Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
5 */
6
7#include <linux/slab.h>
8#include <linux/spinlock.h>
9#include <linux/compat.h>
10#include <linux/completion.h>
11#include <linux/buffer_head.h>
12#include <linux/pagemap.h>
13#include <linux/uio.h>
14#include <linux/blkdev.h>
15#include <linux/mm.h>
16#include <linux/mount.h>
17#include <linux/fs.h>
18#include <linux/gfs2_ondisk.h>
19#include <linux/falloc.h>
20#include <linux/swap.h>
21#include <linux/crc32.h>
22#include <linux/writeback.h>
23#include <linux/uaccess.h>
24#include <linux/dlm.h>
25#include <linux/dlm_plock.h>
26#include <linux/delay.h>
27#include <linux/backing-dev.h>
28#include <linux/fileattr.h>
29
30#include "gfs2.h"
31#include "incore.h"
32#include "bmap.h"
33#include "aops.h"
34#include "dir.h"
35#include "glock.h"
36#include "glops.h"
37#include "inode.h"
38#include "log.h"
39#include "meta_io.h"
40#include "quota.h"
41#include "rgrp.h"
42#include "trans.h"
43#include "util.h"
44
45/**
46 * gfs2_llseek - seek to a location in a file
47 * @file: the file
48 * @offset: the offset
49 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
50 *
51 * SEEK_END requires the glock for the file because it references the
52 * file's size.
53 *
54 * Returns: The new offset, or errno
55 */
56
57static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
58{
59 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
60 struct gfs2_holder i_gh;
61 loff_t error;
62
63 switch (whence) {
64 case SEEK_END:
65 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
66 &i_gh);
67 if (!error) {
68 error = generic_file_llseek(file, offset, whence);
69 gfs2_glock_dq_uninit(&i_gh);
70 }
71 break;
72
73 case SEEK_DATA:
74 error = gfs2_seek_data(file, offset);
75 break;
76
77 case SEEK_HOLE:
78 error = gfs2_seek_hole(file, offset);
79 break;
80
81 case SEEK_CUR:
82 case SEEK_SET:
83 /*
84 * These don't reference inode->i_size and don't depend on the
85 * block mapping, so we don't need the glock.
86 */
87 error = generic_file_llseek(file, offset, whence);
88 break;
89 default:
90 error = -EINVAL;
91 }
92
93 return error;
94}
95
96/**
97 * gfs2_readdir - Iterator for a directory
98 * @file: The directory to read from
99 * @ctx: What to feed directory entries to
100 *
101 * Returns: errno
102 */
103
104static int gfs2_readdir(struct file *file, struct dir_context *ctx)
105{
106 struct inode *dir = file->f_mapping->host;
107 struct gfs2_inode *dip = GFS2_I(dir);
108 struct gfs2_holder d_gh;
109 int error;
110
111 error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
112 if (error)
113 return error;
114
115 error = gfs2_dir_read(dir, ctx, &file->f_ra);
116
117 gfs2_glock_dq_uninit(&d_gh);
118
119 return error;
120}
121
122/*
123 * struct fsflag_gfs2flag
124 *
125 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
126 * and to GFS2_DIF_JDATA for non-directories.
127 */
128static struct {
129 u32 fsflag;
130 u32 gfsflag;
131} fsflag_gfs2flag[] = {
132 {FS_SYNC_FL, GFS2_DIF_SYNC},
133 {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
134 {FS_APPEND_FL, GFS2_DIF_APPENDONLY},
135 {FS_NOATIME_FL, GFS2_DIF_NOATIME},
136 {FS_INDEX_FL, GFS2_DIF_EXHASH},
137 {FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
138 {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
139};
140
141static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags)
142{
143 int i;
144 u32 fsflags = 0;
145
146 if (S_ISDIR(inode->i_mode))
147 gfsflags &= ~GFS2_DIF_JDATA;
148 else
149 gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
150
151 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
152 if (gfsflags & fsflag_gfs2flag[i].gfsflag)
153 fsflags |= fsflag_gfs2flag[i].fsflag;
154 return fsflags;
155}
156
157int gfs2_fileattr_get(struct dentry *dentry, struct fileattr *fa)
158{
159 struct inode *inode = d_inode(dentry);
160 struct gfs2_inode *ip = GFS2_I(inode);
161 struct gfs2_holder gh;
162 int error;
163 u32 fsflags;
164
165 if (d_is_special(dentry))
166 return -ENOTTY;
167
168 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
169 error = gfs2_glock_nq(&gh);
170 if (error)
171 goto out_uninit;
172
173 fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
174
175 fileattr_fill_flags(fa, fsflags);
176
177 gfs2_glock_dq(&gh);
178out_uninit:
179 gfs2_holder_uninit(&gh);
180 return error;
181}
182
183void gfs2_set_inode_flags(struct inode *inode)
184{
185 struct gfs2_inode *ip = GFS2_I(inode);
186 unsigned int flags = inode->i_flags;
187
188 flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
189 if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
190 flags |= S_NOSEC;
191 if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
192 flags |= S_IMMUTABLE;
193 if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
194 flags |= S_APPEND;
195 if (ip->i_diskflags & GFS2_DIF_NOATIME)
196 flags |= S_NOATIME;
197 if (ip->i_diskflags & GFS2_DIF_SYNC)
198 flags |= S_SYNC;
199 inode->i_flags = flags;
200}
201
202/* Flags that can be set by user space */
203#define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \
204 GFS2_DIF_IMMUTABLE| \
205 GFS2_DIF_APPENDONLY| \
206 GFS2_DIF_NOATIME| \
207 GFS2_DIF_SYNC| \
208 GFS2_DIF_TOPDIR| \
209 GFS2_DIF_INHERIT_JDATA)
210
211/**
212 * do_gfs2_set_flags - set flags on an inode
213 * @inode: The inode
214 * @reqflags: The flags to set
215 * @mask: Indicates which flags are valid
216 *
217 */
218static int do_gfs2_set_flags(struct inode *inode, u32 reqflags, u32 mask)
219{
220 struct gfs2_inode *ip = GFS2_I(inode);
221 struct gfs2_sbd *sdp = GFS2_SB(inode);
222 struct buffer_head *bh;
223 struct gfs2_holder gh;
224 int error;
225 u32 new_flags, flags;
226
227 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
228 if (error)
229 return error;
230
231 error = 0;
232 flags = ip->i_diskflags;
233 new_flags = (flags & ~mask) | (reqflags & mask);
234 if ((new_flags ^ flags) == 0)
235 goto out;
236
237 if (!IS_IMMUTABLE(inode)) {
238 error = gfs2_permission(&init_user_ns, inode, MAY_WRITE);
239 if (error)
240 goto out;
241 }
242 if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
243 if (new_flags & GFS2_DIF_JDATA)
244 gfs2_log_flush(sdp, ip->i_gl,
245 GFS2_LOG_HEAD_FLUSH_NORMAL |
246 GFS2_LFC_SET_FLAGS);
247 error = filemap_fdatawrite(inode->i_mapping);
248 if (error)
249 goto out;
250 error = filemap_fdatawait(inode->i_mapping);
251 if (error)
252 goto out;
253 if (new_flags & GFS2_DIF_JDATA)
254 gfs2_ordered_del_inode(ip);
255 }
256 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
257 if (error)
258 goto out;
259 error = gfs2_meta_inode_buffer(ip, &bh);
260 if (error)
261 goto out_trans_end;
262 inode->i_ctime = current_time(inode);
263 gfs2_trans_add_meta(ip->i_gl, bh);
264 ip->i_diskflags = new_flags;
265 gfs2_dinode_out(ip, bh->b_data);
266 brelse(bh);
267 gfs2_set_inode_flags(inode);
268 gfs2_set_aops(inode);
269out_trans_end:
270 gfs2_trans_end(sdp);
271out:
272 gfs2_glock_dq_uninit(&gh);
273 return error;
274}
275
276int gfs2_fileattr_set(struct user_namespace *mnt_userns,
277 struct dentry *dentry, struct fileattr *fa)
278{
279 struct inode *inode = d_inode(dentry);
280 u32 fsflags = fa->flags, gfsflags = 0;
281 u32 mask;
282 int i;
283
284 if (d_is_special(dentry))
285 return -ENOTTY;
286
287 if (fileattr_has_fsx(fa))
288 return -EOPNOTSUPP;
289
290 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
291 if (fsflags & fsflag_gfs2flag[i].fsflag) {
292 fsflags &= ~fsflag_gfs2flag[i].fsflag;
293 gfsflags |= fsflag_gfs2flag[i].gfsflag;
294 }
295 }
296 if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
297 return -EINVAL;
298
299 mask = GFS2_FLAGS_USER_SET;
300 if (S_ISDIR(inode->i_mode)) {
301 mask &= ~GFS2_DIF_JDATA;
302 } else {
303 /* The GFS2_DIF_TOPDIR flag is only valid for directories. */
304 if (gfsflags & GFS2_DIF_TOPDIR)
305 return -EINVAL;
306 mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
307 }
308
309 return do_gfs2_set_flags(inode, gfsflags, mask);
310}
311
312static int gfs2_getlabel(struct file *filp, char __user *label)
313{
314 struct inode *inode = file_inode(filp);
315 struct gfs2_sbd *sdp = GFS2_SB(inode);
316
317 if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
318 return -EFAULT;
319
320 return 0;
321}
322
323static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
324{
325 switch(cmd) {
326 case FITRIM:
327 return gfs2_fitrim(filp, (void __user *)arg);
328 case FS_IOC_GETFSLABEL:
329 return gfs2_getlabel(filp, (char __user *)arg);
330 }
331
332 return -ENOTTY;
333}
334
335#ifdef CONFIG_COMPAT
336static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
337{
338 switch(cmd) {
339 /* Keep this list in sync with gfs2_ioctl */
340 case FITRIM:
341 case FS_IOC_GETFSLABEL:
342 break;
343 default:
344 return -ENOIOCTLCMD;
345 }
346
347 return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
348}
349#else
350#define gfs2_compat_ioctl NULL
351#endif
352
353/**
354 * gfs2_size_hint - Give a hint to the size of a write request
355 * @filep: The struct file
356 * @offset: The file offset of the write
357 * @size: The length of the write
358 *
359 * When we are about to do a write, this function records the total
360 * write size in order to provide a suitable hint to the lower layers
361 * about how many blocks will be required.
362 *
363 */
364
365static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
366{
367 struct inode *inode = file_inode(filep);
368 struct gfs2_sbd *sdp = GFS2_SB(inode);
369 struct gfs2_inode *ip = GFS2_I(inode);
370 size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
371 int hint = min_t(size_t, INT_MAX, blks);
372
373 if (hint > atomic_read(&ip->i_sizehint))
374 atomic_set(&ip->i_sizehint, hint);
375}
376
377/**
378 * gfs2_allocate_page_backing - Allocate blocks for a write fault
379 * @page: The (locked) page to allocate backing for
380 * @length: Size of the allocation
381 *
382 * We try to allocate all the blocks required for the page in one go. This
383 * might fail for various reasons, so we keep trying until all the blocks to
384 * back this page are allocated. If some of the blocks are already allocated,
385 * that is ok too.
386 */
387static int gfs2_allocate_page_backing(struct page *page, unsigned int length)
388{
389 u64 pos = page_offset(page);
390
391 do {
392 struct iomap iomap = { };
393
394 if (gfs2_iomap_alloc(page->mapping->host, pos, length, &iomap))
395 return -EIO;
396
397 if (length < iomap.length)
398 iomap.length = length;
399 length -= iomap.length;
400 pos += iomap.length;
401 } while (length > 0);
402
403 return 0;
404}
405
406/**
407 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
408 * @vmf: The virtual memory fault containing the page to become writable
409 *
410 * When the page becomes writable, we need to ensure that we have
411 * blocks allocated on disk to back that page.
412 */
413
414static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
415{
416 struct page *page = vmf->page;
417 struct inode *inode = file_inode(vmf->vma->vm_file);
418 struct gfs2_inode *ip = GFS2_I(inode);
419 struct gfs2_sbd *sdp = GFS2_SB(inode);
420 struct gfs2_alloc_parms ap = { .aflags = 0, };
421 u64 offset = page_offset(page);
422 unsigned int data_blocks, ind_blocks, rblocks;
423 vm_fault_t ret = VM_FAULT_LOCKED;
424 struct gfs2_holder gh;
425 unsigned int length;
426 loff_t size;
427 int err;
428
429 sb_start_pagefault(inode->i_sb);
430
431 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
432 err = gfs2_glock_nq(&gh);
433 if (err) {
434 ret = block_page_mkwrite_return(err);
435 goto out_uninit;
436 }
437
438 /* Check page index against inode size */
439 size = i_size_read(inode);
440 if (offset >= size) {
441 ret = VM_FAULT_SIGBUS;
442 goto out_unlock;
443 }
444
445 /* Update file times before taking page lock */
446 file_update_time(vmf->vma->vm_file);
447
448 /* page is wholly or partially inside EOF */
449 if (size - offset < PAGE_SIZE)
450 length = size - offset;
451 else
452 length = PAGE_SIZE;
453
454 gfs2_size_hint(vmf->vma->vm_file, offset, length);
455
456 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
457 set_bit(GIF_SW_PAGED, &ip->i_flags);
458
459 /*
460 * iomap_writepage / iomap_writepages currently don't support inline
461 * files, so always unstuff here.
462 */
463
464 if (!gfs2_is_stuffed(ip) &&
465 !gfs2_write_alloc_required(ip, offset, length)) {
466 lock_page(page);
467 if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
468 ret = VM_FAULT_NOPAGE;
469 unlock_page(page);
470 }
471 goto out_unlock;
472 }
473
474 err = gfs2_rindex_update(sdp);
475 if (err) {
476 ret = block_page_mkwrite_return(err);
477 goto out_unlock;
478 }
479
480 gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks);
481 ap.target = data_blocks + ind_blocks;
482 err = gfs2_quota_lock_check(ip, &ap);
483 if (err) {
484 ret = block_page_mkwrite_return(err);
485 goto out_unlock;
486 }
487 err = gfs2_inplace_reserve(ip, &ap);
488 if (err) {
489 ret = block_page_mkwrite_return(err);
490 goto out_quota_unlock;
491 }
492
493 rblocks = RES_DINODE + ind_blocks;
494 if (gfs2_is_jdata(ip))
495 rblocks += data_blocks ? data_blocks : 1;
496 if (ind_blocks || data_blocks) {
497 rblocks += RES_STATFS + RES_QUOTA;
498 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
499 }
500 err = gfs2_trans_begin(sdp, rblocks, 0);
501 if (err) {
502 ret = block_page_mkwrite_return(err);
503 goto out_trans_fail;
504 }
505
506 /* Unstuff, if required, and allocate backing blocks for page */
507 if (gfs2_is_stuffed(ip)) {
508 err = gfs2_unstuff_dinode(ip);
509 if (err) {
510 ret = block_page_mkwrite_return(err);
511 goto out_trans_end;
512 }
513 }
514
515 lock_page(page);
516 /* If truncated, we must retry the operation, we may have raced
517 * with the glock demotion code.
518 */
519 if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
520 ret = VM_FAULT_NOPAGE;
521 goto out_page_locked;
522 }
523
524 err = gfs2_allocate_page_backing(page, length);
525 if (err)
526 ret = block_page_mkwrite_return(err);
527
528out_page_locked:
529 if (ret != VM_FAULT_LOCKED)
530 unlock_page(page);
531out_trans_end:
532 gfs2_trans_end(sdp);
533out_trans_fail:
534 gfs2_inplace_release(ip);
535out_quota_unlock:
536 gfs2_quota_unlock(ip);
537out_unlock:
538 gfs2_glock_dq(&gh);
539out_uninit:
540 gfs2_holder_uninit(&gh);
541 if (ret == VM_FAULT_LOCKED) {
542 set_page_dirty(page);
543 wait_for_stable_page(page);
544 }
545 sb_end_pagefault(inode->i_sb);
546 return ret;
547}
548
549static vm_fault_t gfs2_fault(struct vm_fault *vmf)
550{
551 struct inode *inode = file_inode(vmf->vma->vm_file);
552 struct gfs2_inode *ip = GFS2_I(inode);
553 struct gfs2_holder gh;
554 vm_fault_t ret;
555 int err;
556
557 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
558 err = gfs2_glock_nq(&gh);
559 if (err) {
560 ret = block_page_mkwrite_return(err);
561 goto out_uninit;
562 }
563 ret = filemap_fault(vmf);
564 gfs2_glock_dq(&gh);
565out_uninit:
566 gfs2_holder_uninit(&gh);
567 return ret;
568}
569
570static const struct vm_operations_struct gfs2_vm_ops = {
571 .fault = gfs2_fault,
572 .map_pages = filemap_map_pages,
573 .page_mkwrite = gfs2_page_mkwrite,
574};
575
576/**
577 * gfs2_mmap
578 * @file: The file to map
579 * @vma: The VMA which described the mapping
580 *
581 * There is no need to get a lock here unless we should be updating
582 * atime. We ignore any locking errors since the only consequence is
583 * a missed atime update (which will just be deferred until later).
584 *
585 * Returns: 0
586 */
587
588static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
589{
590 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
591
592 if (!(file->f_flags & O_NOATIME) &&
593 !IS_NOATIME(&ip->i_inode)) {
594 struct gfs2_holder i_gh;
595 int error;
596
597 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
598 &i_gh);
599 if (error)
600 return error;
601 /* grab lock to update inode */
602 gfs2_glock_dq_uninit(&i_gh);
603 file_accessed(file);
604 }
605 vma->vm_ops = &gfs2_vm_ops;
606
607 return 0;
608}
609
610/**
611 * gfs2_open_common - This is common to open and atomic_open
612 * @inode: The inode being opened
613 * @file: The file being opened
614 *
615 * This maybe called under a glock or not depending upon how it has
616 * been called. We must always be called under a glock for regular
617 * files, however. For other file types, it does not matter whether
618 * we hold the glock or not.
619 *
620 * Returns: Error code or 0 for success
621 */
622
623int gfs2_open_common(struct inode *inode, struct file *file)
624{
625 struct gfs2_file *fp;
626 int ret;
627
628 if (S_ISREG(inode->i_mode)) {
629 ret = generic_file_open(inode, file);
630 if (ret)
631 return ret;
632 }
633
634 fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
635 if (!fp)
636 return -ENOMEM;
637
638 mutex_init(&fp->f_fl_mutex);
639
640 gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
641 file->private_data = fp;
642 if (file->f_mode & FMODE_WRITE) {
643 ret = gfs2_qa_get(GFS2_I(inode));
644 if (ret)
645 goto fail;
646 }
647 return 0;
648
649fail:
650 kfree(file->private_data);
651 file->private_data = NULL;
652 return ret;
653}
654
655/**
656 * gfs2_open - open a file
657 * @inode: the inode to open
658 * @file: the struct file for this opening
659 *
660 * After atomic_open, this function is only used for opening files
661 * which are already cached. We must still get the glock for regular
662 * files to ensure that we have the file size uptodate for the large
663 * file check which is in the common code. That is only an issue for
664 * regular files though.
665 *
666 * Returns: errno
667 */
668
669static int gfs2_open(struct inode *inode, struct file *file)
670{
671 struct gfs2_inode *ip = GFS2_I(inode);
672 struct gfs2_holder i_gh;
673 int error;
674 bool need_unlock = false;
675
676 if (S_ISREG(ip->i_inode.i_mode)) {
677 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
678 &i_gh);
679 if (error)
680 return error;
681 need_unlock = true;
682 }
683
684 error = gfs2_open_common(inode, file);
685
686 if (need_unlock)
687 gfs2_glock_dq_uninit(&i_gh);
688
689 return error;
690}
691
692/**
693 * gfs2_release - called to close a struct file
694 * @inode: the inode the struct file belongs to
695 * @file: the struct file being closed
696 *
697 * Returns: errno
698 */
699
700static int gfs2_release(struct inode *inode, struct file *file)
701{
702 struct gfs2_inode *ip = GFS2_I(inode);
703
704 kfree(file->private_data);
705 file->private_data = NULL;
706
707 if (file->f_mode & FMODE_WRITE) {
708 if (gfs2_rs_active(&ip->i_res))
709 gfs2_rs_delete(ip);
710 gfs2_qa_put(ip);
711 }
712 return 0;
713}
714
715/**
716 * gfs2_fsync - sync the dirty data for a file (across the cluster)
717 * @file: the file that points to the dentry
718 * @start: the start position in the file to sync
719 * @end: the end position in the file to sync
720 * @datasync: set if we can ignore timestamp changes
721 *
722 * We split the data flushing here so that we don't wait for the data
723 * until after we've also sent the metadata to disk. Note that for
724 * data=ordered, we will write & wait for the data at the log flush
725 * stage anyway, so this is unlikely to make much of a difference
726 * except in the data=writeback case.
727 *
728 * If the fdatawrite fails due to any reason except -EIO, we will
729 * continue the remainder of the fsync, although we'll still report
730 * the error at the end. This is to match filemap_write_and_wait_range()
731 * behaviour.
732 *
733 * Returns: errno
734 */
735
736static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
737 int datasync)
738{
739 struct address_space *mapping = file->f_mapping;
740 struct inode *inode = mapping->host;
741 int sync_state = inode->i_state & I_DIRTY;
742 struct gfs2_inode *ip = GFS2_I(inode);
743 int ret = 0, ret1 = 0;
744
745 if (mapping->nrpages) {
746 ret1 = filemap_fdatawrite_range(mapping, start, end);
747 if (ret1 == -EIO)
748 return ret1;
749 }
750
751 if (!gfs2_is_jdata(ip))
752 sync_state &= ~I_DIRTY_PAGES;
753 if (datasync)
754 sync_state &= ~I_DIRTY_SYNC;
755
756 if (sync_state) {
757 ret = sync_inode_metadata(inode, 1);
758 if (ret)
759 return ret;
760 if (gfs2_is_jdata(ip))
761 ret = file_write_and_wait(file);
762 if (ret)
763 return ret;
764 gfs2_ail_flush(ip->i_gl, 1);
765 }
766
767 if (mapping->nrpages)
768 ret = file_fdatawait_range(file, start, end);
769
770 return ret ? ret : ret1;
771}
772
773static inline bool should_fault_in_pages(struct iov_iter *i,
774 struct kiocb *iocb,
775 size_t *prev_count,
776 size_t *window_size)
777{
778 size_t count = iov_iter_count(i);
779 size_t size, offs;
780
781 if (!count)
782 return false;
783 if (!iter_is_iovec(i))
784 return false;
785
786 size = PAGE_SIZE;
787 offs = offset_in_page(iocb->ki_pos);
788 if (*prev_count != count || !*window_size) {
789 size_t nr_dirtied;
790
791 nr_dirtied = max(current->nr_dirtied_pause -
792 current->nr_dirtied, 8);
793 size = min_t(size_t, SZ_1M, nr_dirtied << PAGE_SHIFT);
794 }
795
796 *prev_count = count;
797 *window_size = size - offs;
798 return true;
799}
800
801static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to,
802 struct gfs2_holder *gh)
803{
804 struct file *file = iocb->ki_filp;
805 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
806 size_t prev_count = 0, window_size = 0;
807 size_t read = 0;
808 ssize_t ret;
809
810 /*
811 * In this function, we disable page faults when we're holding the
812 * inode glock while doing I/O. If a page fault occurs, we indicate
813 * that the inode glock may be dropped, fault in the pages manually,
814 * and retry.
815 *
816 * Unlike generic_file_read_iter, for reads, iomap_dio_rw can trigger
817 * physical as well as manual page faults, and we need to disable both
818 * kinds.
819 *
820 * For direct I/O, gfs2 takes the inode glock in deferred mode. This
821 * locking mode is compatible with other deferred holders, so multiple
822 * processes and nodes can do direct I/O to a file at the same time.
823 * There's no guarantee that reads or writes will be atomic. Any
824 * coordination among readers and writers needs to happen externally.
825 */
826
827 if (!iov_iter_count(to))
828 return 0; /* skip atime */
829
830 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
831retry:
832 ret = gfs2_glock_nq(gh);
833 if (ret)
834 goto out_uninit;
835 pagefault_disable();
836 to->nofault = true;
837 ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL,
838 IOMAP_DIO_PARTIAL, read);
839 to->nofault = false;
840 pagefault_enable();
841 if (ret <= 0 && ret != -EFAULT)
842 goto out_unlock;
843 if (ret > 0)
844 read = ret;
845
846 if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) {
847 gfs2_glock_dq(gh);
848 window_size -= fault_in_iov_iter_writeable(to, window_size);
849 if (window_size)
850 goto retry;
851 }
852out_unlock:
853 if (gfs2_holder_queued(gh))
854 gfs2_glock_dq(gh);
855out_uninit:
856 gfs2_holder_uninit(gh);
857 if (ret < 0)
858 return ret;
859 return read;
860}
861
862static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from,
863 struct gfs2_holder *gh)
864{
865 struct file *file = iocb->ki_filp;
866 struct inode *inode = file->f_mapping->host;
867 struct gfs2_inode *ip = GFS2_I(inode);
868 size_t prev_count = 0, window_size = 0;
869 size_t written = 0;
870 ssize_t ret;
871
872 /*
873 * In this function, we disable page faults when we're holding the
874 * inode glock while doing I/O. If a page fault occurs, we indicate
875 * that the inode glock may be dropped, fault in the pages manually,
876 * and retry.
877 *
878 * For writes, iomap_dio_rw only triggers manual page faults, so we
879 * don't need to disable physical ones.
880 */
881
882 /*
883 * Deferred lock, even if its a write, since we do no allocation on
884 * this path. All we need to change is the atime, and this lock mode
885 * ensures that other nodes have flushed their buffered read caches
886 * (i.e. their page cache entries for this inode). We do not,
887 * unfortunately, have the option of only flushing a range like the
888 * VFS does.
889 */
890 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
891retry:
892 ret = gfs2_glock_nq(gh);
893 if (ret)
894 goto out_uninit;
895 /* Silently fall back to buffered I/O when writing beyond EOF */
896 if (iocb->ki_pos + iov_iter_count(from) > i_size_read(&ip->i_inode))
897 goto out_unlock;
898
899 from->nofault = true;
900 ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL,
901 IOMAP_DIO_PARTIAL, written);
902 from->nofault = false;
903 if (ret <= 0) {
904 if (ret == -ENOTBLK)
905 ret = 0;
906 if (ret != -EFAULT)
907 goto out_unlock;
908 }
909 if (ret > 0)
910 written = ret;
911
912 if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
913 gfs2_glock_dq(gh);
914 window_size -= fault_in_iov_iter_readable(from, window_size);
915 if (window_size)
916 goto retry;
917 }
918out_unlock:
919 if (gfs2_holder_queued(gh))
920 gfs2_glock_dq(gh);
921out_uninit:
922 gfs2_holder_uninit(gh);
923 if (ret < 0)
924 return ret;
925 return written;
926}
927
928static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
929{
930 struct gfs2_inode *ip;
931 struct gfs2_holder gh;
932 size_t prev_count = 0, window_size = 0;
933 size_t read = 0;
934 ssize_t ret;
935
936 /*
937 * In this function, we disable page faults when we're holding the
938 * inode glock while doing I/O. If a page fault occurs, we indicate
939 * that the inode glock may be dropped, fault in the pages manually,
940 * and retry.
941 */
942
943 if (iocb->ki_flags & IOCB_DIRECT)
944 return gfs2_file_direct_read(iocb, to, &gh);
945
946 pagefault_disable();
947 iocb->ki_flags |= IOCB_NOIO;
948 ret = generic_file_read_iter(iocb, to);
949 iocb->ki_flags &= ~IOCB_NOIO;
950 pagefault_enable();
951 if (ret >= 0) {
952 if (!iov_iter_count(to))
953 return ret;
954 read = ret;
955 } else if (ret != -EFAULT) {
956 if (ret != -EAGAIN)
957 return ret;
958 if (iocb->ki_flags & IOCB_NOWAIT)
959 return ret;
960 }
961 ip = GFS2_I(iocb->ki_filp->f_mapping->host);
962 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
963retry:
964 ret = gfs2_glock_nq(&gh);
965 if (ret)
966 goto out_uninit;
967 pagefault_disable();
968 ret = generic_file_read_iter(iocb, to);
969 pagefault_enable();
970 if (ret <= 0 && ret != -EFAULT)
971 goto out_unlock;
972 if (ret > 0)
973 read += ret;
974
975 if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) {
976 gfs2_glock_dq(&gh);
977 window_size -= fault_in_iov_iter_writeable(to, window_size);
978 if (window_size)
979 goto retry;
980 }
981out_unlock:
982 if (gfs2_holder_queued(&gh))
983 gfs2_glock_dq(&gh);
984out_uninit:
985 gfs2_holder_uninit(&gh);
986 return read ? read : ret;
987}
988
989static ssize_t gfs2_file_buffered_write(struct kiocb *iocb,
990 struct iov_iter *from,
991 struct gfs2_holder *gh)
992{
993 struct file *file = iocb->ki_filp;
994 struct inode *inode = file_inode(file);
995 struct gfs2_inode *ip = GFS2_I(inode);
996 struct gfs2_sbd *sdp = GFS2_SB(inode);
997 struct gfs2_holder *statfs_gh = NULL;
998 size_t prev_count = 0, window_size = 0;
999 size_t orig_count = iov_iter_count(from);
1000 size_t written = 0;
1001 ssize_t ret;
1002
1003 /*
1004 * In this function, we disable page faults when we're holding the
1005 * inode glock while doing I/O. If a page fault occurs, we indicate
1006 * that the inode glock may be dropped, fault in the pages manually,
1007 * and retry.
1008 */
1009
1010 if (inode == sdp->sd_rindex) {
1011 statfs_gh = kmalloc(sizeof(*statfs_gh), GFP_NOFS);
1012 if (!statfs_gh)
1013 return -ENOMEM;
1014 }
1015
1016 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, gh);
1017retry:
1018 if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
1019 window_size -= fault_in_iov_iter_readable(from, window_size);
1020 if (!window_size) {
1021 ret = -EFAULT;
1022 goto out_uninit;
1023 }
1024 from->count = min(from->count, window_size);
1025 }
1026 ret = gfs2_glock_nq(gh);
1027 if (ret)
1028 goto out_uninit;
1029
1030 if (inode == sdp->sd_rindex) {
1031 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1032
1033 ret = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
1034 GL_NOCACHE, statfs_gh);
1035 if (ret)
1036 goto out_unlock;
1037 }
1038
1039 current->backing_dev_info = inode_to_bdi(inode);
1040 pagefault_disable();
1041 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
1042 pagefault_enable();
1043 current->backing_dev_info = NULL;
1044 if (ret > 0) {
1045 iocb->ki_pos += ret;
1046 written += ret;
1047 }
1048
1049 if (inode == sdp->sd_rindex)
1050 gfs2_glock_dq_uninit(statfs_gh);
1051
1052 if (ret <= 0 && ret != -EFAULT)
1053 goto out_unlock;
1054
1055 from->count = orig_count - written;
1056 if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
1057 gfs2_glock_dq(gh);
1058 goto retry;
1059 }
1060out_unlock:
1061 if (gfs2_holder_queued(gh))
1062 gfs2_glock_dq(gh);
1063out_uninit:
1064 gfs2_holder_uninit(gh);
1065 if (statfs_gh)
1066 kfree(statfs_gh);
1067 from->count = orig_count - written;
1068 return written ? written : ret;
1069}
1070
1071/**
1072 * gfs2_file_write_iter - Perform a write to a file
1073 * @iocb: The io context
1074 * @from: The data to write
1075 *
1076 * We have to do a lock/unlock here to refresh the inode size for
1077 * O_APPEND writes, otherwise we can land up writing at the wrong
1078 * offset. There is still a race, but provided the app is using its
1079 * own file locking, this will make O_APPEND work as expected.
1080 *
1081 */
1082
1083static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1084{
1085 struct file *file = iocb->ki_filp;
1086 struct inode *inode = file_inode(file);
1087 struct gfs2_inode *ip = GFS2_I(inode);
1088 struct gfs2_holder gh;
1089 ssize_t ret;
1090
1091 gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
1092
1093 if (iocb->ki_flags & IOCB_APPEND) {
1094 ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
1095 if (ret)
1096 return ret;
1097 gfs2_glock_dq_uninit(&gh);
1098 }
1099
1100 inode_lock(inode);
1101 ret = generic_write_checks(iocb, from);
1102 if (ret <= 0)
1103 goto out_unlock;
1104
1105 ret = file_remove_privs(file);
1106 if (ret)
1107 goto out_unlock;
1108
1109 ret = file_update_time(file);
1110 if (ret)
1111 goto out_unlock;
1112
1113 if (iocb->ki_flags & IOCB_DIRECT) {
1114 struct address_space *mapping = file->f_mapping;
1115 ssize_t buffered, ret2;
1116
1117 ret = gfs2_file_direct_write(iocb, from, &gh);
1118 if (ret < 0 || !iov_iter_count(from))
1119 goto out_unlock;
1120
1121 iocb->ki_flags |= IOCB_DSYNC;
1122 buffered = gfs2_file_buffered_write(iocb, from, &gh);
1123 if (unlikely(buffered <= 0)) {
1124 if (!ret)
1125 ret = buffered;
1126 goto out_unlock;
1127 }
1128
1129 /*
1130 * We need to ensure that the page cache pages are written to
1131 * disk and invalidated to preserve the expected O_DIRECT
1132 * semantics. If the writeback or invalidate fails, only report
1133 * the direct I/O range as we don't know if the buffered pages
1134 * made it to disk.
1135 */
1136 ret2 = generic_write_sync(iocb, buffered);
1137 invalidate_mapping_pages(mapping,
1138 (iocb->ki_pos - buffered) >> PAGE_SHIFT,
1139 (iocb->ki_pos - 1) >> PAGE_SHIFT);
1140 if (!ret || ret2 > 0)
1141 ret += ret2;
1142 } else {
1143 ret = gfs2_file_buffered_write(iocb, from, &gh);
1144 if (likely(ret > 0))
1145 ret = generic_write_sync(iocb, ret);
1146 }
1147
1148out_unlock:
1149 inode_unlock(inode);
1150 return ret;
1151}
1152
1153static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
1154 int mode)
1155{
1156 struct super_block *sb = inode->i_sb;
1157 struct gfs2_inode *ip = GFS2_I(inode);
1158 loff_t end = offset + len;
1159 struct buffer_head *dibh;
1160 int error;
1161
1162 error = gfs2_meta_inode_buffer(ip, &dibh);
1163 if (unlikely(error))
1164 return error;
1165
1166 gfs2_trans_add_meta(ip->i_gl, dibh);
1167
1168 if (gfs2_is_stuffed(ip)) {
1169 error = gfs2_unstuff_dinode(ip);
1170 if (unlikely(error))
1171 goto out;
1172 }
1173
1174 while (offset < end) {
1175 struct iomap iomap = { };
1176
1177 error = gfs2_iomap_alloc(inode, offset, end - offset, &iomap);
1178 if (error)
1179 goto out;
1180 offset = iomap.offset + iomap.length;
1181 if (!(iomap.flags & IOMAP_F_NEW))
1182 continue;
1183 error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
1184 iomap.length >> inode->i_blkbits,
1185 GFP_NOFS);
1186 if (error) {
1187 fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
1188 goto out;
1189 }
1190 }
1191out:
1192 brelse(dibh);
1193 return error;
1194}
1195
1196/**
1197 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
1198 * blocks, determine how many bytes can be written.
1199 * @ip: The inode in question.
1200 * @len: Max cap of bytes. What we return in *len must be <= this.
1201 * @data_blocks: Compute and return the number of data blocks needed
1202 * @ind_blocks: Compute and return the number of indirect blocks needed
1203 * @max_blocks: The total blocks available to work with.
1204 *
1205 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
1206 */
1207static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
1208 unsigned int *data_blocks, unsigned int *ind_blocks,
1209 unsigned int max_blocks)
1210{
1211 loff_t max = *len;
1212 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1213 unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
1214
1215 for (tmp = max_data; tmp > sdp->sd_diptrs;) {
1216 tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
1217 max_data -= tmp;
1218 }
1219
1220 *data_blocks = max_data;
1221 *ind_blocks = max_blocks - max_data;
1222 *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
1223 if (*len > max) {
1224 *len = max;
1225 gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
1226 }
1227}
1228
1229static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1230{
1231 struct inode *inode = file_inode(file);
1232 struct gfs2_sbd *sdp = GFS2_SB(inode);
1233 struct gfs2_inode *ip = GFS2_I(inode);
1234 struct gfs2_alloc_parms ap = { .aflags = 0, };
1235 unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
1236 loff_t bytes, max_bytes, max_blks;
1237 int error;
1238 const loff_t pos = offset;
1239 const loff_t count = len;
1240 loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
1241 loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
1242 loff_t max_chunk_size = UINT_MAX & bsize_mask;
1243
1244 next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
1245
1246 offset &= bsize_mask;
1247
1248 len = next - offset;
1249 bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
1250 if (!bytes)
1251 bytes = UINT_MAX;
1252 bytes &= bsize_mask;
1253 if (bytes == 0)
1254 bytes = sdp->sd_sb.sb_bsize;
1255
1256 gfs2_size_hint(file, offset, len);
1257
1258 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
1259 ap.min_target = data_blocks + ind_blocks;
1260
1261 while (len > 0) {
1262 if (len < bytes)
1263 bytes = len;
1264 if (!gfs2_write_alloc_required(ip, offset, bytes)) {
1265 len -= bytes;
1266 offset += bytes;
1267 continue;
1268 }
1269
1270 /* We need to determine how many bytes we can actually
1271 * fallocate without exceeding quota or going over the
1272 * end of the fs. We start off optimistically by assuming
1273 * we can write max_bytes */
1274 max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
1275
1276 /* Since max_bytes is most likely a theoretical max, we
1277 * calculate a more realistic 'bytes' to serve as a good
1278 * starting point for the number of bytes we may be able
1279 * to write */
1280 gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
1281 ap.target = data_blocks + ind_blocks;
1282
1283 error = gfs2_quota_lock_check(ip, &ap);
1284 if (error)
1285 return error;
1286 /* ap.allowed tells us how many blocks quota will allow
1287 * us to write. Check if this reduces max_blks */
1288 max_blks = UINT_MAX;
1289 if (ap.allowed)
1290 max_blks = ap.allowed;
1291
1292 error = gfs2_inplace_reserve(ip, &ap);
1293 if (error)
1294 goto out_qunlock;
1295
1296 /* check if the selected rgrp limits our max_blks further */
1297 if (ip->i_res.rs_reserved < max_blks)
1298 max_blks = ip->i_res.rs_reserved;
1299
1300 /* Almost done. Calculate bytes that can be written using
1301 * max_blks. We also recompute max_bytes, data_blocks and
1302 * ind_blocks */
1303 calc_max_reserv(ip, &max_bytes, &data_blocks,
1304 &ind_blocks, max_blks);
1305
1306 rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1307 RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1308 if (gfs2_is_jdata(ip))
1309 rblocks += data_blocks ? data_blocks : 1;
1310
1311 error = gfs2_trans_begin(sdp, rblocks,
1312 PAGE_SIZE >> inode->i_blkbits);
1313 if (error)
1314 goto out_trans_fail;
1315
1316 error = fallocate_chunk(inode, offset, max_bytes, mode);
1317 gfs2_trans_end(sdp);
1318
1319 if (error)
1320 goto out_trans_fail;
1321
1322 len -= max_bytes;
1323 offset += max_bytes;
1324 gfs2_inplace_release(ip);
1325 gfs2_quota_unlock(ip);
1326 }
1327
1328 if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size)
1329 i_size_write(inode, pos + count);
1330 file_update_time(file);
1331 mark_inode_dirty(inode);
1332
1333 if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1334 return vfs_fsync_range(file, pos, pos + count - 1,
1335 (file->f_flags & __O_SYNC) ? 0 : 1);
1336 return 0;
1337
1338out_trans_fail:
1339 gfs2_inplace_release(ip);
1340out_qunlock:
1341 gfs2_quota_unlock(ip);
1342 return error;
1343}
1344
1345static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1346{
1347 struct inode *inode = file_inode(file);
1348 struct gfs2_sbd *sdp = GFS2_SB(inode);
1349 struct gfs2_inode *ip = GFS2_I(inode);
1350 struct gfs2_holder gh;
1351 int ret;
1352
1353 if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1354 return -EOPNOTSUPP;
1355 /* fallocate is needed by gfs2_grow to reserve space in the rindex */
1356 if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1357 return -EOPNOTSUPP;
1358
1359 inode_lock(inode);
1360
1361 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1362 ret = gfs2_glock_nq(&gh);
1363 if (ret)
1364 goto out_uninit;
1365
1366 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1367 (offset + len) > inode->i_size) {
1368 ret = inode_newsize_ok(inode, offset + len);
1369 if (ret)
1370 goto out_unlock;
1371 }
1372
1373 ret = get_write_access(inode);
1374 if (ret)
1375 goto out_unlock;
1376
1377 if (mode & FALLOC_FL_PUNCH_HOLE) {
1378 ret = __gfs2_punch_hole(file, offset, len);
1379 } else {
1380 ret = __gfs2_fallocate(file, mode, offset, len);
1381 if (ret)
1382 gfs2_rs_deltree(&ip->i_res);
1383 }
1384
1385 put_write_access(inode);
1386out_unlock:
1387 gfs2_glock_dq(&gh);
1388out_uninit:
1389 gfs2_holder_uninit(&gh);
1390 inode_unlock(inode);
1391 return ret;
1392}
1393
1394static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1395 struct file *out, loff_t *ppos,
1396 size_t len, unsigned int flags)
1397{
1398 ssize_t ret;
1399
1400 gfs2_size_hint(out, *ppos, len);
1401
1402 ret = iter_file_splice_write(pipe, out, ppos, len, flags);
1403 return ret;
1404}
1405
1406#ifdef CONFIG_GFS2_FS_LOCKING_DLM
1407
1408/**
1409 * gfs2_lock - acquire/release a posix lock on a file
1410 * @file: the file pointer
1411 * @cmd: either modify or retrieve lock state, possibly wait
1412 * @fl: type and range of lock
1413 *
1414 * Returns: errno
1415 */
1416
1417static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1418{
1419 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1420 struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1421 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1422
1423 if (!(fl->fl_flags & FL_POSIX))
1424 return -ENOLCK;
1425 if (cmd == F_CANCELLK) {
1426 /* Hack: */
1427 cmd = F_SETLK;
1428 fl->fl_type = F_UNLCK;
1429 }
1430 if (unlikely(gfs2_withdrawn(sdp))) {
1431 if (fl->fl_type == F_UNLCK)
1432 locks_lock_file_wait(file, fl);
1433 return -EIO;
1434 }
1435 if (IS_GETLK(cmd))
1436 return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1437 else if (fl->fl_type == F_UNLCK)
1438 return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1439 else
1440 return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1441}
1442
1443static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1444{
1445 struct gfs2_file *fp = file->private_data;
1446 struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1447 struct gfs2_inode *ip = GFS2_I(file_inode(file));
1448 struct gfs2_glock *gl;
1449 unsigned int state;
1450 u16 flags;
1451 int error = 0;
1452 int sleeptime;
1453
1454 state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1455 flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
1456
1457 mutex_lock(&fp->f_fl_mutex);
1458
1459 if (gfs2_holder_initialized(fl_gh)) {
1460 struct file_lock request;
1461 if (fl_gh->gh_state == state)
1462 goto out;
1463 locks_init_lock(&request);
1464 request.fl_type = F_UNLCK;
1465 request.fl_flags = FL_FLOCK;
1466 locks_lock_file_wait(file, &request);
1467 gfs2_glock_dq(fl_gh);
1468 gfs2_holder_reinit(state, flags, fl_gh);
1469 } else {
1470 error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1471 &gfs2_flock_glops, CREATE, &gl);
1472 if (error)
1473 goto out;
1474 gfs2_holder_init(gl, state, flags, fl_gh);
1475 gfs2_glock_put(gl);
1476 }
1477 for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1478 error = gfs2_glock_nq(fl_gh);
1479 if (error != GLR_TRYFAILED)
1480 break;
1481 fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
1482 msleep(sleeptime);
1483 }
1484 if (error) {
1485 gfs2_holder_uninit(fl_gh);
1486 if (error == GLR_TRYFAILED)
1487 error = -EAGAIN;
1488 } else {
1489 error = locks_lock_file_wait(file, fl);
1490 gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1491 }
1492
1493out:
1494 mutex_unlock(&fp->f_fl_mutex);
1495 return error;
1496}
1497
1498static void do_unflock(struct file *file, struct file_lock *fl)
1499{
1500 struct gfs2_file *fp = file->private_data;
1501 struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1502
1503 mutex_lock(&fp->f_fl_mutex);
1504 locks_lock_file_wait(file, fl);
1505 if (gfs2_holder_initialized(fl_gh)) {
1506 gfs2_glock_dq(fl_gh);
1507 gfs2_holder_uninit(fl_gh);
1508 }
1509 mutex_unlock(&fp->f_fl_mutex);
1510}
1511
1512/**
1513 * gfs2_flock - acquire/release a flock lock on a file
1514 * @file: the file pointer
1515 * @cmd: either modify or retrieve lock state, possibly wait
1516 * @fl: type and range of lock
1517 *
1518 * Returns: errno
1519 */
1520
1521static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1522{
1523 if (!(fl->fl_flags & FL_FLOCK))
1524 return -ENOLCK;
1525
1526 if (fl->fl_type == F_UNLCK) {
1527 do_unflock(file, fl);
1528 return 0;
1529 } else {
1530 return do_flock(file, cmd, fl);
1531 }
1532}
1533
1534const struct file_operations gfs2_file_fops = {
1535 .llseek = gfs2_llseek,
1536 .read_iter = gfs2_file_read_iter,
1537 .write_iter = gfs2_file_write_iter,
1538 .iopoll = iocb_bio_iopoll,
1539 .unlocked_ioctl = gfs2_ioctl,
1540 .compat_ioctl = gfs2_compat_ioctl,
1541 .mmap = gfs2_mmap,
1542 .open = gfs2_open,
1543 .release = gfs2_release,
1544 .fsync = gfs2_fsync,
1545 .lock = gfs2_lock,
1546 .flock = gfs2_flock,
1547 .splice_read = generic_file_splice_read,
1548 .splice_write = gfs2_file_splice_write,
1549 .setlease = simple_nosetlease,
1550 .fallocate = gfs2_fallocate,
1551};
1552
1553const struct file_operations gfs2_dir_fops = {
1554 .iterate_shared = gfs2_readdir,
1555 .unlocked_ioctl = gfs2_ioctl,
1556 .compat_ioctl = gfs2_compat_ioctl,
1557 .open = gfs2_open,
1558 .release = gfs2_release,
1559 .fsync = gfs2_fsync,
1560 .lock = gfs2_lock,
1561 .flock = gfs2_flock,
1562 .llseek = default_llseek,
1563};
1564
1565#endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1566
1567const struct file_operations gfs2_file_fops_nolock = {
1568 .llseek = gfs2_llseek,
1569 .read_iter = gfs2_file_read_iter,
1570 .write_iter = gfs2_file_write_iter,
1571 .iopoll = iocb_bio_iopoll,
1572 .unlocked_ioctl = gfs2_ioctl,
1573 .compat_ioctl = gfs2_compat_ioctl,
1574 .mmap = gfs2_mmap,
1575 .open = gfs2_open,
1576 .release = gfs2_release,
1577 .fsync = gfs2_fsync,
1578 .splice_read = generic_file_splice_read,
1579 .splice_write = gfs2_file_splice_write,
1580 .setlease = generic_setlease,
1581 .fallocate = gfs2_fallocate,
1582};
1583
1584const struct file_operations gfs2_dir_fops_nolock = {
1585 .iterate_shared = gfs2_readdir,
1586 .unlocked_ioctl = gfs2_ioctl,
1587 .compat_ioctl = gfs2_compat_ioctl,
1588 .open = gfs2_open,
1589 .release = gfs2_release,
1590 .fsync = gfs2_fsync,
1591 .llseek = default_llseek,
1592};
1593