Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4#ifndef _LINUX_BPF_VERIFIER_H
5#define _LINUX_BPF_VERIFIER_H 1
6
7#include <linux/bpf.h> /* for enum bpf_reg_type */
8#include <linux/btf.h> /* for struct btf and btf_id() */
9#include <linux/filter.h> /* for MAX_BPF_STACK */
10#include <linux/tnum.h>
11
12/* Maximum variable offset umax_value permitted when resolving memory accesses.
13 * In practice this is far bigger than any realistic pointer offset; this limit
14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
15 */
16#define BPF_MAX_VAR_OFF (1 << 29)
17/* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures
18 * that converting umax_value to int cannot overflow.
19 */
20#define BPF_MAX_VAR_SIZ (1 << 29)
21/* size of type_str_buf in bpf_verifier. */
22#define TYPE_STR_BUF_LEN 64
23
24/* Liveness marks, used for registers and spilled-regs (in stack slots).
25 * Read marks propagate upwards until they find a write mark; they record that
26 * "one of this state's descendants read this reg" (and therefore the reg is
27 * relevant for states_equal() checks).
28 * Write marks collect downwards and do not propagate; they record that "the
29 * straight-line code that reached this state (from its parent) wrote this reg"
30 * (and therefore that reads propagated from this state or its descendants
31 * should not propagate to its parent).
32 * A state with a write mark can receive read marks; it just won't propagate
33 * them to its parent, since the write mark is a property, not of the state,
34 * but of the link between it and its parent. See mark_reg_read() and
35 * mark_stack_slot_read() in kernel/bpf/verifier.c.
36 */
37enum bpf_reg_liveness {
38 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
39 REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
40 REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
41 REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
42 REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
43 REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
44};
45
46struct bpf_reg_state {
47 /* Ordering of fields matters. See states_equal() */
48 enum bpf_reg_type type;
49 /* Fixed part of pointer offset, pointer types only */
50 s32 off;
51 union {
52 /* valid when type == PTR_TO_PACKET */
53 int range;
54
55 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
56 * PTR_TO_MAP_VALUE_OR_NULL
57 */
58 struct {
59 struct bpf_map *map_ptr;
60 /* To distinguish map lookups from outer map
61 * the map_uid is non-zero for registers
62 * pointing to inner maps.
63 */
64 u32 map_uid;
65 };
66
67 /* for PTR_TO_BTF_ID */
68 struct {
69 struct btf *btf;
70 u32 btf_id;
71 };
72
73 u32 mem_size; /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */
74
75 /* Max size from any of the above. */
76 struct {
77 unsigned long raw1;
78 unsigned long raw2;
79 } raw;
80
81 u32 subprogno; /* for PTR_TO_FUNC */
82 };
83 /* For PTR_TO_PACKET, used to find other pointers with the same variable
84 * offset, so they can share range knowledge.
85 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
86 * came from, when one is tested for != NULL.
87 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation
88 * for the purpose of tracking that it's freed.
89 * For PTR_TO_SOCKET this is used to share which pointers retain the
90 * same reference to the socket, to determine proper reference freeing.
91 */
92 u32 id;
93 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
94 * from a pointer-cast helper, bpf_sk_fullsock() and
95 * bpf_tcp_sock().
96 *
97 * Consider the following where "sk" is a reference counted
98 * pointer returned from "sk = bpf_sk_lookup_tcp();":
99 *
100 * 1: sk = bpf_sk_lookup_tcp();
101 * 2: if (!sk) { return 0; }
102 * 3: fullsock = bpf_sk_fullsock(sk);
103 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
104 * 5: tp = bpf_tcp_sock(fullsock);
105 * 6: if (!tp) { bpf_sk_release(sk); return 0; }
106 * 7: bpf_sk_release(sk);
107 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain
108 *
109 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
110 * "tp" ptr should be invalidated also. In order to do that,
111 * the reg holding "fullsock" and "sk" need to remember
112 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
113 * such that the verifier can reset all regs which have
114 * ref_obj_id matching the sk_reg->id.
115 *
116 * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
117 * sk_reg->id will stay as NULL-marking purpose only.
118 * After NULL-marking is done, sk_reg->id can be reset to 0.
119 *
120 * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
121 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
122 *
123 * After "tp = bpf_tcp_sock(fullsock);" at line 5,
124 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
125 * which is the same as sk_reg->ref_obj_id.
126 *
127 * From the verifier perspective, if sk, fullsock and tp
128 * are not NULL, they are the same ptr with different
129 * reg->type. In particular, bpf_sk_release(tp) is also
130 * allowed and has the same effect as bpf_sk_release(sk).
131 */
132 u32 ref_obj_id;
133 /* For scalar types (SCALAR_VALUE), this represents our knowledge of
134 * the actual value.
135 * For pointer types, this represents the variable part of the offset
136 * from the pointed-to object, and is shared with all bpf_reg_states
137 * with the same id as us.
138 */
139 struct tnum var_off;
140 /* Used to determine if any memory access using this register will
141 * result in a bad access.
142 * These refer to the same value as var_off, not necessarily the actual
143 * contents of the register.
144 */
145 s64 smin_value; /* minimum possible (s64)value */
146 s64 smax_value; /* maximum possible (s64)value */
147 u64 umin_value; /* minimum possible (u64)value */
148 u64 umax_value; /* maximum possible (u64)value */
149 s32 s32_min_value; /* minimum possible (s32)value */
150 s32 s32_max_value; /* maximum possible (s32)value */
151 u32 u32_min_value; /* minimum possible (u32)value */
152 u32 u32_max_value; /* maximum possible (u32)value */
153 /* parentage chain for liveness checking */
154 struct bpf_reg_state *parent;
155 /* Inside the callee two registers can be both PTR_TO_STACK like
156 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
157 * while another to the caller's stack. To differentiate them 'frameno'
158 * is used which is an index in bpf_verifier_state->frame[] array
159 * pointing to bpf_func_state.
160 */
161 u32 frameno;
162 /* Tracks subreg definition. The stored value is the insn_idx of the
163 * writing insn. This is safe because subreg_def is used before any insn
164 * patching which only happens after main verification finished.
165 */
166 s32 subreg_def;
167 enum bpf_reg_liveness live;
168 /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
169 bool precise;
170};
171
172enum bpf_stack_slot_type {
173 STACK_INVALID, /* nothing was stored in this stack slot */
174 STACK_SPILL, /* register spilled into stack */
175 STACK_MISC, /* BPF program wrote some data into this slot */
176 STACK_ZERO, /* BPF program wrote constant zero */
177};
178
179#define BPF_REG_SIZE 8 /* size of eBPF register in bytes */
180
181struct bpf_stack_state {
182 struct bpf_reg_state spilled_ptr;
183 u8 slot_type[BPF_REG_SIZE];
184};
185
186struct bpf_reference_state {
187 /* Track each reference created with a unique id, even if the same
188 * instruction creates the reference multiple times (eg, via CALL).
189 */
190 int id;
191 /* Instruction where the allocation of this reference occurred. This
192 * is used purely to inform the user of a reference leak.
193 */
194 int insn_idx;
195};
196
197/* state of the program:
198 * type of all registers and stack info
199 */
200struct bpf_func_state {
201 struct bpf_reg_state regs[MAX_BPF_REG];
202 /* index of call instruction that called into this func */
203 int callsite;
204 /* stack frame number of this function state from pov of
205 * enclosing bpf_verifier_state.
206 * 0 = main function, 1 = first callee.
207 */
208 u32 frameno;
209 /* subprog number == index within subprog_info
210 * zero == main subprog
211 */
212 u32 subprogno;
213 /* Every bpf_timer_start will increment async_entry_cnt.
214 * It's used to distinguish:
215 * void foo(void) { for(;;); }
216 * void foo(void) { bpf_timer_set_callback(,foo); }
217 */
218 u32 async_entry_cnt;
219 bool in_callback_fn;
220 bool in_async_callback_fn;
221
222 /* The following fields should be last. See copy_func_state() */
223 int acquired_refs;
224 struct bpf_reference_state *refs;
225 int allocated_stack;
226 struct bpf_stack_state *stack;
227};
228
229struct bpf_idx_pair {
230 u32 prev_idx;
231 u32 idx;
232};
233
234struct bpf_id_pair {
235 u32 old;
236 u32 cur;
237};
238
239/* Maximum number of register states that can exist at once */
240#define BPF_ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
241#define MAX_CALL_FRAMES 8
242struct bpf_verifier_state {
243 /* call stack tracking */
244 struct bpf_func_state *frame[MAX_CALL_FRAMES];
245 struct bpf_verifier_state *parent;
246 /*
247 * 'branches' field is the number of branches left to explore:
248 * 0 - all possible paths from this state reached bpf_exit or
249 * were safely pruned
250 * 1 - at least one path is being explored.
251 * This state hasn't reached bpf_exit
252 * 2 - at least two paths are being explored.
253 * This state is an immediate parent of two children.
254 * One is fallthrough branch with branches==1 and another
255 * state is pushed into stack (to be explored later) also with
256 * branches==1. The parent of this state has branches==1.
257 * The verifier state tree connected via 'parent' pointer looks like:
258 * 1
259 * 1
260 * 2 -> 1 (first 'if' pushed into stack)
261 * 1
262 * 2 -> 1 (second 'if' pushed into stack)
263 * 1
264 * 1
265 * 1 bpf_exit.
266 *
267 * Once do_check() reaches bpf_exit, it calls update_branch_counts()
268 * and the verifier state tree will look:
269 * 1
270 * 1
271 * 2 -> 1 (first 'if' pushed into stack)
272 * 1
273 * 1 -> 1 (second 'if' pushed into stack)
274 * 0
275 * 0
276 * 0 bpf_exit.
277 * After pop_stack() the do_check() will resume at second 'if'.
278 *
279 * If is_state_visited() sees a state with branches > 0 it means
280 * there is a loop. If such state is exactly equal to the current state
281 * it's an infinite loop. Note states_equal() checks for states
282 * equvalency, so two states being 'states_equal' does not mean
283 * infinite loop. The exact comparison is provided by
284 * states_maybe_looping() function. It's a stronger pre-check and
285 * much faster than states_equal().
286 *
287 * This algorithm may not find all possible infinite loops or
288 * loop iteration count may be too high.
289 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
290 */
291 u32 branches;
292 u32 insn_idx;
293 u32 curframe;
294 u32 active_spin_lock;
295 bool speculative;
296
297 /* first and last insn idx of this verifier state */
298 u32 first_insn_idx;
299 u32 last_insn_idx;
300 /* jmp history recorded from first to last.
301 * backtracking is using it to go from last to first.
302 * For most states jmp_history_cnt is [0-3].
303 * For loops can go up to ~40.
304 */
305 struct bpf_idx_pair *jmp_history;
306 u32 jmp_history_cnt;
307};
308
309#define bpf_get_spilled_reg(slot, frame) \
310 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \
311 (frame->stack[slot].slot_type[0] == STACK_SPILL)) \
312 ? &frame->stack[slot].spilled_ptr : NULL)
313
314/* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
315#define bpf_for_each_spilled_reg(iter, frame, reg) \
316 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame); \
317 iter < frame->allocated_stack / BPF_REG_SIZE; \
318 iter++, reg = bpf_get_spilled_reg(iter, frame))
319
320/* linked list of verifier states used to prune search */
321struct bpf_verifier_state_list {
322 struct bpf_verifier_state state;
323 struct bpf_verifier_state_list *next;
324 int miss_cnt, hit_cnt;
325};
326
327/* Possible states for alu_state member. */
328#define BPF_ALU_SANITIZE_SRC (1U << 0)
329#define BPF_ALU_SANITIZE_DST (1U << 1)
330#define BPF_ALU_NEG_VALUE (1U << 2)
331#define BPF_ALU_NON_POINTER (1U << 3)
332#define BPF_ALU_IMMEDIATE (1U << 4)
333#define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \
334 BPF_ALU_SANITIZE_DST)
335
336struct bpf_insn_aux_data {
337 union {
338 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */
339 unsigned long map_ptr_state; /* pointer/poison value for maps */
340 s32 call_imm; /* saved imm field of call insn */
341 u32 alu_limit; /* limit for add/sub register with pointer */
342 struct {
343 u32 map_index; /* index into used_maps[] */
344 u32 map_off; /* offset from value base address */
345 };
346 struct {
347 enum bpf_reg_type reg_type; /* type of pseudo_btf_id */
348 union {
349 struct {
350 struct btf *btf;
351 u32 btf_id; /* btf_id for struct typed var */
352 };
353 u32 mem_size; /* mem_size for non-struct typed var */
354 };
355 } btf_var;
356 };
357 u64 map_key_state; /* constant (32 bit) key tracking for maps */
358 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
359 u32 seen; /* this insn was processed by the verifier at env->pass_cnt */
360 bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */
361 bool zext_dst; /* this insn zero extends dst reg */
362 u8 alu_state; /* used in combination with alu_limit */
363
364 /* below fields are initialized once */
365 unsigned int orig_idx; /* original instruction index */
366 bool prune_point;
367};
368
369#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
370#define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */
371
372#define BPF_VERIFIER_TMP_LOG_SIZE 1024
373
374struct bpf_verifier_log {
375 u32 level;
376 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
377 char __user *ubuf;
378 u32 len_used;
379 u32 len_total;
380};
381
382static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log)
383{
384 return log->len_used >= log->len_total - 1;
385}
386
387#define BPF_LOG_LEVEL1 1
388#define BPF_LOG_LEVEL2 2
389#define BPF_LOG_STATS 4
390#define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
391#define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS)
392#define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */
393#define BPF_LOG_MIN_ALIGNMENT 8U
394#define BPF_LOG_ALIGNMENT 40U
395
396static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
397{
398 return log &&
399 ((log->level && log->ubuf && !bpf_verifier_log_full(log)) ||
400 log->level == BPF_LOG_KERNEL);
401}
402
403static inline bool
404bpf_verifier_log_attr_valid(const struct bpf_verifier_log *log)
405{
406 return log->len_total >= 128 && log->len_total <= UINT_MAX >> 2 &&
407 log->level && log->ubuf && !(log->level & ~BPF_LOG_MASK);
408}
409
410#define BPF_MAX_SUBPROGS 256
411
412struct bpf_subprog_info {
413 /* 'start' has to be the first field otherwise find_subprog() won't work */
414 u32 start; /* insn idx of function entry point */
415 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
416 u16 stack_depth; /* max. stack depth used by this function */
417 bool has_tail_call;
418 bool tail_call_reachable;
419 bool has_ld_abs;
420 bool is_async_cb;
421};
422
423/* single container for all structs
424 * one verifier_env per bpf_check() call
425 */
426struct bpf_verifier_env {
427 u32 insn_idx;
428 u32 prev_insn_idx;
429 struct bpf_prog *prog; /* eBPF program being verified */
430 const struct bpf_verifier_ops *ops;
431 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
432 int stack_size; /* number of states to be processed */
433 bool strict_alignment; /* perform strict pointer alignment checks */
434 bool test_state_freq; /* test verifier with different pruning frequency */
435 struct bpf_verifier_state *cur_state; /* current verifier state */
436 struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
437 struct bpf_verifier_state_list *free_list;
438 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
439 struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */
440 u32 used_map_cnt; /* number of used maps */
441 u32 used_btf_cnt; /* number of used BTF objects */
442 u32 id_gen; /* used to generate unique reg IDs */
443 bool explore_alu_limits;
444 bool allow_ptr_leaks;
445 bool allow_uninit_stack;
446 bool allow_ptr_to_map_access;
447 bool bpf_capable;
448 bool bypass_spec_v1;
449 bool bypass_spec_v4;
450 bool seen_direct_write;
451 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
452 const struct bpf_line_info *prev_linfo;
453 struct bpf_verifier_log log;
454 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
455 struct bpf_id_pair idmap_scratch[BPF_ID_MAP_SIZE];
456 struct {
457 int *insn_state;
458 int *insn_stack;
459 int cur_stack;
460 } cfg;
461 u32 pass_cnt; /* number of times do_check() was called */
462 u32 subprog_cnt;
463 /* number of instructions analyzed by the verifier */
464 u32 prev_insn_processed, insn_processed;
465 /* number of jmps, calls, exits analyzed so far */
466 u32 prev_jmps_processed, jmps_processed;
467 /* total verification time */
468 u64 verification_time;
469 /* maximum number of verifier states kept in 'branching' instructions */
470 u32 max_states_per_insn;
471 /* total number of allocated verifier states */
472 u32 total_states;
473 /* some states are freed during program analysis.
474 * this is peak number of states. this number dominates kernel
475 * memory consumption during verification
476 */
477 u32 peak_states;
478 /* longest register parentage chain walked for liveness marking */
479 u32 longest_mark_read_walk;
480 bpfptr_t fd_array;
481
482 /* bit mask to keep track of whether a register has been accessed
483 * since the last time the function state was printed
484 */
485 u32 scratched_regs;
486 /* Same as scratched_regs but for stack slots */
487 u64 scratched_stack_slots;
488 u32 prev_log_len, prev_insn_print_len;
489 /* buffer used in reg_type_str() to generate reg_type string */
490 char type_str_buf[TYPE_STR_BUF_LEN];
491};
492
493__printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
494 const char *fmt, va_list args);
495__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
496 const char *fmt, ...);
497__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
498 const char *fmt, ...);
499
500static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
501{
502 struct bpf_verifier_state *cur = env->cur_state;
503
504 return cur->frame[cur->curframe];
505}
506
507static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
508{
509 return cur_func(env)->regs;
510}
511
512int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
513int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
514 int insn_idx, int prev_insn_idx);
515int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
516void
517bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
518 struct bpf_insn *insn);
519void
520bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
521
522int check_ptr_off_reg(struct bpf_verifier_env *env,
523 const struct bpf_reg_state *reg, int regno);
524int check_func_arg_reg_off(struct bpf_verifier_env *env,
525 const struct bpf_reg_state *reg, int regno,
526 enum bpf_arg_type arg_type,
527 bool is_release_func);
528int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
529 u32 regno);
530int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
531 u32 regno, u32 mem_size);
532
533/* this lives here instead of in bpf.h because it needs to dereference tgt_prog */
534static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog,
535 struct btf *btf, u32 btf_id)
536{
537 if (tgt_prog)
538 return ((u64)tgt_prog->aux->id << 32) | btf_id;
539 else
540 return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id;
541}
542
543/* unpack the IDs from the key as constructed above */
544static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id)
545{
546 if (obj_id)
547 *obj_id = key >> 32;
548 if (btf_id)
549 *btf_id = key & 0x7FFFFFFF;
550}
551
552int bpf_check_attach_target(struct bpf_verifier_log *log,
553 const struct bpf_prog *prog,
554 const struct bpf_prog *tgt_prog,
555 u32 btf_id,
556 struct bpf_attach_target_info *tgt_info);
557void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab);
558
559#define BPF_BASE_TYPE_MASK GENMASK(BPF_BASE_TYPE_BITS - 1, 0)
560
561/* extract base type from bpf_{arg, return, reg}_type. */
562static inline u32 base_type(u32 type)
563{
564 return type & BPF_BASE_TYPE_MASK;
565}
566
567/* extract flags from an extended type. See bpf_type_flag in bpf.h. */
568static inline u32 type_flag(u32 type)
569{
570 return type & ~BPF_BASE_TYPE_MASK;
571}
572
573/* only use after check_attach_btf_id() */
574static inline enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
575{
576 return prog->type == BPF_PROG_TYPE_EXT ?
577 prog->aux->dst_prog->type : prog->type;
578}
579
580#endif /* _LINUX_BPF_VERIFIER_H */