at v5.18 12 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * fs/f2fs/node.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8/* start node id of a node block dedicated to the given node id */ 9#define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 10 11/* node block offset on the NAT area dedicated to the given start node id */ 12#define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK) 13 14/* # of pages to perform synchronous readahead before building free nids */ 15#define FREE_NID_PAGES 8 16#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES) 17 18/* size of free nid batch when shrinking */ 19#define SHRINK_NID_BATCH_SIZE 8 20 21#define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */ 22 23/* maximum readahead size for node during getting data blocks */ 24#define MAX_RA_NODE 128 25 26/* control the memory footprint threshold (10MB per 1GB ram) */ 27#define DEF_RAM_THRESHOLD 1 28 29/* control dirty nats ratio threshold (default: 10% over max nid count) */ 30#define DEF_DIRTY_NAT_RATIO_THRESHOLD 10 31/* control total # of nats */ 32#define DEF_NAT_CACHE_THRESHOLD 100000 33 34/* control total # of node writes used for roll-fowrad recovery */ 35#define DEF_RF_NODE_BLOCKS 0 36 37/* vector size for gang look-up from nat cache that consists of radix tree */ 38#define NATVEC_SIZE 64 39#define SETVEC_SIZE 32 40 41/* return value for read_node_page */ 42#define LOCKED_PAGE 1 43 44/* check pinned file's alignment status of physical blocks */ 45#define FILE_NOT_ALIGNED 1 46 47/* For flag in struct node_info */ 48enum { 49 IS_CHECKPOINTED, /* is it checkpointed before? */ 50 HAS_FSYNCED_INODE, /* is the inode fsynced before? */ 51 HAS_LAST_FSYNC, /* has the latest node fsync mark? */ 52 IS_DIRTY, /* this nat entry is dirty? */ 53 IS_PREALLOC, /* nat entry is preallocated */ 54}; 55 56/* 57 * For node information 58 */ 59struct node_info { 60 nid_t nid; /* node id */ 61 nid_t ino; /* inode number of the node's owner */ 62 block_t blk_addr; /* block address of the node */ 63 unsigned char version; /* version of the node */ 64 unsigned char flag; /* for node information bits */ 65}; 66 67struct nat_entry { 68 struct list_head list; /* for clean or dirty nat list */ 69 struct node_info ni; /* in-memory node information */ 70}; 71 72#define nat_get_nid(nat) ((nat)->ni.nid) 73#define nat_set_nid(nat, n) ((nat)->ni.nid = (n)) 74#define nat_get_blkaddr(nat) ((nat)->ni.blk_addr) 75#define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b)) 76#define nat_get_ino(nat) ((nat)->ni.ino) 77#define nat_set_ino(nat, i) ((nat)->ni.ino = (i)) 78#define nat_get_version(nat) ((nat)->ni.version) 79#define nat_set_version(nat, v) ((nat)->ni.version = (v)) 80 81#define inc_node_version(version) (++(version)) 82 83static inline void copy_node_info(struct node_info *dst, 84 struct node_info *src) 85{ 86 dst->nid = src->nid; 87 dst->ino = src->ino; 88 dst->blk_addr = src->blk_addr; 89 dst->version = src->version; 90 /* should not copy flag here */ 91} 92 93static inline void set_nat_flag(struct nat_entry *ne, 94 unsigned int type, bool set) 95{ 96 unsigned char mask = 0x01 << type; 97 if (set) 98 ne->ni.flag |= mask; 99 else 100 ne->ni.flag &= ~mask; 101} 102 103static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type) 104{ 105 unsigned char mask = 0x01 << type; 106 return ne->ni.flag & mask; 107} 108 109static inline void nat_reset_flag(struct nat_entry *ne) 110{ 111 /* these states can be set only after checkpoint was done */ 112 set_nat_flag(ne, IS_CHECKPOINTED, true); 113 set_nat_flag(ne, HAS_FSYNCED_INODE, false); 114 set_nat_flag(ne, HAS_LAST_FSYNC, true); 115} 116 117static inline void node_info_from_raw_nat(struct node_info *ni, 118 struct f2fs_nat_entry *raw_ne) 119{ 120 ni->ino = le32_to_cpu(raw_ne->ino); 121 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 122 ni->version = raw_ne->version; 123} 124 125static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, 126 struct node_info *ni) 127{ 128 raw_ne->ino = cpu_to_le32(ni->ino); 129 raw_ne->block_addr = cpu_to_le32(ni->blk_addr); 130 raw_ne->version = ni->version; 131} 132 133static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi) 134{ 135 return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid * 136 NM_I(sbi)->dirty_nats_ratio / 100; 137} 138 139static inline bool excess_cached_nats(struct f2fs_sb_info *sbi) 140{ 141 return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD; 142} 143 144enum mem_type { 145 FREE_NIDS, /* indicates the free nid list */ 146 NAT_ENTRIES, /* indicates the cached nat entry */ 147 DIRTY_DENTS, /* indicates dirty dentry pages */ 148 INO_ENTRIES, /* indicates inode entries */ 149 EXTENT_CACHE, /* indicates extent cache */ 150 INMEM_PAGES, /* indicates inmemory pages */ 151 DISCARD_CACHE, /* indicates memory of cached discard cmds */ 152 COMPRESS_PAGE, /* indicates memory of cached compressed pages */ 153 BASE_CHECK, /* check kernel status */ 154}; 155 156struct nat_entry_set { 157 struct list_head set_list; /* link with other nat sets */ 158 struct list_head entry_list; /* link with dirty nat entries */ 159 nid_t set; /* set number*/ 160 unsigned int entry_cnt; /* the # of nat entries in set */ 161}; 162 163struct free_nid { 164 struct list_head list; /* for free node id list */ 165 nid_t nid; /* node id */ 166 int state; /* in use or not: FREE_NID or PREALLOC_NID */ 167}; 168 169static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 170{ 171 struct f2fs_nm_info *nm_i = NM_I(sbi); 172 struct free_nid *fnid; 173 174 spin_lock(&nm_i->nid_list_lock); 175 if (nm_i->nid_cnt[FREE_NID] <= 0) { 176 spin_unlock(&nm_i->nid_list_lock); 177 return; 178 } 179 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list); 180 *nid = fnid->nid; 181 spin_unlock(&nm_i->nid_list_lock); 182} 183 184/* 185 * inline functions 186 */ 187static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 188{ 189 struct f2fs_nm_info *nm_i = NM_I(sbi); 190 191#ifdef CONFIG_F2FS_CHECK_FS 192 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir, 193 nm_i->bitmap_size)) 194 f2fs_bug_on(sbi, 1); 195#endif 196 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 197} 198 199static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 200{ 201 struct f2fs_nm_info *nm_i = NM_I(sbi); 202 pgoff_t block_off; 203 pgoff_t block_addr; 204 205 /* 206 * block_off = segment_off * 512 + off_in_segment 207 * OLD = (segment_off * 512) * 2 + off_in_segment 208 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment 209 */ 210 block_off = NAT_BLOCK_OFFSET(start); 211 212 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 213 (block_off << 1) - 214 (block_off & (sbi->blocks_per_seg - 1))); 215 216 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 217 block_addr += sbi->blocks_per_seg; 218 219 return block_addr; 220} 221 222static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 223 pgoff_t block_addr) 224{ 225 struct f2fs_nm_info *nm_i = NM_I(sbi); 226 227 block_addr -= nm_i->nat_blkaddr; 228 block_addr ^= 1 << sbi->log_blocks_per_seg; 229 return block_addr + nm_i->nat_blkaddr; 230} 231 232static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 233{ 234 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 235 236 f2fs_change_bit(block_off, nm_i->nat_bitmap); 237#ifdef CONFIG_F2FS_CHECK_FS 238 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir); 239#endif 240} 241 242static inline nid_t ino_of_node(struct page *node_page) 243{ 244 struct f2fs_node *rn = F2FS_NODE(node_page); 245 return le32_to_cpu(rn->footer.ino); 246} 247 248static inline nid_t nid_of_node(struct page *node_page) 249{ 250 struct f2fs_node *rn = F2FS_NODE(node_page); 251 return le32_to_cpu(rn->footer.nid); 252} 253 254static inline unsigned int ofs_of_node(struct page *node_page) 255{ 256 struct f2fs_node *rn = F2FS_NODE(node_page); 257 unsigned flag = le32_to_cpu(rn->footer.flag); 258 return flag >> OFFSET_BIT_SHIFT; 259} 260 261static inline __u64 cpver_of_node(struct page *node_page) 262{ 263 struct f2fs_node *rn = F2FS_NODE(node_page); 264 return le64_to_cpu(rn->footer.cp_ver); 265} 266 267static inline block_t next_blkaddr_of_node(struct page *node_page) 268{ 269 struct f2fs_node *rn = F2FS_NODE(node_page); 270 return le32_to_cpu(rn->footer.next_blkaddr); 271} 272 273static inline void fill_node_footer(struct page *page, nid_t nid, 274 nid_t ino, unsigned int ofs, bool reset) 275{ 276 struct f2fs_node *rn = F2FS_NODE(page); 277 unsigned int old_flag = 0; 278 279 if (reset) 280 memset(rn, 0, sizeof(*rn)); 281 else 282 old_flag = le32_to_cpu(rn->footer.flag); 283 284 rn->footer.nid = cpu_to_le32(nid); 285 rn->footer.ino = cpu_to_le32(ino); 286 287 /* should remain old flag bits such as COLD_BIT_SHIFT */ 288 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) | 289 (old_flag & OFFSET_BIT_MASK)); 290} 291 292static inline void copy_node_footer(struct page *dst, struct page *src) 293{ 294 struct f2fs_node *src_rn = F2FS_NODE(src); 295 struct f2fs_node *dst_rn = F2FS_NODE(dst); 296 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 297} 298 299static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 300{ 301 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 302 struct f2fs_node *rn = F2FS_NODE(page); 303 __u64 cp_ver = cur_cp_version(ckpt); 304 305 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) 306 cp_ver |= (cur_cp_crc(ckpt) << 32); 307 308 rn->footer.cp_ver = cpu_to_le64(cp_ver); 309 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 310} 311 312static inline bool is_recoverable_dnode(struct page *page) 313{ 314 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 315 __u64 cp_ver = cur_cp_version(ckpt); 316 317 /* Don't care crc part, if fsck.f2fs sets it. */ 318 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG)) 319 return (cp_ver << 32) == (cpver_of_node(page) << 32); 320 321 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) 322 cp_ver |= (cur_cp_crc(ckpt) << 32); 323 324 return cp_ver == cpver_of_node(page); 325} 326 327/* 328 * f2fs assigns the following node offsets described as (num). 329 * N = NIDS_PER_BLOCK 330 * 331 * Inode block (0) 332 * |- direct node (1) 333 * |- direct node (2) 334 * |- indirect node (3) 335 * | `- direct node (4 => 4 + N - 1) 336 * |- indirect node (4 + N) 337 * | `- direct node (5 + N => 5 + 2N - 1) 338 * `- double indirect node (5 + 2N) 339 * `- indirect node (6 + 2N) 340 * `- direct node 341 * ...... 342 * `- indirect node ((6 + 2N) + x(N + 1)) 343 * `- direct node 344 * ...... 345 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 346 * `- direct node 347 */ 348static inline bool IS_DNODE(struct page *node_page) 349{ 350 unsigned int ofs = ofs_of_node(node_page); 351 352 if (f2fs_has_xattr_block(ofs)) 353 return true; 354 355 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 356 ofs == 5 + 2 * NIDS_PER_BLOCK) 357 return false; 358 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 359 ofs -= 6 + 2 * NIDS_PER_BLOCK; 360 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 361 return false; 362 } 363 return true; 364} 365 366static inline int set_nid(struct page *p, int off, nid_t nid, bool i) 367{ 368 struct f2fs_node *rn = F2FS_NODE(p); 369 370 f2fs_wait_on_page_writeback(p, NODE, true, true); 371 372 if (i) 373 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 374 else 375 rn->in.nid[off] = cpu_to_le32(nid); 376 return set_page_dirty(p); 377} 378 379static inline nid_t get_nid(struct page *p, int off, bool i) 380{ 381 struct f2fs_node *rn = F2FS_NODE(p); 382 383 if (i) 384 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 385 return le32_to_cpu(rn->in.nid[off]); 386} 387 388/* 389 * Coldness identification: 390 * - Mark cold files in f2fs_inode_info 391 * - Mark cold node blocks in their node footer 392 * - Mark cold data pages in page cache 393 */ 394 395static inline int is_node(struct page *page, int type) 396{ 397 struct f2fs_node *rn = F2FS_NODE(page); 398 return le32_to_cpu(rn->footer.flag) & (1 << type); 399} 400 401#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 402#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 403#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 404 405static inline void set_cold_node(struct page *page, bool is_dir) 406{ 407 struct f2fs_node *rn = F2FS_NODE(page); 408 unsigned int flag = le32_to_cpu(rn->footer.flag); 409 410 if (is_dir) 411 flag &= ~(0x1 << COLD_BIT_SHIFT); 412 else 413 flag |= (0x1 << COLD_BIT_SHIFT); 414 rn->footer.flag = cpu_to_le32(flag); 415} 416 417static inline void set_mark(struct page *page, int mark, int type) 418{ 419 struct f2fs_node *rn = F2FS_NODE(page); 420 unsigned int flag = le32_to_cpu(rn->footer.flag); 421 if (mark) 422 flag |= (0x1 << type); 423 else 424 flag &= ~(0x1 << type); 425 rn->footer.flag = cpu_to_le32(flag); 426 427#ifdef CONFIG_F2FS_CHECK_FS 428 f2fs_inode_chksum_set(F2FS_P_SB(page), page); 429#endif 430} 431#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 432#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)