Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6#include <linux/mmdebug.h>
7#include <linux/gfp.h>
8#include <linux/bug.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/atomic.h>
13#include <linux/debug_locks.h>
14#include <linux/mm_types.h>
15#include <linux/mmap_lock.h>
16#include <linux/range.h>
17#include <linux/pfn.h>
18#include <linux/percpu-refcount.h>
19#include <linux/bit_spinlock.h>
20#include <linux/shrinker.h>
21#include <linux/resource.h>
22#include <linux/page_ext.h>
23#include <linux/err.h>
24#include <linux/page-flags.h>
25#include <linux/page_ref.h>
26#include <linux/overflow.h>
27#include <linux/sizes.h>
28#include <linux/sched.h>
29#include <linux/pgtable.h>
30#include <linux/kasan.h>
31
32struct mempolicy;
33struct anon_vma;
34struct anon_vma_chain;
35struct user_struct;
36struct pt_regs;
37
38extern int sysctl_page_lock_unfairness;
39
40void init_mm_internals(void);
41
42#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
43extern unsigned long max_mapnr;
44
45static inline void set_max_mapnr(unsigned long limit)
46{
47 max_mapnr = limit;
48}
49#else
50static inline void set_max_mapnr(unsigned long limit) { }
51#endif
52
53extern atomic_long_t _totalram_pages;
54static inline unsigned long totalram_pages(void)
55{
56 return (unsigned long)atomic_long_read(&_totalram_pages);
57}
58
59static inline void totalram_pages_inc(void)
60{
61 atomic_long_inc(&_totalram_pages);
62}
63
64static inline void totalram_pages_dec(void)
65{
66 atomic_long_dec(&_totalram_pages);
67}
68
69static inline void totalram_pages_add(long count)
70{
71 atomic_long_add(count, &_totalram_pages);
72}
73
74extern void * high_memory;
75extern int page_cluster;
76
77#ifdef CONFIG_SYSCTL
78extern int sysctl_legacy_va_layout;
79#else
80#define sysctl_legacy_va_layout 0
81#endif
82
83#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
84extern const int mmap_rnd_bits_min;
85extern const int mmap_rnd_bits_max;
86extern int mmap_rnd_bits __read_mostly;
87#endif
88#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
89extern const int mmap_rnd_compat_bits_min;
90extern const int mmap_rnd_compat_bits_max;
91extern int mmap_rnd_compat_bits __read_mostly;
92#endif
93
94#include <asm/page.h>
95#include <asm/processor.h>
96
97/*
98 * Architectures that support memory tagging (assigning tags to memory regions,
99 * embedding these tags into addresses that point to these memory regions, and
100 * checking that the memory and the pointer tags match on memory accesses)
101 * redefine this macro to strip tags from pointers.
102 * It's defined as noop for architectures that don't support memory tagging.
103 */
104#ifndef untagged_addr
105#define untagged_addr(addr) (addr)
106#endif
107
108#ifndef __pa_symbol
109#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
110#endif
111
112#ifndef page_to_virt
113#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
114#endif
115
116#ifndef lm_alias
117#define lm_alias(x) __va(__pa_symbol(x))
118#endif
119
120/*
121 * To prevent common memory management code establishing
122 * a zero page mapping on a read fault.
123 * This macro should be defined within <asm/pgtable.h>.
124 * s390 does this to prevent multiplexing of hardware bits
125 * related to the physical page in case of virtualization.
126 */
127#ifndef mm_forbids_zeropage
128#define mm_forbids_zeropage(X) (0)
129#endif
130
131/*
132 * On some architectures it is expensive to call memset() for small sizes.
133 * If an architecture decides to implement their own version of
134 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
135 * define their own version of this macro in <asm/pgtable.h>
136 */
137#if BITS_PER_LONG == 64
138/* This function must be updated when the size of struct page grows above 80
139 * or reduces below 56. The idea that compiler optimizes out switch()
140 * statement, and only leaves move/store instructions. Also the compiler can
141 * combine write statements if they are both assignments and can be reordered,
142 * this can result in several of the writes here being dropped.
143 */
144#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
145static inline void __mm_zero_struct_page(struct page *page)
146{
147 unsigned long *_pp = (void *)page;
148
149 /* Check that struct page is either 56, 64, 72, or 80 bytes */
150 BUILD_BUG_ON(sizeof(struct page) & 7);
151 BUILD_BUG_ON(sizeof(struct page) < 56);
152 BUILD_BUG_ON(sizeof(struct page) > 80);
153
154 switch (sizeof(struct page)) {
155 case 80:
156 _pp[9] = 0;
157 fallthrough;
158 case 72:
159 _pp[8] = 0;
160 fallthrough;
161 case 64:
162 _pp[7] = 0;
163 fallthrough;
164 case 56:
165 _pp[6] = 0;
166 _pp[5] = 0;
167 _pp[4] = 0;
168 _pp[3] = 0;
169 _pp[2] = 0;
170 _pp[1] = 0;
171 _pp[0] = 0;
172 }
173}
174#else
175#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
176#endif
177
178/*
179 * Default maximum number of active map areas, this limits the number of vmas
180 * per mm struct. Users can overwrite this number by sysctl but there is a
181 * problem.
182 *
183 * When a program's coredump is generated as ELF format, a section is created
184 * per a vma. In ELF, the number of sections is represented in unsigned short.
185 * This means the number of sections should be smaller than 65535 at coredump.
186 * Because the kernel adds some informative sections to a image of program at
187 * generating coredump, we need some margin. The number of extra sections is
188 * 1-3 now and depends on arch. We use "5" as safe margin, here.
189 *
190 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
191 * not a hard limit any more. Although some userspace tools can be surprised by
192 * that.
193 */
194#define MAPCOUNT_ELF_CORE_MARGIN (5)
195#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
196
197extern int sysctl_max_map_count;
198
199extern unsigned long sysctl_user_reserve_kbytes;
200extern unsigned long sysctl_admin_reserve_kbytes;
201
202extern int sysctl_overcommit_memory;
203extern int sysctl_overcommit_ratio;
204extern unsigned long sysctl_overcommit_kbytes;
205
206int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
207 loff_t *);
208int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
209 loff_t *);
210int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
211 loff_t *);
212
213#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
214#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
215#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
216#else
217#define nth_page(page,n) ((page) + (n))
218#define folio_page_idx(folio, p) ((p) - &(folio)->page)
219#endif
220
221/* to align the pointer to the (next) page boundary */
222#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
223
224/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
225#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
226
227#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
228static inline struct folio *lru_to_folio(struct list_head *head)
229{
230 return list_entry((head)->prev, struct folio, lru);
231}
232
233void setup_initial_init_mm(void *start_code, void *end_code,
234 void *end_data, void *brk);
235
236/*
237 * Linux kernel virtual memory manager primitives.
238 * The idea being to have a "virtual" mm in the same way
239 * we have a virtual fs - giving a cleaner interface to the
240 * mm details, and allowing different kinds of memory mappings
241 * (from shared memory to executable loading to arbitrary
242 * mmap() functions).
243 */
244
245struct vm_area_struct *vm_area_alloc(struct mm_struct *);
246struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
247void vm_area_free(struct vm_area_struct *);
248
249#ifndef CONFIG_MMU
250extern struct rb_root nommu_region_tree;
251extern struct rw_semaphore nommu_region_sem;
252
253extern unsigned int kobjsize(const void *objp);
254#endif
255
256/*
257 * vm_flags in vm_area_struct, see mm_types.h.
258 * When changing, update also include/trace/events/mmflags.h
259 */
260#define VM_NONE 0x00000000
261
262#define VM_READ 0x00000001 /* currently active flags */
263#define VM_WRITE 0x00000002
264#define VM_EXEC 0x00000004
265#define VM_SHARED 0x00000008
266
267/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
268#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
269#define VM_MAYWRITE 0x00000020
270#define VM_MAYEXEC 0x00000040
271#define VM_MAYSHARE 0x00000080
272
273#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
274#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
275#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
276#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
277
278#define VM_LOCKED 0x00002000
279#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
280
281 /* Used by sys_madvise() */
282#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
283#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
284
285#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
286#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
287#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
288#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
289#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
290#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
291#define VM_SYNC 0x00800000 /* Synchronous page faults */
292#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
293#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
294#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
295
296#ifdef CONFIG_MEM_SOFT_DIRTY
297# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
298#else
299# define VM_SOFTDIRTY 0
300#endif
301
302#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
303#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
304#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
305#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
306
307#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
308#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
309#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
310#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
311#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
312#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
313#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
314#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
315#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
316#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
317#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
318#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
319
320#ifdef CONFIG_ARCH_HAS_PKEYS
321# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
322# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
323# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
324# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
325# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
326#ifdef CONFIG_PPC
327# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
328#else
329# define VM_PKEY_BIT4 0
330#endif
331#endif /* CONFIG_ARCH_HAS_PKEYS */
332
333#if defined(CONFIG_X86)
334# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
335#elif defined(CONFIG_PPC)
336# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
337#elif defined(CONFIG_PARISC)
338# define VM_GROWSUP VM_ARCH_1
339#elif defined(CONFIG_IA64)
340# define VM_GROWSUP VM_ARCH_1
341#elif defined(CONFIG_SPARC64)
342# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
343# define VM_ARCH_CLEAR VM_SPARC_ADI
344#elif defined(CONFIG_ARM64)
345# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
346# define VM_ARCH_CLEAR VM_ARM64_BTI
347#elif !defined(CONFIG_MMU)
348# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
349#endif
350
351#if defined(CONFIG_ARM64_MTE)
352# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
353# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
354#else
355# define VM_MTE VM_NONE
356# define VM_MTE_ALLOWED VM_NONE
357#endif
358
359#ifndef VM_GROWSUP
360# define VM_GROWSUP VM_NONE
361#endif
362
363#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
364# define VM_UFFD_MINOR_BIT 37
365# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
366#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
367# define VM_UFFD_MINOR VM_NONE
368#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
369
370/* Bits set in the VMA until the stack is in its final location */
371#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
372
373#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
374
375/* Common data flag combinations */
376#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
377 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
378#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
379 VM_MAYWRITE | VM_MAYEXEC)
380#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
381 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
382
383#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
384#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
385#endif
386
387#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
388#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
389#endif
390
391#ifdef CONFIG_STACK_GROWSUP
392#define VM_STACK VM_GROWSUP
393#else
394#define VM_STACK VM_GROWSDOWN
395#endif
396
397#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
398
399/* VMA basic access permission flags */
400#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
401
402
403/*
404 * Special vmas that are non-mergable, non-mlock()able.
405 */
406#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
407
408/* This mask prevents VMA from being scanned with khugepaged */
409#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
410
411/* This mask defines which mm->def_flags a process can inherit its parent */
412#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
413
414/* This mask is used to clear all the VMA flags used by mlock */
415#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
416
417/* Arch-specific flags to clear when updating VM flags on protection change */
418#ifndef VM_ARCH_CLEAR
419# define VM_ARCH_CLEAR VM_NONE
420#endif
421#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
422
423/*
424 * mapping from the currently active vm_flags protection bits (the
425 * low four bits) to a page protection mask..
426 */
427extern pgprot_t protection_map[16];
428
429/*
430 * The default fault flags that should be used by most of the
431 * arch-specific page fault handlers.
432 */
433#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
434 FAULT_FLAG_KILLABLE | \
435 FAULT_FLAG_INTERRUPTIBLE)
436
437/**
438 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
439 * @flags: Fault flags.
440 *
441 * This is mostly used for places where we want to try to avoid taking
442 * the mmap_lock for too long a time when waiting for another condition
443 * to change, in which case we can try to be polite to release the
444 * mmap_lock in the first round to avoid potential starvation of other
445 * processes that would also want the mmap_lock.
446 *
447 * Return: true if the page fault allows retry and this is the first
448 * attempt of the fault handling; false otherwise.
449 */
450static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
451{
452 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
453 (!(flags & FAULT_FLAG_TRIED));
454}
455
456#define FAULT_FLAG_TRACE \
457 { FAULT_FLAG_WRITE, "WRITE" }, \
458 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
459 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
460 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
461 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
462 { FAULT_FLAG_TRIED, "TRIED" }, \
463 { FAULT_FLAG_USER, "USER" }, \
464 { FAULT_FLAG_REMOTE, "REMOTE" }, \
465 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
466 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
467
468/*
469 * vm_fault is filled by the pagefault handler and passed to the vma's
470 * ->fault function. The vma's ->fault is responsible for returning a bitmask
471 * of VM_FAULT_xxx flags that give details about how the fault was handled.
472 *
473 * MM layer fills up gfp_mask for page allocations but fault handler might
474 * alter it if its implementation requires a different allocation context.
475 *
476 * pgoff should be used in favour of virtual_address, if possible.
477 */
478struct vm_fault {
479 const struct {
480 struct vm_area_struct *vma; /* Target VMA */
481 gfp_t gfp_mask; /* gfp mask to be used for allocations */
482 pgoff_t pgoff; /* Logical page offset based on vma */
483 unsigned long address; /* Faulting virtual address - masked */
484 unsigned long real_address; /* Faulting virtual address - unmasked */
485 };
486 enum fault_flag flags; /* FAULT_FLAG_xxx flags
487 * XXX: should really be 'const' */
488 pmd_t *pmd; /* Pointer to pmd entry matching
489 * the 'address' */
490 pud_t *pud; /* Pointer to pud entry matching
491 * the 'address'
492 */
493 union {
494 pte_t orig_pte; /* Value of PTE at the time of fault */
495 pmd_t orig_pmd; /* Value of PMD at the time of fault,
496 * used by PMD fault only.
497 */
498 };
499
500 struct page *cow_page; /* Page handler may use for COW fault */
501 struct page *page; /* ->fault handlers should return a
502 * page here, unless VM_FAULT_NOPAGE
503 * is set (which is also implied by
504 * VM_FAULT_ERROR).
505 */
506 /* These three entries are valid only while holding ptl lock */
507 pte_t *pte; /* Pointer to pte entry matching
508 * the 'address'. NULL if the page
509 * table hasn't been allocated.
510 */
511 spinlock_t *ptl; /* Page table lock.
512 * Protects pte page table if 'pte'
513 * is not NULL, otherwise pmd.
514 */
515 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
516 * vm_ops->map_pages() sets up a page
517 * table from atomic context.
518 * do_fault_around() pre-allocates
519 * page table to avoid allocation from
520 * atomic context.
521 */
522};
523
524/* page entry size for vm->huge_fault() */
525enum page_entry_size {
526 PE_SIZE_PTE = 0,
527 PE_SIZE_PMD,
528 PE_SIZE_PUD,
529};
530
531/*
532 * These are the virtual MM functions - opening of an area, closing and
533 * unmapping it (needed to keep files on disk up-to-date etc), pointer
534 * to the functions called when a no-page or a wp-page exception occurs.
535 */
536struct vm_operations_struct {
537 void (*open)(struct vm_area_struct * area);
538 /**
539 * @close: Called when the VMA is being removed from the MM.
540 * Context: User context. May sleep. Caller holds mmap_lock.
541 */
542 void (*close)(struct vm_area_struct * area);
543 /* Called any time before splitting to check if it's allowed */
544 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
545 int (*mremap)(struct vm_area_struct *area);
546 /*
547 * Called by mprotect() to make driver-specific permission
548 * checks before mprotect() is finalised. The VMA must not
549 * be modified. Returns 0 if eprotect() can proceed.
550 */
551 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
552 unsigned long end, unsigned long newflags);
553 vm_fault_t (*fault)(struct vm_fault *vmf);
554 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
555 enum page_entry_size pe_size);
556 vm_fault_t (*map_pages)(struct vm_fault *vmf,
557 pgoff_t start_pgoff, pgoff_t end_pgoff);
558 unsigned long (*pagesize)(struct vm_area_struct * area);
559
560 /* notification that a previously read-only page is about to become
561 * writable, if an error is returned it will cause a SIGBUS */
562 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
563
564 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
565 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
566
567 /* called by access_process_vm when get_user_pages() fails, typically
568 * for use by special VMAs. See also generic_access_phys() for a generic
569 * implementation useful for any iomem mapping.
570 */
571 int (*access)(struct vm_area_struct *vma, unsigned long addr,
572 void *buf, int len, int write);
573
574 /* Called by the /proc/PID/maps code to ask the vma whether it
575 * has a special name. Returning non-NULL will also cause this
576 * vma to be dumped unconditionally. */
577 const char *(*name)(struct vm_area_struct *vma);
578
579#ifdef CONFIG_NUMA
580 /*
581 * set_policy() op must add a reference to any non-NULL @new mempolicy
582 * to hold the policy upon return. Caller should pass NULL @new to
583 * remove a policy and fall back to surrounding context--i.e. do not
584 * install a MPOL_DEFAULT policy, nor the task or system default
585 * mempolicy.
586 */
587 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
588
589 /*
590 * get_policy() op must add reference [mpol_get()] to any policy at
591 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
592 * in mm/mempolicy.c will do this automatically.
593 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
594 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
595 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
596 * must return NULL--i.e., do not "fallback" to task or system default
597 * policy.
598 */
599 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
600 unsigned long addr);
601#endif
602 /*
603 * Called by vm_normal_page() for special PTEs to find the
604 * page for @addr. This is useful if the default behavior
605 * (using pte_page()) would not find the correct page.
606 */
607 struct page *(*find_special_page)(struct vm_area_struct *vma,
608 unsigned long addr);
609};
610
611static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
612{
613 static const struct vm_operations_struct dummy_vm_ops = {};
614
615 memset(vma, 0, sizeof(*vma));
616 vma->vm_mm = mm;
617 vma->vm_ops = &dummy_vm_ops;
618 INIT_LIST_HEAD(&vma->anon_vma_chain);
619}
620
621static inline void vma_set_anonymous(struct vm_area_struct *vma)
622{
623 vma->vm_ops = NULL;
624}
625
626static inline bool vma_is_anonymous(struct vm_area_struct *vma)
627{
628 return !vma->vm_ops;
629}
630
631static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
632{
633 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
634
635 if (!maybe_stack)
636 return false;
637
638 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
639 VM_STACK_INCOMPLETE_SETUP)
640 return true;
641
642 return false;
643}
644
645static inline bool vma_is_foreign(struct vm_area_struct *vma)
646{
647 if (!current->mm)
648 return true;
649
650 if (current->mm != vma->vm_mm)
651 return true;
652
653 return false;
654}
655
656static inline bool vma_is_accessible(struct vm_area_struct *vma)
657{
658 return vma->vm_flags & VM_ACCESS_FLAGS;
659}
660
661#ifdef CONFIG_SHMEM
662/*
663 * The vma_is_shmem is not inline because it is used only by slow
664 * paths in userfault.
665 */
666bool vma_is_shmem(struct vm_area_struct *vma);
667#else
668static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
669#endif
670
671int vma_is_stack_for_current(struct vm_area_struct *vma);
672
673/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
674#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
675
676struct mmu_gather;
677struct inode;
678
679static inline unsigned int compound_order(struct page *page)
680{
681 if (!PageHead(page))
682 return 0;
683 return page[1].compound_order;
684}
685
686/**
687 * folio_order - The allocation order of a folio.
688 * @folio: The folio.
689 *
690 * A folio is composed of 2^order pages. See get_order() for the definition
691 * of order.
692 *
693 * Return: The order of the folio.
694 */
695static inline unsigned int folio_order(struct folio *folio)
696{
697 return compound_order(&folio->page);
698}
699
700#include <linux/huge_mm.h>
701
702/*
703 * Methods to modify the page usage count.
704 *
705 * What counts for a page usage:
706 * - cache mapping (page->mapping)
707 * - private data (page->private)
708 * - page mapped in a task's page tables, each mapping
709 * is counted separately
710 *
711 * Also, many kernel routines increase the page count before a critical
712 * routine so they can be sure the page doesn't go away from under them.
713 */
714
715/*
716 * Drop a ref, return true if the refcount fell to zero (the page has no users)
717 */
718static inline int put_page_testzero(struct page *page)
719{
720 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
721 return page_ref_dec_and_test(page);
722}
723
724static inline int folio_put_testzero(struct folio *folio)
725{
726 return put_page_testzero(&folio->page);
727}
728
729/*
730 * Try to grab a ref unless the page has a refcount of zero, return false if
731 * that is the case.
732 * This can be called when MMU is off so it must not access
733 * any of the virtual mappings.
734 */
735static inline bool get_page_unless_zero(struct page *page)
736{
737 return page_ref_add_unless(page, 1, 0);
738}
739
740extern int page_is_ram(unsigned long pfn);
741
742enum {
743 REGION_INTERSECTS,
744 REGION_DISJOINT,
745 REGION_MIXED,
746};
747
748int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
749 unsigned long desc);
750
751/* Support for virtually mapped pages */
752struct page *vmalloc_to_page(const void *addr);
753unsigned long vmalloc_to_pfn(const void *addr);
754
755/*
756 * Determine if an address is within the vmalloc range
757 *
758 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
759 * is no special casing required.
760 */
761
762#ifndef is_ioremap_addr
763#define is_ioremap_addr(x) is_vmalloc_addr(x)
764#endif
765
766#ifdef CONFIG_MMU
767extern bool is_vmalloc_addr(const void *x);
768extern int is_vmalloc_or_module_addr(const void *x);
769#else
770static inline bool is_vmalloc_addr(const void *x)
771{
772 return false;
773}
774static inline int is_vmalloc_or_module_addr(const void *x)
775{
776 return 0;
777}
778#endif
779
780/*
781 * How many times the entire folio is mapped as a single unit (eg by a
782 * PMD or PUD entry). This is probably not what you want, except for
783 * debugging purposes; look at folio_mapcount() or page_mapcount()
784 * instead.
785 */
786static inline int folio_entire_mapcount(struct folio *folio)
787{
788 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
789 return atomic_read(folio_mapcount_ptr(folio)) + 1;
790}
791
792/*
793 * Mapcount of compound page as a whole, does not include mapped sub-pages.
794 *
795 * Must be called only for compound pages.
796 */
797static inline int compound_mapcount(struct page *page)
798{
799 return folio_entire_mapcount(page_folio(page));
800}
801
802/*
803 * The atomic page->_mapcount, starts from -1: so that transitions
804 * both from it and to it can be tracked, using atomic_inc_and_test
805 * and atomic_add_negative(-1).
806 */
807static inline void page_mapcount_reset(struct page *page)
808{
809 atomic_set(&(page)->_mapcount, -1);
810}
811
812int __page_mapcount(struct page *page);
813
814/*
815 * Mapcount of 0-order page; when compound sub-page, includes
816 * compound_mapcount().
817 *
818 * Result is undefined for pages which cannot be mapped into userspace.
819 * For example SLAB or special types of pages. See function page_has_type().
820 * They use this place in struct page differently.
821 */
822static inline int page_mapcount(struct page *page)
823{
824 if (unlikely(PageCompound(page)))
825 return __page_mapcount(page);
826 return atomic_read(&page->_mapcount) + 1;
827}
828
829int folio_mapcount(struct folio *folio);
830
831#ifdef CONFIG_TRANSPARENT_HUGEPAGE
832static inline int total_mapcount(struct page *page)
833{
834 return folio_mapcount(page_folio(page));
835}
836
837#else
838static inline int total_mapcount(struct page *page)
839{
840 return page_mapcount(page);
841}
842#endif
843
844static inline struct page *virt_to_head_page(const void *x)
845{
846 struct page *page = virt_to_page(x);
847
848 return compound_head(page);
849}
850
851static inline struct folio *virt_to_folio(const void *x)
852{
853 struct page *page = virt_to_page(x);
854
855 return page_folio(page);
856}
857
858void __put_page(struct page *page);
859
860void put_pages_list(struct list_head *pages);
861
862void split_page(struct page *page, unsigned int order);
863void folio_copy(struct folio *dst, struct folio *src);
864
865unsigned long nr_free_buffer_pages(void);
866
867/*
868 * Compound pages have a destructor function. Provide a
869 * prototype for that function and accessor functions.
870 * These are _only_ valid on the head of a compound page.
871 */
872typedef void compound_page_dtor(struct page *);
873
874/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
875enum compound_dtor_id {
876 NULL_COMPOUND_DTOR,
877 COMPOUND_PAGE_DTOR,
878#ifdef CONFIG_HUGETLB_PAGE
879 HUGETLB_PAGE_DTOR,
880#endif
881#ifdef CONFIG_TRANSPARENT_HUGEPAGE
882 TRANSHUGE_PAGE_DTOR,
883#endif
884 NR_COMPOUND_DTORS,
885};
886extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
887
888static inline void set_compound_page_dtor(struct page *page,
889 enum compound_dtor_id compound_dtor)
890{
891 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
892 page[1].compound_dtor = compound_dtor;
893}
894
895static inline void destroy_compound_page(struct page *page)
896{
897 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
898 compound_page_dtors[page[1].compound_dtor](page);
899}
900
901static inline int head_compound_pincount(struct page *head)
902{
903 return atomic_read(compound_pincount_ptr(head));
904}
905
906static inline void set_compound_order(struct page *page, unsigned int order)
907{
908 page[1].compound_order = order;
909#ifdef CONFIG_64BIT
910 page[1].compound_nr = 1U << order;
911#endif
912}
913
914/* Returns the number of pages in this potentially compound page. */
915static inline unsigned long compound_nr(struct page *page)
916{
917 if (!PageHead(page))
918 return 1;
919#ifdef CONFIG_64BIT
920 return page[1].compound_nr;
921#else
922 return 1UL << compound_order(page);
923#endif
924}
925
926/* Returns the number of bytes in this potentially compound page. */
927static inline unsigned long page_size(struct page *page)
928{
929 return PAGE_SIZE << compound_order(page);
930}
931
932/* Returns the number of bits needed for the number of bytes in a page */
933static inline unsigned int page_shift(struct page *page)
934{
935 return PAGE_SHIFT + compound_order(page);
936}
937
938/**
939 * thp_order - Order of a transparent huge page.
940 * @page: Head page of a transparent huge page.
941 */
942static inline unsigned int thp_order(struct page *page)
943{
944 VM_BUG_ON_PGFLAGS(PageTail(page), page);
945 return compound_order(page);
946}
947
948/**
949 * thp_nr_pages - The number of regular pages in this huge page.
950 * @page: The head page of a huge page.
951 */
952static inline int thp_nr_pages(struct page *page)
953{
954 VM_BUG_ON_PGFLAGS(PageTail(page), page);
955 return compound_nr(page);
956}
957
958/**
959 * thp_size - Size of a transparent huge page.
960 * @page: Head page of a transparent huge page.
961 *
962 * Return: Number of bytes in this page.
963 */
964static inline unsigned long thp_size(struct page *page)
965{
966 return PAGE_SIZE << thp_order(page);
967}
968
969void free_compound_page(struct page *page);
970
971#ifdef CONFIG_MMU
972/*
973 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
974 * servicing faults for write access. In the normal case, do always want
975 * pte_mkwrite. But get_user_pages can cause write faults for mappings
976 * that do not have writing enabled, when used by access_process_vm.
977 */
978static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
979{
980 if (likely(vma->vm_flags & VM_WRITE))
981 pte = pte_mkwrite(pte);
982 return pte;
983}
984
985vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
986void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
987
988vm_fault_t finish_fault(struct vm_fault *vmf);
989vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
990#endif
991
992/*
993 * Multiple processes may "see" the same page. E.g. for untouched
994 * mappings of /dev/null, all processes see the same page full of
995 * zeroes, and text pages of executables and shared libraries have
996 * only one copy in memory, at most, normally.
997 *
998 * For the non-reserved pages, page_count(page) denotes a reference count.
999 * page_count() == 0 means the page is free. page->lru is then used for
1000 * freelist management in the buddy allocator.
1001 * page_count() > 0 means the page has been allocated.
1002 *
1003 * Pages are allocated by the slab allocator in order to provide memory
1004 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1005 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1006 * unless a particular usage is carefully commented. (the responsibility of
1007 * freeing the kmalloc memory is the caller's, of course).
1008 *
1009 * A page may be used by anyone else who does a __get_free_page().
1010 * In this case, page_count still tracks the references, and should only
1011 * be used through the normal accessor functions. The top bits of page->flags
1012 * and page->virtual store page management information, but all other fields
1013 * are unused and could be used privately, carefully. The management of this
1014 * page is the responsibility of the one who allocated it, and those who have
1015 * subsequently been given references to it.
1016 *
1017 * The other pages (we may call them "pagecache pages") are completely
1018 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1019 * The following discussion applies only to them.
1020 *
1021 * A pagecache page contains an opaque `private' member, which belongs to the
1022 * page's address_space. Usually, this is the address of a circular list of
1023 * the page's disk buffers. PG_private must be set to tell the VM to call
1024 * into the filesystem to release these pages.
1025 *
1026 * A page may belong to an inode's memory mapping. In this case, page->mapping
1027 * is the pointer to the inode, and page->index is the file offset of the page,
1028 * in units of PAGE_SIZE.
1029 *
1030 * If pagecache pages are not associated with an inode, they are said to be
1031 * anonymous pages. These may become associated with the swapcache, and in that
1032 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1033 *
1034 * In either case (swapcache or inode backed), the pagecache itself holds one
1035 * reference to the page. Setting PG_private should also increment the
1036 * refcount. The each user mapping also has a reference to the page.
1037 *
1038 * The pagecache pages are stored in a per-mapping radix tree, which is
1039 * rooted at mapping->i_pages, and indexed by offset.
1040 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1041 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1042 *
1043 * All pagecache pages may be subject to I/O:
1044 * - inode pages may need to be read from disk,
1045 * - inode pages which have been modified and are MAP_SHARED may need
1046 * to be written back to the inode on disk,
1047 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1048 * modified may need to be swapped out to swap space and (later) to be read
1049 * back into memory.
1050 */
1051
1052/*
1053 * The zone field is never updated after free_area_init_core()
1054 * sets it, so none of the operations on it need to be atomic.
1055 */
1056
1057/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1058#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1059#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1060#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1061#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1062#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1063
1064/*
1065 * Define the bit shifts to access each section. For non-existent
1066 * sections we define the shift as 0; that plus a 0 mask ensures
1067 * the compiler will optimise away reference to them.
1068 */
1069#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1070#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1071#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1072#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1073#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1074
1075/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1076#ifdef NODE_NOT_IN_PAGE_FLAGS
1077#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1078#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1079 SECTIONS_PGOFF : ZONES_PGOFF)
1080#else
1081#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1082#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1083 NODES_PGOFF : ZONES_PGOFF)
1084#endif
1085
1086#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1087
1088#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1089#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1090#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1091#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1092#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1093#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1094
1095static inline enum zone_type page_zonenum(const struct page *page)
1096{
1097 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1098 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1099}
1100
1101static inline enum zone_type folio_zonenum(const struct folio *folio)
1102{
1103 return page_zonenum(&folio->page);
1104}
1105
1106#ifdef CONFIG_ZONE_DEVICE
1107static inline bool is_zone_device_page(const struct page *page)
1108{
1109 return page_zonenum(page) == ZONE_DEVICE;
1110}
1111extern void memmap_init_zone_device(struct zone *, unsigned long,
1112 unsigned long, struct dev_pagemap *);
1113#else
1114static inline bool is_zone_device_page(const struct page *page)
1115{
1116 return false;
1117}
1118#endif
1119
1120static inline bool folio_is_zone_device(const struct folio *folio)
1121{
1122 return is_zone_device_page(&folio->page);
1123}
1124
1125static inline bool is_zone_movable_page(const struct page *page)
1126{
1127 return page_zonenum(page) == ZONE_MOVABLE;
1128}
1129
1130#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1131DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1132
1133bool __put_devmap_managed_page(struct page *page);
1134static inline bool put_devmap_managed_page(struct page *page)
1135{
1136 if (!static_branch_unlikely(&devmap_managed_key))
1137 return false;
1138 if (!is_zone_device_page(page))
1139 return false;
1140 return __put_devmap_managed_page(page);
1141}
1142
1143#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1144static inline bool put_devmap_managed_page(struct page *page)
1145{
1146 return false;
1147}
1148#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1149
1150/* 127: arbitrary random number, small enough to assemble well */
1151#define folio_ref_zero_or_close_to_overflow(folio) \
1152 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1153
1154/**
1155 * folio_get - Increment the reference count on a folio.
1156 * @folio: The folio.
1157 *
1158 * Context: May be called in any context, as long as you know that
1159 * you have a refcount on the folio. If you do not already have one,
1160 * folio_try_get() may be the right interface for you to use.
1161 */
1162static inline void folio_get(struct folio *folio)
1163{
1164 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1165 folio_ref_inc(folio);
1166}
1167
1168static inline void get_page(struct page *page)
1169{
1170 folio_get(page_folio(page));
1171}
1172
1173bool __must_check try_grab_page(struct page *page, unsigned int flags);
1174
1175static inline __must_check bool try_get_page(struct page *page)
1176{
1177 page = compound_head(page);
1178 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1179 return false;
1180 page_ref_inc(page);
1181 return true;
1182}
1183
1184/**
1185 * folio_put - Decrement the reference count on a folio.
1186 * @folio: The folio.
1187 *
1188 * If the folio's reference count reaches zero, the memory will be
1189 * released back to the page allocator and may be used by another
1190 * allocation immediately. Do not access the memory or the struct folio
1191 * after calling folio_put() unless you can be sure that it wasn't the
1192 * last reference.
1193 *
1194 * Context: May be called in process or interrupt context, but not in NMI
1195 * context. May be called while holding a spinlock.
1196 */
1197static inline void folio_put(struct folio *folio)
1198{
1199 if (folio_put_testzero(folio))
1200 __put_page(&folio->page);
1201}
1202
1203/**
1204 * folio_put_refs - Reduce the reference count on a folio.
1205 * @folio: The folio.
1206 * @refs: The amount to subtract from the folio's reference count.
1207 *
1208 * If the folio's reference count reaches zero, the memory will be
1209 * released back to the page allocator and may be used by another
1210 * allocation immediately. Do not access the memory or the struct folio
1211 * after calling folio_put_refs() unless you can be sure that these weren't
1212 * the last references.
1213 *
1214 * Context: May be called in process or interrupt context, but not in NMI
1215 * context. May be called while holding a spinlock.
1216 */
1217static inline void folio_put_refs(struct folio *folio, int refs)
1218{
1219 if (folio_ref_sub_and_test(folio, refs))
1220 __put_page(&folio->page);
1221}
1222
1223static inline void put_page(struct page *page)
1224{
1225 struct folio *folio = page_folio(page);
1226
1227 /*
1228 * For some devmap managed pages we need to catch refcount transition
1229 * from 2 to 1:
1230 */
1231 if (put_devmap_managed_page(&folio->page))
1232 return;
1233 folio_put(folio);
1234}
1235
1236/*
1237 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1238 * the page's refcount so that two separate items are tracked: the original page
1239 * reference count, and also a new count of how many pin_user_pages() calls were
1240 * made against the page. ("gup-pinned" is another term for the latter).
1241 *
1242 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1243 * distinct from normal pages. As such, the unpin_user_page() call (and its
1244 * variants) must be used in order to release gup-pinned pages.
1245 *
1246 * Choice of value:
1247 *
1248 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1249 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1250 * simpler, due to the fact that adding an even power of two to the page
1251 * refcount has the effect of using only the upper N bits, for the code that
1252 * counts up using the bias value. This means that the lower bits are left for
1253 * the exclusive use of the original code that increments and decrements by one
1254 * (or at least, by much smaller values than the bias value).
1255 *
1256 * Of course, once the lower bits overflow into the upper bits (and this is
1257 * OK, because subtraction recovers the original values), then visual inspection
1258 * no longer suffices to directly view the separate counts. However, for normal
1259 * applications that don't have huge page reference counts, this won't be an
1260 * issue.
1261 *
1262 * Locking: the lockless algorithm described in folio_try_get_rcu()
1263 * provides safe operation for get_user_pages(), page_mkclean() and
1264 * other calls that race to set up page table entries.
1265 */
1266#define GUP_PIN_COUNTING_BIAS (1U << 10)
1267
1268void unpin_user_page(struct page *page);
1269void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1270 bool make_dirty);
1271void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1272 bool make_dirty);
1273void unpin_user_pages(struct page **pages, unsigned long npages);
1274
1275static inline bool is_cow_mapping(vm_flags_t flags)
1276{
1277 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1278}
1279
1280#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1281#define SECTION_IN_PAGE_FLAGS
1282#endif
1283
1284/*
1285 * The identification function is mainly used by the buddy allocator for
1286 * determining if two pages could be buddies. We are not really identifying
1287 * the zone since we could be using the section number id if we do not have
1288 * node id available in page flags.
1289 * We only guarantee that it will return the same value for two combinable
1290 * pages in a zone.
1291 */
1292static inline int page_zone_id(struct page *page)
1293{
1294 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1295}
1296
1297#ifdef NODE_NOT_IN_PAGE_FLAGS
1298extern int page_to_nid(const struct page *page);
1299#else
1300static inline int page_to_nid(const struct page *page)
1301{
1302 struct page *p = (struct page *)page;
1303
1304 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1305}
1306#endif
1307
1308static inline int folio_nid(const struct folio *folio)
1309{
1310 return page_to_nid(&folio->page);
1311}
1312
1313#ifdef CONFIG_NUMA_BALANCING
1314static inline int cpu_pid_to_cpupid(int cpu, int pid)
1315{
1316 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1317}
1318
1319static inline int cpupid_to_pid(int cpupid)
1320{
1321 return cpupid & LAST__PID_MASK;
1322}
1323
1324static inline int cpupid_to_cpu(int cpupid)
1325{
1326 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1327}
1328
1329static inline int cpupid_to_nid(int cpupid)
1330{
1331 return cpu_to_node(cpupid_to_cpu(cpupid));
1332}
1333
1334static inline bool cpupid_pid_unset(int cpupid)
1335{
1336 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1337}
1338
1339static inline bool cpupid_cpu_unset(int cpupid)
1340{
1341 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1342}
1343
1344static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1345{
1346 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1347}
1348
1349#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1350#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1351static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1352{
1353 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1354}
1355
1356static inline int page_cpupid_last(struct page *page)
1357{
1358 return page->_last_cpupid;
1359}
1360static inline void page_cpupid_reset_last(struct page *page)
1361{
1362 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1363}
1364#else
1365static inline int page_cpupid_last(struct page *page)
1366{
1367 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1368}
1369
1370extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1371
1372static inline void page_cpupid_reset_last(struct page *page)
1373{
1374 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1375}
1376#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1377#else /* !CONFIG_NUMA_BALANCING */
1378static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1379{
1380 return page_to_nid(page); /* XXX */
1381}
1382
1383static inline int page_cpupid_last(struct page *page)
1384{
1385 return page_to_nid(page); /* XXX */
1386}
1387
1388static inline int cpupid_to_nid(int cpupid)
1389{
1390 return -1;
1391}
1392
1393static inline int cpupid_to_pid(int cpupid)
1394{
1395 return -1;
1396}
1397
1398static inline int cpupid_to_cpu(int cpupid)
1399{
1400 return -1;
1401}
1402
1403static inline int cpu_pid_to_cpupid(int nid, int pid)
1404{
1405 return -1;
1406}
1407
1408static inline bool cpupid_pid_unset(int cpupid)
1409{
1410 return true;
1411}
1412
1413static inline void page_cpupid_reset_last(struct page *page)
1414{
1415}
1416
1417static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1418{
1419 return false;
1420}
1421#endif /* CONFIG_NUMA_BALANCING */
1422
1423#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1424
1425/*
1426 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1427 * setting tags for all pages to native kernel tag value 0xff, as the default
1428 * value 0x00 maps to 0xff.
1429 */
1430
1431static inline u8 page_kasan_tag(const struct page *page)
1432{
1433 u8 tag = 0xff;
1434
1435 if (kasan_enabled()) {
1436 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1437 tag ^= 0xff;
1438 }
1439
1440 return tag;
1441}
1442
1443static inline void page_kasan_tag_set(struct page *page, u8 tag)
1444{
1445 unsigned long old_flags, flags;
1446
1447 if (!kasan_enabled())
1448 return;
1449
1450 tag ^= 0xff;
1451 old_flags = READ_ONCE(page->flags);
1452 do {
1453 flags = old_flags;
1454 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1455 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1456 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1457}
1458
1459static inline void page_kasan_tag_reset(struct page *page)
1460{
1461 if (kasan_enabled())
1462 page_kasan_tag_set(page, 0xff);
1463}
1464
1465#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1466
1467static inline u8 page_kasan_tag(const struct page *page)
1468{
1469 return 0xff;
1470}
1471
1472static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1473static inline void page_kasan_tag_reset(struct page *page) { }
1474
1475#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1476
1477static inline struct zone *page_zone(const struct page *page)
1478{
1479 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1480}
1481
1482static inline pg_data_t *page_pgdat(const struct page *page)
1483{
1484 return NODE_DATA(page_to_nid(page));
1485}
1486
1487static inline struct zone *folio_zone(const struct folio *folio)
1488{
1489 return page_zone(&folio->page);
1490}
1491
1492static inline pg_data_t *folio_pgdat(const struct folio *folio)
1493{
1494 return page_pgdat(&folio->page);
1495}
1496
1497#ifdef SECTION_IN_PAGE_FLAGS
1498static inline void set_page_section(struct page *page, unsigned long section)
1499{
1500 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1501 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1502}
1503
1504static inline unsigned long page_to_section(const struct page *page)
1505{
1506 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1507}
1508#endif
1509
1510/**
1511 * folio_pfn - Return the Page Frame Number of a folio.
1512 * @folio: The folio.
1513 *
1514 * A folio may contain multiple pages. The pages have consecutive
1515 * Page Frame Numbers.
1516 *
1517 * Return: The Page Frame Number of the first page in the folio.
1518 */
1519static inline unsigned long folio_pfn(struct folio *folio)
1520{
1521 return page_to_pfn(&folio->page);
1522}
1523
1524static inline atomic_t *folio_pincount_ptr(struct folio *folio)
1525{
1526 return &folio_page(folio, 1)->compound_pincount;
1527}
1528
1529/**
1530 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1531 * @folio: The folio.
1532 *
1533 * This function checks if a folio has been pinned via a call to
1534 * a function in the pin_user_pages() family.
1535 *
1536 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1537 * because it means "definitely not pinned for DMA", but true means "probably
1538 * pinned for DMA, but possibly a false positive due to having at least
1539 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1540 *
1541 * False positives are OK, because: a) it's unlikely for a folio to
1542 * get that many refcounts, and b) all the callers of this routine are
1543 * expected to be able to deal gracefully with a false positive.
1544 *
1545 * For large folios, the result will be exactly correct. That's because
1546 * we have more tracking data available: the compound_pincount is used
1547 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1548 *
1549 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1550 *
1551 * Return: True, if it is likely that the page has been "dma-pinned".
1552 * False, if the page is definitely not dma-pinned.
1553 */
1554static inline bool folio_maybe_dma_pinned(struct folio *folio)
1555{
1556 if (folio_test_large(folio))
1557 return atomic_read(folio_pincount_ptr(folio)) > 0;
1558
1559 /*
1560 * folio_ref_count() is signed. If that refcount overflows, then
1561 * folio_ref_count() returns a negative value, and callers will avoid
1562 * further incrementing the refcount.
1563 *
1564 * Here, for that overflow case, use the sign bit to count a little
1565 * bit higher via unsigned math, and thus still get an accurate result.
1566 */
1567 return ((unsigned int)folio_ref_count(folio)) >=
1568 GUP_PIN_COUNTING_BIAS;
1569}
1570
1571static inline bool page_maybe_dma_pinned(struct page *page)
1572{
1573 return folio_maybe_dma_pinned(page_folio(page));
1574}
1575
1576/*
1577 * This should most likely only be called during fork() to see whether we
1578 * should break the cow immediately for a page on the src mm.
1579 */
1580static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1581 struct page *page)
1582{
1583 if (!is_cow_mapping(vma->vm_flags))
1584 return false;
1585
1586 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1587 return false;
1588
1589 return page_maybe_dma_pinned(page);
1590}
1591
1592/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1593#ifdef CONFIG_MIGRATION
1594static inline bool is_pinnable_page(struct page *page)
1595{
1596 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1597 is_zero_pfn(page_to_pfn(page));
1598}
1599#else
1600static inline bool is_pinnable_page(struct page *page)
1601{
1602 return true;
1603}
1604#endif
1605
1606static inline bool folio_is_pinnable(struct folio *folio)
1607{
1608 return is_pinnable_page(&folio->page);
1609}
1610
1611static inline void set_page_zone(struct page *page, enum zone_type zone)
1612{
1613 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1614 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1615}
1616
1617static inline void set_page_node(struct page *page, unsigned long node)
1618{
1619 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1620 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1621}
1622
1623static inline void set_page_links(struct page *page, enum zone_type zone,
1624 unsigned long node, unsigned long pfn)
1625{
1626 set_page_zone(page, zone);
1627 set_page_node(page, node);
1628#ifdef SECTION_IN_PAGE_FLAGS
1629 set_page_section(page, pfn_to_section_nr(pfn));
1630#endif
1631}
1632
1633/**
1634 * folio_nr_pages - The number of pages in the folio.
1635 * @folio: The folio.
1636 *
1637 * Return: A positive power of two.
1638 */
1639static inline long folio_nr_pages(struct folio *folio)
1640{
1641 return compound_nr(&folio->page);
1642}
1643
1644/**
1645 * folio_next - Move to the next physical folio.
1646 * @folio: The folio we're currently operating on.
1647 *
1648 * If you have physically contiguous memory which may span more than
1649 * one folio (eg a &struct bio_vec), use this function to move from one
1650 * folio to the next. Do not use it if the memory is only virtually
1651 * contiguous as the folios are almost certainly not adjacent to each
1652 * other. This is the folio equivalent to writing ``page++``.
1653 *
1654 * Context: We assume that the folios are refcounted and/or locked at a
1655 * higher level and do not adjust the reference counts.
1656 * Return: The next struct folio.
1657 */
1658static inline struct folio *folio_next(struct folio *folio)
1659{
1660 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1661}
1662
1663/**
1664 * folio_shift - The size of the memory described by this folio.
1665 * @folio: The folio.
1666 *
1667 * A folio represents a number of bytes which is a power-of-two in size.
1668 * This function tells you which power-of-two the folio is. See also
1669 * folio_size() and folio_order().
1670 *
1671 * Context: The caller should have a reference on the folio to prevent
1672 * it from being split. It is not necessary for the folio to be locked.
1673 * Return: The base-2 logarithm of the size of this folio.
1674 */
1675static inline unsigned int folio_shift(struct folio *folio)
1676{
1677 return PAGE_SHIFT + folio_order(folio);
1678}
1679
1680/**
1681 * folio_size - The number of bytes in a folio.
1682 * @folio: The folio.
1683 *
1684 * Context: The caller should have a reference on the folio to prevent
1685 * it from being split. It is not necessary for the folio to be locked.
1686 * Return: The number of bytes in this folio.
1687 */
1688static inline size_t folio_size(struct folio *folio)
1689{
1690 return PAGE_SIZE << folio_order(folio);
1691}
1692
1693#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1694static inline int arch_make_page_accessible(struct page *page)
1695{
1696 return 0;
1697}
1698#endif
1699
1700#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1701static inline int arch_make_folio_accessible(struct folio *folio)
1702{
1703 int ret;
1704 long i, nr = folio_nr_pages(folio);
1705
1706 for (i = 0; i < nr; i++) {
1707 ret = arch_make_page_accessible(folio_page(folio, i));
1708 if (ret)
1709 break;
1710 }
1711
1712 return ret;
1713}
1714#endif
1715
1716/*
1717 * Some inline functions in vmstat.h depend on page_zone()
1718 */
1719#include <linux/vmstat.h>
1720
1721static __always_inline void *lowmem_page_address(const struct page *page)
1722{
1723 return page_to_virt(page);
1724}
1725
1726#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1727#define HASHED_PAGE_VIRTUAL
1728#endif
1729
1730#if defined(WANT_PAGE_VIRTUAL)
1731static inline void *page_address(const struct page *page)
1732{
1733 return page->virtual;
1734}
1735static inline void set_page_address(struct page *page, void *address)
1736{
1737 page->virtual = address;
1738}
1739#define page_address_init() do { } while(0)
1740#endif
1741
1742#if defined(HASHED_PAGE_VIRTUAL)
1743void *page_address(const struct page *page);
1744void set_page_address(struct page *page, void *virtual);
1745void page_address_init(void);
1746#endif
1747
1748#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1749#define page_address(page) lowmem_page_address(page)
1750#define set_page_address(page, address) do { } while(0)
1751#define page_address_init() do { } while(0)
1752#endif
1753
1754static inline void *folio_address(const struct folio *folio)
1755{
1756 return page_address(&folio->page);
1757}
1758
1759extern void *page_rmapping(struct page *page);
1760extern pgoff_t __page_file_index(struct page *page);
1761
1762/*
1763 * Return the pagecache index of the passed page. Regular pagecache pages
1764 * use ->index whereas swapcache pages use swp_offset(->private)
1765 */
1766static inline pgoff_t page_index(struct page *page)
1767{
1768 if (unlikely(PageSwapCache(page)))
1769 return __page_file_index(page);
1770 return page->index;
1771}
1772
1773bool page_mapped(struct page *page);
1774bool folio_mapped(struct folio *folio);
1775
1776/*
1777 * Return true only if the page has been allocated with
1778 * ALLOC_NO_WATERMARKS and the low watermark was not
1779 * met implying that the system is under some pressure.
1780 */
1781static inline bool page_is_pfmemalloc(const struct page *page)
1782{
1783 /*
1784 * lru.next has bit 1 set if the page is allocated from the
1785 * pfmemalloc reserves. Callers may simply overwrite it if
1786 * they do not need to preserve that information.
1787 */
1788 return (uintptr_t)page->lru.next & BIT(1);
1789}
1790
1791/*
1792 * Only to be called by the page allocator on a freshly allocated
1793 * page.
1794 */
1795static inline void set_page_pfmemalloc(struct page *page)
1796{
1797 page->lru.next = (void *)BIT(1);
1798}
1799
1800static inline void clear_page_pfmemalloc(struct page *page)
1801{
1802 page->lru.next = NULL;
1803}
1804
1805/*
1806 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1807 */
1808extern void pagefault_out_of_memory(void);
1809
1810#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1811#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1812#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1813
1814/*
1815 * Flags passed to show_mem() and show_free_areas() to suppress output in
1816 * various contexts.
1817 */
1818#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1819
1820extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1821
1822#ifdef CONFIG_MMU
1823extern bool can_do_mlock(void);
1824#else
1825static inline bool can_do_mlock(void) { return false; }
1826#endif
1827extern int user_shm_lock(size_t, struct ucounts *);
1828extern void user_shm_unlock(size_t, struct ucounts *);
1829
1830struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1831 pte_t pte);
1832struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1833 pmd_t pmd);
1834
1835void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1836 unsigned long size);
1837void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1838 unsigned long size);
1839void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1840 unsigned long start, unsigned long end);
1841
1842struct mmu_notifier_range;
1843
1844void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1845 unsigned long end, unsigned long floor, unsigned long ceiling);
1846int
1847copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1848int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1849 struct mmu_notifier_range *range, pte_t **ptepp,
1850 pmd_t **pmdpp, spinlock_t **ptlp);
1851int follow_pte(struct mm_struct *mm, unsigned long address,
1852 pte_t **ptepp, spinlock_t **ptlp);
1853int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1854 unsigned long *pfn);
1855int follow_phys(struct vm_area_struct *vma, unsigned long address,
1856 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1857int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1858 void *buf, int len, int write);
1859
1860extern void truncate_pagecache(struct inode *inode, loff_t new);
1861extern void truncate_setsize(struct inode *inode, loff_t newsize);
1862void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1863void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1864int generic_error_remove_page(struct address_space *mapping, struct page *page);
1865
1866#ifdef CONFIG_MMU
1867extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1868 unsigned long address, unsigned int flags,
1869 struct pt_regs *regs);
1870extern int fixup_user_fault(struct mm_struct *mm,
1871 unsigned long address, unsigned int fault_flags,
1872 bool *unlocked);
1873void unmap_mapping_pages(struct address_space *mapping,
1874 pgoff_t start, pgoff_t nr, bool even_cows);
1875void unmap_mapping_range(struct address_space *mapping,
1876 loff_t const holebegin, loff_t const holelen, int even_cows);
1877#else
1878static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1879 unsigned long address, unsigned int flags,
1880 struct pt_regs *regs)
1881{
1882 /* should never happen if there's no MMU */
1883 BUG();
1884 return VM_FAULT_SIGBUS;
1885}
1886static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1887 unsigned int fault_flags, bool *unlocked)
1888{
1889 /* should never happen if there's no MMU */
1890 BUG();
1891 return -EFAULT;
1892}
1893static inline void unmap_mapping_pages(struct address_space *mapping,
1894 pgoff_t start, pgoff_t nr, bool even_cows) { }
1895static inline void unmap_mapping_range(struct address_space *mapping,
1896 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1897#endif
1898
1899static inline void unmap_shared_mapping_range(struct address_space *mapping,
1900 loff_t const holebegin, loff_t const holelen)
1901{
1902 unmap_mapping_range(mapping, holebegin, holelen, 0);
1903}
1904
1905extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1906 void *buf, int len, unsigned int gup_flags);
1907extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1908 void *buf, int len, unsigned int gup_flags);
1909extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1910 void *buf, int len, unsigned int gup_flags);
1911
1912long get_user_pages_remote(struct mm_struct *mm,
1913 unsigned long start, unsigned long nr_pages,
1914 unsigned int gup_flags, struct page **pages,
1915 struct vm_area_struct **vmas, int *locked);
1916long pin_user_pages_remote(struct mm_struct *mm,
1917 unsigned long start, unsigned long nr_pages,
1918 unsigned int gup_flags, struct page **pages,
1919 struct vm_area_struct **vmas, int *locked);
1920long get_user_pages(unsigned long start, unsigned long nr_pages,
1921 unsigned int gup_flags, struct page **pages,
1922 struct vm_area_struct **vmas);
1923long pin_user_pages(unsigned long start, unsigned long nr_pages,
1924 unsigned int gup_flags, struct page **pages,
1925 struct vm_area_struct **vmas);
1926long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1927 struct page **pages, unsigned int gup_flags);
1928long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1929 struct page **pages, unsigned int gup_flags);
1930
1931int get_user_pages_fast(unsigned long start, int nr_pages,
1932 unsigned int gup_flags, struct page **pages);
1933int pin_user_pages_fast(unsigned long start, int nr_pages,
1934 unsigned int gup_flags, struct page **pages);
1935
1936int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1937int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1938 struct task_struct *task, bool bypass_rlim);
1939
1940struct kvec;
1941int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1942 struct page **pages);
1943struct page *get_dump_page(unsigned long addr);
1944
1945bool folio_mark_dirty(struct folio *folio);
1946bool set_page_dirty(struct page *page);
1947int set_page_dirty_lock(struct page *page);
1948
1949int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1950
1951extern unsigned long move_page_tables(struct vm_area_struct *vma,
1952 unsigned long old_addr, struct vm_area_struct *new_vma,
1953 unsigned long new_addr, unsigned long len,
1954 bool need_rmap_locks);
1955
1956/*
1957 * Flags used by change_protection(). For now we make it a bitmap so
1958 * that we can pass in multiple flags just like parameters. However
1959 * for now all the callers are only use one of the flags at the same
1960 * time.
1961 */
1962/* Whether we should allow dirty bit accounting */
1963#define MM_CP_DIRTY_ACCT (1UL << 0)
1964/* Whether this protection change is for NUMA hints */
1965#define MM_CP_PROT_NUMA (1UL << 1)
1966/* Whether this change is for write protecting */
1967#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1968#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1969#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1970 MM_CP_UFFD_WP_RESOLVE)
1971
1972extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1973 unsigned long end, pgprot_t newprot,
1974 unsigned long cp_flags);
1975extern int mprotect_fixup(struct vm_area_struct *vma,
1976 struct vm_area_struct **pprev, unsigned long start,
1977 unsigned long end, unsigned long newflags);
1978
1979/*
1980 * doesn't attempt to fault and will return short.
1981 */
1982int get_user_pages_fast_only(unsigned long start, int nr_pages,
1983 unsigned int gup_flags, struct page **pages);
1984int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1985 unsigned int gup_flags, struct page **pages);
1986
1987static inline bool get_user_page_fast_only(unsigned long addr,
1988 unsigned int gup_flags, struct page **pagep)
1989{
1990 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1991}
1992/*
1993 * per-process(per-mm_struct) statistics.
1994 */
1995static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1996{
1997 long val = atomic_long_read(&mm->rss_stat.count[member]);
1998
1999#ifdef SPLIT_RSS_COUNTING
2000 /*
2001 * counter is updated in asynchronous manner and may go to minus.
2002 * But it's never be expected number for users.
2003 */
2004 if (val < 0)
2005 val = 0;
2006#endif
2007 return (unsigned long)val;
2008}
2009
2010void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
2011
2012static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2013{
2014 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
2015
2016 mm_trace_rss_stat(mm, member, count);
2017}
2018
2019static inline void inc_mm_counter(struct mm_struct *mm, int member)
2020{
2021 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
2022
2023 mm_trace_rss_stat(mm, member, count);
2024}
2025
2026static inline void dec_mm_counter(struct mm_struct *mm, int member)
2027{
2028 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
2029
2030 mm_trace_rss_stat(mm, member, count);
2031}
2032
2033/* Optimized variant when page is already known not to be PageAnon */
2034static inline int mm_counter_file(struct page *page)
2035{
2036 if (PageSwapBacked(page))
2037 return MM_SHMEMPAGES;
2038 return MM_FILEPAGES;
2039}
2040
2041static inline int mm_counter(struct page *page)
2042{
2043 if (PageAnon(page))
2044 return MM_ANONPAGES;
2045 return mm_counter_file(page);
2046}
2047
2048static inline unsigned long get_mm_rss(struct mm_struct *mm)
2049{
2050 return get_mm_counter(mm, MM_FILEPAGES) +
2051 get_mm_counter(mm, MM_ANONPAGES) +
2052 get_mm_counter(mm, MM_SHMEMPAGES);
2053}
2054
2055static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2056{
2057 return max(mm->hiwater_rss, get_mm_rss(mm));
2058}
2059
2060static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2061{
2062 return max(mm->hiwater_vm, mm->total_vm);
2063}
2064
2065static inline void update_hiwater_rss(struct mm_struct *mm)
2066{
2067 unsigned long _rss = get_mm_rss(mm);
2068
2069 if ((mm)->hiwater_rss < _rss)
2070 (mm)->hiwater_rss = _rss;
2071}
2072
2073static inline void update_hiwater_vm(struct mm_struct *mm)
2074{
2075 if (mm->hiwater_vm < mm->total_vm)
2076 mm->hiwater_vm = mm->total_vm;
2077}
2078
2079static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2080{
2081 mm->hiwater_rss = get_mm_rss(mm);
2082}
2083
2084static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2085 struct mm_struct *mm)
2086{
2087 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2088
2089 if (*maxrss < hiwater_rss)
2090 *maxrss = hiwater_rss;
2091}
2092
2093#if defined(SPLIT_RSS_COUNTING)
2094void sync_mm_rss(struct mm_struct *mm);
2095#else
2096static inline void sync_mm_rss(struct mm_struct *mm)
2097{
2098}
2099#endif
2100
2101#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2102static inline int pte_special(pte_t pte)
2103{
2104 return 0;
2105}
2106
2107static inline pte_t pte_mkspecial(pte_t pte)
2108{
2109 return pte;
2110}
2111#endif
2112
2113#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2114static inline int pte_devmap(pte_t pte)
2115{
2116 return 0;
2117}
2118#endif
2119
2120int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2121
2122extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2123 spinlock_t **ptl);
2124static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2125 spinlock_t **ptl)
2126{
2127 pte_t *ptep;
2128 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2129 return ptep;
2130}
2131
2132#ifdef __PAGETABLE_P4D_FOLDED
2133static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2134 unsigned long address)
2135{
2136 return 0;
2137}
2138#else
2139int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2140#endif
2141
2142#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2143static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2144 unsigned long address)
2145{
2146 return 0;
2147}
2148static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2149static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2150
2151#else
2152int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2153
2154static inline void mm_inc_nr_puds(struct mm_struct *mm)
2155{
2156 if (mm_pud_folded(mm))
2157 return;
2158 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2159}
2160
2161static inline void mm_dec_nr_puds(struct mm_struct *mm)
2162{
2163 if (mm_pud_folded(mm))
2164 return;
2165 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2166}
2167#endif
2168
2169#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2170static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2171 unsigned long address)
2172{
2173 return 0;
2174}
2175
2176static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2177static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2178
2179#else
2180int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2181
2182static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2183{
2184 if (mm_pmd_folded(mm))
2185 return;
2186 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2187}
2188
2189static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2190{
2191 if (mm_pmd_folded(mm))
2192 return;
2193 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2194}
2195#endif
2196
2197#ifdef CONFIG_MMU
2198static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2199{
2200 atomic_long_set(&mm->pgtables_bytes, 0);
2201}
2202
2203static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2204{
2205 return atomic_long_read(&mm->pgtables_bytes);
2206}
2207
2208static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2209{
2210 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2211}
2212
2213static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2214{
2215 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2216}
2217#else
2218
2219static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2220static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2221{
2222 return 0;
2223}
2224
2225static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2226static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2227#endif
2228
2229int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2230int __pte_alloc_kernel(pmd_t *pmd);
2231
2232#if defined(CONFIG_MMU)
2233
2234static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2235 unsigned long address)
2236{
2237 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2238 NULL : p4d_offset(pgd, address);
2239}
2240
2241static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2242 unsigned long address)
2243{
2244 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2245 NULL : pud_offset(p4d, address);
2246}
2247
2248static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2249{
2250 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2251 NULL: pmd_offset(pud, address);
2252}
2253#endif /* CONFIG_MMU */
2254
2255#if USE_SPLIT_PTE_PTLOCKS
2256#if ALLOC_SPLIT_PTLOCKS
2257void __init ptlock_cache_init(void);
2258extern bool ptlock_alloc(struct page *page);
2259extern void ptlock_free(struct page *page);
2260
2261static inline spinlock_t *ptlock_ptr(struct page *page)
2262{
2263 return page->ptl;
2264}
2265#else /* ALLOC_SPLIT_PTLOCKS */
2266static inline void ptlock_cache_init(void)
2267{
2268}
2269
2270static inline bool ptlock_alloc(struct page *page)
2271{
2272 return true;
2273}
2274
2275static inline void ptlock_free(struct page *page)
2276{
2277}
2278
2279static inline spinlock_t *ptlock_ptr(struct page *page)
2280{
2281 return &page->ptl;
2282}
2283#endif /* ALLOC_SPLIT_PTLOCKS */
2284
2285static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2286{
2287 return ptlock_ptr(pmd_page(*pmd));
2288}
2289
2290static inline bool ptlock_init(struct page *page)
2291{
2292 /*
2293 * prep_new_page() initialize page->private (and therefore page->ptl)
2294 * with 0. Make sure nobody took it in use in between.
2295 *
2296 * It can happen if arch try to use slab for page table allocation:
2297 * slab code uses page->slab_cache, which share storage with page->ptl.
2298 */
2299 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2300 if (!ptlock_alloc(page))
2301 return false;
2302 spin_lock_init(ptlock_ptr(page));
2303 return true;
2304}
2305
2306#else /* !USE_SPLIT_PTE_PTLOCKS */
2307/*
2308 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2309 */
2310static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2311{
2312 return &mm->page_table_lock;
2313}
2314static inline void ptlock_cache_init(void) {}
2315static inline bool ptlock_init(struct page *page) { return true; }
2316static inline void ptlock_free(struct page *page) {}
2317#endif /* USE_SPLIT_PTE_PTLOCKS */
2318
2319static inline void pgtable_init(void)
2320{
2321 ptlock_cache_init();
2322 pgtable_cache_init();
2323}
2324
2325static inline bool pgtable_pte_page_ctor(struct page *page)
2326{
2327 if (!ptlock_init(page))
2328 return false;
2329 __SetPageTable(page);
2330 inc_lruvec_page_state(page, NR_PAGETABLE);
2331 return true;
2332}
2333
2334static inline void pgtable_pte_page_dtor(struct page *page)
2335{
2336 ptlock_free(page);
2337 __ClearPageTable(page);
2338 dec_lruvec_page_state(page, NR_PAGETABLE);
2339}
2340
2341#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2342({ \
2343 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2344 pte_t *__pte = pte_offset_map(pmd, address); \
2345 *(ptlp) = __ptl; \
2346 spin_lock(__ptl); \
2347 __pte; \
2348})
2349
2350#define pte_unmap_unlock(pte, ptl) do { \
2351 spin_unlock(ptl); \
2352 pte_unmap(pte); \
2353} while (0)
2354
2355#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2356
2357#define pte_alloc_map(mm, pmd, address) \
2358 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2359
2360#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2361 (pte_alloc(mm, pmd) ? \
2362 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2363
2364#define pte_alloc_kernel(pmd, address) \
2365 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2366 NULL: pte_offset_kernel(pmd, address))
2367
2368#if USE_SPLIT_PMD_PTLOCKS
2369
2370static struct page *pmd_to_page(pmd_t *pmd)
2371{
2372 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2373 return virt_to_page((void *)((unsigned long) pmd & mask));
2374}
2375
2376static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2377{
2378 return ptlock_ptr(pmd_to_page(pmd));
2379}
2380
2381static inline bool pmd_ptlock_init(struct page *page)
2382{
2383#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2384 page->pmd_huge_pte = NULL;
2385#endif
2386 return ptlock_init(page);
2387}
2388
2389static inline void pmd_ptlock_free(struct page *page)
2390{
2391#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2392 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2393#endif
2394 ptlock_free(page);
2395}
2396
2397#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2398
2399#else
2400
2401static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2402{
2403 return &mm->page_table_lock;
2404}
2405
2406static inline bool pmd_ptlock_init(struct page *page) { return true; }
2407static inline void pmd_ptlock_free(struct page *page) {}
2408
2409#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2410
2411#endif
2412
2413static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2414{
2415 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2416 spin_lock(ptl);
2417 return ptl;
2418}
2419
2420static inline bool pgtable_pmd_page_ctor(struct page *page)
2421{
2422 if (!pmd_ptlock_init(page))
2423 return false;
2424 __SetPageTable(page);
2425 inc_lruvec_page_state(page, NR_PAGETABLE);
2426 return true;
2427}
2428
2429static inline void pgtable_pmd_page_dtor(struct page *page)
2430{
2431 pmd_ptlock_free(page);
2432 __ClearPageTable(page);
2433 dec_lruvec_page_state(page, NR_PAGETABLE);
2434}
2435
2436/*
2437 * No scalability reason to split PUD locks yet, but follow the same pattern
2438 * as the PMD locks to make it easier if we decide to. The VM should not be
2439 * considered ready to switch to split PUD locks yet; there may be places
2440 * which need to be converted from page_table_lock.
2441 */
2442static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2443{
2444 return &mm->page_table_lock;
2445}
2446
2447static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2448{
2449 spinlock_t *ptl = pud_lockptr(mm, pud);
2450
2451 spin_lock(ptl);
2452 return ptl;
2453}
2454
2455extern void __init pagecache_init(void);
2456extern void free_initmem(void);
2457
2458/*
2459 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2460 * into the buddy system. The freed pages will be poisoned with pattern
2461 * "poison" if it's within range [0, UCHAR_MAX].
2462 * Return pages freed into the buddy system.
2463 */
2464extern unsigned long free_reserved_area(void *start, void *end,
2465 int poison, const char *s);
2466
2467extern void adjust_managed_page_count(struct page *page, long count);
2468extern void mem_init_print_info(void);
2469
2470extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2471
2472/* Free the reserved page into the buddy system, so it gets managed. */
2473static inline void free_reserved_page(struct page *page)
2474{
2475 ClearPageReserved(page);
2476 init_page_count(page);
2477 __free_page(page);
2478 adjust_managed_page_count(page, 1);
2479}
2480#define free_highmem_page(page) free_reserved_page(page)
2481
2482static inline void mark_page_reserved(struct page *page)
2483{
2484 SetPageReserved(page);
2485 adjust_managed_page_count(page, -1);
2486}
2487
2488/*
2489 * Default method to free all the __init memory into the buddy system.
2490 * The freed pages will be poisoned with pattern "poison" if it's within
2491 * range [0, UCHAR_MAX].
2492 * Return pages freed into the buddy system.
2493 */
2494static inline unsigned long free_initmem_default(int poison)
2495{
2496 extern char __init_begin[], __init_end[];
2497
2498 return free_reserved_area(&__init_begin, &__init_end,
2499 poison, "unused kernel image (initmem)");
2500}
2501
2502static inline unsigned long get_num_physpages(void)
2503{
2504 int nid;
2505 unsigned long phys_pages = 0;
2506
2507 for_each_online_node(nid)
2508 phys_pages += node_present_pages(nid);
2509
2510 return phys_pages;
2511}
2512
2513/*
2514 * Using memblock node mappings, an architecture may initialise its
2515 * zones, allocate the backing mem_map and account for memory holes in an
2516 * architecture independent manner.
2517 *
2518 * An architecture is expected to register range of page frames backed by
2519 * physical memory with memblock_add[_node]() before calling
2520 * free_area_init() passing in the PFN each zone ends at. At a basic
2521 * usage, an architecture is expected to do something like
2522 *
2523 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2524 * max_highmem_pfn};
2525 * for_each_valid_physical_page_range()
2526 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
2527 * free_area_init(max_zone_pfns);
2528 */
2529void free_area_init(unsigned long *max_zone_pfn);
2530unsigned long node_map_pfn_alignment(void);
2531unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2532 unsigned long end_pfn);
2533extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2534 unsigned long end_pfn);
2535extern void get_pfn_range_for_nid(unsigned int nid,
2536 unsigned long *start_pfn, unsigned long *end_pfn);
2537extern unsigned long find_min_pfn_with_active_regions(void);
2538
2539#ifndef CONFIG_NUMA
2540static inline int early_pfn_to_nid(unsigned long pfn)
2541{
2542 return 0;
2543}
2544#else
2545/* please see mm/page_alloc.c */
2546extern int __meminit early_pfn_to_nid(unsigned long pfn);
2547#endif
2548
2549extern void set_dma_reserve(unsigned long new_dma_reserve);
2550extern void memmap_init_range(unsigned long, int, unsigned long,
2551 unsigned long, unsigned long, enum meminit_context,
2552 struct vmem_altmap *, int migratetype);
2553extern void setup_per_zone_wmarks(void);
2554extern void calculate_min_free_kbytes(void);
2555extern int __meminit init_per_zone_wmark_min(void);
2556extern void mem_init(void);
2557extern void __init mmap_init(void);
2558extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2559extern long si_mem_available(void);
2560extern void si_meminfo(struct sysinfo * val);
2561extern void si_meminfo_node(struct sysinfo *val, int nid);
2562#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2563extern unsigned long arch_reserved_kernel_pages(void);
2564#endif
2565
2566extern __printf(3, 4)
2567void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2568
2569extern void setup_per_cpu_pageset(void);
2570
2571/* page_alloc.c */
2572extern int min_free_kbytes;
2573extern int watermark_boost_factor;
2574extern int watermark_scale_factor;
2575extern bool arch_has_descending_max_zone_pfns(void);
2576
2577/* nommu.c */
2578extern atomic_long_t mmap_pages_allocated;
2579extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2580
2581/* interval_tree.c */
2582void vma_interval_tree_insert(struct vm_area_struct *node,
2583 struct rb_root_cached *root);
2584void vma_interval_tree_insert_after(struct vm_area_struct *node,
2585 struct vm_area_struct *prev,
2586 struct rb_root_cached *root);
2587void vma_interval_tree_remove(struct vm_area_struct *node,
2588 struct rb_root_cached *root);
2589struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2590 unsigned long start, unsigned long last);
2591struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2592 unsigned long start, unsigned long last);
2593
2594#define vma_interval_tree_foreach(vma, root, start, last) \
2595 for (vma = vma_interval_tree_iter_first(root, start, last); \
2596 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2597
2598void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2599 struct rb_root_cached *root);
2600void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2601 struct rb_root_cached *root);
2602struct anon_vma_chain *
2603anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2604 unsigned long start, unsigned long last);
2605struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2606 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2607#ifdef CONFIG_DEBUG_VM_RB
2608void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2609#endif
2610
2611#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2612 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2613 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2614
2615/* mmap.c */
2616extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2617extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2618 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2619 struct vm_area_struct *expand);
2620static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2621 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2622{
2623 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2624}
2625extern struct vm_area_struct *vma_merge(struct mm_struct *,
2626 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2627 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2628 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
2629extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2630extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2631 unsigned long addr, int new_below);
2632extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2633 unsigned long addr, int new_below);
2634extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2635extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2636 struct rb_node **, struct rb_node *);
2637extern void unlink_file_vma(struct vm_area_struct *);
2638extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2639 unsigned long addr, unsigned long len, pgoff_t pgoff,
2640 bool *need_rmap_locks);
2641extern void exit_mmap(struct mm_struct *);
2642
2643static inline int check_data_rlimit(unsigned long rlim,
2644 unsigned long new,
2645 unsigned long start,
2646 unsigned long end_data,
2647 unsigned long start_data)
2648{
2649 if (rlim < RLIM_INFINITY) {
2650 if (((new - start) + (end_data - start_data)) > rlim)
2651 return -ENOSPC;
2652 }
2653
2654 return 0;
2655}
2656
2657extern int mm_take_all_locks(struct mm_struct *mm);
2658extern void mm_drop_all_locks(struct mm_struct *mm);
2659
2660extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2661extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2662extern struct file *get_mm_exe_file(struct mm_struct *mm);
2663extern struct file *get_task_exe_file(struct task_struct *task);
2664
2665extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2666extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2667
2668extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2669 const struct vm_special_mapping *sm);
2670extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2671 unsigned long addr, unsigned long len,
2672 unsigned long flags,
2673 const struct vm_special_mapping *spec);
2674/* This is an obsolete alternative to _install_special_mapping. */
2675extern int install_special_mapping(struct mm_struct *mm,
2676 unsigned long addr, unsigned long len,
2677 unsigned long flags, struct page **pages);
2678
2679unsigned long randomize_stack_top(unsigned long stack_top);
2680
2681extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2682
2683extern unsigned long mmap_region(struct file *file, unsigned long addr,
2684 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2685 struct list_head *uf);
2686extern unsigned long do_mmap(struct file *file, unsigned long addr,
2687 unsigned long len, unsigned long prot, unsigned long flags,
2688 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2689extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2690 struct list_head *uf, bool downgrade);
2691extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2692 struct list_head *uf);
2693extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2694
2695#ifdef CONFIG_MMU
2696extern int __mm_populate(unsigned long addr, unsigned long len,
2697 int ignore_errors);
2698static inline void mm_populate(unsigned long addr, unsigned long len)
2699{
2700 /* Ignore errors */
2701 (void) __mm_populate(addr, len, 1);
2702}
2703#else
2704static inline void mm_populate(unsigned long addr, unsigned long len) {}
2705#endif
2706
2707/* These take the mm semaphore themselves */
2708extern int __must_check vm_brk(unsigned long, unsigned long);
2709extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2710extern int vm_munmap(unsigned long, size_t);
2711extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2712 unsigned long, unsigned long,
2713 unsigned long, unsigned long);
2714
2715struct vm_unmapped_area_info {
2716#define VM_UNMAPPED_AREA_TOPDOWN 1
2717 unsigned long flags;
2718 unsigned long length;
2719 unsigned long low_limit;
2720 unsigned long high_limit;
2721 unsigned long align_mask;
2722 unsigned long align_offset;
2723};
2724
2725extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2726
2727/* truncate.c */
2728extern void truncate_inode_pages(struct address_space *, loff_t);
2729extern void truncate_inode_pages_range(struct address_space *,
2730 loff_t lstart, loff_t lend);
2731extern void truncate_inode_pages_final(struct address_space *);
2732
2733/* generic vm_area_ops exported for stackable file systems */
2734extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2735extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2736 pgoff_t start_pgoff, pgoff_t end_pgoff);
2737extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2738
2739extern unsigned long stack_guard_gap;
2740/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2741extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2742
2743/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2744extern int expand_downwards(struct vm_area_struct *vma,
2745 unsigned long address);
2746#if VM_GROWSUP
2747extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2748#else
2749 #define expand_upwards(vma, address) (0)
2750#endif
2751
2752/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2753extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2754extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2755 struct vm_area_struct **pprev);
2756
2757/**
2758 * find_vma_intersection() - Look up the first VMA which intersects the interval
2759 * @mm: The process address space.
2760 * @start_addr: The inclusive start user address.
2761 * @end_addr: The exclusive end user address.
2762 *
2763 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
2764 * start_addr < end_addr.
2765 */
2766static inline
2767struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2768 unsigned long start_addr,
2769 unsigned long end_addr)
2770{
2771 struct vm_area_struct *vma = find_vma(mm, start_addr);
2772
2773 if (vma && end_addr <= vma->vm_start)
2774 vma = NULL;
2775 return vma;
2776}
2777
2778/**
2779 * vma_lookup() - Find a VMA at a specific address
2780 * @mm: The process address space.
2781 * @addr: The user address.
2782 *
2783 * Return: The vm_area_struct at the given address, %NULL otherwise.
2784 */
2785static inline
2786struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2787{
2788 struct vm_area_struct *vma = find_vma(mm, addr);
2789
2790 if (vma && addr < vma->vm_start)
2791 vma = NULL;
2792
2793 return vma;
2794}
2795
2796static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2797{
2798 unsigned long vm_start = vma->vm_start;
2799
2800 if (vma->vm_flags & VM_GROWSDOWN) {
2801 vm_start -= stack_guard_gap;
2802 if (vm_start > vma->vm_start)
2803 vm_start = 0;
2804 }
2805 return vm_start;
2806}
2807
2808static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2809{
2810 unsigned long vm_end = vma->vm_end;
2811
2812 if (vma->vm_flags & VM_GROWSUP) {
2813 vm_end += stack_guard_gap;
2814 if (vm_end < vma->vm_end)
2815 vm_end = -PAGE_SIZE;
2816 }
2817 return vm_end;
2818}
2819
2820static inline unsigned long vma_pages(struct vm_area_struct *vma)
2821{
2822 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2823}
2824
2825/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2826static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2827 unsigned long vm_start, unsigned long vm_end)
2828{
2829 struct vm_area_struct *vma = find_vma(mm, vm_start);
2830
2831 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2832 vma = NULL;
2833
2834 return vma;
2835}
2836
2837static inline bool range_in_vma(struct vm_area_struct *vma,
2838 unsigned long start, unsigned long end)
2839{
2840 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2841}
2842
2843#ifdef CONFIG_MMU
2844pgprot_t vm_get_page_prot(unsigned long vm_flags);
2845void vma_set_page_prot(struct vm_area_struct *vma);
2846#else
2847static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2848{
2849 return __pgprot(0);
2850}
2851static inline void vma_set_page_prot(struct vm_area_struct *vma)
2852{
2853 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2854}
2855#endif
2856
2857void vma_set_file(struct vm_area_struct *vma, struct file *file);
2858
2859#ifdef CONFIG_NUMA_BALANCING
2860unsigned long change_prot_numa(struct vm_area_struct *vma,
2861 unsigned long start, unsigned long end);
2862#endif
2863
2864struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2865int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2866 unsigned long pfn, unsigned long size, pgprot_t);
2867int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2868 unsigned long pfn, unsigned long size, pgprot_t prot);
2869int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2870int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2871 struct page **pages, unsigned long *num);
2872int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2873 unsigned long num);
2874int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2875 unsigned long num);
2876vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2877 unsigned long pfn);
2878vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2879 unsigned long pfn, pgprot_t pgprot);
2880vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2881 pfn_t pfn);
2882vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2883 pfn_t pfn, pgprot_t pgprot);
2884vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2885 unsigned long addr, pfn_t pfn);
2886int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2887
2888static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2889 unsigned long addr, struct page *page)
2890{
2891 int err = vm_insert_page(vma, addr, page);
2892
2893 if (err == -ENOMEM)
2894 return VM_FAULT_OOM;
2895 if (err < 0 && err != -EBUSY)
2896 return VM_FAULT_SIGBUS;
2897
2898 return VM_FAULT_NOPAGE;
2899}
2900
2901#ifndef io_remap_pfn_range
2902static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2903 unsigned long addr, unsigned long pfn,
2904 unsigned long size, pgprot_t prot)
2905{
2906 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2907}
2908#endif
2909
2910static inline vm_fault_t vmf_error(int err)
2911{
2912 if (err == -ENOMEM)
2913 return VM_FAULT_OOM;
2914 return VM_FAULT_SIGBUS;
2915}
2916
2917struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2918 unsigned int foll_flags);
2919
2920#define FOLL_WRITE 0x01 /* check pte is writable */
2921#define FOLL_TOUCH 0x02 /* mark page accessed */
2922#define FOLL_GET 0x04 /* do get_page on page */
2923#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2924#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2925#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2926 * and return without waiting upon it */
2927#define FOLL_NOFAULT 0x80 /* do not fault in pages */
2928#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2929#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2930#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2931#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2932#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2933#define FOLL_COW 0x4000 /* internal GUP flag */
2934#define FOLL_ANON 0x8000 /* don't do file mappings */
2935#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2936#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2937#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
2938#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2939
2940/*
2941 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2942 * other. Here is what they mean, and how to use them:
2943 *
2944 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2945 * period _often_ under userspace control. This is in contrast to
2946 * iov_iter_get_pages(), whose usages are transient.
2947 *
2948 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2949 * lifetime enforced by the filesystem and we need guarantees that longterm
2950 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2951 * the filesystem. Ideas for this coordination include revoking the longterm
2952 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2953 * added after the problem with filesystems was found FS DAX VMAs are
2954 * specifically failed. Filesystem pages are still subject to bugs and use of
2955 * FOLL_LONGTERM should be avoided on those pages.
2956 *
2957 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2958 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2959 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2960 * is due to an incompatibility with the FS DAX check and
2961 * FAULT_FLAG_ALLOW_RETRY.
2962 *
2963 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2964 * that region. And so, CMA attempts to migrate the page before pinning, when
2965 * FOLL_LONGTERM is specified.
2966 *
2967 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2968 * but an additional pin counting system) will be invoked. This is intended for
2969 * anything that gets a page reference and then touches page data (for example,
2970 * Direct IO). This lets the filesystem know that some non-file-system entity is
2971 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2972 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2973 * a call to unpin_user_page().
2974 *
2975 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2976 * and separate refcounting mechanisms, however, and that means that each has
2977 * its own acquire and release mechanisms:
2978 *
2979 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2980 *
2981 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2982 *
2983 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2984 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2985 * calls applied to them, and that's perfectly OK. This is a constraint on the
2986 * callers, not on the pages.)
2987 *
2988 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2989 * directly by the caller. That's in order to help avoid mismatches when
2990 * releasing pages: get_user_pages*() pages must be released via put_page(),
2991 * while pin_user_pages*() pages must be released via unpin_user_page().
2992 *
2993 * Please see Documentation/core-api/pin_user_pages.rst for more information.
2994 */
2995
2996static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2997{
2998 if (vm_fault & VM_FAULT_OOM)
2999 return -ENOMEM;
3000 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3001 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3002 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3003 return -EFAULT;
3004 return 0;
3005}
3006
3007typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3008extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3009 unsigned long size, pte_fn_t fn, void *data);
3010extern int apply_to_existing_page_range(struct mm_struct *mm,
3011 unsigned long address, unsigned long size,
3012 pte_fn_t fn, void *data);
3013
3014extern void init_mem_debugging_and_hardening(void);
3015#ifdef CONFIG_PAGE_POISONING
3016extern void __kernel_poison_pages(struct page *page, int numpages);
3017extern void __kernel_unpoison_pages(struct page *page, int numpages);
3018extern bool _page_poisoning_enabled_early;
3019DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3020static inline bool page_poisoning_enabled(void)
3021{
3022 return _page_poisoning_enabled_early;
3023}
3024/*
3025 * For use in fast paths after init_mem_debugging() has run, or when a
3026 * false negative result is not harmful when called too early.
3027 */
3028static inline bool page_poisoning_enabled_static(void)
3029{
3030 return static_branch_unlikely(&_page_poisoning_enabled);
3031}
3032static inline void kernel_poison_pages(struct page *page, int numpages)
3033{
3034 if (page_poisoning_enabled_static())
3035 __kernel_poison_pages(page, numpages);
3036}
3037static inline void kernel_unpoison_pages(struct page *page, int numpages)
3038{
3039 if (page_poisoning_enabled_static())
3040 __kernel_unpoison_pages(page, numpages);
3041}
3042#else
3043static inline bool page_poisoning_enabled(void) { return false; }
3044static inline bool page_poisoning_enabled_static(void) { return false; }
3045static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3046static inline void kernel_poison_pages(struct page *page, int numpages) { }
3047static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3048#endif
3049
3050DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3051static inline bool want_init_on_alloc(gfp_t flags)
3052{
3053 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3054 &init_on_alloc))
3055 return true;
3056 return flags & __GFP_ZERO;
3057}
3058
3059DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3060static inline bool want_init_on_free(void)
3061{
3062 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3063 &init_on_free);
3064}
3065
3066extern bool _debug_pagealloc_enabled_early;
3067DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3068
3069static inline bool debug_pagealloc_enabled(void)
3070{
3071 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3072 _debug_pagealloc_enabled_early;
3073}
3074
3075/*
3076 * For use in fast paths after init_debug_pagealloc() has run, or when a
3077 * false negative result is not harmful when called too early.
3078 */
3079static inline bool debug_pagealloc_enabled_static(void)
3080{
3081 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3082 return false;
3083
3084 return static_branch_unlikely(&_debug_pagealloc_enabled);
3085}
3086
3087#ifdef CONFIG_DEBUG_PAGEALLOC
3088/*
3089 * To support DEBUG_PAGEALLOC architecture must ensure that
3090 * __kernel_map_pages() never fails
3091 */
3092extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3093
3094static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3095{
3096 if (debug_pagealloc_enabled_static())
3097 __kernel_map_pages(page, numpages, 1);
3098}
3099
3100static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3101{
3102 if (debug_pagealloc_enabled_static())
3103 __kernel_map_pages(page, numpages, 0);
3104}
3105#else /* CONFIG_DEBUG_PAGEALLOC */
3106static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3107static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3108#endif /* CONFIG_DEBUG_PAGEALLOC */
3109
3110#ifdef __HAVE_ARCH_GATE_AREA
3111extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3112extern int in_gate_area_no_mm(unsigned long addr);
3113extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3114#else
3115static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3116{
3117 return NULL;
3118}
3119static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3120static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3121{
3122 return 0;
3123}
3124#endif /* __HAVE_ARCH_GATE_AREA */
3125
3126extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3127
3128#ifdef CONFIG_SYSCTL
3129extern int sysctl_drop_caches;
3130int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3131 loff_t *);
3132#endif
3133
3134void drop_slab(void);
3135
3136#ifndef CONFIG_MMU
3137#define randomize_va_space 0
3138#else
3139extern int randomize_va_space;
3140#endif
3141
3142const char * arch_vma_name(struct vm_area_struct *vma);
3143#ifdef CONFIG_MMU
3144void print_vma_addr(char *prefix, unsigned long rip);
3145#else
3146static inline void print_vma_addr(char *prefix, unsigned long rip)
3147{
3148}
3149#endif
3150
3151#ifdef CONFIG_HUGETLB_PAGE_FREE_VMEMMAP
3152int vmemmap_remap_free(unsigned long start, unsigned long end,
3153 unsigned long reuse);
3154int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3155 unsigned long reuse, gfp_t gfp_mask);
3156#endif
3157
3158void *sparse_buffer_alloc(unsigned long size);
3159struct page * __populate_section_memmap(unsigned long pfn,
3160 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3161pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3162p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3163pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3164pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3165pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3166 struct vmem_altmap *altmap);
3167void *vmemmap_alloc_block(unsigned long size, int node);
3168struct vmem_altmap;
3169void *vmemmap_alloc_block_buf(unsigned long size, int node,
3170 struct vmem_altmap *altmap);
3171void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3172int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3173 int node, struct vmem_altmap *altmap);
3174int vmemmap_populate(unsigned long start, unsigned long end, int node,
3175 struct vmem_altmap *altmap);
3176void vmemmap_populate_print_last(void);
3177#ifdef CONFIG_MEMORY_HOTPLUG
3178void vmemmap_free(unsigned long start, unsigned long end,
3179 struct vmem_altmap *altmap);
3180#endif
3181void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3182 unsigned long nr_pages);
3183
3184enum mf_flags {
3185 MF_COUNT_INCREASED = 1 << 0,
3186 MF_ACTION_REQUIRED = 1 << 1,
3187 MF_MUST_KILL = 1 << 2,
3188 MF_SOFT_OFFLINE = 1 << 3,
3189 MF_UNPOISON = 1 << 4,
3190};
3191extern int memory_failure(unsigned long pfn, int flags);
3192extern void memory_failure_queue(unsigned long pfn, int flags);
3193extern void memory_failure_queue_kick(int cpu);
3194extern int unpoison_memory(unsigned long pfn);
3195extern int sysctl_memory_failure_early_kill;
3196extern int sysctl_memory_failure_recovery;
3197extern void shake_page(struct page *p);
3198extern atomic_long_t num_poisoned_pages __read_mostly;
3199extern int soft_offline_page(unsigned long pfn, int flags);
3200#ifdef CONFIG_MEMORY_FAILURE
3201extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags);
3202#else
3203static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
3204{
3205 return 0;
3206}
3207#endif
3208
3209#ifndef arch_memory_failure
3210static inline int arch_memory_failure(unsigned long pfn, int flags)
3211{
3212 return -ENXIO;
3213}
3214#endif
3215
3216#ifndef arch_is_platform_page
3217static inline bool arch_is_platform_page(u64 paddr)
3218{
3219 return false;
3220}
3221#endif
3222
3223/*
3224 * Error handlers for various types of pages.
3225 */
3226enum mf_result {
3227 MF_IGNORED, /* Error: cannot be handled */
3228 MF_FAILED, /* Error: handling failed */
3229 MF_DELAYED, /* Will be handled later */
3230 MF_RECOVERED, /* Successfully recovered */
3231};
3232
3233enum mf_action_page_type {
3234 MF_MSG_KERNEL,
3235 MF_MSG_KERNEL_HIGH_ORDER,
3236 MF_MSG_SLAB,
3237 MF_MSG_DIFFERENT_COMPOUND,
3238 MF_MSG_HUGE,
3239 MF_MSG_FREE_HUGE,
3240 MF_MSG_NON_PMD_HUGE,
3241 MF_MSG_UNMAP_FAILED,
3242 MF_MSG_DIRTY_SWAPCACHE,
3243 MF_MSG_CLEAN_SWAPCACHE,
3244 MF_MSG_DIRTY_MLOCKED_LRU,
3245 MF_MSG_CLEAN_MLOCKED_LRU,
3246 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3247 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3248 MF_MSG_DIRTY_LRU,
3249 MF_MSG_CLEAN_LRU,
3250 MF_MSG_TRUNCATED_LRU,
3251 MF_MSG_BUDDY,
3252 MF_MSG_DAX,
3253 MF_MSG_UNSPLIT_THP,
3254 MF_MSG_DIFFERENT_PAGE_SIZE,
3255 MF_MSG_UNKNOWN,
3256};
3257
3258#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3259extern void clear_huge_page(struct page *page,
3260 unsigned long addr_hint,
3261 unsigned int pages_per_huge_page);
3262extern void copy_user_huge_page(struct page *dst, struct page *src,
3263 unsigned long addr_hint,
3264 struct vm_area_struct *vma,
3265 unsigned int pages_per_huge_page);
3266extern long copy_huge_page_from_user(struct page *dst_page,
3267 const void __user *usr_src,
3268 unsigned int pages_per_huge_page,
3269 bool allow_pagefault);
3270
3271/**
3272 * vma_is_special_huge - Are transhuge page-table entries considered special?
3273 * @vma: Pointer to the struct vm_area_struct to consider
3274 *
3275 * Whether transhuge page-table entries are considered "special" following
3276 * the definition in vm_normal_page().
3277 *
3278 * Return: true if transhuge page-table entries should be considered special,
3279 * false otherwise.
3280 */
3281static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3282{
3283 return vma_is_dax(vma) || (vma->vm_file &&
3284 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3285}
3286
3287#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3288
3289#ifdef CONFIG_DEBUG_PAGEALLOC
3290extern unsigned int _debug_guardpage_minorder;
3291DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3292
3293static inline unsigned int debug_guardpage_minorder(void)
3294{
3295 return _debug_guardpage_minorder;
3296}
3297
3298static inline bool debug_guardpage_enabled(void)
3299{
3300 return static_branch_unlikely(&_debug_guardpage_enabled);
3301}
3302
3303static inline bool page_is_guard(struct page *page)
3304{
3305 if (!debug_guardpage_enabled())
3306 return false;
3307
3308 return PageGuard(page);
3309}
3310#else
3311static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3312static inline bool debug_guardpage_enabled(void) { return false; }
3313static inline bool page_is_guard(struct page *page) { return false; }
3314#endif /* CONFIG_DEBUG_PAGEALLOC */
3315
3316#if MAX_NUMNODES > 1
3317void __init setup_nr_node_ids(void);
3318#else
3319static inline void setup_nr_node_ids(void) {}
3320#endif
3321
3322extern int memcmp_pages(struct page *page1, struct page *page2);
3323
3324static inline int pages_identical(struct page *page1, struct page *page2)
3325{
3326 return !memcmp_pages(page1, page2);
3327}
3328
3329#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3330unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3331 pgoff_t first_index, pgoff_t nr,
3332 pgoff_t bitmap_pgoff,
3333 unsigned long *bitmap,
3334 pgoff_t *start,
3335 pgoff_t *end);
3336
3337unsigned long wp_shared_mapping_range(struct address_space *mapping,
3338 pgoff_t first_index, pgoff_t nr);
3339#endif
3340
3341extern int sysctl_nr_trim_pages;
3342
3343#ifdef CONFIG_PRINTK
3344void mem_dump_obj(void *object);
3345#else
3346static inline void mem_dump_obj(void *object) {}
3347#endif
3348
3349/**
3350 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3351 * @seals: the seals to check
3352 * @vma: the vma to operate on
3353 *
3354 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3355 * the vma flags. Return 0 if check pass, or <0 for errors.
3356 */
3357static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3358{
3359 if (seals & F_SEAL_FUTURE_WRITE) {
3360 /*
3361 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3362 * "future write" seal active.
3363 */
3364 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3365 return -EPERM;
3366
3367 /*
3368 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3369 * MAP_SHARED and read-only, take care to not allow mprotect to
3370 * revert protections on such mappings. Do this only for shared
3371 * mappings. For private mappings, don't need to mask
3372 * VM_MAYWRITE as we still want them to be COW-writable.
3373 */
3374 if (vma->vm_flags & VM_SHARED)
3375 vma->vm_flags &= ~(VM_MAYWRITE);
3376 }
3377
3378 return 0;
3379}
3380
3381#ifdef CONFIG_ANON_VMA_NAME
3382int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3383 unsigned long len_in,
3384 struct anon_vma_name *anon_name);
3385#else
3386static inline int
3387madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3388 unsigned long len_in, struct anon_vma_name *anon_name) {
3389 return 0;
3390}
3391#endif
3392
3393#endif /* _LINUX_MM_H */