Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/nfs/dir.c
4 *
5 * Copyright (C) 1992 Rick Sladkey
6 *
7 * nfs directory handling functions
8 *
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
19 */
20
21#include <linux/compat.h>
22#include <linux/module.h>
23#include <linux/time.h>
24#include <linux/errno.h>
25#include <linux/stat.h>
26#include <linux/fcntl.h>
27#include <linux/string.h>
28#include <linux/kernel.h>
29#include <linux/slab.h>
30#include <linux/mm.h>
31#include <linux/sunrpc/clnt.h>
32#include <linux/nfs_fs.h>
33#include <linux/nfs_mount.h>
34#include <linux/pagemap.h>
35#include <linux/pagevec.h>
36#include <linux/namei.h>
37#include <linux/mount.h>
38#include <linux/swap.h>
39#include <linux/sched.h>
40#include <linux/kmemleak.h>
41#include <linux/xattr.h>
42#include <linux/hash.h>
43
44#include "delegation.h"
45#include "iostat.h"
46#include "internal.h"
47#include "fscache.h"
48
49#include "nfstrace.h"
50
51/* #define NFS_DEBUG_VERBOSE 1 */
52
53static int nfs_opendir(struct inode *, struct file *);
54static int nfs_closedir(struct inode *, struct file *);
55static int nfs_readdir(struct file *, struct dir_context *);
56static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58static void nfs_readdir_clear_array(struct page*);
59
60const struct file_operations nfs_dir_operations = {
61 .llseek = nfs_llseek_dir,
62 .read = generic_read_dir,
63 .iterate_shared = nfs_readdir,
64 .open = nfs_opendir,
65 .release = nfs_closedir,
66 .fsync = nfs_fsync_dir,
67};
68
69const struct address_space_operations nfs_dir_aops = {
70 .freepage = nfs_readdir_clear_array,
71};
72
73#define NFS_INIT_DTSIZE PAGE_SIZE
74
75static struct nfs_open_dir_context *
76alloc_nfs_open_dir_context(struct inode *dir)
77{
78 struct nfs_inode *nfsi = NFS_I(dir);
79 struct nfs_open_dir_context *ctx;
80
81 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
82 if (ctx != NULL) {
83 ctx->attr_gencount = nfsi->attr_gencount;
84 ctx->dtsize = NFS_INIT_DTSIZE;
85 spin_lock(&dir->i_lock);
86 if (list_empty(&nfsi->open_files) &&
87 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
88 nfs_set_cache_invalid(dir,
89 NFS_INO_INVALID_DATA |
90 NFS_INO_REVAL_FORCED);
91 list_add_tail_rcu(&ctx->list, &nfsi->open_files);
92 memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
93 spin_unlock(&dir->i_lock);
94 return ctx;
95 }
96 return ERR_PTR(-ENOMEM);
97}
98
99static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
100{
101 spin_lock(&dir->i_lock);
102 list_del_rcu(&ctx->list);
103 spin_unlock(&dir->i_lock);
104 kfree_rcu(ctx, rcu_head);
105}
106
107/*
108 * Open file
109 */
110static int
111nfs_opendir(struct inode *inode, struct file *filp)
112{
113 int res = 0;
114 struct nfs_open_dir_context *ctx;
115
116 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
117
118 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
119
120 ctx = alloc_nfs_open_dir_context(inode);
121 if (IS_ERR(ctx)) {
122 res = PTR_ERR(ctx);
123 goto out;
124 }
125 filp->private_data = ctx;
126out:
127 return res;
128}
129
130static int
131nfs_closedir(struct inode *inode, struct file *filp)
132{
133 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
134 return 0;
135}
136
137struct nfs_cache_array_entry {
138 u64 cookie;
139 u64 ino;
140 const char *name;
141 unsigned int name_len;
142 unsigned char d_type;
143};
144
145struct nfs_cache_array {
146 u64 change_attr;
147 u64 last_cookie;
148 unsigned int size;
149 unsigned char page_full : 1,
150 page_is_eof : 1,
151 cookies_are_ordered : 1;
152 struct nfs_cache_array_entry array[];
153};
154
155struct nfs_readdir_descriptor {
156 struct file *file;
157 struct page *page;
158 struct dir_context *ctx;
159 pgoff_t page_index;
160 pgoff_t page_index_max;
161 u64 dir_cookie;
162 u64 last_cookie;
163 loff_t current_index;
164
165 __be32 verf[NFS_DIR_VERIFIER_SIZE];
166 unsigned long dir_verifier;
167 unsigned long timestamp;
168 unsigned long gencount;
169 unsigned long attr_gencount;
170 unsigned int cache_entry_index;
171 unsigned int buffer_fills;
172 unsigned int dtsize;
173 bool clear_cache;
174 bool plus;
175 bool eob;
176 bool eof;
177};
178
179static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
180{
181 struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
182 unsigned int maxsize = server->dtsize;
183
184 if (sz > maxsize)
185 sz = maxsize;
186 if (sz < NFS_MIN_FILE_IO_SIZE)
187 sz = NFS_MIN_FILE_IO_SIZE;
188 desc->dtsize = sz;
189}
190
191static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
192{
193 nfs_set_dtsize(desc, desc->dtsize >> 1);
194}
195
196static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
197{
198 nfs_set_dtsize(desc, desc->dtsize << 1);
199}
200
201static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie,
202 u64 change_attr)
203{
204 struct nfs_cache_array *array;
205
206 array = kmap_atomic(page);
207 array->change_attr = change_attr;
208 array->last_cookie = last_cookie;
209 array->size = 0;
210 array->page_full = 0;
211 array->page_is_eof = 0;
212 array->cookies_are_ordered = 1;
213 kunmap_atomic(array);
214}
215
216/*
217 * we are freeing strings created by nfs_add_to_readdir_array()
218 */
219static void nfs_readdir_clear_array(struct page *page)
220{
221 struct nfs_cache_array *array;
222 unsigned int i;
223
224 array = kmap_atomic(page);
225 for (i = 0; i < array->size; i++)
226 kfree(array->array[i].name);
227 array->size = 0;
228 kunmap_atomic(array);
229}
230
231static void nfs_readdir_page_reinit_array(struct page *page, u64 last_cookie,
232 u64 change_attr)
233{
234 nfs_readdir_clear_array(page);
235 nfs_readdir_page_init_array(page, last_cookie, change_attr);
236}
237
238static struct page *
239nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
240{
241 struct page *page = alloc_page(gfp_flags);
242 if (page)
243 nfs_readdir_page_init_array(page, last_cookie, 0);
244 return page;
245}
246
247static void nfs_readdir_page_array_free(struct page *page)
248{
249 if (page) {
250 nfs_readdir_clear_array(page);
251 put_page(page);
252 }
253}
254
255static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
256{
257 return array->size == 0 ? array->last_cookie : array->array[0].cookie;
258}
259
260static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
261{
262 array->page_is_eof = 1;
263 array->page_full = 1;
264}
265
266static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
267{
268 return array->page_full;
269}
270
271/*
272 * the caller is responsible for freeing qstr.name
273 * when called by nfs_readdir_add_to_array, the strings will be freed in
274 * nfs_clear_readdir_array()
275 */
276static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
277{
278 const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
279
280 /*
281 * Avoid a kmemleak false positive. The pointer to the name is stored
282 * in a page cache page which kmemleak does not scan.
283 */
284 if (ret != NULL)
285 kmemleak_not_leak(ret);
286 return ret;
287}
288
289static size_t nfs_readdir_array_maxentries(void)
290{
291 return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
292 sizeof(struct nfs_cache_array_entry);
293}
294
295/*
296 * Check that the next array entry lies entirely within the page bounds
297 */
298static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
299{
300 if (array->page_full)
301 return -ENOSPC;
302 if (array->size == nfs_readdir_array_maxentries()) {
303 array->page_full = 1;
304 return -ENOSPC;
305 }
306 return 0;
307}
308
309static int nfs_readdir_page_array_append(struct page *page,
310 const struct nfs_entry *entry,
311 u64 *cookie)
312{
313 struct nfs_cache_array *array;
314 struct nfs_cache_array_entry *cache_entry;
315 const char *name;
316 int ret = -ENOMEM;
317
318 name = nfs_readdir_copy_name(entry->name, entry->len);
319
320 array = kmap_atomic(page);
321 if (!name)
322 goto out;
323 ret = nfs_readdir_array_can_expand(array);
324 if (ret) {
325 kfree(name);
326 goto out;
327 }
328
329 cache_entry = &array->array[array->size];
330 cache_entry->cookie = array->last_cookie;
331 cache_entry->ino = entry->ino;
332 cache_entry->d_type = entry->d_type;
333 cache_entry->name_len = entry->len;
334 cache_entry->name = name;
335 array->last_cookie = entry->cookie;
336 if (array->last_cookie <= cache_entry->cookie)
337 array->cookies_are_ordered = 0;
338 array->size++;
339 if (entry->eof != 0)
340 nfs_readdir_array_set_eof(array);
341out:
342 *cookie = array->last_cookie;
343 kunmap_atomic(array);
344 return ret;
345}
346
347#define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
348/*
349 * Hash algorithm allowing content addressible access to sequences
350 * of directory cookies. Content is addressed by the value of the
351 * cookie index of the first readdir entry in a page.
352 *
353 * We select only the first 18 bits to avoid issues with excessive
354 * memory use for the page cache XArray. 18 bits should allow the caching
355 * of 262144 pages of sequences of readdir entries. Since each page holds
356 * 127 readdir entries for a typical 64-bit system, that works out to a
357 * cache of ~ 33 million entries per directory.
358 */
359static pgoff_t nfs_readdir_page_cookie_hash(u64 cookie)
360{
361 if (cookie == 0)
362 return 0;
363 return hash_64(cookie, 18);
364}
365
366static bool nfs_readdir_page_validate(struct page *page, u64 last_cookie,
367 u64 change_attr)
368{
369 struct nfs_cache_array *array = kmap_atomic(page);
370 int ret = true;
371
372 if (array->change_attr != change_attr)
373 ret = false;
374 if (nfs_readdir_array_index_cookie(array) != last_cookie)
375 ret = false;
376 kunmap_atomic(array);
377 return ret;
378}
379
380static void nfs_readdir_page_unlock_and_put(struct page *page)
381{
382 unlock_page(page);
383 put_page(page);
384}
385
386static void nfs_readdir_page_init_and_validate(struct page *page, u64 cookie,
387 u64 change_attr)
388{
389 if (PageUptodate(page)) {
390 if (nfs_readdir_page_validate(page, cookie, change_attr))
391 return;
392 nfs_readdir_clear_array(page);
393 }
394 nfs_readdir_page_init_array(page, cookie, change_attr);
395 SetPageUptodate(page);
396}
397
398static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
399 u64 cookie, u64 change_attr)
400{
401 pgoff_t index = nfs_readdir_page_cookie_hash(cookie);
402 struct page *page;
403
404 page = grab_cache_page(mapping, index);
405 if (!page)
406 return NULL;
407 nfs_readdir_page_init_and_validate(page, cookie, change_attr);
408 return page;
409}
410
411static u64 nfs_readdir_page_last_cookie(struct page *page)
412{
413 struct nfs_cache_array *array;
414 u64 ret;
415
416 array = kmap_atomic(page);
417 ret = array->last_cookie;
418 kunmap_atomic(array);
419 return ret;
420}
421
422static bool nfs_readdir_page_needs_filling(struct page *page)
423{
424 struct nfs_cache_array *array;
425 bool ret;
426
427 array = kmap_atomic(page);
428 ret = !nfs_readdir_array_is_full(array);
429 kunmap_atomic(array);
430 return ret;
431}
432
433static void nfs_readdir_page_set_eof(struct page *page)
434{
435 struct nfs_cache_array *array;
436
437 array = kmap_atomic(page);
438 nfs_readdir_array_set_eof(array);
439 kunmap_atomic(array);
440}
441
442static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
443 u64 cookie, u64 change_attr)
444{
445 pgoff_t index = nfs_readdir_page_cookie_hash(cookie);
446 struct page *page;
447
448 page = grab_cache_page_nowait(mapping, index);
449 if (!page)
450 return NULL;
451 nfs_readdir_page_init_and_validate(page, cookie, change_attr);
452 if (nfs_readdir_page_last_cookie(page) != cookie)
453 nfs_readdir_page_reinit_array(page, cookie, change_attr);
454 return page;
455}
456
457static inline
458int is_32bit_api(void)
459{
460#ifdef CONFIG_COMPAT
461 return in_compat_syscall();
462#else
463 return (BITS_PER_LONG == 32);
464#endif
465}
466
467static
468bool nfs_readdir_use_cookie(const struct file *filp)
469{
470 if ((filp->f_mode & FMODE_32BITHASH) ||
471 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
472 return false;
473 return true;
474}
475
476static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
477 struct nfs_readdir_descriptor *desc)
478{
479 if (array->page_full) {
480 desc->last_cookie = array->last_cookie;
481 desc->current_index += array->size;
482 desc->cache_entry_index = 0;
483 desc->page_index++;
484 } else
485 desc->last_cookie = nfs_readdir_array_index_cookie(array);
486}
487
488static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
489{
490 desc->current_index = 0;
491 desc->last_cookie = 0;
492 desc->page_index = 0;
493}
494
495static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
496 struct nfs_readdir_descriptor *desc)
497{
498 loff_t diff = desc->ctx->pos - desc->current_index;
499 unsigned int index;
500
501 if (diff < 0)
502 goto out_eof;
503 if (diff >= array->size) {
504 if (array->page_is_eof)
505 goto out_eof;
506 nfs_readdir_seek_next_array(array, desc);
507 return -EAGAIN;
508 }
509
510 index = (unsigned int)diff;
511 desc->dir_cookie = array->array[index].cookie;
512 desc->cache_entry_index = index;
513 return 0;
514out_eof:
515 desc->eof = true;
516 return -EBADCOOKIE;
517}
518
519static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
520 u64 cookie)
521{
522 if (!array->cookies_are_ordered)
523 return true;
524 /* Optimisation for monotonically increasing cookies */
525 if (cookie >= array->last_cookie)
526 return false;
527 if (array->size && cookie < array->array[0].cookie)
528 return false;
529 return true;
530}
531
532static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
533 struct nfs_readdir_descriptor *desc)
534{
535 unsigned int i;
536 int status = -EAGAIN;
537
538 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
539 goto check_eof;
540
541 for (i = 0; i < array->size; i++) {
542 if (array->array[i].cookie == desc->dir_cookie) {
543 if (nfs_readdir_use_cookie(desc->file))
544 desc->ctx->pos = desc->dir_cookie;
545 else
546 desc->ctx->pos = desc->current_index + i;
547 desc->cache_entry_index = i;
548 return 0;
549 }
550 }
551check_eof:
552 if (array->page_is_eof) {
553 status = -EBADCOOKIE;
554 if (desc->dir_cookie == array->last_cookie)
555 desc->eof = true;
556 } else
557 nfs_readdir_seek_next_array(array, desc);
558 return status;
559}
560
561static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
562{
563 struct nfs_cache_array *array;
564 int status;
565
566 array = kmap_atomic(desc->page);
567
568 if (desc->dir_cookie == 0)
569 status = nfs_readdir_search_for_pos(array, desc);
570 else
571 status = nfs_readdir_search_for_cookie(array, desc);
572
573 kunmap_atomic(array);
574 return status;
575}
576
577/* Fill a page with xdr information before transferring to the cache page */
578static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
579 __be32 *verf, u64 cookie,
580 struct page **pages, size_t bufsize,
581 __be32 *verf_res)
582{
583 struct inode *inode = file_inode(desc->file);
584 struct nfs_readdir_arg arg = {
585 .dentry = file_dentry(desc->file),
586 .cred = desc->file->f_cred,
587 .verf = verf,
588 .cookie = cookie,
589 .pages = pages,
590 .page_len = bufsize,
591 .plus = desc->plus,
592 };
593 struct nfs_readdir_res res = {
594 .verf = verf_res,
595 };
596 unsigned long timestamp, gencount;
597 int error;
598
599 again:
600 timestamp = jiffies;
601 gencount = nfs_inc_attr_generation_counter();
602 desc->dir_verifier = nfs_save_change_attribute(inode);
603 error = NFS_PROTO(inode)->readdir(&arg, &res);
604 if (error < 0) {
605 /* We requested READDIRPLUS, but the server doesn't grok it */
606 if (error == -ENOTSUPP && desc->plus) {
607 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
608 desc->plus = arg.plus = false;
609 goto again;
610 }
611 goto error;
612 }
613 desc->timestamp = timestamp;
614 desc->gencount = gencount;
615error:
616 return error;
617}
618
619static int xdr_decode(struct nfs_readdir_descriptor *desc,
620 struct nfs_entry *entry, struct xdr_stream *xdr)
621{
622 struct inode *inode = file_inode(desc->file);
623 int error;
624
625 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
626 if (error)
627 return error;
628 entry->fattr->time_start = desc->timestamp;
629 entry->fattr->gencount = desc->gencount;
630 return 0;
631}
632
633/* Match file and dirent using either filehandle or fileid
634 * Note: caller is responsible for checking the fsid
635 */
636static
637int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
638{
639 struct inode *inode;
640 struct nfs_inode *nfsi;
641
642 if (d_really_is_negative(dentry))
643 return 0;
644
645 inode = d_inode(dentry);
646 if (is_bad_inode(inode) || NFS_STALE(inode))
647 return 0;
648
649 nfsi = NFS_I(inode);
650 if (entry->fattr->fileid != nfsi->fileid)
651 return 0;
652 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
653 return 0;
654 return 1;
655}
656
657#define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
658
659static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
660 unsigned int cache_hits,
661 unsigned int cache_misses)
662{
663 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
664 return false;
665 if (ctx->pos == 0 ||
666 cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
667 return true;
668 return false;
669}
670
671/*
672 * This function is called by the getattr code to request the
673 * use of readdirplus to accelerate any future lookups in the same
674 * directory.
675 */
676void nfs_readdir_record_entry_cache_hit(struct inode *dir)
677{
678 struct nfs_inode *nfsi = NFS_I(dir);
679 struct nfs_open_dir_context *ctx;
680
681 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
682 S_ISDIR(dir->i_mode)) {
683 rcu_read_lock();
684 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
685 atomic_inc(&ctx->cache_hits);
686 rcu_read_unlock();
687 }
688}
689
690/*
691 * This function is mainly for use by nfs_getattr().
692 *
693 * If this is an 'ls -l', we want to force use of readdirplus.
694 */
695void nfs_readdir_record_entry_cache_miss(struct inode *dir)
696{
697 struct nfs_inode *nfsi = NFS_I(dir);
698 struct nfs_open_dir_context *ctx;
699
700 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
701 S_ISDIR(dir->i_mode)) {
702 rcu_read_lock();
703 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
704 atomic_inc(&ctx->cache_misses);
705 rcu_read_unlock();
706 }
707}
708
709static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
710 unsigned int flags)
711{
712 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
713 return;
714 if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
715 return;
716 nfs_readdir_record_entry_cache_miss(dir);
717}
718
719static
720void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
721 unsigned long dir_verifier)
722{
723 struct qstr filename = QSTR_INIT(entry->name, entry->len);
724 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
725 struct dentry *dentry;
726 struct dentry *alias;
727 struct inode *inode;
728 int status;
729
730 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
731 return;
732 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
733 return;
734 if (filename.len == 0)
735 return;
736 /* Validate that the name doesn't contain any illegal '\0' */
737 if (strnlen(filename.name, filename.len) != filename.len)
738 return;
739 /* ...or '/' */
740 if (strnchr(filename.name, filename.len, '/'))
741 return;
742 if (filename.name[0] == '.') {
743 if (filename.len == 1)
744 return;
745 if (filename.len == 2 && filename.name[1] == '.')
746 return;
747 }
748 filename.hash = full_name_hash(parent, filename.name, filename.len);
749
750 dentry = d_lookup(parent, &filename);
751again:
752 if (!dentry) {
753 dentry = d_alloc_parallel(parent, &filename, &wq);
754 if (IS_ERR(dentry))
755 return;
756 }
757 if (!d_in_lookup(dentry)) {
758 /* Is there a mountpoint here? If so, just exit */
759 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
760 &entry->fattr->fsid))
761 goto out;
762 if (nfs_same_file(dentry, entry)) {
763 if (!entry->fh->size)
764 goto out;
765 nfs_set_verifier(dentry, dir_verifier);
766 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
767 if (!status)
768 nfs_setsecurity(d_inode(dentry), entry->fattr);
769 trace_nfs_readdir_lookup_revalidate(d_inode(parent),
770 dentry, 0, status);
771 goto out;
772 } else {
773 trace_nfs_readdir_lookup_revalidate_failed(
774 d_inode(parent), dentry, 0);
775 d_invalidate(dentry);
776 dput(dentry);
777 dentry = NULL;
778 goto again;
779 }
780 }
781 if (!entry->fh->size) {
782 d_lookup_done(dentry);
783 goto out;
784 }
785
786 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
787 alias = d_splice_alias(inode, dentry);
788 d_lookup_done(dentry);
789 if (alias) {
790 if (IS_ERR(alias))
791 goto out;
792 dput(dentry);
793 dentry = alias;
794 }
795 nfs_set_verifier(dentry, dir_verifier);
796 trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
797out:
798 dput(dentry);
799}
800
801static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
802 struct nfs_entry *entry,
803 struct xdr_stream *stream)
804{
805 int ret;
806
807 if (entry->fattr->label)
808 entry->fattr->label->len = NFS4_MAXLABELLEN;
809 ret = xdr_decode(desc, entry, stream);
810 if (ret || !desc->plus)
811 return ret;
812 nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
813 return 0;
814}
815
816/* Perform conversion from xdr to cache array */
817static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
818 struct nfs_entry *entry,
819 struct page **xdr_pages, unsigned int buflen,
820 struct page **arrays, size_t narrays,
821 u64 change_attr)
822{
823 struct address_space *mapping = desc->file->f_mapping;
824 struct xdr_stream stream;
825 struct xdr_buf buf;
826 struct page *scratch, *new, *page = *arrays;
827 u64 cookie;
828 int status;
829
830 scratch = alloc_page(GFP_KERNEL);
831 if (scratch == NULL)
832 return -ENOMEM;
833
834 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
835 xdr_set_scratch_page(&stream, scratch);
836
837 do {
838 status = nfs_readdir_entry_decode(desc, entry, &stream);
839 if (status != 0)
840 break;
841
842 status = nfs_readdir_page_array_append(page, entry, &cookie);
843 if (status != -ENOSPC)
844 continue;
845
846 if (page->mapping != mapping) {
847 if (!--narrays)
848 break;
849 new = nfs_readdir_page_array_alloc(cookie, GFP_KERNEL);
850 if (!new)
851 break;
852 arrays++;
853 *arrays = page = new;
854 } else {
855 new = nfs_readdir_page_get_next(mapping, cookie,
856 change_attr);
857 if (!new)
858 break;
859 if (page != *arrays)
860 nfs_readdir_page_unlock_and_put(page);
861 page = new;
862 }
863 desc->page_index_max++;
864 status = nfs_readdir_page_array_append(page, entry, &cookie);
865 } while (!status && !entry->eof);
866
867 switch (status) {
868 case -EBADCOOKIE:
869 if (!entry->eof)
870 break;
871 nfs_readdir_page_set_eof(page);
872 fallthrough;
873 case -EAGAIN:
874 status = 0;
875 break;
876 case -ENOSPC:
877 status = 0;
878 if (!desc->plus)
879 break;
880 while (!nfs_readdir_entry_decode(desc, entry, &stream))
881 ;
882 }
883
884 if (page != *arrays)
885 nfs_readdir_page_unlock_and_put(page);
886
887 put_page(scratch);
888 return status;
889}
890
891static void nfs_readdir_free_pages(struct page **pages, size_t npages)
892{
893 while (npages--)
894 put_page(pages[npages]);
895 kfree(pages);
896}
897
898/*
899 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
900 * to nfs_readdir_free_pages()
901 */
902static struct page **nfs_readdir_alloc_pages(size_t npages)
903{
904 struct page **pages;
905 size_t i;
906
907 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
908 if (!pages)
909 return NULL;
910 for (i = 0; i < npages; i++) {
911 struct page *page = alloc_page(GFP_KERNEL);
912 if (page == NULL)
913 goto out_freepages;
914 pages[i] = page;
915 }
916 return pages;
917
918out_freepages:
919 nfs_readdir_free_pages(pages, i);
920 return NULL;
921}
922
923static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
924 __be32 *verf_arg, __be32 *verf_res,
925 struct page **arrays, size_t narrays)
926{
927 u64 change_attr;
928 struct page **pages;
929 struct page *page = *arrays;
930 struct nfs_entry *entry;
931 size_t array_size;
932 struct inode *inode = file_inode(desc->file);
933 unsigned int dtsize = desc->dtsize;
934 unsigned int pglen;
935 int status = -ENOMEM;
936
937 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
938 if (!entry)
939 return -ENOMEM;
940 entry->cookie = nfs_readdir_page_last_cookie(page);
941 entry->fh = nfs_alloc_fhandle();
942 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
943 entry->server = NFS_SERVER(inode);
944 if (entry->fh == NULL || entry->fattr == NULL)
945 goto out;
946
947 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
948 pages = nfs_readdir_alloc_pages(array_size);
949 if (!pages)
950 goto out;
951
952 change_attr = inode_peek_iversion_raw(inode);
953 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
954 dtsize, verf_res);
955 if (status < 0)
956 goto free_pages;
957
958 pglen = status;
959 if (pglen != 0)
960 status = nfs_readdir_page_filler(desc, entry, pages, pglen,
961 arrays, narrays, change_attr);
962 else
963 nfs_readdir_page_set_eof(page);
964 desc->buffer_fills++;
965
966free_pages:
967 nfs_readdir_free_pages(pages, array_size);
968out:
969 nfs_free_fattr(entry->fattr);
970 nfs_free_fhandle(entry->fh);
971 kfree(entry);
972 return status;
973}
974
975static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
976{
977 put_page(desc->page);
978 desc->page = NULL;
979}
980
981static void
982nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
983{
984 unlock_page(desc->page);
985 nfs_readdir_page_put(desc);
986}
987
988static struct page *
989nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
990{
991 struct address_space *mapping = desc->file->f_mapping;
992 u64 change_attr = inode_peek_iversion_raw(mapping->host);
993 u64 cookie = desc->last_cookie;
994 struct page *page;
995
996 page = nfs_readdir_page_get_locked(mapping, cookie, change_attr);
997 if (!page)
998 return NULL;
999 if (desc->clear_cache && !nfs_readdir_page_needs_filling(page))
1000 nfs_readdir_page_reinit_array(page, cookie, change_attr);
1001 return page;
1002}
1003
1004/*
1005 * Returns 0 if desc->dir_cookie was found on page desc->page_index
1006 * and locks the page to prevent removal from the page cache.
1007 */
1008static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1009{
1010 struct inode *inode = file_inode(desc->file);
1011 struct nfs_inode *nfsi = NFS_I(inode);
1012 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1013 int res;
1014
1015 desc->page = nfs_readdir_page_get_cached(desc);
1016 if (!desc->page)
1017 return -ENOMEM;
1018 if (nfs_readdir_page_needs_filling(desc->page)) {
1019 /* Grow the dtsize if we had to go back for more pages */
1020 if (desc->page_index == desc->page_index_max)
1021 nfs_grow_dtsize(desc);
1022 desc->page_index_max = desc->page_index;
1023 trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1024 desc->last_cookie,
1025 desc->page->index, desc->dtsize);
1026 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1027 &desc->page, 1);
1028 if (res < 0) {
1029 nfs_readdir_page_unlock_and_put_cached(desc);
1030 trace_nfs_readdir_cache_fill_done(inode, res);
1031 if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1032 invalidate_inode_pages2(desc->file->f_mapping);
1033 nfs_readdir_rewind_search(desc);
1034 trace_nfs_readdir_invalidate_cache_range(
1035 inode, 0, MAX_LFS_FILESIZE);
1036 return -EAGAIN;
1037 }
1038 return res;
1039 }
1040 /*
1041 * Set the cookie verifier if the page cache was empty
1042 */
1043 if (desc->last_cookie == 0 &&
1044 memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1045 memcpy(nfsi->cookieverf, verf,
1046 sizeof(nfsi->cookieverf));
1047 invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1048 -1);
1049 trace_nfs_readdir_invalidate_cache_range(
1050 inode, 1, MAX_LFS_FILESIZE);
1051 }
1052 desc->clear_cache = false;
1053 }
1054 res = nfs_readdir_search_array(desc);
1055 if (res == 0)
1056 return 0;
1057 nfs_readdir_page_unlock_and_put_cached(desc);
1058 return res;
1059}
1060
1061/* Search for desc->dir_cookie from the beginning of the page cache */
1062static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1063{
1064 int res;
1065
1066 do {
1067 res = find_and_lock_cache_page(desc);
1068 } while (res == -EAGAIN);
1069 return res;
1070}
1071
1072/*
1073 * Once we've found the start of the dirent within a page: fill 'er up...
1074 */
1075static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1076 const __be32 *verf)
1077{
1078 struct file *file = desc->file;
1079 struct nfs_cache_array *array;
1080 unsigned int i;
1081
1082 array = kmap(desc->page);
1083 for (i = desc->cache_entry_index; i < array->size; i++) {
1084 struct nfs_cache_array_entry *ent;
1085
1086 ent = &array->array[i];
1087 if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1088 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1089 desc->eob = true;
1090 break;
1091 }
1092 memcpy(desc->verf, verf, sizeof(desc->verf));
1093 if (i == array->size - 1) {
1094 desc->dir_cookie = array->last_cookie;
1095 nfs_readdir_seek_next_array(array, desc);
1096 } else {
1097 desc->dir_cookie = array->array[i + 1].cookie;
1098 desc->last_cookie = array->array[0].cookie;
1099 }
1100 if (nfs_readdir_use_cookie(file))
1101 desc->ctx->pos = desc->dir_cookie;
1102 else
1103 desc->ctx->pos++;
1104 }
1105 if (array->page_is_eof)
1106 desc->eof = !desc->eob;
1107
1108 kunmap(desc->page);
1109 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1110 (unsigned long long)desc->dir_cookie);
1111}
1112
1113/*
1114 * If we cannot find a cookie in our cache, we suspect that this is
1115 * because it points to a deleted file, so we ask the server to return
1116 * whatever it thinks is the next entry. We then feed this to filldir.
1117 * If all goes well, we should then be able to find our way round the
1118 * cache on the next call to readdir_search_pagecache();
1119 *
1120 * NOTE: we cannot add the anonymous page to the pagecache because
1121 * the data it contains might not be page aligned. Besides,
1122 * we should already have a complete representation of the
1123 * directory in the page cache by the time we get here.
1124 */
1125static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1126{
1127 struct page **arrays;
1128 size_t i, sz = 512;
1129 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1130 int status = -ENOMEM;
1131
1132 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1133 (unsigned long long)desc->dir_cookie);
1134
1135 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1136 if (!arrays)
1137 goto out;
1138 arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1139 if (!arrays[0])
1140 goto out;
1141
1142 desc->page_index = 0;
1143 desc->cache_entry_index = 0;
1144 desc->last_cookie = desc->dir_cookie;
1145 desc->page_index_max = 0;
1146
1147 trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1148 -1, desc->dtsize);
1149
1150 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1151 if (status < 0) {
1152 trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1153 goto out_free;
1154 }
1155
1156 for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1157 desc->page = arrays[i];
1158 nfs_do_filldir(desc, verf);
1159 }
1160 desc->page = NULL;
1161
1162 /*
1163 * Grow the dtsize if we have to go back for more pages,
1164 * or shrink it if we're reading too many.
1165 */
1166 if (!desc->eof) {
1167 if (!desc->eob)
1168 nfs_grow_dtsize(desc);
1169 else if (desc->buffer_fills == 1 &&
1170 i < (desc->page_index_max >> 1))
1171 nfs_shrink_dtsize(desc);
1172 }
1173out_free:
1174 for (i = 0; i < sz && arrays[i]; i++)
1175 nfs_readdir_page_array_free(arrays[i]);
1176out:
1177 if (!nfs_readdir_use_cookie(desc->file))
1178 nfs_readdir_rewind_search(desc);
1179 desc->page_index_max = -1;
1180 kfree(arrays);
1181 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1182 return status;
1183}
1184
1185#define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1186
1187static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1188 struct nfs_readdir_descriptor *desc,
1189 unsigned int cache_misses,
1190 bool force_clear)
1191{
1192 if (desc->ctx->pos == 0 || !desc->plus)
1193 return false;
1194 if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1195 return false;
1196 trace_nfs_readdir_force_readdirplus(inode);
1197 return true;
1198}
1199
1200/* The file offset position represents the dirent entry number. A
1201 last cookie cache takes care of the common case of reading the
1202 whole directory.
1203 */
1204static int nfs_readdir(struct file *file, struct dir_context *ctx)
1205{
1206 struct dentry *dentry = file_dentry(file);
1207 struct inode *inode = d_inode(dentry);
1208 struct nfs_inode *nfsi = NFS_I(inode);
1209 struct nfs_open_dir_context *dir_ctx = file->private_data;
1210 struct nfs_readdir_descriptor *desc;
1211 unsigned int cache_hits, cache_misses;
1212 bool force_clear;
1213 int res;
1214
1215 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1216 file, (long long)ctx->pos);
1217 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1218
1219 /*
1220 * ctx->pos points to the dirent entry number.
1221 * *desc->dir_cookie has the cookie for the next entry. We have
1222 * to either find the entry with the appropriate number or
1223 * revalidate the cookie.
1224 */
1225 nfs_revalidate_mapping(inode, file->f_mapping);
1226
1227 res = -ENOMEM;
1228 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1229 if (!desc)
1230 goto out;
1231 desc->file = file;
1232 desc->ctx = ctx;
1233 desc->page_index_max = -1;
1234
1235 spin_lock(&file->f_lock);
1236 desc->dir_cookie = dir_ctx->dir_cookie;
1237 desc->page_index = dir_ctx->page_index;
1238 desc->last_cookie = dir_ctx->last_cookie;
1239 desc->attr_gencount = dir_ctx->attr_gencount;
1240 desc->eof = dir_ctx->eof;
1241 nfs_set_dtsize(desc, dir_ctx->dtsize);
1242 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1243 cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1244 cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1245 force_clear = dir_ctx->force_clear;
1246 spin_unlock(&file->f_lock);
1247
1248 if (desc->eof) {
1249 res = 0;
1250 goto out_free;
1251 }
1252
1253 desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1254 force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1255 force_clear);
1256 desc->clear_cache = force_clear;
1257
1258 do {
1259 res = readdir_search_pagecache(desc);
1260
1261 if (res == -EBADCOOKIE) {
1262 res = 0;
1263 /* This means either end of directory */
1264 if (desc->dir_cookie && !desc->eof) {
1265 /* Or that the server has 'lost' a cookie */
1266 res = uncached_readdir(desc);
1267 if (res == 0)
1268 continue;
1269 if (res == -EBADCOOKIE || res == -ENOTSYNC)
1270 res = 0;
1271 }
1272 break;
1273 }
1274 if (res == -ETOOSMALL && desc->plus) {
1275 nfs_zap_caches(inode);
1276 desc->plus = false;
1277 desc->eof = false;
1278 continue;
1279 }
1280 if (res < 0)
1281 break;
1282
1283 nfs_do_filldir(desc, nfsi->cookieverf);
1284 nfs_readdir_page_unlock_and_put_cached(desc);
1285 if (desc->page_index == desc->page_index_max)
1286 desc->clear_cache = force_clear;
1287 } while (!desc->eob && !desc->eof);
1288
1289 spin_lock(&file->f_lock);
1290 dir_ctx->dir_cookie = desc->dir_cookie;
1291 dir_ctx->last_cookie = desc->last_cookie;
1292 dir_ctx->attr_gencount = desc->attr_gencount;
1293 dir_ctx->page_index = desc->page_index;
1294 dir_ctx->force_clear = force_clear;
1295 dir_ctx->eof = desc->eof;
1296 dir_ctx->dtsize = desc->dtsize;
1297 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1298 spin_unlock(&file->f_lock);
1299out_free:
1300 kfree(desc);
1301
1302out:
1303 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1304 return res;
1305}
1306
1307static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1308{
1309 struct nfs_open_dir_context *dir_ctx = filp->private_data;
1310
1311 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1312 filp, offset, whence);
1313
1314 switch (whence) {
1315 default:
1316 return -EINVAL;
1317 case SEEK_SET:
1318 if (offset < 0)
1319 return -EINVAL;
1320 spin_lock(&filp->f_lock);
1321 break;
1322 case SEEK_CUR:
1323 if (offset == 0)
1324 return filp->f_pos;
1325 spin_lock(&filp->f_lock);
1326 offset += filp->f_pos;
1327 if (offset < 0) {
1328 spin_unlock(&filp->f_lock);
1329 return -EINVAL;
1330 }
1331 }
1332 if (offset != filp->f_pos) {
1333 filp->f_pos = offset;
1334 dir_ctx->page_index = 0;
1335 if (!nfs_readdir_use_cookie(filp)) {
1336 dir_ctx->dir_cookie = 0;
1337 dir_ctx->last_cookie = 0;
1338 } else {
1339 dir_ctx->dir_cookie = offset;
1340 dir_ctx->last_cookie = offset;
1341 }
1342 dir_ctx->eof = false;
1343 }
1344 spin_unlock(&filp->f_lock);
1345 return offset;
1346}
1347
1348/*
1349 * All directory operations under NFS are synchronous, so fsync()
1350 * is a dummy operation.
1351 */
1352static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1353 int datasync)
1354{
1355 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1356
1357 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1358 return 0;
1359}
1360
1361/**
1362 * nfs_force_lookup_revalidate - Mark the directory as having changed
1363 * @dir: pointer to directory inode
1364 *
1365 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1366 * full lookup on all child dentries of 'dir' whenever a change occurs
1367 * on the server that might have invalidated our dcache.
1368 *
1369 * Note that we reserve bit '0' as a tag to let us know when a dentry
1370 * was revalidated while holding a delegation on its inode.
1371 *
1372 * The caller should be holding dir->i_lock
1373 */
1374void nfs_force_lookup_revalidate(struct inode *dir)
1375{
1376 NFS_I(dir)->cache_change_attribute += 2;
1377}
1378EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1379
1380/**
1381 * nfs_verify_change_attribute - Detects NFS remote directory changes
1382 * @dir: pointer to parent directory inode
1383 * @verf: previously saved change attribute
1384 *
1385 * Return "false" if the verifiers doesn't match the change attribute.
1386 * This would usually indicate that the directory contents have changed on
1387 * the server, and that any dentries need revalidating.
1388 */
1389static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1390{
1391 return (verf & ~1UL) == nfs_save_change_attribute(dir);
1392}
1393
1394static void nfs_set_verifier_delegated(unsigned long *verf)
1395{
1396 *verf |= 1UL;
1397}
1398
1399#if IS_ENABLED(CONFIG_NFS_V4)
1400static void nfs_unset_verifier_delegated(unsigned long *verf)
1401{
1402 *verf &= ~1UL;
1403}
1404#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1405
1406static bool nfs_test_verifier_delegated(unsigned long verf)
1407{
1408 return verf & 1;
1409}
1410
1411static bool nfs_verifier_is_delegated(struct dentry *dentry)
1412{
1413 return nfs_test_verifier_delegated(dentry->d_time);
1414}
1415
1416static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1417{
1418 struct inode *inode = d_inode(dentry);
1419 struct inode *dir = d_inode(dentry->d_parent);
1420
1421 if (!nfs_verify_change_attribute(dir, verf))
1422 return;
1423 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1424 nfs_set_verifier_delegated(&verf);
1425 dentry->d_time = verf;
1426}
1427
1428/**
1429 * nfs_set_verifier - save a parent directory verifier in the dentry
1430 * @dentry: pointer to dentry
1431 * @verf: verifier to save
1432 *
1433 * Saves the parent directory verifier in @dentry. If the inode has
1434 * a delegation, we also tag the dentry as having been revalidated
1435 * while holding a delegation so that we know we don't have to
1436 * look it up again after a directory change.
1437 */
1438void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1439{
1440
1441 spin_lock(&dentry->d_lock);
1442 nfs_set_verifier_locked(dentry, verf);
1443 spin_unlock(&dentry->d_lock);
1444}
1445EXPORT_SYMBOL_GPL(nfs_set_verifier);
1446
1447#if IS_ENABLED(CONFIG_NFS_V4)
1448/**
1449 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1450 * @inode: pointer to inode
1451 *
1452 * Iterates through the dentries in the inode alias list and clears
1453 * the tag used to indicate that the dentry has been revalidated
1454 * while holding a delegation.
1455 * This function is intended for use when the delegation is being
1456 * returned or revoked.
1457 */
1458void nfs_clear_verifier_delegated(struct inode *inode)
1459{
1460 struct dentry *alias;
1461
1462 if (!inode)
1463 return;
1464 spin_lock(&inode->i_lock);
1465 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1466 spin_lock(&alias->d_lock);
1467 nfs_unset_verifier_delegated(&alias->d_time);
1468 spin_unlock(&alias->d_lock);
1469 }
1470 spin_unlock(&inode->i_lock);
1471}
1472EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1473#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1474
1475static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1476{
1477 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1478 d_really_is_negative(dentry))
1479 return dentry->d_time == inode_peek_iversion_raw(dir);
1480 return nfs_verify_change_attribute(dir, dentry->d_time);
1481}
1482
1483/*
1484 * A check for whether or not the parent directory has changed.
1485 * In the case it has, we assume that the dentries are untrustworthy
1486 * and may need to be looked up again.
1487 * If rcu_walk prevents us from performing a full check, return 0.
1488 */
1489static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1490 int rcu_walk)
1491{
1492 if (IS_ROOT(dentry))
1493 return 1;
1494 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1495 return 0;
1496 if (!nfs_dentry_verify_change(dir, dentry))
1497 return 0;
1498 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1499 if (nfs_mapping_need_revalidate_inode(dir)) {
1500 if (rcu_walk)
1501 return 0;
1502 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1503 return 0;
1504 }
1505 if (!nfs_dentry_verify_change(dir, dentry))
1506 return 0;
1507 return 1;
1508}
1509
1510/*
1511 * Use intent information to check whether or not we're going to do
1512 * an O_EXCL create using this path component.
1513 */
1514static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1515{
1516 if (NFS_PROTO(dir)->version == 2)
1517 return 0;
1518 return flags & LOOKUP_EXCL;
1519}
1520
1521/*
1522 * Inode and filehandle revalidation for lookups.
1523 *
1524 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1525 * or if the intent information indicates that we're about to open this
1526 * particular file and the "nocto" mount flag is not set.
1527 *
1528 */
1529static
1530int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1531{
1532 struct nfs_server *server = NFS_SERVER(inode);
1533 int ret;
1534
1535 if (IS_AUTOMOUNT(inode))
1536 return 0;
1537
1538 if (flags & LOOKUP_OPEN) {
1539 switch (inode->i_mode & S_IFMT) {
1540 case S_IFREG:
1541 /* A NFSv4 OPEN will revalidate later */
1542 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1543 goto out;
1544 fallthrough;
1545 case S_IFDIR:
1546 if (server->flags & NFS_MOUNT_NOCTO)
1547 break;
1548 /* NFS close-to-open cache consistency validation */
1549 goto out_force;
1550 }
1551 }
1552
1553 /* VFS wants an on-the-wire revalidation */
1554 if (flags & LOOKUP_REVAL)
1555 goto out_force;
1556out:
1557 if (inode->i_nlink > 0 ||
1558 (inode->i_nlink == 0 &&
1559 test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1560 return 0;
1561 else
1562 return -ESTALE;
1563out_force:
1564 if (flags & LOOKUP_RCU)
1565 return -ECHILD;
1566 ret = __nfs_revalidate_inode(server, inode);
1567 if (ret != 0)
1568 return ret;
1569 goto out;
1570}
1571
1572static void nfs_mark_dir_for_revalidate(struct inode *inode)
1573{
1574 spin_lock(&inode->i_lock);
1575 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1576 spin_unlock(&inode->i_lock);
1577}
1578
1579/*
1580 * We judge how long we want to trust negative
1581 * dentries by looking at the parent inode mtime.
1582 *
1583 * If parent mtime has changed, we revalidate, else we wait for a
1584 * period corresponding to the parent's attribute cache timeout value.
1585 *
1586 * If LOOKUP_RCU prevents us from performing a full check, return 1
1587 * suggesting a reval is needed.
1588 *
1589 * Note that when creating a new file, or looking up a rename target,
1590 * then it shouldn't be necessary to revalidate a negative dentry.
1591 */
1592static inline
1593int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1594 unsigned int flags)
1595{
1596 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1597 return 0;
1598 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1599 return 1;
1600 /* Case insensitive server? Revalidate negative dentries */
1601 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1602 return 1;
1603 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1604}
1605
1606static int
1607nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1608 struct inode *inode, int error)
1609{
1610 switch (error) {
1611 case 1:
1612 break;
1613 case 0:
1614 /*
1615 * We can't d_drop the root of a disconnected tree:
1616 * its d_hash is on the s_anon list and d_drop() would hide
1617 * it from shrink_dcache_for_unmount(), leading to busy
1618 * inodes on unmount and further oopses.
1619 */
1620 if (inode && IS_ROOT(dentry))
1621 error = 1;
1622 break;
1623 }
1624 trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1625 return error;
1626}
1627
1628static int
1629nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1630 unsigned int flags)
1631{
1632 int ret = 1;
1633 if (nfs_neg_need_reval(dir, dentry, flags)) {
1634 if (flags & LOOKUP_RCU)
1635 return -ECHILD;
1636 ret = 0;
1637 }
1638 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1639}
1640
1641static int
1642nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1643 struct inode *inode)
1644{
1645 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1646 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1647}
1648
1649static int nfs_lookup_revalidate_dentry(struct inode *dir,
1650 struct dentry *dentry,
1651 struct inode *inode, unsigned int flags)
1652{
1653 struct nfs_fh *fhandle;
1654 struct nfs_fattr *fattr;
1655 unsigned long dir_verifier;
1656 int ret;
1657
1658 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1659
1660 ret = -ENOMEM;
1661 fhandle = nfs_alloc_fhandle();
1662 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1663 if (fhandle == NULL || fattr == NULL)
1664 goto out;
1665
1666 dir_verifier = nfs_save_change_attribute(dir);
1667 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1668 if (ret < 0) {
1669 switch (ret) {
1670 case -ESTALE:
1671 case -ENOENT:
1672 ret = 0;
1673 break;
1674 case -ETIMEDOUT:
1675 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1676 ret = 1;
1677 }
1678 goto out;
1679 }
1680
1681 /* Request help from readdirplus */
1682 nfs_lookup_advise_force_readdirplus(dir, flags);
1683
1684 ret = 0;
1685 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1686 goto out;
1687 if (nfs_refresh_inode(inode, fattr) < 0)
1688 goto out;
1689
1690 nfs_setsecurity(inode, fattr);
1691 nfs_set_verifier(dentry, dir_verifier);
1692
1693 ret = 1;
1694out:
1695 nfs_free_fattr(fattr);
1696 nfs_free_fhandle(fhandle);
1697
1698 /*
1699 * If the lookup failed despite the dentry change attribute being
1700 * a match, then we should revalidate the directory cache.
1701 */
1702 if (!ret && nfs_dentry_verify_change(dir, dentry))
1703 nfs_mark_dir_for_revalidate(dir);
1704 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1705}
1706
1707/*
1708 * This is called every time the dcache has a lookup hit,
1709 * and we should check whether we can really trust that
1710 * lookup.
1711 *
1712 * NOTE! The hit can be a negative hit too, don't assume
1713 * we have an inode!
1714 *
1715 * If the parent directory is seen to have changed, we throw out the
1716 * cached dentry and do a new lookup.
1717 */
1718static int
1719nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1720 unsigned int flags)
1721{
1722 struct inode *inode;
1723 int error;
1724
1725 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1726 inode = d_inode(dentry);
1727
1728 if (!inode)
1729 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1730
1731 if (is_bad_inode(inode)) {
1732 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1733 __func__, dentry);
1734 goto out_bad;
1735 }
1736
1737 if (nfs_verifier_is_delegated(dentry))
1738 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1739
1740 /* Force a full look up iff the parent directory has changed */
1741 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1742 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1743 error = nfs_lookup_verify_inode(inode, flags);
1744 if (error) {
1745 if (error == -ESTALE)
1746 nfs_mark_dir_for_revalidate(dir);
1747 goto out_bad;
1748 }
1749 goto out_valid;
1750 }
1751
1752 if (flags & LOOKUP_RCU)
1753 return -ECHILD;
1754
1755 if (NFS_STALE(inode))
1756 goto out_bad;
1757
1758 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1759out_valid:
1760 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1761out_bad:
1762 if (flags & LOOKUP_RCU)
1763 return -ECHILD;
1764 return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1765}
1766
1767static int
1768__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1769 int (*reval)(struct inode *, struct dentry *, unsigned int))
1770{
1771 struct dentry *parent;
1772 struct inode *dir;
1773 int ret;
1774
1775 if (flags & LOOKUP_RCU) {
1776 parent = READ_ONCE(dentry->d_parent);
1777 dir = d_inode_rcu(parent);
1778 if (!dir)
1779 return -ECHILD;
1780 ret = reval(dir, dentry, flags);
1781 if (parent != READ_ONCE(dentry->d_parent))
1782 return -ECHILD;
1783 } else {
1784 parent = dget_parent(dentry);
1785 ret = reval(d_inode(parent), dentry, flags);
1786 dput(parent);
1787 }
1788 return ret;
1789}
1790
1791static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1792{
1793 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1794}
1795
1796/*
1797 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1798 * when we don't really care about the dentry name. This is called when a
1799 * pathwalk ends on a dentry that was not found via a normal lookup in the
1800 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1801 *
1802 * In this situation, we just want to verify that the inode itself is OK
1803 * since the dentry might have changed on the server.
1804 */
1805static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1806{
1807 struct inode *inode = d_inode(dentry);
1808 int error = 0;
1809
1810 /*
1811 * I believe we can only get a negative dentry here in the case of a
1812 * procfs-style symlink. Just assume it's correct for now, but we may
1813 * eventually need to do something more here.
1814 */
1815 if (!inode) {
1816 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1817 __func__, dentry);
1818 return 1;
1819 }
1820
1821 if (is_bad_inode(inode)) {
1822 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1823 __func__, dentry);
1824 return 0;
1825 }
1826
1827 error = nfs_lookup_verify_inode(inode, flags);
1828 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1829 __func__, inode->i_ino, error ? "invalid" : "valid");
1830 return !error;
1831}
1832
1833/*
1834 * This is called from dput() when d_count is going to 0.
1835 */
1836static int nfs_dentry_delete(const struct dentry *dentry)
1837{
1838 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1839 dentry, dentry->d_flags);
1840
1841 /* Unhash any dentry with a stale inode */
1842 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1843 return 1;
1844
1845 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1846 /* Unhash it, so that ->d_iput() would be called */
1847 return 1;
1848 }
1849 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1850 /* Unhash it, so that ancestors of killed async unlink
1851 * files will be cleaned up during umount */
1852 return 1;
1853 }
1854 return 0;
1855
1856}
1857
1858/* Ensure that we revalidate inode->i_nlink */
1859static void nfs_drop_nlink(struct inode *inode)
1860{
1861 spin_lock(&inode->i_lock);
1862 /* drop the inode if we're reasonably sure this is the last link */
1863 if (inode->i_nlink > 0)
1864 drop_nlink(inode);
1865 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1866 nfs_set_cache_invalid(
1867 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1868 NFS_INO_INVALID_NLINK);
1869 spin_unlock(&inode->i_lock);
1870}
1871
1872/*
1873 * Called when the dentry loses inode.
1874 * We use it to clean up silly-renamed files.
1875 */
1876static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1877{
1878 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1879 nfs_complete_unlink(dentry, inode);
1880 nfs_drop_nlink(inode);
1881 }
1882 iput(inode);
1883}
1884
1885static void nfs_d_release(struct dentry *dentry)
1886{
1887 /* free cached devname value, if it survived that far */
1888 if (unlikely(dentry->d_fsdata)) {
1889 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1890 WARN_ON(1);
1891 else
1892 kfree(dentry->d_fsdata);
1893 }
1894}
1895
1896const struct dentry_operations nfs_dentry_operations = {
1897 .d_revalidate = nfs_lookup_revalidate,
1898 .d_weak_revalidate = nfs_weak_revalidate,
1899 .d_delete = nfs_dentry_delete,
1900 .d_iput = nfs_dentry_iput,
1901 .d_automount = nfs_d_automount,
1902 .d_release = nfs_d_release,
1903};
1904EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1905
1906struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1907{
1908 struct dentry *res;
1909 struct inode *inode = NULL;
1910 struct nfs_fh *fhandle = NULL;
1911 struct nfs_fattr *fattr = NULL;
1912 unsigned long dir_verifier;
1913 int error;
1914
1915 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1916 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1917
1918 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1919 return ERR_PTR(-ENAMETOOLONG);
1920
1921 /*
1922 * If we're doing an exclusive create, optimize away the lookup
1923 * but don't hash the dentry.
1924 */
1925 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1926 return NULL;
1927
1928 res = ERR_PTR(-ENOMEM);
1929 fhandle = nfs_alloc_fhandle();
1930 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1931 if (fhandle == NULL || fattr == NULL)
1932 goto out;
1933
1934 dir_verifier = nfs_save_change_attribute(dir);
1935 trace_nfs_lookup_enter(dir, dentry, flags);
1936 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1937 if (error == -ENOENT) {
1938 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1939 dir_verifier = inode_peek_iversion_raw(dir);
1940 goto no_entry;
1941 }
1942 if (error < 0) {
1943 res = ERR_PTR(error);
1944 goto out;
1945 }
1946 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1947 res = ERR_CAST(inode);
1948 if (IS_ERR(res))
1949 goto out;
1950
1951 /* Notify readdir to use READDIRPLUS */
1952 nfs_lookup_advise_force_readdirplus(dir, flags);
1953
1954no_entry:
1955 res = d_splice_alias(inode, dentry);
1956 if (res != NULL) {
1957 if (IS_ERR(res))
1958 goto out;
1959 dentry = res;
1960 }
1961 nfs_set_verifier(dentry, dir_verifier);
1962out:
1963 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1964 nfs_free_fattr(fattr);
1965 nfs_free_fhandle(fhandle);
1966 return res;
1967}
1968EXPORT_SYMBOL_GPL(nfs_lookup);
1969
1970void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1971{
1972 /* Case insensitive server? Revalidate dentries */
1973 if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
1974 d_prune_aliases(inode);
1975}
1976EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
1977
1978#if IS_ENABLED(CONFIG_NFS_V4)
1979static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1980
1981const struct dentry_operations nfs4_dentry_operations = {
1982 .d_revalidate = nfs4_lookup_revalidate,
1983 .d_weak_revalidate = nfs_weak_revalidate,
1984 .d_delete = nfs_dentry_delete,
1985 .d_iput = nfs_dentry_iput,
1986 .d_automount = nfs_d_automount,
1987 .d_release = nfs_d_release,
1988};
1989EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1990
1991static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1992{
1993 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1994}
1995
1996static int do_open(struct inode *inode, struct file *filp)
1997{
1998 nfs_fscache_open_file(inode, filp);
1999 return 0;
2000}
2001
2002static int nfs_finish_open(struct nfs_open_context *ctx,
2003 struct dentry *dentry,
2004 struct file *file, unsigned open_flags)
2005{
2006 int err;
2007
2008 err = finish_open(file, dentry, do_open);
2009 if (err)
2010 goto out;
2011 if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
2012 nfs_file_set_open_context(file, ctx);
2013 else
2014 err = -EOPENSTALE;
2015out:
2016 return err;
2017}
2018
2019int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2020 struct file *file, unsigned open_flags,
2021 umode_t mode)
2022{
2023 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2024 struct nfs_open_context *ctx;
2025 struct dentry *res;
2026 struct iattr attr = { .ia_valid = ATTR_OPEN };
2027 struct inode *inode;
2028 unsigned int lookup_flags = 0;
2029 unsigned long dir_verifier;
2030 bool switched = false;
2031 int created = 0;
2032 int err;
2033
2034 /* Expect a negative dentry */
2035 BUG_ON(d_inode(dentry));
2036
2037 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2038 dir->i_sb->s_id, dir->i_ino, dentry);
2039
2040 err = nfs_check_flags(open_flags);
2041 if (err)
2042 return err;
2043
2044 /* NFS only supports OPEN on regular files */
2045 if ((open_flags & O_DIRECTORY)) {
2046 if (!d_in_lookup(dentry)) {
2047 /*
2048 * Hashed negative dentry with O_DIRECTORY: dentry was
2049 * revalidated and is fine, no need to perform lookup
2050 * again
2051 */
2052 return -ENOENT;
2053 }
2054 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2055 goto no_open;
2056 }
2057
2058 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2059 return -ENAMETOOLONG;
2060
2061 if (open_flags & O_CREAT) {
2062 struct nfs_server *server = NFS_SERVER(dir);
2063
2064 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2065 mode &= ~current_umask();
2066
2067 attr.ia_valid |= ATTR_MODE;
2068 attr.ia_mode = mode;
2069 }
2070 if (open_flags & O_TRUNC) {
2071 attr.ia_valid |= ATTR_SIZE;
2072 attr.ia_size = 0;
2073 }
2074
2075 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2076 d_drop(dentry);
2077 switched = true;
2078 dentry = d_alloc_parallel(dentry->d_parent,
2079 &dentry->d_name, &wq);
2080 if (IS_ERR(dentry))
2081 return PTR_ERR(dentry);
2082 if (unlikely(!d_in_lookup(dentry)))
2083 return finish_no_open(file, dentry);
2084 }
2085
2086 ctx = create_nfs_open_context(dentry, open_flags, file);
2087 err = PTR_ERR(ctx);
2088 if (IS_ERR(ctx))
2089 goto out;
2090
2091 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2092 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2093 if (created)
2094 file->f_mode |= FMODE_CREATED;
2095 if (IS_ERR(inode)) {
2096 err = PTR_ERR(inode);
2097 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2098 put_nfs_open_context(ctx);
2099 d_drop(dentry);
2100 switch (err) {
2101 case -ENOENT:
2102 d_splice_alias(NULL, dentry);
2103 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2104 dir_verifier = inode_peek_iversion_raw(dir);
2105 else
2106 dir_verifier = nfs_save_change_attribute(dir);
2107 nfs_set_verifier(dentry, dir_verifier);
2108 break;
2109 case -EISDIR:
2110 case -ENOTDIR:
2111 goto no_open;
2112 case -ELOOP:
2113 if (!(open_flags & O_NOFOLLOW))
2114 goto no_open;
2115 break;
2116 /* case -EINVAL: */
2117 default:
2118 break;
2119 }
2120 goto out;
2121 }
2122
2123 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2124 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2125 put_nfs_open_context(ctx);
2126out:
2127 if (unlikely(switched)) {
2128 d_lookup_done(dentry);
2129 dput(dentry);
2130 }
2131 return err;
2132
2133no_open:
2134 res = nfs_lookup(dir, dentry, lookup_flags);
2135 if (!res) {
2136 inode = d_inode(dentry);
2137 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2138 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2139 res = ERR_PTR(-ENOTDIR);
2140 else if (inode && S_ISREG(inode->i_mode))
2141 res = ERR_PTR(-EOPENSTALE);
2142 } else if (!IS_ERR(res)) {
2143 inode = d_inode(res);
2144 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2145 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2146 dput(res);
2147 res = ERR_PTR(-ENOTDIR);
2148 } else if (inode && S_ISREG(inode->i_mode)) {
2149 dput(res);
2150 res = ERR_PTR(-EOPENSTALE);
2151 }
2152 }
2153 if (switched) {
2154 d_lookup_done(dentry);
2155 if (!res)
2156 res = dentry;
2157 else
2158 dput(dentry);
2159 }
2160 if (IS_ERR(res))
2161 return PTR_ERR(res);
2162 return finish_no_open(file, res);
2163}
2164EXPORT_SYMBOL_GPL(nfs_atomic_open);
2165
2166static int
2167nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2168 unsigned int flags)
2169{
2170 struct inode *inode;
2171
2172 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2173 goto full_reval;
2174 if (d_mountpoint(dentry))
2175 goto full_reval;
2176
2177 inode = d_inode(dentry);
2178
2179 /* We can't create new files in nfs_open_revalidate(), so we
2180 * optimize away revalidation of negative dentries.
2181 */
2182 if (inode == NULL)
2183 goto full_reval;
2184
2185 if (nfs_verifier_is_delegated(dentry))
2186 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2187
2188 /* NFS only supports OPEN on regular files */
2189 if (!S_ISREG(inode->i_mode))
2190 goto full_reval;
2191
2192 /* We cannot do exclusive creation on a positive dentry */
2193 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2194 goto reval_dentry;
2195
2196 /* Check if the directory changed */
2197 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2198 goto reval_dentry;
2199
2200 /* Let f_op->open() actually open (and revalidate) the file */
2201 return 1;
2202reval_dentry:
2203 if (flags & LOOKUP_RCU)
2204 return -ECHILD;
2205 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2206
2207full_reval:
2208 return nfs_do_lookup_revalidate(dir, dentry, flags);
2209}
2210
2211static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2212{
2213 return __nfs_lookup_revalidate(dentry, flags,
2214 nfs4_do_lookup_revalidate);
2215}
2216
2217#endif /* CONFIG_NFSV4 */
2218
2219struct dentry *
2220nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2221 struct nfs_fattr *fattr)
2222{
2223 struct dentry *parent = dget_parent(dentry);
2224 struct inode *dir = d_inode(parent);
2225 struct inode *inode;
2226 struct dentry *d;
2227 int error;
2228
2229 d_drop(dentry);
2230
2231 if (fhandle->size == 0) {
2232 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2233 if (error)
2234 goto out_error;
2235 }
2236 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2237 if (!(fattr->valid & NFS_ATTR_FATTR)) {
2238 struct nfs_server *server = NFS_SB(dentry->d_sb);
2239 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2240 fattr, NULL);
2241 if (error < 0)
2242 goto out_error;
2243 }
2244 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2245 d = d_splice_alias(inode, dentry);
2246out:
2247 dput(parent);
2248 return d;
2249out_error:
2250 d = ERR_PTR(error);
2251 goto out;
2252}
2253EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2254
2255/*
2256 * Code common to create, mkdir, and mknod.
2257 */
2258int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2259 struct nfs_fattr *fattr)
2260{
2261 struct dentry *d;
2262
2263 d = nfs_add_or_obtain(dentry, fhandle, fattr);
2264 if (IS_ERR(d))
2265 return PTR_ERR(d);
2266
2267 /* Callers don't care */
2268 dput(d);
2269 return 0;
2270}
2271EXPORT_SYMBOL_GPL(nfs_instantiate);
2272
2273/*
2274 * Following a failed create operation, we drop the dentry rather
2275 * than retain a negative dentry. This avoids a problem in the event
2276 * that the operation succeeded on the server, but an error in the
2277 * reply path made it appear to have failed.
2278 */
2279int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2280 struct dentry *dentry, umode_t mode, bool excl)
2281{
2282 struct iattr attr;
2283 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2284 int error;
2285
2286 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2287 dir->i_sb->s_id, dir->i_ino, dentry);
2288
2289 attr.ia_mode = mode;
2290 attr.ia_valid = ATTR_MODE;
2291
2292 trace_nfs_create_enter(dir, dentry, open_flags);
2293 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2294 trace_nfs_create_exit(dir, dentry, open_flags, error);
2295 if (error != 0)
2296 goto out_err;
2297 return 0;
2298out_err:
2299 d_drop(dentry);
2300 return error;
2301}
2302EXPORT_SYMBOL_GPL(nfs_create);
2303
2304/*
2305 * See comments for nfs_proc_create regarding failed operations.
2306 */
2307int
2308nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2309 struct dentry *dentry, umode_t mode, dev_t rdev)
2310{
2311 struct iattr attr;
2312 int status;
2313
2314 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2315 dir->i_sb->s_id, dir->i_ino, dentry);
2316
2317 attr.ia_mode = mode;
2318 attr.ia_valid = ATTR_MODE;
2319
2320 trace_nfs_mknod_enter(dir, dentry);
2321 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2322 trace_nfs_mknod_exit(dir, dentry, status);
2323 if (status != 0)
2324 goto out_err;
2325 return 0;
2326out_err:
2327 d_drop(dentry);
2328 return status;
2329}
2330EXPORT_SYMBOL_GPL(nfs_mknod);
2331
2332/*
2333 * See comments for nfs_proc_create regarding failed operations.
2334 */
2335int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2336 struct dentry *dentry, umode_t mode)
2337{
2338 struct iattr attr;
2339 int error;
2340
2341 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2342 dir->i_sb->s_id, dir->i_ino, dentry);
2343
2344 attr.ia_valid = ATTR_MODE;
2345 attr.ia_mode = mode | S_IFDIR;
2346
2347 trace_nfs_mkdir_enter(dir, dentry);
2348 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2349 trace_nfs_mkdir_exit(dir, dentry, error);
2350 if (error != 0)
2351 goto out_err;
2352 return 0;
2353out_err:
2354 d_drop(dentry);
2355 return error;
2356}
2357EXPORT_SYMBOL_GPL(nfs_mkdir);
2358
2359static void nfs_dentry_handle_enoent(struct dentry *dentry)
2360{
2361 if (simple_positive(dentry))
2362 d_delete(dentry);
2363}
2364
2365static void nfs_dentry_remove_handle_error(struct inode *dir,
2366 struct dentry *dentry, int error)
2367{
2368 switch (error) {
2369 case -ENOENT:
2370 d_delete(dentry);
2371 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2372 break;
2373 case 0:
2374 nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2375 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2376 }
2377}
2378
2379int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2380{
2381 int error;
2382
2383 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2384 dir->i_sb->s_id, dir->i_ino, dentry);
2385
2386 trace_nfs_rmdir_enter(dir, dentry);
2387 if (d_really_is_positive(dentry)) {
2388 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2389 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2390 /* Ensure the VFS deletes this inode */
2391 switch (error) {
2392 case 0:
2393 clear_nlink(d_inode(dentry));
2394 break;
2395 case -ENOENT:
2396 nfs_dentry_handle_enoent(dentry);
2397 }
2398 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2399 } else
2400 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2401 nfs_dentry_remove_handle_error(dir, dentry, error);
2402 trace_nfs_rmdir_exit(dir, dentry, error);
2403
2404 return error;
2405}
2406EXPORT_SYMBOL_GPL(nfs_rmdir);
2407
2408/*
2409 * Remove a file after making sure there are no pending writes,
2410 * and after checking that the file has only one user.
2411 *
2412 * We invalidate the attribute cache and free the inode prior to the operation
2413 * to avoid possible races if the server reuses the inode.
2414 */
2415static int nfs_safe_remove(struct dentry *dentry)
2416{
2417 struct inode *dir = d_inode(dentry->d_parent);
2418 struct inode *inode = d_inode(dentry);
2419 int error = -EBUSY;
2420
2421 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2422
2423 /* If the dentry was sillyrenamed, we simply call d_delete() */
2424 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2425 error = 0;
2426 goto out;
2427 }
2428
2429 trace_nfs_remove_enter(dir, dentry);
2430 if (inode != NULL) {
2431 error = NFS_PROTO(dir)->remove(dir, dentry);
2432 if (error == 0)
2433 nfs_drop_nlink(inode);
2434 } else
2435 error = NFS_PROTO(dir)->remove(dir, dentry);
2436 if (error == -ENOENT)
2437 nfs_dentry_handle_enoent(dentry);
2438 trace_nfs_remove_exit(dir, dentry, error);
2439out:
2440 return error;
2441}
2442
2443/* We do silly rename. In case sillyrename() returns -EBUSY, the inode
2444 * belongs to an active ".nfs..." file and we return -EBUSY.
2445 *
2446 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
2447 */
2448int nfs_unlink(struct inode *dir, struct dentry *dentry)
2449{
2450 int error;
2451 int need_rehash = 0;
2452
2453 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2454 dir->i_ino, dentry);
2455
2456 trace_nfs_unlink_enter(dir, dentry);
2457 spin_lock(&dentry->d_lock);
2458 if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2459 &NFS_I(d_inode(dentry))->flags)) {
2460 spin_unlock(&dentry->d_lock);
2461 /* Start asynchronous writeout of the inode */
2462 write_inode_now(d_inode(dentry), 0);
2463 error = nfs_sillyrename(dir, dentry);
2464 goto out;
2465 }
2466 if (!d_unhashed(dentry)) {
2467 __d_drop(dentry);
2468 need_rehash = 1;
2469 }
2470 spin_unlock(&dentry->d_lock);
2471 error = nfs_safe_remove(dentry);
2472 nfs_dentry_remove_handle_error(dir, dentry, error);
2473 if (need_rehash)
2474 d_rehash(dentry);
2475out:
2476 trace_nfs_unlink_exit(dir, dentry, error);
2477 return error;
2478}
2479EXPORT_SYMBOL_GPL(nfs_unlink);
2480
2481/*
2482 * To create a symbolic link, most file systems instantiate a new inode,
2483 * add a page to it containing the path, then write it out to the disk
2484 * using prepare_write/commit_write.
2485 *
2486 * Unfortunately the NFS client can't create the in-core inode first
2487 * because it needs a file handle to create an in-core inode (see
2488 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
2489 * symlink request has completed on the server.
2490 *
2491 * So instead we allocate a raw page, copy the symname into it, then do
2492 * the SYMLINK request with the page as the buffer. If it succeeds, we
2493 * now have a new file handle and can instantiate an in-core NFS inode
2494 * and move the raw page into its mapping.
2495 */
2496int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2497 struct dentry *dentry, const char *symname)
2498{
2499 struct page *page;
2500 char *kaddr;
2501 struct iattr attr;
2502 unsigned int pathlen = strlen(symname);
2503 int error;
2504
2505 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2506 dir->i_ino, dentry, symname);
2507
2508 if (pathlen > PAGE_SIZE)
2509 return -ENAMETOOLONG;
2510
2511 attr.ia_mode = S_IFLNK | S_IRWXUGO;
2512 attr.ia_valid = ATTR_MODE;
2513
2514 page = alloc_page(GFP_USER);
2515 if (!page)
2516 return -ENOMEM;
2517
2518 kaddr = page_address(page);
2519 memcpy(kaddr, symname, pathlen);
2520 if (pathlen < PAGE_SIZE)
2521 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2522
2523 trace_nfs_symlink_enter(dir, dentry);
2524 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2525 trace_nfs_symlink_exit(dir, dentry, error);
2526 if (error != 0) {
2527 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2528 dir->i_sb->s_id, dir->i_ino,
2529 dentry, symname, error);
2530 d_drop(dentry);
2531 __free_page(page);
2532 return error;
2533 }
2534
2535 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2536
2537 /*
2538 * No big deal if we can't add this page to the page cache here.
2539 * READLINK will get the missing page from the server if needed.
2540 */
2541 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2542 GFP_KERNEL)) {
2543 SetPageUptodate(page);
2544 unlock_page(page);
2545 /*
2546 * add_to_page_cache_lru() grabs an extra page refcount.
2547 * Drop it here to avoid leaking this page later.
2548 */
2549 put_page(page);
2550 } else
2551 __free_page(page);
2552
2553 return 0;
2554}
2555EXPORT_SYMBOL_GPL(nfs_symlink);
2556
2557int
2558nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2559{
2560 struct inode *inode = d_inode(old_dentry);
2561 int error;
2562
2563 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2564 old_dentry, dentry);
2565
2566 trace_nfs_link_enter(inode, dir, dentry);
2567 d_drop(dentry);
2568 if (S_ISREG(inode->i_mode))
2569 nfs_sync_inode(inode);
2570 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2571 if (error == 0) {
2572 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2573 ihold(inode);
2574 d_add(dentry, inode);
2575 }
2576 trace_nfs_link_exit(inode, dir, dentry, error);
2577 return error;
2578}
2579EXPORT_SYMBOL_GPL(nfs_link);
2580
2581/*
2582 * RENAME
2583 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2584 * different file handle for the same inode after a rename (e.g. when
2585 * moving to a different directory). A fail-safe method to do so would
2586 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2587 * rename the old file using the sillyrename stuff. This way, the original
2588 * file in old_dir will go away when the last process iput()s the inode.
2589 *
2590 * FIXED.
2591 *
2592 * It actually works quite well. One needs to have the possibility for
2593 * at least one ".nfs..." file in each directory the file ever gets
2594 * moved or linked to which happens automagically with the new
2595 * implementation that only depends on the dcache stuff instead of
2596 * using the inode layer
2597 *
2598 * Unfortunately, things are a little more complicated than indicated
2599 * above. For a cross-directory move, we want to make sure we can get
2600 * rid of the old inode after the operation. This means there must be
2601 * no pending writes (if it's a file), and the use count must be 1.
2602 * If these conditions are met, we can drop the dentries before doing
2603 * the rename.
2604 */
2605int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2606 struct dentry *old_dentry, struct inode *new_dir,
2607 struct dentry *new_dentry, unsigned int flags)
2608{
2609 struct inode *old_inode = d_inode(old_dentry);
2610 struct inode *new_inode = d_inode(new_dentry);
2611 struct dentry *dentry = NULL, *rehash = NULL;
2612 struct rpc_task *task;
2613 int error = -EBUSY;
2614
2615 if (flags)
2616 return -EINVAL;
2617
2618 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2619 old_dentry, new_dentry,
2620 d_count(new_dentry));
2621
2622 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2623 /*
2624 * For non-directories, check whether the target is busy and if so,
2625 * make a copy of the dentry and then do a silly-rename. If the
2626 * silly-rename succeeds, the copied dentry is hashed and becomes
2627 * the new target.
2628 */
2629 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2630 /*
2631 * To prevent any new references to the target during the
2632 * rename, we unhash the dentry in advance.
2633 */
2634 if (!d_unhashed(new_dentry)) {
2635 d_drop(new_dentry);
2636 rehash = new_dentry;
2637 }
2638
2639 if (d_count(new_dentry) > 2) {
2640 int err;
2641
2642 /* copy the target dentry's name */
2643 dentry = d_alloc(new_dentry->d_parent,
2644 &new_dentry->d_name);
2645 if (!dentry)
2646 goto out;
2647
2648 /* silly-rename the existing target ... */
2649 err = nfs_sillyrename(new_dir, new_dentry);
2650 if (err)
2651 goto out;
2652
2653 new_dentry = dentry;
2654 rehash = NULL;
2655 new_inode = NULL;
2656 }
2657 }
2658
2659 if (S_ISREG(old_inode->i_mode))
2660 nfs_sync_inode(old_inode);
2661 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2662 if (IS_ERR(task)) {
2663 error = PTR_ERR(task);
2664 goto out;
2665 }
2666
2667 error = rpc_wait_for_completion_task(task);
2668 if (error != 0) {
2669 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2670 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2671 smp_wmb();
2672 } else
2673 error = task->tk_status;
2674 rpc_put_task(task);
2675 /* Ensure the inode attributes are revalidated */
2676 if (error == 0) {
2677 spin_lock(&old_inode->i_lock);
2678 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2679 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2680 NFS_INO_INVALID_CTIME |
2681 NFS_INO_REVAL_FORCED);
2682 spin_unlock(&old_inode->i_lock);
2683 }
2684out:
2685 if (rehash)
2686 d_rehash(rehash);
2687 trace_nfs_rename_exit(old_dir, old_dentry,
2688 new_dir, new_dentry, error);
2689 if (!error) {
2690 if (new_inode != NULL)
2691 nfs_drop_nlink(new_inode);
2692 /*
2693 * The d_move() should be here instead of in an async RPC completion
2694 * handler because we need the proper locks to move the dentry. If
2695 * we're interrupted by a signal, the async RPC completion handler
2696 * should mark the directories for revalidation.
2697 */
2698 d_move(old_dentry, new_dentry);
2699 nfs_set_verifier(old_dentry,
2700 nfs_save_change_attribute(new_dir));
2701 } else if (error == -ENOENT)
2702 nfs_dentry_handle_enoent(old_dentry);
2703
2704 /* new dentry created? */
2705 if (dentry)
2706 dput(dentry);
2707 return error;
2708}
2709EXPORT_SYMBOL_GPL(nfs_rename);
2710
2711static DEFINE_SPINLOCK(nfs_access_lru_lock);
2712static LIST_HEAD(nfs_access_lru_list);
2713static atomic_long_t nfs_access_nr_entries;
2714
2715static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2716module_param(nfs_access_max_cachesize, ulong, 0644);
2717MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2718
2719static void nfs_access_free_entry(struct nfs_access_entry *entry)
2720{
2721 put_group_info(entry->group_info);
2722 kfree_rcu(entry, rcu_head);
2723 smp_mb__before_atomic();
2724 atomic_long_dec(&nfs_access_nr_entries);
2725 smp_mb__after_atomic();
2726}
2727
2728static void nfs_access_free_list(struct list_head *head)
2729{
2730 struct nfs_access_entry *cache;
2731
2732 while (!list_empty(head)) {
2733 cache = list_entry(head->next, struct nfs_access_entry, lru);
2734 list_del(&cache->lru);
2735 nfs_access_free_entry(cache);
2736 }
2737}
2738
2739static unsigned long
2740nfs_do_access_cache_scan(unsigned int nr_to_scan)
2741{
2742 LIST_HEAD(head);
2743 struct nfs_inode *nfsi, *next;
2744 struct nfs_access_entry *cache;
2745 long freed = 0;
2746
2747 spin_lock(&nfs_access_lru_lock);
2748 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2749 struct inode *inode;
2750
2751 if (nr_to_scan-- == 0)
2752 break;
2753 inode = &nfsi->vfs_inode;
2754 spin_lock(&inode->i_lock);
2755 if (list_empty(&nfsi->access_cache_entry_lru))
2756 goto remove_lru_entry;
2757 cache = list_entry(nfsi->access_cache_entry_lru.next,
2758 struct nfs_access_entry, lru);
2759 list_move(&cache->lru, &head);
2760 rb_erase(&cache->rb_node, &nfsi->access_cache);
2761 freed++;
2762 if (!list_empty(&nfsi->access_cache_entry_lru))
2763 list_move_tail(&nfsi->access_cache_inode_lru,
2764 &nfs_access_lru_list);
2765 else {
2766remove_lru_entry:
2767 list_del_init(&nfsi->access_cache_inode_lru);
2768 smp_mb__before_atomic();
2769 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2770 smp_mb__after_atomic();
2771 }
2772 spin_unlock(&inode->i_lock);
2773 }
2774 spin_unlock(&nfs_access_lru_lock);
2775 nfs_access_free_list(&head);
2776 return freed;
2777}
2778
2779unsigned long
2780nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2781{
2782 int nr_to_scan = sc->nr_to_scan;
2783 gfp_t gfp_mask = sc->gfp_mask;
2784
2785 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2786 return SHRINK_STOP;
2787 return nfs_do_access_cache_scan(nr_to_scan);
2788}
2789
2790
2791unsigned long
2792nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2793{
2794 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2795}
2796
2797static void
2798nfs_access_cache_enforce_limit(void)
2799{
2800 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2801 unsigned long diff;
2802 unsigned int nr_to_scan;
2803
2804 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2805 return;
2806 nr_to_scan = 100;
2807 diff = nr_entries - nfs_access_max_cachesize;
2808 if (diff < nr_to_scan)
2809 nr_to_scan = diff;
2810 nfs_do_access_cache_scan(nr_to_scan);
2811}
2812
2813static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2814{
2815 struct rb_root *root_node = &nfsi->access_cache;
2816 struct rb_node *n;
2817 struct nfs_access_entry *entry;
2818
2819 /* Unhook entries from the cache */
2820 while ((n = rb_first(root_node)) != NULL) {
2821 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2822 rb_erase(n, root_node);
2823 list_move(&entry->lru, head);
2824 }
2825 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2826}
2827
2828void nfs_access_zap_cache(struct inode *inode)
2829{
2830 LIST_HEAD(head);
2831
2832 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2833 return;
2834 /* Remove from global LRU init */
2835 spin_lock(&nfs_access_lru_lock);
2836 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2837 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2838
2839 spin_lock(&inode->i_lock);
2840 __nfs_access_zap_cache(NFS_I(inode), &head);
2841 spin_unlock(&inode->i_lock);
2842 spin_unlock(&nfs_access_lru_lock);
2843 nfs_access_free_list(&head);
2844}
2845EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2846
2847static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2848{
2849 struct group_info *ga, *gb;
2850 int g;
2851
2852 if (uid_lt(a->fsuid, b->fsuid))
2853 return -1;
2854 if (uid_gt(a->fsuid, b->fsuid))
2855 return 1;
2856
2857 if (gid_lt(a->fsgid, b->fsgid))
2858 return -1;
2859 if (gid_gt(a->fsgid, b->fsgid))
2860 return 1;
2861
2862 ga = a->group_info;
2863 gb = b->group_info;
2864 if (ga == gb)
2865 return 0;
2866 if (ga == NULL)
2867 return -1;
2868 if (gb == NULL)
2869 return 1;
2870 if (ga->ngroups < gb->ngroups)
2871 return -1;
2872 if (ga->ngroups > gb->ngroups)
2873 return 1;
2874
2875 for (g = 0; g < ga->ngroups; g++) {
2876 if (gid_lt(ga->gid[g], gb->gid[g]))
2877 return -1;
2878 if (gid_gt(ga->gid[g], gb->gid[g]))
2879 return 1;
2880 }
2881 return 0;
2882}
2883
2884static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2885{
2886 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2887
2888 while (n != NULL) {
2889 struct nfs_access_entry *entry =
2890 rb_entry(n, struct nfs_access_entry, rb_node);
2891 int cmp = access_cmp(cred, entry);
2892
2893 if (cmp < 0)
2894 n = n->rb_left;
2895 else if (cmp > 0)
2896 n = n->rb_right;
2897 else
2898 return entry;
2899 }
2900 return NULL;
2901}
2902
2903static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2904{
2905 struct nfs_inode *nfsi = NFS_I(inode);
2906 struct nfs_access_entry *cache;
2907 bool retry = true;
2908 int err;
2909
2910 spin_lock(&inode->i_lock);
2911 for(;;) {
2912 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2913 goto out_zap;
2914 cache = nfs_access_search_rbtree(inode, cred);
2915 err = -ENOENT;
2916 if (cache == NULL)
2917 goto out;
2918 /* Found an entry, is our attribute cache valid? */
2919 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2920 break;
2921 if (!retry)
2922 break;
2923 err = -ECHILD;
2924 if (!may_block)
2925 goto out;
2926 spin_unlock(&inode->i_lock);
2927 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2928 if (err)
2929 return err;
2930 spin_lock(&inode->i_lock);
2931 retry = false;
2932 }
2933 *mask = cache->mask;
2934 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2935 err = 0;
2936out:
2937 spin_unlock(&inode->i_lock);
2938 return err;
2939out_zap:
2940 spin_unlock(&inode->i_lock);
2941 nfs_access_zap_cache(inode);
2942 return -ENOENT;
2943}
2944
2945static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
2946{
2947 /* Only check the most recently returned cache entry,
2948 * but do it without locking.
2949 */
2950 struct nfs_inode *nfsi = NFS_I(inode);
2951 struct nfs_access_entry *cache;
2952 int err = -ECHILD;
2953 struct list_head *lh;
2954
2955 rcu_read_lock();
2956 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2957 goto out;
2958 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2959 cache = list_entry(lh, struct nfs_access_entry, lru);
2960 if (lh == &nfsi->access_cache_entry_lru ||
2961 access_cmp(cred, cache) != 0)
2962 cache = NULL;
2963 if (cache == NULL)
2964 goto out;
2965 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2966 goto out;
2967 *mask = cache->mask;
2968 err = 0;
2969out:
2970 rcu_read_unlock();
2971 return err;
2972}
2973
2974int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
2975 u32 *mask, bool may_block)
2976{
2977 int status;
2978
2979 status = nfs_access_get_cached_rcu(inode, cred, mask);
2980 if (status != 0)
2981 status = nfs_access_get_cached_locked(inode, cred, mask,
2982 may_block);
2983
2984 return status;
2985}
2986EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2987
2988static void nfs_access_add_rbtree(struct inode *inode,
2989 struct nfs_access_entry *set,
2990 const struct cred *cred)
2991{
2992 struct nfs_inode *nfsi = NFS_I(inode);
2993 struct rb_root *root_node = &nfsi->access_cache;
2994 struct rb_node **p = &root_node->rb_node;
2995 struct rb_node *parent = NULL;
2996 struct nfs_access_entry *entry;
2997 int cmp;
2998
2999 spin_lock(&inode->i_lock);
3000 while (*p != NULL) {
3001 parent = *p;
3002 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3003 cmp = access_cmp(cred, entry);
3004
3005 if (cmp < 0)
3006 p = &parent->rb_left;
3007 else if (cmp > 0)
3008 p = &parent->rb_right;
3009 else
3010 goto found;
3011 }
3012 rb_link_node(&set->rb_node, parent, p);
3013 rb_insert_color(&set->rb_node, root_node);
3014 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3015 spin_unlock(&inode->i_lock);
3016 return;
3017found:
3018 rb_replace_node(parent, &set->rb_node, root_node);
3019 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3020 list_del(&entry->lru);
3021 spin_unlock(&inode->i_lock);
3022 nfs_access_free_entry(entry);
3023}
3024
3025void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3026 const struct cred *cred)
3027{
3028 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3029 if (cache == NULL)
3030 return;
3031 RB_CLEAR_NODE(&cache->rb_node);
3032 cache->fsuid = cred->fsuid;
3033 cache->fsgid = cred->fsgid;
3034 cache->group_info = get_group_info(cred->group_info);
3035 cache->mask = set->mask;
3036
3037 /* The above field assignments must be visible
3038 * before this item appears on the lru. We cannot easily
3039 * use rcu_assign_pointer, so just force the memory barrier.
3040 */
3041 smp_wmb();
3042 nfs_access_add_rbtree(inode, cache, cred);
3043
3044 /* Update accounting */
3045 smp_mb__before_atomic();
3046 atomic_long_inc(&nfs_access_nr_entries);
3047 smp_mb__after_atomic();
3048
3049 /* Add inode to global LRU list */
3050 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3051 spin_lock(&nfs_access_lru_lock);
3052 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3053 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3054 &nfs_access_lru_list);
3055 spin_unlock(&nfs_access_lru_lock);
3056 }
3057 nfs_access_cache_enforce_limit();
3058}
3059EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3060
3061#define NFS_MAY_READ (NFS_ACCESS_READ)
3062#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3063 NFS_ACCESS_EXTEND | \
3064 NFS_ACCESS_DELETE)
3065#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3066 NFS_ACCESS_EXTEND)
3067#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3068#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3069#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3070static int
3071nfs_access_calc_mask(u32 access_result, umode_t umode)
3072{
3073 int mask = 0;
3074
3075 if (access_result & NFS_MAY_READ)
3076 mask |= MAY_READ;
3077 if (S_ISDIR(umode)) {
3078 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3079 mask |= MAY_WRITE;
3080 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3081 mask |= MAY_EXEC;
3082 } else if (S_ISREG(umode)) {
3083 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3084 mask |= MAY_WRITE;
3085 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3086 mask |= MAY_EXEC;
3087 } else if (access_result & NFS_MAY_WRITE)
3088 mask |= MAY_WRITE;
3089 return mask;
3090}
3091
3092void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3093{
3094 entry->mask = access_result;
3095}
3096EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3097
3098static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3099{
3100 struct nfs_access_entry cache;
3101 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3102 int cache_mask = -1;
3103 int status;
3104
3105 trace_nfs_access_enter(inode);
3106
3107 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3108 if (status == 0)
3109 goto out_cached;
3110
3111 status = -ECHILD;
3112 if (!may_block)
3113 goto out;
3114
3115 /*
3116 * Determine which access bits we want to ask for...
3117 */
3118 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3119 nfs_access_xattr_mask(NFS_SERVER(inode));
3120 if (S_ISDIR(inode->i_mode))
3121 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3122 else
3123 cache.mask |= NFS_ACCESS_EXECUTE;
3124 status = NFS_PROTO(inode)->access(inode, &cache, cred);
3125 if (status != 0) {
3126 if (status == -ESTALE) {
3127 if (!S_ISDIR(inode->i_mode))
3128 nfs_set_inode_stale(inode);
3129 else
3130 nfs_zap_caches(inode);
3131 }
3132 goto out;
3133 }
3134 nfs_access_add_cache(inode, &cache, cred);
3135out_cached:
3136 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3137 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3138 status = -EACCES;
3139out:
3140 trace_nfs_access_exit(inode, mask, cache_mask, status);
3141 return status;
3142}
3143
3144static int nfs_open_permission_mask(int openflags)
3145{
3146 int mask = 0;
3147
3148 if (openflags & __FMODE_EXEC) {
3149 /* ONLY check exec rights */
3150 mask = MAY_EXEC;
3151 } else {
3152 if ((openflags & O_ACCMODE) != O_WRONLY)
3153 mask |= MAY_READ;
3154 if ((openflags & O_ACCMODE) != O_RDONLY)
3155 mask |= MAY_WRITE;
3156 }
3157
3158 return mask;
3159}
3160
3161int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3162{
3163 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3164}
3165EXPORT_SYMBOL_GPL(nfs_may_open);
3166
3167static int nfs_execute_ok(struct inode *inode, int mask)
3168{
3169 struct nfs_server *server = NFS_SERVER(inode);
3170 int ret = 0;
3171
3172 if (S_ISDIR(inode->i_mode))
3173 return 0;
3174 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3175 if (mask & MAY_NOT_BLOCK)
3176 return -ECHILD;
3177 ret = __nfs_revalidate_inode(server, inode);
3178 }
3179 if (ret == 0 && !execute_ok(inode))
3180 ret = -EACCES;
3181 return ret;
3182}
3183
3184int nfs_permission(struct user_namespace *mnt_userns,
3185 struct inode *inode,
3186 int mask)
3187{
3188 const struct cred *cred = current_cred();
3189 int res = 0;
3190
3191 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3192
3193 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3194 goto out;
3195 /* Is this sys_access() ? */
3196 if (mask & (MAY_ACCESS | MAY_CHDIR))
3197 goto force_lookup;
3198
3199 switch (inode->i_mode & S_IFMT) {
3200 case S_IFLNK:
3201 goto out;
3202 case S_IFREG:
3203 if ((mask & MAY_OPEN) &&
3204 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3205 return 0;
3206 break;
3207 case S_IFDIR:
3208 /*
3209 * Optimize away all write operations, since the server
3210 * will check permissions when we perform the op.
3211 */
3212 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3213 goto out;
3214 }
3215
3216force_lookup:
3217 if (!NFS_PROTO(inode)->access)
3218 goto out_notsup;
3219
3220 res = nfs_do_access(inode, cred, mask);
3221out:
3222 if (!res && (mask & MAY_EXEC))
3223 res = nfs_execute_ok(inode, mask);
3224
3225 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3226 inode->i_sb->s_id, inode->i_ino, mask, res);
3227 return res;
3228out_notsup:
3229 if (mask & MAY_NOT_BLOCK)
3230 return -ECHILD;
3231
3232 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3233 NFS_INO_INVALID_OTHER);
3234 if (res == 0)
3235 res = generic_permission(&init_user_ns, inode, mask);
3236 goto out;
3237}
3238EXPORT_SYMBOL_GPL(nfs_permission);