Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Tty buffer allocation management
4 */
5
6#include <linux/types.h>
7#include <linux/errno.h>
8#include <linux/tty.h>
9#include <linux/tty_driver.h>
10#include <linux/tty_flip.h>
11#include <linux/timer.h>
12#include <linux/string.h>
13#include <linux/slab.h>
14#include <linux/sched.h>
15#include <linux/wait.h>
16#include <linux/bitops.h>
17#include <linux/delay.h>
18#include <linux/module.h>
19#include <linux/ratelimit.h>
20#include "tty.h"
21
22#define MIN_TTYB_SIZE 256
23#define TTYB_ALIGN_MASK 255
24
25/*
26 * Byte threshold to limit memory consumption for flip buffers.
27 * The actual memory limit is > 2x this amount.
28 */
29#define TTYB_DEFAULT_MEM_LIMIT (640 * 1024UL)
30
31/*
32 * We default to dicing tty buffer allocations to this many characters
33 * in order to avoid multiple page allocations. We know the size of
34 * tty_buffer itself but it must also be taken into account that the
35 * buffer is 256 byte aligned. See tty_buffer_find for the allocation
36 * logic this must match.
37 */
38
39#define TTY_BUFFER_PAGE (((PAGE_SIZE - sizeof(struct tty_buffer)) / 2) & ~0xFF)
40
41/**
42 * tty_buffer_lock_exclusive - gain exclusive access to buffer
43 * @port: tty port owning the flip buffer
44 *
45 * Guarantees safe use of the &tty_ldisc_ops.receive_buf() method by excluding
46 * the buffer work and any pending flush from using the flip buffer. Data can
47 * continue to be added concurrently to the flip buffer from the driver side.
48 *
49 * See also tty_buffer_unlock_exclusive().
50 */
51void tty_buffer_lock_exclusive(struct tty_port *port)
52{
53 struct tty_bufhead *buf = &port->buf;
54
55 atomic_inc(&buf->priority);
56 mutex_lock(&buf->lock);
57}
58EXPORT_SYMBOL_GPL(tty_buffer_lock_exclusive);
59
60/**
61 * tty_buffer_unlock_exclusive - release exclusive access
62 * @port: tty port owning the flip buffer
63 *
64 * The buffer work is restarted if there is data in the flip buffer.
65 *
66 * See also tty_buffer_lock_exclusive().
67 */
68void tty_buffer_unlock_exclusive(struct tty_port *port)
69{
70 struct tty_bufhead *buf = &port->buf;
71 int restart;
72
73 restart = buf->head->commit != buf->head->read;
74
75 atomic_dec(&buf->priority);
76 mutex_unlock(&buf->lock);
77 if (restart)
78 queue_work(system_unbound_wq, &buf->work);
79}
80EXPORT_SYMBOL_GPL(tty_buffer_unlock_exclusive);
81
82/**
83 * tty_buffer_space_avail - return unused buffer space
84 * @port: tty port owning the flip buffer
85 *
86 * Returns: the # of bytes which can be written by the driver without reaching
87 * the buffer limit.
88 *
89 * Note: this does not guarantee that memory is available to write the returned
90 * # of bytes (use tty_prepare_flip_string() to pre-allocate if memory
91 * guarantee is required).
92 */
93unsigned int tty_buffer_space_avail(struct tty_port *port)
94{
95 int space = port->buf.mem_limit - atomic_read(&port->buf.mem_used);
96
97 return max(space, 0);
98}
99EXPORT_SYMBOL_GPL(tty_buffer_space_avail);
100
101static void tty_buffer_reset(struct tty_buffer *p, size_t size)
102{
103 p->used = 0;
104 p->size = size;
105 p->next = NULL;
106 p->commit = 0;
107 p->read = 0;
108 p->flags = 0;
109}
110
111/**
112 * tty_buffer_free_all - free buffers used by a tty
113 * @port: tty port to free from
114 *
115 * Remove all the buffers pending on a tty whether queued with data or in the
116 * free ring. Must be called when the tty is no longer in use.
117 */
118void tty_buffer_free_all(struct tty_port *port)
119{
120 struct tty_bufhead *buf = &port->buf;
121 struct tty_buffer *p, *next;
122 struct llist_node *llist;
123 unsigned int freed = 0;
124 int still_used;
125
126 while ((p = buf->head) != NULL) {
127 buf->head = p->next;
128 freed += p->size;
129 if (p->size > 0)
130 kfree(p);
131 }
132 llist = llist_del_all(&buf->free);
133 llist_for_each_entry_safe(p, next, llist, free)
134 kfree(p);
135
136 tty_buffer_reset(&buf->sentinel, 0);
137 buf->head = &buf->sentinel;
138 buf->tail = &buf->sentinel;
139
140 still_used = atomic_xchg(&buf->mem_used, 0);
141 WARN(still_used != freed, "we still have not freed %d bytes!",
142 still_used - freed);
143}
144
145/**
146 * tty_buffer_alloc - allocate a tty buffer
147 * @port: tty port
148 * @size: desired size (characters)
149 *
150 * Allocate a new tty buffer to hold the desired number of characters. We
151 * round our buffers off in 256 character chunks to get better allocation
152 * behaviour.
153 *
154 * Returns: %NULL if out of memory or the allocation would exceed the per
155 * device queue.
156 */
157static struct tty_buffer *tty_buffer_alloc(struct tty_port *port, size_t size)
158{
159 struct llist_node *free;
160 struct tty_buffer *p;
161
162 /* Round the buffer size out */
163 size = __ALIGN_MASK(size, TTYB_ALIGN_MASK);
164
165 if (size <= MIN_TTYB_SIZE) {
166 free = llist_del_first(&port->buf.free);
167 if (free) {
168 p = llist_entry(free, struct tty_buffer, free);
169 goto found;
170 }
171 }
172
173 /* Should possibly check if this fails for the largest buffer we
174 * have queued and recycle that ?
175 */
176 if (atomic_read(&port->buf.mem_used) > port->buf.mem_limit)
177 return NULL;
178 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
179 if (p == NULL)
180 return NULL;
181
182found:
183 tty_buffer_reset(p, size);
184 atomic_add(size, &port->buf.mem_used);
185 return p;
186}
187
188/**
189 * tty_buffer_free - free a tty buffer
190 * @port: tty port owning the buffer
191 * @b: the buffer to free
192 *
193 * Free a tty buffer, or add it to the free list according to our internal
194 * strategy.
195 */
196static void tty_buffer_free(struct tty_port *port, struct tty_buffer *b)
197{
198 struct tty_bufhead *buf = &port->buf;
199
200 /* Dumb strategy for now - should keep some stats */
201 WARN_ON(atomic_sub_return(b->size, &buf->mem_used) < 0);
202
203 if (b->size > MIN_TTYB_SIZE)
204 kfree(b);
205 else if (b->size > 0)
206 llist_add(&b->free, &buf->free);
207}
208
209/**
210 * tty_buffer_flush - flush full tty buffers
211 * @tty: tty to flush
212 * @ld: optional ldisc ptr (must be referenced)
213 *
214 * Flush all the buffers containing receive data. If @ld != %NULL, flush the
215 * ldisc input buffer.
216 *
217 * Locking: takes buffer lock to ensure single-threaded flip buffer 'consumer'.
218 */
219void tty_buffer_flush(struct tty_struct *tty, struct tty_ldisc *ld)
220{
221 struct tty_port *port = tty->port;
222 struct tty_bufhead *buf = &port->buf;
223 struct tty_buffer *next;
224
225 atomic_inc(&buf->priority);
226
227 mutex_lock(&buf->lock);
228 /* paired w/ release in __tty_buffer_request_room; ensures there are
229 * no pending memory accesses to the freed buffer
230 */
231 while ((next = smp_load_acquire(&buf->head->next)) != NULL) {
232 tty_buffer_free(port, buf->head);
233 buf->head = next;
234 }
235 buf->head->read = buf->head->commit;
236
237 if (ld && ld->ops->flush_buffer)
238 ld->ops->flush_buffer(tty);
239
240 atomic_dec(&buf->priority);
241 mutex_unlock(&buf->lock);
242}
243
244/**
245 * __tty_buffer_request_room - grow tty buffer if needed
246 * @port: tty port
247 * @size: size desired
248 * @flags: buffer flags if new buffer allocated (default = 0)
249 *
250 * Make at least @size bytes of linear space available for the tty buffer.
251 *
252 * Will change over to a new buffer if the current buffer is encoded as
253 * %TTY_NORMAL (so has no flags buffer) and the new buffer requires a flags
254 * buffer.
255 *
256 * Returns: the size we managed to find.
257 */
258static int __tty_buffer_request_room(struct tty_port *port, size_t size,
259 int flags)
260{
261 struct tty_bufhead *buf = &port->buf;
262 struct tty_buffer *b, *n;
263 int left, change;
264
265 b = buf->tail;
266 if (b->flags & TTYB_NORMAL)
267 left = 2 * b->size - b->used;
268 else
269 left = b->size - b->used;
270
271 change = (b->flags & TTYB_NORMAL) && (~flags & TTYB_NORMAL);
272 if (change || left < size) {
273 /* This is the slow path - looking for new buffers to use */
274 n = tty_buffer_alloc(port, size);
275 if (n != NULL) {
276 n->flags = flags;
277 buf->tail = n;
278 /* paired w/ acquire in flush_to_ldisc(); ensures
279 * flush_to_ldisc() sees buffer data.
280 */
281 smp_store_release(&b->commit, b->used);
282 /* paired w/ acquire in flush_to_ldisc(); ensures the
283 * latest commit value can be read before the head is
284 * advanced to the next buffer
285 */
286 smp_store_release(&b->next, n);
287 } else if (change)
288 size = 0;
289 else
290 size = left;
291 }
292 return size;
293}
294
295int tty_buffer_request_room(struct tty_port *port, size_t size)
296{
297 return __tty_buffer_request_room(port, size, 0);
298}
299EXPORT_SYMBOL_GPL(tty_buffer_request_room);
300
301/**
302 * tty_insert_flip_string_fixed_flag - add characters to the tty buffer
303 * @port: tty port
304 * @chars: characters
305 * @flag: flag value for each character
306 * @size: size
307 *
308 * Queue a series of bytes to the tty buffering. All the characters passed are
309 * marked with the supplied flag.
310 *
311 * Returns: the number added.
312 */
313int tty_insert_flip_string_fixed_flag(struct tty_port *port,
314 const unsigned char *chars, char flag, size_t size)
315{
316 int copied = 0;
317
318 do {
319 int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
320 int flags = (flag == TTY_NORMAL) ? TTYB_NORMAL : 0;
321 int space = __tty_buffer_request_room(port, goal, flags);
322 struct tty_buffer *tb = port->buf.tail;
323
324 if (unlikely(space == 0))
325 break;
326 memcpy(char_buf_ptr(tb, tb->used), chars, space);
327 if (~tb->flags & TTYB_NORMAL)
328 memset(flag_buf_ptr(tb, tb->used), flag, space);
329 tb->used += space;
330 copied += space;
331 chars += space;
332 /* There is a small chance that we need to split the data over
333 * several buffers. If this is the case we must loop.
334 */
335 } while (unlikely(size > copied));
336 return copied;
337}
338EXPORT_SYMBOL(tty_insert_flip_string_fixed_flag);
339
340/**
341 * tty_insert_flip_string_flags - add characters to the tty buffer
342 * @port: tty port
343 * @chars: characters
344 * @flags: flag bytes
345 * @size: size
346 *
347 * Queue a series of bytes to the tty buffering. For each character the flags
348 * array indicates the status of the character.
349 *
350 * Returns: the number added.
351 */
352int tty_insert_flip_string_flags(struct tty_port *port,
353 const unsigned char *chars, const char *flags, size_t size)
354{
355 int copied = 0;
356
357 do {
358 int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
359 int space = tty_buffer_request_room(port, goal);
360 struct tty_buffer *tb = port->buf.tail;
361
362 if (unlikely(space == 0))
363 break;
364 memcpy(char_buf_ptr(tb, tb->used), chars, space);
365 memcpy(flag_buf_ptr(tb, tb->used), flags, space);
366 tb->used += space;
367 copied += space;
368 chars += space;
369 flags += space;
370 /* There is a small chance that we need to split the data over
371 * several buffers. If this is the case we must loop.
372 */
373 } while (unlikely(size > copied));
374 return copied;
375}
376EXPORT_SYMBOL(tty_insert_flip_string_flags);
377
378/**
379 * __tty_insert_flip_char - add one character to the tty buffer
380 * @port: tty port
381 * @ch: character
382 * @flag: flag byte
383 *
384 * Queue a single byte @ch to the tty buffering, with an optional flag. This is
385 * the slow path of tty_insert_flip_char().
386 */
387int __tty_insert_flip_char(struct tty_port *port, unsigned char ch, char flag)
388{
389 struct tty_buffer *tb;
390 int flags = (flag == TTY_NORMAL) ? TTYB_NORMAL : 0;
391
392 if (!__tty_buffer_request_room(port, 1, flags))
393 return 0;
394
395 tb = port->buf.tail;
396 if (~tb->flags & TTYB_NORMAL)
397 *flag_buf_ptr(tb, tb->used) = flag;
398 *char_buf_ptr(tb, tb->used++) = ch;
399
400 return 1;
401}
402EXPORT_SYMBOL(__tty_insert_flip_char);
403
404/**
405 * tty_prepare_flip_string - make room for characters
406 * @port: tty port
407 * @chars: return pointer for character write area
408 * @size: desired size
409 *
410 * Prepare a block of space in the buffer for data.
411 *
412 * This is used for drivers that need their own block copy routines into the
413 * buffer. There is no guarantee the buffer is a DMA target!
414 *
415 * Returns: the length available and buffer pointer (@chars) to the space which
416 * is now allocated and accounted for as ready for normal characters.
417 */
418int tty_prepare_flip_string(struct tty_port *port, unsigned char **chars,
419 size_t size)
420{
421 int space = __tty_buffer_request_room(port, size, TTYB_NORMAL);
422
423 if (likely(space)) {
424 struct tty_buffer *tb = port->buf.tail;
425
426 *chars = char_buf_ptr(tb, tb->used);
427 if (~tb->flags & TTYB_NORMAL)
428 memset(flag_buf_ptr(tb, tb->used), TTY_NORMAL, space);
429 tb->used += space;
430 }
431 return space;
432}
433EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
434
435/**
436 * tty_ldisc_receive_buf - forward data to line discipline
437 * @ld: line discipline to process input
438 * @p: char buffer
439 * @f: %TTY_NORMAL, %TTY_BREAK, etc. flags buffer
440 * @count: number of bytes to process
441 *
442 * Callers other than flush_to_ldisc() need to exclude the kworker from
443 * concurrent use of the line discipline, see paste_selection().
444 *
445 * Returns: the number of bytes processed.
446 */
447int tty_ldisc_receive_buf(struct tty_ldisc *ld, const unsigned char *p,
448 const char *f, int count)
449{
450 if (ld->ops->receive_buf2)
451 count = ld->ops->receive_buf2(ld->tty, p, f, count);
452 else {
453 count = min_t(int, count, ld->tty->receive_room);
454 if (count && ld->ops->receive_buf)
455 ld->ops->receive_buf(ld->tty, p, f, count);
456 }
457 return count;
458}
459EXPORT_SYMBOL_GPL(tty_ldisc_receive_buf);
460
461static int
462receive_buf(struct tty_port *port, struct tty_buffer *head, int count)
463{
464 unsigned char *p = char_buf_ptr(head, head->read);
465 const char *f = NULL;
466 int n;
467
468 if (~head->flags & TTYB_NORMAL)
469 f = flag_buf_ptr(head, head->read);
470
471 n = port->client_ops->receive_buf(port, p, f, count);
472 if (n > 0)
473 memset(p, 0, n);
474 return n;
475}
476
477/**
478 * flush_to_ldisc - flush data from buffer to ldisc
479 * @work: tty structure passed from work queue.
480 *
481 * This routine is called out of the software interrupt to flush data from the
482 * buffer chain to the line discipline.
483 *
484 * The receive_buf() method is single threaded for each tty instance.
485 *
486 * Locking: takes buffer lock to ensure single-threaded flip buffer 'consumer'.
487 */
488static void flush_to_ldisc(struct work_struct *work)
489{
490 struct tty_port *port = container_of(work, struct tty_port, buf.work);
491 struct tty_bufhead *buf = &port->buf;
492
493 mutex_lock(&buf->lock);
494
495 while (1) {
496 struct tty_buffer *head = buf->head;
497 struct tty_buffer *next;
498 int count;
499
500 /* Ldisc or user is trying to gain exclusive access */
501 if (atomic_read(&buf->priority))
502 break;
503
504 /* paired w/ release in __tty_buffer_request_room();
505 * ensures commit value read is not stale if the head
506 * is advancing to the next buffer
507 */
508 next = smp_load_acquire(&head->next);
509 /* paired w/ release in __tty_buffer_request_room() or in
510 * tty_buffer_flush(); ensures we see the committed buffer data
511 */
512 count = smp_load_acquire(&head->commit) - head->read;
513 if (!count) {
514 if (next == NULL)
515 break;
516 buf->head = next;
517 tty_buffer_free(port, head);
518 continue;
519 }
520
521 count = receive_buf(port, head, count);
522 if (!count)
523 break;
524 head->read += count;
525
526 if (need_resched())
527 cond_resched();
528 }
529
530 mutex_unlock(&buf->lock);
531
532}
533
534/**
535 * tty_flip_buffer_push - push terminal buffers
536 * @port: tty port to push
537 *
538 * Queue a push of the terminal flip buffers to the line discipline. Can be
539 * called from IRQ/atomic context.
540 *
541 * In the event of the queue being busy for flipping the work will be held off
542 * and retried later.
543 */
544void tty_flip_buffer_push(struct tty_port *port)
545{
546 struct tty_bufhead *buf = &port->buf;
547
548 /*
549 * Paired w/ acquire in flush_to_ldisc(); ensures flush_to_ldisc() sees
550 * buffer data.
551 */
552 smp_store_release(&buf->tail->commit, buf->tail->used);
553 queue_work(system_unbound_wq, &buf->work);
554}
555EXPORT_SYMBOL(tty_flip_buffer_push);
556
557/**
558 * tty_buffer_init - prepare a tty buffer structure
559 * @port: tty port to initialise
560 *
561 * Set up the initial state of the buffer management for a tty device. Must be
562 * called before the other tty buffer functions are used.
563 */
564void tty_buffer_init(struct tty_port *port)
565{
566 struct tty_bufhead *buf = &port->buf;
567
568 mutex_init(&buf->lock);
569 tty_buffer_reset(&buf->sentinel, 0);
570 buf->head = &buf->sentinel;
571 buf->tail = &buf->sentinel;
572 init_llist_head(&buf->free);
573 atomic_set(&buf->mem_used, 0);
574 atomic_set(&buf->priority, 0);
575 INIT_WORK(&buf->work, flush_to_ldisc);
576 buf->mem_limit = TTYB_DEFAULT_MEM_LIMIT;
577}
578
579/**
580 * tty_buffer_set_limit - change the tty buffer memory limit
581 * @port: tty port to change
582 * @limit: memory limit to set
583 *
584 * Change the tty buffer memory limit.
585 *
586 * Must be called before the other tty buffer functions are used.
587 */
588int tty_buffer_set_limit(struct tty_port *port, int limit)
589{
590 if (limit < MIN_TTYB_SIZE)
591 return -EINVAL;
592 port->buf.mem_limit = limit;
593 return 0;
594}
595EXPORT_SYMBOL_GPL(tty_buffer_set_limit);
596
597/* slave ptys can claim nested buffer lock when handling BRK and INTR */
598void tty_buffer_set_lock_subclass(struct tty_port *port)
599{
600 lockdep_set_subclass(&port->buf.lock, TTY_LOCK_SLAVE);
601}
602
603bool tty_buffer_restart_work(struct tty_port *port)
604{
605 return queue_work(system_unbound_wq, &port->buf.work);
606}
607
608bool tty_buffer_cancel_work(struct tty_port *port)
609{
610 return cancel_work_sync(&port->buf.work);
611}
612
613void tty_buffer_flush_work(struct tty_port *port)
614{
615 flush_work(&port->buf.work);
616}