Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/nfs/direct.c
4 *
5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6 *
7 * High-performance uncached I/O for the Linux NFS client
8 *
9 * There are important applications whose performance or correctness
10 * depends on uncached access to file data. Database clusters
11 * (multiple copies of the same instance running on separate hosts)
12 * implement their own cache coherency protocol that subsumes file
13 * system cache protocols. Applications that process datasets
14 * considerably larger than the client's memory do not always benefit
15 * from a local cache. A streaming video server, for instance, has no
16 * need to cache the contents of a file.
17 *
18 * When an application requests uncached I/O, all read and write requests
19 * are made directly to the server; data stored or fetched via these
20 * requests is not cached in the Linux page cache. The client does not
21 * correct unaligned requests from applications. All requested bytes are
22 * held on permanent storage before a direct write system call returns to
23 * an application.
24 *
25 * Solaris implements an uncached I/O facility called directio() that
26 * is used for backups and sequential I/O to very large files. Solaris
27 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
28 * an undocumented mount option.
29 *
30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
31 * help from Andrew Morton.
32 *
33 * 18 Dec 2001 Initial implementation for 2.4 --cel
34 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
35 * 08 Jun 2003 Port to 2.5 APIs --cel
36 * 31 Mar 2004 Handle direct I/O without VFS support --cel
37 * 15 Sep 2004 Parallel async reads --cel
38 * 04 May 2005 support O_DIRECT with aio --cel
39 *
40 */
41
42#include <linux/errno.h>
43#include <linux/sched.h>
44#include <linux/kernel.h>
45#include <linux/file.h>
46#include <linux/pagemap.h>
47#include <linux/kref.h>
48#include <linux/slab.h>
49#include <linux/task_io_accounting_ops.h>
50#include <linux/module.h>
51
52#include <linux/nfs_fs.h>
53#include <linux/nfs_page.h>
54#include <linux/sunrpc/clnt.h>
55
56#include <linux/uaccess.h>
57#include <linux/atomic.h>
58
59#include "internal.h"
60#include "iostat.h"
61#include "pnfs.h"
62#include "fscache.h"
63
64#define NFSDBG_FACILITY NFSDBG_VFS
65
66static struct kmem_cache *nfs_direct_cachep;
67
68struct nfs_direct_req {
69 struct kref kref; /* release manager */
70
71 /* I/O parameters */
72 struct nfs_open_context *ctx; /* file open context info */
73 struct nfs_lock_context *l_ctx; /* Lock context info */
74 struct kiocb * iocb; /* controlling i/o request */
75 struct inode * inode; /* target file of i/o */
76
77 /* completion state */
78 atomic_t io_count; /* i/os we're waiting for */
79 spinlock_t lock; /* protect completion state */
80
81 loff_t io_start; /* Start offset for I/O */
82 ssize_t count, /* bytes actually processed */
83 max_count, /* max expected count */
84 bytes_left, /* bytes left to be sent */
85 error; /* any reported error */
86 struct completion completion; /* wait for i/o completion */
87
88 /* commit state */
89 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
90 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
91 struct work_struct work;
92 int flags;
93 /* for write */
94#define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
95#define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
96 /* for read */
97#define NFS_ODIRECT_SHOULD_DIRTY (3) /* dirty user-space page after read */
98#define NFS_ODIRECT_DONE INT_MAX /* write verification failed */
99};
100
101static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
102static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
103static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
104static void nfs_direct_write_schedule_work(struct work_struct *work);
105
106static inline void get_dreq(struct nfs_direct_req *dreq)
107{
108 atomic_inc(&dreq->io_count);
109}
110
111static inline int put_dreq(struct nfs_direct_req *dreq)
112{
113 return atomic_dec_and_test(&dreq->io_count);
114}
115
116static void
117nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
118 const struct nfs_pgio_header *hdr,
119 ssize_t dreq_len)
120{
121 if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
122 test_bit(NFS_IOHDR_EOF, &hdr->flags)))
123 return;
124 if (dreq->max_count >= dreq_len) {
125 dreq->max_count = dreq_len;
126 if (dreq->count > dreq_len)
127 dreq->count = dreq_len;
128
129 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
130 dreq->error = hdr->error;
131 else /* Clear outstanding error if this is EOF */
132 dreq->error = 0;
133 }
134}
135
136static void
137nfs_direct_count_bytes(struct nfs_direct_req *dreq,
138 const struct nfs_pgio_header *hdr)
139{
140 loff_t hdr_end = hdr->io_start + hdr->good_bytes;
141 ssize_t dreq_len = 0;
142
143 if (hdr_end > dreq->io_start)
144 dreq_len = hdr_end - dreq->io_start;
145
146 nfs_direct_handle_truncated(dreq, hdr, dreq_len);
147
148 if (dreq_len > dreq->max_count)
149 dreq_len = dreq->max_count;
150
151 if (dreq->count < dreq_len)
152 dreq->count = dreq_len;
153}
154
155/**
156 * nfs_direct_IO - NFS address space operation for direct I/O
157 * @iocb: target I/O control block
158 * @iter: I/O buffer
159 *
160 * The presence of this routine in the address space ops vector means
161 * the NFS client supports direct I/O. However, for most direct IO, we
162 * shunt off direct read and write requests before the VFS gets them,
163 * so this method is only ever called for swap.
164 */
165ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
166{
167 struct inode *inode = iocb->ki_filp->f_mapping->host;
168
169 /* we only support swap file calling nfs_direct_IO */
170 if (!IS_SWAPFILE(inode))
171 return 0;
172
173 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
174
175 if (iov_iter_rw(iter) == READ)
176 return nfs_file_direct_read(iocb, iter, true);
177 return nfs_file_direct_write(iocb, iter, true);
178}
179
180static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
181{
182 unsigned int i;
183 for (i = 0; i < npages; i++)
184 put_page(pages[i]);
185}
186
187void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
188 struct nfs_direct_req *dreq)
189{
190 cinfo->inode = dreq->inode;
191 cinfo->mds = &dreq->mds_cinfo;
192 cinfo->ds = &dreq->ds_cinfo;
193 cinfo->dreq = dreq;
194 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
195}
196
197static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
198{
199 struct nfs_direct_req *dreq;
200
201 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
202 if (!dreq)
203 return NULL;
204
205 kref_init(&dreq->kref);
206 kref_get(&dreq->kref);
207 init_completion(&dreq->completion);
208 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
209 pnfs_init_ds_commit_info(&dreq->ds_cinfo);
210 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
211 spin_lock_init(&dreq->lock);
212
213 return dreq;
214}
215
216static void nfs_direct_req_free(struct kref *kref)
217{
218 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
219
220 pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
221 if (dreq->l_ctx != NULL)
222 nfs_put_lock_context(dreq->l_ctx);
223 if (dreq->ctx != NULL)
224 put_nfs_open_context(dreq->ctx);
225 kmem_cache_free(nfs_direct_cachep, dreq);
226}
227
228static void nfs_direct_req_release(struct nfs_direct_req *dreq)
229{
230 kref_put(&dreq->kref, nfs_direct_req_free);
231}
232
233ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
234{
235 return dreq->bytes_left;
236}
237EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
238
239/*
240 * Collects and returns the final error value/byte-count.
241 */
242static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
243{
244 ssize_t result = -EIOCBQUEUED;
245
246 /* Async requests don't wait here */
247 if (dreq->iocb)
248 goto out;
249
250 result = wait_for_completion_killable(&dreq->completion);
251
252 if (!result) {
253 result = dreq->count;
254 WARN_ON_ONCE(dreq->count < 0);
255 }
256 if (!result)
257 result = dreq->error;
258
259out:
260 return (ssize_t) result;
261}
262
263/*
264 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
265 * the iocb is still valid here if this is a synchronous request.
266 */
267static void nfs_direct_complete(struct nfs_direct_req *dreq)
268{
269 struct inode *inode = dreq->inode;
270
271 inode_dio_end(inode);
272
273 if (dreq->iocb) {
274 long res = (long) dreq->error;
275 if (dreq->count != 0) {
276 res = (long) dreq->count;
277 WARN_ON_ONCE(dreq->count < 0);
278 }
279 dreq->iocb->ki_complete(dreq->iocb, res);
280 }
281
282 complete(&dreq->completion);
283
284 nfs_direct_req_release(dreq);
285}
286
287static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
288{
289 unsigned long bytes = 0;
290 struct nfs_direct_req *dreq = hdr->dreq;
291
292 spin_lock(&dreq->lock);
293 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
294 spin_unlock(&dreq->lock);
295 goto out_put;
296 }
297
298 nfs_direct_count_bytes(dreq, hdr);
299 spin_unlock(&dreq->lock);
300
301 while (!list_empty(&hdr->pages)) {
302 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
303 struct page *page = req->wb_page;
304
305 if (!PageCompound(page) && bytes < hdr->good_bytes &&
306 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
307 set_page_dirty(page);
308 bytes += req->wb_bytes;
309 nfs_list_remove_request(req);
310 nfs_release_request(req);
311 }
312out_put:
313 if (put_dreq(dreq))
314 nfs_direct_complete(dreq);
315 hdr->release(hdr);
316}
317
318static void nfs_read_sync_pgio_error(struct list_head *head, int error)
319{
320 struct nfs_page *req;
321
322 while (!list_empty(head)) {
323 req = nfs_list_entry(head->next);
324 nfs_list_remove_request(req);
325 nfs_release_request(req);
326 }
327}
328
329static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
330{
331 get_dreq(hdr->dreq);
332}
333
334static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
335 .error_cleanup = nfs_read_sync_pgio_error,
336 .init_hdr = nfs_direct_pgio_init,
337 .completion = nfs_direct_read_completion,
338};
339
340/*
341 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
342 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
343 * bail and stop sending more reads. Read length accounting is
344 * handled automatically by nfs_direct_read_result(). Otherwise, if
345 * no requests have been sent, just return an error.
346 */
347
348static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
349 struct iov_iter *iter,
350 loff_t pos)
351{
352 struct nfs_pageio_descriptor desc;
353 struct inode *inode = dreq->inode;
354 ssize_t result = -EINVAL;
355 size_t requested_bytes = 0;
356 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
357
358 nfs_pageio_init_read(&desc, dreq->inode, false,
359 &nfs_direct_read_completion_ops);
360 get_dreq(dreq);
361 desc.pg_dreq = dreq;
362 inode_dio_begin(inode);
363
364 while (iov_iter_count(iter)) {
365 struct page **pagevec;
366 size_t bytes;
367 size_t pgbase;
368 unsigned npages, i;
369
370 result = iov_iter_get_pages_alloc(iter, &pagevec,
371 rsize, &pgbase);
372 if (result < 0)
373 break;
374
375 bytes = result;
376 iov_iter_advance(iter, bytes);
377 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
378 for (i = 0; i < npages; i++) {
379 struct nfs_page *req;
380 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
381 /* XXX do we need to do the eof zeroing found in async_filler? */
382 req = nfs_create_request(dreq->ctx, pagevec[i],
383 pgbase, req_len);
384 if (IS_ERR(req)) {
385 result = PTR_ERR(req);
386 break;
387 }
388 req->wb_index = pos >> PAGE_SHIFT;
389 req->wb_offset = pos & ~PAGE_MASK;
390 if (!nfs_pageio_add_request(&desc, req)) {
391 result = desc.pg_error;
392 nfs_release_request(req);
393 break;
394 }
395 pgbase = 0;
396 bytes -= req_len;
397 requested_bytes += req_len;
398 pos += req_len;
399 dreq->bytes_left -= req_len;
400 }
401 nfs_direct_release_pages(pagevec, npages);
402 kvfree(pagevec);
403 if (result < 0)
404 break;
405 }
406
407 nfs_pageio_complete(&desc);
408
409 /*
410 * If no bytes were started, return the error, and let the
411 * generic layer handle the completion.
412 */
413 if (requested_bytes == 0) {
414 inode_dio_end(inode);
415 nfs_direct_req_release(dreq);
416 return result < 0 ? result : -EIO;
417 }
418
419 if (put_dreq(dreq))
420 nfs_direct_complete(dreq);
421 return requested_bytes;
422}
423
424/**
425 * nfs_file_direct_read - file direct read operation for NFS files
426 * @iocb: target I/O control block
427 * @iter: vector of user buffers into which to read data
428 * @swap: flag indicating this is swap IO, not O_DIRECT IO
429 *
430 * We use this function for direct reads instead of calling
431 * generic_file_aio_read() in order to avoid gfar's check to see if
432 * the request starts before the end of the file. For that check
433 * to work, we must generate a GETATTR before each direct read, and
434 * even then there is a window between the GETATTR and the subsequent
435 * READ where the file size could change. Our preference is simply
436 * to do all reads the application wants, and the server will take
437 * care of managing the end of file boundary.
438 *
439 * This function also eliminates unnecessarily updating the file's
440 * atime locally, as the NFS server sets the file's atime, and this
441 * client must read the updated atime from the server back into its
442 * cache.
443 */
444ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
445 bool swap)
446{
447 struct file *file = iocb->ki_filp;
448 struct address_space *mapping = file->f_mapping;
449 struct inode *inode = mapping->host;
450 struct nfs_direct_req *dreq;
451 struct nfs_lock_context *l_ctx;
452 ssize_t result, requested;
453 size_t count = iov_iter_count(iter);
454 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
455
456 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
457 file, count, (long long) iocb->ki_pos);
458
459 result = 0;
460 if (!count)
461 goto out;
462
463 task_io_account_read(count);
464
465 result = -ENOMEM;
466 dreq = nfs_direct_req_alloc();
467 if (dreq == NULL)
468 goto out;
469
470 dreq->inode = inode;
471 dreq->bytes_left = dreq->max_count = count;
472 dreq->io_start = iocb->ki_pos;
473 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
474 l_ctx = nfs_get_lock_context(dreq->ctx);
475 if (IS_ERR(l_ctx)) {
476 result = PTR_ERR(l_ctx);
477 nfs_direct_req_release(dreq);
478 goto out_release;
479 }
480 dreq->l_ctx = l_ctx;
481 if (!is_sync_kiocb(iocb))
482 dreq->iocb = iocb;
483
484 if (iter_is_iovec(iter))
485 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
486
487 if (!swap)
488 nfs_start_io_direct(inode);
489
490 NFS_I(inode)->read_io += count;
491 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
492
493 if (!swap)
494 nfs_end_io_direct(inode);
495
496 if (requested > 0) {
497 result = nfs_direct_wait(dreq);
498 if (result > 0) {
499 requested -= result;
500 iocb->ki_pos += result;
501 }
502 iov_iter_revert(iter, requested);
503 } else {
504 result = requested;
505 }
506
507out_release:
508 nfs_direct_req_release(dreq);
509out:
510 return result;
511}
512
513static void
514nfs_direct_join_group(struct list_head *list, struct inode *inode)
515{
516 struct nfs_page *req, *next;
517
518 list_for_each_entry(req, list, wb_list) {
519 if (req->wb_head != req || req->wb_this_page == req)
520 continue;
521 for (next = req->wb_this_page;
522 next != req->wb_head;
523 next = next->wb_this_page) {
524 nfs_list_remove_request(next);
525 nfs_release_request(next);
526 }
527 nfs_join_page_group(req, inode);
528 }
529}
530
531static void
532nfs_direct_write_scan_commit_list(struct inode *inode,
533 struct list_head *list,
534 struct nfs_commit_info *cinfo)
535{
536 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
537 pnfs_recover_commit_reqs(list, cinfo);
538 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
539 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
540}
541
542static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
543{
544 struct nfs_pageio_descriptor desc;
545 struct nfs_page *req, *tmp;
546 LIST_HEAD(reqs);
547 struct nfs_commit_info cinfo;
548 LIST_HEAD(failed);
549
550 nfs_init_cinfo_from_dreq(&cinfo, dreq);
551 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
552
553 nfs_direct_join_group(&reqs, dreq->inode);
554
555 dreq->count = 0;
556 dreq->max_count = 0;
557 list_for_each_entry(req, &reqs, wb_list)
558 dreq->max_count += req->wb_bytes;
559 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
560 get_dreq(dreq);
561
562 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
563 &nfs_direct_write_completion_ops);
564 desc.pg_dreq = dreq;
565
566 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
567 /* Bump the transmission count */
568 req->wb_nio++;
569 if (!nfs_pageio_add_request(&desc, req)) {
570 nfs_list_move_request(req, &failed);
571 spin_lock(&cinfo.inode->i_lock);
572 dreq->flags = 0;
573 if (desc.pg_error < 0)
574 dreq->error = desc.pg_error;
575 else
576 dreq->error = -EIO;
577 spin_unlock(&cinfo.inode->i_lock);
578 }
579 nfs_release_request(req);
580 }
581 nfs_pageio_complete(&desc);
582
583 while (!list_empty(&failed)) {
584 req = nfs_list_entry(failed.next);
585 nfs_list_remove_request(req);
586 nfs_unlock_and_release_request(req);
587 }
588
589 if (put_dreq(dreq))
590 nfs_direct_write_complete(dreq);
591}
592
593static void nfs_direct_commit_complete(struct nfs_commit_data *data)
594{
595 const struct nfs_writeverf *verf = data->res.verf;
596 struct nfs_direct_req *dreq = data->dreq;
597 struct nfs_commit_info cinfo;
598 struct nfs_page *req;
599 int status = data->task.tk_status;
600
601 if (status < 0) {
602 /* Errors in commit are fatal */
603 dreq->error = status;
604 dreq->max_count = 0;
605 dreq->count = 0;
606 dreq->flags = NFS_ODIRECT_DONE;
607 } else if (dreq->flags == NFS_ODIRECT_DONE)
608 status = dreq->error;
609
610 nfs_init_cinfo_from_dreq(&cinfo, dreq);
611
612 while (!list_empty(&data->pages)) {
613 req = nfs_list_entry(data->pages.next);
614 nfs_list_remove_request(req);
615 if (status >= 0 && !nfs_write_match_verf(verf, req)) {
616 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
617 /*
618 * Despite the reboot, the write was successful,
619 * so reset wb_nio.
620 */
621 req->wb_nio = 0;
622 nfs_mark_request_commit(req, NULL, &cinfo, 0);
623 } else /* Error or match */
624 nfs_release_request(req);
625 nfs_unlock_and_release_request(req);
626 }
627
628 if (nfs_commit_end(cinfo.mds))
629 nfs_direct_write_complete(dreq);
630}
631
632static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
633 struct nfs_page *req)
634{
635 struct nfs_direct_req *dreq = cinfo->dreq;
636
637 spin_lock(&dreq->lock);
638 if (dreq->flags != NFS_ODIRECT_DONE)
639 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
640 spin_unlock(&dreq->lock);
641 nfs_mark_request_commit(req, NULL, cinfo, 0);
642}
643
644static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
645 .completion = nfs_direct_commit_complete,
646 .resched_write = nfs_direct_resched_write,
647};
648
649static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
650{
651 int res;
652 struct nfs_commit_info cinfo;
653 LIST_HEAD(mds_list);
654
655 nfs_init_cinfo_from_dreq(&cinfo, dreq);
656 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
657 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
658 if (res < 0) /* res == -ENOMEM */
659 nfs_direct_write_reschedule(dreq);
660}
661
662static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
663{
664 struct nfs_commit_info cinfo;
665 struct nfs_page *req;
666 LIST_HEAD(reqs);
667
668 nfs_init_cinfo_from_dreq(&cinfo, dreq);
669 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
670
671 while (!list_empty(&reqs)) {
672 req = nfs_list_entry(reqs.next);
673 nfs_list_remove_request(req);
674 nfs_release_request(req);
675 nfs_unlock_and_release_request(req);
676 }
677}
678
679static void nfs_direct_write_schedule_work(struct work_struct *work)
680{
681 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
682 int flags = dreq->flags;
683
684 dreq->flags = 0;
685 switch (flags) {
686 case NFS_ODIRECT_DO_COMMIT:
687 nfs_direct_commit_schedule(dreq);
688 break;
689 case NFS_ODIRECT_RESCHED_WRITES:
690 nfs_direct_write_reschedule(dreq);
691 break;
692 default:
693 nfs_direct_write_clear_reqs(dreq);
694 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
695 nfs_direct_complete(dreq);
696 }
697}
698
699static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
700{
701 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
702}
703
704static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
705{
706 struct nfs_direct_req *dreq = hdr->dreq;
707 struct nfs_commit_info cinfo;
708 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
709 int flags = NFS_ODIRECT_DONE;
710
711 nfs_init_cinfo_from_dreq(&cinfo, dreq);
712
713 spin_lock(&dreq->lock);
714 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
715 spin_unlock(&dreq->lock);
716 goto out_put;
717 }
718
719 nfs_direct_count_bytes(dreq, hdr);
720 if (hdr->good_bytes != 0 && nfs_write_need_commit(hdr)) {
721 if (!dreq->flags)
722 dreq->flags = NFS_ODIRECT_DO_COMMIT;
723 flags = dreq->flags;
724 }
725 spin_unlock(&dreq->lock);
726
727 while (!list_empty(&hdr->pages)) {
728
729 req = nfs_list_entry(hdr->pages.next);
730 nfs_list_remove_request(req);
731 if (flags == NFS_ODIRECT_DO_COMMIT) {
732 kref_get(&req->wb_kref);
733 memcpy(&req->wb_verf, &hdr->verf.verifier,
734 sizeof(req->wb_verf));
735 nfs_mark_request_commit(req, hdr->lseg, &cinfo,
736 hdr->ds_commit_idx);
737 } else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
738 kref_get(&req->wb_kref);
739 nfs_mark_request_commit(req, NULL, &cinfo, 0);
740 }
741 nfs_unlock_and_release_request(req);
742 }
743
744out_put:
745 if (put_dreq(dreq))
746 nfs_direct_write_complete(dreq);
747 hdr->release(hdr);
748}
749
750static void nfs_write_sync_pgio_error(struct list_head *head, int error)
751{
752 struct nfs_page *req;
753
754 while (!list_empty(head)) {
755 req = nfs_list_entry(head->next);
756 nfs_list_remove_request(req);
757 nfs_unlock_and_release_request(req);
758 }
759}
760
761static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
762{
763 struct nfs_direct_req *dreq = hdr->dreq;
764
765 spin_lock(&dreq->lock);
766 if (dreq->error == 0) {
767 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
768 /* fake unstable write to let common nfs resend pages */
769 hdr->verf.committed = NFS_UNSTABLE;
770 hdr->good_bytes = hdr->args.offset + hdr->args.count -
771 hdr->io_start;
772 }
773 spin_unlock(&dreq->lock);
774}
775
776static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
777 .error_cleanup = nfs_write_sync_pgio_error,
778 .init_hdr = nfs_direct_pgio_init,
779 .completion = nfs_direct_write_completion,
780 .reschedule_io = nfs_direct_write_reschedule_io,
781};
782
783
784/*
785 * NB: Return the value of the first error return code. Subsequent
786 * errors after the first one are ignored.
787 */
788/*
789 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
790 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
791 * bail and stop sending more writes. Write length accounting is
792 * handled automatically by nfs_direct_write_result(). Otherwise, if
793 * no requests have been sent, just return an error.
794 */
795static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
796 struct iov_iter *iter,
797 loff_t pos, int ioflags)
798{
799 struct nfs_pageio_descriptor desc;
800 struct inode *inode = dreq->inode;
801 ssize_t result = 0;
802 size_t requested_bytes = 0;
803 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
804
805 nfs_pageio_init_write(&desc, inode, ioflags, false,
806 &nfs_direct_write_completion_ops);
807 desc.pg_dreq = dreq;
808 get_dreq(dreq);
809 inode_dio_begin(inode);
810
811 NFS_I(inode)->write_io += iov_iter_count(iter);
812 while (iov_iter_count(iter)) {
813 struct page **pagevec;
814 size_t bytes;
815 size_t pgbase;
816 unsigned npages, i;
817
818 result = iov_iter_get_pages_alloc(iter, &pagevec,
819 wsize, &pgbase);
820 if (result < 0)
821 break;
822
823 bytes = result;
824 iov_iter_advance(iter, bytes);
825 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
826 for (i = 0; i < npages; i++) {
827 struct nfs_page *req;
828 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
829
830 req = nfs_create_request(dreq->ctx, pagevec[i],
831 pgbase, req_len);
832 if (IS_ERR(req)) {
833 result = PTR_ERR(req);
834 break;
835 }
836
837 if (desc.pg_error < 0) {
838 nfs_free_request(req);
839 result = desc.pg_error;
840 break;
841 }
842
843 nfs_lock_request(req);
844 req->wb_index = pos >> PAGE_SHIFT;
845 req->wb_offset = pos & ~PAGE_MASK;
846 if (!nfs_pageio_add_request(&desc, req)) {
847 result = desc.pg_error;
848 nfs_unlock_and_release_request(req);
849 break;
850 }
851 pgbase = 0;
852 bytes -= req_len;
853 requested_bytes += req_len;
854 pos += req_len;
855 dreq->bytes_left -= req_len;
856 }
857 nfs_direct_release_pages(pagevec, npages);
858 kvfree(pagevec);
859 if (result < 0)
860 break;
861 }
862 nfs_pageio_complete(&desc);
863
864 /*
865 * If no bytes were started, return the error, and let the
866 * generic layer handle the completion.
867 */
868 if (requested_bytes == 0) {
869 inode_dio_end(inode);
870 nfs_direct_req_release(dreq);
871 return result < 0 ? result : -EIO;
872 }
873
874 if (put_dreq(dreq))
875 nfs_direct_write_complete(dreq);
876 return requested_bytes;
877}
878
879/**
880 * nfs_file_direct_write - file direct write operation for NFS files
881 * @iocb: target I/O control block
882 * @iter: vector of user buffers from which to write data
883 * @swap: flag indicating this is swap IO, not O_DIRECT IO
884 *
885 * We use this function for direct writes instead of calling
886 * generic_file_aio_write() in order to avoid taking the inode
887 * semaphore and updating the i_size. The NFS server will set
888 * the new i_size and this client must read the updated size
889 * back into its cache. We let the server do generic write
890 * parameter checking and report problems.
891 *
892 * We eliminate local atime updates, see direct read above.
893 *
894 * We avoid unnecessary page cache invalidations for normal cached
895 * readers of this file.
896 *
897 * Note that O_APPEND is not supported for NFS direct writes, as there
898 * is no atomic O_APPEND write facility in the NFS protocol.
899 */
900ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
901 bool swap)
902{
903 ssize_t result, requested;
904 size_t count;
905 struct file *file = iocb->ki_filp;
906 struct address_space *mapping = file->f_mapping;
907 struct inode *inode = mapping->host;
908 struct nfs_direct_req *dreq;
909 struct nfs_lock_context *l_ctx;
910 loff_t pos, end;
911
912 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
913 file, iov_iter_count(iter), (long long) iocb->ki_pos);
914
915 if (swap)
916 /* bypass generic checks */
917 result = iov_iter_count(iter);
918 else
919 result = generic_write_checks(iocb, iter);
920 if (result <= 0)
921 return result;
922 count = result;
923 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
924
925 pos = iocb->ki_pos;
926 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
927
928 task_io_account_write(count);
929
930 result = -ENOMEM;
931 dreq = nfs_direct_req_alloc();
932 if (!dreq)
933 goto out;
934
935 dreq->inode = inode;
936 dreq->bytes_left = dreq->max_count = count;
937 dreq->io_start = pos;
938 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
939 l_ctx = nfs_get_lock_context(dreq->ctx);
940 if (IS_ERR(l_ctx)) {
941 result = PTR_ERR(l_ctx);
942 nfs_direct_req_release(dreq);
943 goto out_release;
944 }
945 dreq->l_ctx = l_ctx;
946 if (!is_sync_kiocb(iocb))
947 dreq->iocb = iocb;
948 pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
949
950 if (swap) {
951 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
952 FLUSH_STABLE);
953 } else {
954 nfs_start_io_direct(inode);
955
956 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
957 FLUSH_COND_STABLE);
958
959 if (mapping->nrpages) {
960 invalidate_inode_pages2_range(mapping,
961 pos >> PAGE_SHIFT, end);
962 }
963
964 nfs_end_io_direct(inode);
965 }
966
967 if (requested > 0) {
968 result = nfs_direct_wait(dreq);
969 if (result > 0) {
970 requested -= result;
971 iocb->ki_pos = pos + result;
972 /* XXX: should check the generic_write_sync retval */
973 generic_write_sync(iocb, result);
974 }
975 iov_iter_revert(iter, requested);
976 } else {
977 result = requested;
978 }
979 nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE);
980out_release:
981 nfs_direct_req_release(dreq);
982out:
983 return result;
984}
985
986/**
987 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
988 *
989 */
990int __init nfs_init_directcache(void)
991{
992 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
993 sizeof(struct nfs_direct_req),
994 0, (SLAB_RECLAIM_ACCOUNT|
995 SLAB_MEM_SPREAD),
996 NULL);
997 if (nfs_direct_cachep == NULL)
998 return -ENOMEM;
999
1000 return 0;
1001}
1002
1003/**
1004 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1005 *
1006 */
1007void nfs_destroy_directcache(void)
1008{
1009 kmem_cache_destroy(nfs_direct_cachep);
1010}