page cache folio
21 * or a lazily freed anonymous folio (e.g. via MADV_FREE).
22 * 0 if @folio is a normal anonymous folio, a tmpfs folio or otherwise
23 * ram or swap backed folio.
24 */
25static inline int folio_is_file_lru(struct folio *folio)
26{
27 return !folio_test_swapbacked(folio);
28}
29
30static inline int page_is_file_lru(struct page *page)
31{
32 return folio_is_file_lru(page_folio(page));
33}
34
35static __always_inline void update_lru_size(struct lruvec *lruvec,
36 enum lru_list lru, enum zone_type zid,
37 long nr_pages)
38{
39 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
40
41 __mod_lruvec_state(lruvec, NR_LRU_BASE + lru, nr_pages);
42 __mod_zone_page_state(&pgdat->node_zones[zid],
43 NR_ZONE_LRU_BASE + lru, nr_pages);
44#ifdef CONFIG_MEMCG
45 mem_cgroup_update_lru_size(lruvec, lru, zid, nr_pages);
46#endif
47}
48
49/**
50 * __folio_clear_lru_flags - Clear page lru flags before releasing a page.
51 * @folio: The folio that was on lru and now has a zero reference.
52 */
53static __always_inline void __folio_clear_lru_flags(struct folio *folio)
54{
55 VM_BUG_ON_FOLIO(!folio_test_lru(folio), folio);
56
57 __folio_clear_lru(folio);
58
59 /* this shouldn't happen, so leave the flags to bad_page() */
60 if (folio_test_active(folio) && folio_test_unevictable(folio))
61 return;
62
63 __folio_clear_active(folio);
64 __folio_clear_unevictable(folio);
65}
66
67static __always_inline void __clear_page_lru_flags(struct page *page)
68{
69 __folio_clear_lru_flags(page_folio(page));
70}
71
72/**
73 * folio_lru_list - Which LRU list should a folio be on?
74 * @folio: The folio to test.
75 *
76 * Return: The LRU list a folio should be on, as an index
77 * into the array of LRU lists.
78 */
79static __always_inline enum lru_list folio_lru_list(struct folio *folio)
80{
81 enum lru_list lru;
82
83 VM_BUG_ON_FOLIO(folio_test_active(folio) && folio_test_unevictable(folio), folio);
84
85 if (folio_test_unevictable(folio))
86 return LRU_UNEVICTABLE;
87
88 lru = folio_is_file_lru(folio) ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON;
89 if (folio_test_active(folio))
90 lru += LRU_ACTIVE;
91
92 return lru;
93}
94
95static __always_inline
96void lruvec_add_folio(struct lruvec *lruvec, struct folio *folio)
97{
98 enum lru_list lru = folio_lru_list(folio);
99
100 update_lru_size(lruvec, lru, folio_zonenum(folio),
101 folio_nr_pages(folio));
102 if (lru != LRU_UNEVICTABLE)
103 list_add(&folio->lru, &lruvec->lists[lru]);
104}
105
106static __always_inline void add_page_to_lru_list(struct page *page,
107 struct lruvec *lruvec)
108{
109 lruvec_add_folio(lruvec, page_folio(page));
110}
111
112static __always_inline
113void lruvec_add_folio_tail(struct lruvec *lruvec, struct folio *folio)
114{
115 enum lru_list lru = folio_lru_list(folio);
116
117 update_lru_size(lruvec, lru, folio_zonenum(folio),
118 folio_nr_pages(folio));
119 /* This is not expected to be used on LRU_UNEVICTABLE */
120 list_add_tail(&folio->lru, &lruvec->lists[lru]);
121}
122
123static __always_inline void add_page_to_lru_list_tail(struct page *page,
124 struct lruvec *lruvec)
125{
126 lruvec_add_folio_tail(lruvec, page_folio(page));
127}
128
129static __always_inline
130void lruvec_del_folio(struct lruvec *lruvec, struct folio *folio)
131{
132 enum lru_list lru = folio_lru_list(folio);
133
134 if (lru != LRU_UNEVICTABLE)
135 list_del(&folio->lru);
136 update_lru_size(lruvec, lru, folio_zonenum(folio),
137 -folio_nr_pages(folio));
138}
139
140static __always_inline void del_page_from_lru_list(struct page *page,
141 struct lruvec *lruvec)
142{
143 lruvec_del_folio(lruvec, page_folio(page));
144}
145
146#ifdef CONFIG_ANON_VMA_NAME
147/*
148 * mmap_lock should be read-locked when calling anon_vma_name(). Caller should
149 * either keep holding the lock while using the returned pointer or it should
150 * raise anon_vma_name refcount before releasing the lock.
151 */
152extern struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma);
153extern struct anon_vma_name *anon_vma_name_alloc(const char *name);
154extern void anon_vma_name_free(struct kref *kref);
155
156/* mmap_lock should be read-locked */
157static inline void anon_vma_name_get(struct anon_vma_name *anon_name)
158{
159 if (anon_name)
160 kref_get(&anon_name->kref);
161}
162
163static inline void anon_vma_name_put(struct anon_vma_name *anon_name)
164{
165 if (anon_name)
166 kref_put(&anon_name->kref, anon_vma_name_free);
167}
168
169static inline
170struct anon_vma_name *anon_vma_name_reuse(struct anon_vma_name *anon_name)
171{
172 /* Prevent anon_name refcount saturation early on */
173 if (kref_read(&anon_name->kref) < REFCOUNT_MAX) {
174 anon_vma_name_get(anon_name);
175 return anon_name;
176
177 }
178 return anon_vma_name_alloc(anon_name->name);
179}
180
181static inline void dup_anon_vma_name(struct vm_area_struct *orig_vma,
182 struct vm_area_struct *new_vma)
183{
184 struct anon_vma_name *anon_name = anon_vma_name(orig_vma);
185
186 if (anon_name)
187 new_vma->anon_name = anon_vma_name_reuse(anon_name);
188}
189
190static inline void free_anon_vma_name(struct vm_area_struct *vma)
191{
192 /*
193 * Not using anon_vma_name because it generates a warning if mmap_lock
194 * is not held, which might be the case here.
195 */
196 if (!vma->vm_file)
197 anon_vma_name_put(vma->anon_name);
198}
199
200static inline bool anon_vma_name_eq(struct anon_vma_name *anon_name1,
201 struct anon_vma_name *anon_name2)
202{
203 if (anon_name1 == anon_name2)
204 return true;
205
206 return anon_name1 && anon_name2 &&
207 !strcmp(anon_name1->name, anon_name2->name);
208}
209
210#else /* CONFIG_ANON_VMA_NAME */
211static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
212{
213 return NULL;
214}
215
216static inline struct anon_vma_name *anon_vma_name_alloc(const char *name)
217{
218 return NULL;
219}
220
221static inline void anon_vma_name_get(struct anon_vma_name *anon_name) {}
222static inline void anon_vma_name_put(struct anon_vma_name *anon_name) {}
223static inline void dup_anon_vma_name(struct vm_area_struct *orig_vma,
224 struct vm_area_struct *new_vma) {}
225static inline void free_anon_vma_name(struct vm_area_struct *vma) {}
226
227static inline bool anon_vma_name_eq(struct anon_vma_name *anon_name1,
228 struct anon_vma_name *anon_name2)
229{
230 return true;
231}
232
233#endif /* CONFIG_ANON_VMA_NAME */
234
235static inline void init_tlb_flush_pending(struct mm_struct *mm)
236{
237 atomic_set(&mm->tlb_flush_pending, 0);
238}
239
240static inline void inc_tlb_flush_pending(struct mm_struct *mm)
241{
242 atomic_inc(&mm->tlb_flush_pending);
243 /*
244 * The only time this value is relevant is when there are indeed pages
245 * to flush. And we'll only flush pages after changing them, which
246 * requires the PTL.
247 *
248 * So the ordering here is:
249 *
250 * atomic_inc(&mm->tlb_flush_pending);
251 * spin_lock(&ptl);
252 * ...
253 * set_pte_at();
254 * spin_unlock(&ptl);
255 *
256 * spin_lock(&ptl)
257 * mm_tlb_flush_pending();
258 * ....
259 * spin_unlock(&ptl);
260 *
261 * flush_tlb_range();
262 * atomic_dec(&mm->tlb_flush_pending);
263 *
264 * Where the increment if constrained by the PTL unlock, it thus
265 * ensures that the increment is visible if the PTE modification is
266 * visible. After all, if there is no PTE modification, nobody cares
267 * about TLB flushes either.
268 *
269 * This very much relies on users (mm_tlb_flush_pending() and
270 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
271 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
272 * locks (PPC) the unlock of one doesn't order against the lock of
273 * another PTL.
274 *
275 * The decrement is ordered by the flush_tlb_range(), such that
276 * mm_tlb_flush_pending() will not return false unless all flushes have
277 * completed.
278 */
279}
280
281static inline void dec_tlb_flush_pending(struct mm_struct *mm)
282{
283 /*
284 * See inc_tlb_flush_pending().
285 *
286 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
287 * not order against TLB invalidate completion, which is what we need.
288 *
289 * Therefore we must rely on tlb_flush_*() to guarantee order.
290 */
291 atomic_dec(&mm->tlb_flush_pending);
292}
293
294static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
295{
296 /*
297 * Must be called after having acquired the PTL; orders against that
298 * PTLs release and therefore ensures that if we observe the modified
299 * PTE we must also observe the increment from inc_tlb_flush_pending().
300 *
301 * That is, it only guarantees to return true if there is a flush
302 * pending for _this_ PTL.
303 */
304 return atomic_read(&mm->tlb_flush_pending);
305}
306
307static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
308{
309 /*
310 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
311 * for which there is a TLB flush pending in order to guarantee
312 * we've seen both that PTE modification and the increment.
313 *
314 * (no requirement on actually still holding the PTL, that is irrelevant)
315 */
316 return atomic_read(&mm->tlb_flush_pending) > 1;
317}
318
319
320#endif