at v5.18 16 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Block data types and constants. Directly include this file only to 4 * break include dependency loop. 5 */ 6#ifndef __LINUX_BLK_TYPES_H 7#define __LINUX_BLK_TYPES_H 8 9#include <linux/types.h> 10#include <linux/bvec.h> 11#include <linux/device.h> 12#include <linux/ktime.h> 13 14struct bio_set; 15struct bio; 16struct bio_integrity_payload; 17struct page; 18struct io_context; 19struct cgroup_subsys_state; 20typedef void (bio_end_io_t) (struct bio *); 21struct bio_crypt_ctx; 22 23/* 24 * The basic unit of block I/O is a sector. It is used in a number of contexts 25 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 26 * bytes. Variables of type sector_t represent an offset or size that is a 27 * multiple of 512 bytes. Hence these two constants. 28 */ 29#ifndef SECTOR_SHIFT 30#define SECTOR_SHIFT 9 31#endif 32#ifndef SECTOR_SIZE 33#define SECTOR_SIZE (1 << SECTOR_SHIFT) 34#endif 35 36#define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 37#define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 38#define SECTOR_MASK (PAGE_SECTORS - 1) 39 40struct block_device { 41 sector_t bd_start_sect; 42 sector_t bd_nr_sectors; 43 struct disk_stats __percpu *bd_stats; 44 unsigned long bd_stamp; 45 bool bd_read_only; /* read-only policy */ 46 dev_t bd_dev; 47 int bd_openers; 48 struct inode * bd_inode; /* will die */ 49 struct super_block * bd_super; 50 void * bd_claiming; 51 struct device bd_device; 52 void * bd_holder; 53 int bd_holders; 54 bool bd_write_holder; 55 struct kobject *bd_holder_dir; 56 u8 bd_partno; 57 spinlock_t bd_size_lock; /* for bd_inode->i_size updates */ 58 struct gendisk * bd_disk; 59 struct request_queue * bd_queue; 60 61 /* The counter of freeze processes */ 62 int bd_fsfreeze_count; 63 /* Mutex for freeze */ 64 struct mutex bd_fsfreeze_mutex; 65 struct super_block *bd_fsfreeze_sb; 66 67 struct partition_meta_info *bd_meta_info; 68#ifdef CONFIG_FAIL_MAKE_REQUEST 69 bool bd_make_it_fail; 70#endif 71} __randomize_layout; 72 73#define bdev_whole(_bdev) \ 74 ((_bdev)->bd_disk->part0) 75 76#define dev_to_bdev(device) \ 77 container_of((device), struct block_device, bd_device) 78 79#define bdev_kobj(_bdev) \ 80 (&((_bdev)->bd_device.kobj)) 81 82/* 83 * Block error status values. See block/blk-core:blk_errors for the details. 84 * Alpha cannot write a byte atomically, so we need to use 32-bit value. 85 */ 86#if defined(CONFIG_ALPHA) && !defined(__alpha_bwx__) 87typedef u32 __bitwise blk_status_t; 88typedef u32 blk_short_t; 89#else 90typedef u8 __bitwise blk_status_t; 91typedef u16 blk_short_t; 92#endif 93#define BLK_STS_OK 0 94#define BLK_STS_NOTSUPP ((__force blk_status_t)1) 95#define BLK_STS_TIMEOUT ((__force blk_status_t)2) 96#define BLK_STS_NOSPC ((__force blk_status_t)3) 97#define BLK_STS_TRANSPORT ((__force blk_status_t)4) 98#define BLK_STS_TARGET ((__force blk_status_t)5) 99#define BLK_STS_NEXUS ((__force blk_status_t)6) 100#define BLK_STS_MEDIUM ((__force blk_status_t)7) 101#define BLK_STS_PROTECTION ((__force blk_status_t)8) 102#define BLK_STS_RESOURCE ((__force blk_status_t)9) 103#define BLK_STS_IOERR ((__force blk_status_t)10) 104 105/* hack for device mapper, don't use elsewhere: */ 106#define BLK_STS_DM_REQUEUE ((__force blk_status_t)11) 107 108#define BLK_STS_AGAIN ((__force blk_status_t)12) 109 110/* 111 * BLK_STS_DEV_RESOURCE is returned from the driver to the block layer if 112 * device related resources are unavailable, but the driver can guarantee 113 * that the queue will be rerun in the future once resources become 114 * available again. This is typically the case for device specific 115 * resources that are consumed for IO. If the driver fails allocating these 116 * resources, we know that inflight (or pending) IO will free these 117 * resource upon completion. 118 * 119 * This is different from BLK_STS_RESOURCE in that it explicitly references 120 * a device specific resource. For resources of wider scope, allocation 121 * failure can happen without having pending IO. This means that we can't 122 * rely on request completions freeing these resources, as IO may not be in 123 * flight. Examples of that are kernel memory allocations, DMA mappings, or 124 * any other system wide resources. 125 */ 126#define BLK_STS_DEV_RESOURCE ((__force blk_status_t)13) 127 128/* 129 * BLK_STS_ZONE_RESOURCE is returned from the driver to the block layer if zone 130 * related resources are unavailable, but the driver can guarantee the queue 131 * will be rerun in the future once the resources become available again. 132 * 133 * This is different from BLK_STS_DEV_RESOURCE in that it explicitly references 134 * a zone specific resource and IO to a different zone on the same device could 135 * still be served. Examples of that are zones that are write-locked, but a read 136 * to the same zone could be served. 137 */ 138#define BLK_STS_ZONE_RESOURCE ((__force blk_status_t)14) 139 140/* 141 * BLK_STS_ZONE_OPEN_RESOURCE is returned from the driver in the completion 142 * path if the device returns a status indicating that too many zone resources 143 * are currently open. The same command should be successful if resubmitted 144 * after the number of open zones decreases below the device's limits, which is 145 * reported in the request_queue's max_open_zones. 146 */ 147#define BLK_STS_ZONE_OPEN_RESOURCE ((__force blk_status_t)15) 148 149/* 150 * BLK_STS_ZONE_ACTIVE_RESOURCE is returned from the driver in the completion 151 * path if the device returns a status indicating that too many zone resources 152 * are currently active. The same command should be successful if resubmitted 153 * after the number of active zones decreases below the device's limits, which 154 * is reported in the request_queue's max_active_zones. 155 */ 156#define BLK_STS_ZONE_ACTIVE_RESOURCE ((__force blk_status_t)16) 157 158/* 159 * BLK_STS_OFFLINE is returned from the driver when the target device is offline 160 * or is being taken offline. This could help differentiate the case where a 161 * device is intentionally being shut down from a real I/O error. 162 */ 163#define BLK_STS_OFFLINE ((__force blk_status_t)17) 164 165/** 166 * blk_path_error - returns true if error may be path related 167 * @error: status the request was completed with 168 * 169 * Description: 170 * This classifies block error status into non-retryable errors and ones 171 * that may be successful if retried on a failover path. 172 * 173 * Return: 174 * %false - retrying failover path will not help 175 * %true - may succeed if retried 176 */ 177static inline bool blk_path_error(blk_status_t error) 178{ 179 switch (error) { 180 case BLK_STS_NOTSUPP: 181 case BLK_STS_NOSPC: 182 case BLK_STS_TARGET: 183 case BLK_STS_NEXUS: 184 case BLK_STS_MEDIUM: 185 case BLK_STS_PROTECTION: 186 return false; 187 } 188 189 /* Anything else could be a path failure, so should be retried */ 190 return true; 191} 192 193/* 194 * From most significant bit: 195 * 1 bit: reserved for other usage, see below 196 * 12 bits: original size of bio 197 * 51 bits: issue time of bio 198 */ 199#define BIO_ISSUE_RES_BITS 1 200#define BIO_ISSUE_SIZE_BITS 12 201#define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS) 202#define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS) 203#define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1) 204#define BIO_ISSUE_SIZE_MASK \ 205 (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT) 206#define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1)) 207 208/* Reserved bit for blk-throtl */ 209#define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63) 210 211struct bio_issue { 212 u64 value; 213}; 214 215static inline u64 __bio_issue_time(u64 time) 216{ 217 return time & BIO_ISSUE_TIME_MASK; 218} 219 220static inline u64 bio_issue_time(struct bio_issue *issue) 221{ 222 return __bio_issue_time(issue->value); 223} 224 225static inline sector_t bio_issue_size(struct bio_issue *issue) 226{ 227 return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT); 228} 229 230static inline void bio_issue_init(struct bio_issue *issue, 231 sector_t size) 232{ 233 size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1; 234 issue->value = ((issue->value & BIO_ISSUE_RES_MASK) | 235 (ktime_get_ns() & BIO_ISSUE_TIME_MASK) | 236 ((u64)size << BIO_ISSUE_SIZE_SHIFT)); 237} 238 239typedef unsigned int blk_qc_t; 240#define BLK_QC_T_NONE -1U 241 242/* 243 * main unit of I/O for the block layer and lower layers (ie drivers and 244 * stacking drivers) 245 */ 246struct bio { 247 struct bio *bi_next; /* request queue link */ 248 struct block_device *bi_bdev; 249 unsigned int bi_opf; /* bottom bits req flags, 250 * top bits REQ_OP. Use 251 * accessors. 252 */ 253 unsigned short bi_flags; /* BIO_* below */ 254 unsigned short bi_ioprio; 255 blk_status_t bi_status; 256 atomic_t __bi_remaining; 257 258 struct bvec_iter bi_iter; 259 260 blk_qc_t bi_cookie; 261 bio_end_io_t *bi_end_io; 262 void *bi_private; 263#ifdef CONFIG_BLK_CGROUP 264 /* 265 * Represents the association of the css and request_queue for the bio. 266 * If a bio goes direct to device, it will not have a blkg as it will 267 * not have a request_queue associated with it. The reference is put 268 * on release of the bio. 269 */ 270 struct blkcg_gq *bi_blkg; 271 struct bio_issue bi_issue; 272#ifdef CONFIG_BLK_CGROUP_IOCOST 273 u64 bi_iocost_cost; 274#endif 275#endif 276 277#ifdef CONFIG_BLK_INLINE_ENCRYPTION 278 struct bio_crypt_ctx *bi_crypt_context; 279#endif 280 281 union { 282#if defined(CONFIG_BLK_DEV_INTEGRITY) 283 struct bio_integrity_payload *bi_integrity; /* data integrity */ 284#endif 285 }; 286 287 unsigned short bi_vcnt; /* how many bio_vec's */ 288 289 /* 290 * Everything starting with bi_max_vecs will be preserved by bio_reset() 291 */ 292 293 unsigned short bi_max_vecs; /* max bvl_vecs we can hold */ 294 295 atomic_t __bi_cnt; /* pin count */ 296 297 struct bio_vec *bi_io_vec; /* the actual vec list */ 298 299 struct bio_set *bi_pool; 300 301 /* 302 * We can inline a number of vecs at the end of the bio, to avoid 303 * double allocations for a small number of bio_vecs. This member 304 * MUST obviously be kept at the very end of the bio. 305 */ 306 struct bio_vec bi_inline_vecs[]; 307}; 308 309#define BIO_RESET_BYTES offsetof(struct bio, bi_max_vecs) 310#define BIO_MAX_SECTORS (UINT_MAX >> SECTOR_SHIFT) 311 312/* 313 * bio flags 314 */ 315enum { 316 BIO_NO_PAGE_REF, /* don't put release vec pages */ 317 BIO_CLONED, /* doesn't own data */ 318 BIO_BOUNCED, /* bio is a bounce bio */ 319 BIO_WORKINGSET, /* contains userspace workingset pages */ 320 BIO_QUIET, /* Make BIO Quiet */ 321 BIO_CHAIN, /* chained bio, ->bi_remaining in effect */ 322 BIO_REFFED, /* bio has elevated ->bi_cnt */ 323 BIO_THROTTLED, /* This bio has already been subjected to 324 * throttling rules. Don't do it again. */ 325 BIO_TRACE_COMPLETION, /* bio_endio() should trace the final completion 326 * of this bio. */ 327 BIO_CGROUP_ACCT, /* has been accounted to a cgroup */ 328 BIO_QOS_THROTTLED, /* bio went through rq_qos throttle path */ 329 BIO_QOS_MERGED, /* but went through rq_qos merge path */ 330 BIO_REMAPPED, 331 BIO_ZONE_WRITE_LOCKED, /* Owns a zoned device zone write lock */ 332 BIO_PERCPU_CACHE, /* can participate in per-cpu alloc cache */ 333 BIO_FLAG_LAST 334}; 335 336typedef __u32 __bitwise blk_mq_req_flags_t; 337 338/* 339 * Operations and flags common to the bio and request structures. 340 * We use 8 bits for encoding the operation, and the remaining 24 for flags. 341 * 342 * The least significant bit of the operation number indicates the data 343 * transfer direction: 344 * 345 * - if the least significant bit is set transfers are TO the device 346 * - if the least significant bit is not set transfers are FROM the device 347 * 348 * If a operation does not transfer data the least significant bit has no 349 * meaning. 350 */ 351#define REQ_OP_BITS 8 352#define REQ_OP_MASK ((1 << REQ_OP_BITS) - 1) 353#define REQ_FLAG_BITS 24 354 355enum req_opf { 356 /* read sectors from the device */ 357 REQ_OP_READ = 0, 358 /* write sectors to the device */ 359 REQ_OP_WRITE = 1, 360 /* flush the volatile write cache */ 361 REQ_OP_FLUSH = 2, 362 /* discard sectors */ 363 REQ_OP_DISCARD = 3, 364 /* securely erase sectors */ 365 REQ_OP_SECURE_ERASE = 5, 366 /* write the zero filled sector many times */ 367 REQ_OP_WRITE_ZEROES = 9, 368 /* Open a zone */ 369 REQ_OP_ZONE_OPEN = 10, 370 /* Close a zone */ 371 REQ_OP_ZONE_CLOSE = 11, 372 /* Transition a zone to full */ 373 REQ_OP_ZONE_FINISH = 12, 374 /* write data at the current zone write pointer */ 375 REQ_OP_ZONE_APPEND = 13, 376 /* reset a zone write pointer */ 377 REQ_OP_ZONE_RESET = 15, 378 /* reset all the zone present on the device */ 379 REQ_OP_ZONE_RESET_ALL = 17, 380 381 /* Driver private requests */ 382 REQ_OP_DRV_IN = 34, 383 REQ_OP_DRV_OUT = 35, 384 385 REQ_OP_LAST, 386}; 387 388enum req_flag_bits { 389 __REQ_FAILFAST_DEV = /* no driver retries of device errors */ 390 REQ_OP_BITS, 391 __REQ_FAILFAST_TRANSPORT, /* no driver retries of transport errors */ 392 __REQ_FAILFAST_DRIVER, /* no driver retries of driver errors */ 393 __REQ_SYNC, /* request is sync (sync write or read) */ 394 __REQ_META, /* metadata io request */ 395 __REQ_PRIO, /* boost priority in cfq */ 396 __REQ_NOMERGE, /* don't touch this for merging */ 397 __REQ_IDLE, /* anticipate more IO after this one */ 398 __REQ_INTEGRITY, /* I/O includes block integrity payload */ 399 __REQ_FUA, /* forced unit access */ 400 __REQ_PREFLUSH, /* request for cache flush */ 401 __REQ_RAHEAD, /* read ahead, can fail anytime */ 402 __REQ_BACKGROUND, /* background IO */ 403 __REQ_NOWAIT, /* Don't wait if request will block */ 404 /* 405 * When a shared kthread needs to issue a bio for a cgroup, doing 406 * so synchronously can lead to priority inversions as the kthread 407 * can be trapped waiting for that cgroup. CGROUP_PUNT flag makes 408 * submit_bio() punt the actual issuing to a dedicated per-blkcg 409 * work item to avoid such priority inversions. 410 */ 411 __REQ_CGROUP_PUNT, 412 413 /* command specific flags for REQ_OP_WRITE_ZEROES: */ 414 __REQ_NOUNMAP, /* do not free blocks when zeroing */ 415 416 __REQ_POLLED, /* caller polls for completion using bio_poll */ 417 418 /* for driver use */ 419 __REQ_DRV, 420 __REQ_SWAP, /* swapping request. */ 421 __REQ_NR_BITS, /* stops here */ 422}; 423 424#define REQ_FAILFAST_DEV (1ULL << __REQ_FAILFAST_DEV) 425#define REQ_FAILFAST_TRANSPORT (1ULL << __REQ_FAILFAST_TRANSPORT) 426#define REQ_FAILFAST_DRIVER (1ULL << __REQ_FAILFAST_DRIVER) 427#define REQ_SYNC (1ULL << __REQ_SYNC) 428#define REQ_META (1ULL << __REQ_META) 429#define REQ_PRIO (1ULL << __REQ_PRIO) 430#define REQ_NOMERGE (1ULL << __REQ_NOMERGE) 431#define REQ_IDLE (1ULL << __REQ_IDLE) 432#define REQ_INTEGRITY (1ULL << __REQ_INTEGRITY) 433#define REQ_FUA (1ULL << __REQ_FUA) 434#define REQ_PREFLUSH (1ULL << __REQ_PREFLUSH) 435#define REQ_RAHEAD (1ULL << __REQ_RAHEAD) 436#define REQ_BACKGROUND (1ULL << __REQ_BACKGROUND) 437#define REQ_NOWAIT (1ULL << __REQ_NOWAIT) 438#define REQ_CGROUP_PUNT (1ULL << __REQ_CGROUP_PUNT) 439 440#define REQ_NOUNMAP (1ULL << __REQ_NOUNMAP) 441#define REQ_POLLED (1ULL << __REQ_POLLED) 442 443#define REQ_DRV (1ULL << __REQ_DRV) 444#define REQ_SWAP (1ULL << __REQ_SWAP) 445 446#define REQ_FAILFAST_MASK \ 447 (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER) 448 449#define REQ_NOMERGE_FLAGS \ 450 (REQ_NOMERGE | REQ_PREFLUSH | REQ_FUA) 451 452enum stat_group { 453 STAT_READ, 454 STAT_WRITE, 455 STAT_DISCARD, 456 STAT_FLUSH, 457 458 NR_STAT_GROUPS 459}; 460 461#define bio_op(bio) \ 462 ((bio)->bi_opf & REQ_OP_MASK) 463 464/* obsolete, don't use in new code */ 465static inline void bio_set_op_attrs(struct bio *bio, unsigned op, 466 unsigned op_flags) 467{ 468 bio->bi_opf = op | op_flags; 469} 470 471static inline bool op_is_write(unsigned int op) 472{ 473 return (op & 1); 474} 475 476/* 477 * Check if the bio or request is one that needs special treatment in the 478 * flush state machine. 479 */ 480static inline bool op_is_flush(unsigned int op) 481{ 482 return op & (REQ_FUA | REQ_PREFLUSH); 483} 484 485/* 486 * Reads are always treated as synchronous, as are requests with the FUA or 487 * PREFLUSH flag. Other operations may be marked as synchronous using the 488 * REQ_SYNC flag. 489 */ 490static inline bool op_is_sync(unsigned int op) 491{ 492 return (op & REQ_OP_MASK) == REQ_OP_READ || 493 (op & (REQ_SYNC | REQ_FUA | REQ_PREFLUSH)); 494} 495 496static inline bool op_is_discard(unsigned int op) 497{ 498 return (op & REQ_OP_MASK) == REQ_OP_DISCARD; 499} 500 501/* 502 * Check if a bio or request operation is a zone management operation, with 503 * the exception of REQ_OP_ZONE_RESET_ALL which is treated as a special case 504 * due to its different handling in the block layer and device response in 505 * case of command failure. 506 */ 507static inline bool op_is_zone_mgmt(enum req_opf op) 508{ 509 switch (op & REQ_OP_MASK) { 510 case REQ_OP_ZONE_RESET: 511 case REQ_OP_ZONE_OPEN: 512 case REQ_OP_ZONE_CLOSE: 513 case REQ_OP_ZONE_FINISH: 514 return true; 515 default: 516 return false; 517 } 518} 519 520static inline int op_stat_group(unsigned int op) 521{ 522 if (op_is_discard(op)) 523 return STAT_DISCARD; 524 return op_is_write(op); 525} 526 527struct blk_rq_stat { 528 u64 mean; 529 u64 min; 530 u64 max; 531 u32 nr_samples; 532 u64 batch; 533}; 534 535#endif /* __LINUX_BLK_TYPES_H */