at v5.18 55 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 4 */ 5#ifndef LINUX_DMAENGINE_H 6#define LINUX_DMAENGINE_H 7 8#include <linux/device.h> 9#include <linux/err.h> 10#include <linux/uio.h> 11#include <linux/bug.h> 12#include <linux/scatterlist.h> 13#include <linux/bitmap.h> 14#include <linux/types.h> 15#include <asm/page.h> 16 17/** 18 * typedef dma_cookie_t - an opaque DMA cookie 19 * 20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 21 */ 22typedef s32 dma_cookie_t; 23#define DMA_MIN_COOKIE 1 24 25static inline int dma_submit_error(dma_cookie_t cookie) 26{ 27 return cookie < 0 ? cookie : 0; 28} 29 30/** 31 * enum dma_status - DMA transaction status 32 * @DMA_COMPLETE: transaction completed 33 * @DMA_IN_PROGRESS: transaction not yet processed 34 * @DMA_PAUSED: transaction is paused 35 * @DMA_ERROR: transaction failed 36 */ 37enum dma_status { 38 DMA_COMPLETE, 39 DMA_IN_PROGRESS, 40 DMA_PAUSED, 41 DMA_ERROR, 42 DMA_OUT_OF_ORDER, 43}; 44 45/** 46 * enum dma_transaction_type - DMA transaction types/indexes 47 * 48 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 49 * automatically set as dma devices are registered. 50 */ 51enum dma_transaction_type { 52 DMA_MEMCPY, 53 DMA_MEMCPY_SG, 54 DMA_XOR, 55 DMA_PQ, 56 DMA_XOR_VAL, 57 DMA_PQ_VAL, 58 DMA_MEMSET, 59 DMA_MEMSET_SG, 60 DMA_INTERRUPT, 61 DMA_PRIVATE, 62 DMA_ASYNC_TX, 63 DMA_SLAVE, 64 DMA_CYCLIC, 65 DMA_INTERLEAVE, 66 DMA_COMPLETION_NO_ORDER, 67 DMA_REPEAT, 68 DMA_LOAD_EOT, 69/* last transaction type for creation of the capabilities mask */ 70 DMA_TX_TYPE_END, 71}; 72 73/** 74 * enum dma_transfer_direction - dma transfer mode and direction indicator 75 * @DMA_MEM_TO_MEM: Async/Memcpy mode 76 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 77 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 78 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 79 */ 80enum dma_transfer_direction { 81 DMA_MEM_TO_MEM, 82 DMA_MEM_TO_DEV, 83 DMA_DEV_TO_MEM, 84 DMA_DEV_TO_DEV, 85 DMA_TRANS_NONE, 86}; 87 88/** 89 * Interleaved Transfer Request 90 * ---------------------------- 91 * A chunk is collection of contiguous bytes to be transferred. 92 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 93 * ICGs may or may not change between chunks. 94 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 95 * that when repeated an integral number of times, specifies the transfer. 96 * A transfer template is specification of a Frame, the number of times 97 * it is to be repeated and other per-transfer attributes. 98 * 99 * Practically, a client driver would have ready a template for each 100 * type of transfer it is going to need during its lifetime and 101 * set only 'src_start' and 'dst_start' before submitting the requests. 102 * 103 * 104 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 105 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 106 * 107 * == Chunk size 108 * ... ICG 109 */ 110 111/** 112 * struct data_chunk - Element of scatter-gather list that makes a frame. 113 * @size: Number of bytes to read from source. 114 * size_dst := fn(op, size_src), so doesn't mean much for destination. 115 * @icg: Number of bytes to jump after last src/dst address of this 116 * chunk and before first src/dst address for next chunk. 117 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 118 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 119 * @dst_icg: Number of bytes to jump after last dst address of this 120 * chunk and before the first dst address for next chunk. 121 * Ignored if dst_inc is true and dst_sgl is false. 122 * @src_icg: Number of bytes to jump after last src address of this 123 * chunk and before the first src address for next chunk. 124 * Ignored if src_inc is true and src_sgl is false. 125 */ 126struct data_chunk { 127 size_t size; 128 size_t icg; 129 size_t dst_icg; 130 size_t src_icg; 131}; 132 133/** 134 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 135 * and attributes. 136 * @src_start: Bus address of source for the first chunk. 137 * @dst_start: Bus address of destination for the first chunk. 138 * @dir: Specifies the type of Source and Destination. 139 * @src_inc: If the source address increments after reading from it. 140 * @dst_inc: If the destination address increments after writing to it. 141 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 142 * Otherwise, source is read contiguously (icg ignored). 143 * Ignored if src_inc is false. 144 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 145 * Otherwise, destination is filled contiguously (icg ignored). 146 * Ignored if dst_inc is false. 147 * @numf: Number of frames in this template. 148 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 149 * @sgl: Array of {chunk,icg} pairs that make up a frame. 150 */ 151struct dma_interleaved_template { 152 dma_addr_t src_start; 153 dma_addr_t dst_start; 154 enum dma_transfer_direction dir; 155 bool src_inc; 156 bool dst_inc; 157 bool src_sgl; 158 bool dst_sgl; 159 size_t numf; 160 size_t frame_size; 161 struct data_chunk sgl[]; 162}; 163 164/** 165 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 166 * control completion, and communicate status. 167 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 168 * this transaction 169 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 170 * acknowledges receipt, i.e. has a chance to establish any dependency 171 * chains 172 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 173 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 174 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 175 * sources that were the result of a previous operation, in the case of a PQ 176 * operation it continues the calculation with new sources 177 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 178 * on the result of this operation 179 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till 180 * cleared or freed 181 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command 182 * data and the descriptor should be in different format from normal 183 * data descriptors. 184 * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically 185 * repeated when it ends until a transaction is issued on the same channel 186 * with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to 187 * interleaved transactions and is ignored for all other transaction types. 188 * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any 189 * active repeated (as indicated by DMA_PREP_REPEAT) transaction when the 190 * repeated transaction ends. Not setting this flag when the previously queued 191 * transaction is marked with DMA_PREP_REPEAT will cause the new transaction 192 * to never be processed and stay in the issued queue forever. The flag is 193 * ignored if the previous transaction is not a repeated transaction. 194 */ 195enum dma_ctrl_flags { 196 DMA_PREP_INTERRUPT = (1 << 0), 197 DMA_CTRL_ACK = (1 << 1), 198 DMA_PREP_PQ_DISABLE_P = (1 << 2), 199 DMA_PREP_PQ_DISABLE_Q = (1 << 3), 200 DMA_PREP_CONTINUE = (1 << 4), 201 DMA_PREP_FENCE = (1 << 5), 202 DMA_CTRL_REUSE = (1 << 6), 203 DMA_PREP_CMD = (1 << 7), 204 DMA_PREP_REPEAT = (1 << 8), 205 DMA_PREP_LOAD_EOT = (1 << 9), 206}; 207 208/** 209 * enum sum_check_bits - bit position of pq_check_flags 210 */ 211enum sum_check_bits { 212 SUM_CHECK_P = 0, 213 SUM_CHECK_Q = 1, 214}; 215 216/** 217 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 218 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 219 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 220 */ 221enum sum_check_flags { 222 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 223 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 224}; 225 226 227/** 228 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 229 * See linux/cpumask.h 230 */ 231typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 232 233/** 234 * enum dma_desc_metadata_mode - per descriptor metadata mode types supported 235 * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the 236 * client driver and it is attached (via the dmaengine_desc_attach_metadata() 237 * helper) to the descriptor. 238 * 239 * Client drivers interested to use this mode can follow: 240 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: 241 * 1. prepare the descriptor (dmaengine_prep_*) 242 * construct the metadata in the client's buffer 243 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the 244 * descriptor 245 * 3. submit the transfer 246 * - DMA_DEV_TO_MEM: 247 * 1. prepare the descriptor (dmaengine_prep_*) 248 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the 249 * descriptor 250 * 3. submit the transfer 251 * 4. when the transfer is completed, the metadata should be available in the 252 * attached buffer 253 * 254 * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA 255 * driver. The client driver can ask for the pointer, maximum size and the 256 * currently used size of the metadata and can directly update or read it. 257 * dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is 258 * provided as helper functions. 259 * 260 * Note: the metadata area for the descriptor is no longer valid after the 261 * transfer has been completed (valid up to the point when the completion 262 * callback returns if used). 263 * 264 * Client drivers interested to use this mode can follow: 265 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: 266 * 1. prepare the descriptor (dmaengine_prep_*) 267 * 2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's 268 * metadata area 269 * 3. update the metadata at the pointer 270 * 4. use dmaengine_desc_set_metadata_len() to tell the DMA engine the amount 271 * of data the client has placed into the metadata buffer 272 * 5. submit the transfer 273 * - DMA_DEV_TO_MEM: 274 * 1. prepare the descriptor (dmaengine_prep_*) 275 * 2. submit the transfer 276 * 3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the 277 * pointer to the engine's metadata area 278 * 4. Read out the metadata from the pointer 279 * 280 * Note: the two mode is not compatible and clients must use one mode for a 281 * descriptor. 282 */ 283enum dma_desc_metadata_mode { 284 DESC_METADATA_NONE = 0, 285 DESC_METADATA_CLIENT = BIT(0), 286 DESC_METADATA_ENGINE = BIT(1), 287}; 288 289/** 290 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 291 * @memcpy_count: transaction counter 292 * @bytes_transferred: byte counter 293 */ 294struct dma_chan_percpu { 295 /* stats */ 296 unsigned long memcpy_count; 297 unsigned long bytes_transferred; 298}; 299 300/** 301 * struct dma_router - DMA router structure 302 * @dev: pointer to the DMA router device 303 * @route_free: function to be called when the route can be disconnected 304 */ 305struct dma_router { 306 struct device *dev; 307 void (*route_free)(struct device *dev, void *route_data); 308}; 309 310/** 311 * struct dma_chan - devices supply DMA channels, clients use them 312 * @device: ptr to the dma device who supplies this channel, always !%NULL 313 * @slave: ptr to the device using this channel 314 * @cookie: last cookie value returned to client 315 * @completed_cookie: last completed cookie for this channel 316 * @chan_id: channel ID for sysfs 317 * @dev: class device for sysfs 318 * @name: backlink name for sysfs 319 * @dbg_client_name: slave name for debugfs in format: 320 * dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx" 321 * @device_node: used to add this to the device chan list 322 * @local: per-cpu pointer to a struct dma_chan_percpu 323 * @client_count: how many clients are using this channel 324 * @table_count: number of appearances in the mem-to-mem allocation table 325 * @router: pointer to the DMA router structure 326 * @route_data: channel specific data for the router 327 * @private: private data for certain client-channel associations 328 */ 329struct dma_chan { 330 struct dma_device *device; 331 struct device *slave; 332 dma_cookie_t cookie; 333 dma_cookie_t completed_cookie; 334 335 /* sysfs */ 336 int chan_id; 337 struct dma_chan_dev *dev; 338 const char *name; 339#ifdef CONFIG_DEBUG_FS 340 char *dbg_client_name; 341#endif 342 343 struct list_head device_node; 344 struct dma_chan_percpu __percpu *local; 345 int client_count; 346 int table_count; 347 348 /* DMA router */ 349 struct dma_router *router; 350 void *route_data; 351 352 void *private; 353}; 354 355/** 356 * struct dma_chan_dev - relate sysfs device node to backing channel device 357 * @chan: driver channel device 358 * @device: sysfs device 359 * @dev_id: parent dma_device dev_id 360 * @chan_dma_dev: The channel is using custom/different dma-mapping 361 * compared to the parent dma_device 362 */ 363struct dma_chan_dev { 364 struct dma_chan *chan; 365 struct device device; 366 int dev_id; 367 bool chan_dma_dev; 368}; 369 370/** 371 * enum dma_slave_buswidth - defines bus width of the DMA slave 372 * device, source or target buses 373 */ 374enum dma_slave_buswidth { 375 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 376 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 377 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 378 DMA_SLAVE_BUSWIDTH_3_BYTES = 3, 379 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 380 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 381 DMA_SLAVE_BUSWIDTH_16_BYTES = 16, 382 DMA_SLAVE_BUSWIDTH_32_BYTES = 32, 383 DMA_SLAVE_BUSWIDTH_64_BYTES = 64, 384 DMA_SLAVE_BUSWIDTH_128_BYTES = 128, 385}; 386 387/** 388 * struct dma_slave_config - dma slave channel runtime config 389 * @direction: whether the data shall go in or out on this slave 390 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are 391 * legal values. DEPRECATED, drivers should use the direction argument 392 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or 393 * the dir field in the dma_interleaved_template structure. 394 * @src_addr: this is the physical address where DMA slave data 395 * should be read (RX), if the source is memory this argument is 396 * ignored. 397 * @dst_addr: this is the physical address where DMA slave data 398 * should be written (TX), if the source is memory this argument 399 * is ignored. 400 * @src_addr_width: this is the width in bytes of the source (RX) 401 * register where DMA data shall be read. If the source 402 * is memory this may be ignored depending on architecture. 403 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64, 128. 404 * @dst_addr_width: same as src_addr_width but for destination 405 * target (TX) mutatis mutandis. 406 * @src_maxburst: the maximum number of words (note: words, as in 407 * units of the src_addr_width member, not bytes) that can be sent 408 * in one burst to the device. Typically something like half the 409 * FIFO depth on I/O peripherals so you don't overflow it. This 410 * may or may not be applicable on memory sources. 411 * @dst_maxburst: same as src_maxburst but for destination target 412 * mutatis mutandis. 413 * @src_port_window_size: The length of the register area in words the data need 414 * to be accessed on the device side. It is only used for devices which is using 415 * an area instead of a single register to receive the data. Typically the DMA 416 * loops in this area in order to transfer the data. 417 * @dst_port_window_size: same as src_port_window_size but for the destination 418 * port. 419 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill 420 * with 'true' if peripheral should be flow controller. Direction will be 421 * selected at Runtime. 422 * @peripheral_config: peripheral configuration for programming peripheral 423 * for dmaengine transfer 424 * @peripheral_size: peripheral configuration buffer size 425 * 426 * This struct is passed in as configuration data to a DMA engine 427 * in order to set up a certain channel for DMA transport at runtime. 428 * The DMA device/engine has to provide support for an additional 429 * callback in the dma_device structure, device_config and this struct 430 * will then be passed in as an argument to the function. 431 * 432 * The rationale for adding configuration information to this struct is as 433 * follows: if it is likely that more than one DMA slave controllers in 434 * the world will support the configuration option, then make it generic. 435 * If not: if it is fixed so that it be sent in static from the platform 436 * data, then prefer to do that. 437 */ 438struct dma_slave_config { 439 enum dma_transfer_direction direction; 440 phys_addr_t src_addr; 441 phys_addr_t dst_addr; 442 enum dma_slave_buswidth src_addr_width; 443 enum dma_slave_buswidth dst_addr_width; 444 u32 src_maxburst; 445 u32 dst_maxburst; 446 u32 src_port_window_size; 447 u32 dst_port_window_size; 448 bool device_fc; 449 void *peripheral_config; 450 size_t peripheral_size; 451}; 452 453/** 454 * enum dma_residue_granularity - Granularity of the reported transfer residue 455 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The 456 * DMA channel is only able to tell whether a descriptor has been completed or 457 * not, which means residue reporting is not supported by this channel. The 458 * residue field of the dma_tx_state field will always be 0. 459 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully 460 * completed segment of the transfer (For cyclic transfers this is after each 461 * period). This is typically implemented by having the hardware generate an 462 * interrupt after each transferred segment and then the drivers updates the 463 * outstanding residue by the size of the segment. Another possibility is if 464 * the hardware supports scatter-gather and the segment descriptor has a field 465 * which gets set after the segment has been completed. The driver then counts 466 * the number of segments without the flag set to compute the residue. 467 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred 468 * burst. This is typically only supported if the hardware has a progress 469 * register of some sort (E.g. a register with the current read/write address 470 * or a register with the amount of bursts/beats/bytes that have been 471 * transferred or still need to be transferred). 472 */ 473enum dma_residue_granularity { 474 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, 475 DMA_RESIDUE_GRANULARITY_SEGMENT = 1, 476 DMA_RESIDUE_GRANULARITY_BURST = 2, 477}; 478 479/** 480 * struct dma_slave_caps - expose capabilities of a slave channel only 481 * @src_addr_widths: bit mask of src addr widths the channel supports. 482 * Width is specified in bytes, e.g. for a channel supporting 483 * a width of 4 the mask should have BIT(4) set. 484 * @dst_addr_widths: bit mask of dst addr widths the channel supports 485 * @directions: bit mask of slave directions the channel supports. 486 * Since the enum dma_transfer_direction is not defined as bit flag for 487 * each type, the dma controller should set BIT(<TYPE>) and same 488 * should be checked by controller as well 489 * @min_burst: min burst capability per-transfer 490 * @max_burst: max burst capability per-transfer 491 * @max_sg_burst: max number of SG list entries executed in a single burst 492 * DMA tansaction with no software intervention for reinitialization. 493 * Zero value means unlimited number of entries. 494 * @cmd_pause: true, if pause is supported (i.e. for reading residue or 495 * for resume later) 496 * @cmd_resume: true, if resume is supported 497 * @cmd_terminate: true, if terminate cmd is supported 498 * @residue_granularity: granularity of the reported transfer residue 499 * @descriptor_reuse: if a descriptor can be reused by client and 500 * resubmitted multiple times 501 */ 502struct dma_slave_caps { 503 u32 src_addr_widths; 504 u32 dst_addr_widths; 505 u32 directions; 506 u32 min_burst; 507 u32 max_burst; 508 u32 max_sg_burst; 509 bool cmd_pause; 510 bool cmd_resume; 511 bool cmd_terminate; 512 enum dma_residue_granularity residue_granularity; 513 bool descriptor_reuse; 514}; 515 516static inline const char *dma_chan_name(struct dma_chan *chan) 517{ 518 return dev_name(&chan->dev->device); 519} 520 521void dma_chan_cleanup(struct kref *kref); 522 523/** 524 * typedef dma_filter_fn - callback filter for dma_request_channel 525 * @chan: channel to be reviewed 526 * @filter_param: opaque parameter passed through dma_request_channel 527 * 528 * When this optional parameter is specified in a call to dma_request_channel a 529 * suitable channel is passed to this routine for further dispositioning before 530 * being returned. Where 'suitable' indicates a non-busy channel that 531 * satisfies the given capability mask. It returns 'true' to indicate that the 532 * channel is suitable. 533 */ 534typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 535 536typedef void (*dma_async_tx_callback)(void *dma_async_param); 537 538enum dmaengine_tx_result { 539 DMA_TRANS_NOERROR = 0, /* SUCCESS */ 540 DMA_TRANS_READ_FAILED, /* Source DMA read failed */ 541 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */ 542 DMA_TRANS_ABORTED, /* Op never submitted / aborted */ 543}; 544 545struct dmaengine_result { 546 enum dmaengine_tx_result result; 547 u32 residue; 548}; 549 550typedef void (*dma_async_tx_callback_result)(void *dma_async_param, 551 const struct dmaengine_result *result); 552 553struct dmaengine_unmap_data { 554#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 555 u16 map_cnt; 556#else 557 u8 map_cnt; 558#endif 559 u8 to_cnt; 560 u8 from_cnt; 561 u8 bidi_cnt; 562 struct device *dev; 563 struct kref kref; 564 size_t len; 565 dma_addr_t addr[]; 566}; 567 568struct dma_async_tx_descriptor; 569 570struct dma_descriptor_metadata_ops { 571 int (*attach)(struct dma_async_tx_descriptor *desc, void *data, 572 size_t len); 573 574 void *(*get_ptr)(struct dma_async_tx_descriptor *desc, 575 size_t *payload_len, size_t *max_len); 576 int (*set_len)(struct dma_async_tx_descriptor *desc, 577 size_t payload_len); 578}; 579 580/** 581 * struct dma_async_tx_descriptor - async transaction descriptor 582 * ---dma generic offload fields--- 583 * @cookie: tracking cookie for this transaction, set to -EBUSY if 584 * this tx is sitting on a dependency list 585 * @flags: flags to augment operation preparation, control completion, and 586 * communicate status 587 * @phys: physical address of the descriptor 588 * @chan: target channel for this operation 589 * @tx_submit: accept the descriptor, assign ordered cookie and mark the 590 * descriptor pending. To be pushed on .issue_pending() call 591 * @callback: routine to call after this operation is complete 592 * @callback_param: general parameter to pass to the callback routine 593 * @desc_metadata_mode: core managed metadata mode to protect mixed use of 594 * DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise 595 * DESC_METADATA_NONE 596 * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the 597 * DMA driver if metadata mode is supported with the descriptor 598 * ---async_tx api specific fields--- 599 * @next: at completion submit this descriptor 600 * @parent: pointer to the next level up in the dependency chain 601 * @lock: protect the parent and next pointers 602 */ 603struct dma_async_tx_descriptor { 604 dma_cookie_t cookie; 605 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 606 dma_addr_t phys; 607 struct dma_chan *chan; 608 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 609 int (*desc_free)(struct dma_async_tx_descriptor *tx); 610 dma_async_tx_callback callback; 611 dma_async_tx_callback_result callback_result; 612 void *callback_param; 613 struct dmaengine_unmap_data *unmap; 614 enum dma_desc_metadata_mode desc_metadata_mode; 615 struct dma_descriptor_metadata_ops *metadata_ops; 616#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 617 struct dma_async_tx_descriptor *next; 618 struct dma_async_tx_descriptor *parent; 619 spinlock_t lock; 620#endif 621}; 622 623#ifdef CONFIG_DMA_ENGINE 624static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 625 struct dmaengine_unmap_data *unmap) 626{ 627 kref_get(&unmap->kref); 628 tx->unmap = unmap; 629} 630 631struct dmaengine_unmap_data * 632dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); 633void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); 634#else 635static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 636 struct dmaengine_unmap_data *unmap) 637{ 638} 639static inline struct dmaengine_unmap_data * 640dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 641{ 642 return NULL; 643} 644static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 645{ 646} 647#endif 648 649static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) 650{ 651 if (!tx->unmap) 652 return; 653 654 dmaengine_unmap_put(tx->unmap); 655 tx->unmap = NULL; 656} 657 658#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 659static inline void txd_lock(struct dma_async_tx_descriptor *txd) 660{ 661} 662static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 663{ 664} 665static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 666{ 667 BUG(); 668} 669static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 670{ 671} 672static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 673{ 674} 675static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 676{ 677 return NULL; 678} 679static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 680{ 681 return NULL; 682} 683 684#else 685static inline void txd_lock(struct dma_async_tx_descriptor *txd) 686{ 687 spin_lock_bh(&txd->lock); 688} 689static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 690{ 691 spin_unlock_bh(&txd->lock); 692} 693static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 694{ 695 txd->next = next; 696 next->parent = txd; 697} 698static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 699{ 700 txd->parent = NULL; 701} 702static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 703{ 704 txd->next = NULL; 705} 706static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 707{ 708 return txd->parent; 709} 710static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 711{ 712 return txd->next; 713} 714#endif 715 716/** 717 * struct dma_tx_state - filled in to report the status of 718 * a transfer. 719 * @last: last completed DMA cookie 720 * @used: last issued DMA cookie (i.e. the one in progress) 721 * @residue: the remaining number of bytes left to transmit 722 * on the selected transfer for states DMA_IN_PROGRESS and 723 * DMA_PAUSED if this is implemented in the driver, else 0 724 * @in_flight_bytes: amount of data in bytes cached by the DMA. 725 */ 726struct dma_tx_state { 727 dma_cookie_t last; 728 dma_cookie_t used; 729 u32 residue; 730 u32 in_flight_bytes; 731}; 732 733/** 734 * enum dmaengine_alignment - defines alignment of the DMA async tx 735 * buffers 736 */ 737enum dmaengine_alignment { 738 DMAENGINE_ALIGN_1_BYTE = 0, 739 DMAENGINE_ALIGN_2_BYTES = 1, 740 DMAENGINE_ALIGN_4_BYTES = 2, 741 DMAENGINE_ALIGN_8_BYTES = 3, 742 DMAENGINE_ALIGN_16_BYTES = 4, 743 DMAENGINE_ALIGN_32_BYTES = 5, 744 DMAENGINE_ALIGN_64_BYTES = 6, 745 DMAENGINE_ALIGN_128_BYTES = 7, 746 DMAENGINE_ALIGN_256_BYTES = 8, 747}; 748 749/** 750 * struct dma_slave_map - associates slave device and it's slave channel with 751 * parameter to be used by a filter function 752 * @devname: name of the device 753 * @slave: slave channel name 754 * @param: opaque parameter to pass to struct dma_filter.fn 755 */ 756struct dma_slave_map { 757 const char *devname; 758 const char *slave; 759 void *param; 760}; 761 762/** 763 * struct dma_filter - information for slave device/channel to filter_fn/param 764 * mapping 765 * @fn: filter function callback 766 * @mapcnt: number of slave device/channel in the map 767 * @map: array of channel to filter mapping data 768 */ 769struct dma_filter { 770 dma_filter_fn fn; 771 int mapcnt; 772 const struct dma_slave_map *map; 773}; 774 775/** 776 * struct dma_device - info on the entity supplying DMA services 777 * @chancnt: how many DMA channels are supported 778 * @privatecnt: how many DMA channels are requested by dma_request_channel 779 * @channels: the list of struct dma_chan 780 * @global_node: list_head for global dma_device_list 781 * @filter: information for device/slave to filter function/param mapping 782 * @cap_mask: one or more dma_capability flags 783 * @desc_metadata_modes: supported metadata modes by the DMA device 784 * @max_xor: maximum number of xor sources, 0 if no capability 785 * @max_pq: maximum number of PQ sources and PQ-continue capability 786 * @copy_align: alignment shift for memcpy operations 787 * @xor_align: alignment shift for xor operations 788 * @pq_align: alignment shift for pq operations 789 * @fill_align: alignment shift for memset operations 790 * @dev_id: unique device ID 791 * @dev: struct device reference for dma mapping api 792 * @owner: owner module (automatically set based on the provided dev) 793 * @src_addr_widths: bit mask of src addr widths the device supports 794 * Width is specified in bytes, e.g. for a device supporting 795 * a width of 4 the mask should have BIT(4) set. 796 * @dst_addr_widths: bit mask of dst addr widths the device supports 797 * @directions: bit mask of slave directions the device supports. 798 * Since the enum dma_transfer_direction is not defined as bit flag for 799 * each type, the dma controller should set BIT(<TYPE>) and same 800 * should be checked by controller as well 801 * @min_burst: min burst capability per-transfer 802 * @max_burst: max burst capability per-transfer 803 * @max_sg_burst: max number of SG list entries executed in a single burst 804 * DMA tansaction with no software intervention for reinitialization. 805 * Zero value means unlimited number of entries. 806 * @residue_granularity: granularity of the transfer residue reported 807 * by tx_status 808 * @device_alloc_chan_resources: allocate resources and return the 809 * number of allocated descriptors 810 * @device_router_config: optional callback for DMA router configuration 811 * @device_free_chan_resources: release DMA channel's resources 812 * @device_prep_dma_memcpy: prepares a memcpy operation 813 * @device_prep_dma_xor: prepares a xor operation 814 * @device_prep_dma_xor_val: prepares a xor validation operation 815 * @device_prep_dma_pq: prepares a pq operation 816 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 817 * @device_prep_dma_memset: prepares a memset operation 818 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list 819 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 820 * @device_prep_slave_sg: prepares a slave dma operation 821 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 822 * The function takes a buffer of size buf_len. The callback function will 823 * be called after period_len bytes have been transferred. 824 * @device_prep_interleaved_dma: Transfer expression in a generic way. 825 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address 826 * @device_caps: May be used to override the generic DMA slave capabilities 827 * with per-channel specific ones 828 * @device_config: Pushes a new configuration to a channel, return 0 or an error 829 * code 830 * @device_pause: Pauses any transfer happening on a channel. Returns 831 * 0 or an error code 832 * @device_resume: Resumes any transfer on a channel previously 833 * paused. Returns 0 or an error code 834 * @device_terminate_all: Aborts all transfers on a channel. Returns 0 835 * or an error code 836 * @device_synchronize: Synchronizes the termination of a transfers to the 837 * current context. 838 * @device_tx_status: poll for transaction completion, the optional 839 * txstate parameter can be supplied with a pointer to get a 840 * struct with auxiliary transfer status information, otherwise the call 841 * will just return a simple status code 842 * @device_issue_pending: push pending transactions to hardware 843 * @descriptor_reuse: a submitted transfer can be resubmitted after completion 844 * @device_release: called sometime atfer dma_async_device_unregister() is 845 * called and there are no further references to this structure. This 846 * must be implemented to free resources however many existing drivers 847 * do not and are therefore not safe to unbind while in use. 848 * @dbg_summary_show: optional routine to show contents in debugfs; default code 849 * will be used when this is omitted, but custom code can show extra, 850 * controller specific information. 851 */ 852struct dma_device { 853 struct kref ref; 854 unsigned int chancnt; 855 unsigned int privatecnt; 856 struct list_head channels; 857 struct list_head global_node; 858 struct dma_filter filter; 859 dma_cap_mask_t cap_mask; 860 enum dma_desc_metadata_mode desc_metadata_modes; 861 unsigned short max_xor; 862 unsigned short max_pq; 863 enum dmaengine_alignment copy_align; 864 enum dmaengine_alignment xor_align; 865 enum dmaengine_alignment pq_align; 866 enum dmaengine_alignment fill_align; 867 #define DMA_HAS_PQ_CONTINUE (1 << 15) 868 869 int dev_id; 870 struct device *dev; 871 struct module *owner; 872 struct ida chan_ida; 873 struct mutex chan_mutex; /* to protect chan_ida */ 874 875 u32 src_addr_widths; 876 u32 dst_addr_widths; 877 u32 directions; 878 u32 min_burst; 879 u32 max_burst; 880 u32 max_sg_burst; 881 bool descriptor_reuse; 882 enum dma_residue_granularity residue_granularity; 883 884 int (*device_alloc_chan_resources)(struct dma_chan *chan); 885 int (*device_router_config)(struct dma_chan *chan); 886 void (*device_free_chan_resources)(struct dma_chan *chan); 887 888 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 889 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, 890 size_t len, unsigned long flags); 891 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy_sg)( 892 struct dma_chan *chan, 893 struct scatterlist *dst_sg, unsigned int dst_nents, 894 struct scatterlist *src_sg, unsigned int src_nents, 895 unsigned long flags); 896 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 897 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src, 898 unsigned int src_cnt, size_t len, unsigned long flags); 899 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 900 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 901 size_t len, enum sum_check_flags *result, unsigned long flags); 902 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 903 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 904 unsigned int src_cnt, const unsigned char *scf, 905 size_t len, unsigned long flags); 906 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 907 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 908 unsigned int src_cnt, const unsigned char *scf, size_t len, 909 enum sum_check_flags *pqres, unsigned long flags); 910 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 911 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 912 unsigned long flags); 913 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)( 914 struct dma_chan *chan, struct scatterlist *sg, 915 unsigned int nents, int value, unsigned long flags); 916 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 917 struct dma_chan *chan, unsigned long flags); 918 919 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 920 struct dma_chan *chan, struct scatterlist *sgl, 921 unsigned int sg_len, enum dma_transfer_direction direction, 922 unsigned long flags, void *context); 923 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 924 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 925 size_t period_len, enum dma_transfer_direction direction, 926 unsigned long flags); 927 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 928 struct dma_chan *chan, struct dma_interleaved_template *xt, 929 unsigned long flags); 930 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)( 931 struct dma_chan *chan, dma_addr_t dst, u64 data, 932 unsigned long flags); 933 934 void (*device_caps)(struct dma_chan *chan, 935 struct dma_slave_caps *caps); 936 int (*device_config)(struct dma_chan *chan, 937 struct dma_slave_config *config); 938 int (*device_pause)(struct dma_chan *chan); 939 int (*device_resume)(struct dma_chan *chan); 940 int (*device_terminate_all)(struct dma_chan *chan); 941 void (*device_synchronize)(struct dma_chan *chan); 942 943 enum dma_status (*device_tx_status)(struct dma_chan *chan, 944 dma_cookie_t cookie, 945 struct dma_tx_state *txstate); 946 void (*device_issue_pending)(struct dma_chan *chan); 947 void (*device_release)(struct dma_device *dev); 948 /* debugfs support */ 949 void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev); 950 struct dentry *dbg_dev_root; 951}; 952 953static inline int dmaengine_slave_config(struct dma_chan *chan, 954 struct dma_slave_config *config) 955{ 956 if (chan->device->device_config) 957 return chan->device->device_config(chan, config); 958 959 return -ENOSYS; 960} 961 962static inline bool is_slave_direction(enum dma_transfer_direction direction) 963{ 964 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM); 965} 966 967static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 968 struct dma_chan *chan, dma_addr_t buf, size_t len, 969 enum dma_transfer_direction dir, unsigned long flags) 970{ 971 struct scatterlist sg; 972 sg_init_table(&sg, 1); 973 sg_dma_address(&sg) = buf; 974 sg_dma_len(&sg) = len; 975 976 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 977 return NULL; 978 979 return chan->device->device_prep_slave_sg(chan, &sg, 1, 980 dir, flags, NULL); 981} 982 983static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( 984 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 985 enum dma_transfer_direction dir, unsigned long flags) 986{ 987 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 988 return NULL; 989 990 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 991 dir, flags, NULL); 992} 993 994#ifdef CONFIG_RAPIDIO_DMA_ENGINE 995struct rio_dma_ext; 996static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( 997 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 998 enum dma_transfer_direction dir, unsigned long flags, 999 struct rio_dma_ext *rio_ext) 1000{ 1001 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 1002 return NULL; 1003 1004 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 1005 dir, flags, rio_ext); 1006} 1007#endif 1008 1009static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( 1010 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1011 size_t period_len, enum dma_transfer_direction dir, 1012 unsigned long flags) 1013{ 1014 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic) 1015 return NULL; 1016 1017 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, 1018 period_len, dir, flags); 1019} 1020 1021static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( 1022 struct dma_chan *chan, struct dma_interleaved_template *xt, 1023 unsigned long flags) 1024{ 1025 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma) 1026 return NULL; 1027 if (flags & DMA_PREP_REPEAT && 1028 !test_bit(DMA_REPEAT, chan->device->cap_mask.bits)) 1029 return NULL; 1030 1031 return chan->device->device_prep_interleaved_dma(chan, xt, flags); 1032} 1033 1034static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset( 1035 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 1036 unsigned long flags) 1037{ 1038 if (!chan || !chan->device || !chan->device->device_prep_dma_memset) 1039 return NULL; 1040 1041 return chan->device->device_prep_dma_memset(chan, dest, value, 1042 len, flags); 1043} 1044 1045static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy( 1046 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1047 size_t len, unsigned long flags) 1048{ 1049 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy) 1050 return NULL; 1051 1052 return chan->device->device_prep_dma_memcpy(chan, dest, src, 1053 len, flags); 1054} 1055 1056static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy_sg( 1057 struct dma_chan *chan, 1058 struct scatterlist *dst_sg, unsigned int dst_nents, 1059 struct scatterlist *src_sg, unsigned int src_nents, 1060 unsigned long flags) 1061{ 1062 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy_sg) 1063 return NULL; 1064 1065 return chan->device->device_prep_dma_memcpy_sg(chan, dst_sg, dst_nents, 1066 src_sg, src_nents, 1067 flags); 1068} 1069 1070static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan, 1071 enum dma_desc_metadata_mode mode) 1072{ 1073 if (!chan) 1074 return false; 1075 1076 return !!(chan->device->desc_metadata_modes & mode); 1077} 1078 1079#ifdef CONFIG_DMA_ENGINE 1080int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc, 1081 void *data, size_t len); 1082void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc, 1083 size_t *payload_len, size_t *max_len); 1084int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc, 1085 size_t payload_len); 1086#else /* CONFIG_DMA_ENGINE */ 1087static inline int dmaengine_desc_attach_metadata( 1088 struct dma_async_tx_descriptor *desc, void *data, size_t len) 1089{ 1090 return -EINVAL; 1091} 1092static inline void *dmaengine_desc_get_metadata_ptr( 1093 struct dma_async_tx_descriptor *desc, size_t *payload_len, 1094 size_t *max_len) 1095{ 1096 return NULL; 1097} 1098static inline int dmaengine_desc_set_metadata_len( 1099 struct dma_async_tx_descriptor *desc, size_t payload_len) 1100{ 1101 return -EINVAL; 1102} 1103#endif /* CONFIG_DMA_ENGINE */ 1104 1105/** 1106 * dmaengine_terminate_all() - Terminate all active DMA transfers 1107 * @chan: The channel for which to terminate the transfers 1108 * 1109 * This function is DEPRECATED use either dmaengine_terminate_sync() or 1110 * dmaengine_terminate_async() instead. 1111 */ 1112static inline int dmaengine_terminate_all(struct dma_chan *chan) 1113{ 1114 if (chan->device->device_terminate_all) 1115 return chan->device->device_terminate_all(chan); 1116 1117 return -ENOSYS; 1118} 1119 1120/** 1121 * dmaengine_terminate_async() - Terminate all active DMA transfers 1122 * @chan: The channel for which to terminate the transfers 1123 * 1124 * Calling this function will terminate all active and pending descriptors 1125 * that have previously been submitted to the channel. It is not guaranteed 1126 * though that the transfer for the active descriptor has stopped when the 1127 * function returns. Furthermore it is possible the complete callback of a 1128 * submitted transfer is still running when this function returns. 1129 * 1130 * dmaengine_synchronize() needs to be called before it is safe to free 1131 * any memory that is accessed by previously submitted descriptors or before 1132 * freeing any resources accessed from within the completion callback of any 1133 * previously submitted descriptors. 1134 * 1135 * This function can be called from atomic context as well as from within a 1136 * complete callback of a descriptor submitted on the same channel. 1137 * 1138 * If none of the two conditions above apply consider using 1139 * dmaengine_terminate_sync() instead. 1140 */ 1141static inline int dmaengine_terminate_async(struct dma_chan *chan) 1142{ 1143 if (chan->device->device_terminate_all) 1144 return chan->device->device_terminate_all(chan); 1145 1146 return -EINVAL; 1147} 1148 1149/** 1150 * dmaengine_synchronize() - Synchronize DMA channel termination 1151 * @chan: The channel to synchronize 1152 * 1153 * Synchronizes to the DMA channel termination to the current context. When this 1154 * function returns it is guaranteed that all transfers for previously issued 1155 * descriptors have stopped and it is safe to free the memory associated 1156 * with them. Furthermore it is guaranteed that all complete callback functions 1157 * for a previously submitted descriptor have finished running and it is safe to 1158 * free resources accessed from within the complete callbacks. 1159 * 1160 * The behavior of this function is undefined if dma_async_issue_pending() has 1161 * been called between dmaengine_terminate_async() and this function. 1162 * 1163 * This function must only be called from non-atomic context and must not be 1164 * called from within a complete callback of a descriptor submitted on the same 1165 * channel. 1166 */ 1167static inline void dmaengine_synchronize(struct dma_chan *chan) 1168{ 1169 might_sleep(); 1170 1171 if (chan->device->device_synchronize) 1172 chan->device->device_synchronize(chan); 1173} 1174 1175/** 1176 * dmaengine_terminate_sync() - Terminate all active DMA transfers 1177 * @chan: The channel for which to terminate the transfers 1178 * 1179 * Calling this function will terminate all active and pending transfers 1180 * that have previously been submitted to the channel. It is similar to 1181 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually 1182 * stopped and that all complete callbacks have finished running when the 1183 * function returns. 1184 * 1185 * This function must only be called from non-atomic context and must not be 1186 * called from within a complete callback of a descriptor submitted on the same 1187 * channel. 1188 */ 1189static inline int dmaengine_terminate_sync(struct dma_chan *chan) 1190{ 1191 int ret; 1192 1193 ret = dmaengine_terminate_async(chan); 1194 if (ret) 1195 return ret; 1196 1197 dmaengine_synchronize(chan); 1198 1199 return 0; 1200} 1201 1202static inline int dmaengine_pause(struct dma_chan *chan) 1203{ 1204 if (chan->device->device_pause) 1205 return chan->device->device_pause(chan); 1206 1207 return -ENOSYS; 1208} 1209 1210static inline int dmaengine_resume(struct dma_chan *chan) 1211{ 1212 if (chan->device->device_resume) 1213 return chan->device->device_resume(chan); 1214 1215 return -ENOSYS; 1216} 1217 1218static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, 1219 dma_cookie_t cookie, struct dma_tx_state *state) 1220{ 1221 return chan->device->device_tx_status(chan, cookie, state); 1222} 1223 1224static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 1225{ 1226 return desc->tx_submit(desc); 1227} 1228 1229static inline bool dmaengine_check_align(enum dmaengine_alignment align, 1230 size_t off1, size_t off2, size_t len) 1231{ 1232 return !(((1 << align) - 1) & (off1 | off2 | len)); 1233} 1234 1235static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 1236 size_t off2, size_t len) 1237{ 1238 return dmaengine_check_align(dev->copy_align, off1, off2, len); 1239} 1240 1241static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 1242 size_t off2, size_t len) 1243{ 1244 return dmaengine_check_align(dev->xor_align, off1, off2, len); 1245} 1246 1247static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 1248 size_t off2, size_t len) 1249{ 1250 return dmaengine_check_align(dev->pq_align, off1, off2, len); 1251} 1252 1253static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 1254 size_t off2, size_t len) 1255{ 1256 return dmaengine_check_align(dev->fill_align, off1, off2, len); 1257} 1258 1259static inline void 1260dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 1261{ 1262 dma->max_pq = maxpq; 1263 if (has_pq_continue) 1264 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 1265} 1266 1267static inline bool dmaf_continue(enum dma_ctrl_flags flags) 1268{ 1269 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 1270} 1271 1272static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 1273{ 1274 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 1275 1276 return (flags & mask) == mask; 1277} 1278 1279static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 1280{ 1281 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 1282} 1283 1284static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 1285{ 1286 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 1287} 1288 1289/* dma_maxpq - reduce maxpq in the face of continued operations 1290 * @dma - dma device with PQ capability 1291 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 1292 * 1293 * When an engine does not support native continuation we need 3 extra 1294 * source slots to reuse P and Q with the following coefficients: 1295 * 1/ {00} * P : remove P from Q', but use it as a source for P' 1296 * 2/ {01} * Q : use Q to continue Q' calculation 1297 * 3/ {00} * Q : subtract Q from P' to cancel (2) 1298 * 1299 * In the case where P is disabled we only need 1 extra source: 1300 * 1/ {01} * Q : use Q to continue Q' calculation 1301 */ 1302static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 1303{ 1304 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 1305 return dma_dev_to_maxpq(dma); 1306 if (dmaf_p_disabled_continue(flags)) 1307 return dma_dev_to_maxpq(dma) - 1; 1308 if (dmaf_continue(flags)) 1309 return dma_dev_to_maxpq(dma) - 3; 1310 BUG(); 1311} 1312 1313static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg, 1314 size_t dir_icg) 1315{ 1316 if (inc) { 1317 if (dir_icg) 1318 return dir_icg; 1319 if (sgl) 1320 return icg; 1321 } 1322 1323 return 0; 1324} 1325 1326static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt, 1327 struct data_chunk *chunk) 1328{ 1329 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl, 1330 chunk->icg, chunk->dst_icg); 1331} 1332 1333static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt, 1334 struct data_chunk *chunk) 1335{ 1336 return dmaengine_get_icg(xt->src_inc, xt->src_sgl, 1337 chunk->icg, chunk->src_icg); 1338} 1339 1340/* --- public DMA engine API --- */ 1341 1342#ifdef CONFIG_DMA_ENGINE 1343void dmaengine_get(void); 1344void dmaengine_put(void); 1345#else 1346static inline void dmaengine_get(void) 1347{ 1348} 1349static inline void dmaengine_put(void) 1350{ 1351} 1352#endif 1353 1354#ifdef CONFIG_ASYNC_TX_DMA 1355#define async_dmaengine_get() dmaengine_get() 1356#define async_dmaengine_put() dmaengine_put() 1357#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1358#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 1359#else 1360#define async_dma_find_channel(type) dma_find_channel(type) 1361#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 1362#else 1363static inline void async_dmaengine_get(void) 1364{ 1365} 1366static inline void async_dmaengine_put(void) 1367{ 1368} 1369static inline struct dma_chan * 1370async_dma_find_channel(enum dma_transaction_type type) 1371{ 1372 return NULL; 1373} 1374#endif /* CONFIG_ASYNC_TX_DMA */ 1375void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1376 struct dma_chan *chan); 1377 1378static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 1379{ 1380 tx->flags |= DMA_CTRL_ACK; 1381} 1382 1383static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 1384{ 1385 tx->flags &= ~DMA_CTRL_ACK; 1386} 1387 1388static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 1389{ 1390 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 1391} 1392 1393#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 1394static inline void 1395__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1396{ 1397 set_bit(tx_type, dstp->bits); 1398} 1399 1400#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 1401static inline void 1402__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1403{ 1404 clear_bit(tx_type, dstp->bits); 1405} 1406 1407#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 1408static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 1409{ 1410 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 1411} 1412 1413#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 1414static inline int 1415__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 1416{ 1417 return test_bit(tx_type, srcp->bits); 1418} 1419 1420#define for_each_dma_cap_mask(cap, mask) \ 1421 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) 1422 1423/** 1424 * dma_async_issue_pending - flush pending transactions to HW 1425 * @chan: target DMA channel 1426 * 1427 * This allows drivers to push copies to HW in batches, 1428 * reducing MMIO writes where possible. 1429 */ 1430static inline void dma_async_issue_pending(struct dma_chan *chan) 1431{ 1432 chan->device->device_issue_pending(chan); 1433} 1434 1435/** 1436 * dma_async_is_tx_complete - poll for transaction completion 1437 * @chan: DMA channel 1438 * @cookie: transaction identifier to check status of 1439 * @last: returns last completed cookie, can be NULL 1440 * @used: returns last issued cookie, can be NULL 1441 * 1442 * If @last and @used are passed in, upon return they reflect the driver 1443 * internal state and can be used with dma_async_is_complete() to check 1444 * the status of multiple cookies without re-checking hardware state. 1445 */ 1446static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 1447 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 1448{ 1449 struct dma_tx_state state; 1450 enum dma_status status; 1451 1452 status = chan->device->device_tx_status(chan, cookie, &state); 1453 if (last) 1454 *last = state.last; 1455 if (used) 1456 *used = state.used; 1457 return status; 1458} 1459 1460/** 1461 * dma_async_is_complete - test a cookie against chan state 1462 * @cookie: transaction identifier to test status of 1463 * @last_complete: last know completed transaction 1464 * @last_used: last cookie value handed out 1465 * 1466 * dma_async_is_complete() is used in dma_async_is_tx_complete() 1467 * the test logic is separated for lightweight testing of multiple cookies 1468 */ 1469static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 1470 dma_cookie_t last_complete, dma_cookie_t last_used) 1471{ 1472 if (last_complete <= last_used) { 1473 if ((cookie <= last_complete) || (cookie > last_used)) 1474 return DMA_COMPLETE; 1475 } else { 1476 if ((cookie <= last_complete) && (cookie > last_used)) 1477 return DMA_COMPLETE; 1478 } 1479 return DMA_IN_PROGRESS; 1480} 1481 1482static inline void 1483dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 1484{ 1485 if (!st) 1486 return; 1487 1488 st->last = last; 1489 st->used = used; 1490 st->residue = residue; 1491} 1492 1493#ifdef CONFIG_DMA_ENGINE 1494struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 1495enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 1496enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 1497void dma_issue_pending_all(void); 1498struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1499 dma_filter_fn fn, void *fn_param, 1500 struct device_node *np); 1501 1502struct dma_chan *dma_request_chan(struct device *dev, const char *name); 1503struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask); 1504 1505void dma_release_channel(struct dma_chan *chan); 1506int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps); 1507#else 1508static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 1509{ 1510 return NULL; 1511} 1512static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 1513{ 1514 return DMA_COMPLETE; 1515} 1516static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1517{ 1518 return DMA_COMPLETE; 1519} 1520static inline void dma_issue_pending_all(void) 1521{ 1522} 1523static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1524 dma_filter_fn fn, 1525 void *fn_param, 1526 struct device_node *np) 1527{ 1528 return NULL; 1529} 1530static inline struct dma_chan *dma_request_chan(struct device *dev, 1531 const char *name) 1532{ 1533 return ERR_PTR(-ENODEV); 1534} 1535static inline struct dma_chan *dma_request_chan_by_mask( 1536 const dma_cap_mask_t *mask) 1537{ 1538 return ERR_PTR(-ENODEV); 1539} 1540static inline void dma_release_channel(struct dma_chan *chan) 1541{ 1542} 1543static inline int dma_get_slave_caps(struct dma_chan *chan, 1544 struct dma_slave_caps *caps) 1545{ 1546 return -ENXIO; 1547} 1548#endif 1549 1550static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx) 1551{ 1552 struct dma_slave_caps caps; 1553 int ret; 1554 1555 ret = dma_get_slave_caps(tx->chan, &caps); 1556 if (ret) 1557 return ret; 1558 1559 if (!caps.descriptor_reuse) 1560 return -EPERM; 1561 1562 tx->flags |= DMA_CTRL_REUSE; 1563 return 0; 1564} 1565 1566static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx) 1567{ 1568 tx->flags &= ~DMA_CTRL_REUSE; 1569} 1570 1571static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx) 1572{ 1573 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE; 1574} 1575 1576static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc) 1577{ 1578 /* this is supported for reusable desc, so check that */ 1579 if (!dmaengine_desc_test_reuse(desc)) 1580 return -EPERM; 1581 1582 return desc->desc_free(desc); 1583} 1584 1585/* --- DMA device --- */ 1586 1587int dma_async_device_register(struct dma_device *device); 1588int dmaenginem_async_device_register(struct dma_device *device); 1589void dma_async_device_unregister(struct dma_device *device); 1590int dma_async_device_channel_register(struct dma_device *device, 1591 struct dma_chan *chan); 1592void dma_async_device_channel_unregister(struct dma_device *device, 1593 struct dma_chan *chan); 1594void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 1595#define dma_request_channel(mask, x, y) \ 1596 __dma_request_channel(&(mask), x, y, NULL) 1597 1598/* Deprecated, please use dma_request_chan() directly */ 1599static inline struct dma_chan * __deprecated 1600dma_request_slave_channel(struct device *dev, const char *name) 1601{ 1602 struct dma_chan *ch = dma_request_chan(dev, name); 1603 1604 return IS_ERR(ch) ? NULL : ch; 1605} 1606 1607static inline struct dma_chan 1608*dma_request_slave_channel_compat(const dma_cap_mask_t mask, 1609 dma_filter_fn fn, void *fn_param, 1610 struct device *dev, const char *name) 1611{ 1612 struct dma_chan *chan; 1613 1614 chan = dma_request_slave_channel(dev, name); 1615 if (chan) 1616 return chan; 1617 1618 if (!fn || !fn_param) 1619 return NULL; 1620 1621 return __dma_request_channel(&mask, fn, fn_param, NULL); 1622} 1623 1624static inline char * 1625dmaengine_get_direction_text(enum dma_transfer_direction dir) 1626{ 1627 switch (dir) { 1628 case DMA_DEV_TO_MEM: 1629 return "DEV_TO_MEM"; 1630 case DMA_MEM_TO_DEV: 1631 return "MEM_TO_DEV"; 1632 case DMA_MEM_TO_MEM: 1633 return "MEM_TO_MEM"; 1634 case DMA_DEV_TO_DEV: 1635 return "DEV_TO_DEV"; 1636 default: 1637 return "invalid"; 1638 } 1639} 1640 1641static inline struct device *dmaengine_get_dma_device(struct dma_chan *chan) 1642{ 1643 if (chan->dev->chan_dma_dev) 1644 return &chan->dev->device; 1645 1646 return chan->device->dev; 1647} 1648 1649#endif /* DMAENGINE_H */