at v5.18 107 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6#include <linux/mmdebug.h> 7#include <linux/gfp.h> 8#include <linux/bug.h> 9#include <linux/list.h> 10#include <linux/mmzone.h> 11#include <linux/rbtree.h> 12#include <linux/atomic.h> 13#include <linux/debug_locks.h> 14#include <linux/mm_types.h> 15#include <linux/mmap_lock.h> 16#include <linux/range.h> 17#include <linux/pfn.h> 18#include <linux/percpu-refcount.h> 19#include <linux/bit_spinlock.h> 20#include <linux/shrinker.h> 21#include <linux/resource.h> 22#include <linux/page_ext.h> 23#include <linux/err.h> 24#include <linux/page-flags.h> 25#include <linux/page_ref.h> 26#include <linux/overflow.h> 27#include <linux/sizes.h> 28#include <linux/sched.h> 29#include <linux/pgtable.h> 30#include <linux/kasan.h> 31 32struct mempolicy; 33struct anon_vma; 34struct anon_vma_chain; 35struct user_struct; 36struct pt_regs; 37 38extern int sysctl_page_lock_unfairness; 39 40void init_mm_internals(void); 41 42#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 43extern unsigned long max_mapnr; 44 45static inline void set_max_mapnr(unsigned long limit) 46{ 47 max_mapnr = limit; 48} 49#else 50static inline void set_max_mapnr(unsigned long limit) { } 51#endif 52 53extern atomic_long_t _totalram_pages; 54static inline unsigned long totalram_pages(void) 55{ 56 return (unsigned long)atomic_long_read(&_totalram_pages); 57} 58 59static inline void totalram_pages_inc(void) 60{ 61 atomic_long_inc(&_totalram_pages); 62} 63 64static inline void totalram_pages_dec(void) 65{ 66 atomic_long_dec(&_totalram_pages); 67} 68 69static inline void totalram_pages_add(long count) 70{ 71 atomic_long_add(count, &_totalram_pages); 72} 73 74extern void * high_memory; 75extern int page_cluster; 76 77#ifdef CONFIG_SYSCTL 78extern int sysctl_legacy_va_layout; 79#else 80#define sysctl_legacy_va_layout 0 81#endif 82 83#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 84extern const int mmap_rnd_bits_min; 85extern const int mmap_rnd_bits_max; 86extern int mmap_rnd_bits __read_mostly; 87#endif 88#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 89extern const int mmap_rnd_compat_bits_min; 90extern const int mmap_rnd_compat_bits_max; 91extern int mmap_rnd_compat_bits __read_mostly; 92#endif 93 94#include <asm/page.h> 95#include <asm/processor.h> 96 97/* 98 * Architectures that support memory tagging (assigning tags to memory regions, 99 * embedding these tags into addresses that point to these memory regions, and 100 * checking that the memory and the pointer tags match on memory accesses) 101 * redefine this macro to strip tags from pointers. 102 * It's defined as noop for architectures that don't support memory tagging. 103 */ 104#ifndef untagged_addr 105#define untagged_addr(addr) (addr) 106#endif 107 108#ifndef __pa_symbol 109#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 110#endif 111 112#ifndef page_to_virt 113#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 114#endif 115 116#ifndef lm_alias 117#define lm_alias(x) __va(__pa_symbol(x)) 118#endif 119 120/* 121 * To prevent common memory management code establishing 122 * a zero page mapping on a read fault. 123 * This macro should be defined within <asm/pgtable.h>. 124 * s390 does this to prevent multiplexing of hardware bits 125 * related to the physical page in case of virtualization. 126 */ 127#ifndef mm_forbids_zeropage 128#define mm_forbids_zeropage(X) (0) 129#endif 130 131/* 132 * On some architectures it is expensive to call memset() for small sizes. 133 * If an architecture decides to implement their own version of 134 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 135 * define their own version of this macro in <asm/pgtable.h> 136 */ 137#if BITS_PER_LONG == 64 138/* This function must be updated when the size of struct page grows above 80 139 * or reduces below 56. The idea that compiler optimizes out switch() 140 * statement, and only leaves move/store instructions. Also the compiler can 141 * combine write statements if they are both assignments and can be reordered, 142 * this can result in several of the writes here being dropped. 143 */ 144#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 145static inline void __mm_zero_struct_page(struct page *page) 146{ 147 unsigned long *_pp = (void *)page; 148 149 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 150 BUILD_BUG_ON(sizeof(struct page) & 7); 151 BUILD_BUG_ON(sizeof(struct page) < 56); 152 BUILD_BUG_ON(sizeof(struct page) > 80); 153 154 switch (sizeof(struct page)) { 155 case 80: 156 _pp[9] = 0; 157 fallthrough; 158 case 72: 159 _pp[8] = 0; 160 fallthrough; 161 case 64: 162 _pp[7] = 0; 163 fallthrough; 164 case 56: 165 _pp[6] = 0; 166 _pp[5] = 0; 167 _pp[4] = 0; 168 _pp[3] = 0; 169 _pp[2] = 0; 170 _pp[1] = 0; 171 _pp[0] = 0; 172 } 173} 174#else 175#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 176#endif 177 178/* 179 * Default maximum number of active map areas, this limits the number of vmas 180 * per mm struct. Users can overwrite this number by sysctl but there is a 181 * problem. 182 * 183 * When a program's coredump is generated as ELF format, a section is created 184 * per a vma. In ELF, the number of sections is represented in unsigned short. 185 * This means the number of sections should be smaller than 65535 at coredump. 186 * Because the kernel adds some informative sections to a image of program at 187 * generating coredump, we need some margin. The number of extra sections is 188 * 1-3 now and depends on arch. We use "5" as safe margin, here. 189 * 190 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 191 * not a hard limit any more. Although some userspace tools can be surprised by 192 * that. 193 */ 194#define MAPCOUNT_ELF_CORE_MARGIN (5) 195#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 196 197extern int sysctl_max_map_count; 198 199extern unsigned long sysctl_user_reserve_kbytes; 200extern unsigned long sysctl_admin_reserve_kbytes; 201 202extern int sysctl_overcommit_memory; 203extern int sysctl_overcommit_ratio; 204extern unsigned long sysctl_overcommit_kbytes; 205 206int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 207 loff_t *); 208int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 209 loff_t *); 210int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 211 loff_t *); 212 213#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 214#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 215#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 216#else 217#define nth_page(page,n) ((page) + (n)) 218#define folio_page_idx(folio, p) ((p) - &(folio)->page) 219#endif 220 221/* to align the pointer to the (next) page boundary */ 222#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 223 224/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 225#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 226 227#define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 228static inline struct folio *lru_to_folio(struct list_head *head) 229{ 230 return list_entry((head)->prev, struct folio, lru); 231} 232 233void setup_initial_init_mm(void *start_code, void *end_code, 234 void *end_data, void *brk); 235 236/* 237 * Linux kernel virtual memory manager primitives. 238 * The idea being to have a "virtual" mm in the same way 239 * we have a virtual fs - giving a cleaner interface to the 240 * mm details, and allowing different kinds of memory mappings 241 * (from shared memory to executable loading to arbitrary 242 * mmap() functions). 243 */ 244 245struct vm_area_struct *vm_area_alloc(struct mm_struct *); 246struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 247void vm_area_free(struct vm_area_struct *); 248 249#ifndef CONFIG_MMU 250extern struct rb_root nommu_region_tree; 251extern struct rw_semaphore nommu_region_sem; 252 253extern unsigned int kobjsize(const void *objp); 254#endif 255 256/* 257 * vm_flags in vm_area_struct, see mm_types.h. 258 * When changing, update also include/trace/events/mmflags.h 259 */ 260#define VM_NONE 0x00000000 261 262#define VM_READ 0x00000001 /* currently active flags */ 263#define VM_WRITE 0x00000002 264#define VM_EXEC 0x00000004 265#define VM_SHARED 0x00000008 266 267/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 268#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 269#define VM_MAYWRITE 0x00000020 270#define VM_MAYEXEC 0x00000040 271#define VM_MAYSHARE 0x00000080 272 273#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 274#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 275#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 276#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 277 278#define VM_LOCKED 0x00002000 279#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 280 281 /* Used by sys_madvise() */ 282#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 283#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 284 285#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 286#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 287#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 288#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 289#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 290#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 291#define VM_SYNC 0x00800000 /* Synchronous page faults */ 292#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 293#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 294#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 295 296#ifdef CONFIG_MEM_SOFT_DIRTY 297# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 298#else 299# define VM_SOFTDIRTY 0 300#endif 301 302#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 303#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 304#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 305#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 306 307#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 308#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 309#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 310#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 311#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 312#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 313#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 314#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 315#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 316#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 317#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 318#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 319 320#ifdef CONFIG_ARCH_HAS_PKEYS 321# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 322# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 323# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 324# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 325# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 326#ifdef CONFIG_PPC 327# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 328#else 329# define VM_PKEY_BIT4 0 330#endif 331#endif /* CONFIG_ARCH_HAS_PKEYS */ 332 333#if defined(CONFIG_X86) 334# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 335#elif defined(CONFIG_PPC) 336# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 337#elif defined(CONFIG_PARISC) 338# define VM_GROWSUP VM_ARCH_1 339#elif defined(CONFIG_IA64) 340# define VM_GROWSUP VM_ARCH_1 341#elif defined(CONFIG_SPARC64) 342# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 343# define VM_ARCH_CLEAR VM_SPARC_ADI 344#elif defined(CONFIG_ARM64) 345# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 346# define VM_ARCH_CLEAR VM_ARM64_BTI 347#elif !defined(CONFIG_MMU) 348# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 349#endif 350 351#if defined(CONFIG_ARM64_MTE) 352# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 353# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 354#else 355# define VM_MTE VM_NONE 356# define VM_MTE_ALLOWED VM_NONE 357#endif 358 359#ifndef VM_GROWSUP 360# define VM_GROWSUP VM_NONE 361#endif 362 363#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 364# define VM_UFFD_MINOR_BIT 37 365# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 366#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 367# define VM_UFFD_MINOR VM_NONE 368#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 369 370/* Bits set in the VMA until the stack is in its final location */ 371#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 372 373#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 374 375/* Common data flag combinations */ 376#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 377 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 378#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 379 VM_MAYWRITE | VM_MAYEXEC) 380#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 381 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 382 383#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 384#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 385#endif 386 387#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 388#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 389#endif 390 391#ifdef CONFIG_STACK_GROWSUP 392#define VM_STACK VM_GROWSUP 393#else 394#define VM_STACK VM_GROWSDOWN 395#endif 396 397#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 398 399/* VMA basic access permission flags */ 400#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 401 402 403/* 404 * Special vmas that are non-mergable, non-mlock()able. 405 */ 406#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 407 408/* This mask prevents VMA from being scanned with khugepaged */ 409#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 410 411/* This mask defines which mm->def_flags a process can inherit its parent */ 412#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 413 414/* This mask is used to clear all the VMA flags used by mlock */ 415#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 416 417/* Arch-specific flags to clear when updating VM flags on protection change */ 418#ifndef VM_ARCH_CLEAR 419# define VM_ARCH_CLEAR VM_NONE 420#endif 421#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 422 423/* 424 * mapping from the currently active vm_flags protection bits (the 425 * low four bits) to a page protection mask.. 426 */ 427extern pgprot_t protection_map[16]; 428 429/* 430 * The default fault flags that should be used by most of the 431 * arch-specific page fault handlers. 432 */ 433#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 434 FAULT_FLAG_KILLABLE | \ 435 FAULT_FLAG_INTERRUPTIBLE) 436 437/** 438 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 439 * @flags: Fault flags. 440 * 441 * This is mostly used for places where we want to try to avoid taking 442 * the mmap_lock for too long a time when waiting for another condition 443 * to change, in which case we can try to be polite to release the 444 * mmap_lock in the first round to avoid potential starvation of other 445 * processes that would also want the mmap_lock. 446 * 447 * Return: true if the page fault allows retry and this is the first 448 * attempt of the fault handling; false otherwise. 449 */ 450static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 451{ 452 return (flags & FAULT_FLAG_ALLOW_RETRY) && 453 (!(flags & FAULT_FLAG_TRIED)); 454} 455 456#define FAULT_FLAG_TRACE \ 457 { FAULT_FLAG_WRITE, "WRITE" }, \ 458 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 459 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 460 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 461 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 462 { FAULT_FLAG_TRIED, "TRIED" }, \ 463 { FAULT_FLAG_USER, "USER" }, \ 464 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 465 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 466 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 467 468/* 469 * vm_fault is filled by the pagefault handler and passed to the vma's 470 * ->fault function. The vma's ->fault is responsible for returning a bitmask 471 * of VM_FAULT_xxx flags that give details about how the fault was handled. 472 * 473 * MM layer fills up gfp_mask for page allocations but fault handler might 474 * alter it if its implementation requires a different allocation context. 475 * 476 * pgoff should be used in favour of virtual_address, if possible. 477 */ 478struct vm_fault { 479 const struct { 480 struct vm_area_struct *vma; /* Target VMA */ 481 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 482 pgoff_t pgoff; /* Logical page offset based on vma */ 483 unsigned long address; /* Faulting virtual address - masked */ 484 unsigned long real_address; /* Faulting virtual address - unmasked */ 485 }; 486 enum fault_flag flags; /* FAULT_FLAG_xxx flags 487 * XXX: should really be 'const' */ 488 pmd_t *pmd; /* Pointer to pmd entry matching 489 * the 'address' */ 490 pud_t *pud; /* Pointer to pud entry matching 491 * the 'address' 492 */ 493 union { 494 pte_t orig_pte; /* Value of PTE at the time of fault */ 495 pmd_t orig_pmd; /* Value of PMD at the time of fault, 496 * used by PMD fault only. 497 */ 498 }; 499 500 struct page *cow_page; /* Page handler may use for COW fault */ 501 struct page *page; /* ->fault handlers should return a 502 * page here, unless VM_FAULT_NOPAGE 503 * is set (which is also implied by 504 * VM_FAULT_ERROR). 505 */ 506 /* These three entries are valid only while holding ptl lock */ 507 pte_t *pte; /* Pointer to pte entry matching 508 * the 'address'. NULL if the page 509 * table hasn't been allocated. 510 */ 511 spinlock_t *ptl; /* Page table lock. 512 * Protects pte page table if 'pte' 513 * is not NULL, otherwise pmd. 514 */ 515 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 516 * vm_ops->map_pages() sets up a page 517 * table from atomic context. 518 * do_fault_around() pre-allocates 519 * page table to avoid allocation from 520 * atomic context. 521 */ 522}; 523 524/* page entry size for vm->huge_fault() */ 525enum page_entry_size { 526 PE_SIZE_PTE = 0, 527 PE_SIZE_PMD, 528 PE_SIZE_PUD, 529}; 530 531/* 532 * These are the virtual MM functions - opening of an area, closing and 533 * unmapping it (needed to keep files on disk up-to-date etc), pointer 534 * to the functions called when a no-page or a wp-page exception occurs. 535 */ 536struct vm_operations_struct { 537 void (*open)(struct vm_area_struct * area); 538 /** 539 * @close: Called when the VMA is being removed from the MM. 540 * Context: User context. May sleep. Caller holds mmap_lock. 541 */ 542 void (*close)(struct vm_area_struct * area); 543 /* Called any time before splitting to check if it's allowed */ 544 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 545 int (*mremap)(struct vm_area_struct *area); 546 /* 547 * Called by mprotect() to make driver-specific permission 548 * checks before mprotect() is finalised. The VMA must not 549 * be modified. Returns 0 if eprotect() can proceed. 550 */ 551 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 552 unsigned long end, unsigned long newflags); 553 vm_fault_t (*fault)(struct vm_fault *vmf); 554 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 555 enum page_entry_size pe_size); 556 vm_fault_t (*map_pages)(struct vm_fault *vmf, 557 pgoff_t start_pgoff, pgoff_t end_pgoff); 558 unsigned long (*pagesize)(struct vm_area_struct * area); 559 560 /* notification that a previously read-only page is about to become 561 * writable, if an error is returned it will cause a SIGBUS */ 562 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 563 564 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 565 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 566 567 /* called by access_process_vm when get_user_pages() fails, typically 568 * for use by special VMAs. See also generic_access_phys() for a generic 569 * implementation useful for any iomem mapping. 570 */ 571 int (*access)(struct vm_area_struct *vma, unsigned long addr, 572 void *buf, int len, int write); 573 574 /* Called by the /proc/PID/maps code to ask the vma whether it 575 * has a special name. Returning non-NULL will also cause this 576 * vma to be dumped unconditionally. */ 577 const char *(*name)(struct vm_area_struct *vma); 578 579#ifdef CONFIG_NUMA 580 /* 581 * set_policy() op must add a reference to any non-NULL @new mempolicy 582 * to hold the policy upon return. Caller should pass NULL @new to 583 * remove a policy and fall back to surrounding context--i.e. do not 584 * install a MPOL_DEFAULT policy, nor the task or system default 585 * mempolicy. 586 */ 587 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 588 589 /* 590 * get_policy() op must add reference [mpol_get()] to any policy at 591 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 592 * in mm/mempolicy.c will do this automatically. 593 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 594 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 595 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 596 * must return NULL--i.e., do not "fallback" to task or system default 597 * policy. 598 */ 599 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 600 unsigned long addr); 601#endif 602 /* 603 * Called by vm_normal_page() for special PTEs to find the 604 * page for @addr. This is useful if the default behavior 605 * (using pte_page()) would not find the correct page. 606 */ 607 struct page *(*find_special_page)(struct vm_area_struct *vma, 608 unsigned long addr); 609}; 610 611static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 612{ 613 static const struct vm_operations_struct dummy_vm_ops = {}; 614 615 memset(vma, 0, sizeof(*vma)); 616 vma->vm_mm = mm; 617 vma->vm_ops = &dummy_vm_ops; 618 INIT_LIST_HEAD(&vma->anon_vma_chain); 619} 620 621static inline void vma_set_anonymous(struct vm_area_struct *vma) 622{ 623 vma->vm_ops = NULL; 624} 625 626static inline bool vma_is_anonymous(struct vm_area_struct *vma) 627{ 628 return !vma->vm_ops; 629} 630 631static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 632{ 633 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 634 635 if (!maybe_stack) 636 return false; 637 638 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 639 VM_STACK_INCOMPLETE_SETUP) 640 return true; 641 642 return false; 643} 644 645static inline bool vma_is_foreign(struct vm_area_struct *vma) 646{ 647 if (!current->mm) 648 return true; 649 650 if (current->mm != vma->vm_mm) 651 return true; 652 653 return false; 654} 655 656static inline bool vma_is_accessible(struct vm_area_struct *vma) 657{ 658 return vma->vm_flags & VM_ACCESS_FLAGS; 659} 660 661#ifdef CONFIG_SHMEM 662/* 663 * The vma_is_shmem is not inline because it is used only by slow 664 * paths in userfault. 665 */ 666bool vma_is_shmem(struct vm_area_struct *vma); 667#else 668static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 669#endif 670 671int vma_is_stack_for_current(struct vm_area_struct *vma); 672 673/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 674#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 675 676struct mmu_gather; 677struct inode; 678 679static inline unsigned int compound_order(struct page *page) 680{ 681 if (!PageHead(page)) 682 return 0; 683 return page[1].compound_order; 684} 685 686/** 687 * folio_order - The allocation order of a folio. 688 * @folio: The folio. 689 * 690 * A folio is composed of 2^order pages. See get_order() for the definition 691 * of order. 692 * 693 * Return: The order of the folio. 694 */ 695static inline unsigned int folio_order(struct folio *folio) 696{ 697 return compound_order(&folio->page); 698} 699 700#include <linux/huge_mm.h> 701 702/* 703 * Methods to modify the page usage count. 704 * 705 * What counts for a page usage: 706 * - cache mapping (page->mapping) 707 * - private data (page->private) 708 * - page mapped in a task's page tables, each mapping 709 * is counted separately 710 * 711 * Also, many kernel routines increase the page count before a critical 712 * routine so they can be sure the page doesn't go away from under them. 713 */ 714 715/* 716 * Drop a ref, return true if the refcount fell to zero (the page has no users) 717 */ 718static inline int put_page_testzero(struct page *page) 719{ 720 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 721 return page_ref_dec_and_test(page); 722} 723 724static inline int folio_put_testzero(struct folio *folio) 725{ 726 return put_page_testzero(&folio->page); 727} 728 729/* 730 * Try to grab a ref unless the page has a refcount of zero, return false if 731 * that is the case. 732 * This can be called when MMU is off so it must not access 733 * any of the virtual mappings. 734 */ 735static inline bool get_page_unless_zero(struct page *page) 736{ 737 return page_ref_add_unless(page, 1, 0); 738} 739 740extern int page_is_ram(unsigned long pfn); 741 742enum { 743 REGION_INTERSECTS, 744 REGION_DISJOINT, 745 REGION_MIXED, 746}; 747 748int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 749 unsigned long desc); 750 751/* Support for virtually mapped pages */ 752struct page *vmalloc_to_page(const void *addr); 753unsigned long vmalloc_to_pfn(const void *addr); 754 755/* 756 * Determine if an address is within the vmalloc range 757 * 758 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 759 * is no special casing required. 760 */ 761 762#ifndef is_ioremap_addr 763#define is_ioremap_addr(x) is_vmalloc_addr(x) 764#endif 765 766#ifdef CONFIG_MMU 767extern bool is_vmalloc_addr(const void *x); 768extern int is_vmalloc_or_module_addr(const void *x); 769#else 770static inline bool is_vmalloc_addr(const void *x) 771{ 772 return false; 773} 774static inline int is_vmalloc_or_module_addr(const void *x) 775{ 776 return 0; 777} 778#endif 779 780/* 781 * How many times the entire folio is mapped as a single unit (eg by a 782 * PMD or PUD entry). This is probably not what you want, except for 783 * debugging purposes; look at folio_mapcount() or page_mapcount() 784 * instead. 785 */ 786static inline int folio_entire_mapcount(struct folio *folio) 787{ 788 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 789 return atomic_read(folio_mapcount_ptr(folio)) + 1; 790} 791 792/* 793 * Mapcount of compound page as a whole, does not include mapped sub-pages. 794 * 795 * Must be called only for compound pages. 796 */ 797static inline int compound_mapcount(struct page *page) 798{ 799 return folio_entire_mapcount(page_folio(page)); 800} 801 802/* 803 * The atomic page->_mapcount, starts from -1: so that transitions 804 * both from it and to it can be tracked, using atomic_inc_and_test 805 * and atomic_add_negative(-1). 806 */ 807static inline void page_mapcount_reset(struct page *page) 808{ 809 atomic_set(&(page)->_mapcount, -1); 810} 811 812int __page_mapcount(struct page *page); 813 814/* 815 * Mapcount of 0-order page; when compound sub-page, includes 816 * compound_mapcount(). 817 * 818 * Result is undefined for pages which cannot be mapped into userspace. 819 * For example SLAB or special types of pages. See function page_has_type(). 820 * They use this place in struct page differently. 821 */ 822static inline int page_mapcount(struct page *page) 823{ 824 if (unlikely(PageCompound(page))) 825 return __page_mapcount(page); 826 return atomic_read(&page->_mapcount) + 1; 827} 828 829int folio_mapcount(struct folio *folio); 830 831#ifdef CONFIG_TRANSPARENT_HUGEPAGE 832static inline int total_mapcount(struct page *page) 833{ 834 return folio_mapcount(page_folio(page)); 835} 836 837#else 838static inline int total_mapcount(struct page *page) 839{ 840 return page_mapcount(page); 841} 842#endif 843 844static inline struct page *virt_to_head_page(const void *x) 845{ 846 struct page *page = virt_to_page(x); 847 848 return compound_head(page); 849} 850 851static inline struct folio *virt_to_folio(const void *x) 852{ 853 struct page *page = virt_to_page(x); 854 855 return page_folio(page); 856} 857 858void __put_page(struct page *page); 859 860void put_pages_list(struct list_head *pages); 861 862void split_page(struct page *page, unsigned int order); 863void folio_copy(struct folio *dst, struct folio *src); 864 865unsigned long nr_free_buffer_pages(void); 866 867/* 868 * Compound pages have a destructor function. Provide a 869 * prototype for that function and accessor functions. 870 * These are _only_ valid on the head of a compound page. 871 */ 872typedef void compound_page_dtor(struct page *); 873 874/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 875enum compound_dtor_id { 876 NULL_COMPOUND_DTOR, 877 COMPOUND_PAGE_DTOR, 878#ifdef CONFIG_HUGETLB_PAGE 879 HUGETLB_PAGE_DTOR, 880#endif 881#ifdef CONFIG_TRANSPARENT_HUGEPAGE 882 TRANSHUGE_PAGE_DTOR, 883#endif 884 NR_COMPOUND_DTORS, 885}; 886extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 887 888static inline void set_compound_page_dtor(struct page *page, 889 enum compound_dtor_id compound_dtor) 890{ 891 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 892 page[1].compound_dtor = compound_dtor; 893} 894 895static inline void destroy_compound_page(struct page *page) 896{ 897 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 898 compound_page_dtors[page[1].compound_dtor](page); 899} 900 901static inline int head_compound_pincount(struct page *head) 902{ 903 return atomic_read(compound_pincount_ptr(head)); 904} 905 906static inline void set_compound_order(struct page *page, unsigned int order) 907{ 908 page[1].compound_order = order; 909#ifdef CONFIG_64BIT 910 page[1].compound_nr = 1U << order; 911#endif 912} 913 914/* Returns the number of pages in this potentially compound page. */ 915static inline unsigned long compound_nr(struct page *page) 916{ 917 if (!PageHead(page)) 918 return 1; 919#ifdef CONFIG_64BIT 920 return page[1].compound_nr; 921#else 922 return 1UL << compound_order(page); 923#endif 924} 925 926/* Returns the number of bytes in this potentially compound page. */ 927static inline unsigned long page_size(struct page *page) 928{ 929 return PAGE_SIZE << compound_order(page); 930} 931 932/* Returns the number of bits needed for the number of bytes in a page */ 933static inline unsigned int page_shift(struct page *page) 934{ 935 return PAGE_SHIFT + compound_order(page); 936} 937 938/** 939 * thp_order - Order of a transparent huge page. 940 * @page: Head page of a transparent huge page. 941 */ 942static inline unsigned int thp_order(struct page *page) 943{ 944 VM_BUG_ON_PGFLAGS(PageTail(page), page); 945 return compound_order(page); 946} 947 948/** 949 * thp_nr_pages - The number of regular pages in this huge page. 950 * @page: The head page of a huge page. 951 */ 952static inline int thp_nr_pages(struct page *page) 953{ 954 VM_BUG_ON_PGFLAGS(PageTail(page), page); 955 return compound_nr(page); 956} 957 958/** 959 * thp_size - Size of a transparent huge page. 960 * @page: Head page of a transparent huge page. 961 * 962 * Return: Number of bytes in this page. 963 */ 964static inline unsigned long thp_size(struct page *page) 965{ 966 return PAGE_SIZE << thp_order(page); 967} 968 969void free_compound_page(struct page *page); 970 971#ifdef CONFIG_MMU 972/* 973 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 974 * servicing faults for write access. In the normal case, do always want 975 * pte_mkwrite. But get_user_pages can cause write faults for mappings 976 * that do not have writing enabled, when used by access_process_vm. 977 */ 978static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 979{ 980 if (likely(vma->vm_flags & VM_WRITE)) 981 pte = pte_mkwrite(pte); 982 return pte; 983} 984 985vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 986void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 987 988vm_fault_t finish_fault(struct vm_fault *vmf); 989vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 990#endif 991 992/* 993 * Multiple processes may "see" the same page. E.g. for untouched 994 * mappings of /dev/null, all processes see the same page full of 995 * zeroes, and text pages of executables and shared libraries have 996 * only one copy in memory, at most, normally. 997 * 998 * For the non-reserved pages, page_count(page) denotes a reference count. 999 * page_count() == 0 means the page is free. page->lru is then used for 1000 * freelist management in the buddy allocator. 1001 * page_count() > 0 means the page has been allocated. 1002 * 1003 * Pages are allocated by the slab allocator in order to provide memory 1004 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1005 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1006 * unless a particular usage is carefully commented. (the responsibility of 1007 * freeing the kmalloc memory is the caller's, of course). 1008 * 1009 * A page may be used by anyone else who does a __get_free_page(). 1010 * In this case, page_count still tracks the references, and should only 1011 * be used through the normal accessor functions. The top bits of page->flags 1012 * and page->virtual store page management information, but all other fields 1013 * are unused and could be used privately, carefully. The management of this 1014 * page is the responsibility of the one who allocated it, and those who have 1015 * subsequently been given references to it. 1016 * 1017 * The other pages (we may call them "pagecache pages") are completely 1018 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1019 * The following discussion applies only to them. 1020 * 1021 * A pagecache page contains an opaque `private' member, which belongs to the 1022 * page's address_space. Usually, this is the address of a circular list of 1023 * the page's disk buffers. PG_private must be set to tell the VM to call 1024 * into the filesystem to release these pages. 1025 * 1026 * A page may belong to an inode's memory mapping. In this case, page->mapping 1027 * is the pointer to the inode, and page->index is the file offset of the page, 1028 * in units of PAGE_SIZE. 1029 * 1030 * If pagecache pages are not associated with an inode, they are said to be 1031 * anonymous pages. These may become associated with the swapcache, and in that 1032 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1033 * 1034 * In either case (swapcache or inode backed), the pagecache itself holds one 1035 * reference to the page. Setting PG_private should also increment the 1036 * refcount. The each user mapping also has a reference to the page. 1037 * 1038 * The pagecache pages are stored in a per-mapping radix tree, which is 1039 * rooted at mapping->i_pages, and indexed by offset. 1040 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1041 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1042 * 1043 * All pagecache pages may be subject to I/O: 1044 * - inode pages may need to be read from disk, 1045 * - inode pages which have been modified and are MAP_SHARED may need 1046 * to be written back to the inode on disk, 1047 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1048 * modified may need to be swapped out to swap space and (later) to be read 1049 * back into memory. 1050 */ 1051 1052/* 1053 * The zone field is never updated after free_area_init_core() 1054 * sets it, so none of the operations on it need to be atomic. 1055 */ 1056 1057/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1058#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1059#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1060#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1061#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1062#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1063 1064/* 1065 * Define the bit shifts to access each section. For non-existent 1066 * sections we define the shift as 0; that plus a 0 mask ensures 1067 * the compiler will optimise away reference to them. 1068 */ 1069#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1070#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1071#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1072#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1073#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1074 1075/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1076#ifdef NODE_NOT_IN_PAGE_FLAGS 1077#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1078#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1079 SECTIONS_PGOFF : ZONES_PGOFF) 1080#else 1081#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1082#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1083 NODES_PGOFF : ZONES_PGOFF) 1084#endif 1085 1086#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1087 1088#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1089#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1090#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1091#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1092#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1093#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1094 1095static inline enum zone_type page_zonenum(const struct page *page) 1096{ 1097 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1098 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1099} 1100 1101static inline enum zone_type folio_zonenum(const struct folio *folio) 1102{ 1103 return page_zonenum(&folio->page); 1104} 1105 1106#ifdef CONFIG_ZONE_DEVICE 1107static inline bool is_zone_device_page(const struct page *page) 1108{ 1109 return page_zonenum(page) == ZONE_DEVICE; 1110} 1111extern void memmap_init_zone_device(struct zone *, unsigned long, 1112 unsigned long, struct dev_pagemap *); 1113#else 1114static inline bool is_zone_device_page(const struct page *page) 1115{ 1116 return false; 1117} 1118#endif 1119 1120static inline bool folio_is_zone_device(const struct folio *folio) 1121{ 1122 return is_zone_device_page(&folio->page); 1123} 1124 1125static inline bool is_zone_movable_page(const struct page *page) 1126{ 1127 return page_zonenum(page) == ZONE_MOVABLE; 1128} 1129 1130#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1131DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1132 1133bool __put_devmap_managed_page(struct page *page); 1134static inline bool put_devmap_managed_page(struct page *page) 1135{ 1136 if (!static_branch_unlikely(&devmap_managed_key)) 1137 return false; 1138 if (!is_zone_device_page(page)) 1139 return false; 1140 return __put_devmap_managed_page(page); 1141} 1142 1143#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1144static inline bool put_devmap_managed_page(struct page *page) 1145{ 1146 return false; 1147} 1148#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1149 1150/* 127: arbitrary random number, small enough to assemble well */ 1151#define folio_ref_zero_or_close_to_overflow(folio) \ 1152 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1153 1154/** 1155 * folio_get - Increment the reference count on a folio. 1156 * @folio: The folio. 1157 * 1158 * Context: May be called in any context, as long as you know that 1159 * you have a refcount on the folio. If you do not already have one, 1160 * folio_try_get() may be the right interface for you to use. 1161 */ 1162static inline void folio_get(struct folio *folio) 1163{ 1164 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1165 folio_ref_inc(folio); 1166} 1167 1168static inline void get_page(struct page *page) 1169{ 1170 folio_get(page_folio(page)); 1171} 1172 1173bool __must_check try_grab_page(struct page *page, unsigned int flags); 1174 1175static inline __must_check bool try_get_page(struct page *page) 1176{ 1177 page = compound_head(page); 1178 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1179 return false; 1180 page_ref_inc(page); 1181 return true; 1182} 1183 1184/** 1185 * folio_put - Decrement the reference count on a folio. 1186 * @folio: The folio. 1187 * 1188 * If the folio's reference count reaches zero, the memory will be 1189 * released back to the page allocator and may be used by another 1190 * allocation immediately. Do not access the memory or the struct folio 1191 * after calling folio_put() unless you can be sure that it wasn't the 1192 * last reference. 1193 * 1194 * Context: May be called in process or interrupt context, but not in NMI 1195 * context. May be called while holding a spinlock. 1196 */ 1197static inline void folio_put(struct folio *folio) 1198{ 1199 if (folio_put_testzero(folio)) 1200 __put_page(&folio->page); 1201} 1202 1203/** 1204 * folio_put_refs - Reduce the reference count on a folio. 1205 * @folio: The folio. 1206 * @refs: The amount to subtract from the folio's reference count. 1207 * 1208 * If the folio's reference count reaches zero, the memory will be 1209 * released back to the page allocator and may be used by another 1210 * allocation immediately. Do not access the memory or the struct folio 1211 * after calling folio_put_refs() unless you can be sure that these weren't 1212 * the last references. 1213 * 1214 * Context: May be called in process or interrupt context, but not in NMI 1215 * context. May be called while holding a spinlock. 1216 */ 1217static inline void folio_put_refs(struct folio *folio, int refs) 1218{ 1219 if (folio_ref_sub_and_test(folio, refs)) 1220 __put_page(&folio->page); 1221} 1222 1223static inline void put_page(struct page *page) 1224{ 1225 struct folio *folio = page_folio(page); 1226 1227 /* 1228 * For some devmap managed pages we need to catch refcount transition 1229 * from 2 to 1: 1230 */ 1231 if (put_devmap_managed_page(&folio->page)) 1232 return; 1233 folio_put(folio); 1234} 1235 1236/* 1237 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1238 * the page's refcount so that two separate items are tracked: the original page 1239 * reference count, and also a new count of how many pin_user_pages() calls were 1240 * made against the page. ("gup-pinned" is another term for the latter). 1241 * 1242 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1243 * distinct from normal pages. As such, the unpin_user_page() call (and its 1244 * variants) must be used in order to release gup-pinned pages. 1245 * 1246 * Choice of value: 1247 * 1248 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1249 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1250 * simpler, due to the fact that adding an even power of two to the page 1251 * refcount has the effect of using only the upper N bits, for the code that 1252 * counts up using the bias value. This means that the lower bits are left for 1253 * the exclusive use of the original code that increments and decrements by one 1254 * (or at least, by much smaller values than the bias value). 1255 * 1256 * Of course, once the lower bits overflow into the upper bits (and this is 1257 * OK, because subtraction recovers the original values), then visual inspection 1258 * no longer suffices to directly view the separate counts. However, for normal 1259 * applications that don't have huge page reference counts, this won't be an 1260 * issue. 1261 * 1262 * Locking: the lockless algorithm described in folio_try_get_rcu() 1263 * provides safe operation for get_user_pages(), page_mkclean() and 1264 * other calls that race to set up page table entries. 1265 */ 1266#define GUP_PIN_COUNTING_BIAS (1U << 10) 1267 1268void unpin_user_page(struct page *page); 1269void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1270 bool make_dirty); 1271void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1272 bool make_dirty); 1273void unpin_user_pages(struct page **pages, unsigned long npages); 1274 1275static inline bool is_cow_mapping(vm_flags_t flags) 1276{ 1277 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1278} 1279 1280#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1281#define SECTION_IN_PAGE_FLAGS 1282#endif 1283 1284/* 1285 * The identification function is mainly used by the buddy allocator for 1286 * determining if two pages could be buddies. We are not really identifying 1287 * the zone since we could be using the section number id if we do not have 1288 * node id available in page flags. 1289 * We only guarantee that it will return the same value for two combinable 1290 * pages in a zone. 1291 */ 1292static inline int page_zone_id(struct page *page) 1293{ 1294 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1295} 1296 1297#ifdef NODE_NOT_IN_PAGE_FLAGS 1298extern int page_to_nid(const struct page *page); 1299#else 1300static inline int page_to_nid(const struct page *page) 1301{ 1302 struct page *p = (struct page *)page; 1303 1304 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1305} 1306#endif 1307 1308static inline int folio_nid(const struct folio *folio) 1309{ 1310 return page_to_nid(&folio->page); 1311} 1312 1313#ifdef CONFIG_NUMA_BALANCING 1314static inline int cpu_pid_to_cpupid(int cpu, int pid) 1315{ 1316 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1317} 1318 1319static inline int cpupid_to_pid(int cpupid) 1320{ 1321 return cpupid & LAST__PID_MASK; 1322} 1323 1324static inline int cpupid_to_cpu(int cpupid) 1325{ 1326 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1327} 1328 1329static inline int cpupid_to_nid(int cpupid) 1330{ 1331 return cpu_to_node(cpupid_to_cpu(cpupid)); 1332} 1333 1334static inline bool cpupid_pid_unset(int cpupid) 1335{ 1336 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1337} 1338 1339static inline bool cpupid_cpu_unset(int cpupid) 1340{ 1341 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1342} 1343 1344static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1345{ 1346 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1347} 1348 1349#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1350#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1351static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1352{ 1353 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1354} 1355 1356static inline int page_cpupid_last(struct page *page) 1357{ 1358 return page->_last_cpupid; 1359} 1360static inline void page_cpupid_reset_last(struct page *page) 1361{ 1362 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1363} 1364#else 1365static inline int page_cpupid_last(struct page *page) 1366{ 1367 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1368} 1369 1370extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1371 1372static inline void page_cpupid_reset_last(struct page *page) 1373{ 1374 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1375} 1376#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1377#else /* !CONFIG_NUMA_BALANCING */ 1378static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1379{ 1380 return page_to_nid(page); /* XXX */ 1381} 1382 1383static inline int page_cpupid_last(struct page *page) 1384{ 1385 return page_to_nid(page); /* XXX */ 1386} 1387 1388static inline int cpupid_to_nid(int cpupid) 1389{ 1390 return -1; 1391} 1392 1393static inline int cpupid_to_pid(int cpupid) 1394{ 1395 return -1; 1396} 1397 1398static inline int cpupid_to_cpu(int cpupid) 1399{ 1400 return -1; 1401} 1402 1403static inline int cpu_pid_to_cpupid(int nid, int pid) 1404{ 1405 return -1; 1406} 1407 1408static inline bool cpupid_pid_unset(int cpupid) 1409{ 1410 return true; 1411} 1412 1413static inline void page_cpupid_reset_last(struct page *page) 1414{ 1415} 1416 1417static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1418{ 1419 return false; 1420} 1421#endif /* CONFIG_NUMA_BALANCING */ 1422 1423#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1424 1425/* 1426 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1427 * setting tags for all pages to native kernel tag value 0xff, as the default 1428 * value 0x00 maps to 0xff. 1429 */ 1430 1431static inline u8 page_kasan_tag(const struct page *page) 1432{ 1433 u8 tag = 0xff; 1434 1435 if (kasan_enabled()) { 1436 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1437 tag ^= 0xff; 1438 } 1439 1440 return tag; 1441} 1442 1443static inline void page_kasan_tag_set(struct page *page, u8 tag) 1444{ 1445 unsigned long old_flags, flags; 1446 1447 if (!kasan_enabled()) 1448 return; 1449 1450 tag ^= 0xff; 1451 old_flags = READ_ONCE(page->flags); 1452 do { 1453 flags = old_flags; 1454 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1455 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1456 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1457} 1458 1459static inline void page_kasan_tag_reset(struct page *page) 1460{ 1461 if (kasan_enabled()) 1462 page_kasan_tag_set(page, 0xff); 1463} 1464 1465#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1466 1467static inline u8 page_kasan_tag(const struct page *page) 1468{ 1469 return 0xff; 1470} 1471 1472static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1473static inline void page_kasan_tag_reset(struct page *page) { } 1474 1475#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1476 1477static inline struct zone *page_zone(const struct page *page) 1478{ 1479 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1480} 1481 1482static inline pg_data_t *page_pgdat(const struct page *page) 1483{ 1484 return NODE_DATA(page_to_nid(page)); 1485} 1486 1487static inline struct zone *folio_zone(const struct folio *folio) 1488{ 1489 return page_zone(&folio->page); 1490} 1491 1492static inline pg_data_t *folio_pgdat(const struct folio *folio) 1493{ 1494 return page_pgdat(&folio->page); 1495} 1496 1497#ifdef SECTION_IN_PAGE_FLAGS 1498static inline void set_page_section(struct page *page, unsigned long section) 1499{ 1500 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1501 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1502} 1503 1504static inline unsigned long page_to_section(const struct page *page) 1505{ 1506 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1507} 1508#endif 1509 1510/** 1511 * folio_pfn - Return the Page Frame Number of a folio. 1512 * @folio: The folio. 1513 * 1514 * A folio may contain multiple pages. The pages have consecutive 1515 * Page Frame Numbers. 1516 * 1517 * Return: The Page Frame Number of the first page in the folio. 1518 */ 1519static inline unsigned long folio_pfn(struct folio *folio) 1520{ 1521 return page_to_pfn(&folio->page); 1522} 1523 1524static inline atomic_t *folio_pincount_ptr(struct folio *folio) 1525{ 1526 return &folio_page(folio, 1)->compound_pincount; 1527} 1528 1529/** 1530 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1531 * @folio: The folio. 1532 * 1533 * This function checks if a folio has been pinned via a call to 1534 * a function in the pin_user_pages() family. 1535 * 1536 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1537 * because it means "definitely not pinned for DMA", but true means "probably 1538 * pinned for DMA, but possibly a false positive due to having at least 1539 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1540 * 1541 * False positives are OK, because: a) it's unlikely for a folio to 1542 * get that many refcounts, and b) all the callers of this routine are 1543 * expected to be able to deal gracefully with a false positive. 1544 * 1545 * For large folios, the result will be exactly correct. That's because 1546 * we have more tracking data available: the compound_pincount is used 1547 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1548 * 1549 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1550 * 1551 * Return: True, if it is likely that the page has been "dma-pinned". 1552 * False, if the page is definitely not dma-pinned. 1553 */ 1554static inline bool folio_maybe_dma_pinned(struct folio *folio) 1555{ 1556 if (folio_test_large(folio)) 1557 return atomic_read(folio_pincount_ptr(folio)) > 0; 1558 1559 /* 1560 * folio_ref_count() is signed. If that refcount overflows, then 1561 * folio_ref_count() returns a negative value, and callers will avoid 1562 * further incrementing the refcount. 1563 * 1564 * Here, for that overflow case, use the sign bit to count a little 1565 * bit higher via unsigned math, and thus still get an accurate result. 1566 */ 1567 return ((unsigned int)folio_ref_count(folio)) >= 1568 GUP_PIN_COUNTING_BIAS; 1569} 1570 1571static inline bool page_maybe_dma_pinned(struct page *page) 1572{ 1573 return folio_maybe_dma_pinned(page_folio(page)); 1574} 1575 1576/* 1577 * This should most likely only be called during fork() to see whether we 1578 * should break the cow immediately for a page on the src mm. 1579 */ 1580static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1581 struct page *page) 1582{ 1583 if (!is_cow_mapping(vma->vm_flags)) 1584 return false; 1585 1586 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1587 return false; 1588 1589 return page_maybe_dma_pinned(page); 1590} 1591 1592/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */ 1593#ifdef CONFIG_MIGRATION 1594static inline bool is_pinnable_page(struct page *page) 1595{ 1596 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) || 1597 is_zero_pfn(page_to_pfn(page)); 1598} 1599#else 1600static inline bool is_pinnable_page(struct page *page) 1601{ 1602 return true; 1603} 1604#endif 1605 1606static inline bool folio_is_pinnable(struct folio *folio) 1607{ 1608 return is_pinnable_page(&folio->page); 1609} 1610 1611static inline void set_page_zone(struct page *page, enum zone_type zone) 1612{ 1613 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1614 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1615} 1616 1617static inline void set_page_node(struct page *page, unsigned long node) 1618{ 1619 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1620 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1621} 1622 1623static inline void set_page_links(struct page *page, enum zone_type zone, 1624 unsigned long node, unsigned long pfn) 1625{ 1626 set_page_zone(page, zone); 1627 set_page_node(page, node); 1628#ifdef SECTION_IN_PAGE_FLAGS 1629 set_page_section(page, pfn_to_section_nr(pfn)); 1630#endif 1631} 1632 1633/** 1634 * folio_nr_pages - The number of pages in the folio. 1635 * @folio: The folio. 1636 * 1637 * Return: A positive power of two. 1638 */ 1639static inline long folio_nr_pages(struct folio *folio) 1640{ 1641 return compound_nr(&folio->page); 1642} 1643 1644/** 1645 * folio_next - Move to the next physical folio. 1646 * @folio: The folio we're currently operating on. 1647 * 1648 * If you have physically contiguous memory which may span more than 1649 * one folio (eg a &struct bio_vec), use this function to move from one 1650 * folio to the next. Do not use it if the memory is only virtually 1651 * contiguous as the folios are almost certainly not adjacent to each 1652 * other. This is the folio equivalent to writing ``page++``. 1653 * 1654 * Context: We assume that the folios are refcounted and/or locked at a 1655 * higher level and do not adjust the reference counts. 1656 * Return: The next struct folio. 1657 */ 1658static inline struct folio *folio_next(struct folio *folio) 1659{ 1660 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 1661} 1662 1663/** 1664 * folio_shift - The size of the memory described by this folio. 1665 * @folio: The folio. 1666 * 1667 * A folio represents a number of bytes which is a power-of-two in size. 1668 * This function tells you which power-of-two the folio is. See also 1669 * folio_size() and folio_order(). 1670 * 1671 * Context: The caller should have a reference on the folio to prevent 1672 * it from being split. It is not necessary for the folio to be locked. 1673 * Return: The base-2 logarithm of the size of this folio. 1674 */ 1675static inline unsigned int folio_shift(struct folio *folio) 1676{ 1677 return PAGE_SHIFT + folio_order(folio); 1678} 1679 1680/** 1681 * folio_size - The number of bytes in a folio. 1682 * @folio: The folio. 1683 * 1684 * Context: The caller should have a reference on the folio to prevent 1685 * it from being split. It is not necessary for the folio to be locked. 1686 * Return: The number of bytes in this folio. 1687 */ 1688static inline size_t folio_size(struct folio *folio) 1689{ 1690 return PAGE_SIZE << folio_order(folio); 1691} 1692 1693#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 1694static inline int arch_make_page_accessible(struct page *page) 1695{ 1696 return 0; 1697} 1698#endif 1699 1700#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 1701static inline int arch_make_folio_accessible(struct folio *folio) 1702{ 1703 int ret; 1704 long i, nr = folio_nr_pages(folio); 1705 1706 for (i = 0; i < nr; i++) { 1707 ret = arch_make_page_accessible(folio_page(folio, i)); 1708 if (ret) 1709 break; 1710 } 1711 1712 return ret; 1713} 1714#endif 1715 1716/* 1717 * Some inline functions in vmstat.h depend on page_zone() 1718 */ 1719#include <linux/vmstat.h> 1720 1721static __always_inline void *lowmem_page_address(const struct page *page) 1722{ 1723 return page_to_virt(page); 1724} 1725 1726#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1727#define HASHED_PAGE_VIRTUAL 1728#endif 1729 1730#if defined(WANT_PAGE_VIRTUAL) 1731static inline void *page_address(const struct page *page) 1732{ 1733 return page->virtual; 1734} 1735static inline void set_page_address(struct page *page, void *address) 1736{ 1737 page->virtual = address; 1738} 1739#define page_address_init() do { } while(0) 1740#endif 1741 1742#if defined(HASHED_PAGE_VIRTUAL) 1743void *page_address(const struct page *page); 1744void set_page_address(struct page *page, void *virtual); 1745void page_address_init(void); 1746#endif 1747 1748#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1749#define page_address(page) lowmem_page_address(page) 1750#define set_page_address(page, address) do { } while(0) 1751#define page_address_init() do { } while(0) 1752#endif 1753 1754static inline void *folio_address(const struct folio *folio) 1755{ 1756 return page_address(&folio->page); 1757} 1758 1759extern void *page_rmapping(struct page *page); 1760extern pgoff_t __page_file_index(struct page *page); 1761 1762/* 1763 * Return the pagecache index of the passed page. Regular pagecache pages 1764 * use ->index whereas swapcache pages use swp_offset(->private) 1765 */ 1766static inline pgoff_t page_index(struct page *page) 1767{ 1768 if (unlikely(PageSwapCache(page))) 1769 return __page_file_index(page); 1770 return page->index; 1771} 1772 1773bool page_mapped(struct page *page); 1774bool folio_mapped(struct folio *folio); 1775 1776/* 1777 * Return true only if the page has been allocated with 1778 * ALLOC_NO_WATERMARKS and the low watermark was not 1779 * met implying that the system is under some pressure. 1780 */ 1781static inline bool page_is_pfmemalloc(const struct page *page) 1782{ 1783 /* 1784 * lru.next has bit 1 set if the page is allocated from the 1785 * pfmemalloc reserves. Callers may simply overwrite it if 1786 * they do not need to preserve that information. 1787 */ 1788 return (uintptr_t)page->lru.next & BIT(1); 1789} 1790 1791/* 1792 * Only to be called by the page allocator on a freshly allocated 1793 * page. 1794 */ 1795static inline void set_page_pfmemalloc(struct page *page) 1796{ 1797 page->lru.next = (void *)BIT(1); 1798} 1799 1800static inline void clear_page_pfmemalloc(struct page *page) 1801{ 1802 page->lru.next = NULL; 1803} 1804 1805/* 1806 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1807 */ 1808extern void pagefault_out_of_memory(void); 1809 1810#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1811#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1812#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 1813 1814/* 1815 * Flags passed to show_mem() and show_free_areas() to suppress output in 1816 * various contexts. 1817 */ 1818#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1819 1820extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1821 1822#ifdef CONFIG_MMU 1823extern bool can_do_mlock(void); 1824#else 1825static inline bool can_do_mlock(void) { return false; } 1826#endif 1827extern int user_shm_lock(size_t, struct ucounts *); 1828extern void user_shm_unlock(size_t, struct ucounts *); 1829 1830struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1831 pte_t pte); 1832struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1833 pmd_t pmd); 1834 1835void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1836 unsigned long size); 1837void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1838 unsigned long size); 1839void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1840 unsigned long start, unsigned long end); 1841 1842struct mmu_notifier_range; 1843 1844void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1845 unsigned long end, unsigned long floor, unsigned long ceiling); 1846int 1847copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 1848int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, 1849 struct mmu_notifier_range *range, pte_t **ptepp, 1850 pmd_t **pmdpp, spinlock_t **ptlp); 1851int follow_pte(struct mm_struct *mm, unsigned long address, 1852 pte_t **ptepp, spinlock_t **ptlp); 1853int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1854 unsigned long *pfn); 1855int follow_phys(struct vm_area_struct *vma, unsigned long address, 1856 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1857int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1858 void *buf, int len, int write); 1859 1860extern void truncate_pagecache(struct inode *inode, loff_t new); 1861extern void truncate_setsize(struct inode *inode, loff_t newsize); 1862void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1863void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1864int generic_error_remove_page(struct address_space *mapping, struct page *page); 1865 1866#ifdef CONFIG_MMU 1867extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1868 unsigned long address, unsigned int flags, 1869 struct pt_regs *regs); 1870extern int fixup_user_fault(struct mm_struct *mm, 1871 unsigned long address, unsigned int fault_flags, 1872 bool *unlocked); 1873void unmap_mapping_pages(struct address_space *mapping, 1874 pgoff_t start, pgoff_t nr, bool even_cows); 1875void unmap_mapping_range(struct address_space *mapping, 1876 loff_t const holebegin, loff_t const holelen, int even_cows); 1877#else 1878static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1879 unsigned long address, unsigned int flags, 1880 struct pt_regs *regs) 1881{ 1882 /* should never happen if there's no MMU */ 1883 BUG(); 1884 return VM_FAULT_SIGBUS; 1885} 1886static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1887 unsigned int fault_flags, bool *unlocked) 1888{ 1889 /* should never happen if there's no MMU */ 1890 BUG(); 1891 return -EFAULT; 1892} 1893static inline void unmap_mapping_pages(struct address_space *mapping, 1894 pgoff_t start, pgoff_t nr, bool even_cows) { } 1895static inline void unmap_mapping_range(struct address_space *mapping, 1896 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1897#endif 1898 1899static inline void unmap_shared_mapping_range(struct address_space *mapping, 1900 loff_t const holebegin, loff_t const holelen) 1901{ 1902 unmap_mapping_range(mapping, holebegin, holelen, 0); 1903} 1904 1905extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1906 void *buf, int len, unsigned int gup_flags); 1907extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1908 void *buf, int len, unsigned int gup_flags); 1909extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1910 void *buf, int len, unsigned int gup_flags); 1911 1912long get_user_pages_remote(struct mm_struct *mm, 1913 unsigned long start, unsigned long nr_pages, 1914 unsigned int gup_flags, struct page **pages, 1915 struct vm_area_struct **vmas, int *locked); 1916long pin_user_pages_remote(struct mm_struct *mm, 1917 unsigned long start, unsigned long nr_pages, 1918 unsigned int gup_flags, struct page **pages, 1919 struct vm_area_struct **vmas, int *locked); 1920long get_user_pages(unsigned long start, unsigned long nr_pages, 1921 unsigned int gup_flags, struct page **pages, 1922 struct vm_area_struct **vmas); 1923long pin_user_pages(unsigned long start, unsigned long nr_pages, 1924 unsigned int gup_flags, struct page **pages, 1925 struct vm_area_struct **vmas); 1926long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1927 struct page **pages, unsigned int gup_flags); 1928long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1929 struct page **pages, unsigned int gup_flags); 1930 1931int get_user_pages_fast(unsigned long start, int nr_pages, 1932 unsigned int gup_flags, struct page **pages); 1933int pin_user_pages_fast(unsigned long start, int nr_pages, 1934 unsigned int gup_flags, struct page **pages); 1935 1936int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1937int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1938 struct task_struct *task, bool bypass_rlim); 1939 1940struct kvec; 1941int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1942 struct page **pages); 1943struct page *get_dump_page(unsigned long addr); 1944 1945bool folio_mark_dirty(struct folio *folio); 1946bool set_page_dirty(struct page *page); 1947int set_page_dirty_lock(struct page *page); 1948 1949int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1950 1951extern unsigned long move_page_tables(struct vm_area_struct *vma, 1952 unsigned long old_addr, struct vm_area_struct *new_vma, 1953 unsigned long new_addr, unsigned long len, 1954 bool need_rmap_locks); 1955 1956/* 1957 * Flags used by change_protection(). For now we make it a bitmap so 1958 * that we can pass in multiple flags just like parameters. However 1959 * for now all the callers are only use one of the flags at the same 1960 * time. 1961 */ 1962/* Whether we should allow dirty bit accounting */ 1963#define MM_CP_DIRTY_ACCT (1UL << 0) 1964/* Whether this protection change is for NUMA hints */ 1965#define MM_CP_PROT_NUMA (1UL << 1) 1966/* Whether this change is for write protecting */ 1967#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1968#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1969#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1970 MM_CP_UFFD_WP_RESOLVE) 1971 1972extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1973 unsigned long end, pgprot_t newprot, 1974 unsigned long cp_flags); 1975extern int mprotect_fixup(struct vm_area_struct *vma, 1976 struct vm_area_struct **pprev, unsigned long start, 1977 unsigned long end, unsigned long newflags); 1978 1979/* 1980 * doesn't attempt to fault and will return short. 1981 */ 1982int get_user_pages_fast_only(unsigned long start, int nr_pages, 1983 unsigned int gup_flags, struct page **pages); 1984int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1985 unsigned int gup_flags, struct page **pages); 1986 1987static inline bool get_user_page_fast_only(unsigned long addr, 1988 unsigned int gup_flags, struct page **pagep) 1989{ 1990 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1991} 1992/* 1993 * per-process(per-mm_struct) statistics. 1994 */ 1995static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1996{ 1997 long val = atomic_long_read(&mm->rss_stat.count[member]); 1998 1999#ifdef SPLIT_RSS_COUNTING 2000 /* 2001 * counter is updated in asynchronous manner and may go to minus. 2002 * But it's never be expected number for users. 2003 */ 2004 if (val < 0) 2005 val = 0; 2006#endif 2007 return (unsigned long)val; 2008} 2009 2010void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 2011 2012static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2013{ 2014 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 2015 2016 mm_trace_rss_stat(mm, member, count); 2017} 2018 2019static inline void inc_mm_counter(struct mm_struct *mm, int member) 2020{ 2021 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 2022 2023 mm_trace_rss_stat(mm, member, count); 2024} 2025 2026static inline void dec_mm_counter(struct mm_struct *mm, int member) 2027{ 2028 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 2029 2030 mm_trace_rss_stat(mm, member, count); 2031} 2032 2033/* Optimized variant when page is already known not to be PageAnon */ 2034static inline int mm_counter_file(struct page *page) 2035{ 2036 if (PageSwapBacked(page)) 2037 return MM_SHMEMPAGES; 2038 return MM_FILEPAGES; 2039} 2040 2041static inline int mm_counter(struct page *page) 2042{ 2043 if (PageAnon(page)) 2044 return MM_ANONPAGES; 2045 return mm_counter_file(page); 2046} 2047 2048static inline unsigned long get_mm_rss(struct mm_struct *mm) 2049{ 2050 return get_mm_counter(mm, MM_FILEPAGES) + 2051 get_mm_counter(mm, MM_ANONPAGES) + 2052 get_mm_counter(mm, MM_SHMEMPAGES); 2053} 2054 2055static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2056{ 2057 return max(mm->hiwater_rss, get_mm_rss(mm)); 2058} 2059 2060static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2061{ 2062 return max(mm->hiwater_vm, mm->total_vm); 2063} 2064 2065static inline void update_hiwater_rss(struct mm_struct *mm) 2066{ 2067 unsigned long _rss = get_mm_rss(mm); 2068 2069 if ((mm)->hiwater_rss < _rss) 2070 (mm)->hiwater_rss = _rss; 2071} 2072 2073static inline void update_hiwater_vm(struct mm_struct *mm) 2074{ 2075 if (mm->hiwater_vm < mm->total_vm) 2076 mm->hiwater_vm = mm->total_vm; 2077} 2078 2079static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2080{ 2081 mm->hiwater_rss = get_mm_rss(mm); 2082} 2083 2084static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2085 struct mm_struct *mm) 2086{ 2087 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2088 2089 if (*maxrss < hiwater_rss) 2090 *maxrss = hiwater_rss; 2091} 2092 2093#if defined(SPLIT_RSS_COUNTING) 2094void sync_mm_rss(struct mm_struct *mm); 2095#else 2096static inline void sync_mm_rss(struct mm_struct *mm) 2097{ 2098} 2099#endif 2100 2101#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2102static inline int pte_special(pte_t pte) 2103{ 2104 return 0; 2105} 2106 2107static inline pte_t pte_mkspecial(pte_t pte) 2108{ 2109 return pte; 2110} 2111#endif 2112 2113#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2114static inline int pte_devmap(pte_t pte) 2115{ 2116 return 0; 2117} 2118#endif 2119 2120int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2121 2122extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2123 spinlock_t **ptl); 2124static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2125 spinlock_t **ptl) 2126{ 2127 pte_t *ptep; 2128 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2129 return ptep; 2130} 2131 2132#ifdef __PAGETABLE_P4D_FOLDED 2133static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2134 unsigned long address) 2135{ 2136 return 0; 2137} 2138#else 2139int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2140#endif 2141 2142#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2143static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2144 unsigned long address) 2145{ 2146 return 0; 2147} 2148static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2149static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2150 2151#else 2152int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2153 2154static inline void mm_inc_nr_puds(struct mm_struct *mm) 2155{ 2156 if (mm_pud_folded(mm)) 2157 return; 2158 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2159} 2160 2161static inline void mm_dec_nr_puds(struct mm_struct *mm) 2162{ 2163 if (mm_pud_folded(mm)) 2164 return; 2165 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2166} 2167#endif 2168 2169#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2170static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2171 unsigned long address) 2172{ 2173 return 0; 2174} 2175 2176static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2177static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2178 2179#else 2180int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2181 2182static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2183{ 2184 if (mm_pmd_folded(mm)) 2185 return; 2186 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2187} 2188 2189static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2190{ 2191 if (mm_pmd_folded(mm)) 2192 return; 2193 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2194} 2195#endif 2196 2197#ifdef CONFIG_MMU 2198static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2199{ 2200 atomic_long_set(&mm->pgtables_bytes, 0); 2201} 2202 2203static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2204{ 2205 return atomic_long_read(&mm->pgtables_bytes); 2206} 2207 2208static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2209{ 2210 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2211} 2212 2213static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2214{ 2215 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2216} 2217#else 2218 2219static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2220static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2221{ 2222 return 0; 2223} 2224 2225static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2226static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2227#endif 2228 2229int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2230int __pte_alloc_kernel(pmd_t *pmd); 2231 2232#if defined(CONFIG_MMU) 2233 2234static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2235 unsigned long address) 2236{ 2237 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2238 NULL : p4d_offset(pgd, address); 2239} 2240 2241static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2242 unsigned long address) 2243{ 2244 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2245 NULL : pud_offset(p4d, address); 2246} 2247 2248static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2249{ 2250 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2251 NULL: pmd_offset(pud, address); 2252} 2253#endif /* CONFIG_MMU */ 2254 2255#if USE_SPLIT_PTE_PTLOCKS 2256#if ALLOC_SPLIT_PTLOCKS 2257void __init ptlock_cache_init(void); 2258extern bool ptlock_alloc(struct page *page); 2259extern void ptlock_free(struct page *page); 2260 2261static inline spinlock_t *ptlock_ptr(struct page *page) 2262{ 2263 return page->ptl; 2264} 2265#else /* ALLOC_SPLIT_PTLOCKS */ 2266static inline void ptlock_cache_init(void) 2267{ 2268} 2269 2270static inline bool ptlock_alloc(struct page *page) 2271{ 2272 return true; 2273} 2274 2275static inline void ptlock_free(struct page *page) 2276{ 2277} 2278 2279static inline spinlock_t *ptlock_ptr(struct page *page) 2280{ 2281 return &page->ptl; 2282} 2283#endif /* ALLOC_SPLIT_PTLOCKS */ 2284 2285static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2286{ 2287 return ptlock_ptr(pmd_page(*pmd)); 2288} 2289 2290static inline bool ptlock_init(struct page *page) 2291{ 2292 /* 2293 * prep_new_page() initialize page->private (and therefore page->ptl) 2294 * with 0. Make sure nobody took it in use in between. 2295 * 2296 * It can happen if arch try to use slab for page table allocation: 2297 * slab code uses page->slab_cache, which share storage with page->ptl. 2298 */ 2299 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2300 if (!ptlock_alloc(page)) 2301 return false; 2302 spin_lock_init(ptlock_ptr(page)); 2303 return true; 2304} 2305 2306#else /* !USE_SPLIT_PTE_PTLOCKS */ 2307/* 2308 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2309 */ 2310static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2311{ 2312 return &mm->page_table_lock; 2313} 2314static inline void ptlock_cache_init(void) {} 2315static inline bool ptlock_init(struct page *page) { return true; } 2316static inline void ptlock_free(struct page *page) {} 2317#endif /* USE_SPLIT_PTE_PTLOCKS */ 2318 2319static inline void pgtable_init(void) 2320{ 2321 ptlock_cache_init(); 2322 pgtable_cache_init(); 2323} 2324 2325static inline bool pgtable_pte_page_ctor(struct page *page) 2326{ 2327 if (!ptlock_init(page)) 2328 return false; 2329 __SetPageTable(page); 2330 inc_lruvec_page_state(page, NR_PAGETABLE); 2331 return true; 2332} 2333 2334static inline void pgtable_pte_page_dtor(struct page *page) 2335{ 2336 ptlock_free(page); 2337 __ClearPageTable(page); 2338 dec_lruvec_page_state(page, NR_PAGETABLE); 2339} 2340 2341#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2342({ \ 2343 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2344 pte_t *__pte = pte_offset_map(pmd, address); \ 2345 *(ptlp) = __ptl; \ 2346 spin_lock(__ptl); \ 2347 __pte; \ 2348}) 2349 2350#define pte_unmap_unlock(pte, ptl) do { \ 2351 spin_unlock(ptl); \ 2352 pte_unmap(pte); \ 2353} while (0) 2354 2355#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2356 2357#define pte_alloc_map(mm, pmd, address) \ 2358 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2359 2360#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2361 (pte_alloc(mm, pmd) ? \ 2362 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2363 2364#define pte_alloc_kernel(pmd, address) \ 2365 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2366 NULL: pte_offset_kernel(pmd, address)) 2367 2368#if USE_SPLIT_PMD_PTLOCKS 2369 2370static struct page *pmd_to_page(pmd_t *pmd) 2371{ 2372 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2373 return virt_to_page((void *)((unsigned long) pmd & mask)); 2374} 2375 2376static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2377{ 2378 return ptlock_ptr(pmd_to_page(pmd)); 2379} 2380 2381static inline bool pmd_ptlock_init(struct page *page) 2382{ 2383#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2384 page->pmd_huge_pte = NULL; 2385#endif 2386 return ptlock_init(page); 2387} 2388 2389static inline void pmd_ptlock_free(struct page *page) 2390{ 2391#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2392 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2393#endif 2394 ptlock_free(page); 2395} 2396 2397#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2398 2399#else 2400 2401static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2402{ 2403 return &mm->page_table_lock; 2404} 2405 2406static inline bool pmd_ptlock_init(struct page *page) { return true; } 2407static inline void pmd_ptlock_free(struct page *page) {} 2408 2409#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2410 2411#endif 2412 2413static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2414{ 2415 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2416 spin_lock(ptl); 2417 return ptl; 2418} 2419 2420static inline bool pgtable_pmd_page_ctor(struct page *page) 2421{ 2422 if (!pmd_ptlock_init(page)) 2423 return false; 2424 __SetPageTable(page); 2425 inc_lruvec_page_state(page, NR_PAGETABLE); 2426 return true; 2427} 2428 2429static inline void pgtable_pmd_page_dtor(struct page *page) 2430{ 2431 pmd_ptlock_free(page); 2432 __ClearPageTable(page); 2433 dec_lruvec_page_state(page, NR_PAGETABLE); 2434} 2435 2436/* 2437 * No scalability reason to split PUD locks yet, but follow the same pattern 2438 * as the PMD locks to make it easier if we decide to. The VM should not be 2439 * considered ready to switch to split PUD locks yet; there may be places 2440 * which need to be converted from page_table_lock. 2441 */ 2442static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2443{ 2444 return &mm->page_table_lock; 2445} 2446 2447static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2448{ 2449 spinlock_t *ptl = pud_lockptr(mm, pud); 2450 2451 spin_lock(ptl); 2452 return ptl; 2453} 2454 2455extern void __init pagecache_init(void); 2456extern void free_initmem(void); 2457 2458/* 2459 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2460 * into the buddy system. The freed pages will be poisoned with pattern 2461 * "poison" if it's within range [0, UCHAR_MAX]. 2462 * Return pages freed into the buddy system. 2463 */ 2464extern unsigned long free_reserved_area(void *start, void *end, 2465 int poison, const char *s); 2466 2467extern void adjust_managed_page_count(struct page *page, long count); 2468extern void mem_init_print_info(void); 2469 2470extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2471 2472/* Free the reserved page into the buddy system, so it gets managed. */ 2473static inline void free_reserved_page(struct page *page) 2474{ 2475 ClearPageReserved(page); 2476 init_page_count(page); 2477 __free_page(page); 2478 adjust_managed_page_count(page, 1); 2479} 2480#define free_highmem_page(page) free_reserved_page(page) 2481 2482static inline void mark_page_reserved(struct page *page) 2483{ 2484 SetPageReserved(page); 2485 adjust_managed_page_count(page, -1); 2486} 2487 2488/* 2489 * Default method to free all the __init memory into the buddy system. 2490 * The freed pages will be poisoned with pattern "poison" if it's within 2491 * range [0, UCHAR_MAX]. 2492 * Return pages freed into the buddy system. 2493 */ 2494static inline unsigned long free_initmem_default(int poison) 2495{ 2496 extern char __init_begin[], __init_end[]; 2497 2498 return free_reserved_area(&__init_begin, &__init_end, 2499 poison, "unused kernel image (initmem)"); 2500} 2501 2502static inline unsigned long get_num_physpages(void) 2503{ 2504 int nid; 2505 unsigned long phys_pages = 0; 2506 2507 for_each_online_node(nid) 2508 phys_pages += node_present_pages(nid); 2509 2510 return phys_pages; 2511} 2512 2513/* 2514 * Using memblock node mappings, an architecture may initialise its 2515 * zones, allocate the backing mem_map and account for memory holes in an 2516 * architecture independent manner. 2517 * 2518 * An architecture is expected to register range of page frames backed by 2519 * physical memory with memblock_add[_node]() before calling 2520 * free_area_init() passing in the PFN each zone ends at. At a basic 2521 * usage, an architecture is expected to do something like 2522 * 2523 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2524 * max_highmem_pfn}; 2525 * for_each_valid_physical_page_range() 2526 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 2527 * free_area_init(max_zone_pfns); 2528 */ 2529void free_area_init(unsigned long *max_zone_pfn); 2530unsigned long node_map_pfn_alignment(void); 2531unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2532 unsigned long end_pfn); 2533extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2534 unsigned long end_pfn); 2535extern void get_pfn_range_for_nid(unsigned int nid, 2536 unsigned long *start_pfn, unsigned long *end_pfn); 2537extern unsigned long find_min_pfn_with_active_regions(void); 2538 2539#ifndef CONFIG_NUMA 2540static inline int early_pfn_to_nid(unsigned long pfn) 2541{ 2542 return 0; 2543} 2544#else 2545/* please see mm/page_alloc.c */ 2546extern int __meminit early_pfn_to_nid(unsigned long pfn); 2547#endif 2548 2549extern void set_dma_reserve(unsigned long new_dma_reserve); 2550extern void memmap_init_range(unsigned long, int, unsigned long, 2551 unsigned long, unsigned long, enum meminit_context, 2552 struct vmem_altmap *, int migratetype); 2553extern void setup_per_zone_wmarks(void); 2554extern void calculate_min_free_kbytes(void); 2555extern int __meminit init_per_zone_wmark_min(void); 2556extern void mem_init(void); 2557extern void __init mmap_init(void); 2558extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2559extern long si_mem_available(void); 2560extern void si_meminfo(struct sysinfo * val); 2561extern void si_meminfo_node(struct sysinfo *val, int nid); 2562#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2563extern unsigned long arch_reserved_kernel_pages(void); 2564#endif 2565 2566extern __printf(3, 4) 2567void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2568 2569extern void setup_per_cpu_pageset(void); 2570 2571/* page_alloc.c */ 2572extern int min_free_kbytes; 2573extern int watermark_boost_factor; 2574extern int watermark_scale_factor; 2575extern bool arch_has_descending_max_zone_pfns(void); 2576 2577/* nommu.c */ 2578extern atomic_long_t mmap_pages_allocated; 2579extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2580 2581/* interval_tree.c */ 2582void vma_interval_tree_insert(struct vm_area_struct *node, 2583 struct rb_root_cached *root); 2584void vma_interval_tree_insert_after(struct vm_area_struct *node, 2585 struct vm_area_struct *prev, 2586 struct rb_root_cached *root); 2587void vma_interval_tree_remove(struct vm_area_struct *node, 2588 struct rb_root_cached *root); 2589struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2590 unsigned long start, unsigned long last); 2591struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2592 unsigned long start, unsigned long last); 2593 2594#define vma_interval_tree_foreach(vma, root, start, last) \ 2595 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2596 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2597 2598void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2599 struct rb_root_cached *root); 2600void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2601 struct rb_root_cached *root); 2602struct anon_vma_chain * 2603anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2604 unsigned long start, unsigned long last); 2605struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2606 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2607#ifdef CONFIG_DEBUG_VM_RB 2608void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2609#endif 2610 2611#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2612 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2613 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2614 2615/* mmap.c */ 2616extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2617extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2618 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2619 struct vm_area_struct *expand); 2620static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2621 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2622{ 2623 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2624} 2625extern struct vm_area_struct *vma_merge(struct mm_struct *, 2626 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2627 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2628 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *); 2629extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2630extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2631 unsigned long addr, int new_below); 2632extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2633 unsigned long addr, int new_below); 2634extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2635extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2636 struct rb_node **, struct rb_node *); 2637extern void unlink_file_vma(struct vm_area_struct *); 2638extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2639 unsigned long addr, unsigned long len, pgoff_t pgoff, 2640 bool *need_rmap_locks); 2641extern void exit_mmap(struct mm_struct *); 2642 2643static inline int check_data_rlimit(unsigned long rlim, 2644 unsigned long new, 2645 unsigned long start, 2646 unsigned long end_data, 2647 unsigned long start_data) 2648{ 2649 if (rlim < RLIM_INFINITY) { 2650 if (((new - start) + (end_data - start_data)) > rlim) 2651 return -ENOSPC; 2652 } 2653 2654 return 0; 2655} 2656 2657extern int mm_take_all_locks(struct mm_struct *mm); 2658extern void mm_drop_all_locks(struct mm_struct *mm); 2659 2660extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2661extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2662extern struct file *get_mm_exe_file(struct mm_struct *mm); 2663extern struct file *get_task_exe_file(struct task_struct *task); 2664 2665extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2666extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2667 2668extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2669 const struct vm_special_mapping *sm); 2670extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2671 unsigned long addr, unsigned long len, 2672 unsigned long flags, 2673 const struct vm_special_mapping *spec); 2674/* This is an obsolete alternative to _install_special_mapping. */ 2675extern int install_special_mapping(struct mm_struct *mm, 2676 unsigned long addr, unsigned long len, 2677 unsigned long flags, struct page **pages); 2678 2679unsigned long randomize_stack_top(unsigned long stack_top); 2680 2681extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2682 2683extern unsigned long mmap_region(struct file *file, unsigned long addr, 2684 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2685 struct list_head *uf); 2686extern unsigned long do_mmap(struct file *file, unsigned long addr, 2687 unsigned long len, unsigned long prot, unsigned long flags, 2688 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2689extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2690 struct list_head *uf, bool downgrade); 2691extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2692 struct list_head *uf); 2693extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2694 2695#ifdef CONFIG_MMU 2696extern int __mm_populate(unsigned long addr, unsigned long len, 2697 int ignore_errors); 2698static inline void mm_populate(unsigned long addr, unsigned long len) 2699{ 2700 /* Ignore errors */ 2701 (void) __mm_populate(addr, len, 1); 2702} 2703#else 2704static inline void mm_populate(unsigned long addr, unsigned long len) {} 2705#endif 2706 2707/* These take the mm semaphore themselves */ 2708extern int __must_check vm_brk(unsigned long, unsigned long); 2709extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2710extern int vm_munmap(unsigned long, size_t); 2711extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2712 unsigned long, unsigned long, 2713 unsigned long, unsigned long); 2714 2715struct vm_unmapped_area_info { 2716#define VM_UNMAPPED_AREA_TOPDOWN 1 2717 unsigned long flags; 2718 unsigned long length; 2719 unsigned long low_limit; 2720 unsigned long high_limit; 2721 unsigned long align_mask; 2722 unsigned long align_offset; 2723}; 2724 2725extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2726 2727/* truncate.c */ 2728extern void truncate_inode_pages(struct address_space *, loff_t); 2729extern void truncate_inode_pages_range(struct address_space *, 2730 loff_t lstart, loff_t lend); 2731extern void truncate_inode_pages_final(struct address_space *); 2732 2733/* generic vm_area_ops exported for stackable file systems */ 2734extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2735extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 2736 pgoff_t start_pgoff, pgoff_t end_pgoff); 2737extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2738 2739extern unsigned long stack_guard_gap; 2740/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2741extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2742 2743/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2744extern int expand_downwards(struct vm_area_struct *vma, 2745 unsigned long address); 2746#if VM_GROWSUP 2747extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2748#else 2749 #define expand_upwards(vma, address) (0) 2750#endif 2751 2752/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2753extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2754extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2755 struct vm_area_struct **pprev); 2756 2757/** 2758 * find_vma_intersection() - Look up the first VMA which intersects the interval 2759 * @mm: The process address space. 2760 * @start_addr: The inclusive start user address. 2761 * @end_addr: The exclusive end user address. 2762 * 2763 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 2764 * start_addr < end_addr. 2765 */ 2766static inline 2767struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 2768 unsigned long start_addr, 2769 unsigned long end_addr) 2770{ 2771 struct vm_area_struct *vma = find_vma(mm, start_addr); 2772 2773 if (vma && end_addr <= vma->vm_start) 2774 vma = NULL; 2775 return vma; 2776} 2777 2778/** 2779 * vma_lookup() - Find a VMA at a specific address 2780 * @mm: The process address space. 2781 * @addr: The user address. 2782 * 2783 * Return: The vm_area_struct at the given address, %NULL otherwise. 2784 */ 2785static inline 2786struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 2787{ 2788 struct vm_area_struct *vma = find_vma(mm, addr); 2789 2790 if (vma && addr < vma->vm_start) 2791 vma = NULL; 2792 2793 return vma; 2794} 2795 2796static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2797{ 2798 unsigned long vm_start = vma->vm_start; 2799 2800 if (vma->vm_flags & VM_GROWSDOWN) { 2801 vm_start -= stack_guard_gap; 2802 if (vm_start > vma->vm_start) 2803 vm_start = 0; 2804 } 2805 return vm_start; 2806} 2807 2808static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2809{ 2810 unsigned long vm_end = vma->vm_end; 2811 2812 if (vma->vm_flags & VM_GROWSUP) { 2813 vm_end += stack_guard_gap; 2814 if (vm_end < vma->vm_end) 2815 vm_end = -PAGE_SIZE; 2816 } 2817 return vm_end; 2818} 2819 2820static inline unsigned long vma_pages(struct vm_area_struct *vma) 2821{ 2822 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2823} 2824 2825/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2826static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2827 unsigned long vm_start, unsigned long vm_end) 2828{ 2829 struct vm_area_struct *vma = find_vma(mm, vm_start); 2830 2831 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2832 vma = NULL; 2833 2834 return vma; 2835} 2836 2837static inline bool range_in_vma(struct vm_area_struct *vma, 2838 unsigned long start, unsigned long end) 2839{ 2840 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2841} 2842 2843#ifdef CONFIG_MMU 2844pgprot_t vm_get_page_prot(unsigned long vm_flags); 2845void vma_set_page_prot(struct vm_area_struct *vma); 2846#else 2847static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2848{ 2849 return __pgprot(0); 2850} 2851static inline void vma_set_page_prot(struct vm_area_struct *vma) 2852{ 2853 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2854} 2855#endif 2856 2857void vma_set_file(struct vm_area_struct *vma, struct file *file); 2858 2859#ifdef CONFIG_NUMA_BALANCING 2860unsigned long change_prot_numa(struct vm_area_struct *vma, 2861 unsigned long start, unsigned long end); 2862#endif 2863 2864struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2865int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2866 unsigned long pfn, unsigned long size, pgprot_t); 2867int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2868 unsigned long pfn, unsigned long size, pgprot_t prot); 2869int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2870int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2871 struct page **pages, unsigned long *num); 2872int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2873 unsigned long num); 2874int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2875 unsigned long num); 2876vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2877 unsigned long pfn); 2878vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2879 unsigned long pfn, pgprot_t pgprot); 2880vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2881 pfn_t pfn); 2882vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2883 pfn_t pfn, pgprot_t pgprot); 2884vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2885 unsigned long addr, pfn_t pfn); 2886int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2887 2888static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2889 unsigned long addr, struct page *page) 2890{ 2891 int err = vm_insert_page(vma, addr, page); 2892 2893 if (err == -ENOMEM) 2894 return VM_FAULT_OOM; 2895 if (err < 0 && err != -EBUSY) 2896 return VM_FAULT_SIGBUS; 2897 2898 return VM_FAULT_NOPAGE; 2899} 2900 2901#ifndef io_remap_pfn_range 2902static inline int io_remap_pfn_range(struct vm_area_struct *vma, 2903 unsigned long addr, unsigned long pfn, 2904 unsigned long size, pgprot_t prot) 2905{ 2906 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 2907} 2908#endif 2909 2910static inline vm_fault_t vmf_error(int err) 2911{ 2912 if (err == -ENOMEM) 2913 return VM_FAULT_OOM; 2914 return VM_FAULT_SIGBUS; 2915} 2916 2917struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2918 unsigned int foll_flags); 2919 2920#define FOLL_WRITE 0x01 /* check pte is writable */ 2921#define FOLL_TOUCH 0x02 /* mark page accessed */ 2922#define FOLL_GET 0x04 /* do get_page on page */ 2923#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2924#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2925#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2926 * and return without waiting upon it */ 2927#define FOLL_NOFAULT 0x80 /* do not fault in pages */ 2928#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2929#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2930#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2931#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2932#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2933#define FOLL_COW 0x4000 /* internal GUP flag */ 2934#define FOLL_ANON 0x8000 /* don't do file mappings */ 2935#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2936#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2937#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2938#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2939 2940/* 2941 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2942 * other. Here is what they mean, and how to use them: 2943 * 2944 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2945 * period _often_ under userspace control. This is in contrast to 2946 * iov_iter_get_pages(), whose usages are transient. 2947 * 2948 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2949 * lifetime enforced by the filesystem and we need guarantees that longterm 2950 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2951 * the filesystem. Ideas for this coordination include revoking the longterm 2952 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2953 * added after the problem with filesystems was found FS DAX VMAs are 2954 * specifically failed. Filesystem pages are still subject to bugs and use of 2955 * FOLL_LONGTERM should be avoided on those pages. 2956 * 2957 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2958 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2959 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2960 * is due to an incompatibility with the FS DAX check and 2961 * FAULT_FLAG_ALLOW_RETRY. 2962 * 2963 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2964 * that region. And so, CMA attempts to migrate the page before pinning, when 2965 * FOLL_LONGTERM is specified. 2966 * 2967 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2968 * but an additional pin counting system) will be invoked. This is intended for 2969 * anything that gets a page reference and then touches page data (for example, 2970 * Direct IO). This lets the filesystem know that some non-file-system entity is 2971 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2972 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2973 * a call to unpin_user_page(). 2974 * 2975 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2976 * and separate refcounting mechanisms, however, and that means that each has 2977 * its own acquire and release mechanisms: 2978 * 2979 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2980 * 2981 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2982 * 2983 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2984 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2985 * calls applied to them, and that's perfectly OK. This is a constraint on the 2986 * callers, not on the pages.) 2987 * 2988 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2989 * directly by the caller. That's in order to help avoid mismatches when 2990 * releasing pages: get_user_pages*() pages must be released via put_page(), 2991 * while pin_user_pages*() pages must be released via unpin_user_page(). 2992 * 2993 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2994 */ 2995 2996static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2997{ 2998 if (vm_fault & VM_FAULT_OOM) 2999 return -ENOMEM; 3000 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3001 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3002 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3003 return -EFAULT; 3004 return 0; 3005} 3006 3007typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3008extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3009 unsigned long size, pte_fn_t fn, void *data); 3010extern int apply_to_existing_page_range(struct mm_struct *mm, 3011 unsigned long address, unsigned long size, 3012 pte_fn_t fn, void *data); 3013 3014extern void init_mem_debugging_and_hardening(void); 3015#ifdef CONFIG_PAGE_POISONING 3016extern void __kernel_poison_pages(struct page *page, int numpages); 3017extern void __kernel_unpoison_pages(struct page *page, int numpages); 3018extern bool _page_poisoning_enabled_early; 3019DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3020static inline bool page_poisoning_enabled(void) 3021{ 3022 return _page_poisoning_enabled_early; 3023} 3024/* 3025 * For use in fast paths after init_mem_debugging() has run, or when a 3026 * false negative result is not harmful when called too early. 3027 */ 3028static inline bool page_poisoning_enabled_static(void) 3029{ 3030 return static_branch_unlikely(&_page_poisoning_enabled); 3031} 3032static inline void kernel_poison_pages(struct page *page, int numpages) 3033{ 3034 if (page_poisoning_enabled_static()) 3035 __kernel_poison_pages(page, numpages); 3036} 3037static inline void kernel_unpoison_pages(struct page *page, int numpages) 3038{ 3039 if (page_poisoning_enabled_static()) 3040 __kernel_unpoison_pages(page, numpages); 3041} 3042#else 3043static inline bool page_poisoning_enabled(void) { return false; } 3044static inline bool page_poisoning_enabled_static(void) { return false; } 3045static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3046static inline void kernel_poison_pages(struct page *page, int numpages) { } 3047static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3048#endif 3049 3050DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3051static inline bool want_init_on_alloc(gfp_t flags) 3052{ 3053 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3054 &init_on_alloc)) 3055 return true; 3056 return flags & __GFP_ZERO; 3057} 3058 3059DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3060static inline bool want_init_on_free(void) 3061{ 3062 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3063 &init_on_free); 3064} 3065 3066extern bool _debug_pagealloc_enabled_early; 3067DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3068 3069static inline bool debug_pagealloc_enabled(void) 3070{ 3071 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3072 _debug_pagealloc_enabled_early; 3073} 3074 3075/* 3076 * For use in fast paths after init_debug_pagealloc() has run, or when a 3077 * false negative result is not harmful when called too early. 3078 */ 3079static inline bool debug_pagealloc_enabled_static(void) 3080{ 3081 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3082 return false; 3083 3084 return static_branch_unlikely(&_debug_pagealloc_enabled); 3085} 3086 3087#ifdef CONFIG_DEBUG_PAGEALLOC 3088/* 3089 * To support DEBUG_PAGEALLOC architecture must ensure that 3090 * __kernel_map_pages() never fails 3091 */ 3092extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3093 3094static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3095{ 3096 if (debug_pagealloc_enabled_static()) 3097 __kernel_map_pages(page, numpages, 1); 3098} 3099 3100static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3101{ 3102 if (debug_pagealloc_enabled_static()) 3103 __kernel_map_pages(page, numpages, 0); 3104} 3105#else /* CONFIG_DEBUG_PAGEALLOC */ 3106static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3107static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3108#endif /* CONFIG_DEBUG_PAGEALLOC */ 3109 3110#ifdef __HAVE_ARCH_GATE_AREA 3111extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3112extern int in_gate_area_no_mm(unsigned long addr); 3113extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3114#else 3115static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3116{ 3117 return NULL; 3118} 3119static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3120static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3121{ 3122 return 0; 3123} 3124#endif /* __HAVE_ARCH_GATE_AREA */ 3125 3126extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3127 3128#ifdef CONFIG_SYSCTL 3129extern int sysctl_drop_caches; 3130int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3131 loff_t *); 3132#endif 3133 3134void drop_slab(void); 3135 3136#ifndef CONFIG_MMU 3137#define randomize_va_space 0 3138#else 3139extern int randomize_va_space; 3140#endif 3141 3142const char * arch_vma_name(struct vm_area_struct *vma); 3143#ifdef CONFIG_MMU 3144void print_vma_addr(char *prefix, unsigned long rip); 3145#else 3146static inline void print_vma_addr(char *prefix, unsigned long rip) 3147{ 3148} 3149#endif 3150 3151#ifdef CONFIG_HUGETLB_PAGE_FREE_VMEMMAP 3152int vmemmap_remap_free(unsigned long start, unsigned long end, 3153 unsigned long reuse); 3154int vmemmap_remap_alloc(unsigned long start, unsigned long end, 3155 unsigned long reuse, gfp_t gfp_mask); 3156#endif 3157 3158void *sparse_buffer_alloc(unsigned long size); 3159struct page * __populate_section_memmap(unsigned long pfn, 3160 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 3161pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3162p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3163pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3164pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3165pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3166 struct vmem_altmap *altmap); 3167void *vmemmap_alloc_block(unsigned long size, int node); 3168struct vmem_altmap; 3169void *vmemmap_alloc_block_buf(unsigned long size, int node, 3170 struct vmem_altmap *altmap); 3171void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3172int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3173 int node, struct vmem_altmap *altmap); 3174int vmemmap_populate(unsigned long start, unsigned long end, int node, 3175 struct vmem_altmap *altmap); 3176void vmemmap_populate_print_last(void); 3177#ifdef CONFIG_MEMORY_HOTPLUG 3178void vmemmap_free(unsigned long start, unsigned long end, 3179 struct vmem_altmap *altmap); 3180#endif 3181void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3182 unsigned long nr_pages); 3183 3184enum mf_flags { 3185 MF_COUNT_INCREASED = 1 << 0, 3186 MF_ACTION_REQUIRED = 1 << 1, 3187 MF_MUST_KILL = 1 << 2, 3188 MF_SOFT_OFFLINE = 1 << 3, 3189 MF_UNPOISON = 1 << 4, 3190}; 3191extern int memory_failure(unsigned long pfn, int flags); 3192extern void memory_failure_queue(unsigned long pfn, int flags); 3193extern void memory_failure_queue_kick(int cpu); 3194extern int unpoison_memory(unsigned long pfn); 3195extern int sysctl_memory_failure_early_kill; 3196extern int sysctl_memory_failure_recovery; 3197extern void shake_page(struct page *p); 3198extern atomic_long_t num_poisoned_pages __read_mostly; 3199extern int soft_offline_page(unsigned long pfn, int flags); 3200#ifdef CONFIG_MEMORY_FAILURE 3201extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags); 3202#else 3203static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags) 3204{ 3205 return 0; 3206} 3207#endif 3208 3209#ifndef arch_memory_failure 3210static inline int arch_memory_failure(unsigned long pfn, int flags) 3211{ 3212 return -ENXIO; 3213} 3214#endif 3215 3216#ifndef arch_is_platform_page 3217static inline bool arch_is_platform_page(u64 paddr) 3218{ 3219 return false; 3220} 3221#endif 3222 3223/* 3224 * Error handlers for various types of pages. 3225 */ 3226enum mf_result { 3227 MF_IGNORED, /* Error: cannot be handled */ 3228 MF_FAILED, /* Error: handling failed */ 3229 MF_DELAYED, /* Will be handled later */ 3230 MF_RECOVERED, /* Successfully recovered */ 3231}; 3232 3233enum mf_action_page_type { 3234 MF_MSG_KERNEL, 3235 MF_MSG_KERNEL_HIGH_ORDER, 3236 MF_MSG_SLAB, 3237 MF_MSG_DIFFERENT_COMPOUND, 3238 MF_MSG_HUGE, 3239 MF_MSG_FREE_HUGE, 3240 MF_MSG_NON_PMD_HUGE, 3241 MF_MSG_UNMAP_FAILED, 3242 MF_MSG_DIRTY_SWAPCACHE, 3243 MF_MSG_CLEAN_SWAPCACHE, 3244 MF_MSG_DIRTY_MLOCKED_LRU, 3245 MF_MSG_CLEAN_MLOCKED_LRU, 3246 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3247 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3248 MF_MSG_DIRTY_LRU, 3249 MF_MSG_CLEAN_LRU, 3250 MF_MSG_TRUNCATED_LRU, 3251 MF_MSG_BUDDY, 3252 MF_MSG_DAX, 3253 MF_MSG_UNSPLIT_THP, 3254 MF_MSG_DIFFERENT_PAGE_SIZE, 3255 MF_MSG_UNKNOWN, 3256}; 3257 3258#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3259extern void clear_huge_page(struct page *page, 3260 unsigned long addr_hint, 3261 unsigned int pages_per_huge_page); 3262extern void copy_user_huge_page(struct page *dst, struct page *src, 3263 unsigned long addr_hint, 3264 struct vm_area_struct *vma, 3265 unsigned int pages_per_huge_page); 3266extern long copy_huge_page_from_user(struct page *dst_page, 3267 const void __user *usr_src, 3268 unsigned int pages_per_huge_page, 3269 bool allow_pagefault); 3270 3271/** 3272 * vma_is_special_huge - Are transhuge page-table entries considered special? 3273 * @vma: Pointer to the struct vm_area_struct to consider 3274 * 3275 * Whether transhuge page-table entries are considered "special" following 3276 * the definition in vm_normal_page(). 3277 * 3278 * Return: true if transhuge page-table entries should be considered special, 3279 * false otherwise. 3280 */ 3281static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3282{ 3283 return vma_is_dax(vma) || (vma->vm_file && 3284 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3285} 3286 3287#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3288 3289#ifdef CONFIG_DEBUG_PAGEALLOC 3290extern unsigned int _debug_guardpage_minorder; 3291DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3292 3293static inline unsigned int debug_guardpage_minorder(void) 3294{ 3295 return _debug_guardpage_minorder; 3296} 3297 3298static inline bool debug_guardpage_enabled(void) 3299{ 3300 return static_branch_unlikely(&_debug_guardpage_enabled); 3301} 3302 3303static inline bool page_is_guard(struct page *page) 3304{ 3305 if (!debug_guardpage_enabled()) 3306 return false; 3307 3308 return PageGuard(page); 3309} 3310#else 3311static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3312static inline bool debug_guardpage_enabled(void) { return false; } 3313static inline bool page_is_guard(struct page *page) { return false; } 3314#endif /* CONFIG_DEBUG_PAGEALLOC */ 3315 3316#if MAX_NUMNODES > 1 3317void __init setup_nr_node_ids(void); 3318#else 3319static inline void setup_nr_node_ids(void) {} 3320#endif 3321 3322extern int memcmp_pages(struct page *page1, struct page *page2); 3323 3324static inline int pages_identical(struct page *page1, struct page *page2) 3325{ 3326 return !memcmp_pages(page1, page2); 3327} 3328 3329#ifdef CONFIG_MAPPING_DIRTY_HELPERS 3330unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3331 pgoff_t first_index, pgoff_t nr, 3332 pgoff_t bitmap_pgoff, 3333 unsigned long *bitmap, 3334 pgoff_t *start, 3335 pgoff_t *end); 3336 3337unsigned long wp_shared_mapping_range(struct address_space *mapping, 3338 pgoff_t first_index, pgoff_t nr); 3339#endif 3340 3341extern int sysctl_nr_trim_pages; 3342 3343#ifdef CONFIG_PRINTK 3344void mem_dump_obj(void *object); 3345#else 3346static inline void mem_dump_obj(void *object) {} 3347#endif 3348 3349/** 3350 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 3351 * @seals: the seals to check 3352 * @vma: the vma to operate on 3353 * 3354 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 3355 * the vma flags. Return 0 if check pass, or <0 for errors. 3356 */ 3357static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 3358{ 3359 if (seals & F_SEAL_FUTURE_WRITE) { 3360 /* 3361 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 3362 * "future write" seal active. 3363 */ 3364 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 3365 return -EPERM; 3366 3367 /* 3368 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 3369 * MAP_SHARED and read-only, take care to not allow mprotect to 3370 * revert protections on such mappings. Do this only for shared 3371 * mappings. For private mappings, don't need to mask 3372 * VM_MAYWRITE as we still want them to be COW-writable. 3373 */ 3374 if (vma->vm_flags & VM_SHARED) 3375 vma->vm_flags &= ~(VM_MAYWRITE); 3376 } 3377 3378 return 0; 3379} 3380 3381#ifdef CONFIG_ANON_VMA_NAME 3382int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3383 unsigned long len_in, 3384 struct anon_vma_name *anon_name); 3385#else 3386static inline int 3387madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3388 unsigned long len_in, struct anon_vma_name *anon_name) { 3389 return 0; 3390} 3391#endif 3392 3393#endif /* _LINUX_MM_H */