Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/mpage.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains functions related to preparing and submitting BIOs which contain
8 * multiple pagecache pages.
9 *
10 * 15May2002 Andrew Morton
11 * Initial version
12 * 27Jun2002 axboe@suse.de
13 * use bio_add_page() to build bio's just the right size
14 */
15
16#include <linux/kernel.h>
17#include <linux/export.h>
18#include <linux/mm.h>
19#include <linux/kdev_t.h>
20#include <linux/gfp.h>
21#include <linux/bio.h>
22#include <linux/fs.h>
23#include <linux/buffer_head.h>
24#include <linux/blkdev.h>
25#include <linux/highmem.h>
26#include <linux/prefetch.h>
27#include <linux/mpage.h>
28#include <linux/mm_inline.h>
29#include <linux/writeback.h>
30#include <linux/backing-dev.h>
31#include <linux/pagevec.h>
32#include "internal.h"
33
34/*
35 * I/O completion handler for multipage BIOs.
36 *
37 * The mpage code never puts partial pages into a BIO (except for end-of-file).
38 * If a page does not map to a contiguous run of blocks then it simply falls
39 * back to block_read_full_page().
40 *
41 * Why is this? If a page's completion depends on a number of different BIOs
42 * which can complete in any order (or at the same time) then determining the
43 * status of that page is hard. See end_buffer_async_read() for the details.
44 * There is no point in duplicating all that complexity.
45 */
46static void mpage_end_io(struct bio *bio)
47{
48 struct bio_vec *bv;
49 struct bvec_iter_all iter_all;
50
51 bio_for_each_segment_all(bv, bio, iter_all) {
52 struct page *page = bv->bv_page;
53 page_endio(page, bio_op(bio),
54 blk_status_to_errno(bio->bi_status));
55 }
56
57 bio_put(bio);
58}
59
60static struct bio *mpage_bio_submit(struct bio *bio)
61{
62 bio->bi_end_io = mpage_end_io;
63 guard_bio_eod(bio);
64 submit_bio(bio);
65 return NULL;
66}
67
68/*
69 * support function for mpage_readahead. The fs supplied get_block might
70 * return an up to date buffer. This is used to map that buffer into
71 * the page, which allows readpage to avoid triggering a duplicate call
72 * to get_block.
73 *
74 * The idea is to avoid adding buffers to pages that don't already have
75 * them. So when the buffer is up to date and the page size == block size,
76 * this marks the page up to date instead of adding new buffers.
77 */
78static void
79map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
80{
81 struct inode *inode = page->mapping->host;
82 struct buffer_head *page_bh, *head;
83 int block = 0;
84
85 if (!page_has_buffers(page)) {
86 /*
87 * don't make any buffers if there is only one buffer on
88 * the page and the page just needs to be set up to date
89 */
90 if (inode->i_blkbits == PAGE_SHIFT &&
91 buffer_uptodate(bh)) {
92 SetPageUptodate(page);
93 return;
94 }
95 create_empty_buffers(page, i_blocksize(inode), 0);
96 }
97 head = page_buffers(page);
98 page_bh = head;
99 do {
100 if (block == page_block) {
101 page_bh->b_state = bh->b_state;
102 page_bh->b_bdev = bh->b_bdev;
103 page_bh->b_blocknr = bh->b_blocknr;
104 break;
105 }
106 page_bh = page_bh->b_this_page;
107 block++;
108 } while (page_bh != head);
109}
110
111struct mpage_readpage_args {
112 struct bio *bio;
113 struct page *page;
114 unsigned int nr_pages;
115 bool is_readahead;
116 sector_t last_block_in_bio;
117 struct buffer_head map_bh;
118 unsigned long first_logical_block;
119 get_block_t *get_block;
120};
121
122/*
123 * This is the worker routine which does all the work of mapping the disk
124 * blocks and constructs largest possible bios, submits them for IO if the
125 * blocks are not contiguous on the disk.
126 *
127 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
128 * represent the validity of its disk mapping and to decide when to do the next
129 * get_block() call.
130 */
131static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
132{
133 struct page *page = args->page;
134 struct inode *inode = page->mapping->host;
135 const unsigned blkbits = inode->i_blkbits;
136 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
137 const unsigned blocksize = 1 << blkbits;
138 struct buffer_head *map_bh = &args->map_bh;
139 sector_t block_in_file;
140 sector_t last_block;
141 sector_t last_block_in_file;
142 sector_t blocks[MAX_BUF_PER_PAGE];
143 unsigned page_block;
144 unsigned first_hole = blocks_per_page;
145 struct block_device *bdev = NULL;
146 int length;
147 int fully_mapped = 1;
148 int op = REQ_OP_READ;
149 unsigned nblocks;
150 unsigned relative_block;
151 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
152
153 if (args->is_readahead) {
154 op |= REQ_RAHEAD;
155 gfp |= __GFP_NORETRY | __GFP_NOWARN;
156 }
157
158 if (page_has_buffers(page))
159 goto confused;
160
161 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
162 last_block = block_in_file + args->nr_pages * blocks_per_page;
163 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
164 if (last_block > last_block_in_file)
165 last_block = last_block_in_file;
166 page_block = 0;
167
168 /*
169 * Map blocks using the result from the previous get_blocks call first.
170 */
171 nblocks = map_bh->b_size >> blkbits;
172 if (buffer_mapped(map_bh) &&
173 block_in_file > args->first_logical_block &&
174 block_in_file < (args->first_logical_block + nblocks)) {
175 unsigned map_offset = block_in_file - args->first_logical_block;
176 unsigned last = nblocks - map_offset;
177
178 for (relative_block = 0; ; relative_block++) {
179 if (relative_block == last) {
180 clear_buffer_mapped(map_bh);
181 break;
182 }
183 if (page_block == blocks_per_page)
184 break;
185 blocks[page_block] = map_bh->b_blocknr + map_offset +
186 relative_block;
187 page_block++;
188 block_in_file++;
189 }
190 bdev = map_bh->b_bdev;
191 }
192
193 /*
194 * Then do more get_blocks calls until we are done with this page.
195 */
196 map_bh->b_page = page;
197 while (page_block < blocks_per_page) {
198 map_bh->b_state = 0;
199 map_bh->b_size = 0;
200
201 if (block_in_file < last_block) {
202 map_bh->b_size = (last_block-block_in_file) << blkbits;
203 if (args->get_block(inode, block_in_file, map_bh, 0))
204 goto confused;
205 args->first_logical_block = block_in_file;
206 }
207
208 if (!buffer_mapped(map_bh)) {
209 fully_mapped = 0;
210 if (first_hole == blocks_per_page)
211 first_hole = page_block;
212 page_block++;
213 block_in_file++;
214 continue;
215 }
216
217 /* some filesystems will copy data into the page during
218 * the get_block call, in which case we don't want to
219 * read it again. map_buffer_to_page copies the data
220 * we just collected from get_block into the page's buffers
221 * so readpage doesn't have to repeat the get_block call
222 */
223 if (buffer_uptodate(map_bh)) {
224 map_buffer_to_page(page, map_bh, page_block);
225 goto confused;
226 }
227
228 if (first_hole != blocks_per_page)
229 goto confused; /* hole -> non-hole */
230
231 /* Contiguous blocks? */
232 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
233 goto confused;
234 nblocks = map_bh->b_size >> blkbits;
235 for (relative_block = 0; ; relative_block++) {
236 if (relative_block == nblocks) {
237 clear_buffer_mapped(map_bh);
238 break;
239 } else if (page_block == blocks_per_page)
240 break;
241 blocks[page_block] = map_bh->b_blocknr+relative_block;
242 page_block++;
243 block_in_file++;
244 }
245 bdev = map_bh->b_bdev;
246 }
247
248 if (first_hole != blocks_per_page) {
249 zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
250 if (first_hole == 0) {
251 SetPageUptodate(page);
252 unlock_page(page);
253 goto out;
254 }
255 } else if (fully_mapped) {
256 SetPageMappedToDisk(page);
257 }
258
259 /*
260 * This page will go to BIO. Do we need to send this BIO off first?
261 */
262 if (args->bio && (args->last_block_in_bio != blocks[0] - 1))
263 args->bio = mpage_bio_submit(args->bio);
264
265alloc_new:
266 if (args->bio == NULL) {
267 if (first_hole == blocks_per_page) {
268 if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
269 page))
270 goto out;
271 }
272 args->bio = bio_alloc(bdev, bio_max_segs(args->nr_pages), op,
273 gfp);
274 if (args->bio == NULL)
275 goto confused;
276 args->bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
277 }
278
279 length = first_hole << blkbits;
280 if (bio_add_page(args->bio, page, length, 0) < length) {
281 args->bio = mpage_bio_submit(args->bio);
282 goto alloc_new;
283 }
284
285 relative_block = block_in_file - args->first_logical_block;
286 nblocks = map_bh->b_size >> blkbits;
287 if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
288 (first_hole != blocks_per_page))
289 args->bio = mpage_bio_submit(args->bio);
290 else
291 args->last_block_in_bio = blocks[blocks_per_page - 1];
292out:
293 return args->bio;
294
295confused:
296 if (args->bio)
297 args->bio = mpage_bio_submit(args->bio);
298 if (!PageUptodate(page))
299 block_read_full_page(page, args->get_block);
300 else
301 unlock_page(page);
302 goto out;
303}
304
305/**
306 * mpage_readahead - start reads against pages
307 * @rac: Describes which pages to read.
308 * @get_block: The filesystem's block mapper function.
309 *
310 * This function walks the pages and the blocks within each page, building and
311 * emitting large BIOs.
312 *
313 * If anything unusual happens, such as:
314 *
315 * - encountering a page which has buffers
316 * - encountering a page which has a non-hole after a hole
317 * - encountering a page with non-contiguous blocks
318 *
319 * then this code just gives up and calls the buffer_head-based read function.
320 * It does handle a page which has holes at the end - that is a common case:
321 * the end-of-file on blocksize < PAGE_SIZE setups.
322 *
323 * BH_Boundary explanation:
324 *
325 * There is a problem. The mpage read code assembles several pages, gets all
326 * their disk mappings, and then submits them all. That's fine, but obtaining
327 * the disk mappings may require I/O. Reads of indirect blocks, for example.
328 *
329 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
330 * submitted in the following order:
331 *
332 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
333 *
334 * because the indirect block has to be read to get the mappings of blocks
335 * 13,14,15,16. Obviously, this impacts performance.
336 *
337 * So what we do it to allow the filesystem's get_block() function to set
338 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block
339 * after this one will require I/O against a block which is probably close to
340 * this one. So you should push what I/O you have currently accumulated.
341 *
342 * This all causes the disk requests to be issued in the correct order.
343 */
344void mpage_readahead(struct readahead_control *rac, get_block_t get_block)
345{
346 struct page *page;
347 struct mpage_readpage_args args = {
348 .get_block = get_block,
349 .is_readahead = true,
350 };
351
352 while ((page = readahead_page(rac))) {
353 prefetchw(&page->flags);
354 args.page = page;
355 args.nr_pages = readahead_count(rac);
356 args.bio = do_mpage_readpage(&args);
357 put_page(page);
358 }
359 if (args.bio)
360 mpage_bio_submit(args.bio);
361}
362EXPORT_SYMBOL(mpage_readahead);
363
364/*
365 * This isn't called much at all
366 */
367int mpage_readpage(struct page *page, get_block_t get_block)
368{
369 struct mpage_readpage_args args = {
370 .page = page,
371 .nr_pages = 1,
372 .get_block = get_block,
373 };
374
375 args.bio = do_mpage_readpage(&args);
376 if (args.bio)
377 mpage_bio_submit(args.bio);
378 return 0;
379}
380EXPORT_SYMBOL(mpage_readpage);
381
382/*
383 * Writing is not so simple.
384 *
385 * If the page has buffers then they will be used for obtaining the disk
386 * mapping. We only support pages which are fully mapped-and-dirty, with a
387 * special case for pages which are unmapped at the end: end-of-file.
388 *
389 * If the page has no buffers (preferred) then the page is mapped here.
390 *
391 * If all blocks are found to be contiguous then the page can go into the
392 * BIO. Otherwise fall back to the mapping's writepage().
393 *
394 * FIXME: This code wants an estimate of how many pages are still to be
395 * written, so it can intelligently allocate a suitably-sized BIO. For now,
396 * just allocate full-size (16-page) BIOs.
397 */
398
399struct mpage_data {
400 struct bio *bio;
401 sector_t last_block_in_bio;
402 get_block_t *get_block;
403 unsigned use_writepage;
404};
405
406/*
407 * We have our BIO, so we can now mark the buffers clean. Make
408 * sure to only clean buffers which we know we'll be writing.
409 */
410static void clean_buffers(struct page *page, unsigned first_unmapped)
411{
412 unsigned buffer_counter = 0;
413 struct buffer_head *bh, *head;
414 if (!page_has_buffers(page))
415 return;
416 head = page_buffers(page);
417 bh = head;
418
419 do {
420 if (buffer_counter++ == first_unmapped)
421 break;
422 clear_buffer_dirty(bh);
423 bh = bh->b_this_page;
424 } while (bh != head);
425
426 /*
427 * we cannot drop the bh if the page is not uptodate or a concurrent
428 * readpage would fail to serialize with the bh and it would read from
429 * disk before we reach the platter.
430 */
431 if (buffer_heads_over_limit && PageUptodate(page))
432 try_to_free_buffers(page);
433}
434
435/*
436 * For situations where we want to clean all buffers attached to a page.
437 * We don't need to calculate how many buffers are attached to the page,
438 * we just need to specify a number larger than the maximum number of buffers.
439 */
440void clean_page_buffers(struct page *page)
441{
442 clean_buffers(page, ~0U);
443}
444
445static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
446 void *data)
447{
448 struct mpage_data *mpd = data;
449 struct bio *bio = mpd->bio;
450 struct address_space *mapping = page->mapping;
451 struct inode *inode = page->mapping->host;
452 const unsigned blkbits = inode->i_blkbits;
453 unsigned long end_index;
454 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
455 sector_t last_block;
456 sector_t block_in_file;
457 sector_t blocks[MAX_BUF_PER_PAGE];
458 unsigned page_block;
459 unsigned first_unmapped = blocks_per_page;
460 struct block_device *bdev = NULL;
461 int boundary = 0;
462 sector_t boundary_block = 0;
463 struct block_device *boundary_bdev = NULL;
464 int length;
465 struct buffer_head map_bh;
466 loff_t i_size = i_size_read(inode);
467 int ret = 0;
468
469 if (page_has_buffers(page)) {
470 struct buffer_head *head = page_buffers(page);
471 struct buffer_head *bh = head;
472
473 /* If they're all mapped and dirty, do it */
474 page_block = 0;
475 do {
476 BUG_ON(buffer_locked(bh));
477 if (!buffer_mapped(bh)) {
478 /*
479 * unmapped dirty buffers are created by
480 * block_dirty_folio -> mmapped data
481 */
482 if (buffer_dirty(bh))
483 goto confused;
484 if (first_unmapped == blocks_per_page)
485 first_unmapped = page_block;
486 continue;
487 }
488
489 if (first_unmapped != blocks_per_page)
490 goto confused; /* hole -> non-hole */
491
492 if (!buffer_dirty(bh) || !buffer_uptodate(bh))
493 goto confused;
494 if (page_block) {
495 if (bh->b_blocknr != blocks[page_block-1] + 1)
496 goto confused;
497 }
498 blocks[page_block++] = bh->b_blocknr;
499 boundary = buffer_boundary(bh);
500 if (boundary) {
501 boundary_block = bh->b_blocknr;
502 boundary_bdev = bh->b_bdev;
503 }
504 bdev = bh->b_bdev;
505 } while ((bh = bh->b_this_page) != head);
506
507 if (first_unmapped)
508 goto page_is_mapped;
509
510 /*
511 * Page has buffers, but they are all unmapped. The page was
512 * created by pagein or read over a hole which was handled by
513 * block_read_full_page(). If this address_space is also
514 * using mpage_readahead then this can rarely happen.
515 */
516 goto confused;
517 }
518
519 /*
520 * The page has no buffers: map it to disk
521 */
522 BUG_ON(!PageUptodate(page));
523 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
524 last_block = (i_size - 1) >> blkbits;
525 map_bh.b_page = page;
526 for (page_block = 0; page_block < blocks_per_page; ) {
527
528 map_bh.b_state = 0;
529 map_bh.b_size = 1 << blkbits;
530 if (mpd->get_block(inode, block_in_file, &map_bh, 1))
531 goto confused;
532 if (buffer_new(&map_bh))
533 clean_bdev_bh_alias(&map_bh);
534 if (buffer_boundary(&map_bh)) {
535 boundary_block = map_bh.b_blocknr;
536 boundary_bdev = map_bh.b_bdev;
537 }
538 if (page_block) {
539 if (map_bh.b_blocknr != blocks[page_block-1] + 1)
540 goto confused;
541 }
542 blocks[page_block++] = map_bh.b_blocknr;
543 boundary = buffer_boundary(&map_bh);
544 bdev = map_bh.b_bdev;
545 if (block_in_file == last_block)
546 break;
547 block_in_file++;
548 }
549 BUG_ON(page_block == 0);
550
551 first_unmapped = page_block;
552
553page_is_mapped:
554 end_index = i_size >> PAGE_SHIFT;
555 if (page->index >= end_index) {
556 /*
557 * The page straddles i_size. It must be zeroed out on each
558 * and every writepage invocation because it may be mmapped.
559 * "A file is mapped in multiples of the page size. For a file
560 * that is not a multiple of the page size, the remaining memory
561 * is zeroed when mapped, and writes to that region are not
562 * written out to the file."
563 */
564 unsigned offset = i_size & (PAGE_SIZE - 1);
565
566 if (page->index > end_index || !offset)
567 goto confused;
568 zero_user_segment(page, offset, PAGE_SIZE);
569 }
570
571 /*
572 * This page will go to BIO. Do we need to send this BIO off first?
573 */
574 if (bio && mpd->last_block_in_bio != blocks[0] - 1)
575 bio = mpage_bio_submit(bio);
576
577alloc_new:
578 if (bio == NULL) {
579 if (first_unmapped == blocks_per_page) {
580 if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
581 page, wbc))
582 goto out;
583 }
584 bio = bio_alloc(bdev, BIO_MAX_VECS,
585 REQ_OP_WRITE | wbc_to_write_flags(wbc),
586 GFP_NOFS);
587 bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
588 wbc_init_bio(wbc, bio);
589 }
590
591 /*
592 * Must try to add the page before marking the buffer clean or
593 * the confused fail path above (OOM) will be very confused when
594 * it finds all bh marked clean (i.e. it will not write anything)
595 */
596 wbc_account_cgroup_owner(wbc, page, PAGE_SIZE);
597 length = first_unmapped << blkbits;
598 if (bio_add_page(bio, page, length, 0) < length) {
599 bio = mpage_bio_submit(bio);
600 goto alloc_new;
601 }
602
603 clean_buffers(page, first_unmapped);
604
605 BUG_ON(PageWriteback(page));
606 set_page_writeback(page);
607 unlock_page(page);
608 if (boundary || (first_unmapped != blocks_per_page)) {
609 bio = mpage_bio_submit(bio);
610 if (boundary_block) {
611 write_boundary_block(boundary_bdev,
612 boundary_block, 1 << blkbits);
613 }
614 } else {
615 mpd->last_block_in_bio = blocks[blocks_per_page - 1];
616 }
617 goto out;
618
619confused:
620 if (bio)
621 bio = mpage_bio_submit(bio);
622
623 if (mpd->use_writepage) {
624 ret = mapping->a_ops->writepage(page, wbc);
625 } else {
626 ret = -EAGAIN;
627 goto out;
628 }
629 /*
630 * The caller has a ref on the inode, so *mapping is stable
631 */
632 mapping_set_error(mapping, ret);
633out:
634 mpd->bio = bio;
635 return ret;
636}
637
638/**
639 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
640 * @mapping: address space structure to write
641 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
642 * @get_block: the filesystem's block mapper function.
643 * If this is NULL then use a_ops->writepage. Otherwise, go
644 * direct-to-BIO.
645 *
646 * This is a library function, which implements the writepages()
647 * address_space_operation.
648 *
649 * If a page is already under I/O, generic_writepages() skips it, even
650 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
651 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
652 * and msync() need to guarantee that all the data which was dirty at the time
653 * the call was made get new I/O started against them. If wbc->sync_mode is
654 * WB_SYNC_ALL then we were called for data integrity and we must wait for
655 * existing IO to complete.
656 */
657int
658mpage_writepages(struct address_space *mapping,
659 struct writeback_control *wbc, get_block_t get_block)
660{
661 struct blk_plug plug;
662 int ret;
663
664 blk_start_plug(&plug);
665
666 if (!get_block)
667 ret = generic_writepages(mapping, wbc);
668 else {
669 struct mpage_data mpd = {
670 .bio = NULL,
671 .last_block_in_bio = 0,
672 .get_block = get_block,
673 .use_writepage = 1,
674 };
675
676 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
677 if (mpd.bio)
678 mpage_bio_submit(mpd.bio);
679 }
680 blk_finish_plug(&plug);
681 return ret;
682}
683EXPORT_SYMBOL(mpage_writepages);
684
685int mpage_writepage(struct page *page, get_block_t get_block,
686 struct writeback_control *wbc)
687{
688 struct mpage_data mpd = {
689 .bio = NULL,
690 .last_block_in_bio = 0,
691 .get_block = get_block,
692 .use_writepage = 0,
693 };
694 int ret = __mpage_writepage(page, wbc, &mpd);
695 if (mpd.bio)
696 mpage_bio_submit(mpd.bio);
697 return ret;
698}
699EXPORT_SYMBOL(mpage_writepage);