Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* handling of writes to regular files and writing back to the server
3 *
4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8#include <linux/backing-dev.h>
9#include <linux/slab.h>
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
14#include <linux/netfs.h>
15#include "internal.h"
16
17static void afs_write_to_cache(struct afs_vnode *vnode, loff_t start, size_t len,
18 loff_t i_size, bool caching);
19
20#ifdef CONFIG_AFS_FSCACHE
21/*
22 * Mark a page as having been made dirty and thus needing writeback. We also
23 * need to pin the cache object to write back to.
24 */
25bool afs_dirty_folio(struct address_space *mapping, struct folio *folio)
26{
27 return fscache_dirty_folio(mapping, folio,
28 afs_vnode_cache(AFS_FS_I(mapping->host)));
29}
30static void afs_folio_start_fscache(bool caching, struct folio *folio)
31{
32 if (caching)
33 folio_start_fscache(folio);
34}
35#else
36static void afs_folio_start_fscache(bool caching, struct folio *folio)
37{
38}
39#endif
40
41/*
42 * prepare to perform part of a write to a page
43 */
44int afs_write_begin(struct file *file, struct address_space *mapping,
45 loff_t pos, unsigned len, unsigned flags,
46 struct page **_page, void **fsdata)
47{
48 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
49 struct folio *folio;
50 unsigned long priv;
51 unsigned f, from;
52 unsigned t, to;
53 pgoff_t index;
54 int ret;
55
56 _enter("{%llx:%llu},%llx,%x",
57 vnode->fid.vid, vnode->fid.vnode, pos, len);
58
59 /* Prefetch area to be written into the cache if we're caching this
60 * file. We need to do this before we get a lock on the page in case
61 * there's more than one writer competing for the same cache block.
62 */
63 ret = netfs_write_begin(file, mapping, pos, len, flags, &folio, fsdata);
64 if (ret < 0)
65 return ret;
66
67 index = folio_index(folio);
68 from = pos - index * PAGE_SIZE;
69 to = from + len;
70
71try_again:
72 /* See if this page is already partially written in a way that we can
73 * merge the new write with.
74 */
75 if (folio_test_private(folio)) {
76 priv = (unsigned long)folio_get_private(folio);
77 f = afs_folio_dirty_from(folio, priv);
78 t = afs_folio_dirty_to(folio, priv);
79 ASSERTCMP(f, <=, t);
80
81 if (folio_test_writeback(folio)) {
82 trace_afs_folio_dirty(vnode, tracepoint_string("alrdy"), folio);
83 goto flush_conflicting_write;
84 }
85 /* If the file is being filled locally, allow inter-write
86 * spaces to be merged into writes. If it's not, only write
87 * back what the user gives us.
88 */
89 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
90 (to < f || from > t))
91 goto flush_conflicting_write;
92 }
93
94 *_page = &folio->page;
95 _leave(" = 0");
96 return 0;
97
98 /* The previous write and this write aren't adjacent or overlapping, so
99 * flush the page out.
100 */
101flush_conflicting_write:
102 _debug("flush conflict");
103 ret = folio_write_one(folio);
104 if (ret < 0)
105 goto error;
106
107 ret = folio_lock_killable(folio);
108 if (ret < 0)
109 goto error;
110 goto try_again;
111
112error:
113 folio_put(folio);
114 _leave(" = %d", ret);
115 return ret;
116}
117
118/*
119 * finalise part of a write to a page
120 */
121int afs_write_end(struct file *file, struct address_space *mapping,
122 loff_t pos, unsigned len, unsigned copied,
123 struct page *subpage, void *fsdata)
124{
125 struct folio *folio = page_folio(subpage);
126 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
127 unsigned long priv;
128 unsigned int f, from = offset_in_folio(folio, pos);
129 unsigned int t, to = from + copied;
130 loff_t i_size, write_end_pos;
131
132 _enter("{%llx:%llu},{%lx}",
133 vnode->fid.vid, vnode->fid.vnode, folio_index(folio));
134
135 if (!folio_test_uptodate(folio)) {
136 if (copied < len) {
137 copied = 0;
138 goto out;
139 }
140
141 folio_mark_uptodate(folio);
142 }
143
144 if (copied == 0)
145 goto out;
146
147 write_end_pos = pos + copied;
148
149 i_size = i_size_read(&vnode->vfs_inode);
150 if (write_end_pos > i_size) {
151 write_seqlock(&vnode->cb_lock);
152 i_size = i_size_read(&vnode->vfs_inode);
153 if (write_end_pos > i_size)
154 afs_set_i_size(vnode, write_end_pos);
155 write_sequnlock(&vnode->cb_lock);
156 fscache_update_cookie(afs_vnode_cache(vnode), NULL, &write_end_pos);
157 }
158
159 if (folio_test_private(folio)) {
160 priv = (unsigned long)folio_get_private(folio);
161 f = afs_folio_dirty_from(folio, priv);
162 t = afs_folio_dirty_to(folio, priv);
163 if (from < f)
164 f = from;
165 if (to > t)
166 t = to;
167 priv = afs_folio_dirty(folio, f, t);
168 folio_change_private(folio, (void *)priv);
169 trace_afs_folio_dirty(vnode, tracepoint_string("dirty+"), folio);
170 } else {
171 priv = afs_folio_dirty(folio, from, to);
172 folio_attach_private(folio, (void *)priv);
173 trace_afs_folio_dirty(vnode, tracepoint_string("dirty"), folio);
174 }
175
176 if (folio_mark_dirty(folio))
177 _debug("dirtied %lx", folio_index(folio));
178
179out:
180 folio_unlock(folio);
181 folio_put(folio);
182 return copied;
183}
184
185/*
186 * kill all the pages in the given range
187 */
188static void afs_kill_pages(struct address_space *mapping,
189 loff_t start, loff_t len)
190{
191 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
192 struct folio *folio;
193 pgoff_t index = start / PAGE_SIZE;
194 pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
195
196 _enter("{%llx:%llu},%llx @%llx",
197 vnode->fid.vid, vnode->fid.vnode, len, start);
198
199 do {
200 _debug("kill %lx (to %lx)", index, last);
201
202 folio = filemap_get_folio(mapping, index);
203 if (!folio) {
204 next = index + 1;
205 continue;
206 }
207
208 next = folio_next_index(folio);
209
210 folio_clear_uptodate(folio);
211 folio_end_writeback(folio);
212 folio_lock(folio);
213 generic_error_remove_page(mapping, &folio->page);
214 folio_unlock(folio);
215 folio_put(folio);
216
217 } while (index = next, index <= last);
218
219 _leave("");
220}
221
222/*
223 * Redirty all the pages in a given range.
224 */
225static void afs_redirty_pages(struct writeback_control *wbc,
226 struct address_space *mapping,
227 loff_t start, loff_t len)
228{
229 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
230 struct folio *folio;
231 pgoff_t index = start / PAGE_SIZE;
232 pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
233
234 _enter("{%llx:%llu},%llx @%llx",
235 vnode->fid.vid, vnode->fid.vnode, len, start);
236
237 do {
238 _debug("redirty %llx @%llx", len, start);
239
240 folio = filemap_get_folio(mapping, index);
241 if (!folio) {
242 next = index + 1;
243 continue;
244 }
245
246 next = index + folio_nr_pages(folio);
247 folio_redirty_for_writepage(wbc, folio);
248 folio_end_writeback(folio);
249 folio_put(folio);
250 } while (index = next, index <= last);
251
252 _leave("");
253}
254
255/*
256 * completion of write to server
257 */
258static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
259{
260 struct address_space *mapping = vnode->vfs_inode.i_mapping;
261 struct folio *folio;
262 pgoff_t end;
263
264 XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE);
265
266 _enter("{%llx:%llu},{%x @%llx}",
267 vnode->fid.vid, vnode->fid.vnode, len, start);
268
269 rcu_read_lock();
270
271 end = (start + len - 1) / PAGE_SIZE;
272 xas_for_each(&xas, folio, end) {
273 if (!folio_test_writeback(folio)) {
274 kdebug("bad %x @%llx page %lx %lx",
275 len, start, folio_index(folio), end);
276 ASSERT(folio_test_writeback(folio));
277 }
278
279 trace_afs_folio_dirty(vnode, tracepoint_string("clear"), folio);
280 folio_detach_private(folio);
281 folio_end_writeback(folio);
282 }
283
284 rcu_read_unlock();
285
286 afs_prune_wb_keys(vnode);
287 _leave("");
288}
289
290/*
291 * Find a key to use for the writeback. We cached the keys used to author the
292 * writes on the vnode. *_wbk will contain the last writeback key used or NULL
293 * and we need to start from there if it's set.
294 */
295static int afs_get_writeback_key(struct afs_vnode *vnode,
296 struct afs_wb_key **_wbk)
297{
298 struct afs_wb_key *wbk = NULL;
299 struct list_head *p;
300 int ret = -ENOKEY, ret2;
301
302 spin_lock(&vnode->wb_lock);
303 if (*_wbk)
304 p = (*_wbk)->vnode_link.next;
305 else
306 p = vnode->wb_keys.next;
307
308 while (p != &vnode->wb_keys) {
309 wbk = list_entry(p, struct afs_wb_key, vnode_link);
310 _debug("wbk %u", key_serial(wbk->key));
311 ret2 = key_validate(wbk->key);
312 if (ret2 == 0) {
313 refcount_inc(&wbk->usage);
314 _debug("USE WB KEY %u", key_serial(wbk->key));
315 break;
316 }
317
318 wbk = NULL;
319 if (ret == -ENOKEY)
320 ret = ret2;
321 p = p->next;
322 }
323
324 spin_unlock(&vnode->wb_lock);
325 if (*_wbk)
326 afs_put_wb_key(*_wbk);
327 *_wbk = wbk;
328 return 0;
329}
330
331static void afs_store_data_success(struct afs_operation *op)
332{
333 struct afs_vnode *vnode = op->file[0].vnode;
334
335 op->ctime = op->file[0].scb.status.mtime_client;
336 afs_vnode_commit_status(op, &op->file[0]);
337 if (op->error == 0) {
338 if (!op->store.laundering)
339 afs_pages_written_back(vnode, op->store.pos, op->store.size);
340 afs_stat_v(vnode, n_stores);
341 atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
342 }
343}
344
345static const struct afs_operation_ops afs_store_data_operation = {
346 .issue_afs_rpc = afs_fs_store_data,
347 .issue_yfs_rpc = yfs_fs_store_data,
348 .success = afs_store_data_success,
349};
350
351/*
352 * write to a file
353 */
354static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos,
355 bool laundering)
356{
357 struct netfs_i_context *ictx = &vnode->netfs_ctx;
358 struct afs_operation *op;
359 struct afs_wb_key *wbk = NULL;
360 loff_t size = iov_iter_count(iter);
361 int ret = -ENOKEY;
362
363 _enter("%s{%llx:%llu.%u},%llx,%llx",
364 vnode->volume->name,
365 vnode->fid.vid,
366 vnode->fid.vnode,
367 vnode->fid.unique,
368 size, pos);
369
370 ret = afs_get_writeback_key(vnode, &wbk);
371 if (ret) {
372 _leave(" = %d [no keys]", ret);
373 return ret;
374 }
375
376 op = afs_alloc_operation(wbk->key, vnode->volume);
377 if (IS_ERR(op)) {
378 afs_put_wb_key(wbk);
379 return -ENOMEM;
380 }
381
382 afs_op_set_vnode(op, 0, vnode);
383 op->file[0].dv_delta = 1;
384 op->file[0].modification = true;
385 op->store.write_iter = iter;
386 op->store.pos = pos;
387 op->store.size = size;
388 op->store.i_size = max(pos + size, ictx->remote_i_size);
389 op->store.laundering = laundering;
390 op->mtime = vnode->vfs_inode.i_mtime;
391 op->flags |= AFS_OPERATION_UNINTR;
392 op->ops = &afs_store_data_operation;
393
394try_next_key:
395 afs_begin_vnode_operation(op);
396 afs_wait_for_operation(op);
397
398 switch (op->error) {
399 case -EACCES:
400 case -EPERM:
401 case -ENOKEY:
402 case -EKEYEXPIRED:
403 case -EKEYREJECTED:
404 case -EKEYREVOKED:
405 _debug("next");
406
407 ret = afs_get_writeback_key(vnode, &wbk);
408 if (ret == 0) {
409 key_put(op->key);
410 op->key = key_get(wbk->key);
411 goto try_next_key;
412 }
413 break;
414 }
415
416 afs_put_wb_key(wbk);
417 _leave(" = %d", op->error);
418 return afs_put_operation(op);
419}
420
421/*
422 * Extend the region to be written back to include subsequent contiguously
423 * dirty pages if possible, but don't sleep while doing so.
424 *
425 * If this page holds new content, then we can include filler zeros in the
426 * writeback.
427 */
428static void afs_extend_writeback(struct address_space *mapping,
429 struct afs_vnode *vnode,
430 long *_count,
431 loff_t start,
432 loff_t max_len,
433 bool new_content,
434 bool caching,
435 unsigned int *_len)
436{
437 struct pagevec pvec;
438 struct folio *folio;
439 unsigned long priv;
440 unsigned int psize, filler = 0;
441 unsigned int f, t;
442 loff_t len = *_len;
443 pgoff_t index = (start + len) / PAGE_SIZE;
444 bool stop = true;
445 unsigned int i;
446
447 XA_STATE(xas, &mapping->i_pages, index);
448 pagevec_init(&pvec);
449
450 do {
451 /* Firstly, we gather up a batch of contiguous dirty pages
452 * under the RCU read lock - but we can't clear the dirty flags
453 * there if any of those pages are mapped.
454 */
455 rcu_read_lock();
456
457 xas_for_each(&xas, folio, ULONG_MAX) {
458 stop = true;
459 if (xas_retry(&xas, folio))
460 continue;
461 if (xa_is_value(folio))
462 break;
463 if (folio_index(folio) != index)
464 break;
465
466 if (!folio_try_get_rcu(folio)) {
467 xas_reset(&xas);
468 continue;
469 }
470
471 /* Has the page moved or been split? */
472 if (unlikely(folio != xas_reload(&xas))) {
473 folio_put(folio);
474 break;
475 }
476
477 if (!folio_trylock(folio)) {
478 folio_put(folio);
479 break;
480 }
481 if (!folio_test_dirty(folio) ||
482 folio_test_writeback(folio) ||
483 folio_test_fscache(folio)) {
484 folio_unlock(folio);
485 folio_put(folio);
486 break;
487 }
488
489 psize = folio_size(folio);
490 priv = (unsigned long)folio_get_private(folio);
491 f = afs_folio_dirty_from(folio, priv);
492 t = afs_folio_dirty_to(folio, priv);
493 if (f != 0 && !new_content) {
494 folio_unlock(folio);
495 folio_put(folio);
496 break;
497 }
498
499 len += filler + t;
500 filler = psize - t;
501 if (len >= max_len || *_count <= 0)
502 stop = true;
503 else if (t == psize || new_content)
504 stop = false;
505
506 index += folio_nr_pages(folio);
507 if (!pagevec_add(&pvec, &folio->page))
508 break;
509 if (stop)
510 break;
511 }
512
513 if (!stop)
514 xas_pause(&xas);
515 rcu_read_unlock();
516
517 /* Now, if we obtained any pages, we can shift them to being
518 * writable and mark them for caching.
519 */
520 if (!pagevec_count(&pvec))
521 break;
522
523 for (i = 0; i < pagevec_count(&pvec); i++) {
524 folio = page_folio(pvec.pages[i]);
525 trace_afs_folio_dirty(vnode, tracepoint_string("store+"), folio);
526
527 if (!folio_clear_dirty_for_io(folio))
528 BUG();
529 if (folio_start_writeback(folio))
530 BUG();
531 afs_folio_start_fscache(caching, folio);
532
533 *_count -= folio_nr_pages(folio);
534 folio_unlock(folio);
535 }
536
537 pagevec_release(&pvec);
538 cond_resched();
539 } while (!stop);
540
541 *_len = len;
542}
543
544/*
545 * Synchronously write back the locked page and any subsequent non-locked dirty
546 * pages.
547 */
548static ssize_t afs_write_back_from_locked_folio(struct address_space *mapping,
549 struct writeback_control *wbc,
550 struct folio *folio,
551 loff_t start, loff_t end)
552{
553 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
554 struct iov_iter iter;
555 unsigned long priv;
556 unsigned int offset, to, len, max_len;
557 loff_t i_size = i_size_read(&vnode->vfs_inode);
558 bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
559 bool caching = fscache_cookie_enabled(afs_vnode_cache(vnode));
560 long count = wbc->nr_to_write;
561 int ret;
562
563 _enter(",%lx,%llx-%llx", folio_index(folio), start, end);
564
565 if (folio_start_writeback(folio))
566 BUG();
567 afs_folio_start_fscache(caching, folio);
568
569 count -= folio_nr_pages(folio);
570
571 /* Find all consecutive lockable dirty pages that have contiguous
572 * written regions, stopping when we find a page that is not
573 * immediately lockable, is not dirty or is missing, or we reach the
574 * end of the range.
575 */
576 priv = (unsigned long)folio_get_private(folio);
577 offset = afs_folio_dirty_from(folio, priv);
578 to = afs_folio_dirty_to(folio, priv);
579 trace_afs_folio_dirty(vnode, tracepoint_string("store"), folio);
580
581 len = to - offset;
582 start += offset;
583 if (start < i_size) {
584 /* Trim the write to the EOF; the extra data is ignored. Also
585 * put an upper limit on the size of a single storedata op.
586 */
587 max_len = 65536 * 4096;
588 max_len = min_t(unsigned long long, max_len, end - start + 1);
589 max_len = min_t(unsigned long long, max_len, i_size - start);
590
591 if (len < max_len &&
592 (to == folio_size(folio) || new_content))
593 afs_extend_writeback(mapping, vnode, &count,
594 start, max_len, new_content,
595 caching, &len);
596 len = min_t(loff_t, len, max_len);
597 }
598
599 /* We now have a contiguous set of dirty pages, each with writeback
600 * set; the first page is still locked at this point, but all the rest
601 * have been unlocked.
602 */
603 folio_unlock(folio);
604
605 if (start < i_size) {
606 _debug("write back %x @%llx [%llx]", len, start, i_size);
607
608 /* Speculatively write to the cache. We have to fix this up
609 * later if the store fails.
610 */
611 afs_write_to_cache(vnode, start, len, i_size, caching);
612
613 iov_iter_xarray(&iter, WRITE, &mapping->i_pages, start, len);
614 ret = afs_store_data(vnode, &iter, start, false);
615 } else {
616 _debug("write discard %x @%llx [%llx]", len, start, i_size);
617
618 /* The dirty region was entirely beyond the EOF. */
619 fscache_clear_page_bits(mapping, start, len, caching);
620 afs_pages_written_back(vnode, start, len);
621 ret = 0;
622 }
623
624 switch (ret) {
625 case 0:
626 wbc->nr_to_write = count;
627 ret = len;
628 break;
629
630 default:
631 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
632 fallthrough;
633 case -EACCES:
634 case -EPERM:
635 case -ENOKEY:
636 case -EKEYEXPIRED:
637 case -EKEYREJECTED:
638 case -EKEYREVOKED:
639 afs_redirty_pages(wbc, mapping, start, len);
640 mapping_set_error(mapping, ret);
641 break;
642
643 case -EDQUOT:
644 case -ENOSPC:
645 afs_redirty_pages(wbc, mapping, start, len);
646 mapping_set_error(mapping, -ENOSPC);
647 break;
648
649 case -EROFS:
650 case -EIO:
651 case -EREMOTEIO:
652 case -EFBIG:
653 case -ENOENT:
654 case -ENOMEDIUM:
655 case -ENXIO:
656 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
657 afs_kill_pages(mapping, start, len);
658 mapping_set_error(mapping, ret);
659 break;
660 }
661
662 _leave(" = %d", ret);
663 return ret;
664}
665
666/*
667 * write a page back to the server
668 * - the caller locked the page for us
669 */
670int afs_writepage(struct page *subpage, struct writeback_control *wbc)
671{
672 struct folio *folio = page_folio(subpage);
673 ssize_t ret;
674 loff_t start;
675
676 _enter("{%lx},", folio_index(folio));
677
678#ifdef CONFIG_AFS_FSCACHE
679 folio_wait_fscache(folio);
680#endif
681
682 start = folio_index(folio) * PAGE_SIZE;
683 ret = afs_write_back_from_locked_folio(folio_mapping(folio), wbc,
684 folio, start, LLONG_MAX - start);
685 if (ret < 0) {
686 _leave(" = %zd", ret);
687 return ret;
688 }
689
690 _leave(" = 0");
691 return 0;
692}
693
694/*
695 * write a region of pages back to the server
696 */
697static int afs_writepages_region(struct address_space *mapping,
698 struct writeback_control *wbc,
699 loff_t start, loff_t end, loff_t *_next)
700{
701 struct folio *folio;
702 struct page *head_page;
703 ssize_t ret;
704 int n, skips = 0;
705
706 _enter("%llx,%llx,", start, end);
707
708 do {
709 pgoff_t index = start / PAGE_SIZE;
710
711 n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE,
712 PAGECACHE_TAG_DIRTY, 1, &head_page);
713 if (!n)
714 break;
715
716 folio = page_folio(head_page);
717 start = folio_pos(folio); /* May regress with THPs */
718
719 _debug("wback %lx", folio_index(folio));
720
721 /* At this point we hold neither the i_pages lock nor the
722 * page lock: the page may be truncated or invalidated
723 * (changing page->mapping to NULL), or even swizzled
724 * back from swapper_space to tmpfs file mapping
725 */
726 if (wbc->sync_mode != WB_SYNC_NONE) {
727 ret = folio_lock_killable(folio);
728 if (ret < 0) {
729 folio_put(folio);
730 return ret;
731 }
732 } else {
733 if (!folio_trylock(folio)) {
734 folio_put(folio);
735 return 0;
736 }
737 }
738
739 if (folio_mapping(folio) != mapping ||
740 !folio_test_dirty(folio)) {
741 start += folio_size(folio);
742 folio_unlock(folio);
743 folio_put(folio);
744 continue;
745 }
746
747 if (folio_test_writeback(folio) ||
748 folio_test_fscache(folio)) {
749 folio_unlock(folio);
750 if (wbc->sync_mode != WB_SYNC_NONE) {
751 folio_wait_writeback(folio);
752#ifdef CONFIG_AFS_FSCACHE
753 folio_wait_fscache(folio);
754#endif
755 } else {
756 start += folio_size(folio);
757 }
758 folio_put(folio);
759 if (wbc->sync_mode == WB_SYNC_NONE) {
760 if (skips >= 5 || need_resched())
761 break;
762 skips++;
763 }
764 continue;
765 }
766
767 if (!folio_clear_dirty_for_io(folio))
768 BUG();
769 ret = afs_write_back_from_locked_folio(mapping, wbc, folio, start, end);
770 folio_put(folio);
771 if (ret < 0) {
772 _leave(" = %zd", ret);
773 return ret;
774 }
775
776 start += ret;
777
778 cond_resched();
779 } while (wbc->nr_to_write > 0);
780
781 *_next = start;
782 _leave(" = 0 [%llx]", *_next);
783 return 0;
784}
785
786/*
787 * write some of the pending data back to the server
788 */
789int afs_writepages(struct address_space *mapping,
790 struct writeback_control *wbc)
791{
792 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
793 loff_t start, next;
794 int ret;
795
796 _enter("");
797
798 /* We have to be careful as we can end up racing with setattr()
799 * truncating the pagecache since the caller doesn't take a lock here
800 * to prevent it.
801 */
802 if (wbc->sync_mode == WB_SYNC_ALL)
803 down_read(&vnode->validate_lock);
804 else if (!down_read_trylock(&vnode->validate_lock))
805 return 0;
806
807 if (wbc->range_cyclic) {
808 start = mapping->writeback_index * PAGE_SIZE;
809 ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, &next);
810 if (ret == 0) {
811 mapping->writeback_index = next / PAGE_SIZE;
812 if (start > 0 && wbc->nr_to_write > 0) {
813 ret = afs_writepages_region(mapping, wbc, 0,
814 start, &next);
815 if (ret == 0)
816 mapping->writeback_index =
817 next / PAGE_SIZE;
818 }
819 }
820 } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
821 ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next);
822 if (wbc->nr_to_write > 0 && ret == 0)
823 mapping->writeback_index = next / PAGE_SIZE;
824 } else {
825 ret = afs_writepages_region(mapping, wbc,
826 wbc->range_start, wbc->range_end, &next);
827 }
828
829 up_read(&vnode->validate_lock);
830 _leave(" = %d", ret);
831 return ret;
832}
833
834/*
835 * write to an AFS file
836 */
837ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
838{
839 struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
840 struct afs_file *af = iocb->ki_filp->private_data;
841 ssize_t result;
842 size_t count = iov_iter_count(from);
843
844 _enter("{%llx:%llu},{%zu},",
845 vnode->fid.vid, vnode->fid.vnode, count);
846
847 if (IS_SWAPFILE(&vnode->vfs_inode)) {
848 printk(KERN_INFO
849 "AFS: Attempt to write to active swap file!\n");
850 return -EBUSY;
851 }
852
853 if (!count)
854 return 0;
855
856 result = afs_validate(vnode, af->key);
857 if (result < 0)
858 return result;
859
860 result = generic_file_write_iter(iocb, from);
861
862 _leave(" = %zd", result);
863 return result;
864}
865
866/*
867 * flush any dirty pages for this process, and check for write errors.
868 * - the return status from this call provides a reliable indication of
869 * whether any write errors occurred for this process.
870 */
871int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
872{
873 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
874 struct afs_file *af = file->private_data;
875 int ret;
876
877 _enter("{%llx:%llu},{n=%pD},%d",
878 vnode->fid.vid, vnode->fid.vnode, file,
879 datasync);
880
881 ret = afs_validate(vnode, af->key);
882 if (ret < 0)
883 return ret;
884
885 return file_write_and_wait_range(file, start, end);
886}
887
888/*
889 * notification that a previously read-only page is about to become writable
890 * - if it returns an error, the caller will deliver a bus error signal
891 */
892vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
893{
894 struct folio *folio = page_folio(vmf->page);
895 struct file *file = vmf->vma->vm_file;
896 struct inode *inode = file_inode(file);
897 struct afs_vnode *vnode = AFS_FS_I(inode);
898 struct afs_file *af = file->private_data;
899 unsigned long priv;
900 vm_fault_t ret = VM_FAULT_RETRY;
901
902 _enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, folio_index(folio));
903
904 afs_validate(vnode, af->key);
905
906 sb_start_pagefault(inode->i_sb);
907
908 /* Wait for the page to be written to the cache before we allow it to
909 * be modified. We then assume the entire page will need writing back.
910 */
911#ifdef CONFIG_AFS_FSCACHE
912 if (folio_test_fscache(folio) &&
913 folio_wait_fscache_killable(folio) < 0)
914 goto out;
915#endif
916
917 if (folio_wait_writeback_killable(folio))
918 goto out;
919
920 if (folio_lock_killable(folio) < 0)
921 goto out;
922
923 /* We mustn't change folio->private until writeback is complete as that
924 * details the portion of the page we need to write back and we might
925 * need to redirty the page if there's a problem.
926 */
927 if (folio_wait_writeback_killable(folio) < 0) {
928 folio_unlock(folio);
929 goto out;
930 }
931
932 priv = afs_folio_dirty(folio, 0, folio_size(folio));
933 priv = afs_folio_dirty_mmapped(priv);
934 if (folio_test_private(folio)) {
935 folio_change_private(folio, (void *)priv);
936 trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite+"), folio);
937 } else {
938 folio_attach_private(folio, (void *)priv);
939 trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite"), folio);
940 }
941 file_update_time(file);
942
943 ret = VM_FAULT_LOCKED;
944out:
945 sb_end_pagefault(inode->i_sb);
946 return ret;
947}
948
949/*
950 * Prune the keys cached for writeback. The caller must hold vnode->wb_lock.
951 */
952void afs_prune_wb_keys(struct afs_vnode *vnode)
953{
954 LIST_HEAD(graveyard);
955 struct afs_wb_key *wbk, *tmp;
956
957 /* Discard unused keys */
958 spin_lock(&vnode->wb_lock);
959
960 if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
961 !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
962 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
963 if (refcount_read(&wbk->usage) == 1)
964 list_move(&wbk->vnode_link, &graveyard);
965 }
966 }
967
968 spin_unlock(&vnode->wb_lock);
969
970 while (!list_empty(&graveyard)) {
971 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
972 list_del(&wbk->vnode_link);
973 afs_put_wb_key(wbk);
974 }
975}
976
977/*
978 * Clean up a page during invalidation.
979 */
980int afs_launder_folio(struct folio *folio)
981{
982 struct afs_vnode *vnode = AFS_FS_I(folio_inode(folio));
983 struct iov_iter iter;
984 struct bio_vec bv[1];
985 unsigned long priv;
986 unsigned int f, t;
987 int ret = 0;
988
989 _enter("{%lx}", folio->index);
990
991 priv = (unsigned long)folio_get_private(folio);
992 if (folio_clear_dirty_for_io(folio)) {
993 f = 0;
994 t = folio_size(folio);
995 if (folio_test_private(folio)) {
996 f = afs_folio_dirty_from(folio, priv);
997 t = afs_folio_dirty_to(folio, priv);
998 }
999
1000 bv[0].bv_page = &folio->page;
1001 bv[0].bv_offset = f;
1002 bv[0].bv_len = t - f;
1003 iov_iter_bvec(&iter, WRITE, bv, 1, bv[0].bv_len);
1004
1005 trace_afs_folio_dirty(vnode, tracepoint_string("launder"), folio);
1006 ret = afs_store_data(vnode, &iter, folio_pos(folio) + f, true);
1007 }
1008
1009 trace_afs_folio_dirty(vnode, tracepoint_string("laundered"), folio);
1010 folio_detach_private(folio);
1011 folio_wait_fscache(folio);
1012 return ret;
1013}
1014
1015/*
1016 * Deal with the completion of writing the data to the cache.
1017 */
1018static void afs_write_to_cache_done(void *priv, ssize_t transferred_or_error,
1019 bool was_async)
1020{
1021 struct afs_vnode *vnode = priv;
1022
1023 if (IS_ERR_VALUE(transferred_or_error) &&
1024 transferred_or_error != -ENOBUFS)
1025 afs_invalidate_cache(vnode, 0);
1026}
1027
1028/*
1029 * Save the write to the cache also.
1030 */
1031static void afs_write_to_cache(struct afs_vnode *vnode,
1032 loff_t start, size_t len, loff_t i_size,
1033 bool caching)
1034{
1035 fscache_write_to_cache(afs_vnode_cache(vnode),
1036 vnode->vfs_inode.i_mapping, start, len, i_size,
1037 afs_write_to_cache_done, vnode, caching);
1038}