Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
13#include <linux/cgroup.h>
14#include <linux/vm_event_item.h>
15#include <linux/hardirq.h>
16#include <linux/jump_label.h>
17#include <linux/page_counter.h>
18#include <linux/vmpressure.h>
19#include <linux/eventfd.h>
20#include <linux/mm.h>
21#include <linux/vmstat.h>
22#include <linux/writeback.h>
23#include <linux/page-flags.h>
24
25struct mem_cgroup;
26struct obj_cgroup;
27struct page;
28struct mm_struct;
29struct kmem_cache;
30
31/* Cgroup-specific page state, on top of universal node page state */
32enum memcg_stat_item {
33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 MEMCG_SOCK,
35 MEMCG_PERCPU_B,
36 MEMCG_VMALLOC,
37 MEMCG_KMEM,
38 MEMCG_NR_STAT,
39};
40
41enum memcg_memory_event {
42 MEMCG_LOW,
43 MEMCG_HIGH,
44 MEMCG_MAX,
45 MEMCG_OOM,
46 MEMCG_OOM_KILL,
47 MEMCG_OOM_GROUP_KILL,
48 MEMCG_SWAP_HIGH,
49 MEMCG_SWAP_MAX,
50 MEMCG_SWAP_FAIL,
51 MEMCG_NR_MEMORY_EVENTS,
52};
53
54struct mem_cgroup_reclaim_cookie {
55 pg_data_t *pgdat;
56 unsigned int generation;
57};
58
59#ifdef CONFIG_MEMCG
60
61#define MEM_CGROUP_ID_SHIFT 16
62#define MEM_CGROUP_ID_MAX USHRT_MAX
63
64struct mem_cgroup_id {
65 int id;
66 refcount_t ref;
67};
68
69/*
70 * Per memcg event counter is incremented at every pagein/pageout. With THP,
71 * it will be incremented by the number of pages. This counter is used
72 * to trigger some periodic events. This is straightforward and better
73 * than using jiffies etc. to handle periodic memcg event.
74 */
75enum mem_cgroup_events_target {
76 MEM_CGROUP_TARGET_THRESH,
77 MEM_CGROUP_TARGET_SOFTLIMIT,
78 MEM_CGROUP_NTARGETS,
79};
80
81struct memcg_vmstats_percpu {
82 /* Local (CPU and cgroup) page state & events */
83 long state[MEMCG_NR_STAT];
84 unsigned long events[NR_VM_EVENT_ITEMS];
85
86 /* Delta calculation for lockless upward propagation */
87 long state_prev[MEMCG_NR_STAT];
88 unsigned long events_prev[NR_VM_EVENT_ITEMS];
89
90 /* Cgroup1: threshold notifications & softlimit tree updates */
91 unsigned long nr_page_events;
92 unsigned long targets[MEM_CGROUP_NTARGETS];
93};
94
95struct memcg_vmstats {
96 /* Aggregated (CPU and subtree) page state & events */
97 long state[MEMCG_NR_STAT];
98 unsigned long events[NR_VM_EVENT_ITEMS];
99
100 /* Pending child counts during tree propagation */
101 long state_pending[MEMCG_NR_STAT];
102 unsigned long events_pending[NR_VM_EVENT_ITEMS];
103};
104
105struct mem_cgroup_reclaim_iter {
106 struct mem_cgroup *position;
107 /* scan generation, increased every round-trip */
108 unsigned int generation;
109};
110
111/*
112 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
113 * shrinkers, which have elements charged to this memcg.
114 */
115struct shrinker_info {
116 struct rcu_head rcu;
117 atomic_long_t *nr_deferred;
118 unsigned long *map;
119};
120
121struct lruvec_stats_percpu {
122 /* Local (CPU and cgroup) state */
123 long state[NR_VM_NODE_STAT_ITEMS];
124
125 /* Delta calculation for lockless upward propagation */
126 long state_prev[NR_VM_NODE_STAT_ITEMS];
127};
128
129struct lruvec_stats {
130 /* Aggregated (CPU and subtree) state */
131 long state[NR_VM_NODE_STAT_ITEMS];
132
133 /* Pending child counts during tree propagation */
134 long state_pending[NR_VM_NODE_STAT_ITEMS];
135};
136
137/*
138 * per-node information in memory controller.
139 */
140struct mem_cgroup_per_node {
141 struct lruvec lruvec;
142
143 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
144 struct lruvec_stats lruvec_stats;
145
146 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
147
148 struct mem_cgroup_reclaim_iter iter;
149
150 struct shrinker_info __rcu *shrinker_info;
151
152 struct rb_node tree_node; /* RB tree node */
153 unsigned long usage_in_excess;/* Set to the value by which */
154 /* the soft limit is exceeded*/
155 bool on_tree;
156 struct mem_cgroup *memcg; /* Back pointer, we cannot */
157 /* use container_of */
158};
159
160struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 unsigned long threshold;
163};
164
165/* For threshold */
166struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below or equal to usage. */
168 int current_threshold;
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[];
173};
174
175struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
178 /*
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
182 */
183 struct mem_cgroup_threshold_ary *spare;
184};
185
186#if defined(CONFIG_SMP)
187struct memcg_padding {
188 char x[0];
189} ____cacheline_internodealigned_in_smp;
190#define MEMCG_PADDING(name) struct memcg_padding name
191#else
192#define MEMCG_PADDING(name)
193#endif
194
195/*
196 * Remember four most recent foreign writebacks with dirty pages in this
197 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
198 * one in a given round, we're likely to catch it later if it keeps
199 * foreign-dirtying, so a fairly low count should be enough.
200 *
201 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
202 */
203#define MEMCG_CGWB_FRN_CNT 4
204
205struct memcg_cgwb_frn {
206 u64 bdi_id; /* bdi->id of the foreign inode */
207 int memcg_id; /* memcg->css.id of foreign inode */
208 u64 at; /* jiffies_64 at the time of dirtying */
209 struct wb_completion done; /* tracks in-flight foreign writebacks */
210};
211
212/*
213 * Bucket for arbitrarily byte-sized objects charged to a memory
214 * cgroup. The bucket can be reparented in one piece when the cgroup
215 * is destroyed, without having to round up the individual references
216 * of all live memory objects in the wild.
217 */
218struct obj_cgroup {
219 struct percpu_ref refcnt;
220 struct mem_cgroup *memcg;
221 atomic_t nr_charged_bytes;
222 union {
223 struct list_head list; /* protected by objcg_lock */
224 struct rcu_head rcu;
225 };
226};
227
228/*
229 * The memory controller data structure. The memory controller controls both
230 * page cache and RSS per cgroup. We would eventually like to provide
231 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
232 * to help the administrator determine what knobs to tune.
233 */
234struct mem_cgroup {
235 struct cgroup_subsys_state css;
236
237 /* Private memcg ID. Used to ID objects that outlive the cgroup */
238 struct mem_cgroup_id id;
239
240 /* Accounted resources */
241 struct page_counter memory; /* Both v1 & v2 */
242
243 union {
244 struct page_counter swap; /* v2 only */
245 struct page_counter memsw; /* v1 only */
246 };
247
248 /* Legacy consumer-oriented counters */
249 struct page_counter kmem; /* v1 only */
250 struct page_counter tcpmem; /* v1 only */
251
252 /* Range enforcement for interrupt charges */
253 struct work_struct high_work;
254
255 unsigned long soft_limit;
256
257 /* vmpressure notifications */
258 struct vmpressure vmpressure;
259
260 /*
261 * Should the OOM killer kill all belonging tasks, had it kill one?
262 */
263 bool oom_group;
264
265 /* protected by memcg_oom_lock */
266 bool oom_lock;
267 int under_oom;
268
269 int swappiness;
270 /* OOM-Killer disable */
271 int oom_kill_disable;
272
273 /* memory.events and memory.events.local */
274 struct cgroup_file events_file;
275 struct cgroup_file events_local_file;
276
277 /* handle for "memory.swap.events" */
278 struct cgroup_file swap_events_file;
279
280 /* protect arrays of thresholds */
281 struct mutex thresholds_lock;
282
283 /* thresholds for memory usage. RCU-protected */
284 struct mem_cgroup_thresholds thresholds;
285
286 /* thresholds for mem+swap usage. RCU-protected */
287 struct mem_cgroup_thresholds memsw_thresholds;
288
289 /* For oom notifier event fd */
290 struct list_head oom_notify;
291
292 /*
293 * Should we move charges of a task when a task is moved into this
294 * mem_cgroup ? And what type of charges should we move ?
295 */
296 unsigned long move_charge_at_immigrate;
297 /* taken only while moving_account > 0 */
298 spinlock_t move_lock;
299 unsigned long move_lock_flags;
300
301 MEMCG_PADDING(_pad1_);
302
303 /* memory.stat */
304 struct memcg_vmstats vmstats;
305
306 /* memory.events */
307 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
308 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
309
310 unsigned long socket_pressure;
311
312 /* Legacy tcp memory accounting */
313 bool tcpmem_active;
314 int tcpmem_pressure;
315
316#ifdef CONFIG_MEMCG_KMEM
317 int kmemcg_id;
318 struct obj_cgroup __rcu *objcg;
319 /* list of inherited objcgs, protected by objcg_lock */
320 struct list_head objcg_list;
321#endif
322
323 MEMCG_PADDING(_pad2_);
324
325 /*
326 * set > 0 if pages under this cgroup are moving to other cgroup.
327 */
328 atomic_t moving_account;
329 struct task_struct *move_lock_task;
330
331 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
332
333#ifdef CONFIG_CGROUP_WRITEBACK
334 struct list_head cgwb_list;
335 struct wb_domain cgwb_domain;
336 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
337#endif
338
339 /* List of events which userspace want to receive */
340 struct list_head event_list;
341 spinlock_t event_list_lock;
342
343#ifdef CONFIG_TRANSPARENT_HUGEPAGE
344 struct deferred_split deferred_split_queue;
345#endif
346
347 struct mem_cgroup_per_node *nodeinfo[];
348};
349
350/*
351 * size of first charge trial. "32" comes from vmscan.c's magic value.
352 * TODO: maybe necessary to use big numbers in big irons.
353 */
354#define MEMCG_CHARGE_BATCH 32U
355
356extern struct mem_cgroup *root_mem_cgroup;
357
358enum page_memcg_data_flags {
359 /* page->memcg_data is a pointer to an objcgs vector */
360 MEMCG_DATA_OBJCGS = (1UL << 0),
361 /* page has been accounted as a non-slab kernel page */
362 MEMCG_DATA_KMEM = (1UL << 1),
363 /* the next bit after the last actual flag */
364 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
365};
366
367#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
368
369static inline bool folio_memcg_kmem(struct folio *folio);
370
371/*
372 * After the initialization objcg->memcg is always pointing at
373 * a valid memcg, but can be atomically swapped to the parent memcg.
374 *
375 * The caller must ensure that the returned memcg won't be released:
376 * e.g. acquire the rcu_read_lock or css_set_lock.
377 */
378static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
379{
380 return READ_ONCE(objcg->memcg);
381}
382
383/*
384 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
385 * @folio: Pointer to the folio.
386 *
387 * Returns a pointer to the memory cgroup associated with the folio,
388 * or NULL. This function assumes that the folio is known to have a
389 * proper memory cgroup pointer. It's not safe to call this function
390 * against some type of folios, e.g. slab folios or ex-slab folios or
391 * kmem folios.
392 */
393static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
394{
395 unsigned long memcg_data = folio->memcg_data;
396
397 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
398 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
399 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
400
401 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
402}
403
404/*
405 * __folio_objcg - get the object cgroup associated with a kmem folio.
406 * @folio: Pointer to the folio.
407 *
408 * Returns a pointer to the object cgroup associated with the folio,
409 * or NULL. This function assumes that the folio is known to have a
410 * proper object cgroup pointer. It's not safe to call this function
411 * against some type of folios, e.g. slab folios or ex-slab folios or
412 * LRU folios.
413 */
414static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
415{
416 unsigned long memcg_data = folio->memcg_data;
417
418 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
419 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
420 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
421
422 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
423}
424
425/*
426 * folio_memcg - Get the memory cgroup associated with a folio.
427 * @folio: Pointer to the folio.
428 *
429 * Returns a pointer to the memory cgroup associated with the folio,
430 * or NULL. This function assumes that the folio is known to have a
431 * proper memory cgroup pointer. It's not safe to call this function
432 * against some type of folios, e.g. slab folios or ex-slab folios.
433 *
434 * For a non-kmem folio any of the following ensures folio and memcg binding
435 * stability:
436 *
437 * - the folio lock
438 * - LRU isolation
439 * - lock_page_memcg()
440 * - exclusive reference
441 *
442 * For a kmem folio a caller should hold an rcu read lock to protect memcg
443 * associated with a kmem folio from being released.
444 */
445static inline struct mem_cgroup *folio_memcg(struct folio *folio)
446{
447 if (folio_memcg_kmem(folio))
448 return obj_cgroup_memcg(__folio_objcg(folio));
449 return __folio_memcg(folio);
450}
451
452static inline struct mem_cgroup *page_memcg(struct page *page)
453{
454 return folio_memcg(page_folio(page));
455}
456
457/**
458 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
459 * @folio: Pointer to the folio.
460 *
461 * This function assumes that the folio is known to have a
462 * proper memory cgroup pointer. It's not safe to call this function
463 * against some type of folios, e.g. slab folios or ex-slab folios.
464 *
465 * Return: A pointer to the memory cgroup associated with the folio,
466 * or NULL.
467 */
468static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
469{
470 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
471
472 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
473 WARN_ON_ONCE(!rcu_read_lock_held());
474
475 if (memcg_data & MEMCG_DATA_KMEM) {
476 struct obj_cgroup *objcg;
477
478 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
479 return obj_cgroup_memcg(objcg);
480 }
481
482 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
483}
484
485/*
486 * page_memcg_check - get the memory cgroup associated with a page
487 * @page: a pointer to the page struct
488 *
489 * Returns a pointer to the memory cgroup associated with the page,
490 * or NULL. This function unlike page_memcg() can take any page
491 * as an argument. It has to be used in cases when it's not known if a page
492 * has an associated memory cgroup pointer or an object cgroups vector or
493 * an object cgroup.
494 *
495 * For a non-kmem page any of the following ensures page and memcg binding
496 * stability:
497 *
498 * - the page lock
499 * - LRU isolation
500 * - lock_page_memcg()
501 * - exclusive reference
502 *
503 * For a kmem page a caller should hold an rcu read lock to protect memcg
504 * associated with a kmem page from being released.
505 */
506static inline struct mem_cgroup *page_memcg_check(struct page *page)
507{
508 /*
509 * Because page->memcg_data might be changed asynchronously
510 * for slab pages, READ_ONCE() should be used here.
511 */
512 unsigned long memcg_data = READ_ONCE(page->memcg_data);
513
514 if (memcg_data & MEMCG_DATA_OBJCGS)
515 return NULL;
516
517 if (memcg_data & MEMCG_DATA_KMEM) {
518 struct obj_cgroup *objcg;
519
520 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
521 return obj_cgroup_memcg(objcg);
522 }
523
524 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
525}
526
527static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
528{
529 struct mem_cgroup *memcg;
530
531 rcu_read_lock();
532retry:
533 memcg = obj_cgroup_memcg(objcg);
534 if (unlikely(!css_tryget(&memcg->css)))
535 goto retry;
536 rcu_read_unlock();
537
538 return memcg;
539}
540
541#ifdef CONFIG_MEMCG_KMEM
542/*
543 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
544 * @folio: Pointer to the folio.
545 *
546 * Checks if the folio has MemcgKmem flag set. The caller must ensure
547 * that the folio has an associated memory cgroup. It's not safe to call
548 * this function against some types of folios, e.g. slab folios.
549 */
550static inline bool folio_memcg_kmem(struct folio *folio)
551{
552 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
553 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
554 return folio->memcg_data & MEMCG_DATA_KMEM;
555}
556
557
558#else
559static inline bool folio_memcg_kmem(struct folio *folio)
560{
561 return false;
562}
563
564#endif
565
566static inline bool PageMemcgKmem(struct page *page)
567{
568 return folio_memcg_kmem(page_folio(page));
569}
570
571static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
572{
573 return (memcg == root_mem_cgroup);
574}
575
576static inline bool mem_cgroup_disabled(void)
577{
578 return !cgroup_subsys_enabled(memory_cgrp_subsys);
579}
580
581static inline void mem_cgroup_protection(struct mem_cgroup *root,
582 struct mem_cgroup *memcg,
583 unsigned long *min,
584 unsigned long *low)
585{
586 *min = *low = 0;
587
588 if (mem_cgroup_disabled())
589 return;
590
591 /*
592 * There is no reclaim protection applied to a targeted reclaim.
593 * We are special casing this specific case here because
594 * mem_cgroup_protected calculation is not robust enough to keep
595 * the protection invariant for calculated effective values for
596 * parallel reclaimers with different reclaim target. This is
597 * especially a problem for tail memcgs (as they have pages on LRU)
598 * which would want to have effective values 0 for targeted reclaim
599 * but a different value for external reclaim.
600 *
601 * Example
602 * Let's have global and A's reclaim in parallel:
603 * |
604 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
605 * |\
606 * | C (low = 1G, usage = 2.5G)
607 * B (low = 1G, usage = 0.5G)
608 *
609 * For the global reclaim
610 * A.elow = A.low
611 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
612 * C.elow = min(C.usage, C.low)
613 *
614 * With the effective values resetting we have A reclaim
615 * A.elow = 0
616 * B.elow = B.low
617 * C.elow = C.low
618 *
619 * If the global reclaim races with A's reclaim then
620 * B.elow = C.elow = 0 because children_low_usage > A.elow)
621 * is possible and reclaiming B would be violating the protection.
622 *
623 */
624 if (root == memcg)
625 return;
626
627 *min = READ_ONCE(memcg->memory.emin);
628 *low = READ_ONCE(memcg->memory.elow);
629}
630
631void mem_cgroup_calculate_protection(struct mem_cgroup *root,
632 struct mem_cgroup *memcg);
633
634static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
635{
636 /*
637 * The root memcg doesn't account charges, and doesn't support
638 * protection.
639 */
640 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
641
642}
643
644static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
645{
646 if (!mem_cgroup_supports_protection(memcg))
647 return false;
648
649 return READ_ONCE(memcg->memory.elow) >=
650 page_counter_read(&memcg->memory);
651}
652
653static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
654{
655 if (!mem_cgroup_supports_protection(memcg))
656 return false;
657
658 return READ_ONCE(memcg->memory.emin) >=
659 page_counter_read(&memcg->memory);
660}
661
662int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
663
664/**
665 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
666 * @folio: Folio to charge.
667 * @mm: mm context of the allocating task.
668 * @gfp: Reclaim mode.
669 *
670 * Try to charge @folio to the memcg that @mm belongs to, reclaiming
671 * pages according to @gfp if necessary. If @mm is NULL, try to
672 * charge to the active memcg.
673 *
674 * Do not use this for folios allocated for swapin.
675 *
676 * Return: 0 on success. Otherwise, an error code is returned.
677 */
678static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
679 gfp_t gfp)
680{
681 if (mem_cgroup_disabled())
682 return 0;
683 return __mem_cgroup_charge(folio, mm, gfp);
684}
685
686int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
687 gfp_t gfp, swp_entry_t entry);
688void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
689
690void __mem_cgroup_uncharge(struct folio *folio);
691
692/**
693 * mem_cgroup_uncharge - Uncharge a folio.
694 * @folio: Folio to uncharge.
695 *
696 * Uncharge a folio previously charged with mem_cgroup_charge().
697 */
698static inline void mem_cgroup_uncharge(struct folio *folio)
699{
700 if (mem_cgroup_disabled())
701 return;
702 __mem_cgroup_uncharge(folio);
703}
704
705void __mem_cgroup_uncharge_list(struct list_head *page_list);
706static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
707{
708 if (mem_cgroup_disabled())
709 return;
710 __mem_cgroup_uncharge_list(page_list);
711}
712
713void mem_cgroup_migrate(struct folio *old, struct folio *new);
714
715/**
716 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
717 * @memcg: memcg of the wanted lruvec
718 * @pgdat: pglist_data
719 *
720 * Returns the lru list vector holding pages for a given @memcg &
721 * @pgdat combination. This can be the node lruvec, if the memory
722 * controller is disabled.
723 */
724static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
725 struct pglist_data *pgdat)
726{
727 struct mem_cgroup_per_node *mz;
728 struct lruvec *lruvec;
729
730 if (mem_cgroup_disabled()) {
731 lruvec = &pgdat->__lruvec;
732 goto out;
733 }
734
735 if (!memcg)
736 memcg = root_mem_cgroup;
737
738 mz = memcg->nodeinfo[pgdat->node_id];
739 lruvec = &mz->lruvec;
740out:
741 /*
742 * Since a node can be onlined after the mem_cgroup was created,
743 * we have to be prepared to initialize lruvec->pgdat here;
744 * and if offlined then reonlined, we need to reinitialize it.
745 */
746 if (unlikely(lruvec->pgdat != pgdat))
747 lruvec->pgdat = pgdat;
748 return lruvec;
749}
750
751/**
752 * folio_lruvec - return lruvec for isolating/putting an LRU folio
753 * @folio: Pointer to the folio.
754 *
755 * This function relies on folio->mem_cgroup being stable.
756 */
757static inline struct lruvec *folio_lruvec(struct folio *folio)
758{
759 struct mem_cgroup *memcg = folio_memcg(folio);
760
761 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
762 return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
763}
764
765struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
766
767struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
768
769struct lruvec *folio_lruvec_lock(struct folio *folio);
770struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
771struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
772 unsigned long *flags);
773
774#ifdef CONFIG_DEBUG_VM
775void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
776#else
777static inline
778void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
779{
780}
781#endif
782
783static inline
784struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
785 return css ? container_of(css, struct mem_cgroup, css) : NULL;
786}
787
788static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
789{
790 return percpu_ref_tryget(&objcg->refcnt);
791}
792
793static inline void obj_cgroup_get(struct obj_cgroup *objcg)
794{
795 percpu_ref_get(&objcg->refcnt);
796}
797
798static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
799 unsigned long nr)
800{
801 percpu_ref_get_many(&objcg->refcnt, nr);
802}
803
804static inline void obj_cgroup_put(struct obj_cgroup *objcg)
805{
806 percpu_ref_put(&objcg->refcnt);
807}
808
809static inline void mem_cgroup_put(struct mem_cgroup *memcg)
810{
811 if (memcg)
812 css_put(&memcg->css);
813}
814
815#define mem_cgroup_from_counter(counter, member) \
816 container_of(counter, struct mem_cgroup, member)
817
818struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
819 struct mem_cgroup *,
820 struct mem_cgroup_reclaim_cookie *);
821void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
822int mem_cgroup_scan_tasks(struct mem_cgroup *,
823 int (*)(struct task_struct *, void *), void *);
824
825static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
826{
827 if (mem_cgroup_disabled())
828 return 0;
829
830 return memcg->id.id;
831}
832struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
833
834static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
835{
836 return mem_cgroup_from_css(seq_css(m));
837}
838
839static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
840{
841 struct mem_cgroup_per_node *mz;
842
843 if (mem_cgroup_disabled())
844 return NULL;
845
846 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
847 return mz->memcg;
848}
849
850/**
851 * parent_mem_cgroup - find the accounting parent of a memcg
852 * @memcg: memcg whose parent to find
853 *
854 * Returns the parent memcg, or NULL if this is the root or the memory
855 * controller is in legacy no-hierarchy mode.
856 */
857static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
858{
859 return mem_cgroup_from_css(memcg->css.parent);
860}
861
862static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
863 struct mem_cgroup *root)
864{
865 if (root == memcg)
866 return true;
867 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
868}
869
870static inline bool mm_match_cgroup(struct mm_struct *mm,
871 struct mem_cgroup *memcg)
872{
873 struct mem_cgroup *task_memcg;
874 bool match = false;
875
876 rcu_read_lock();
877 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
878 if (task_memcg)
879 match = mem_cgroup_is_descendant(task_memcg, memcg);
880 rcu_read_unlock();
881 return match;
882}
883
884struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
885ino_t page_cgroup_ino(struct page *page);
886
887static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
888{
889 if (mem_cgroup_disabled())
890 return true;
891 return !!(memcg->css.flags & CSS_ONLINE);
892}
893
894void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
895 int zid, int nr_pages);
896
897static inline
898unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
899 enum lru_list lru, int zone_idx)
900{
901 struct mem_cgroup_per_node *mz;
902
903 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
904 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
905}
906
907void mem_cgroup_handle_over_high(void);
908
909unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
910
911unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
912
913void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
914 struct task_struct *p);
915
916void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
917
918static inline void mem_cgroup_enter_user_fault(void)
919{
920 WARN_ON(current->in_user_fault);
921 current->in_user_fault = 1;
922}
923
924static inline void mem_cgroup_exit_user_fault(void)
925{
926 WARN_ON(!current->in_user_fault);
927 current->in_user_fault = 0;
928}
929
930static inline bool task_in_memcg_oom(struct task_struct *p)
931{
932 return p->memcg_in_oom;
933}
934
935bool mem_cgroup_oom_synchronize(bool wait);
936struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
937 struct mem_cgroup *oom_domain);
938void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
939
940#ifdef CONFIG_MEMCG_SWAP
941extern bool cgroup_memory_noswap;
942#endif
943
944void folio_memcg_lock(struct folio *folio);
945void folio_memcg_unlock(struct folio *folio);
946void lock_page_memcg(struct page *page);
947void unlock_page_memcg(struct page *page);
948
949void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
950
951/* idx can be of type enum memcg_stat_item or node_stat_item */
952static inline void mod_memcg_state(struct mem_cgroup *memcg,
953 int idx, int val)
954{
955 unsigned long flags;
956
957 local_irq_save(flags);
958 __mod_memcg_state(memcg, idx, val);
959 local_irq_restore(flags);
960}
961
962static inline void mod_memcg_page_state(struct page *page,
963 int idx, int val)
964{
965 struct mem_cgroup *memcg;
966
967 if (mem_cgroup_disabled())
968 return;
969
970 rcu_read_lock();
971 memcg = page_memcg(page);
972 if (memcg)
973 mod_memcg_state(memcg, idx, val);
974 rcu_read_unlock();
975}
976
977static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
978{
979 return READ_ONCE(memcg->vmstats.state[idx]);
980}
981
982static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
983 enum node_stat_item idx)
984{
985 struct mem_cgroup_per_node *pn;
986
987 if (mem_cgroup_disabled())
988 return node_page_state(lruvec_pgdat(lruvec), idx);
989
990 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
991 return READ_ONCE(pn->lruvec_stats.state[idx]);
992}
993
994static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
995 enum node_stat_item idx)
996{
997 struct mem_cgroup_per_node *pn;
998 long x = 0;
999 int cpu;
1000
1001 if (mem_cgroup_disabled())
1002 return node_page_state(lruvec_pgdat(lruvec), idx);
1003
1004 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1005 for_each_possible_cpu(cpu)
1006 x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
1007#ifdef CONFIG_SMP
1008 if (x < 0)
1009 x = 0;
1010#endif
1011 return x;
1012}
1013
1014void mem_cgroup_flush_stats(void);
1015void mem_cgroup_flush_stats_delayed(void);
1016
1017void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1018 int val);
1019void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1020
1021static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1022 int val)
1023{
1024 unsigned long flags;
1025
1026 local_irq_save(flags);
1027 __mod_lruvec_kmem_state(p, idx, val);
1028 local_irq_restore(flags);
1029}
1030
1031static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1032 enum node_stat_item idx, int val)
1033{
1034 unsigned long flags;
1035
1036 local_irq_save(flags);
1037 __mod_memcg_lruvec_state(lruvec, idx, val);
1038 local_irq_restore(flags);
1039}
1040
1041void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1042 unsigned long count);
1043
1044static inline void count_memcg_events(struct mem_cgroup *memcg,
1045 enum vm_event_item idx,
1046 unsigned long count)
1047{
1048 unsigned long flags;
1049
1050 local_irq_save(flags);
1051 __count_memcg_events(memcg, idx, count);
1052 local_irq_restore(flags);
1053}
1054
1055static inline void count_memcg_page_event(struct page *page,
1056 enum vm_event_item idx)
1057{
1058 struct mem_cgroup *memcg = page_memcg(page);
1059
1060 if (memcg)
1061 count_memcg_events(memcg, idx, 1);
1062}
1063
1064static inline void count_memcg_event_mm(struct mm_struct *mm,
1065 enum vm_event_item idx)
1066{
1067 struct mem_cgroup *memcg;
1068
1069 if (mem_cgroup_disabled())
1070 return;
1071
1072 rcu_read_lock();
1073 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1074 if (likely(memcg))
1075 count_memcg_events(memcg, idx, 1);
1076 rcu_read_unlock();
1077}
1078
1079static inline void memcg_memory_event(struct mem_cgroup *memcg,
1080 enum memcg_memory_event event)
1081{
1082 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1083 event == MEMCG_SWAP_FAIL;
1084
1085 atomic_long_inc(&memcg->memory_events_local[event]);
1086 if (!swap_event)
1087 cgroup_file_notify(&memcg->events_local_file);
1088
1089 do {
1090 atomic_long_inc(&memcg->memory_events[event]);
1091 if (swap_event)
1092 cgroup_file_notify(&memcg->swap_events_file);
1093 else
1094 cgroup_file_notify(&memcg->events_file);
1095
1096 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1097 break;
1098 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1099 break;
1100 } while ((memcg = parent_mem_cgroup(memcg)) &&
1101 !mem_cgroup_is_root(memcg));
1102}
1103
1104static inline void memcg_memory_event_mm(struct mm_struct *mm,
1105 enum memcg_memory_event event)
1106{
1107 struct mem_cgroup *memcg;
1108
1109 if (mem_cgroup_disabled())
1110 return;
1111
1112 rcu_read_lock();
1113 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1114 if (likely(memcg))
1115 memcg_memory_event(memcg, event);
1116 rcu_read_unlock();
1117}
1118
1119void split_page_memcg(struct page *head, unsigned int nr);
1120
1121unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1122 gfp_t gfp_mask,
1123 unsigned long *total_scanned);
1124
1125#else /* CONFIG_MEMCG */
1126
1127#define MEM_CGROUP_ID_SHIFT 0
1128#define MEM_CGROUP_ID_MAX 0
1129
1130static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1131{
1132 return NULL;
1133}
1134
1135static inline struct mem_cgroup *page_memcg(struct page *page)
1136{
1137 return NULL;
1138}
1139
1140static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1141{
1142 WARN_ON_ONCE(!rcu_read_lock_held());
1143 return NULL;
1144}
1145
1146static inline struct mem_cgroup *page_memcg_check(struct page *page)
1147{
1148 return NULL;
1149}
1150
1151static inline bool folio_memcg_kmem(struct folio *folio)
1152{
1153 return false;
1154}
1155
1156static inline bool PageMemcgKmem(struct page *page)
1157{
1158 return false;
1159}
1160
1161static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1162{
1163 return true;
1164}
1165
1166static inline bool mem_cgroup_disabled(void)
1167{
1168 return true;
1169}
1170
1171static inline void memcg_memory_event(struct mem_cgroup *memcg,
1172 enum memcg_memory_event event)
1173{
1174}
1175
1176static inline void memcg_memory_event_mm(struct mm_struct *mm,
1177 enum memcg_memory_event event)
1178{
1179}
1180
1181static inline void mem_cgroup_protection(struct mem_cgroup *root,
1182 struct mem_cgroup *memcg,
1183 unsigned long *min,
1184 unsigned long *low)
1185{
1186 *min = *low = 0;
1187}
1188
1189static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1190 struct mem_cgroup *memcg)
1191{
1192}
1193
1194static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1195{
1196 return false;
1197}
1198
1199static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1200{
1201 return false;
1202}
1203
1204static inline int mem_cgroup_charge(struct folio *folio,
1205 struct mm_struct *mm, gfp_t gfp)
1206{
1207 return 0;
1208}
1209
1210static inline int mem_cgroup_swapin_charge_page(struct page *page,
1211 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1212{
1213 return 0;
1214}
1215
1216static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1217{
1218}
1219
1220static inline void mem_cgroup_uncharge(struct folio *folio)
1221{
1222}
1223
1224static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1225{
1226}
1227
1228static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1229{
1230}
1231
1232static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1233 struct pglist_data *pgdat)
1234{
1235 return &pgdat->__lruvec;
1236}
1237
1238static inline struct lruvec *folio_lruvec(struct folio *folio)
1239{
1240 struct pglist_data *pgdat = folio_pgdat(folio);
1241 return &pgdat->__lruvec;
1242}
1243
1244static inline
1245void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1246{
1247}
1248
1249static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1250{
1251 return NULL;
1252}
1253
1254static inline bool mm_match_cgroup(struct mm_struct *mm,
1255 struct mem_cgroup *memcg)
1256{
1257 return true;
1258}
1259
1260static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1261{
1262 return NULL;
1263}
1264
1265static inline
1266struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1267{
1268 return NULL;
1269}
1270
1271static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1272{
1273}
1274
1275static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1276{
1277 struct pglist_data *pgdat = folio_pgdat(folio);
1278
1279 spin_lock(&pgdat->__lruvec.lru_lock);
1280 return &pgdat->__lruvec;
1281}
1282
1283static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1284{
1285 struct pglist_data *pgdat = folio_pgdat(folio);
1286
1287 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1288 return &pgdat->__lruvec;
1289}
1290
1291static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1292 unsigned long *flagsp)
1293{
1294 struct pglist_data *pgdat = folio_pgdat(folio);
1295
1296 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1297 return &pgdat->__lruvec;
1298}
1299
1300static inline struct mem_cgroup *
1301mem_cgroup_iter(struct mem_cgroup *root,
1302 struct mem_cgroup *prev,
1303 struct mem_cgroup_reclaim_cookie *reclaim)
1304{
1305 return NULL;
1306}
1307
1308static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1309 struct mem_cgroup *prev)
1310{
1311}
1312
1313static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1314 int (*fn)(struct task_struct *, void *), void *arg)
1315{
1316 return 0;
1317}
1318
1319static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1320{
1321 return 0;
1322}
1323
1324static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1325{
1326 WARN_ON_ONCE(id);
1327 /* XXX: This should always return root_mem_cgroup */
1328 return NULL;
1329}
1330
1331static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1332{
1333 return NULL;
1334}
1335
1336static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1337{
1338 return NULL;
1339}
1340
1341static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1342{
1343 return true;
1344}
1345
1346static inline
1347unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1348 enum lru_list lru, int zone_idx)
1349{
1350 return 0;
1351}
1352
1353static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1354{
1355 return 0;
1356}
1357
1358static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1359{
1360 return 0;
1361}
1362
1363static inline void
1364mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1365{
1366}
1367
1368static inline void
1369mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1370{
1371}
1372
1373static inline void lock_page_memcg(struct page *page)
1374{
1375}
1376
1377static inline void unlock_page_memcg(struct page *page)
1378{
1379}
1380
1381static inline void folio_memcg_lock(struct folio *folio)
1382{
1383}
1384
1385static inline void folio_memcg_unlock(struct folio *folio)
1386{
1387}
1388
1389static inline void mem_cgroup_handle_over_high(void)
1390{
1391}
1392
1393static inline void mem_cgroup_enter_user_fault(void)
1394{
1395}
1396
1397static inline void mem_cgroup_exit_user_fault(void)
1398{
1399}
1400
1401static inline bool task_in_memcg_oom(struct task_struct *p)
1402{
1403 return false;
1404}
1405
1406static inline bool mem_cgroup_oom_synchronize(bool wait)
1407{
1408 return false;
1409}
1410
1411static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1412 struct task_struct *victim, struct mem_cgroup *oom_domain)
1413{
1414 return NULL;
1415}
1416
1417static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1418{
1419}
1420
1421static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1422 int idx,
1423 int nr)
1424{
1425}
1426
1427static inline void mod_memcg_state(struct mem_cgroup *memcg,
1428 int idx,
1429 int nr)
1430{
1431}
1432
1433static inline void mod_memcg_page_state(struct page *page,
1434 int idx, int val)
1435{
1436}
1437
1438static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1439{
1440 return 0;
1441}
1442
1443static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1444 enum node_stat_item idx)
1445{
1446 return node_page_state(lruvec_pgdat(lruvec), idx);
1447}
1448
1449static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1450 enum node_stat_item idx)
1451{
1452 return node_page_state(lruvec_pgdat(lruvec), idx);
1453}
1454
1455static inline void mem_cgroup_flush_stats(void)
1456{
1457}
1458
1459static inline void mem_cgroup_flush_stats_delayed(void)
1460{
1461}
1462
1463static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1464 enum node_stat_item idx, int val)
1465{
1466}
1467
1468static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1469 int val)
1470{
1471 struct page *page = virt_to_head_page(p);
1472
1473 __mod_node_page_state(page_pgdat(page), idx, val);
1474}
1475
1476static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1477 int val)
1478{
1479 struct page *page = virt_to_head_page(p);
1480
1481 mod_node_page_state(page_pgdat(page), idx, val);
1482}
1483
1484static inline void count_memcg_events(struct mem_cgroup *memcg,
1485 enum vm_event_item idx,
1486 unsigned long count)
1487{
1488}
1489
1490static inline void __count_memcg_events(struct mem_cgroup *memcg,
1491 enum vm_event_item idx,
1492 unsigned long count)
1493{
1494}
1495
1496static inline void count_memcg_page_event(struct page *page,
1497 int idx)
1498{
1499}
1500
1501static inline
1502void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1503{
1504}
1505
1506static inline void split_page_memcg(struct page *head, unsigned int nr)
1507{
1508}
1509
1510static inline
1511unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1512 gfp_t gfp_mask,
1513 unsigned long *total_scanned)
1514{
1515 return 0;
1516}
1517#endif /* CONFIG_MEMCG */
1518
1519static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1520{
1521 __mod_lruvec_kmem_state(p, idx, 1);
1522}
1523
1524static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1525{
1526 __mod_lruvec_kmem_state(p, idx, -1);
1527}
1528
1529static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1530{
1531 struct mem_cgroup *memcg;
1532
1533 memcg = lruvec_memcg(lruvec);
1534 if (!memcg)
1535 return NULL;
1536 memcg = parent_mem_cgroup(memcg);
1537 if (!memcg)
1538 return NULL;
1539 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1540}
1541
1542static inline void unlock_page_lruvec(struct lruvec *lruvec)
1543{
1544 spin_unlock(&lruvec->lru_lock);
1545}
1546
1547static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1548{
1549 spin_unlock_irq(&lruvec->lru_lock);
1550}
1551
1552static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1553 unsigned long flags)
1554{
1555 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1556}
1557
1558/* Test requires a stable page->memcg binding, see page_memcg() */
1559static inline bool folio_matches_lruvec(struct folio *folio,
1560 struct lruvec *lruvec)
1561{
1562 return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1563 lruvec_memcg(lruvec) == folio_memcg(folio);
1564}
1565
1566/* Don't lock again iff page's lruvec locked */
1567static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1568 struct lruvec *locked_lruvec)
1569{
1570 if (locked_lruvec) {
1571 if (folio_matches_lruvec(folio, locked_lruvec))
1572 return locked_lruvec;
1573
1574 unlock_page_lruvec_irq(locked_lruvec);
1575 }
1576
1577 return folio_lruvec_lock_irq(folio);
1578}
1579
1580/* Don't lock again iff page's lruvec locked */
1581static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1582 struct lruvec *locked_lruvec, unsigned long *flags)
1583{
1584 if (locked_lruvec) {
1585 if (folio_matches_lruvec(folio, locked_lruvec))
1586 return locked_lruvec;
1587
1588 unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1589 }
1590
1591 return folio_lruvec_lock_irqsave(folio, flags);
1592}
1593
1594#ifdef CONFIG_CGROUP_WRITEBACK
1595
1596struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1597void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1598 unsigned long *pheadroom, unsigned long *pdirty,
1599 unsigned long *pwriteback);
1600
1601void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1602 struct bdi_writeback *wb);
1603
1604static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1605 struct bdi_writeback *wb)
1606{
1607 if (mem_cgroup_disabled())
1608 return;
1609
1610 if (unlikely(&folio_memcg(folio)->css != wb->memcg_css))
1611 mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1612}
1613
1614void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1615
1616#else /* CONFIG_CGROUP_WRITEBACK */
1617
1618static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1619{
1620 return NULL;
1621}
1622
1623static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1624 unsigned long *pfilepages,
1625 unsigned long *pheadroom,
1626 unsigned long *pdirty,
1627 unsigned long *pwriteback)
1628{
1629}
1630
1631static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1632 struct bdi_writeback *wb)
1633{
1634}
1635
1636static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1637{
1638}
1639
1640#endif /* CONFIG_CGROUP_WRITEBACK */
1641
1642struct sock;
1643bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1644 gfp_t gfp_mask);
1645void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1646#ifdef CONFIG_MEMCG
1647extern struct static_key_false memcg_sockets_enabled_key;
1648#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1649void mem_cgroup_sk_alloc(struct sock *sk);
1650void mem_cgroup_sk_free(struct sock *sk);
1651static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1652{
1653 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1654 return true;
1655 do {
1656 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1657 return true;
1658 } while ((memcg = parent_mem_cgroup(memcg)));
1659 return false;
1660}
1661
1662int alloc_shrinker_info(struct mem_cgroup *memcg);
1663void free_shrinker_info(struct mem_cgroup *memcg);
1664void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1665void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1666#else
1667#define mem_cgroup_sockets_enabled 0
1668static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1669static inline void mem_cgroup_sk_free(struct sock *sk) { };
1670static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1671{
1672 return false;
1673}
1674
1675static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1676 int nid, int shrinker_id)
1677{
1678}
1679#endif
1680
1681#ifdef CONFIG_MEMCG_KMEM
1682bool mem_cgroup_kmem_disabled(void);
1683int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1684void __memcg_kmem_uncharge_page(struct page *page, int order);
1685
1686struct obj_cgroup *get_obj_cgroup_from_current(void);
1687
1688int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1689void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1690
1691extern struct static_key_false memcg_kmem_enabled_key;
1692
1693static inline bool memcg_kmem_enabled(void)
1694{
1695 return static_branch_likely(&memcg_kmem_enabled_key);
1696}
1697
1698static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1699 int order)
1700{
1701 if (memcg_kmem_enabled())
1702 return __memcg_kmem_charge_page(page, gfp, order);
1703 return 0;
1704}
1705
1706static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1707{
1708 if (memcg_kmem_enabled())
1709 __memcg_kmem_uncharge_page(page, order);
1710}
1711
1712/*
1713 * A helper for accessing memcg's kmem_id, used for getting
1714 * corresponding LRU lists.
1715 */
1716static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1717{
1718 return memcg ? memcg->kmemcg_id : -1;
1719}
1720
1721struct mem_cgroup *mem_cgroup_from_obj(void *p);
1722
1723#else
1724static inline bool mem_cgroup_kmem_disabled(void)
1725{
1726 return true;
1727}
1728
1729static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1730 int order)
1731{
1732 return 0;
1733}
1734
1735static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1736{
1737}
1738
1739static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1740 int order)
1741{
1742 return 0;
1743}
1744
1745static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1746{
1747}
1748
1749static inline bool memcg_kmem_enabled(void)
1750{
1751 return false;
1752}
1753
1754static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1755{
1756 return -1;
1757}
1758
1759static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1760{
1761 return NULL;
1762}
1763
1764#endif /* CONFIG_MEMCG_KMEM */
1765
1766#endif /* _LINUX_MEMCONTROL_H */