Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2#ifndef __KVM_HOST_H
3#define __KVM_HOST_H
4
5
6#include <linux/types.h>
7#include <linux/hardirq.h>
8#include <linux/list.h>
9#include <linux/mutex.h>
10#include <linux/spinlock.h>
11#include <linux/signal.h>
12#include <linux/sched.h>
13#include <linux/sched/stat.h>
14#include <linux/bug.h>
15#include <linux/minmax.h>
16#include <linux/mm.h>
17#include <linux/mmu_notifier.h>
18#include <linux/preempt.h>
19#include <linux/msi.h>
20#include <linux/slab.h>
21#include <linux/vmalloc.h>
22#include <linux/rcupdate.h>
23#include <linux/ratelimit.h>
24#include <linux/err.h>
25#include <linux/irqflags.h>
26#include <linux/context_tracking.h>
27#include <linux/irqbypass.h>
28#include <linux/rcuwait.h>
29#include <linux/refcount.h>
30#include <linux/nospec.h>
31#include <linux/notifier.h>
32#include <linux/ftrace.h>
33#include <linux/hashtable.h>
34#include <linux/instrumentation.h>
35#include <linux/interval_tree.h>
36#include <linux/rbtree.h>
37#include <linux/xarray.h>
38#include <asm/signal.h>
39
40#include <linux/kvm.h>
41#include <linux/kvm_para.h>
42
43#include <linux/kvm_types.h>
44
45#include <asm/kvm_host.h>
46#include <linux/kvm_dirty_ring.h>
47
48#ifndef KVM_MAX_VCPU_IDS
49#define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50#endif
51
52/*
53 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
54 * in kvm, other bits are visible for userspace which are defined in
55 * include/linux/kvm_h.
56 */
57#define KVM_MEMSLOT_INVALID (1UL << 16)
58
59/*
60 * Bit 63 of the memslot generation number is an "update in-progress flag",
61 * e.g. is temporarily set for the duration of install_new_memslots().
62 * This flag effectively creates a unique generation number that is used to
63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64 * i.e. may (or may not) have come from the previous memslots generation.
65 *
66 * This is necessary because the actual memslots update is not atomic with
67 * respect to the generation number update. Updating the generation number
68 * first would allow a vCPU to cache a spte from the old memslots using the
69 * new generation number, and updating the generation number after switching
70 * to the new memslots would allow cache hits using the old generation number
71 * to reference the defunct memslots.
72 *
73 * This mechanism is used to prevent getting hits in KVM's caches while a
74 * memslot update is in-progress, and to prevent cache hits *after* updating
75 * the actual generation number against accesses that were inserted into the
76 * cache *before* the memslots were updated.
77 */
78#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
79
80/* Two fragments for cross MMIO pages. */
81#define KVM_MAX_MMIO_FRAGMENTS 2
82
83#ifndef KVM_ADDRESS_SPACE_NUM
84#define KVM_ADDRESS_SPACE_NUM 1
85#endif
86
87/*
88 * For the normal pfn, the highest 12 bits should be zero,
89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
90 * mask bit 63 to indicate the noslot pfn.
91 */
92#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
93#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
94#define KVM_PFN_NOSLOT (0x1ULL << 63)
95
96#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
97#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
98#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
99
100/*
101 * error pfns indicate that the gfn is in slot but faild to
102 * translate it to pfn on host.
103 */
104static inline bool is_error_pfn(kvm_pfn_t pfn)
105{
106 return !!(pfn & KVM_PFN_ERR_MASK);
107}
108
109/*
110 * error_noslot pfns indicate that the gfn can not be
111 * translated to pfn - it is not in slot or failed to
112 * translate it to pfn.
113 */
114static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
115{
116 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
117}
118
119/* noslot pfn indicates that the gfn is not in slot. */
120static inline bool is_noslot_pfn(kvm_pfn_t pfn)
121{
122 return pfn == KVM_PFN_NOSLOT;
123}
124
125/*
126 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
127 * provide own defines and kvm_is_error_hva
128 */
129#ifndef KVM_HVA_ERR_BAD
130
131#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
132#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
133
134static inline bool kvm_is_error_hva(unsigned long addr)
135{
136 return addr >= PAGE_OFFSET;
137}
138
139#endif
140
141#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
142
143static inline bool is_error_page(struct page *page)
144{
145 return IS_ERR(page);
146}
147
148#define KVM_REQUEST_MASK GENMASK(7,0)
149#define KVM_REQUEST_NO_WAKEUP BIT(8)
150#define KVM_REQUEST_WAIT BIT(9)
151#define KVM_REQUEST_NO_ACTION BIT(10)
152/*
153 * Architecture-independent vcpu->requests bit members
154 * Bits 4-7 are reserved for more arch-independent bits.
155 */
156#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
157#define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
158#define KVM_REQ_UNBLOCK 2
159#define KVM_REQ_UNHALT 3
160#define KVM_REQUEST_ARCH_BASE 8
161
162/*
163 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
164 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
165 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
166 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous
167 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
168 * guarantee the vCPU received an IPI and has actually exited guest mode.
169 */
170#define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
171
172#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
173 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
174 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
175})
176#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
177
178bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
179 unsigned long *vcpu_bitmap);
180bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
181bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
182 struct kvm_vcpu *except);
183bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
184 unsigned long *vcpu_bitmap);
185
186#define KVM_USERSPACE_IRQ_SOURCE_ID 0
187#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
188
189extern struct mutex kvm_lock;
190extern struct list_head vm_list;
191
192struct kvm_io_range {
193 gpa_t addr;
194 int len;
195 struct kvm_io_device *dev;
196};
197
198#define NR_IOBUS_DEVS 1000
199
200struct kvm_io_bus {
201 int dev_count;
202 int ioeventfd_count;
203 struct kvm_io_range range[];
204};
205
206enum kvm_bus {
207 KVM_MMIO_BUS,
208 KVM_PIO_BUS,
209 KVM_VIRTIO_CCW_NOTIFY_BUS,
210 KVM_FAST_MMIO_BUS,
211 KVM_NR_BUSES
212};
213
214int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
215 int len, const void *val);
216int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
217 gpa_t addr, int len, const void *val, long cookie);
218int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
219 int len, void *val);
220int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
221 int len, struct kvm_io_device *dev);
222int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
223 struct kvm_io_device *dev);
224struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
225 gpa_t addr);
226
227#ifdef CONFIG_KVM_ASYNC_PF
228struct kvm_async_pf {
229 struct work_struct work;
230 struct list_head link;
231 struct list_head queue;
232 struct kvm_vcpu *vcpu;
233 struct mm_struct *mm;
234 gpa_t cr2_or_gpa;
235 unsigned long addr;
236 struct kvm_arch_async_pf arch;
237 bool wakeup_all;
238 bool notpresent_injected;
239};
240
241void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
242void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
243bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
244 unsigned long hva, struct kvm_arch_async_pf *arch);
245int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
246#endif
247
248#ifdef KVM_ARCH_WANT_MMU_NOTIFIER
249struct kvm_gfn_range {
250 struct kvm_memory_slot *slot;
251 gfn_t start;
252 gfn_t end;
253 pte_t pte;
254 bool may_block;
255};
256bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
257bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
258bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
259bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
260#endif
261
262enum {
263 OUTSIDE_GUEST_MODE,
264 IN_GUEST_MODE,
265 EXITING_GUEST_MODE,
266 READING_SHADOW_PAGE_TABLES,
267};
268
269#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
270
271struct kvm_host_map {
272 /*
273 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
274 * a 'struct page' for it. When using mem= kernel parameter some memory
275 * can be used as guest memory but they are not managed by host
276 * kernel).
277 * If 'pfn' is not managed by the host kernel, this field is
278 * initialized to KVM_UNMAPPED_PAGE.
279 */
280 struct page *page;
281 void *hva;
282 kvm_pfn_t pfn;
283 kvm_pfn_t gfn;
284};
285
286/*
287 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
288 * directly to check for that.
289 */
290static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
291{
292 return !!map->hva;
293}
294
295static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
296{
297 return single_task_running() && !need_resched() && ktime_before(cur, stop);
298}
299
300/*
301 * Sometimes a large or cross-page mmio needs to be broken up into separate
302 * exits for userspace servicing.
303 */
304struct kvm_mmio_fragment {
305 gpa_t gpa;
306 void *data;
307 unsigned len;
308};
309
310struct kvm_vcpu {
311 struct kvm *kvm;
312#ifdef CONFIG_PREEMPT_NOTIFIERS
313 struct preempt_notifier preempt_notifier;
314#endif
315 int cpu;
316 int vcpu_id; /* id given by userspace at creation */
317 int vcpu_idx; /* index in kvm->vcpus array */
318 int ____srcu_idx; /* Don't use this directly. You've been warned. */
319#ifdef CONFIG_PROVE_RCU
320 int srcu_depth;
321#endif
322 int mode;
323 u64 requests;
324 unsigned long guest_debug;
325
326 struct mutex mutex;
327 struct kvm_run *run;
328
329#ifndef __KVM_HAVE_ARCH_WQP
330 struct rcuwait wait;
331#endif
332 struct pid __rcu *pid;
333 int sigset_active;
334 sigset_t sigset;
335 unsigned int halt_poll_ns;
336 bool valid_wakeup;
337
338#ifdef CONFIG_HAS_IOMEM
339 int mmio_needed;
340 int mmio_read_completed;
341 int mmio_is_write;
342 int mmio_cur_fragment;
343 int mmio_nr_fragments;
344 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
345#endif
346
347#ifdef CONFIG_KVM_ASYNC_PF
348 struct {
349 u32 queued;
350 struct list_head queue;
351 struct list_head done;
352 spinlock_t lock;
353 } async_pf;
354#endif
355
356#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
357 /*
358 * Cpu relax intercept or pause loop exit optimization
359 * in_spin_loop: set when a vcpu does a pause loop exit
360 * or cpu relax intercepted.
361 * dy_eligible: indicates whether vcpu is eligible for directed yield.
362 */
363 struct {
364 bool in_spin_loop;
365 bool dy_eligible;
366 } spin_loop;
367#endif
368 bool preempted;
369 bool ready;
370 struct kvm_vcpu_arch arch;
371 struct kvm_vcpu_stat stat;
372 char stats_id[KVM_STATS_NAME_SIZE];
373 struct kvm_dirty_ring dirty_ring;
374
375 /*
376 * The most recently used memslot by this vCPU and the slots generation
377 * for which it is valid.
378 * No wraparound protection is needed since generations won't overflow in
379 * thousands of years, even assuming 1M memslot operations per second.
380 */
381 struct kvm_memory_slot *last_used_slot;
382 u64 last_used_slot_gen;
383};
384
385/*
386 * Start accounting time towards a guest.
387 * Must be called before entering guest context.
388 */
389static __always_inline void guest_timing_enter_irqoff(void)
390{
391 /*
392 * This is running in ioctl context so its safe to assume that it's the
393 * stime pending cputime to flush.
394 */
395 instrumentation_begin();
396 vtime_account_guest_enter();
397 instrumentation_end();
398}
399
400/*
401 * Enter guest context and enter an RCU extended quiescent state.
402 *
403 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
404 * unsafe to use any code which may directly or indirectly use RCU, tracing
405 * (including IRQ flag tracing), or lockdep. All code in this period must be
406 * non-instrumentable.
407 */
408static __always_inline void guest_context_enter_irqoff(void)
409{
410 /*
411 * KVM does not hold any references to rcu protected data when it
412 * switches CPU into a guest mode. In fact switching to a guest mode
413 * is very similar to exiting to userspace from rcu point of view. In
414 * addition CPU may stay in a guest mode for quite a long time (up to
415 * one time slice). Lets treat guest mode as quiescent state, just like
416 * we do with user-mode execution.
417 */
418 if (!context_tracking_guest_enter()) {
419 instrumentation_begin();
420 rcu_virt_note_context_switch(smp_processor_id());
421 instrumentation_end();
422 }
423}
424
425/*
426 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
427 * guest_state_enter_irqoff().
428 */
429static __always_inline void guest_enter_irqoff(void)
430{
431 guest_timing_enter_irqoff();
432 guest_context_enter_irqoff();
433}
434
435/**
436 * guest_state_enter_irqoff - Fixup state when entering a guest
437 *
438 * Entry to a guest will enable interrupts, but the kernel state is interrupts
439 * disabled when this is invoked. Also tell RCU about it.
440 *
441 * 1) Trace interrupts on state
442 * 2) Invoke context tracking if enabled to adjust RCU state
443 * 3) Tell lockdep that interrupts are enabled
444 *
445 * Invoked from architecture specific code before entering a guest.
446 * Must be called with interrupts disabled and the caller must be
447 * non-instrumentable.
448 * The caller has to invoke guest_timing_enter_irqoff() before this.
449 *
450 * Note: this is analogous to exit_to_user_mode().
451 */
452static __always_inline void guest_state_enter_irqoff(void)
453{
454 instrumentation_begin();
455 trace_hardirqs_on_prepare();
456 lockdep_hardirqs_on_prepare(CALLER_ADDR0);
457 instrumentation_end();
458
459 guest_context_enter_irqoff();
460 lockdep_hardirqs_on(CALLER_ADDR0);
461}
462
463/*
464 * Exit guest context and exit an RCU extended quiescent state.
465 *
466 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
467 * unsafe to use any code which may directly or indirectly use RCU, tracing
468 * (including IRQ flag tracing), or lockdep. All code in this period must be
469 * non-instrumentable.
470 */
471static __always_inline void guest_context_exit_irqoff(void)
472{
473 context_tracking_guest_exit();
474}
475
476/*
477 * Stop accounting time towards a guest.
478 * Must be called after exiting guest context.
479 */
480static __always_inline void guest_timing_exit_irqoff(void)
481{
482 instrumentation_begin();
483 /* Flush the guest cputime we spent on the guest */
484 vtime_account_guest_exit();
485 instrumentation_end();
486}
487
488/*
489 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
490 * guest_timing_exit_irqoff().
491 */
492static __always_inline void guest_exit_irqoff(void)
493{
494 guest_context_exit_irqoff();
495 guest_timing_exit_irqoff();
496}
497
498static inline void guest_exit(void)
499{
500 unsigned long flags;
501
502 local_irq_save(flags);
503 guest_exit_irqoff();
504 local_irq_restore(flags);
505}
506
507/**
508 * guest_state_exit_irqoff - Establish state when returning from guest mode
509 *
510 * Entry from a guest disables interrupts, but guest mode is traced as
511 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
512 *
513 * 1) Tell lockdep that interrupts are disabled
514 * 2) Invoke context tracking if enabled to reactivate RCU
515 * 3) Trace interrupts off state
516 *
517 * Invoked from architecture specific code after exiting a guest.
518 * Must be invoked with interrupts disabled and the caller must be
519 * non-instrumentable.
520 * The caller has to invoke guest_timing_exit_irqoff() after this.
521 *
522 * Note: this is analogous to enter_from_user_mode().
523 */
524static __always_inline void guest_state_exit_irqoff(void)
525{
526 lockdep_hardirqs_off(CALLER_ADDR0);
527 guest_context_exit_irqoff();
528
529 instrumentation_begin();
530 trace_hardirqs_off_finish();
531 instrumentation_end();
532}
533
534static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
535{
536 /*
537 * The memory barrier ensures a previous write to vcpu->requests cannot
538 * be reordered with the read of vcpu->mode. It pairs with the general
539 * memory barrier following the write of vcpu->mode in VCPU RUN.
540 */
541 smp_mb__before_atomic();
542 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
543}
544
545/*
546 * Some of the bitops functions do not support too long bitmaps.
547 * This number must be determined not to exceed such limits.
548 */
549#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
550
551/*
552 * Since at idle each memslot belongs to two memslot sets it has to contain
553 * two embedded nodes for each data structure that it forms a part of.
554 *
555 * Two memslot sets (one active and one inactive) are necessary so the VM
556 * continues to run on one memslot set while the other is being modified.
557 *
558 * These two memslot sets normally point to the same set of memslots.
559 * They can, however, be desynchronized when performing a memslot management
560 * operation by replacing the memslot to be modified by its copy.
561 * After the operation is complete, both memslot sets once again point to
562 * the same, common set of memslot data.
563 *
564 * The memslots themselves are independent of each other so they can be
565 * individually added or deleted.
566 */
567struct kvm_memory_slot {
568 struct hlist_node id_node[2];
569 struct interval_tree_node hva_node[2];
570 struct rb_node gfn_node[2];
571 gfn_t base_gfn;
572 unsigned long npages;
573 unsigned long *dirty_bitmap;
574 struct kvm_arch_memory_slot arch;
575 unsigned long userspace_addr;
576 u32 flags;
577 short id;
578 u16 as_id;
579};
580
581static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
582{
583 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
584}
585
586static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
587{
588 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
589}
590
591static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
592{
593 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
594
595 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
596}
597
598#ifndef KVM_DIRTY_LOG_MANUAL_CAPS
599#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
600#endif
601
602struct kvm_s390_adapter_int {
603 u64 ind_addr;
604 u64 summary_addr;
605 u64 ind_offset;
606 u32 summary_offset;
607 u32 adapter_id;
608};
609
610struct kvm_hv_sint {
611 u32 vcpu;
612 u32 sint;
613};
614
615struct kvm_xen_evtchn {
616 u32 port;
617 u32 vcpu;
618 u32 priority;
619};
620
621struct kvm_kernel_irq_routing_entry {
622 u32 gsi;
623 u32 type;
624 int (*set)(struct kvm_kernel_irq_routing_entry *e,
625 struct kvm *kvm, int irq_source_id, int level,
626 bool line_status);
627 union {
628 struct {
629 unsigned irqchip;
630 unsigned pin;
631 } irqchip;
632 struct {
633 u32 address_lo;
634 u32 address_hi;
635 u32 data;
636 u32 flags;
637 u32 devid;
638 } msi;
639 struct kvm_s390_adapter_int adapter;
640 struct kvm_hv_sint hv_sint;
641 struct kvm_xen_evtchn xen_evtchn;
642 };
643 struct hlist_node link;
644};
645
646#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
647struct kvm_irq_routing_table {
648 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
649 u32 nr_rt_entries;
650 /*
651 * Array indexed by gsi. Each entry contains list of irq chips
652 * the gsi is connected to.
653 */
654 struct hlist_head map[];
655};
656#endif
657
658#ifndef KVM_PRIVATE_MEM_SLOTS
659#define KVM_PRIVATE_MEM_SLOTS 0
660#endif
661
662#define KVM_MEM_SLOTS_NUM SHRT_MAX
663#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS)
664
665#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
666static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
667{
668 return 0;
669}
670#endif
671
672struct kvm_memslots {
673 u64 generation;
674 atomic_long_t last_used_slot;
675 struct rb_root_cached hva_tree;
676 struct rb_root gfn_tree;
677 /*
678 * The mapping table from slot id to memslot.
679 *
680 * 7-bit bucket count matches the size of the old id to index array for
681 * 512 slots, while giving good performance with this slot count.
682 * Higher bucket counts bring only small performance improvements but
683 * always result in higher memory usage (even for lower memslot counts).
684 */
685 DECLARE_HASHTABLE(id_hash, 7);
686 int node_idx;
687};
688
689struct kvm {
690#ifdef KVM_HAVE_MMU_RWLOCK
691 rwlock_t mmu_lock;
692#else
693 spinlock_t mmu_lock;
694#endif /* KVM_HAVE_MMU_RWLOCK */
695
696 struct mutex slots_lock;
697
698 /*
699 * Protects the arch-specific fields of struct kvm_memory_slots in
700 * use by the VM. To be used under the slots_lock (above) or in a
701 * kvm->srcu critical section where acquiring the slots_lock would
702 * lead to deadlock with the synchronize_srcu in
703 * install_new_memslots.
704 */
705 struct mutex slots_arch_lock;
706 struct mm_struct *mm; /* userspace tied to this vm */
707 unsigned long nr_memslot_pages;
708 /* The two memslot sets - active and inactive (per address space) */
709 struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2];
710 /* The current active memslot set for each address space */
711 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
712 struct xarray vcpu_array;
713
714 /* Used to wait for completion of MMU notifiers. */
715 spinlock_t mn_invalidate_lock;
716 unsigned long mn_active_invalidate_count;
717 struct rcuwait mn_memslots_update_rcuwait;
718
719 /* For management / invalidation of gfn_to_pfn_caches */
720 spinlock_t gpc_lock;
721 struct list_head gpc_list;
722
723 /*
724 * created_vcpus is protected by kvm->lock, and is incremented
725 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
726 * incremented after storing the kvm_vcpu pointer in vcpus,
727 * and is accessed atomically.
728 */
729 atomic_t online_vcpus;
730 int created_vcpus;
731 int last_boosted_vcpu;
732 struct list_head vm_list;
733 struct mutex lock;
734 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
735#ifdef CONFIG_HAVE_KVM_EVENTFD
736 struct {
737 spinlock_t lock;
738 struct list_head items;
739 struct list_head resampler_list;
740 struct mutex resampler_lock;
741 } irqfds;
742 struct list_head ioeventfds;
743#endif
744 struct kvm_vm_stat stat;
745 struct kvm_arch arch;
746 refcount_t users_count;
747#ifdef CONFIG_KVM_MMIO
748 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
749 spinlock_t ring_lock;
750 struct list_head coalesced_zones;
751#endif
752
753 struct mutex irq_lock;
754#ifdef CONFIG_HAVE_KVM_IRQCHIP
755 /*
756 * Update side is protected by irq_lock.
757 */
758 struct kvm_irq_routing_table __rcu *irq_routing;
759#endif
760#ifdef CONFIG_HAVE_KVM_IRQFD
761 struct hlist_head irq_ack_notifier_list;
762#endif
763
764#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
765 struct mmu_notifier mmu_notifier;
766 unsigned long mmu_notifier_seq;
767 long mmu_notifier_count;
768 unsigned long mmu_notifier_range_start;
769 unsigned long mmu_notifier_range_end;
770#endif
771 struct list_head devices;
772 u64 manual_dirty_log_protect;
773 struct dentry *debugfs_dentry;
774 struct kvm_stat_data **debugfs_stat_data;
775 struct srcu_struct srcu;
776 struct srcu_struct irq_srcu;
777 pid_t userspace_pid;
778 unsigned int max_halt_poll_ns;
779 u32 dirty_ring_size;
780 bool vm_bugged;
781 bool vm_dead;
782
783#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
784 struct notifier_block pm_notifier;
785#endif
786 char stats_id[KVM_STATS_NAME_SIZE];
787};
788
789#define kvm_err(fmt, ...) \
790 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
791#define kvm_info(fmt, ...) \
792 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
793#define kvm_debug(fmt, ...) \
794 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
795#define kvm_debug_ratelimited(fmt, ...) \
796 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
797 ## __VA_ARGS__)
798#define kvm_pr_unimpl(fmt, ...) \
799 pr_err_ratelimited("kvm [%i]: " fmt, \
800 task_tgid_nr(current), ## __VA_ARGS__)
801
802/* The guest did something we don't support. */
803#define vcpu_unimpl(vcpu, fmt, ...) \
804 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
805 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
806
807#define vcpu_debug(vcpu, fmt, ...) \
808 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
809#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
810 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
811 ## __VA_ARGS__)
812#define vcpu_err(vcpu, fmt, ...) \
813 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
814
815static inline void kvm_vm_dead(struct kvm *kvm)
816{
817 kvm->vm_dead = true;
818 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
819}
820
821static inline void kvm_vm_bugged(struct kvm *kvm)
822{
823 kvm->vm_bugged = true;
824 kvm_vm_dead(kvm);
825}
826
827
828#define KVM_BUG(cond, kvm, fmt...) \
829({ \
830 int __ret = (cond); \
831 \
832 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
833 kvm_vm_bugged(kvm); \
834 unlikely(__ret); \
835})
836
837#define KVM_BUG_ON(cond, kvm) \
838({ \
839 int __ret = (cond); \
840 \
841 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
842 kvm_vm_bugged(kvm); \
843 unlikely(__ret); \
844})
845
846static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
847{
848#ifdef CONFIG_PROVE_RCU
849 WARN_ONCE(vcpu->srcu_depth++,
850 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
851#endif
852 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
853}
854
855static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
856{
857 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
858
859#ifdef CONFIG_PROVE_RCU
860 WARN_ONCE(--vcpu->srcu_depth,
861 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
862#endif
863}
864
865static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
866{
867 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
868}
869
870static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
871{
872 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
873 lockdep_is_held(&kvm->slots_lock) ||
874 !refcount_read(&kvm->users_count));
875}
876
877static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
878{
879 int num_vcpus = atomic_read(&kvm->online_vcpus);
880 i = array_index_nospec(i, num_vcpus);
881
882 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
883 smp_rmb();
884 return xa_load(&kvm->vcpu_array, i);
885}
886
887#define kvm_for_each_vcpu(idx, vcpup, kvm) \
888 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
889 (atomic_read(&kvm->online_vcpus) - 1))
890
891static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
892{
893 struct kvm_vcpu *vcpu = NULL;
894 unsigned long i;
895
896 if (id < 0)
897 return NULL;
898 if (id < KVM_MAX_VCPUS)
899 vcpu = kvm_get_vcpu(kvm, id);
900 if (vcpu && vcpu->vcpu_id == id)
901 return vcpu;
902 kvm_for_each_vcpu(i, vcpu, kvm)
903 if (vcpu->vcpu_id == id)
904 return vcpu;
905 return NULL;
906}
907
908static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
909{
910 return vcpu->vcpu_idx;
911}
912
913void kvm_destroy_vcpus(struct kvm *kvm);
914
915void vcpu_load(struct kvm_vcpu *vcpu);
916void vcpu_put(struct kvm_vcpu *vcpu);
917
918#ifdef __KVM_HAVE_IOAPIC
919void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
920void kvm_arch_post_irq_routing_update(struct kvm *kvm);
921#else
922static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
923{
924}
925static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
926{
927}
928#endif
929
930#ifdef CONFIG_HAVE_KVM_IRQFD
931int kvm_irqfd_init(void);
932void kvm_irqfd_exit(void);
933#else
934static inline int kvm_irqfd_init(void)
935{
936 return 0;
937}
938
939static inline void kvm_irqfd_exit(void)
940{
941}
942#endif
943int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
944 struct module *module);
945void kvm_exit(void);
946
947void kvm_get_kvm(struct kvm *kvm);
948bool kvm_get_kvm_safe(struct kvm *kvm);
949void kvm_put_kvm(struct kvm *kvm);
950bool file_is_kvm(struct file *file);
951void kvm_put_kvm_no_destroy(struct kvm *kvm);
952
953static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
954{
955 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
956 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
957 lockdep_is_held(&kvm->slots_lock) ||
958 !refcount_read(&kvm->users_count));
959}
960
961static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
962{
963 return __kvm_memslots(kvm, 0);
964}
965
966static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
967{
968 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
969
970 return __kvm_memslots(vcpu->kvm, as_id);
971}
972
973static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
974{
975 return RB_EMPTY_ROOT(&slots->gfn_tree);
976}
977
978#define kvm_for_each_memslot(memslot, bkt, slots) \
979 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
980 if (WARN_ON_ONCE(!memslot->npages)) { \
981 } else
982
983static inline
984struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
985{
986 struct kvm_memory_slot *slot;
987 int idx = slots->node_idx;
988
989 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
990 if (slot->id == id)
991 return slot;
992 }
993
994 return NULL;
995}
996
997/* Iterator used for walking memslots that overlap a gfn range. */
998struct kvm_memslot_iter {
999 struct kvm_memslots *slots;
1000 struct rb_node *node;
1001 struct kvm_memory_slot *slot;
1002};
1003
1004static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1005{
1006 iter->node = rb_next(iter->node);
1007 if (!iter->node)
1008 return;
1009
1010 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1011}
1012
1013static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1014 struct kvm_memslots *slots,
1015 gfn_t start)
1016{
1017 int idx = slots->node_idx;
1018 struct rb_node *tmp;
1019 struct kvm_memory_slot *slot;
1020
1021 iter->slots = slots;
1022
1023 /*
1024 * Find the so called "upper bound" of a key - the first node that has
1025 * its key strictly greater than the searched one (the start gfn in our case).
1026 */
1027 iter->node = NULL;
1028 for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1029 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1030 if (start < slot->base_gfn) {
1031 iter->node = tmp;
1032 tmp = tmp->rb_left;
1033 } else {
1034 tmp = tmp->rb_right;
1035 }
1036 }
1037
1038 /*
1039 * Find the slot with the lowest gfn that can possibly intersect with
1040 * the range, so we'll ideally have slot start <= range start
1041 */
1042 if (iter->node) {
1043 /*
1044 * A NULL previous node means that the very first slot
1045 * already has a higher start gfn.
1046 * In this case slot start > range start.
1047 */
1048 tmp = rb_prev(iter->node);
1049 if (tmp)
1050 iter->node = tmp;
1051 } else {
1052 /* a NULL node below means no slots */
1053 iter->node = rb_last(&slots->gfn_tree);
1054 }
1055
1056 if (iter->node) {
1057 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1058
1059 /*
1060 * It is possible in the slot start < range start case that the
1061 * found slot ends before or at range start (slot end <= range start)
1062 * and so it does not overlap the requested range.
1063 *
1064 * In such non-overlapping case the next slot (if it exists) will
1065 * already have slot start > range start, otherwise the logic above
1066 * would have found it instead of the current slot.
1067 */
1068 if (iter->slot->base_gfn + iter->slot->npages <= start)
1069 kvm_memslot_iter_next(iter);
1070 }
1071}
1072
1073static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1074{
1075 if (!iter->node)
1076 return false;
1077
1078 /*
1079 * If this slot starts beyond or at the end of the range so does
1080 * every next one
1081 */
1082 return iter->slot->base_gfn < end;
1083}
1084
1085/* Iterate over each memslot at least partially intersecting [start, end) range */
1086#define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \
1087 for (kvm_memslot_iter_start(iter, slots, start); \
1088 kvm_memslot_iter_is_valid(iter, end); \
1089 kvm_memslot_iter_next(iter))
1090
1091/*
1092 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1093 * - create a new memory slot
1094 * - delete an existing memory slot
1095 * - modify an existing memory slot
1096 * -- move it in the guest physical memory space
1097 * -- just change its flags
1098 *
1099 * Since flags can be changed by some of these operations, the following
1100 * differentiation is the best we can do for __kvm_set_memory_region():
1101 */
1102enum kvm_mr_change {
1103 KVM_MR_CREATE,
1104 KVM_MR_DELETE,
1105 KVM_MR_MOVE,
1106 KVM_MR_FLAGS_ONLY,
1107};
1108
1109int kvm_set_memory_region(struct kvm *kvm,
1110 const struct kvm_userspace_memory_region *mem);
1111int __kvm_set_memory_region(struct kvm *kvm,
1112 const struct kvm_userspace_memory_region *mem);
1113void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1114void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1115int kvm_arch_prepare_memory_region(struct kvm *kvm,
1116 const struct kvm_memory_slot *old,
1117 struct kvm_memory_slot *new,
1118 enum kvm_mr_change change);
1119void kvm_arch_commit_memory_region(struct kvm *kvm,
1120 struct kvm_memory_slot *old,
1121 const struct kvm_memory_slot *new,
1122 enum kvm_mr_change change);
1123/* flush all memory translations */
1124void kvm_arch_flush_shadow_all(struct kvm *kvm);
1125/* flush memory translations pointing to 'slot' */
1126void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1127 struct kvm_memory_slot *slot);
1128
1129int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1130 struct page **pages, int nr_pages);
1131
1132struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1133unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1134unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1135unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1136unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1137 bool *writable);
1138void kvm_release_page_clean(struct page *page);
1139void kvm_release_page_dirty(struct page *page);
1140void kvm_set_page_accessed(struct page *page);
1141
1142kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1143kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1144 bool *writable);
1145kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1146kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1147kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1148 bool atomic, bool *async, bool write_fault,
1149 bool *writable, hva_t *hva);
1150
1151void kvm_release_pfn_clean(kvm_pfn_t pfn);
1152void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1153void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1154void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1155
1156void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1157int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1158 int len);
1159int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1160int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1161 void *data, unsigned long len);
1162int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1163 void *data, unsigned int offset,
1164 unsigned long len);
1165int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1166 int offset, int len);
1167int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1168 unsigned long len);
1169int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1170 void *data, unsigned long len);
1171int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1172 void *data, unsigned int offset,
1173 unsigned long len);
1174int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1175 gpa_t gpa, unsigned long len);
1176
1177#define __kvm_get_guest(kvm, gfn, offset, v) \
1178({ \
1179 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1180 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1181 int __ret = -EFAULT; \
1182 \
1183 if (!kvm_is_error_hva(__addr)) \
1184 __ret = get_user(v, __uaddr); \
1185 __ret; \
1186})
1187
1188#define kvm_get_guest(kvm, gpa, v) \
1189({ \
1190 gpa_t __gpa = gpa; \
1191 struct kvm *__kvm = kvm; \
1192 \
1193 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
1194 offset_in_page(__gpa), v); \
1195})
1196
1197#define __kvm_put_guest(kvm, gfn, offset, v) \
1198({ \
1199 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1200 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1201 int __ret = -EFAULT; \
1202 \
1203 if (!kvm_is_error_hva(__addr)) \
1204 __ret = put_user(v, __uaddr); \
1205 if (!__ret) \
1206 mark_page_dirty(kvm, gfn); \
1207 __ret; \
1208})
1209
1210#define kvm_put_guest(kvm, gpa, v) \
1211({ \
1212 gpa_t __gpa = gpa; \
1213 struct kvm *__kvm = kvm; \
1214 \
1215 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
1216 offset_in_page(__gpa), v); \
1217})
1218
1219int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1220struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1221bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1222bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1223unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1224void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1225void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1226
1227struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1228struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1229kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1230kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1231int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1232struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
1233void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1234unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1235unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1236int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1237 int len);
1238int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1239 unsigned long len);
1240int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1241 unsigned long len);
1242int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1243 int offset, int len);
1244int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1245 unsigned long len);
1246void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1247
1248/**
1249 * kvm_gfn_to_pfn_cache_init - prepare a cached kernel mapping and HPA for a
1250 * given guest physical address.
1251 *
1252 * @kvm: pointer to kvm instance.
1253 * @gpc: struct gfn_to_pfn_cache object.
1254 * @vcpu: vCPU to be used for marking pages dirty and to be woken on
1255 * invalidation.
1256 * @usage: indicates if the resulting host physical PFN is used while
1257 * the @vcpu is IN_GUEST_MODE (in which case invalidation of
1258 * the cache from MMU notifiers---but not for KVM memslot
1259 * changes!---will also force @vcpu to exit the guest and
1260 * refresh the cache); and/or if the PFN used directly
1261 * by KVM (and thus needs a kernel virtual mapping).
1262 * @gpa: guest physical address to map.
1263 * @len: sanity check; the range being access must fit a single page.
1264 *
1265 * @return: 0 for success.
1266 * -EINVAL for a mapping which would cross a page boundary.
1267 * -EFAULT for an untranslatable guest physical address.
1268 *
1269 * This primes a gfn_to_pfn_cache and links it into the @kvm's list for
1270 * invalidations to be processed. Callers are required to use
1271 * kvm_gfn_to_pfn_cache_check() to ensure that the cache is valid before
1272 * accessing the target page.
1273 */
1274int kvm_gfn_to_pfn_cache_init(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1275 struct kvm_vcpu *vcpu, enum pfn_cache_usage usage,
1276 gpa_t gpa, unsigned long len);
1277
1278/**
1279 * kvm_gfn_to_pfn_cache_check - check validity of a gfn_to_pfn_cache.
1280 *
1281 * @kvm: pointer to kvm instance.
1282 * @gpc: struct gfn_to_pfn_cache object.
1283 * @gpa: current guest physical address to map.
1284 * @len: sanity check; the range being access must fit a single page.
1285 *
1286 * @return: %true if the cache is still valid and the address matches.
1287 * %false if the cache is not valid.
1288 *
1289 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1290 * while calling this function, and then continue to hold the lock until the
1291 * access is complete.
1292 *
1293 * Callers in IN_GUEST_MODE may do so without locking, although they should
1294 * still hold a read lock on kvm->scru for the memslot checks.
1295 */
1296bool kvm_gfn_to_pfn_cache_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1297 gpa_t gpa, unsigned long len);
1298
1299/**
1300 * kvm_gfn_to_pfn_cache_refresh - update a previously initialized cache.
1301 *
1302 * @kvm: pointer to kvm instance.
1303 * @gpc: struct gfn_to_pfn_cache object.
1304 * @gpa: updated guest physical address to map.
1305 * @len: sanity check; the range being access must fit a single page.
1306 *
1307 * @return: 0 for success.
1308 * -EINVAL for a mapping which would cross a page boundary.
1309 * -EFAULT for an untranslatable guest physical address.
1310 *
1311 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1312 * returm from this function does not mean the page can be immediately
1313 * accessed because it may have raced with an invalidation. Callers must
1314 * still lock and check the cache status, as this function does not return
1315 * with the lock still held to permit access.
1316 */
1317int kvm_gfn_to_pfn_cache_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1318 gpa_t gpa, unsigned long len);
1319
1320/**
1321 * kvm_gfn_to_pfn_cache_unmap - temporarily unmap a gfn_to_pfn_cache.
1322 *
1323 * @kvm: pointer to kvm instance.
1324 * @gpc: struct gfn_to_pfn_cache object.
1325 *
1326 * This unmaps the referenced page. The cache is left in the invalid state
1327 * but at least the mapping from GPA to userspace HVA will remain cached
1328 * and can be reused on a subsequent refresh.
1329 */
1330void kvm_gfn_to_pfn_cache_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1331
1332/**
1333 * kvm_gfn_to_pfn_cache_destroy - destroy and unlink a gfn_to_pfn_cache.
1334 *
1335 * @kvm: pointer to kvm instance.
1336 * @gpc: struct gfn_to_pfn_cache object.
1337 *
1338 * This removes a cache from the @kvm's list to be processed on MMU notifier
1339 * invocation.
1340 */
1341void kvm_gfn_to_pfn_cache_destroy(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1342
1343void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1344void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1345
1346void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1347bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1348void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1349void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1350bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1351void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1352int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1353void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
1354
1355void kvm_flush_remote_tlbs(struct kvm *kvm);
1356
1357#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1358int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1359int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1360void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1361void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1362#endif
1363
1364void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
1365 unsigned long end);
1366void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
1367 unsigned long end);
1368
1369long kvm_arch_dev_ioctl(struct file *filp,
1370 unsigned int ioctl, unsigned long arg);
1371long kvm_arch_vcpu_ioctl(struct file *filp,
1372 unsigned int ioctl, unsigned long arg);
1373vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1374
1375int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1376
1377void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1378 struct kvm_memory_slot *slot,
1379 gfn_t gfn_offset,
1380 unsigned long mask);
1381void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1382
1383#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1384void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1385 const struct kvm_memory_slot *memslot);
1386#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1387int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1388int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1389 int *is_dirty, struct kvm_memory_slot **memslot);
1390#endif
1391
1392int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1393 bool line_status);
1394int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1395 struct kvm_enable_cap *cap);
1396long kvm_arch_vm_ioctl(struct file *filp,
1397 unsigned int ioctl, unsigned long arg);
1398
1399int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1400int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1401
1402int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1403 struct kvm_translation *tr);
1404
1405int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1406int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1407int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1408 struct kvm_sregs *sregs);
1409int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1410 struct kvm_sregs *sregs);
1411int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1412 struct kvm_mp_state *mp_state);
1413int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1414 struct kvm_mp_state *mp_state);
1415int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1416 struct kvm_guest_debug *dbg);
1417int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1418
1419int kvm_arch_init(void *opaque);
1420void kvm_arch_exit(void);
1421
1422void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1423
1424void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1425void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1426int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1427int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1428void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1429void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1430
1431#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1432int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1433#endif
1434
1435#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1436void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1437#endif
1438
1439int kvm_arch_hardware_enable(void);
1440void kvm_arch_hardware_disable(void);
1441int kvm_arch_hardware_setup(void *opaque);
1442void kvm_arch_hardware_unsetup(void);
1443int kvm_arch_check_processor_compat(void *opaque);
1444int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1445bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1446int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1447bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1448bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1449int kvm_arch_post_init_vm(struct kvm *kvm);
1450void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1451int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1452
1453#ifndef __KVM_HAVE_ARCH_VM_ALLOC
1454/*
1455 * All architectures that want to use vzalloc currently also
1456 * need their own kvm_arch_alloc_vm implementation.
1457 */
1458static inline struct kvm *kvm_arch_alloc_vm(void)
1459{
1460 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
1461}
1462#endif
1463
1464static inline void __kvm_arch_free_vm(struct kvm *kvm)
1465{
1466 kvfree(kvm);
1467}
1468
1469#ifndef __KVM_HAVE_ARCH_VM_FREE
1470static inline void kvm_arch_free_vm(struct kvm *kvm)
1471{
1472 __kvm_arch_free_vm(kvm);
1473}
1474#endif
1475
1476#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1477static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1478{
1479 return -ENOTSUPP;
1480}
1481#endif
1482
1483#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1484void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1485void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1486bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1487#else
1488static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1489{
1490}
1491
1492static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1493{
1494}
1495
1496static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1497{
1498 return false;
1499}
1500#endif
1501#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1502void kvm_arch_start_assignment(struct kvm *kvm);
1503void kvm_arch_end_assignment(struct kvm *kvm);
1504bool kvm_arch_has_assigned_device(struct kvm *kvm);
1505#else
1506static inline void kvm_arch_start_assignment(struct kvm *kvm)
1507{
1508}
1509
1510static inline void kvm_arch_end_assignment(struct kvm *kvm)
1511{
1512}
1513
1514static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1515{
1516 return false;
1517}
1518#endif
1519
1520static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1521{
1522#ifdef __KVM_HAVE_ARCH_WQP
1523 return vcpu->arch.waitp;
1524#else
1525 return &vcpu->wait;
1526#endif
1527}
1528
1529/*
1530 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns
1531 * true if the vCPU was blocking and was awakened, false otherwise.
1532 */
1533static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1534{
1535 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1536}
1537
1538static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1539{
1540 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1541}
1542
1543#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1544/*
1545 * returns true if the virtual interrupt controller is initialized and
1546 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1547 * controller is dynamically instantiated and this is not always true.
1548 */
1549bool kvm_arch_intc_initialized(struct kvm *kvm);
1550#else
1551static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1552{
1553 return true;
1554}
1555#endif
1556
1557#ifdef CONFIG_GUEST_PERF_EVENTS
1558unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1559
1560void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1561void kvm_unregister_perf_callbacks(void);
1562#else
1563static inline void kvm_register_perf_callbacks(void *ign) {}
1564static inline void kvm_unregister_perf_callbacks(void) {}
1565#endif /* CONFIG_GUEST_PERF_EVENTS */
1566
1567int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1568void kvm_arch_destroy_vm(struct kvm *kvm);
1569void kvm_arch_sync_events(struct kvm *kvm);
1570
1571int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1572
1573bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1574bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1575
1576struct kvm_irq_ack_notifier {
1577 struct hlist_node link;
1578 unsigned gsi;
1579 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1580};
1581
1582int kvm_irq_map_gsi(struct kvm *kvm,
1583 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1584int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1585
1586int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1587 bool line_status);
1588int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1589 int irq_source_id, int level, bool line_status);
1590int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1591 struct kvm *kvm, int irq_source_id,
1592 int level, bool line_status);
1593bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1594void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1595void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1596void kvm_register_irq_ack_notifier(struct kvm *kvm,
1597 struct kvm_irq_ack_notifier *kian);
1598void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1599 struct kvm_irq_ack_notifier *kian);
1600int kvm_request_irq_source_id(struct kvm *kvm);
1601void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1602bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1603
1604/*
1605 * Returns a pointer to the memslot if it contains gfn.
1606 * Otherwise returns NULL.
1607 */
1608static inline struct kvm_memory_slot *
1609try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1610{
1611 if (!slot)
1612 return NULL;
1613
1614 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1615 return slot;
1616 else
1617 return NULL;
1618}
1619
1620/*
1621 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1622 *
1623 * With "approx" set returns the memslot also when the address falls
1624 * in a hole. In that case one of the memslots bordering the hole is
1625 * returned.
1626 */
1627static inline struct kvm_memory_slot *
1628search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1629{
1630 struct kvm_memory_slot *slot;
1631 struct rb_node *node;
1632 int idx = slots->node_idx;
1633
1634 slot = NULL;
1635 for (node = slots->gfn_tree.rb_node; node; ) {
1636 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1637 if (gfn >= slot->base_gfn) {
1638 if (gfn < slot->base_gfn + slot->npages)
1639 return slot;
1640 node = node->rb_right;
1641 } else
1642 node = node->rb_left;
1643 }
1644
1645 return approx ? slot : NULL;
1646}
1647
1648static inline struct kvm_memory_slot *
1649____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1650{
1651 struct kvm_memory_slot *slot;
1652
1653 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1654 slot = try_get_memslot(slot, gfn);
1655 if (slot)
1656 return slot;
1657
1658 slot = search_memslots(slots, gfn, approx);
1659 if (slot) {
1660 atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1661 return slot;
1662 }
1663
1664 return NULL;
1665}
1666
1667/*
1668 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1669 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline
1670 * because that would bloat other code too much.
1671 */
1672static inline struct kvm_memory_slot *
1673__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1674{
1675 return ____gfn_to_memslot(slots, gfn, false);
1676}
1677
1678static inline unsigned long
1679__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1680{
1681 /*
1682 * The index was checked originally in search_memslots. To avoid
1683 * that a malicious guest builds a Spectre gadget out of e.g. page
1684 * table walks, do not let the processor speculate loads outside
1685 * the guest's registered memslots.
1686 */
1687 unsigned long offset = gfn - slot->base_gfn;
1688 offset = array_index_nospec(offset, slot->npages);
1689 return slot->userspace_addr + offset * PAGE_SIZE;
1690}
1691
1692static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1693{
1694 return gfn_to_memslot(kvm, gfn)->id;
1695}
1696
1697static inline gfn_t
1698hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1699{
1700 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1701
1702 return slot->base_gfn + gfn_offset;
1703}
1704
1705static inline gpa_t gfn_to_gpa(gfn_t gfn)
1706{
1707 return (gpa_t)gfn << PAGE_SHIFT;
1708}
1709
1710static inline gfn_t gpa_to_gfn(gpa_t gpa)
1711{
1712 return (gfn_t)(gpa >> PAGE_SHIFT);
1713}
1714
1715static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1716{
1717 return (hpa_t)pfn << PAGE_SHIFT;
1718}
1719
1720static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1721 gpa_t gpa)
1722{
1723 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1724}
1725
1726static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1727{
1728 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1729
1730 return kvm_is_error_hva(hva);
1731}
1732
1733enum kvm_stat_kind {
1734 KVM_STAT_VM,
1735 KVM_STAT_VCPU,
1736};
1737
1738struct kvm_stat_data {
1739 struct kvm *kvm;
1740 const struct _kvm_stats_desc *desc;
1741 enum kvm_stat_kind kind;
1742};
1743
1744struct _kvm_stats_desc {
1745 struct kvm_stats_desc desc;
1746 char name[KVM_STATS_NAME_SIZE];
1747};
1748
1749#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
1750 .flags = type | unit | base | \
1751 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1752 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1753 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1754 .exponent = exp, \
1755 .size = sz, \
1756 .bucket_size = bsz
1757
1758#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1759 { \
1760 { \
1761 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1762 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1763 }, \
1764 .name = #stat, \
1765 }
1766#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1767 { \
1768 { \
1769 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1770 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1771 }, \
1772 .name = #stat, \
1773 }
1774#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1775 { \
1776 { \
1777 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1778 .offset = offsetof(struct kvm_vm_stat, stat) \
1779 }, \
1780 .name = #stat, \
1781 }
1782#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1783 { \
1784 { \
1785 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1786 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1787 }, \
1788 .name = #stat, \
1789 }
1790/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1791#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
1792 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1793
1794#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
1795 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
1796 unit, base, exponent, 1, 0)
1797#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
1798 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
1799 unit, base, exponent, 1, 0)
1800#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
1801 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
1802 unit, base, exponent, 1, 0)
1803#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
1804 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
1805 unit, base, exponent, sz, bsz)
1806#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
1807 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
1808 unit, base, exponent, sz, 0)
1809
1810/* Cumulative counter, read/write */
1811#define STATS_DESC_COUNTER(SCOPE, name) \
1812 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
1813 KVM_STATS_BASE_POW10, 0)
1814/* Instantaneous counter, read only */
1815#define STATS_DESC_ICOUNTER(SCOPE, name) \
1816 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
1817 KVM_STATS_BASE_POW10, 0)
1818/* Peak counter, read/write */
1819#define STATS_DESC_PCOUNTER(SCOPE, name) \
1820 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
1821 KVM_STATS_BASE_POW10, 0)
1822
1823/* Cumulative time in nanosecond */
1824#define STATS_DESC_TIME_NSEC(SCOPE, name) \
1825 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1826 KVM_STATS_BASE_POW10, -9)
1827/* Linear histogram for time in nanosecond */
1828#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
1829 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1830 KVM_STATS_BASE_POW10, -9, sz, bsz)
1831/* Logarithmic histogram for time in nanosecond */
1832#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
1833 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1834 KVM_STATS_BASE_POW10, -9, sz)
1835
1836#define KVM_GENERIC_VM_STATS() \
1837 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
1838 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1839
1840#define KVM_GENERIC_VCPU_STATS() \
1841 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
1842 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
1843 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
1844 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
1845 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
1846 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
1847 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
1848 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
1849 HALT_POLL_HIST_COUNT), \
1850 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
1851 HALT_POLL_HIST_COUNT), \
1852 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
1853 HALT_POLL_HIST_COUNT), \
1854 STATS_DESC_ICOUNTER(VCPU_GENERIC, blocking)
1855
1856extern struct dentry *kvm_debugfs_dir;
1857
1858ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1859 const struct _kvm_stats_desc *desc,
1860 void *stats, size_t size_stats,
1861 char __user *user_buffer, size_t size, loff_t *offset);
1862
1863/**
1864 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1865 * statistics data.
1866 *
1867 * @data: start address of the stats data
1868 * @size: the number of bucket of the stats data
1869 * @value: the new value used to update the linear histogram's bucket
1870 * @bucket_size: the size (width) of a bucket
1871 */
1872static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1873 u64 value, size_t bucket_size)
1874{
1875 size_t index = div64_u64(value, bucket_size);
1876
1877 index = min(index, size - 1);
1878 ++data[index];
1879}
1880
1881/**
1882 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1883 * statistics data.
1884 *
1885 * @data: start address of the stats data
1886 * @size: the number of bucket of the stats data
1887 * @value: the new value used to update the logarithmic histogram's bucket
1888 */
1889static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1890{
1891 size_t index = fls64(value);
1892
1893 index = min(index, size - 1);
1894 ++data[index];
1895}
1896
1897#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
1898 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1899#define KVM_STATS_LOG_HIST_UPDATE(array, value) \
1900 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1901
1902
1903extern const struct kvm_stats_header kvm_vm_stats_header;
1904extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1905extern const struct kvm_stats_header kvm_vcpu_stats_header;
1906extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1907
1908#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1909static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1910{
1911 if (unlikely(kvm->mmu_notifier_count))
1912 return 1;
1913 /*
1914 * Ensure the read of mmu_notifier_count happens before the read
1915 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1916 * mmu_notifier_invalidate_range_end to make sure that the caller
1917 * either sees the old (non-zero) value of mmu_notifier_count or
1918 * the new (incremented) value of mmu_notifier_seq.
1919 * PowerPC Book3s HV KVM calls this under a per-page lock
1920 * rather than under kvm->mmu_lock, for scalability, so
1921 * can't rely on kvm->mmu_lock to keep things ordered.
1922 */
1923 smp_rmb();
1924 if (kvm->mmu_notifier_seq != mmu_seq)
1925 return 1;
1926 return 0;
1927}
1928
1929static inline int mmu_notifier_retry_hva(struct kvm *kvm,
1930 unsigned long mmu_seq,
1931 unsigned long hva)
1932{
1933 lockdep_assert_held(&kvm->mmu_lock);
1934 /*
1935 * If mmu_notifier_count is non-zero, then the range maintained by
1936 * kvm_mmu_notifier_invalidate_range_start contains all addresses that
1937 * might be being invalidated. Note that it may include some false
1938 * positives, due to shortcuts when handing concurrent invalidations.
1939 */
1940 if (unlikely(kvm->mmu_notifier_count) &&
1941 hva >= kvm->mmu_notifier_range_start &&
1942 hva < kvm->mmu_notifier_range_end)
1943 return 1;
1944 if (kvm->mmu_notifier_seq != mmu_seq)
1945 return 1;
1946 return 0;
1947}
1948#endif
1949
1950#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1951
1952#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1953
1954bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1955int kvm_set_irq_routing(struct kvm *kvm,
1956 const struct kvm_irq_routing_entry *entries,
1957 unsigned nr,
1958 unsigned flags);
1959int kvm_set_routing_entry(struct kvm *kvm,
1960 struct kvm_kernel_irq_routing_entry *e,
1961 const struct kvm_irq_routing_entry *ue);
1962void kvm_free_irq_routing(struct kvm *kvm);
1963
1964#else
1965
1966static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1967
1968#endif
1969
1970int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1971
1972#ifdef CONFIG_HAVE_KVM_EVENTFD
1973
1974void kvm_eventfd_init(struct kvm *kvm);
1975int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1976
1977#ifdef CONFIG_HAVE_KVM_IRQFD
1978int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1979void kvm_irqfd_release(struct kvm *kvm);
1980void kvm_irq_routing_update(struct kvm *);
1981#else
1982static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1983{
1984 return -EINVAL;
1985}
1986
1987static inline void kvm_irqfd_release(struct kvm *kvm) {}
1988#endif
1989
1990#else
1991
1992static inline void kvm_eventfd_init(struct kvm *kvm) {}
1993
1994static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1995{
1996 return -EINVAL;
1997}
1998
1999static inline void kvm_irqfd_release(struct kvm *kvm) {}
2000
2001#ifdef CONFIG_HAVE_KVM_IRQCHIP
2002static inline void kvm_irq_routing_update(struct kvm *kvm)
2003{
2004}
2005#endif
2006
2007static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
2008{
2009 return -ENOSYS;
2010}
2011
2012#endif /* CONFIG_HAVE_KVM_EVENTFD */
2013
2014void kvm_arch_irq_routing_update(struct kvm *kvm);
2015
2016static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2017{
2018 /*
2019 * Ensure the rest of the request is published to kvm_check_request's
2020 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
2021 */
2022 smp_wmb();
2023 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2024}
2025
2026static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2027{
2028 /*
2029 * Request that don't require vCPU action should never be logged in
2030 * vcpu->requests. The vCPU won't clear the request, so it will stay
2031 * logged indefinitely and prevent the vCPU from entering the guest.
2032 */
2033 BUILD_BUG_ON(!__builtin_constant_p(req) ||
2034 (req & KVM_REQUEST_NO_ACTION));
2035
2036 __kvm_make_request(req, vcpu);
2037}
2038
2039static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2040{
2041 return READ_ONCE(vcpu->requests);
2042}
2043
2044static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2045{
2046 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2047}
2048
2049static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2050{
2051 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2052}
2053
2054static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2055{
2056 if (kvm_test_request(req, vcpu)) {
2057 kvm_clear_request(req, vcpu);
2058
2059 /*
2060 * Ensure the rest of the request is visible to kvm_check_request's
2061 * caller. Paired with the smp_wmb in kvm_make_request.
2062 */
2063 smp_mb__after_atomic();
2064 return true;
2065 } else {
2066 return false;
2067 }
2068}
2069
2070extern bool kvm_rebooting;
2071
2072extern unsigned int halt_poll_ns;
2073extern unsigned int halt_poll_ns_grow;
2074extern unsigned int halt_poll_ns_grow_start;
2075extern unsigned int halt_poll_ns_shrink;
2076
2077struct kvm_device {
2078 const struct kvm_device_ops *ops;
2079 struct kvm *kvm;
2080 void *private;
2081 struct list_head vm_node;
2082};
2083
2084/* create, destroy, and name are mandatory */
2085struct kvm_device_ops {
2086 const char *name;
2087
2088 /*
2089 * create is called holding kvm->lock and any operations not suitable
2090 * to do while holding the lock should be deferred to init (see
2091 * below).
2092 */
2093 int (*create)(struct kvm_device *dev, u32 type);
2094
2095 /*
2096 * init is called after create if create is successful and is called
2097 * outside of holding kvm->lock.
2098 */
2099 void (*init)(struct kvm_device *dev);
2100
2101 /*
2102 * Destroy is responsible for freeing dev.
2103 *
2104 * Destroy may be called before or after destructors are called
2105 * on emulated I/O regions, depending on whether a reference is
2106 * held by a vcpu or other kvm component that gets destroyed
2107 * after the emulated I/O.
2108 */
2109 void (*destroy)(struct kvm_device *dev);
2110
2111 /*
2112 * Release is an alternative method to free the device. It is
2113 * called when the device file descriptor is closed. Once
2114 * release is called, the destroy method will not be called
2115 * anymore as the device is removed from the device list of
2116 * the VM. kvm->lock is held.
2117 */
2118 void (*release)(struct kvm_device *dev);
2119
2120 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2121 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2122 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2123 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2124 unsigned long arg);
2125 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2126};
2127
2128void kvm_device_get(struct kvm_device *dev);
2129void kvm_device_put(struct kvm_device *dev);
2130struct kvm_device *kvm_device_from_filp(struct file *filp);
2131int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2132void kvm_unregister_device_ops(u32 type);
2133
2134extern struct kvm_device_ops kvm_mpic_ops;
2135extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2136extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2137
2138#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2139
2140static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2141{
2142 vcpu->spin_loop.in_spin_loop = val;
2143}
2144static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2145{
2146 vcpu->spin_loop.dy_eligible = val;
2147}
2148
2149#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2150
2151static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2152{
2153}
2154
2155static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2156{
2157}
2158#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2159
2160static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2161{
2162 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2163 !(memslot->flags & KVM_MEMSLOT_INVALID));
2164}
2165
2166struct kvm_vcpu *kvm_get_running_vcpu(void);
2167struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2168
2169#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2170bool kvm_arch_has_irq_bypass(void);
2171int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2172 struct irq_bypass_producer *);
2173void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2174 struct irq_bypass_producer *);
2175void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2176void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2177int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2178 uint32_t guest_irq, bool set);
2179bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2180 struct kvm_kernel_irq_routing_entry *);
2181#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2182
2183#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2184/* If we wakeup during the poll time, was it a sucessful poll? */
2185static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2186{
2187 return vcpu->valid_wakeup;
2188}
2189
2190#else
2191static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2192{
2193 return true;
2194}
2195#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2196
2197#ifdef CONFIG_HAVE_KVM_NO_POLL
2198/* Callback that tells if we must not poll */
2199bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2200#else
2201static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2202{
2203 return false;
2204}
2205#endif /* CONFIG_HAVE_KVM_NO_POLL */
2206
2207#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2208long kvm_arch_vcpu_async_ioctl(struct file *filp,
2209 unsigned int ioctl, unsigned long arg);
2210#else
2211static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2212 unsigned int ioctl,
2213 unsigned long arg)
2214{
2215 return -ENOIOCTLCMD;
2216}
2217#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2218
2219void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
2220 unsigned long start, unsigned long end);
2221
2222void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2223
2224#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2225int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2226#else
2227static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2228{
2229 return 0;
2230}
2231#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2232
2233typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2234
2235int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2236 uintptr_t data, const char *name,
2237 struct task_struct **thread_ptr);
2238
2239#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2240static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2241{
2242 vcpu->run->exit_reason = KVM_EXIT_INTR;
2243 vcpu->stat.signal_exits++;
2244}
2245#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2246
2247/*
2248 * This defines how many reserved entries we want to keep before we
2249 * kick the vcpu to the userspace to avoid dirty ring full. This
2250 * value can be tuned to higher if e.g. PML is enabled on the host.
2251 */
2252#define KVM_DIRTY_RING_RSVD_ENTRIES 64
2253
2254/* Max number of entries allowed for each kvm dirty ring */
2255#define KVM_DIRTY_RING_MAX_ENTRIES 65536
2256
2257#endif