Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * fs/f2fs/segment.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/blkdev.h>
9#include <linux/backing-dev.h>
10
11/* constant macro */
12#define NULL_SEGNO ((unsigned int)(~0))
13#define NULL_SECNO ((unsigned int)(~0))
14
15#define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
16#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
17
18#define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19#define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */
20
21/* L: Logical segment # in volume, R: Relative segment # in main area */
22#define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
23#define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
24
25#define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
26#define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27
28static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
29 unsigned short seg_type)
30{
31 f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
32}
33
34#define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
35#define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
36#define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
37
38#define IS_CURSEG(sbi, seg) \
39 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
40 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
41 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
42 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
43 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
44 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) || \
45 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) || \
46 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
47
48#define IS_CURSEC(sbi, secno) \
49 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
50 (sbi)->segs_per_sec) || \
51 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
52 (sbi)->segs_per_sec) || \
53 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
54 (sbi)->segs_per_sec) || \
55 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
56 (sbi)->segs_per_sec) || \
57 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
58 (sbi)->segs_per_sec) || \
59 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
60 (sbi)->segs_per_sec) || \
61 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno / \
62 (sbi)->segs_per_sec) || \
63 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno / \
64 (sbi)->segs_per_sec))
65
66#define MAIN_BLKADDR(sbi) \
67 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \
68 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
69#define SEG0_BLKADDR(sbi) \
70 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \
71 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
72
73#define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
74#define MAIN_SECS(sbi) ((sbi)->total_sections)
75
76#define TOTAL_SEGS(sbi) \
77 (SM_I(sbi) ? SM_I(sbi)->segment_count : \
78 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
79#define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
80
81#define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
82#define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
83 (sbi)->log_blocks_per_seg))
84
85#define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
86 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
87
88#define NEXT_FREE_BLKADDR(sbi, curseg) \
89 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
90
91#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
92#define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
93 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
94#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
95 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
96
97#define GET_SEGNO(sbi, blk_addr) \
98 ((!__is_valid_data_blkaddr(blk_addr)) ? \
99 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
100 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
101#define BLKS_PER_SEC(sbi) \
102 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
103#define GET_SEC_FROM_SEG(sbi, segno) \
104 (((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
105#define GET_SEG_FROM_SEC(sbi, secno) \
106 ((secno) * (sbi)->segs_per_sec)
107#define GET_ZONE_FROM_SEC(sbi, secno) \
108 (((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
109#define GET_ZONE_FROM_SEG(sbi, segno) \
110 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
111
112#define GET_SUM_BLOCK(sbi, segno) \
113 ((sbi)->sm_info->ssa_blkaddr + (segno))
114
115#define GET_SUM_TYPE(footer) ((footer)->entry_type)
116#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
117
118#define SIT_ENTRY_OFFSET(sit_i, segno) \
119 ((segno) % (sit_i)->sents_per_block)
120#define SIT_BLOCK_OFFSET(segno) \
121 ((segno) / SIT_ENTRY_PER_BLOCK)
122#define START_SEGNO(segno) \
123 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
124#define SIT_BLK_CNT(sbi) \
125 DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
126#define f2fs_bitmap_size(nr) \
127 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
128
129#define SECTOR_FROM_BLOCK(blk_addr) \
130 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
131#define SECTOR_TO_BLOCK(sectors) \
132 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
133
134/*
135 * indicate a block allocation direction: RIGHT and LEFT.
136 * RIGHT means allocating new sections towards the end of volume.
137 * LEFT means the opposite direction.
138 */
139enum {
140 ALLOC_RIGHT = 0,
141 ALLOC_LEFT
142};
143
144/*
145 * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
146 * LFS writes data sequentially with cleaning operations.
147 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
148 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
149 * fragmented segment which has similar aging degree.
150 */
151enum {
152 LFS = 0,
153 SSR,
154 AT_SSR,
155};
156
157/*
158 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
159 * GC_CB is based on cost-benefit algorithm.
160 * GC_GREEDY is based on greedy algorithm.
161 * GC_AT is based on age-threshold algorithm.
162 */
163enum {
164 GC_CB = 0,
165 GC_GREEDY,
166 GC_AT,
167 ALLOC_NEXT,
168 FLUSH_DEVICE,
169 MAX_GC_POLICY,
170};
171
172/*
173 * BG_GC means the background cleaning job.
174 * FG_GC means the on-demand cleaning job.
175 */
176enum {
177 BG_GC = 0,
178 FG_GC,
179};
180
181/* for a function parameter to select a victim segment */
182struct victim_sel_policy {
183 int alloc_mode; /* LFS or SSR */
184 int gc_mode; /* GC_CB or GC_GREEDY */
185 unsigned long *dirty_bitmap; /* dirty segment/section bitmap */
186 unsigned int max_search; /*
187 * maximum # of segments/sections
188 * to search
189 */
190 unsigned int offset; /* last scanned bitmap offset */
191 unsigned int ofs_unit; /* bitmap search unit */
192 unsigned int min_cost; /* minimum cost */
193 unsigned long long oldest_age; /* oldest age of segments having the same min cost */
194 unsigned int min_segno; /* segment # having min. cost */
195 unsigned long long age; /* mtime of GCed section*/
196 unsigned long long age_threshold;/* age threshold */
197};
198
199struct seg_entry {
200 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
201 unsigned int valid_blocks:10; /* # of valid blocks */
202 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
203 unsigned int padding:6; /* padding */
204 unsigned char *cur_valid_map; /* validity bitmap of blocks */
205#ifdef CONFIG_F2FS_CHECK_FS
206 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */
207#endif
208 /*
209 * # of valid blocks and the validity bitmap stored in the last
210 * checkpoint pack. This information is used by the SSR mode.
211 */
212 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
213 unsigned char *discard_map;
214 unsigned long long mtime; /* modification time of the segment */
215};
216
217struct sec_entry {
218 unsigned int valid_blocks; /* # of valid blocks in a section */
219};
220
221struct segment_allocation {
222 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
223};
224
225#define MAX_SKIP_GC_COUNT 16
226
227struct inmem_pages {
228 struct list_head list;
229 struct page *page;
230 block_t old_addr; /* for revoking when fail to commit */
231};
232
233struct sit_info {
234 const struct segment_allocation *s_ops;
235
236 block_t sit_base_addr; /* start block address of SIT area */
237 block_t sit_blocks; /* # of blocks used by SIT area */
238 block_t written_valid_blocks; /* # of valid blocks in main area */
239 char *bitmap; /* all bitmaps pointer */
240 char *sit_bitmap; /* SIT bitmap pointer */
241#ifdef CONFIG_F2FS_CHECK_FS
242 char *sit_bitmap_mir; /* SIT bitmap mirror */
243
244 /* bitmap of segments to be ignored by GC in case of errors */
245 unsigned long *invalid_segmap;
246#endif
247 unsigned int bitmap_size; /* SIT bitmap size */
248
249 unsigned long *tmp_map; /* bitmap for temporal use */
250 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
251 unsigned int dirty_sentries; /* # of dirty sentries */
252 unsigned int sents_per_block; /* # of SIT entries per block */
253 struct rw_semaphore sentry_lock; /* to protect SIT cache */
254 struct seg_entry *sentries; /* SIT segment-level cache */
255 struct sec_entry *sec_entries; /* SIT section-level cache */
256
257 /* for cost-benefit algorithm in cleaning procedure */
258 unsigned long long elapsed_time; /* elapsed time after mount */
259 unsigned long long mounted_time; /* mount time */
260 unsigned long long min_mtime; /* min. modification time */
261 unsigned long long max_mtime; /* max. modification time */
262 unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */
263 unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */
264
265 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
266};
267
268struct free_segmap_info {
269 unsigned int start_segno; /* start segment number logically */
270 unsigned int free_segments; /* # of free segments */
271 unsigned int free_sections; /* # of free sections */
272 spinlock_t segmap_lock; /* free segmap lock */
273 unsigned long *free_segmap; /* free segment bitmap */
274 unsigned long *free_secmap; /* free section bitmap */
275};
276
277/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
278enum dirty_type {
279 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
280 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
281 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
282 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
283 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
284 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
285 DIRTY, /* to count # of dirty segments */
286 PRE, /* to count # of entirely obsolete segments */
287 NR_DIRTY_TYPE
288};
289
290struct dirty_seglist_info {
291 const struct victim_selection *v_ops; /* victim selction operation */
292 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
293 unsigned long *dirty_secmap;
294 struct mutex seglist_lock; /* lock for segment bitmaps */
295 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
296 unsigned long *victim_secmap; /* background GC victims */
297};
298
299/* victim selection function for cleaning and SSR */
300struct victim_selection {
301 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
302 int, int, char, unsigned long long);
303};
304
305/* for active log information */
306struct curseg_info {
307 struct mutex curseg_mutex; /* lock for consistency */
308 struct f2fs_summary_block *sum_blk; /* cached summary block */
309 struct rw_semaphore journal_rwsem; /* protect journal area */
310 struct f2fs_journal *journal; /* cached journal info */
311 unsigned char alloc_type; /* current allocation type */
312 unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */
313 unsigned int segno; /* current segment number */
314 unsigned short next_blkoff; /* next block offset to write */
315 unsigned int zone; /* current zone number */
316 unsigned int next_segno; /* preallocated segment */
317 int fragment_remained_chunk; /* remained block size in a chunk for block fragmentation mode */
318 bool inited; /* indicate inmem log is inited */
319};
320
321struct sit_entry_set {
322 struct list_head set_list; /* link with all sit sets */
323 unsigned int start_segno; /* start segno of sits in set */
324 unsigned int entry_cnt; /* the # of sit entries in set */
325};
326
327/*
328 * inline functions
329 */
330static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
331{
332 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
333}
334
335static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
336 unsigned int segno)
337{
338 struct sit_info *sit_i = SIT_I(sbi);
339 return &sit_i->sentries[segno];
340}
341
342static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
343 unsigned int segno)
344{
345 struct sit_info *sit_i = SIT_I(sbi);
346 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
347}
348
349static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
350 unsigned int segno, bool use_section)
351{
352 /*
353 * In order to get # of valid blocks in a section instantly from many
354 * segments, f2fs manages two counting structures separately.
355 */
356 if (use_section && __is_large_section(sbi))
357 return get_sec_entry(sbi, segno)->valid_blocks;
358 else
359 return get_seg_entry(sbi, segno)->valid_blocks;
360}
361
362static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
363 unsigned int segno, bool use_section)
364{
365 if (use_section && __is_large_section(sbi)) {
366 unsigned int start_segno = START_SEGNO(segno);
367 unsigned int blocks = 0;
368 int i;
369
370 for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
371 struct seg_entry *se = get_seg_entry(sbi, start_segno);
372
373 blocks += se->ckpt_valid_blocks;
374 }
375 return blocks;
376 }
377 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
378}
379
380static inline void seg_info_from_raw_sit(struct seg_entry *se,
381 struct f2fs_sit_entry *rs)
382{
383 se->valid_blocks = GET_SIT_VBLOCKS(rs);
384 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
385 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
386 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
387#ifdef CONFIG_F2FS_CHECK_FS
388 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
389#endif
390 se->type = GET_SIT_TYPE(rs);
391 se->mtime = le64_to_cpu(rs->mtime);
392}
393
394static inline void __seg_info_to_raw_sit(struct seg_entry *se,
395 struct f2fs_sit_entry *rs)
396{
397 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
398 se->valid_blocks;
399 rs->vblocks = cpu_to_le16(raw_vblocks);
400 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
401 rs->mtime = cpu_to_le64(se->mtime);
402}
403
404static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
405 struct page *page, unsigned int start)
406{
407 struct f2fs_sit_block *raw_sit;
408 struct seg_entry *se;
409 struct f2fs_sit_entry *rs;
410 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
411 (unsigned long)MAIN_SEGS(sbi));
412 int i;
413
414 raw_sit = (struct f2fs_sit_block *)page_address(page);
415 memset(raw_sit, 0, PAGE_SIZE);
416 for (i = 0; i < end - start; i++) {
417 rs = &raw_sit->entries[i];
418 se = get_seg_entry(sbi, start + i);
419 __seg_info_to_raw_sit(se, rs);
420 }
421}
422
423static inline void seg_info_to_raw_sit(struct seg_entry *se,
424 struct f2fs_sit_entry *rs)
425{
426 __seg_info_to_raw_sit(se, rs);
427
428 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
429 se->ckpt_valid_blocks = se->valid_blocks;
430}
431
432static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
433 unsigned int max, unsigned int segno)
434{
435 unsigned int ret;
436 spin_lock(&free_i->segmap_lock);
437 ret = find_next_bit(free_i->free_segmap, max, segno);
438 spin_unlock(&free_i->segmap_lock);
439 return ret;
440}
441
442static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
443{
444 struct free_segmap_info *free_i = FREE_I(sbi);
445 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
446 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
447 unsigned int next;
448 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
449
450 spin_lock(&free_i->segmap_lock);
451 clear_bit(segno, free_i->free_segmap);
452 free_i->free_segments++;
453
454 next = find_next_bit(free_i->free_segmap,
455 start_segno + sbi->segs_per_sec, start_segno);
456 if (next >= start_segno + usable_segs) {
457 clear_bit(secno, free_i->free_secmap);
458 free_i->free_sections++;
459 }
460 spin_unlock(&free_i->segmap_lock);
461}
462
463static inline void __set_inuse(struct f2fs_sb_info *sbi,
464 unsigned int segno)
465{
466 struct free_segmap_info *free_i = FREE_I(sbi);
467 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
468
469 set_bit(segno, free_i->free_segmap);
470 free_i->free_segments--;
471 if (!test_and_set_bit(secno, free_i->free_secmap))
472 free_i->free_sections--;
473}
474
475static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
476 unsigned int segno, bool inmem)
477{
478 struct free_segmap_info *free_i = FREE_I(sbi);
479 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
480 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
481 unsigned int next;
482 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
483
484 spin_lock(&free_i->segmap_lock);
485 if (test_and_clear_bit(segno, free_i->free_segmap)) {
486 free_i->free_segments++;
487
488 if (!inmem && IS_CURSEC(sbi, secno))
489 goto skip_free;
490 next = find_next_bit(free_i->free_segmap,
491 start_segno + sbi->segs_per_sec, start_segno);
492 if (next >= start_segno + usable_segs) {
493 if (test_and_clear_bit(secno, free_i->free_secmap))
494 free_i->free_sections++;
495 }
496 }
497skip_free:
498 spin_unlock(&free_i->segmap_lock);
499}
500
501static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
502 unsigned int segno)
503{
504 struct free_segmap_info *free_i = FREE_I(sbi);
505 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
506
507 spin_lock(&free_i->segmap_lock);
508 if (!test_and_set_bit(segno, free_i->free_segmap)) {
509 free_i->free_segments--;
510 if (!test_and_set_bit(secno, free_i->free_secmap))
511 free_i->free_sections--;
512 }
513 spin_unlock(&free_i->segmap_lock);
514}
515
516static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
517 void *dst_addr)
518{
519 struct sit_info *sit_i = SIT_I(sbi);
520
521#ifdef CONFIG_F2FS_CHECK_FS
522 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
523 sit_i->bitmap_size))
524 f2fs_bug_on(sbi, 1);
525#endif
526 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
527}
528
529static inline block_t written_block_count(struct f2fs_sb_info *sbi)
530{
531 return SIT_I(sbi)->written_valid_blocks;
532}
533
534static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
535{
536 return FREE_I(sbi)->free_segments;
537}
538
539static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
540{
541 return SM_I(sbi)->reserved_segments +
542 SM_I(sbi)->additional_reserved_segments;
543}
544
545static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
546{
547 return FREE_I(sbi)->free_sections;
548}
549
550static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
551{
552 return DIRTY_I(sbi)->nr_dirty[PRE];
553}
554
555static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
556{
557 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
558 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
559 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
560 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
561 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
562 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
563}
564
565static inline int overprovision_segments(struct f2fs_sb_info *sbi)
566{
567 return SM_I(sbi)->ovp_segments;
568}
569
570static inline int reserved_sections(struct f2fs_sb_info *sbi)
571{
572 return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
573}
574
575static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
576{
577 unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
578 get_pages(sbi, F2FS_DIRTY_DENTS);
579 unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
580 unsigned int segno, left_blocks;
581 int i;
582
583 /* check current node segment */
584 for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
585 segno = CURSEG_I(sbi, i)->segno;
586 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
587 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
588
589 if (node_blocks > left_blocks)
590 return false;
591 }
592
593 /* check current data segment */
594 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
595 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
596 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
597 if (dent_blocks > left_blocks)
598 return false;
599 return true;
600}
601
602static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
603 int freed, int needed)
604{
605 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
606 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
607 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
608
609 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
610 return false;
611
612 if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
613 has_curseg_enough_space(sbi))
614 return false;
615 return (free_sections(sbi) + freed) <=
616 (node_secs + 2 * dent_secs + imeta_secs +
617 reserved_sections(sbi) + needed);
618}
619
620static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
621{
622 if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
623 return true;
624 if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
625 return true;
626 return false;
627}
628
629static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
630{
631 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
632}
633
634static inline int utilization(struct f2fs_sb_info *sbi)
635{
636 return div_u64((u64)valid_user_blocks(sbi) * 100,
637 sbi->user_block_count);
638}
639
640/*
641 * Sometimes f2fs may be better to drop out-of-place update policy.
642 * And, users can control the policy through sysfs entries.
643 * There are five policies with triggering conditions as follows.
644 * F2FS_IPU_FORCE - all the time,
645 * F2FS_IPU_SSR - if SSR mode is activated,
646 * F2FS_IPU_UTIL - if FS utilization is over threashold,
647 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
648 * threashold,
649 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
650 * storages. IPU will be triggered only if the # of dirty
651 * pages over min_fsync_blocks. (=default option)
652 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
653 * F2FS_IPU_NOCACHE - disable IPU bio cache.
654 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
655 * FI_OPU_WRITE flag.
656 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
657 */
658#define DEF_MIN_IPU_UTIL 70
659#define DEF_MIN_FSYNC_BLOCKS 8
660#define DEF_MIN_HOT_BLOCKS 16
661
662#define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */
663
664enum {
665 F2FS_IPU_FORCE,
666 F2FS_IPU_SSR,
667 F2FS_IPU_UTIL,
668 F2FS_IPU_SSR_UTIL,
669 F2FS_IPU_FSYNC,
670 F2FS_IPU_ASYNC,
671 F2FS_IPU_NOCACHE,
672 F2FS_IPU_HONOR_OPU_WRITE,
673};
674
675static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
676 int type)
677{
678 struct curseg_info *curseg = CURSEG_I(sbi, type);
679 return curseg->segno;
680}
681
682static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
683 int type)
684{
685 struct curseg_info *curseg = CURSEG_I(sbi, type);
686 return curseg->alloc_type;
687}
688
689static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
690{
691 struct curseg_info *curseg = CURSEG_I(sbi, type);
692 return curseg->next_blkoff;
693}
694
695static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
696{
697 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
698}
699
700static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
701{
702 struct f2fs_sb_info *sbi = fio->sbi;
703
704 if (__is_valid_data_blkaddr(fio->old_blkaddr))
705 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
706 META_GENERIC : DATA_GENERIC);
707 verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
708 META_GENERIC : DATA_GENERIC_ENHANCE);
709}
710
711/*
712 * Summary block is always treated as an invalid block
713 */
714static inline int check_block_count(struct f2fs_sb_info *sbi,
715 int segno, struct f2fs_sit_entry *raw_sit)
716{
717 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
718 int valid_blocks = 0;
719 int cur_pos = 0, next_pos;
720 unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
721
722 /* check bitmap with valid block count */
723 do {
724 if (is_valid) {
725 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
726 usable_blks_per_seg,
727 cur_pos);
728 valid_blocks += next_pos - cur_pos;
729 } else
730 next_pos = find_next_bit_le(&raw_sit->valid_map,
731 usable_blks_per_seg,
732 cur_pos);
733 cur_pos = next_pos;
734 is_valid = !is_valid;
735 } while (cur_pos < usable_blks_per_seg);
736
737 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
738 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
739 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
740 set_sbi_flag(sbi, SBI_NEED_FSCK);
741 return -EFSCORRUPTED;
742 }
743
744 if (usable_blks_per_seg < sbi->blocks_per_seg)
745 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
746 sbi->blocks_per_seg,
747 usable_blks_per_seg) != sbi->blocks_per_seg);
748
749 /* check segment usage, and check boundary of a given segment number */
750 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
751 || segno > TOTAL_SEGS(sbi) - 1)) {
752 f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
753 GET_SIT_VBLOCKS(raw_sit), segno);
754 set_sbi_flag(sbi, SBI_NEED_FSCK);
755 return -EFSCORRUPTED;
756 }
757 return 0;
758}
759
760static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
761 unsigned int start)
762{
763 struct sit_info *sit_i = SIT_I(sbi);
764 unsigned int offset = SIT_BLOCK_OFFSET(start);
765 block_t blk_addr = sit_i->sit_base_addr + offset;
766
767 check_seg_range(sbi, start);
768
769#ifdef CONFIG_F2FS_CHECK_FS
770 if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
771 f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
772 f2fs_bug_on(sbi, 1);
773#endif
774
775 /* calculate sit block address */
776 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
777 blk_addr += sit_i->sit_blocks;
778
779 return blk_addr;
780}
781
782static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
783 pgoff_t block_addr)
784{
785 struct sit_info *sit_i = SIT_I(sbi);
786 block_addr -= sit_i->sit_base_addr;
787 if (block_addr < sit_i->sit_blocks)
788 block_addr += sit_i->sit_blocks;
789 else
790 block_addr -= sit_i->sit_blocks;
791
792 return block_addr + sit_i->sit_base_addr;
793}
794
795static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
796{
797 unsigned int block_off = SIT_BLOCK_OFFSET(start);
798
799 f2fs_change_bit(block_off, sit_i->sit_bitmap);
800#ifdef CONFIG_F2FS_CHECK_FS
801 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
802#endif
803}
804
805static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
806 bool base_time)
807{
808 struct sit_info *sit_i = SIT_I(sbi);
809 time64_t diff, now = ktime_get_boottime_seconds();
810
811 if (now >= sit_i->mounted_time)
812 return sit_i->elapsed_time + now - sit_i->mounted_time;
813
814 /* system time is set to the past */
815 if (!base_time) {
816 diff = sit_i->mounted_time - now;
817 if (sit_i->elapsed_time >= diff)
818 return sit_i->elapsed_time - diff;
819 return 0;
820 }
821 return sit_i->elapsed_time;
822}
823
824static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
825 unsigned int ofs_in_node, unsigned char version)
826{
827 sum->nid = cpu_to_le32(nid);
828 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
829 sum->version = version;
830}
831
832static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
833{
834 return __start_cp_addr(sbi) +
835 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
836}
837
838static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
839{
840 return __start_cp_addr(sbi) +
841 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
842 - (base + 1) + type;
843}
844
845static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
846{
847 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
848 return true;
849 return false;
850}
851
852/*
853 * It is very important to gather dirty pages and write at once, so that we can
854 * submit a big bio without interfering other data writes.
855 * By default, 512 pages for directory data,
856 * 512 pages (2MB) * 8 for nodes, and
857 * 256 pages * 8 for meta are set.
858 */
859static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
860{
861 if (sbi->sb->s_bdi->wb.dirty_exceeded)
862 return 0;
863
864 if (type == DATA)
865 return sbi->blocks_per_seg;
866 else if (type == NODE)
867 return 8 * sbi->blocks_per_seg;
868 else if (type == META)
869 return 8 * BIO_MAX_VECS;
870 else
871 return 0;
872}
873
874/*
875 * When writing pages, it'd better align nr_to_write for segment size.
876 */
877static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
878 struct writeback_control *wbc)
879{
880 long nr_to_write, desired;
881
882 if (wbc->sync_mode != WB_SYNC_NONE)
883 return 0;
884
885 nr_to_write = wbc->nr_to_write;
886 desired = BIO_MAX_VECS;
887 if (type == NODE)
888 desired <<= 1;
889
890 wbc->nr_to_write = desired;
891 return desired - nr_to_write;
892}
893
894static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
895{
896 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
897 bool wakeup = false;
898 int i;
899
900 if (force)
901 goto wake_up;
902
903 mutex_lock(&dcc->cmd_lock);
904 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
905 if (i + 1 < dcc->discard_granularity)
906 break;
907 if (!list_empty(&dcc->pend_list[i])) {
908 wakeup = true;
909 break;
910 }
911 }
912 mutex_unlock(&dcc->cmd_lock);
913 if (!wakeup || !is_idle(sbi, DISCARD_TIME))
914 return;
915wake_up:
916 dcc->discard_wake = 1;
917 wake_up_interruptible_all(&dcc->discard_wait_queue);
918}