Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/pagemap.h>
11#include <linux/highmem.h>
12#include <linux/kthread.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
16#include <linux/backing-dev.h>
17#include <linux/writeback.h>
18#include <linux/slab.h>
19#include <linux/sched/mm.h>
20#include <linux/log2.h>
21#include <crypto/hash.h>
22#include "misc.h"
23#include "ctree.h"
24#include "disk-io.h"
25#include "transaction.h"
26#include "btrfs_inode.h"
27#include "volumes.h"
28#include "ordered-data.h"
29#include "compression.h"
30#include "extent_io.h"
31#include "extent_map.h"
32#include "subpage.h"
33#include "zoned.h"
34
35static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
36
37const char* btrfs_compress_type2str(enum btrfs_compression_type type)
38{
39 switch (type) {
40 case BTRFS_COMPRESS_ZLIB:
41 case BTRFS_COMPRESS_LZO:
42 case BTRFS_COMPRESS_ZSTD:
43 case BTRFS_COMPRESS_NONE:
44 return btrfs_compress_types[type];
45 default:
46 break;
47 }
48
49 return NULL;
50}
51
52bool btrfs_compress_is_valid_type(const char *str, size_t len)
53{
54 int i;
55
56 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
57 size_t comp_len = strlen(btrfs_compress_types[i]);
58
59 if (len < comp_len)
60 continue;
61
62 if (!strncmp(btrfs_compress_types[i], str, comp_len))
63 return true;
64 }
65 return false;
66}
67
68static int compression_compress_pages(int type, struct list_head *ws,
69 struct address_space *mapping, u64 start, struct page **pages,
70 unsigned long *out_pages, unsigned long *total_in,
71 unsigned long *total_out)
72{
73 switch (type) {
74 case BTRFS_COMPRESS_ZLIB:
75 return zlib_compress_pages(ws, mapping, start, pages,
76 out_pages, total_in, total_out);
77 case BTRFS_COMPRESS_LZO:
78 return lzo_compress_pages(ws, mapping, start, pages,
79 out_pages, total_in, total_out);
80 case BTRFS_COMPRESS_ZSTD:
81 return zstd_compress_pages(ws, mapping, start, pages,
82 out_pages, total_in, total_out);
83 case BTRFS_COMPRESS_NONE:
84 default:
85 /*
86 * This can happen when compression races with remount setting
87 * it to 'no compress', while caller doesn't call
88 * inode_need_compress() to check if we really need to
89 * compress.
90 *
91 * Not a big deal, just need to inform caller that we
92 * haven't allocated any pages yet.
93 */
94 *out_pages = 0;
95 return -E2BIG;
96 }
97}
98
99static int compression_decompress_bio(struct list_head *ws,
100 struct compressed_bio *cb)
101{
102 switch (cb->compress_type) {
103 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
104 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb);
105 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
106 case BTRFS_COMPRESS_NONE:
107 default:
108 /*
109 * This can't happen, the type is validated several times
110 * before we get here.
111 */
112 BUG();
113 }
114}
115
116static int compression_decompress(int type, struct list_head *ws,
117 unsigned char *data_in, struct page *dest_page,
118 unsigned long start_byte, size_t srclen, size_t destlen)
119{
120 switch (type) {
121 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
122 start_byte, srclen, destlen);
123 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page,
124 start_byte, srclen, destlen);
125 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
126 start_byte, srclen, destlen);
127 case BTRFS_COMPRESS_NONE:
128 default:
129 /*
130 * This can't happen, the type is validated several times
131 * before we get here.
132 */
133 BUG();
134 }
135}
136
137static int btrfs_decompress_bio(struct compressed_bio *cb);
138
139static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
140 unsigned long disk_size)
141{
142 return sizeof(struct compressed_bio) +
143 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
144}
145
146static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
147 u64 disk_start)
148{
149 struct btrfs_fs_info *fs_info = inode->root->fs_info;
150 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
151 const u32 csum_size = fs_info->csum_size;
152 const u32 sectorsize = fs_info->sectorsize;
153 struct page *page;
154 unsigned int i;
155 char *kaddr;
156 u8 csum[BTRFS_CSUM_SIZE];
157 struct compressed_bio *cb = bio->bi_private;
158 u8 *cb_sum = cb->sums;
159
160 if ((inode->flags & BTRFS_INODE_NODATASUM) ||
161 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
162 return 0;
163
164 shash->tfm = fs_info->csum_shash;
165
166 for (i = 0; i < cb->nr_pages; i++) {
167 u32 pg_offset;
168 u32 bytes_left = PAGE_SIZE;
169 page = cb->compressed_pages[i];
170
171 /* Determine the remaining bytes inside the page first */
172 if (i == cb->nr_pages - 1)
173 bytes_left = cb->compressed_len - i * PAGE_SIZE;
174
175 /* Hash through the page sector by sector */
176 for (pg_offset = 0; pg_offset < bytes_left;
177 pg_offset += sectorsize) {
178 kaddr = kmap_atomic(page);
179 crypto_shash_digest(shash, kaddr + pg_offset,
180 sectorsize, csum);
181 kunmap_atomic(kaddr);
182
183 if (memcmp(&csum, cb_sum, csum_size) != 0) {
184 btrfs_print_data_csum_error(inode, disk_start,
185 csum, cb_sum, cb->mirror_num);
186 if (btrfs_bio(bio)->device)
187 btrfs_dev_stat_inc_and_print(
188 btrfs_bio(bio)->device,
189 BTRFS_DEV_STAT_CORRUPTION_ERRS);
190 return -EIO;
191 }
192 cb_sum += csum_size;
193 disk_start += sectorsize;
194 }
195 }
196 return 0;
197}
198
199/*
200 * Reduce bio and io accounting for a compressed_bio with its corresponding bio.
201 *
202 * Return true if there is no pending bio nor io.
203 * Return false otherwise.
204 */
205static bool dec_and_test_compressed_bio(struct compressed_bio *cb, struct bio *bio)
206{
207 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
208 unsigned int bi_size = 0;
209 bool last_io = false;
210 struct bio_vec *bvec;
211 struct bvec_iter_all iter_all;
212
213 /*
214 * At endio time, bi_iter.bi_size doesn't represent the real bio size.
215 * Thus here we have to iterate through all segments to grab correct
216 * bio size.
217 */
218 bio_for_each_segment_all(bvec, bio, iter_all)
219 bi_size += bvec->bv_len;
220
221 if (bio->bi_status)
222 cb->status = bio->bi_status;
223
224 ASSERT(bi_size && bi_size <= cb->compressed_len);
225 last_io = refcount_sub_and_test(bi_size >> fs_info->sectorsize_bits,
226 &cb->pending_sectors);
227 /*
228 * Here we must wake up the possible error handler after all other
229 * operations on @cb finished, or we can race with
230 * finish_compressed_bio_*() which may free @cb.
231 */
232 wake_up_var(cb);
233
234 return last_io;
235}
236
237static void finish_compressed_bio_read(struct compressed_bio *cb)
238{
239 unsigned int index;
240 struct page *page;
241
242 /* Release the compressed pages */
243 for (index = 0; index < cb->nr_pages; index++) {
244 page = cb->compressed_pages[index];
245 page->mapping = NULL;
246 put_page(page);
247 }
248
249 /* Do io completion on the original bio */
250 if (cb->status != BLK_STS_OK) {
251 cb->orig_bio->bi_status = cb->status;
252 bio_endio(cb->orig_bio);
253 } else {
254 struct bio_vec *bvec;
255 struct bvec_iter_all iter_all;
256
257 /*
258 * We have verified the checksum already, set page checked so
259 * the end_io handlers know about it
260 */
261 ASSERT(!bio_flagged(cb->orig_bio, BIO_CLONED));
262 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) {
263 u64 bvec_start = page_offset(bvec->bv_page) +
264 bvec->bv_offset;
265
266 btrfs_page_set_checked(btrfs_sb(cb->inode->i_sb),
267 bvec->bv_page, bvec_start,
268 bvec->bv_len);
269 }
270
271 bio_endio(cb->orig_bio);
272 }
273
274 /* Finally free the cb struct */
275 kfree(cb->compressed_pages);
276 kfree(cb);
277}
278
279/* when we finish reading compressed pages from the disk, we
280 * decompress them and then run the bio end_io routines on the
281 * decompressed pages (in the inode address space).
282 *
283 * This allows the checksumming and other IO error handling routines
284 * to work normally
285 *
286 * The compressed pages are freed here, and it must be run
287 * in process context
288 */
289static void end_compressed_bio_read(struct bio *bio)
290{
291 struct compressed_bio *cb = bio->bi_private;
292 struct inode *inode;
293 unsigned int mirror = btrfs_bio(bio)->mirror_num;
294 int ret = 0;
295
296 if (!dec_and_test_compressed_bio(cb, bio))
297 goto out;
298
299 /*
300 * Record the correct mirror_num in cb->orig_bio so that
301 * read-repair can work properly.
302 */
303 btrfs_bio(cb->orig_bio)->mirror_num = mirror;
304 cb->mirror_num = mirror;
305
306 /*
307 * Some IO in this cb have failed, just skip checksum as there
308 * is no way it could be correct.
309 */
310 if (cb->status != BLK_STS_OK)
311 goto csum_failed;
312
313 inode = cb->inode;
314 ret = check_compressed_csum(BTRFS_I(inode), bio,
315 bio->bi_iter.bi_sector << 9);
316 if (ret)
317 goto csum_failed;
318
319 /* ok, we're the last bio for this extent, lets start
320 * the decompression.
321 */
322 ret = btrfs_decompress_bio(cb);
323
324csum_failed:
325 if (ret)
326 cb->status = errno_to_blk_status(ret);
327 finish_compressed_bio_read(cb);
328out:
329 bio_put(bio);
330}
331
332/*
333 * Clear the writeback bits on all of the file
334 * pages for a compressed write
335 */
336static noinline void end_compressed_writeback(struct inode *inode,
337 const struct compressed_bio *cb)
338{
339 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
340 unsigned long index = cb->start >> PAGE_SHIFT;
341 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
342 struct page *pages[16];
343 unsigned long nr_pages = end_index - index + 1;
344 const int errno = blk_status_to_errno(cb->status);
345 int i;
346 int ret;
347
348 if (errno)
349 mapping_set_error(inode->i_mapping, errno);
350
351 while (nr_pages > 0) {
352 ret = find_get_pages_contig(inode->i_mapping, index,
353 min_t(unsigned long,
354 nr_pages, ARRAY_SIZE(pages)), pages);
355 if (ret == 0) {
356 nr_pages -= 1;
357 index += 1;
358 continue;
359 }
360 for (i = 0; i < ret; i++) {
361 if (errno)
362 SetPageError(pages[i]);
363 btrfs_page_clamp_clear_writeback(fs_info, pages[i],
364 cb->start, cb->len);
365 put_page(pages[i]);
366 }
367 nr_pages -= ret;
368 index += ret;
369 }
370 /* the inode may be gone now */
371}
372
373static void finish_compressed_bio_write(struct compressed_bio *cb)
374{
375 struct inode *inode = cb->inode;
376 unsigned int index;
377
378 /*
379 * Ok, we're the last bio for this extent, step one is to call back
380 * into the FS and do all the end_io operations.
381 */
382 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
383 cb->start, cb->start + cb->len - 1,
384 cb->status == BLK_STS_OK);
385
386 if (cb->writeback)
387 end_compressed_writeback(inode, cb);
388 /* Note, our inode could be gone now */
389
390 /*
391 * Release the compressed pages, these came from alloc_page and
392 * are not attached to the inode at all
393 */
394 for (index = 0; index < cb->nr_pages; index++) {
395 struct page *page = cb->compressed_pages[index];
396
397 page->mapping = NULL;
398 put_page(page);
399 }
400
401 /* Finally free the cb struct */
402 kfree(cb->compressed_pages);
403 kfree(cb);
404}
405
406/*
407 * Do the cleanup once all the compressed pages hit the disk. This will clear
408 * writeback on the file pages and free the compressed pages.
409 *
410 * This also calls the writeback end hooks for the file pages so that metadata
411 * and checksums can be updated in the file.
412 */
413static void end_compressed_bio_write(struct bio *bio)
414{
415 struct compressed_bio *cb = bio->bi_private;
416
417 if (!dec_and_test_compressed_bio(cb, bio))
418 goto out;
419
420 btrfs_record_physical_zoned(cb->inode, cb->start, bio);
421
422 finish_compressed_bio_write(cb);
423out:
424 bio_put(bio);
425}
426
427static blk_status_t submit_compressed_bio(struct btrfs_fs_info *fs_info,
428 struct compressed_bio *cb,
429 struct bio *bio, int mirror_num)
430{
431 blk_status_t ret;
432
433 ASSERT(bio->bi_iter.bi_size);
434 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
435 if (ret)
436 return ret;
437 ret = btrfs_map_bio(fs_info, bio, mirror_num);
438 return ret;
439}
440
441/*
442 * Allocate a compressed_bio, which will be used to read/write on-disk
443 * (aka, compressed) * data.
444 *
445 * @cb: The compressed_bio structure, which records all the needed
446 * information to bind the compressed data to the uncompressed
447 * page cache.
448 * @disk_byten: The logical bytenr where the compressed data will be read
449 * from or written to.
450 * @endio_func: The endio function to call after the IO for compressed data
451 * is finished.
452 * @next_stripe_start: Return value of logical bytenr of where next stripe starts.
453 * Let the caller know to only fill the bio up to the stripe
454 * boundary.
455 */
456
457
458static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
459 unsigned int opf, bio_end_io_t endio_func,
460 u64 *next_stripe_start)
461{
462 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
463 struct btrfs_io_geometry geom;
464 struct extent_map *em;
465 struct bio *bio;
466 int ret;
467
468 bio = btrfs_bio_alloc(BIO_MAX_VECS);
469
470 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
471 bio->bi_opf = opf;
472 bio->bi_private = cb;
473 bio->bi_end_io = endio_func;
474
475 em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
476 if (IS_ERR(em)) {
477 bio_put(bio);
478 return ERR_CAST(em);
479 }
480
481 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
482 bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);
483
484 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
485 free_extent_map(em);
486 if (ret < 0) {
487 bio_put(bio);
488 return ERR_PTR(ret);
489 }
490 *next_stripe_start = disk_bytenr + geom.len;
491
492 return bio;
493}
494
495/*
496 * worker function to build and submit bios for previously compressed pages.
497 * The corresponding pages in the inode should be marked for writeback
498 * and the compressed pages should have a reference on them for dropping
499 * when the IO is complete.
500 *
501 * This also checksums the file bytes and gets things ready for
502 * the end io hooks.
503 */
504blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
505 unsigned int len, u64 disk_start,
506 unsigned int compressed_len,
507 struct page **compressed_pages,
508 unsigned int nr_pages,
509 unsigned int write_flags,
510 struct cgroup_subsys_state *blkcg_css,
511 bool writeback)
512{
513 struct btrfs_fs_info *fs_info = inode->root->fs_info;
514 struct bio *bio = NULL;
515 struct compressed_bio *cb;
516 u64 cur_disk_bytenr = disk_start;
517 u64 next_stripe_start;
518 blk_status_t ret;
519 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
520 const bool use_append = btrfs_use_zone_append(inode, disk_start);
521 const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
522
523 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
524 IS_ALIGNED(len, fs_info->sectorsize));
525 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
526 if (!cb)
527 return BLK_STS_RESOURCE;
528 refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
529 cb->status = BLK_STS_OK;
530 cb->inode = &inode->vfs_inode;
531 cb->start = start;
532 cb->len = len;
533 cb->mirror_num = 0;
534 cb->compressed_pages = compressed_pages;
535 cb->compressed_len = compressed_len;
536 cb->writeback = writeback;
537 cb->orig_bio = NULL;
538 cb->nr_pages = nr_pages;
539
540 if (blkcg_css)
541 kthread_associate_blkcg(blkcg_css);
542
543 while (cur_disk_bytenr < disk_start + compressed_len) {
544 u64 offset = cur_disk_bytenr - disk_start;
545 unsigned int index = offset >> PAGE_SHIFT;
546 unsigned int real_size;
547 unsigned int added;
548 struct page *page = compressed_pages[index];
549 bool submit = false;
550
551 /* Allocate new bio if submitted or not yet allocated */
552 if (!bio) {
553 bio = alloc_compressed_bio(cb, cur_disk_bytenr,
554 bio_op | write_flags, end_compressed_bio_write,
555 &next_stripe_start);
556 if (IS_ERR(bio)) {
557 ret = errno_to_blk_status(PTR_ERR(bio));
558 bio = NULL;
559 goto finish_cb;
560 }
561 if (blkcg_css)
562 bio->bi_opf |= REQ_CGROUP_PUNT;
563 }
564 /*
565 * We should never reach next_stripe_start start as we will
566 * submit comp_bio when reach the boundary immediately.
567 */
568 ASSERT(cur_disk_bytenr != next_stripe_start);
569
570 /*
571 * We have various limits on the real read size:
572 * - stripe boundary
573 * - page boundary
574 * - compressed length boundary
575 */
576 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
577 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
578 real_size = min_t(u64, real_size, compressed_len - offset);
579 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
580
581 if (use_append)
582 added = bio_add_zone_append_page(bio, page, real_size,
583 offset_in_page(offset));
584 else
585 added = bio_add_page(bio, page, real_size,
586 offset_in_page(offset));
587 /* Reached zoned boundary */
588 if (added == 0)
589 submit = true;
590
591 cur_disk_bytenr += added;
592 /* Reached stripe boundary */
593 if (cur_disk_bytenr == next_stripe_start)
594 submit = true;
595
596 /* Finished the range */
597 if (cur_disk_bytenr == disk_start + compressed_len)
598 submit = true;
599
600 if (submit) {
601 if (!skip_sum) {
602 ret = btrfs_csum_one_bio(inode, bio, start, true);
603 if (ret)
604 goto finish_cb;
605 }
606
607 ret = submit_compressed_bio(fs_info, cb, bio, 0);
608 if (ret)
609 goto finish_cb;
610 bio = NULL;
611 }
612 cond_resched();
613 }
614 if (blkcg_css)
615 kthread_associate_blkcg(NULL);
616
617 return 0;
618
619finish_cb:
620 if (blkcg_css)
621 kthread_associate_blkcg(NULL);
622
623 if (bio) {
624 bio->bi_status = ret;
625 bio_endio(bio);
626 }
627 /* Last byte of @cb is submitted, endio will free @cb */
628 if (cur_disk_bytenr == disk_start + compressed_len)
629 return ret;
630
631 wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
632 (disk_start + compressed_len - cur_disk_bytenr) >>
633 fs_info->sectorsize_bits);
634 /*
635 * Even with previous bio ended, we should still have io not yet
636 * submitted, thus need to finish manually.
637 */
638 ASSERT(refcount_read(&cb->pending_sectors));
639 /* Now we are the only one referring @cb, can finish it safely. */
640 finish_compressed_bio_write(cb);
641 return ret;
642}
643
644static u64 bio_end_offset(struct bio *bio)
645{
646 struct bio_vec *last = bio_last_bvec_all(bio);
647
648 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
649}
650
651/*
652 * Add extra pages in the same compressed file extent so that we don't need to
653 * re-read the same extent again and again.
654 *
655 * NOTE: this won't work well for subpage, as for subpage read, we lock the
656 * full page then submit bio for each compressed/regular extents.
657 *
658 * This means, if we have several sectors in the same page points to the same
659 * on-disk compressed data, we will re-read the same extent many times and
660 * this function can only help for the next page.
661 */
662static noinline int add_ra_bio_pages(struct inode *inode,
663 u64 compressed_end,
664 struct compressed_bio *cb)
665{
666 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
667 unsigned long end_index;
668 u64 cur = bio_end_offset(cb->orig_bio);
669 u64 isize = i_size_read(inode);
670 int ret;
671 struct page *page;
672 struct extent_map *em;
673 struct address_space *mapping = inode->i_mapping;
674 struct extent_map_tree *em_tree;
675 struct extent_io_tree *tree;
676 int sectors_missed = 0;
677
678 em_tree = &BTRFS_I(inode)->extent_tree;
679 tree = &BTRFS_I(inode)->io_tree;
680
681 if (isize == 0)
682 return 0;
683
684 /*
685 * For current subpage support, we only support 64K page size,
686 * which means maximum compressed extent size (128K) is just 2x page
687 * size.
688 * This makes readahead less effective, so here disable readahead for
689 * subpage for now, until full compressed write is supported.
690 */
691 if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
692 return 0;
693
694 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
695
696 while (cur < compressed_end) {
697 u64 page_end;
698 u64 pg_index = cur >> PAGE_SHIFT;
699 u32 add_size;
700
701 if (pg_index > end_index)
702 break;
703
704 page = xa_load(&mapping->i_pages, pg_index);
705 if (page && !xa_is_value(page)) {
706 sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
707 fs_info->sectorsize_bits;
708
709 /* Beyond threshold, no need to continue */
710 if (sectors_missed > 4)
711 break;
712
713 /*
714 * Jump to next page start as we already have page for
715 * current offset.
716 */
717 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
718 continue;
719 }
720
721 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
722 ~__GFP_FS));
723 if (!page)
724 break;
725
726 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
727 put_page(page);
728 /* There is already a page, skip to page end */
729 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
730 continue;
731 }
732
733 ret = set_page_extent_mapped(page);
734 if (ret < 0) {
735 unlock_page(page);
736 put_page(page);
737 break;
738 }
739
740 page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
741 lock_extent(tree, cur, page_end);
742 read_lock(&em_tree->lock);
743 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
744 read_unlock(&em_tree->lock);
745
746 /*
747 * At this point, we have a locked page in the page cache for
748 * these bytes in the file. But, we have to make sure they map
749 * to this compressed extent on disk.
750 */
751 if (!em || cur < em->start ||
752 (cur + fs_info->sectorsize > extent_map_end(em)) ||
753 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
754 free_extent_map(em);
755 unlock_extent(tree, cur, page_end);
756 unlock_page(page);
757 put_page(page);
758 break;
759 }
760 free_extent_map(em);
761
762 if (page->index == end_index) {
763 size_t zero_offset = offset_in_page(isize);
764
765 if (zero_offset) {
766 int zeros;
767 zeros = PAGE_SIZE - zero_offset;
768 memzero_page(page, zero_offset, zeros);
769 flush_dcache_page(page);
770 }
771 }
772
773 add_size = min(em->start + em->len, page_end + 1) - cur;
774 ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
775 if (ret != add_size) {
776 unlock_extent(tree, cur, page_end);
777 unlock_page(page);
778 put_page(page);
779 break;
780 }
781 /*
782 * If it's subpage, we also need to increase its
783 * subpage::readers number, as at endio we will decrease
784 * subpage::readers and to unlock the page.
785 */
786 if (fs_info->sectorsize < PAGE_SIZE)
787 btrfs_subpage_start_reader(fs_info, page, cur, add_size);
788 put_page(page);
789 cur += add_size;
790 }
791 return 0;
792}
793
794/*
795 * for a compressed read, the bio we get passed has all the inode pages
796 * in it. We don't actually do IO on those pages but allocate new ones
797 * to hold the compressed pages on disk.
798 *
799 * bio->bi_iter.bi_sector points to the compressed extent on disk
800 * bio->bi_io_vec points to all of the inode pages
801 *
802 * After the compressed pages are read, we copy the bytes into the
803 * bio we were passed and then call the bio end_io calls
804 */
805blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
806 int mirror_num, unsigned long bio_flags)
807{
808 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
809 struct extent_map_tree *em_tree;
810 struct compressed_bio *cb;
811 unsigned int compressed_len;
812 unsigned int nr_pages;
813 unsigned int pg_index;
814 struct bio *comp_bio = NULL;
815 const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
816 u64 cur_disk_byte = disk_bytenr;
817 u64 next_stripe_start;
818 u64 file_offset;
819 u64 em_len;
820 u64 em_start;
821 struct extent_map *em;
822 blk_status_t ret;
823 int faili = 0;
824 u8 *sums;
825
826 em_tree = &BTRFS_I(inode)->extent_tree;
827
828 file_offset = bio_first_bvec_all(bio)->bv_offset +
829 page_offset(bio_first_page_all(bio));
830
831 /* we need the actual starting offset of this extent in the file */
832 read_lock(&em_tree->lock);
833 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
834 read_unlock(&em_tree->lock);
835 if (!em) {
836 ret = BLK_STS_IOERR;
837 goto out;
838 }
839
840 ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
841 compressed_len = em->block_len;
842 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
843 if (!cb) {
844 ret = BLK_STS_RESOURCE;
845 goto out;
846 }
847
848 refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
849 cb->status = BLK_STS_OK;
850 cb->inode = inode;
851 cb->mirror_num = mirror_num;
852 sums = cb->sums;
853
854 cb->start = em->orig_start;
855 em_len = em->len;
856 em_start = em->start;
857
858 free_extent_map(em);
859 em = NULL;
860
861 cb->len = bio->bi_iter.bi_size;
862 cb->compressed_len = compressed_len;
863 cb->compress_type = extent_compress_type(bio_flags);
864 cb->orig_bio = bio;
865
866 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
867 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
868 GFP_NOFS);
869 if (!cb->compressed_pages) {
870 ret = BLK_STS_RESOURCE;
871 goto fail1;
872 }
873
874 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
875 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS);
876 if (!cb->compressed_pages[pg_index]) {
877 faili = pg_index - 1;
878 ret = BLK_STS_RESOURCE;
879 goto fail2;
880 }
881 }
882 faili = nr_pages - 1;
883 cb->nr_pages = nr_pages;
884
885 add_ra_bio_pages(inode, em_start + em_len, cb);
886
887 /* include any pages we added in add_ra-bio_pages */
888 cb->len = bio->bi_iter.bi_size;
889
890 while (cur_disk_byte < disk_bytenr + compressed_len) {
891 u64 offset = cur_disk_byte - disk_bytenr;
892 unsigned int index = offset >> PAGE_SHIFT;
893 unsigned int real_size;
894 unsigned int added;
895 struct page *page = cb->compressed_pages[index];
896 bool submit = false;
897
898 /* Allocate new bio if submitted or not yet allocated */
899 if (!comp_bio) {
900 comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
901 REQ_OP_READ, end_compressed_bio_read,
902 &next_stripe_start);
903 if (IS_ERR(comp_bio)) {
904 ret = errno_to_blk_status(PTR_ERR(comp_bio));
905 comp_bio = NULL;
906 goto finish_cb;
907 }
908 }
909 /*
910 * We should never reach next_stripe_start start as we will
911 * submit comp_bio when reach the boundary immediately.
912 */
913 ASSERT(cur_disk_byte != next_stripe_start);
914 /*
915 * We have various limit on the real read size:
916 * - stripe boundary
917 * - page boundary
918 * - compressed length boundary
919 */
920 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
921 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
922 real_size = min_t(u64, real_size, compressed_len - offset);
923 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
924
925 added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
926 /*
927 * Maximum compressed extent is smaller than bio size limit,
928 * thus bio_add_page() should always success.
929 */
930 ASSERT(added == real_size);
931 cur_disk_byte += added;
932
933 /* Reached stripe boundary, need to submit */
934 if (cur_disk_byte == next_stripe_start)
935 submit = true;
936
937 /* Has finished the range, need to submit */
938 if (cur_disk_byte == disk_bytenr + compressed_len)
939 submit = true;
940
941 if (submit) {
942 unsigned int nr_sectors;
943
944 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
945 if (ret)
946 goto finish_cb;
947
948 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
949 fs_info->sectorsize);
950 sums += fs_info->csum_size * nr_sectors;
951
952 ret = submit_compressed_bio(fs_info, cb, comp_bio, mirror_num);
953 if (ret)
954 goto finish_cb;
955 comp_bio = NULL;
956 }
957 }
958 return BLK_STS_OK;
959
960fail2:
961 while (faili >= 0) {
962 __free_page(cb->compressed_pages[faili]);
963 faili--;
964 }
965
966 kfree(cb->compressed_pages);
967fail1:
968 kfree(cb);
969out:
970 free_extent_map(em);
971 bio->bi_status = ret;
972 bio_endio(bio);
973 return ret;
974finish_cb:
975 if (comp_bio) {
976 comp_bio->bi_status = ret;
977 bio_endio(comp_bio);
978 }
979 /* All bytes of @cb is submitted, endio will free @cb */
980 if (cur_disk_byte == disk_bytenr + compressed_len)
981 return ret;
982
983 wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
984 (disk_bytenr + compressed_len - cur_disk_byte) >>
985 fs_info->sectorsize_bits);
986 /*
987 * Even with previous bio ended, we should still have io not yet
988 * submitted, thus need to finish @cb manually.
989 */
990 ASSERT(refcount_read(&cb->pending_sectors));
991 /* Now we are the only one referring @cb, can finish it safely. */
992 finish_compressed_bio_read(cb);
993 return ret;
994}
995
996/*
997 * Heuristic uses systematic sampling to collect data from the input data
998 * range, the logic can be tuned by the following constants:
999 *
1000 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
1001 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
1002 */
1003#define SAMPLING_READ_SIZE (16)
1004#define SAMPLING_INTERVAL (256)
1005
1006/*
1007 * For statistical analysis of the input data we consider bytes that form a
1008 * Galois Field of 256 objects. Each object has an attribute count, ie. how
1009 * many times the object appeared in the sample.
1010 */
1011#define BUCKET_SIZE (256)
1012
1013/*
1014 * The size of the sample is based on a statistical sampling rule of thumb.
1015 * The common way is to perform sampling tests as long as the number of
1016 * elements in each cell is at least 5.
1017 *
1018 * Instead of 5, we choose 32 to obtain more accurate results.
1019 * If the data contain the maximum number of symbols, which is 256, we obtain a
1020 * sample size bound by 8192.
1021 *
1022 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
1023 * from up to 512 locations.
1024 */
1025#define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
1026 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
1027
1028struct bucket_item {
1029 u32 count;
1030};
1031
1032struct heuristic_ws {
1033 /* Partial copy of input data */
1034 u8 *sample;
1035 u32 sample_size;
1036 /* Buckets store counters for each byte value */
1037 struct bucket_item *bucket;
1038 /* Sorting buffer */
1039 struct bucket_item *bucket_b;
1040 struct list_head list;
1041};
1042
1043static struct workspace_manager heuristic_wsm;
1044
1045static void free_heuristic_ws(struct list_head *ws)
1046{
1047 struct heuristic_ws *workspace;
1048
1049 workspace = list_entry(ws, struct heuristic_ws, list);
1050
1051 kvfree(workspace->sample);
1052 kfree(workspace->bucket);
1053 kfree(workspace->bucket_b);
1054 kfree(workspace);
1055}
1056
1057static struct list_head *alloc_heuristic_ws(unsigned int level)
1058{
1059 struct heuristic_ws *ws;
1060
1061 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
1062 if (!ws)
1063 return ERR_PTR(-ENOMEM);
1064
1065 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
1066 if (!ws->sample)
1067 goto fail;
1068
1069 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
1070 if (!ws->bucket)
1071 goto fail;
1072
1073 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
1074 if (!ws->bucket_b)
1075 goto fail;
1076
1077 INIT_LIST_HEAD(&ws->list);
1078 return &ws->list;
1079fail:
1080 free_heuristic_ws(&ws->list);
1081 return ERR_PTR(-ENOMEM);
1082}
1083
1084const struct btrfs_compress_op btrfs_heuristic_compress = {
1085 .workspace_manager = &heuristic_wsm,
1086};
1087
1088static const struct btrfs_compress_op * const btrfs_compress_op[] = {
1089 /* The heuristic is represented as compression type 0 */
1090 &btrfs_heuristic_compress,
1091 &btrfs_zlib_compress,
1092 &btrfs_lzo_compress,
1093 &btrfs_zstd_compress,
1094};
1095
1096static struct list_head *alloc_workspace(int type, unsigned int level)
1097{
1098 switch (type) {
1099 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
1100 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
1101 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level);
1102 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
1103 default:
1104 /*
1105 * This can't happen, the type is validated several times
1106 * before we get here.
1107 */
1108 BUG();
1109 }
1110}
1111
1112static void free_workspace(int type, struct list_head *ws)
1113{
1114 switch (type) {
1115 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
1116 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
1117 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws);
1118 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
1119 default:
1120 /*
1121 * This can't happen, the type is validated several times
1122 * before we get here.
1123 */
1124 BUG();
1125 }
1126}
1127
1128static void btrfs_init_workspace_manager(int type)
1129{
1130 struct workspace_manager *wsm;
1131 struct list_head *workspace;
1132
1133 wsm = btrfs_compress_op[type]->workspace_manager;
1134 INIT_LIST_HEAD(&wsm->idle_ws);
1135 spin_lock_init(&wsm->ws_lock);
1136 atomic_set(&wsm->total_ws, 0);
1137 init_waitqueue_head(&wsm->ws_wait);
1138
1139 /*
1140 * Preallocate one workspace for each compression type so we can
1141 * guarantee forward progress in the worst case
1142 */
1143 workspace = alloc_workspace(type, 0);
1144 if (IS_ERR(workspace)) {
1145 pr_warn(
1146 "BTRFS: cannot preallocate compression workspace, will try later\n");
1147 } else {
1148 atomic_set(&wsm->total_ws, 1);
1149 wsm->free_ws = 1;
1150 list_add(workspace, &wsm->idle_ws);
1151 }
1152}
1153
1154static void btrfs_cleanup_workspace_manager(int type)
1155{
1156 struct workspace_manager *wsman;
1157 struct list_head *ws;
1158
1159 wsman = btrfs_compress_op[type]->workspace_manager;
1160 while (!list_empty(&wsman->idle_ws)) {
1161 ws = wsman->idle_ws.next;
1162 list_del(ws);
1163 free_workspace(type, ws);
1164 atomic_dec(&wsman->total_ws);
1165 }
1166}
1167
1168/*
1169 * This finds an available workspace or allocates a new one.
1170 * If it's not possible to allocate a new one, waits until there's one.
1171 * Preallocation makes a forward progress guarantees and we do not return
1172 * errors.
1173 */
1174struct list_head *btrfs_get_workspace(int type, unsigned int level)
1175{
1176 struct workspace_manager *wsm;
1177 struct list_head *workspace;
1178 int cpus = num_online_cpus();
1179 unsigned nofs_flag;
1180 struct list_head *idle_ws;
1181 spinlock_t *ws_lock;
1182 atomic_t *total_ws;
1183 wait_queue_head_t *ws_wait;
1184 int *free_ws;
1185
1186 wsm = btrfs_compress_op[type]->workspace_manager;
1187 idle_ws = &wsm->idle_ws;
1188 ws_lock = &wsm->ws_lock;
1189 total_ws = &wsm->total_ws;
1190 ws_wait = &wsm->ws_wait;
1191 free_ws = &wsm->free_ws;
1192
1193again:
1194 spin_lock(ws_lock);
1195 if (!list_empty(idle_ws)) {
1196 workspace = idle_ws->next;
1197 list_del(workspace);
1198 (*free_ws)--;
1199 spin_unlock(ws_lock);
1200 return workspace;
1201
1202 }
1203 if (atomic_read(total_ws) > cpus) {
1204 DEFINE_WAIT(wait);
1205
1206 spin_unlock(ws_lock);
1207 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1208 if (atomic_read(total_ws) > cpus && !*free_ws)
1209 schedule();
1210 finish_wait(ws_wait, &wait);
1211 goto again;
1212 }
1213 atomic_inc(total_ws);
1214 spin_unlock(ws_lock);
1215
1216 /*
1217 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1218 * to turn it off here because we might get called from the restricted
1219 * context of btrfs_compress_bio/btrfs_compress_pages
1220 */
1221 nofs_flag = memalloc_nofs_save();
1222 workspace = alloc_workspace(type, level);
1223 memalloc_nofs_restore(nofs_flag);
1224
1225 if (IS_ERR(workspace)) {
1226 atomic_dec(total_ws);
1227 wake_up(ws_wait);
1228
1229 /*
1230 * Do not return the error but go back to waiting. There's a
1231 * workspace preallocated for each type and the compression
1232 * time is bounded so we get to a workspace eventually. This
1233 * makes our caller's life easier.
1234 *
1235 * To prevent silent and low-probability deadlocks (when the
1236 * initial preallocation fails), check if there are any
1237 * workspaces at all.
1238 */
1239 if (atomic_read(total_ws) == 0) {
1240 static DEFINE_RATELIMIT_STATE(_rs,
1241 /* once per minute */ 60 * HZ,
1242 /* no burst */ 1);
1243
1244 if (__ratelimit(&_rs)) {
1245 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1246 }
1247 }
1248 goto again;
1249 }
1250 return workspace;
1251}
1252
1253static struct list_head *get_workspace(int type, int level)
1254{
1255 switch (type) {
1256 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1257 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1258 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level);
1259 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1260 default:
1261 /*
1262 * This can't happen, the type is validated several times
1263 * before we get here.
1264 */
1265 BUG();
1266 }
1267}
1268
1269/*
1270 * put a workspace struct back on the list or free it if we have enough
1271 * idle ones sitting around
1272 */
1273void btrfs_put_workspace(int type, struct list_head *ws)
1274{
1275 struct workspace_manager *wsm;
1276 struct list_head *idle_ws;
1277 spinlock_t *ws_lock;
1278 atomic_t *total_ws;
1279 wait_queue_head_t *ws_wait;
1280 int *free_ws;
1281
1282 wsm = btrfs_compress_op[type]->workspace_manager;
1283 idle_ws = &wsm->idle_ws;
1284 ws_lock = &wsm->ws_lock;
1285 total_ws = &wsm->total_ws;
1286 ws_wait = &wsm->ws_wait;
1287 free_ws = &wsm->free_ws;
1288
1289 spin_lock(ws_lock);
1290 if (*free_ws <= num_online_cpus()) {
1291 list_add(ws, idle_ws);
1292 (*free_ws)++;
1293 spin_unlock(ws_lock);
1294 goto wake;
1295 }
1296 spin_unlock(ws_lock);
1297
1298 free_workspace(type, ws);
1299 atomic_dec(total_ws);
1300wake:
1301 cond_wake_up(ws_wait);
1302}
1303
1304static void put_workspace(int type, struct list_head *ws)
1305{
1306 switch (type) {
1307 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1308 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1309 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws);
1310 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1311 default:
1312 /*
1313 * This can't happen, the type is validated several times
1314 * before we get here.
1315 */
1316 BUG();
1317 }
1318}
1319
1320/*
1321 * Adjust @level according to the limits of the compression algorithm or
1322 * fallback to default
1323 */
1324static unsigned int btrfs_compress_set_level(int type, unsigned level)
1325{
1326 const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1327
1328 if (level == 0)
1329 level = ops->default_level;
1330 else
1331 level = min(level, ops->max_level);
1332
1333 return level;
1334}
1335
1336/*
1337 * Given an address space and start and length, compress the bytes into @pages
1338 * that are allocated on demand.
1339 *
1340 * @type_level is encoded algorithm and level, where level 0 means whatever
1341 * default the algorithm chooses and is opaque here;
1342 * - compression algo are 0-3
1343 * - the level are bits 4-7
1344 *
1345 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1346 * and returns number of actually allocated pages
1347 *
1348 * @total_in is used to return the number of bytes actually read. It
1349 * may be smaller than the input length if we had to exit early because we
1350 * ran out of room in the pages array or because we cross the
1351 * max_out threshold.
1352 *
1353 * @total_out is an in/out parameter, must be set to the input length and will
1354 * be also used to return the total number of compressed bytes
1355 */
1356int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1357 u64 start, struct page **pages,
1358 unsigned long *out_pages,
1359 unsigned long *total_in,
1360 unsigned long *total_out)
1361{
1362 int type = btrfs_compress_type(type_level);
1363 int level = btrfs_compress_level(type_level);
1364 struct list_head *workspace;
1365 int ret;
1366
1367 level = btrfs_compress_set_level(type, level);
1368 workspace = get_workspace(type, level);
1369 ret = compression_compress_pages(type, workspace, mapping, start, pages,
1370 out_pages, total_in, total_out);
1371 put_workspace(type, workspace);
1372 return ret;
1373}
1374
1375static int btrfs_decompress_bio(struct compressed_bio *cb)
1376{
1377 struct list_head *workspace;
1378 int ret;
1379 int type = cb->compress_type;
1380
1381 workspace = get_workspace(type, 0);
1382 ret = compression_decompress_bio(workspace, cb);
1383 put_workspace(type, workspace);
1384
1385 return ret;
1386}
1387
1388/*
1389 * a less complex decompression routine. Our compressed data fits in a
1390 * single page, and we want to read a single page out of it.
1391 * start_byte tells us the offset into the compressed data we're interested in
1392 */
1393int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1394 unsigned long start_byte, size_t srclen, size_t destlen)
1395{
1396 struct list_head *workspace;
1397 int ret;
1398
1399 workspace = get_workspace(type, 0);
1400 ret = compression_decompress(type, workspace, data_in, dest_page,
1401 start_byte, srclen, destlen);
1402 put_workspace(type, workspace);
1403
1404 return ret;
1405}
1406
1407void __init btrfs_init_compress(void)
1408{
1409 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1410 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1411 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1412 zstd_init_workspace_manager();
1413}
1414
1415void __cold btrfs_exit_compress(void)
1416{
1417 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1418 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1419 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1420 zstd_cleanup_workspace_manager();
1421}
1422
1423/*
1424 * Copy decompressed data from working buffer to pages.
1425 *
1426 * @buf: The decompressed data buffer
1427 * @buf_len: The decompressed data length
1428 * @decompressed: Number of bytes that are already decompressed inside the
1429 * compressed extent
1430 * @cb: The compressed extent descriptor
1431 * @orig_bio: The original bio that the caller wants to read for
1432 *
1433 * An easier to understand graph is like below:
1434 *
1435 * |<- orig_bio ->| |<- orig_bio->|
1436 * |<------- full decompressed extent ----->|
1437 * |<----------- @cb range ---->|
1438 * | |<-- @buf_len -->|
1439 * |<--- @decompressed --->|
1440 *
1441 * Note that, @cb can be a subpage of the full decompressed extent, but
1442 * @cb->start always has the same as the orig_file_offset value of the full
1443 * decompressed extent.
1444 *
1445 * When reading compressed extent, we have to read the full compressed extent,
1446 * while @orig_bio may only want part of the range.
1447 * Thus this function will ensure only data covered by @orig_bio will be copied
1448 * to.
1449 *
1450 * Return 0 if we have copied all needed contents for @orig_bio.
1451 * Return >0 if we need continue decompress.
1452 */
1453int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1454 struct compressed_bio *cb, u32 decompressed)
1455{
1456 struct bio *orig_bio = cb->orig_bio;
1457 /* Offset inside the full decompressed extent */
1458 u32 cur_offset;
1459
1460 cur_offset = decompressed;
1461 /* The main loop to do the copy */
1462 while (cur_offset < decompressed + buf_len) {
1463 struct bio_vec bvec;
1464 size_t copy_len;
1465 u32 copy_start;
1466 /* Offset inside the full decompressed extent */
1467 u32 bvec_offset;
1468
1469 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1470 /*
1471 * cb->start may underflow, but subtracting that value can still
1472 * give us correct offset inside the full decompressed extent.
1473 */
1474 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1475
1476 /* Haven't reached the bvec range, exit */
1477 if (decompressed + buf_len <= bvec_offset)
1478 return 1;
1479
1480 copy_start = max(cur_offset, bvec_offset);
1481 copy_len = min(bvec_offset + bvec.bv_len,
1482 decompressed + buf_len) - copy_start;
1483 ASSERT(copy_len);
1484
1485 /*
1486 * Extra range check to ensure we didn't go beyond
1487 * @buf + @buf_len.
1488 */
1489 ASSERT(copy_start - decompressed < buf_len);
1490 memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1491 buf + copy_start - decompressed, copy_len);
1492 flush_dcache_page(bvec.bv_page);
1493 cur_offset += copy_len;
1494
1495 bio_advance(orig_bio, copy_len);
1496 /* Finished the bio */
1497 if (!orig_bio->bi_iter.bi_size)
1498 return 0;
1499 }
1500 return 1;
1501}
1502
1503/*
1504 * Shannon Entropy calculation
1505 *
1506 * Pure byte distribution analysis fails to determine compressibility of data.
1507 * Try calculating entropy to estimate the average minimum number of bits
1508 * needed to encode the sampled data.
1509 *
1510 * For convenience, return the percentage of needed bits, instead of amount of
1511 * bits directly.
1512 *
1513 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1514 * and can be compressible with high probability
1515 *
1516 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1517 *
1518 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1519 */
1520#define ENTROPY_LVL_ACEPTABLE (65)
1521#define ENTROPY_LVL_HIGH (80)
1522
1523/*
1524 * For increasead precision in shannon_entropy calculation,
1525 * let's do pow(n, M) to save more digits after comma:
1526 *
1527 * - maximum int bit length is 64
1528 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1529 * - 13 * 4 = 52 < 64 -> M = 4
1530 *
1531 * So use pow(n, 4).
1532 */
1533static inline u32 ilog2_w(u64 n)
1534{
1535 return ilog2(n * n * n * n);
1536}
1537
1538static u32 shannon_entropy(struct heuristic_ws *ws)
1539{
1540 const u32 entropy_max = 8 * ilog2_w(2);
1541 u32 entropy_sum = 0;
1542 u32 p, p_base, sz_base;
1543 u32 i;
1544
1545 sz_base = ilog2_w(ws->sample_size);
1546 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1547 p = ws->bucket[i].count;
1548 p_base = ilog2_w(p);
1549 entropy_sum += p * (sz_base - p_base);
1550 }
1551
1552 entropy_sum /= ws->sample_size;
1553 return entropy_sum * 100 / entropy_max;
1554}
1555
1556#define RADIX_BASE 4U
1557#define COUNTERS_SIZE (1U << RADIX_BASE)
1558
1559static u8 get4bits(u64 num, int shift) {
1560 u8 low4bits;
1561
1562 num >>= shift;
1563 /* Reverse order */
1564 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1565 return low4bits;
1566}
1567
1568/*
1569 * Use 4 bits as radix base
1570 * Use 16 u32 counters for calculating new position in buf array
1571 *
1572 * @array - array that will be sorted
1573 * @array_buf - buffer array to store sorting results
1574 * must be equal in size to @array
1575 * @num - array size
1576 */
1577static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1578 int num)
1579{
1580 u64 max_num;
1581 u64 buf_num;
1582 u32 counters[COUNTERS_SIZE];
1583 u32 new_addr;
1584 u32 addr;
1585 int bitlen;
1586 int shift;
1587 int i;
1588
1589 /*
1590 * Try avoid useless loop iterations for small numbers stored in big
1591 * counters. Example: 48 33 4 ... in 64bit array
1592 */
1593 max_num = array[0].count;
1594 for (i = 1; i < num; i++) {
1595 buf_num = array[i].count;
1596 if (buf_num > max_num)
1597 max_num = buf_num;
1598 }
1599
1600 buf_num = ilog2(max_num);
1601 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1602
1603 shift = 0;
1604 while (shift < bitlen) {
1605 memset(counters, 0, sizeof(counters));
1606
1607 for (i = 0; i < num; i++) {
1608 buf_num = array[i].count;
1609 addr = get4bits(buf_num, shift);
1610 counters[addr]++;
1611 }
1612
1613 for (i = 1; i < COUNTERS_SIZE; i++)
1614 counters[i] += counters[i - 1];
1615
1616 for (i = num - 1; i >= 0; i--) {
1617 buf_num = array[i].count;
1618 addr = get4bits(buf_num, shift);
1619 counters[addr]--;
1620 new_addr = counters[addr];
1621 array_buf[new_addr] = array[i];
1622 }
1623
1624 shift += RADIX_BASE;
1625
1626 /*
1627 * Normal radix expects to move data from a temporary array, to
1628 * the main one. But that requires some CPU time. Avoid that
1629 * by doing another sort iteration to original array instead of
1630 * memcpy()
1631 */
1632 memset(counters, 0, sizeof(counters));
1633
1634 for (i = 0; i < num; i ++) {
1635 buf_num = array_buf[i].count;
1636 addr = get4bits(buf_num, shift);
1637 counters[addr]++;
1638 }
1639
1640 for (i = 1; i < COUNTERS_SIZE; i++)
1641 counters[i] += counters[i - 1];
1642
1643 for (i = num - 1; i >= 0; i--) {
1644 buf_num = array_buf[i].count;
1645 addr = get4bits(buf_num, shift);
1646 counters[addr]--;
1647 new_addr = counters[addr];
1648 array[new_addr] = array_buf[i];
1649 }
1650
1651 shift += RADIX_BASE;
1652 }
1653}
1654
1655/*
1656 * Size of the core byte set - how many bytes cover 90% of the sample
1657 *
1658 * There are several types of structured binary data that use nearly all byte
1659 * values. The distribution can be uniform and counts in all buckets will be
1660 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1661 *
1662 * Other possibility is normal (Gaussian) distribution, where the data could
1663 * be potentially compressible, but we have to take a few more steps to decide
1664 * how much.
1665 *
1666 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1667 * compression algo can easy fix that
1668 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1669 * probability is not compressible
1670 */
1671#define BYTE_CORE_SET_LOW (64)
1672#define BYTE_CORE_SET_HIGH (200)
1673
1674static int byte_core_set_size(struct heuristic_ws *ws)
1675{
1676 u32 i;
1677 u32 coreset_sum = 0;
1678 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1679 struct bucket_item *bucket = ws->bucket;
1680
1681 /* Sort in reverse order */
1682 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1683
1684 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1685 coreset_sum += bucket[i].count;
1686
1687 if (coreset_sum > core_set_threshold)
1688 return i;
1689
1690 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1691 coreset_sum += bucket[i].count;
1692 if (coreset_sum > core_set_threshold)
1693 break;
1694 }
1695
1696 return i;
1697}
1698
1699/*
1700 * Count byte values in buckets.
1701 * This heuristic can detect textual data (configs, xml, json, html, etc).
1702 * Because in most text-like data byte set is restricted to limited number of
1703 * possible characters, and that restriction in most cases makes data easy to
1704 * compress.
1705 *
1706 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1707 * less - compressible
1708 * more - need additional analysis
1709 */
1710#define BYTE_SET_THRESHOLD (64)
1711
1712static u32 byte_set_size(const struct heuristic_ws *ws)
1713{
1714 u32 i;
1715 u32 byte_set_size = 0;
1716
1717 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1718 if (ws->bucket[i].count > 0)
1719 byte_set_size++;
1720 }
1721
1722 /*
1723 * Continue collecting count of byte values in buckets. If the byte
1724 * set size is bigger then the threshold, it's pointless to continue,
1725 * the detection technique would fail for this type of data.
1726 */
1727 for (; i < BUCKET_SIZE; i++) {
1728 if (ws->bucket[i].count > 0) {
1729 byte_set_size++;
1730 if (byte_set_size > BYTE_SET_THRESHOLD)
1731 return byte_set_size;
1732 }
1733 }
1734
1735 return byte_set_size;
1736}
1737
1738static bool sample_repeated_patterns(struct heuristic_ws *ws)
1739{
1740 const u32 half_of_sample = ws->sample_size / 2;
1741 const u8 *data = ws->sample;
1742
1743 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1744}
1745
1746static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1747 struct heuristic_ws *ws)
1748{
1749 struct page *page;
1750 u64 index, index_end;
1751 u32 i, curr_sample_pos;
1752 u8 *in_data;
1753
1754 /*
1755 * Compression handles the input data by chunks of 128KiB
1756 * (defined by BTRFS_MAX_UNCOMPRESSED)
1757 *
1758 * We do the same for the heuristic and loop over the whole range.
1759 *
1760 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1761 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1762 */
1763 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1764 end = start + BTRFS_MAX_UNCOMPRESSED;
1765
1766 index = start >> PAGE_SHIFT;
1767 index_end = end >> PAGE_SHIFT;
1768
1769 /* Don't miss unaligned end */
1770 if (!IS_ALIGNED(end, PAGE_SIZE))
1771 index_end++;
1772
1773 curr_sample_pos = 0;
1774 while (index < index_end) {
1775 page = find_get_page(inode->i_mapping, index);
1776 in_data = kmap_local_page(page);
1777 /* Handle case where the start is not aligned to PAGE_SIZE */
1778 i = start % PAGE_SIZE;
1779 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1780 /* Don't sample any garbage from the last page */
1781 if (start > end - SAMPLING_READ_SIZE)
1782 break;
1783 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1784 SAMPLING_READ_SIZE);
1785 i += SAMPLING_INTERVAL;
1786 start += SAMPLING_INTERVAL;
1787 curr_sample_pos += SAMPLING_READ_SIZE;
1788 }
1789 kunmap_local(in_data);
1790 put_page(page);
1791
1792 index++;
1793 }
1794
1795 ws->sample_size = curr_sample_pos;
1796}
1797
1798/*
1799 * Compression heuristic.
1800 *
1801 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1802 * quickly (compared to direct compression) detect data characteristics
1803 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1804 * data.
1805 *
1806 * The following types of analysis can be performed:
1807 * - detect mostly zero data
1808 * - detect data with low "byte set" size (text, etc)
1809 * - detect data with low/high "core byte" set
1810 *
1811 * Return non-zero if the compression should be done, 0 otherwise.
1812 */
1813int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1814{
1815 struct list_head *ws_list = get_workspace(0, 0);
1816 struct heuristic_ws *ws;
1817 u32 i;
1818 u8 byte;
1819 int ret = 0;
1820
1821 ws = list_entry(ws_list, struct heuristic_ws, list);
1822
1823 heuristic_collect_sample(inode, start, end, ws);
1824
1825 if (sample_repeated_patterns(ws)) {
1826 ret = 1;
1827 goto out;
1828 }
1829
1830 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1831
1832 for (i = 0; i < ws->sample_size; i++) {
1833 byte = ws->sample[i];
1834 ws->bucket[byte].count++;
1835 }
1836
1837 i = byte_set_size(ws);
1838 if (i < BYTE_SET_THRESHOLD) {
1839 ret = 2;
1840 goto out;
1841 }
1842
1843 i = byte_core_set_size(ws);
1844 if (i <= BYTE_CORE_SET_LOW) {
1845 ret = 3;
1846 goto out;
1847 }
1848
1849 if (i >= BYTE_CORE_SET_HIGH) {
1850 ret = 0;
1851 goto out;
1852 }
1853
1854 i = shannon_entropy(ws);
1855 if (i <= ENTROPY_LVL_ACEPTABLE) {
1856 ret = 4;
1857 goto out;
1858 }
1859
1860 /*
1861 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1862 * needed to give green light to compression.
1863 *
1864 * For now just assume that compression at that level is not worth the
1865 * resources because:
1866 *
1867 * 1. it is possible to defrag the data later
1868 *
1869 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1870 * values, every bucket has counter at level ~54. The heuristic would
1871 * be confused. This can happen when data have some internal repeated
1872 * patterns like "abbacbbc...". This can be detected by analyzing
1873 * pairs of bytes, which is too costly.
1874 */
1875 if (i < ENTROPY_LVL_HIGH) {
1876 ret = 5;
1877 goto out;
1878 } else {
1879 ret = 0;
1880 goto out;
1881 }
1882
1883out:
1884 put_workspace(0, ws_list);
1885 return ret;
1886}
1887
1888/*
1889 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1890 * level, unrecognized string will set the default level
1891 */
1892unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1893{
1894 unsigned int level = 0;
1895 int ret;
1896
1897 if (!type)
1898 return 0;
1899
1900 if (str[0] == ':') {
1901 ret = kstrtouint(str + 1, 10, &level);
1902 if (ret)
1903 level = 0;
1904 }
1905
1906 level = btrfs_compress_set_level(type, level);
1907
1908 return level;
1909}