Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Block data types and constants. Directly include this file only to
4 * break include dependency loop.
5 */
6#ifndef __LINUX_BLK_TYPES_H
7#define __LINUX_BLK_TYPES_H
8
9#include <linux/types.h>
10#include <linux/bvec.h>
11#include <linux/device.h>
12#include <linux/ktime.h>
13
14struct bio_set;
15struct bio;
16struct bio_integrity_payload;
17struct page;
18struct io_context;
19struct cgroup_subsys_state;
20typedef void (bio_end_io_t) (struct bio *);
21struct bio_crypt_ctx;
22
23/*
24 * The basic unit of block I/O is a sector. It is used in a number of contexts
25 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
26 * bytes. Variables of type sector_t represent an offset or size that is a
27 * multiple of 512 bytes. Hence these two constants.
28 */
29#ifndef SECTOR_SHIFT
30#define SECTOR_SHIFT 9
31#endif
32#ifndef SECTOR_SIZE
33#define SECTOR_SIZE (1 << SECTOR_SHIFT)
34#endif
35
36#define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
37#define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
38#define SECTOR_MASK (PAGE_SECTORS - 1)
39
40struct block_device {
41 sector_t bd_start_sect;
42 sector_t bd_nr_sectors;
43 struct disk_stats __percpu *bd_stats;
44 unsigned long bd_stamp;
45 bool bd_read_only; /* read-only policy */
46 dev_t bd_dev;
47 int bd_openers;
48 struct inode * bd_inode; /* will die */
49 struct super_block * bd_super;
50 void * bd_claiming;
51 struct device bd_device;
52 void * bd_holder;
53 int bd_holders;
54 bool bd_write_holder;
55 struct kobject *bd_holder_dir;
56 u8 bd_partno;
57 spinlock_t bd_size_lock; /* for bd_inode->i_size updates */
58 struct gendisk * bd_disk;
59 struct request_queue * bd_queue;
60
61 /* The counter of freeze processes */
62 int bd_fsfreeze_count;
63 /* Mutex for freeze */
64 struct mutex bd_fsfreeze_mutex;
65 struct super_block *bd_fsfreeze_sb;
66
67 struct partition_meta_info *bd_meta_info;
68#ifdef CONFIG_FAIL_MAKE_REQUEST
69 bool bd_make_it_fail;
70#endif
71} __randomize_layout;
72
73#define bdev_whole(_bdev) \
74 ((_bdev)->bd_disk->part0)
75
76#define dev_to_bdev(device) \
77 container_of((device), struct block_device, bd_device)
78
79#define bdev_kobj(_bdev) \
80 (&((_bdev)->bd_device.kobj))
81
82/*
83 * Block error status values. See block/blk-core:blk_errors for the details.
84 * Alpha cannot write a byte atomically, so we need to use 32-bit value.
85 */
86#if defined(CONFIG_ALPHA) && !defined(__alpha_bwx__)
87typedef u32 __bitwise blk_status_t;
88typedef u32 blk_short_t;
89#else
90typedef u8 __bitwise blk_status_t;
91typedef u16 blk_short_t;
92#endif
93#define BLK_STS_OK 0
94#define BLK_STS_NOTSUPP ((__force blk_status_t)1)
95#define BLK_STS_TIMEOUT ((__force blk_status_t)2)
96#define BLK_STS_NOSPC ((__force blk_status_t)3)
97#define BLK_STS_TRANSPORT ((__force blk_status_t)4)
98#define BLK_STS_TARGET ((__force blk_status_t)5)
99#define BLK_STS_NEXUS ((__force blk_status_t)6)
100#define BLK_STS_MEDIUM ((__force blk_status_t)7)
101#define BLK_STS_PROTECTION ((__force blk_status_t)8)
102#define BLK_STS_RESOURCE ((__force blk_status_t)9)
103#define BLK_STS_IOERR ((__force blk_status_t)10)
104
105/* hack for device mapper, don't use elsewhere: */
106#define BLK_STS_DM_REQUEUE ((__force blk_status_t)11)
107
108#define BLK_STS_AGAIN ((__force blk_status_t)12)
109
110/*
111 * BLK_STS_DEV_RESOURCE is returned from the driver to the block layer if
112 * device related resources are unavailable, but the driver can guarantee
113 * that the queue will be rerun in the future once resources become
114 * available again. This is typically the case for device specific
115 * resources that are consumed for IO. If the driver fails allocating these
116 * resources, we know that inflight (or pending) IO will free these
117 * resource upon completion.
118 *
119 * This is different from BLK_STS_RESOURCE in that it explicitly references
120 * a device specific resource. For resources of wider scope, allocation
121 * failure can happen without having pending IO. This means that we can't
122 * rely on request completions freeing these resources, as IO may not be in
123 * flight. Examples of that are kernel memory allocations, DMA mappings, or
124 * any other system wide resources.
125 */
126#define BLK_STS_DEV_RESOURCE ((__force blk_status_t)13)
127
128/*
129 * BLK_STS_ZONE_RESOURCE is returned from the driver to the block layer if zone
130 * related resources are unavailable, but the driver can guarantee the queue
131 * will be rerun in the future once the resources become available again.
132 *
133 * This is different from BLK_STS_DEV_RESOURCE in that it explicitly references
134 * a zone specific resource and IO to a different zone on the same device could
135 * still be served. Examples of that are zones that are write-locked, but a read
136 * to the same zone could be served.
137 */
138#define BLK_STS_ZONE_RESOURCE ((__force blk_status_t)14)
139
140/*
141 * BLK_STS_ZONE_OPEN_RESOURCE is returned from the driver in the completion
142 * path if the device returns a status indicating that too many zone resources
143 * are currently open. The same command should be successful if resubmitted
144 * after the number of open zones decreases below the device's limits, which is
145 * reported in the request_queue's max_open_zones.
146 */
147#define BLK_STS_ZONE_OPEN_RESOURCE ((__force blk_status_t)15)
148
149/*
150 * BLK_STS_ZONE_ACTIVE_RESOURCE is returned from the driver in the completion
151 * path if the device returns a status indicating that too many zone resources
152 * are currently active. The same command should be successful if resubmitted
153 * after the number of active zones decreases below the device's limits, which
154 * is reported in the request_queue's max_active_zones.
155 */
156#define BLK_STS_ZONE_ACTIVE_RESOURCE ((__force blk_status_t)16)
157
158/*
159 * BLK_STS_OFFLINE is returned from the driver when the target device is offline
160 * or is being taken offline. This could help differentiate the case where a
161 * device is intentionally being shut down from a real I/O error.
162 */
163#define BLK_STS_OFFLINE ((__force blk_status_t)17)
164
165/**
166 * blk_path_error - returns true if error may be path related
167 * @error: status the request was completed with
168 *
169 * Description:
170 * This classifies block error status into non-retryable errors and ones
171 * that may be successful if retried on a failover path.
172 *
173 * Return:
174 * %false - retrying failover path will not help
175 * %true - may succeed if retried
176 */
177static inline bool blk_path_error(blk_status_t error)
178{
179 switch (error) {
180 case BLK_STS_NOTSUPP:
181 case BLK_STS_NOSPC:
182 case BLK_STS_TARGET:
183 case BLK_STS_NEXUS:
184 case BLK_STS_MEDIUM:
185 case BLK_STS_PROTECTION:
186 return false;
187 }
188
189 /* Anything else could be a path failure, so should be retried */
190 return true;
191}
192
193/*
194 * From most significant bit:
195 * 1 bit: reserved for other usage, see below
196 * 12 bits: original size of bio
197 * 51 bits: issue time of bio
198 */
199#define BIO_ISSUE_RES_BITS 1
200#define BIO_ISSUE_SIZE_BITS 12
201#define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS)
202#define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
203#define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
204#define BIO_ISSUE_SIZE_MASK \
205 (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
206#define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
207
208/* Reserved bit for blk-throtl */
209#define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
210
211struct bio_issue {
212 u64 value;
213};
214
215static inline u64 __bio_issue_time(u64 time)
216{
217 return time & BIO_ISSUE_TIME_MASK;
218}
219
220static inline u64 bio_issue_time(struct bio_issue *issue)
221{
222 return __bio_issue_time(issue->value);
223}
224
225static inline sector_t bio_issue_size(struct bio_issue *issue)
226{
227 return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
228}
229
230static inline void bio_issue_init(struct bio_issue *issue,
231 sector_t size)
232{
233 size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
234 issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
235 (ktime_get_ns() & BIO_ISSUE_TIME_MASK) |
236 ((u64)size << BIO_ISSUE_SIZE_SHIFT));
237}
238
239typedef unsigned int blk_qc_t;
240#define BLK_QC_T_NONE -1U
241
242/*
243 * main unit of I/O for the block layer and lower layers (ie drivers and
244 * stacking drivers)
245 */
246struct bio {
247 struct bio *bi_next; /* request queue link */
248 struct block_device *bi_bdev;
249 unsigned int bi_opf; /* bottom bits req flags,
250 * top bits REQ_OP. Use
251 * accessors.
252 */
253 unsigned short bi_flags; /* BIO_* below */
254 unsigned short bi_ioprio;
255 blk_status_t bi_status;
256 atomic_t __bi_remaining;
257
258 struct bvec_iter bi_iter;
259
260 blk_qc_t bi_cookie;
261 bio_end_io_t *bi_end_io;
262 void *bi_private;
263#ifdef CONFIG_BLK_CGROUP
264 /*
265 * Represents the association of the css and request_queue for the bio.
266 * If a bio goes direct to device, it will not have a blkg as it will
267 * not have a request_queue associated with it. The reference is put
268 * on release of the bio.
269 */
270 struct blkcg_gq *bi_blkg;
271 struct bio_issue bi_issue;
272#ifdef CONFIG_BLK_CGROUP_IOCOST
273 u64 bi_iocost_cost;
274#endif
275#endif
276
277#ifdef CONFIG_BLK_INLINE_ENCRYPTION
278 struct bio_crypt_ctx *bi_crypt_context;
279#endif
280
281 union {
282#if defined(CONFIG_BLK_DEV_INTEGRITY)
283 struct bio_integrity_payload *bi_integrity; /* data integrity */
284#endif
285 };
286
287 unsigned short bi_vcnt; /* how many bio_vec's */
288
289 /*
290 * Everything starting with bi_max_vecs will be preserved by bio_reset()
291 */
292
293 unsigned short bi_max_vecs; /* max bvl_vecs we can hold */
294
295 atomic_t __bi_cnt; /* pin count */
296
297 struct bio_vec *bi_io_vec; /* the actual vec list */
298
299 struct bio_set *bi_pool;
300
301 /*
302 * We can inline a number of vecs at the end of the bio, to avoid
303 * double allocations for a small number of bio_vecs. This member
304 * MUST obviously be kept at the very end of the bio.
305 */
306 struct bio_vec bi_inline_vecs[];
307};
308
309#define BIO_RESET_BYTES offsetof(struct bio, bi_max_vecs)
310#define BIO_MAX_SECTORS (UINT_MAX >> SECTOR_SHIFT)
311
312/*
313 * bio flags
314 */
315enum {
316 BIO_NO_PAGE_REF, /* don't put release vec pages */
317 BIO_CLONED, /* doesn't own data */
318 BIO_BOUNCED, /* bio is a bounce bio */
319 BIO_WORKINGSET, /* contains userspace workingset pages */
320 BIO_QUIET, /* Make BIO Quiet */
321 BIO_CHAIN, /* chained bio, ->bi_remaining in effect */
322 BIO_REFFED, /* bio has elevated ->bi_cnt */
323 BIO_THROTTLED, /* This bio has already been subjected to
324 * throttling rules. Don't do it again. */
325 BIO_TRACE_COMPLETION, /* bio_endio() should trace the final completion
326 * of this bio. */
327 BIO_CGROUP_ACCT, /* has been accounted to a cgroup */
328 BIO_QOS_THROTTLED, /* bio went through rq_qos throttle path */
329 BIO_QOS_MERGED, /* but went through rq_qos merge path */
330 BIO_REMAPPED,
331 BIO_ZONE_WRITE_LOCKED, /* Owns a zoned device zone write lock */
332 BIO_PERCPU_CACHE, /* can participate in per-cpu alloc cache */
333 BIO_FLAG_LAST
334};
335
336typedef __u32 __bitwise blk_mq_req_flags_t;
337
338/*
339 * Operations and flags common to the bio and request structures.
340 * We use 8 bits for encoding the operation, and the remaining 24 for flags.
341 *
342 * The least significant bit of the operation number indicates the data
343 * transfer direction:
344 *
345 * - if the least significant bit is set transfers are TO the device
346 * - if the least significant bit is not set transfers are FROM the device
347 *
348 * If a operation does not transfer data the least significant bit has no
349 * meaning.
350 */
351#define REQ_OP_BITS 8
352#define REQ_OP_MASK ((1 << REQ_OP_BITS) - 1)
353#define REQ_FLAG_BITS 24
354
355enum req_opf {
356 /* read sectors from the device */
357 REQ_OP_READ = 0,
358 /* write sectors to the device */
359 REQ_OP_WRITE = 1,
360 /* flush the volatile write cache */
361 REQ_OP_FLUSH = 2,
362 /* discard sectors */
363 REQ_OP_DISCARD = 3,
364 /* securely erase sectors */
365 REQ_OP_SECURE_ERASE = 5,
366 /* write the zero filled sector many times */
367 REQ_OP_WRITE_ZEROES = 9,
368 /* Open a zone */
369 REQ_OP_ZONE_OPEN = 10,
370 /* Close a zone */
371 REQ_OP_ZONE_CLOSE = 11,
372 /* Transition a zone to full */
373 REQ_OP_ZONE_FINISH = 12,
374 /* write data at the current zone write pointer */
375 REQ_OP_ZONE_APPEND = 13,
376 /* reset a zone write pointer */
377 REQ_OP_ZONE_RESET = 15,
378 /* reset all the zone present on the device */
379 REQ_OP_ZONE_RESET_ALL = 17,
380
381 /* Driver private requests */
382 REQ_OP_DRV_IN = 34,
383 REQ_OP_DRV_OUT = 35,
384
385 REQ_OP_LAST,
386};
387
388enum req_flag_bits {
389 __REQ_FAILFAST_DEV = /* no driver retries of device errors */
390 REQ_OP_BITS,
391 __REQ_FAILFAST_TRANSPORT, /* no driver retries of transport errors */
392 __REQ_FAILFAST_DRIVER, /* no driver retries of driver errors */
393 __REQ_SYNC, /* request is sync (sync write or read) */
394 __REQ_META, /* metadata io request */
395 __REQ_PRIO, /* boost priority in cfq */
396 __REQ_NOMERGE, /* don't touch this for merging */
397 __REQ_IDLE, /* anticipate more IO after this one */
398 __REQ_INTEGRITY, /* I/O includes block integrity payload */
399 __REQ_FUA, /* forced unit access */
400 __REQ_PREFLUSH, /* request for cache flush */
401 __REQ_RAHEAD, /* read ahead, can fail anytime */
402 __REQ_BACKGROUND, /* background IO */
403 __REQ_NOWAIT, /* Don't wait if request will block */
404 /*
405 * When a shared kthread needs to issue a bio for a cgroup, doing
406 * so synchronously can lead to priority inversions as the kthread
407 * can be trapped waiting for that cgroup. CGROUP_PUNT flag makes
408 * submit_bio() punt the actual issuing to a dedicated per-blkcg
409 * work item to avoid such priority inversions.
410 */
411 __REQ_CGROUP_PUNT,
412
413 /* command specific flags for REQ_OP_WRITE_ZEROES: */
414 __REQ_NOUNMAP, /* do not free blocks when zeroing */
415
416 __REQ_POLLED, /* caller polls for completion using bio_poll */
417
418 /* for driver use */
419 __REQ_DRV,
420 __REQ_SWAP, /* swapping request. */
421 __REQ_NR_BITS, /* stops here */
422};
423
424#define REQ_FAILFAST_DEV (1ULL << __REQ_FAILFAST_DEV)
425#define REQ_FAILFAST_TRANSPORT (1ULL << __REQ_FAILFAST_TRANSPORT)
426#define REQ_FAILFAST_DRIVER (1ULL << __REQ_FAILFAST_DRIVER)
427#define REQ_SYNC (1ULL << __REQ_SYNC)
428#define REQ_META (1ULL << __REQ_META)
429#define REQ_PRIO (1ULL << __REQ_PRIO)
430#define REQ_NOMERGE (1ULL << __REQ_NOMERGE)
431#define REQ_IDLE (1ULL << __REQ_IDLE)
432#define REQ_INTEGRITY (1ULL << __REQ_INTEGRITY)
433#define REQ_FUA (1ULL << __REQ_FUA)
434#define REQ_PREFLUSH (1ULL << __REQ_PREFLUSH)
435#define REQ_RAHEAD (1ULL << __REQ_RAHEAD)
436#define REQ_BACKGROUND (1ULL << __REQ_BACKGROUND)
437#define REQ_NOWAIT (1ULL << __REQ_NOWAIT)
438#define REQ_CGROUP_PUNT (1ULL << __REQ_CGROUP_PUNT)
439
440#define REQ_NOUNMAP (1ULL << __REQ_NOUNMAP)
441#define REQ_POLLED (1ULL << __REQ_POLLED)
442
443#define REQ_DRV (1ULL << __REQ_DRV)
444#define REQ_SWAP (1ULL << __REQ_SWAP)
445
446#define REQ_FAILFAST_MASK \
447 (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER)
448
449#define REQ_NOMERGE_FLAGS \
450 (REQ_NOMERGE | REQ_PREFLUSH | REQ_FUA)
451
452enum stat_group {
453 STAT_READ,
454 STAT_WRITE,
455 STAT_DISCARD,
456 STAT_FLUSH,
457
458 NR_STAT_GROUPS
459};
460
461#define bio_op(bio) \
462 ((bio)->bi_opf & REQ_OP_MASK)
463
464/* obsolete, don't use in new code */
465static inline void bio_set_op_attrs(struct bio *bio, unsigned op,
466 unsigned op_flags)
467{
468 bio->bi_opf = op | op_flags;
469}
470
471static inline bool op_is_write(unsigned int op)
472{
473 return (op & 1);
474}
475
476/*
477 * Check if the bio or request is one that needs special treatment in the
478 * flush state machine.
479 */
480static inline bool op_is_flush(unsigned int op)
481{
482 return op & (REQ_FUA | REQ_PREFLUSH);
483}
484
485/*
486 * Reads are always treated as synchronous, as are requests with the FUA or
487 * PREFLUSH flag. Other operations may be marked as synchronous using the
488 * REQ_SYNC flag.
489 */
490static inline bool op_is_sync(unsigned int op)
491{
492 return (op & REQ_OP_MASK) == REQ_OP_READ ||
493 (op & (REQ_SYNC | REQ_FUA | REQ_PREFLUSH));
494}
495
496static inline bool op_is_discard(unsigned int op)
497{
498 return (op & REQ_OP_MASK) == REQ_OP_DISCARD;
499}
500
501/*
502 * Check if a bio or request operation is a zone management operation, with
503 * the exception of REQ_OP_ZONE_RESET_ALL which is treated as a special case
504 * due to its different handling in the block layer and device response in
505 * case of command failure.
506 */
507static inline bool op_is_zone_mgmt(enum req_opf op)
508{
509 switch (op & REQ_OP_MASK) {
510 case REQ_OP_ZONE_RESET:
511 case REQ_OP_ZONE_OPEN:
512 case REQ_OP_ZONE_CLOSE:
513 case REQ_OP_ZONE_FINISH:
514 return true;
515 default:
516 return false;
517 }
518}
519
520static inline int op_stat_group(unsigned int op)
521{
522 if (op_is_discard(op))
523 return STAT_DISCARD;
524 return op_is_write(op);
525}
526
527struct blk_rq_stat {
528 u64 mean;
529 u64 min;
530 u64 max;
531 u32 nr_samples;
532 u64 batch;
533};
534
535#endif /* __LINUX_BLK_TYPES_H */