Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * background writeback - scan btree for dirty data and write it to the backing
4 * device
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10#include "bcache.h"
11#include "btree.h"
12#include "debug.h"
13#include "writeback.h"
14
15#include <linux/delay.h>
16#include <linux/kthread.h>
17#include <linux/sched/clock.h>
18#include <trace/events/bcache.h>
19
20static void update_gc_after_writeback(struct cache_set *c)
21{
22 if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
23 c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
24 return;
25
26 c->gc_after_writeback |= BCH_DO_AUTO_GC;
27}
28
29/* Rate limiting */
30static uint64_t __calc_target_rate(struct cached_dev *dc)
31{
32 struct cache_set *c = dc->disk.c;
33
34 /*
35 * This is the size of the cache, minus the amount used for
36 * flash-only devices
37 */
38 uint64_t cache_sectors = c->nbuckets * c->cache->sb.bucket_size -
39 atomic_long_read(&c->flash_dev_dirty_sectors);
40
41 /*
42 * Unfortunately there is no control of global dirty data. If the
43 * user states that they want 10% dirty data in the cache, and has,
44 * e.g., 5 backing volumes of equal size, we try and ensure each
45 * backing volume uses about 2% of the cache for dirty data.
46 */
47 uint32_t bdev_share =
48 div64_u64(bdev_nr_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
49 c->cached_dev_sectors);
50
51 uint64_t cache_dirty_target =
52 div_u64(cache_sectors * dc->writeback_percent, 100);
53
54 /* Ensure each backing dev gets at least one dirty share */
55 if (bdev_share < 1)
56 bdev_share = 1;
57
58 return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
59}
60
61static void __update_writeback_rate(struct cached_dev *dc)
62{
63 /*
64 * PI controller:
65 * Figures out the amount that should be written per second.
66 *
67 * First, the error (number of sectors that are dirty beyond our
68 * target) is calculated. The error is accumulated (numerically
69 * integrated).
70 *
71 * Then, the proportional value and integral value are scaled
72 * based on configured values. These are stored as inverses to
73 * avoid fixed point math and to make configuration easy-- e.g.
74 * the default value of 40 for writeback_rate_p_term_inverse
75 * attempts to write at a rate that would retire all the dirty
76 * blocks in 40 seconds.
77 *
78 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
79 * of the error is accumulated in the integral term per second.
80 * This acts as a slow, long-term average that is not subject to
81 * variations in usage like the p term.
82 */
83 int64_t target = __calc_target_rate(dc);
84 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
85 int64_t error = dirty - target;
86 int64_t proportional_scaled =
87 div_s64(error, dc->writeback_rate_p_term_inverse);
88 int64_t integral_scaled;
89 uint32_t new_rate;
90
91 /*
92 * We need to consider the number of dirty buckets as well
93 * when calculating the proportional_scaled, Otherwise we might
94 * have an unreasonable small writeback rate at a highly fragmented situation
95 * when very few dirty sectors consumed a lot dirty buckets, the
96 * worst case is when dirty buckets reached cutoff_writeback_sync and
97 * dirty data is still not even reached to writeback percent, so the rate
98 * still will be at the minimum value, which will cause the write
99 * stuck at a non-writeback mode.
100 */
101 struct cache_set *c = dc->disk.c;
102
103 int64_t dirty_buckets = c->nbuckets - c->avail_nbuckets;
104
105 if (dc->writeback_consider_fragment &&
106 c->gc_stats.in_use > BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW && dirty > 0) {
107 int64_t fragment =
108 div_s64((dirty_buckets * c->cache->sb.bucket_size), dirty);
109 int64_t fp_term;
110 int64_t fps;
111
112 if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID) {
113 fp_term = (int64_t)dc->writeback_rate_fp_term_low *
114 (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW);
115 } else if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH) {
116 fp_term = (int64_t)dc->writeback_rate_fp_term_mid *
117 (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID);
118 } else {
119 fp_term = (int64_t)dc->writeback_rate_fp_term_high *
120 (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH);
121 }
122 fps = div_s64(dirty, dirty_buckets) * fp_term;
123 if (fragment > 3 && fps > proportional_scaled) {
124 /* Only overrite the p when fragment > 3 */
125 proportional_scaled = fps;
126 }
127 }
128
129 if ((error < 0 && dc->writeback_rate_integral > 0) ||
130 (error > 0 && time_before64(local_clock(),
131 dc->writeback_rate.next + NSEC_PER_MSEC))) {
132 /*
133 * Only decrease the integral term if it's more than
134 * zero. Only increase the integral term if the device
135 * is keeping up. (Don't wind up the integral
136 * ineffectively in either case).
137 *
138 * It's necessary to scale this by
139 * writeback_rate_update_seconds to keep the integral
140 * term dimensioned properly.
141 */
142 dc->writeback_rate_integral += error *
143 dc->writeback_rate_update_seconds;
144 }
145
146 integral_scaled = div_s64(dc->writeback_rate_integral,
147 dc->writeback_rate_i_term_inverse);
148
149 new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
150 dc->writeback_rate_minimum, NSEC_PER_SEC);
151
152 dc->writeback_rate_proportional = proportional_scaled;
153 dc->writeback_rate_integral_scaled = integral_scaled;
154 dc->writeback_rate_change = new_rate -
155 atomic_long_read(&dc->writeback_rate.rate);
156 atomic_long_set(&dc->writeback_rate.rate, new_rate);
157 dc->writeback_rate_target = target;
158}
159
160static bool set_at_max_writeback_rate(struct cache_set *c,
161 struct cached_dev *dc)
162{
163 /* Don't sst max writeback rate if it is disabled */
164 if (!c->idle_max_writeback_rate_enabled)
165 return false;
166
167 /* Don't set max writeback rate if gc is running */
168 if (!c->gc_mark_valid)
169 return false;
170 /*
171 * Idle_counter is increased everytime when update_writeback_rate() is
172 * called. If all backing devices attached to the same cache set have
173 * identical dc->writeback_rate_update_seconds values, it is about 6
174 * rounds of update_writeback_rate() on each backing device before
175 * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
176 * to each dc->writeback_rate.rate.
177 * In order to avoid extra locking cost for counting exact dirty cached
178 * devices number, c->attached_dev_nr is used to calculate the idle
179 * throushold. It might be bigger if not all cached device are in write-
180 * back mode, but it still works well with limited extra rounds of
181 * update_writeback_rate().
182 */
183 if (atomic_inc_return(&c->idle_counter) <
184 atomic_read(&c->attached_dev_nr) * 6)
185 return false;
186
187 if (atomic_read(&c->at_max_writeback_rate) != 1)
188 atomic_set(&c->at_max_writeback_rate, 1);
189
190 atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
191
192 /* keep writeback_rate_target as existing value */
193 dc->writeback_rate_proportional = 0;
194 dc->writeback_rate_integral_scaled = 0;
195 dc->writeback_rate_change = 0;
196
197 /*
198 * Check c->idle_counter and c->at_max_writeback_rate agagain in case
199 * new I/O arrives during before set_at_max_writeback_rate() returns.
200 * Then the writeback rate is set to 1, and its new value should be
201 * decided via __update_writeback_rate().
202 */
203 if ((atomic_read(&c->idle_counter) <
204 atomic_read(&c->attached_dev_nr) * 6) ||
205 !atomic_read(&c->at_max_writeback_rate))
206 return false;
207
208 return true;
209}
210
211static void update_writeback_rate(struct work_struct *work)
212{
213 struct cached_dev *dc = container_of(to_delayed_work(work),
214 struct cached_dev,
215 writeback_rate_update);
216 struct cache_set *c = dc->disk.c;
217
218 /*
219 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
220 * cancel_delayed_work_sync().
221 */
222 set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
223 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
224 smp_mb__after_atomic();
225
226 /*
227 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
228 * check it here too.
229 */
230 if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
231 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
232 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
233 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
234 smp_mb__after_atomic();
235 return;
236 }
237
238 if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
239 /*
240 * If the whole cache set is idle, set_at_max_writeback_rate()
241 * will set writeback rate to a max number. Then it is
242 * unncessary to update writeback rate for an idle cache set
243 * in maximum writeback rate number(s).
244 */
245 if (!set_at_max_writeback_rate(c, dc)) {
246 down_read(&dc->writeback_lock);
247 __update_writeback_rate(dc);
248 update_gc_after_writeback(c);
249 up_read(&dc->writeback_lock);
250 }
251 }
252
253
254 /*
255 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
256 * check it here too.
257 */
258 if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
259 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
260 schedule_delayed_work(&dc->writeback_rate_update,
261 dc->writeback_rate_update_seconds * HZ);
262 }
263
264 /*
265 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
266 * cancel_delayed_work_sync().
267 */
268 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
269 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
270 smp_mb__after_atomic();
271}
272
273static unsigned int writeback_delay(struct cached_dev *dc,
274 unsigned int sectors)
275{
276 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
277 !dc->writeback_percent)
278 return 0;
279
280 return bch_next_delay(&dc->writeback_rate, sectors);
281}
282
283struct dirty_io {
284 struct closure cl;
285 struct cached_dev *dc;
286 uint16_t sequence;
287 struct bio bio;
288};
289
290static void dirty_init(struct keybuf_key *w)
291{
292 struct dirty_io *io = w->private;
293 struct bio *bio = &io->bio;
294
295 bio_init(bio, NULL, bio->bi_inline_vecs,
296 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS), 0);
297 if (!io->dc->writeback_percent)
298 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
299
300 bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9;
301 bio->bi_private = w;
302 bch_bio_map(bio, NULL);
303}
304
305static void dirty_io_destructor(struct closure *cl)
306{
307 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
308
309 kfree(io);
310}
311
312static void write_dirty_finish(struct closure *cl)
313{
314 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
315 struct keybuf_key *w = io->bio.bi_private;
316 struct cached_dev *dc = io->dc;
317
318 bio_free_pages(&io->bio);
319
320 /* This is kind of a dumb way of signalling errors. */
321 if (KEY_DIRTY(&w->key)) {
322 int ret;
323 unsigned int i;
324 struct keylist keys;
325
326 bch_keylist_init(&keys);
327
328 bkey_copy(keys.top, &w->key);
329 SET_KEY_DIRTY(keys.top, false);
330 bch_keylist_push(&keys);
331
332 for (i = 0; i < KEY_PTRS(&w->key); i++)
333 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
334
335 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
336
337 if (ret)
338 trace_bcache_writeback_collision(&w->key);
339
340 atomic_long_inc(ret
341 ? &dc->disk.c->writeback_keys_failed
342 : &dc->disk.c->writeback_keys_done);
343 }
344
345 bch_keybuf_del(&dc->writeback_keys, w);
346 up(&dc->in_flight);
347
348 closure_return_with_destructor(cl, dirty_io_destructor);
349}
350
351static void dirty_endio(struct bio *bio)
352{
353 struct keybuf_key *w = bio->bi_private;
354 struct dirty_io *io = w->private;
355
356 if (bio->bi_status) {
357 SET_KEY_DIRTY(&w->key, false);
358 bch_count_backing_io_errors(io->dc, bio);
359 }
360
361 closure_put(&io->cl);
362}
363
364static void write_dirty(struct closure *cl)
365{
366 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
367 struct keybuf_key *w = io->bio.bi_private;
368 struct cached_dev *dc = io->dc;
369
370 uint16_t next_sequence;
371
372 if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
373 /* Not our turn to write; wait for a write to complete */
374 closure_wait(&dc->writeback_ordering_wait, cl);
375
376 if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
377 /*
378 * Edge case-- it happened in indeterminate order
379 * relative to when we were added to wait list..
380 */
381 closure_wake_up(&dc->writeback_ordering_wait);
382 }
383
384 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
385 return;
386 }
387
388 next_sequence = io->sequence + 1;
389
390 /*
391 * IO errors are signalled using the dirty bit on the key.
392 * If we failed to read, we should not attempt to write to the
393 * backing device. Instead, immediately go to write_dirty_finish
394 * to clean up.
395 */
396 if (KEY_DIRTY(&w->key)) {
397 dirty_init(w);
398 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
399 io->bio.bi_iter.bi_sector = KEY_START(&w->key);
400 bio_set_dev(&io->bio, io->dc->bdev);
401 io->bio.bi_end_io = dirty_endio;
402
403 /* I/O request sent to backing device */
404 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
405 }
406
407 atomic_set(&dc->writeback_sequence_next, next_sequence);
408 closure_wake_up(&dc->writeback_ordering_wait);
409
410 continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
411}
412
413static void read_dirty_endio(struct bio *bio)
414{
415 struct keybuf_key *w = bio->bi_private;
416 struct dirty_io *io = w->private;
417
418 /* is_read = 1 */
419 bch_count_io_errors(io->dc->disk.c->cache,
420 bio->bi_status, 1,
421 "reading dirty data from cache");
422
423 dirty_endio(bio);
424}
425
426static void read_dirty_submit(struct closure *cl)
427{
428 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
429
430 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
431
432 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
433}
434
435static void read_dirty(struct cached_dev *dc)
436{
437 unsigned int delay = 0;
438 struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
439 size_t size;
440 int nk, i;
441 struct dirty_io *io;
442 struct closure cl;
443 uint16_t sequence = 0;
444
445 BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
446 atomic_set(&dc->writeback_sequence_next, sequence);
447 closure_init_stack(&cl);
448
449 /*
450 * XXX: if we error, background writeback just spins. Should use some
451 * mempools.
452 */
453
454 next = bch_keybuf_next(&dc->writeback_keys);
455
456 while (!kthread_should_stop() &&
457 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
458 next) {
459 size = 0;
460 nk = 0;
461
462 do {
463 BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
464
465 /*
466 * Don't combine too many operations, even if they
467 * are all small.
468 */
469 if (nk >= MAX_WRITEBACKS_IN_PASS)
470 break;
471
472 /*
473 * If the current operation is very large, don't
474 * further combine operations.
475 */
476 if (size >= MAX_WRITESIZE_IN_PASS)
477 break;
478
479 /*
480 * Operations are only eligible to be combined
481 * if they are contiguous.
482 *
483 * TODO: add a heuristic willing to fire a
484 * certain amount of non-contiguous IO per pass,
485 * so that we can benefit from backing device
486 * command queueing.
487 */
488 if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
489 &START_KEY(&next->key)))
490 break;
491
492 size += KEY_SIZE(&next->key);
493 keys[nk++] = next;
494 } while ((next = bch_keybuf_next(&dc->writeback_keys)));
495
496 /* Now we have gathered a set of 1..5 keys to write back. */
497 for (i = 0; i < nk; i++) {
498 w = keys[i];
499
500 io = kzalloc(struct_size(io, bio.bi_inline_vecs,
501 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)),
502 GFP_KERNEL);
503 if (!io)
504 goto err;
505
506 w->private = io;
507 io->dc = dc;
508 io->sequence = sequence++;
509
510 dirty_init(w);
511 bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
512 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
513 bio_set_dev(&io->bio, dc->disk.c->cache->bdev);
514 io->bio.bi_end_io = read_dirty_endio;
515
516 if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
517 goto err_free;
518
519 trace_bcache_writeback(&w->key);
520
521 down(&dc->in_flight);
522
523 /*
524 * We've acquired a semaphore for the maximum
525 * simultaneous number of writebacks; from here
526 * everything happens asynchronously.
527 */
528 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
529 }
530
531 delay = writeback_delay(dc, size);
532
533 while (!kthread_should_stop() &&
534 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
535 delay) {
536 schedule_timeout_interruptible(delay);
537 delay = writeback_delay(dc, 0);
538 }
539 }
540
541 if (0) {
542err_free:
543 kfree(w->private);
544err:
545 bch_keybuf_del(&dc->writeback_keys, w);
546 }
547
548 /*
549 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
550 * freed) before refilling again
551 */
552 closure_sync(&cl);
553}
554
555/* Scan for dirty data */
556
557void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
558 uint64_t offset, int nr_sectors)
559{
560 struct bcache_device *d = c->devices[inode];
561 unsigned int stripe_offset, sectors_dirty;
562 int stripe;
563
564 if (!d)
565 return;
566
567 stripe = offset_to_stripe(d, offset);
568 if (stripe < 0)
569 return;
570
571 if (UUID_FLASH_ONLY(&c->uuids[inode]))
572 atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
573
574 stripe_offset = offset & (d->stripe_size - 1);
575
576 while (nr_sectors) {
577 int s = min_t(unsigned int, abs(nr_sectors),
578 d->stripe_size - stripe_offset);
579
580 if (nr_sectors < 0)
581 s = -s;
582
583 if (stripe >= d->nr_stripes)
584 return;
585
586 sectors_dirty = atomic_add_return(s,
587 d->stripe_sectors_dirty + stripe);
588 if (sectors_dirty == d->stripe_size) {
589 if (!test_bit(stripe, d->full_dirty_stripes))
590 set_bit(stripe, d->full_dirty_stripes);
591 } else {
592 if (test_bit(stripe, d->full_dirty_stripes))
593 clear_bit(stripe, d->full_dirty_stripes);
594 }
595
596 nr_sectors -= s;
597 stripe_offset = 0;
598 stripe++;
599 }
600}
601
602static bool dirty_pred(struct keybuf *buf, struct bkey *k)
603{
604 struct cached_dev *dc = container_of(buf,
605 struct cached_dev,
606 writeback_keys);
607
608 BUG_ON(KEY_INODE(k) != dc->disk.id);
609
610 return KEY_DIRTY(k);
611}
612
613static void refill_full_stripes(struct cached_dev *dc)
614{
615 struct keybuf *buf = &dc->writeback_keys;
616 unsigned int start_stripe, next_stripe;
617 int stripe;
618 bool wrapped = false;
619
620 stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
621 if (stripe < 0)
622 stripe = 0;
623
624 start_stripe = stripe;
625
626 while (1) {
627 stripe = find_next_bit(dc->disk.full_dirty_stripes,
628 dc->disk.nr_stripes, stripe);
629
630 if (stripe == dc->disk.nr_stripes)
631 goto next;
632
633 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
634 dc->disk.nr_stripes, stripe);
635
636 buf->last_scanned = KEY(dc->disk.id,
637 stripe * dc->disk.stripe_size, 0);
638
639 bch_refill_keybuf(dc->disk.c, buf,
640 &KEY(dc->disk.id,
641 next_stripe * dc->disk.stripe_size, 0),
642 dirty_pred);
643
644 if (array_freelist_empty(&buf->freelist))
645 return;
646
647 stripe = next_stripe;
648next:
649 if (wrapped && stripe > start_stripe)
650 return;
651
652 if (stripe == dc->disk.nr_stripes) {
653 stripe = 0;
654 wrapped = true;
655 }
656 }
657}
658
659/*
660 * Returns true if we scanned the entire disk
661 */
662static bool refill_dirty(struct cached_dev *dc)
663{
664 struct keybuf *buf = &dc->writeback_keys;
665 struct bkey start = KEY(dc->disk.id, 0, 0);
666 struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
667 struct bkey start_pos;
668
669 /*
670 * make sure keybuf pos is inside the range for this disk - at bringup
671 * we might not be attached yet so this disk's inode nr isn't
672 * initialized then
673 */
674 if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
675 bkey_cmp(&buf->last_scanned, &end) > 0)
676 buf->last_scanned = start;
677
678 if (dc->partial_stripes_expensive) {
679 refill_full_stripes(dc);
680 if (array_freelist_empty(&buf->freelist))
681 return false;
682 }
683
684 start_pos = buf->last_scanned;
685 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
686
687 if (bkey_cmp(&buf->last_scanned, &end) < 0)
688 return false;
689
690 /*
691 * If we get to the end start scanning again from the beginning, and
692 * only scan up to where we initially started scanning from:
693 */
694 buf->last_scanned = start;
695 bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
696
697 return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
698}
699
700static int bch_writeback_thread(void *arg)
701{
702 struct cached_dev *dc = arg;
703 struct cache_set *c = dc->disk.c;
704 bool searched_full_index;
705
706 bch_ratelimit_reset(&dc->writeback_rate);
707
708 while (!kthread_should_stop() &&
709 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
710 down_write(&dc->writeback_lock);
711 set_current_state(TASK_INTERRUPTIBLE);
712 /*
713 * If the bache device is detaching, skip here and continue
714 * to perform writeback. Otherwise, if no dirty data on cache,
715 * or there is dirty data on cache but writeback is disabled,
716 * the writeback thread should sleep here and wait for others
717 * to wake up it.
718 */
719 if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
720 (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
721 up_write(&dc->writeback_lock);
722
723 if (kthread_should_stop() ||
724 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
725 set_current_state(TASK_RUNNING);
726 break;
727 }
728
729 schedule();
730 continue;
731 }
732 set_current_state(TASK_RUNNING);
733
734 searched_full_index = refill_dirty(dc);
735
736 if (searched_full_index &&
737 RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
738 atomic_set(&dc->has_dirty, 0);
739 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
740 bch_write_bdev_super(dc, NULL);
741 /*
742 * If bcache device is detaching via sysfs interface,
743 * writeback thread should stop after there is no dirty
744 * data on cache. BCACHE_DEV_DETACHING flag is set in
745 * bch_cached_dev_detach().
746 */
747 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
748 struct closure cl;
749
750 closure_init_stack(&cl);
751 memset(&dc->sb.set_uuid, 0, 16);
752 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
753
754 bch_write_bdev_super(dc, &cl);
755 closure_sync(&cl);
756
757 up_write(&dc->writeback_lock);
758 break;
759 }
760
761 /*
762 * When dirty data rate is high (e.g. 50%+), there might
763 * be heavy buckets fragmentation after writeback
764 * finished, which hurts following write performance.
765 * If users really care about write performance they
766 * may set BCH_ENABLE_AUTO_GC via sysfs, then when
767 * BCH_DO_AUTO_GC is set, garbage collection thread
768 * will be wake up here. After moving gc, the shrunk
769 * btree and discarded free buckets SSD space may be
770 * helpful for following write requests.
771 */
772 if (c->gc_after_writeback ==
773 (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
774 c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
775 force_wake_up_gc(c);
776 }
777 }
778
779 up_write(&dc->writeback_lock);
780
781 read_dirty(dc);
782
783 if (searched_full_index) {
784 unsigned int delay = dc->writeback_delay * HZ;
785
786 while (delay &&
787 !kthread_should_stop() &&
788 !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
789 !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
790 delay = schedule_timeout_interruptible(delay);
791
792 bch_ratelimit_reset(&dc->writeback_rate);
793 }
794 }
795
796 if (dc->writeback_write_wq) {
797 flush_workqueue(dc->writeback_write_wq);
798 destroy_workqueue(dc->writeback_write_wq);
799 }
800 cached_dev_put(dc);
801 wait_for_kthread_stop();
802
803 return 0;
804}
805
806/* Init */
807#define INIT_KEYS_EACH_TIME 500000
808#define INIT_KEYS_SLEEP_MS 100
809
810struct sectors_dirty_init {
811 struct btree_op op;
812 unsigned int inode;
813 size_t count;
814 struct bkey start;
815};
816
817static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
818 struct bkey *k)
819{
820 struct sectors_dirty_init *op = container_of(_op,
821 struct sectors_dirty_init, op);
822 if (KEY_INODE(k) > op->inode)
823 return MAP_DONE;
824
825 if (KEY_DIRTY(k))
826 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
827 KEY_START(k), KEY_SIZE(k));
828
829 op->count++;
830 if (atomic_read(&b->c->search_inflight) &&
831 !(op->count % INIT_KEYS_EACH_TIME)) {
832 bkey_copy_key(&op->start, k);
833 return -EAGAIN;
834 }
835
836 return MAP_CONTINUE;
837}
838
839static int bch_root_node_dirty_init(struct cache_set *c,
840 struct bcache_device *d,
841 struct bkey *k)
842{
843 struct sectors_dirty_init op;
844 int ret;
845
846 bch_btree_op_init(&op.op, -1);
847 op.inode = d->id;
848 op.count = 0;
849 op.start = KEY(op.inode, 0, 0);
850
851 do {
852 ret = bcache_btree(map_keys_recurse,
853 k,
854 c->root,
855 &op.op,
856 &op.start,
857 sectors_dirty_init_fn,
858 0);
859 if (ret == -EAGAIN)
860 schedule_timeout_interruptible(
861 msecs_to_jiffies(INIT_KEYS_SLEEP_MS));
862 else if (ret < 0) {
863 pr_warn("sectors dirty init failed, ret=%d!\n", ret);
864 break;
865 }
866 } while (ret == -EAGAIN);
867
868 return ret;
869}
870
871static int bch_dirty_init_thread(void *arg)
872{
873 struct dirty_init_thrd_info *info = arg;
874 struct bch_dirty_init_state *state = info->state;
875 struct cache_set *c = state->c;
876 struct btree_iter iter;
877 struct bkey *k, *p;
878 int cur_idx, prev_idx, skip_nr;
879
880 k = p = NULL;
881 cur_idx = prev_idx = 0;
882
883 bch_btree_iter_init(&c->root->keys, &iter, NULL);
884 k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
885 BUG_ON(!k);
886
887 p = k;
888
889 while (k) {
890 spin_lock(&state->idx_lock);
891 cur_idx = state->key_idx;
892 state->key_idx++;
893 spin_unlock(&state->idx_lock);
894
895 skip_nr = cur_idx - prev_idx;
896
897 while (skip_nr) {
898 k = bch_btree_iter_next_filter(&iter,
899 &c->root->keys,
900 bch_ptr_bad);
901 if (k)
902 p = k;
903 else {
904 atomic_set(&state->enough, 1);
905 /* Update state->enough earlier */
906 smp_mb__after_atomic();
907 goto out;
908 }
909 skip_nr--;
910 cond_resched();
911 }
912
913 if (p) {
914 if (bch_root_node_dirty_init(c, state->d, p) < 0)
915 goto out;
916 }
917
918 p = NULL;
919 prev_idx = cur_idx;
920 cond_resched();
921 }
922
923out:
924 /* In order to wake up state->wait in time */
925 smp_mb__before_atomic();
926 if (atomic_dec_and_test(&state->started))
927 wake_up(&state->wait);
928
929 return 0;
930}
931
932static int bch_btre_dirty_init_thread_nr(void)
933{
934 int n = num_online_cpus()/2;
935
936 if (n == 0)
937 n = 1;
938 else if (n > BCH_DIRTY_INIT_THRD_MAX)
939 n = BCH_DIRTY_INIT_THRD_MAX;
940
941 return n;
942}
943
944void bch_sectors_dirty_init(struct bcache_device *d)
945{
946 int i;
947 struct bkey *k = NULL;
948 struct btree_iter iter;
949 struct sectors_dirty_init op;
950 struct cache_set *c = d->c;
951 struct bch_dirty_init_state *state;
952 char name[32];
953
954 /* Just count root keys if no leaf node */
955 if (c->root->level == 0) {
956 bch_btree_op_init(&op.op, -1);
957 op.inode = d->id;
958 op.count = 0;
959 op.start = KEY(op.inode, 0, 0);
960
961 for_each_key_filter(&c->root->keys,
962 k, &iter, bch_ptr_invalid)
963 sectors_dirty_init_fn(&op.op, c->root, k);
964 return;
965 }
966
967 state = kzalloc(sizeof(struct bch_dirty_init_state), GFP_KERNEL);
968 if (!state) {
969 pr_warn("sectors dirty init failed: cannot allocate memory\n");
970 return;
971 }
972
973 state->c = c;
974 state->d = d;
975 state->total_threads = bch_btre_dirty_init_thread_nr();
976 state->key_idx = 0;
977 spin_lock_init(&state->idx_lock);
978 atomic_set(&state->started, 0);
979 atomic_set(&state->enough, 0);
980 init_waitqueue_head(&state->wait);
981
982 for (i = 0; i < state->total_threads; i++) {
983 /* Fetch latest state->enough earlier */
984 smp_mb__before_atomic();
985 if (atomic_read(&state->enough))
986 break;
987
988 state->infos[i].state = state;
989 atomic_inc(&state->started);
990 snprintf(name, sizeof(name), "bch_dirty_init[%d]", i);
991
992 state->infos[i].thread =
993 kthread_run(bch_dirty_init_thread,
994 &state->infos[i],
995 name);
996 if (IS_ERR(state->infos[i].thread)) {
997 pr_err("fails to run thread bch_dirty_init[%d]\n", i);
998 for (--i; i >= 0; i--)
999 kthread_stop(state->infos[i].thread);
1000 goto out;
1001 }
1002 }
1003
1004 /*
1005 * Must wait for all threads to stop.
1006 */
1007 wait_event_interruptible(state->wait,
1008 atomic_read(&state->started) == 0);
1009
1010out:
1011 kfree(state);
1012}
1013
1014void bch_cached_dev_writeback_init(struct cached_dev *dc)
1015{
1016 sema_init(&dc->in_flight, 64);
1017 init_rwsem(&dc->writeback_lock);
1018 bch_keybuf_init(&dc->writeback_keys);
1019
1020 dc->writeback_metadata = true;
1021 dc->writeback_running = false;
1022 dc->writeback_consider_fragment = true;
1023 dc->writeback_percent = 10;
1024 dc->writeback_delay = 30;
1025 atomic_long_set(&dc->writeback_rate.rate, 1024);
1026 dc->writeback_rate_minimum = 8;
1027
1028 dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
1029 dc->writeback_rate_p_term_inverse = 40;
1030 dc->writeback_rate_fp_term_low = 1;
1031 dc->writeback_rate_fp_term_mid = 10;
1032 dc->writeback_rate_fp_term_high = 1000;
1033 dc->writeback_rate_i_term_inverse = 10000;
1034
1035 WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1036 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
1037}
1038
1039int bch_cached_dev_writeback_start(struct cached_dev *dc)
1040{
1041 dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
1042 WQ_MEM_RECLAIM, 0);
1043 if (!dc->writeback_write_wq)
1044 return -ENOMEM;
1045
1046 cached_dev_get(dc);
1047 dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
1048 "bcache_writeback");
1049 if (IS_ERR(dc->writeback_thread)) {
1050 cached_dev_put(dc);
1051 destroy_workqueue(dc->writeback_write_wq);
1052 return PTR_ERR(dc->writeback_thread);
1053 }
1054 dc->writeback_running = true;
1055
1056 WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1057 schedule_delayed_work(&dc->writeback_rate_update,
1058 dc->writeback_rate_update_seconds * HZ);
1059
1060 bch_writeback_queue(dc);
1061
1062 return 0;
1063}