Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page) * (see hugetlbfs below)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28 * mapping->i_mmap_rwsem
29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in block_dirty_folio)
35 * folio_lock_memcg move_lock (in block_dirty_folio)
36 * i_pages lock (widely used)
37 * lruvec->lru_lock (in folio_lruvec_lock_irq)
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
44 *
45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
46 * ->tasklist_lock
47 * pte map lock
48 *
49 * * hugetlbfs PageHuge() pages take locks in this order:
50 * mapping->i_mmap_rwsem
51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52 * page->flags PG_locked (lock_page)
53 */
54
55#include <linux/mm.h>
56#include <linux/sched/mm.h>
57#include <linux/sched/task.h>
58#include <linux/pagemap.h>
59#include <linux/swap.h>
60#include <linux/swapops.h>
61#include <linux/slab.h>
62#include <linux/init.h>
63#include <linux/ksm.h>
64#include <linux/rmap.h>
65#include <linux/rcupdate.h>
66#include <linux/export.h>
67#include <linux/memcontrol.h>
68#include <linux/mmu_notifier.h>
69#include <linux/migrate.h>
70#include <linux/hugetlb.h>
71#include <linux/huge_mm.h>
72#include <linux/backing-dev.h>
73#include <linux/page_idle.h>
74#include <linux/memremap.h>
75#include <linux/userfaultfd_k.h>
76
77#include <asm/tlbflush.h>
78
79#define CREATE_TRACE_POINTS
80#include <trace/events/tlb.h>
81#include <trace/events/migrate.h>
82
83#include "internal.h"
84
85static struct kmem_cache *anon_vma_cachep;
86static struct kmem_cache *anon_vma_chain_cachep;
87
88static inline struct anon_vma *anon_vma_alloc(void)
89{
90 struct anon_vma *anon_vma;
91
92 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
93 if (anon_vma) {
94 atomic_set(&anon_vma->refcount, 1);
95 anon_vma->degree = 1; /* Reference for first vma */
96 anon_vma->parent = anon_vma;
97 /*
98 * Initialise the anon_vma root to point to itself. If called
99 * from fork, the root will be reset to the parents anon_vma.
100 */
101 anon_vma->root = anon_vma;
102 }
103
104 return anon_vma;
105}
106
107static inline void anon_vma_free(struct anon_vma *anon_vma)
108{
109 VM_BUG_ON(atomic_read(&anon_vma->refcount));
110
111 /*
112 * Synchronize against folio_lock_anon_vma_read() such that
113 * we can safely hold the lock without the anon_vma getting
114 * freed.
115 *
116 * Relies on the full mb implied by the atomic_dec_and_test() from
117 * put_anon_vma() against the acquire barrier implied by
118 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
119 *
120 * folio_lock_anon_vma_read() VS put_anon_vma()
121 * down_read_trylock() atomic_dec_and_test()
122 * LOCK MB
123 * atomic_read() rwsem_is_locked()
124 *
125 * LOCK should suffice since the actual taking of the lock must
126 * happen _before_ what follows.
127 */
128 might_sleep();
129 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
130 anon_vma_lock_write(anon_vma);
131 anon_vma_unlock_write(anon_vma);
132 }
133
134 kmem_cache_free(anon_vma_cachep, anon_vma);
135}
136
137static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
138{
139 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
140}
141
142static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
143{
144 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
145}
146
147static void anon_vma_chain_link(struct vm_area_struct *vma,
148 struct anon_vma_chain *avc,
149 struct anon_vma *anon_vma)
150{
151 avc->vma = vma;
152 avc->anon_vma = anon_vma;
153 list_add(&avc->same_vma, &vma->anon_vma_chain);
154 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
155}
156
157/**
158 * __anon_vma_prepare - attach an anon_vma to a memory region
159 * @vma: the memory region in question
160 *
161 * This makes sure the memory mapping described by 'vma' has
162 * an 'anon_vma' attached to it, so that we can associate the
163 * anonymous pages mapped into it with that anon_vma.
164 *
165 * The common case will be that we already have one, which
166 * is handled inline by anon_vma_prepare(). But if
167 * not we either need to find an adjacent mapping that we
168 * can re-use the anon_vma from (very common when the only
169 * reason for splitting a vma has been mprotect()), or we
170 * allocate a new one.
171 *
172 * Anon-vma allocations are very subtle, because we may have
173 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
174 * and that may actually touch the rwsem even in the newly
175 * allocated vma (it depends on RCU to make sure that the
176 * anon_vma isn't actually destroyed).
177 *
178 * As a result, we need to do proper anon_vma locking even
179 * for the new allocation. At the same time, we do not want
180 * to do any locking for the common case of already having
181 * an anon_vma.
182 *
183 * This must be called with the mmap_lock held for reading.
184 */
185int __anon_vma_prepare(struct vm_area_struct *vma)
186{
187 struct mm_struct *mm = vma->vm_mm;
188 struct anon_vma *anon_vma, *allocated;
189 struct anon_vma_chain *avc;
190
191 might_sleep();
192
193 avc = anon_vma_chain_alloc(GFP_KERNEL);
194 if (!avc)
195 goto out_enomem;
196
197 anon_vma = find_mergeable_anon_vma(vma);
198 allocated = NULL;
199 if (!anon_vma) {
200 anon_vma = anon_vma_alloc();
201 if (unlikely(!anon_vma))
202 goto out_enomem_free_avc;
203 allocated = anon_vma;
204 }
205
206 anon_vma_lock_write(anon_vma);
207 /* page_table_lock to protect against threads */
208 spin_lock(&mm->page_table_lock);
209 if (likely(!vma->anon_vma)) {
210 vma->anon_vma = anon_vma;
211 anon_vma_chain_link(vma, avc, anon_vma);
212 /* vma reference or self-parent link for new root */
213 anon_vma->degree++;
214 allocated = NULL;
215 avc = NULL;
216 }
217 spin_unlock(&mm->page_table_lock);
218 anon_vma_unlock_write(anon_vma);
219
220 if (unlikely(allocated))
221 put_anon_vma(allocated);
222 if (unlikely(avc))
223 anon_vma_chain_free(avc);
224
225 return 0;
226
227 out_enomem_free_avc:
228 anon_vma_chain_free(avc);
229 out_enomem:
230 return -ENOMEM;
231}
232
233/*
234 * This is a useful helper function for locking the anon_vma root as
235 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
236 * have the same vma.
237 *
238 * Such anon_vma's should have the same root, so you'd expect to see
239 * just a single mutex_lock for the whole traversal.
240 */
241static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
242{
243 struct anon_vma *new_root = anon_vma->root;
244 if (new_root != root) {
245 if (WARN_ON_ONCE(root))
246 up_write(&root->rwsem);
247 root = new_root;
248 down_write(&root->rwsem);
249 }
250 return root;
251}
252
253static inline void unlock_anon_vma_root(struct anon_vma *root)
254{
255 if (root)
256 up_write(&root->rwsem);
257}
258
259/*
260 * Attach the anon_vmas from src to dst.
261 * Returns 0 on success, -ENOMEM on failure.
262 *
263 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
264 * anon_vma_fork(). The first three want an exact copy of src, while the last
265 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
266 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
267 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
268 *
269 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
270 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
271 * This prevents degradation of anon_vma hierarchy to endless linear chain in
272 * case of constantly forking task. On the other hand, an anon_vma with more
273 * than one child isn't reused even if there was no alive vma, thus rmap
274 * walker has a good chance of avoiding scanning the whole hierarchy when it
275 * searches where page is mapped.
276 */
277int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
278{
279 struct anon_vma_chain *avc, *pavc;
280 struct anon_vma *root = NULL;
281
282 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
283 struct anon_vma *anon_vma;
284
285 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
286 if (unlikely(!avc)) {
287 unlock_anon_vma_root(root);
288 root = NULL;
289 avc = anon_vma_chain_alloc(GFP_KERNEL);
290 if (!avc)
291 goto enomem_failure;
292 }
293 anon_vma = pavc->anon_vma;
294 root = lock_anon_vma_root(root, anon_vma);
295 anon_vma_chain_link(dst, avc, anon_vma);
296
297 /*
298 * Reuse existing anon_vma if its degree lower than two,
299 * that means it has no vma and only one anon_vma child.
300 *
301 * Do not chose parent anon_vma, otherwise first child
302 * will always reuse it. Root anon_vma is never reused:
303 * it has self-parent reference and at least one child.
304 */
305 if (!dst->anon_vma && src->anon_vma &&
306 anon_vma != src->anon_vma && anon_vma->degree < 2)
307 dst->anon_vma = anon_vma;
308 }
309 if (dst->anon_vma)
310 dst->anon_vma->degree++;
311 unlock_anon_vma_root(root);
312 return 0;
313
314 enomem_failure:
315 /*
316 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
317 * decremented in unlink_anon_vmas().
318 * We can safely do this because callers of anon_vma_clone() don't care
319 * about dst->anon_vma if anon_vma_clone() failed.
320 */
321 dst->anon_vma = NULL;
322 unlink_anon_vmas(dst);
323 return -ENOMEM;
324}
325
326/*
327 * Attach vma to its own anon_vma, as well as to the anon_vmas that
328 * the corresponding VMA in the parent process is attached to.
329 * Returns 0 on success, non-zero on failure.
330 */
331int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
332{
333 struct anon_vma_chain *avc;
334 struct anon_vma *anon_vma;
335 int error;
336
337 /* Don't bother if the parent process has no anon_vma here. */
338 if (!pvma->anon_vma)
339 return 0;
340
341 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
342 vma->anon_vma = NULL;
343
344 /*
345 * First, attach the new VMA to the parent VMA's anon_vmas,
346 * so rmap can find non-COWed pages in child processes.
347 */
348 error = anon_vma_clone(vma, pvma);
349 if (error)
350 return error;
351
352 /* An existing anon_vma has been reused, all done then. */
353 if (vma->anon_vma)
354 return 0;
355
356 /* Then add our own anon_vma. */
357 anon_vma = anon_vma_alloc();
358 if (!anon_vma)
359 goto out_error;
360 avc = anon_vma_chain_alloc(GFP_KERNEL);
361 if (!avc)
362 goto out_error_free_anon_vma;
363
364 /*
365 * The root anon_vma's rwsem is the lock actually used when we
366 * lock any of the anon_vmas in this anon_vma tree.
367 */
368 anon_vma->root = pvma->anon_vma->root;
369 anon_vma->parent = pvma->anon_vma;
370 /*
371 * With refcounts, an anon_vma can stay around longer than the
372 * process it belongs to. The root anon_vma needs to be pinned until
373 * this anon_vma is freed, because the lock lives in the root.
374 */
375 get_anon_vma(anon_vma->root);
376 /* Mark this anon_vma as the one where our new (COWed) pages go. */
377 vma->anon_vma = anon_vma;
378 anon_vma_lock_write(anon_vma);
379 anon_vma_chain_link(vma, avc, anon_vma);
380 anon_vma->parent->degree++;
381 anon_vma_unlock_write(anon_vma);
382
383 return 0;
384
385 out_error_free_anon_vma:
386 put_anon_vma(anon_vma);
387 out_error:
388 unlink_anon_vmas(vma);
389 return -ENOMEM;
390}
391
392void unlink_anon_vmas(struct vm_area_struct *vma)
393{
394 struct anon_vma_chain *avc, *next;
395 struct anon_vma *root = NULL;
396
397 /*
398 * Unlink each anon_vma chained to the VMA. This list is ordered
399 * from newest to oldest, ensuring the root anon_vma gets freed last.
400 */
401 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
402 struct anon_vma *anon_vma = avc->anon_vma;
403
404 root = lock_anon_vma_root(root, anon_vma);
405 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
406
407 /*
408 * Leave empty anon_vmas on the list - we'll need
409 * to free them outside the lock.
410 */
411 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
412 anon_vma->parent->degree--;
413 continue;
414 }
415
416 list_del(&avc->same_vma);
417 anon_vma_chain_free(avc);
418 }
419 if (vma->anon_vma) {
420 vma->anon_vma->degree--;
421
422 /*
423 * vma would still be needed after unlink, and anon_vma will be prepared
424 * when handle fault.
425 */
426 vma->anon_vma = NULL;
427 }
428 unlock_anon_vma_root(root);
429
430 /*
431 * Iterate the list once more, it now only contains empty and unlinked
432 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
433 * needing to write-acquire the anon_vma->root->rwsem.
434 */
435 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
436 struct anon_vma *anon_vma = avc->anon_vma;
437
438 VM_WARN_ON(anon_vma->degree);
439 put_anon_vma(anon_vma);
440
441 list_del(&avc->same_vma);
442 anon_vma_chain_free(avc);
443 }
444}
445
446static void anon_vma_ctor(void *data)
447{
448 struct anon_vma *anon_vma = data;
449
450 init_rwsem(&anon_vma->rwsem);
451 atomic_set(&anon_vma->refcount, 0);
452 anon_vma->rb_root = RB_ROOT_CACHED;
453}
454
455void __init anon_vma_init(void)
456{
457 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
458 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
459 anon_vma_ctor);
460 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
461 SLAB_PANIC|SLAB_ACCOUNT);
462}
463
464/*
465 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
466 *
467 * Since there is no serialization what so ever against page_remove_rmap()
468 * the best this function can do is return a refcount increased anon_vma
469 * that might have been relevant to this page.
470 *
471 * The page might have been remapped to a different anon_vma or the anon_vma
472 * returned may already be freed (and even reused).
473 *
474 * In case it was remapped to a different anon_vma, the new anon_vma will be a
475 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
476 * ensure that any anon_vma obtained from the page will still be valid for as
477 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
478 *
479 * All users of this function must be very careful when walking the anon_vma
480 * chain and verify that the page in question is indeed mapped in it
481 * [ something equivalent to page_mapped_in_vma() ].
482 *
483 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
484 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
485 * if there is a mapcount, we can dereference the anon_vma after observing
486 * those.
487 */
488struct anon_vma *page_get_anon_vma(struct page *page)
489{
490 struct anon_vma *anon_vma = NULL;
491 unsigned long anon_mapping;
492
493 rcu_read_lock();
494 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
495 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
496 goto out;
497 if (!page_mapped(page))
498 goto out;
499
500 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
501 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
502 anon_vma = NULL;
503 goto out;
504 }
505
506 /*
507 * If this page is still mapped, then its anon_vma cannot have been
508 * freed. But if it has been unmapped, we have no security against the
509 * anon_vma structure being freed and reused (for another anon_vma:
510 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
511 * above cannot corrupt).
512 */
513 if (!page_mapped(page)) {
514 rcu_read_unlock();
515 put_anon_vma(anon_vma);
516 return NULL;
517 }
518out:
519 rcu_read_unlock();
520
521 return anon_vma;
522}
523
524/*
525 * Similar to page_get_anon_vma() except it locks the anon_vma.
526 *
527 * Its a little more complex as it tries to keep the fast path to a single
528 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
529 * reference like with page_get_anon_vma() and then block on the mutex.
530 */
531struct anon_vma *folio_lock_anon_vma_read(struct folio *folio)
532{
533 struct anon_vma *anon_vma = NULL;
534 struct anon_vma *root_anon_vma;
535 unsigned long anon_mapping;
536
537 rcu_read_lock();
538 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
539 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
540 goto out;
541 if (!folio_mapped(folio))
542 goto out;
543
544 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
545 root_anon_vma = READ_ONCE(anon_vma->root);
546 if (down_read_trylock(&root_anon_vma->rwsem)) {
547 /*
548 * If the folio is still mapped, then this anon_vma is still
549 * its anon_vma, and holding the mutex ensures that it will
550 * not go away, see anon_vma_free().
551 */
552 if (!folio_mapped(folio)) {
553 up_read(&root_anon_vma->rwsem);
554 anon_vma = NULL;
555 }
556 goto out;
557 }
558
559 /* trylock failed, we got to sleep */
560 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
561 anon_vma = NULL;
562 goto out;
563 }
564
565 if (!folio_mapped(folio)) {
566 rcu_read_unlock();
567 put_anon_vma(anon_vma);
568 return NULL;
569 }
570
571 /* we pinned the anon_vma, its safe to sleep */
572 rcu_read_unlock();
573 anon_vma_lock_read(anon_vma);
574
575 if (atomic_dec_and_test(&anon_vma->refcount)) {
576 /*
577 * Oops, we held the last refcount, release the lock
578 * and bail -- can't simply use put_anon_vma() because
579 * we'll deadlock on the anon_vma_lock_write() recursion.
580 */
581 anon_vma_unlock_read(anon_vma);
582 __put_anon_vma(anon_vma);
583 anon_vma = NULL;
584 }
585
586 return anon_vma;
587
588out:
589 rcu_read_unlock();
590 return anon_vma;
591}
592
593void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
594{
595 anon_vma_unlock_read(anon_vma);
596}
597
598#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
599/*
600 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
601 * important if a PTE was dirty when it was unmapped that it's flushed
602 * before any IO is initiated on the page to prevent lost writes. Similarly,
603 * it must be flushed before freeing to prevent data leakage.
604 */
605void try_to_unmap_flush(void)
606{
607 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
608
609 if (!tlb_ubc->flush_required)
610 return;
611
612 arch_tlbbatch_flush(&tlb_ubc->arch);
613 tlb_ubc->flush_required = false;
614 tlb_ubc->writable = false;
615}
616
617/* Flush iff there are potentially writable TLB entries that can race with IO */
618void try_to_unmap_flush_dirty(void)
619{
620 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
621
622 if (tlb_ubc->writable)
623 try_to_unmap_flush();
624}
625
626/*
627 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
628 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
629 */
630#define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
631#define TLB_FLUSH_BATCH_PENDING_MASK \
632 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
633#define TLB_FLUSH_BATCH_PENDING_LARGE \
634 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
635
636static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
637{
638 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
639 int batch, nbatch;
640
641 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
642 tlb_ubc->flush_required = true;
643
644 /*
645 * Ensure compiler does not re-order the setting of tlb_flush_batched
646 * before the PTE is cleared.
647 */
648 barrier();
649 batch = atomic_read(&mm->tlb_flush_batched);
650retry:
651 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
652 /*
653 * Prevent `pending' from catching up with `flushed' because of
654 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
655 * `pending' becomes large.
656 */
657 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
658 if (nbatch != batch) {
659 batch = nbatch;
660 goto retry;
661 }
662 } else {
663 atomic_inc(&mm->tlb_flush_batched);
664 }
665
666 /*
667 * If the PTE was dirty then it's best to assume it's writable. The
668 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
669 * before the page is queued for IO.
670 */
671 if (writable)
672 tlb_ubc->writable = true;
673}
674
675/*
676 * Returns true if the TLB flush should be deferred to the end of a batch of
677 * unmap operations to reduce IPIs.
678 */
679static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
680{
681 bool should_defer = false;
682
683 if (!(flags & TTU_BATCH_FLUSH))
684 return false;
685
686 /* If remote CPUs need to be flushed then defer batch the flush */
687 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
688 should_defer = true;
689 put_cpu();
690
691 return should_defer;
692}
693
694/*
695 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
696 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
697 * operation such as mprotect or munmap to race between reclaim unmapping
698 * the page and flushing the page. If this race occurs, it potentially allows
699 * access to data via a stale TLB entry. Tracking all mm's that have TLB
700 * batching in flight would be expensive during reclaim so instead track
701 * whether TLB batching occurred in the past and if so then do a flush here
702 * if required. This will cost one additional flush per reclaim cycle paid
703 * by the first operation at risk such as mprotect and mumap.
704 *
705 * This must be called under the PTL so that an access to tlb_flush_batched
706 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
707 * via the PTL.
708 */
709void flush_tlb_batched_pending(struct mm_struct *mm)
710{
711 int batch = atomic_read(&mm->tlb_flush_batched);
712 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
713 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
714
715 if (pending != flushed) {
716 flush_tlb_mm(mm);
717 /*
718 * If the new TLB flushing is pending during flushing, leave
719 * mm->tlb_flush_batched as is, to avoid losing flushing.
720 */
721 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
722 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
723 }
724}
725#else
726static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
727{
728}
729
730static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
731{
732 return false;
733}
734#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
735
736/*
737 * At what user virtual address is page expected in vma?
738 * Caller should check the page is actually part of the vma.
739 */
740unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
741{
742 struct folio *folio = page_folio(page);
743 if (folio_test_anon(folio)) {
744 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
745 /*
746 * Note: swapoff's unuse_vma() is more efficient with this
747 * check, and needs it to match anon_vma when KSM is active.
748 */
749 if (!vma->anon_vma || !page__anon_vma ||
750 vma->anon_vma->root != page__anon_vma->root)
751 return -EFAULT;
752 } else if (!vma->vm_file) {
753 return -EFAULT;
754 } else if (vma->vm_file->f_mapping != folio->mapping) {
755 return -EFAULT;
756 }
757
758 return vma_address(page, vma);
759}
760
761pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
762{
763 pgd_t *pgd;
764 p4d_t *p4d;
765 pud_t *pud;
766 pmd_t *pmd = NULL;
767 pmd_t pmde;
768
769 pgd = pgd_offset(mm, address);
770 if (!pgd_present(*pgd))
771 goto out;
772
773 p4d = p4d_offset(pgd, address);
774 if (!p4d_present(*p4d))
775 goto out;
776
777 pud = pud_offset(p4d, address);
778 if (!pud_present(*pud))
779 goto out;
780
781 pmd = pmd_offset(pud, address);
782 /*
783 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
784 * without holding anon_vma lock for write. So when looking for a
785 * genuine pmde (in which to find pte), test present and !THP together.
786 */
787 pmde = *pmd;
788 barrier();
789 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
790 pmd = NULL;
791out:
792 return pmd;
793}
794
795struct folio_referenced_arg {
796 int mapcount;
797 int referenced;
798 unsigned long vm_flags;
799 struct mem_cgroup *memcg;
800};
801/*
802 * arg: folio_referenced_arg will be passed
803 */
804static bool folio_referenced_one(struct folio *folio,
805 struct vm_area_struct *vma, unsigned long address, void *arg)
806{
807 struct folio_referenced_arg *pra = arg;
808 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
809 int referenced = 0;
810
811 while (page_vma_mapped_walk(&pvmw)) {
812 address = pvmw.address;
813
814 if ((vma->vm_flags & VM_LOCKED) &&
815 (!folio_test_large(folio) || !pvmw.pte)) {
816 /* Restore the mlock which got missed */
817 mlock_vma_folio(folio, vma, !pvmw.pte);
818 page_vma_mapped_walk_done(&pvmw);
819 pra->vm_flags |= VM_LOCKED;
820 return false; /* To break the loop */
821 }
822
823 if (pvmw.pte) {
824 if (ptep_clear_flush_young_notify(vma, address,
825 pvmw.pte)) {
826 /*
827 * Don't treat a reference through
828 * a sequentially read mapping as such.
829 * If the folio has been used in another mapping,
830 * we will catch it; if this other mapping is
831 * already gone, the unmap path will have set
832 * the referenced flag or activated the folio.
833 */
834 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
835 referenced++;
836 }
837 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
838 if (pmdp_clear_flush_young_notify(vma, address,
839 pvmw.pmd))
840 referenced++;
841 } else {
842 /* unexpected pmd-mapped folio? */
843 WARN_ON_ONCE(1);
844 }
845
846 pra->mapcount--;
847 }
848
849 if (referenced)
850 folio_clear_idle(folio);
851 if (folio_test_clear_young(folio))
852 referenced++;
853
854 if (referenced) {
855 pra->referenced++;
856 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
857 }
858
859 if (!pra->mapcount)
860 return false; /* To break the loop */
861
862 return true;
863}
864
865static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
866{
867 struct folio_referenced_arg *pra = arg;
868 struct mem_cgroup *memcg = pra->memcg;
869
870 if (!mm_match_cgroup(vma->vm_mm, memcg))
871 return true;
872
873 return false;
874}
875
876/**
877 * folio_referenced() - Test if the folio was referenced.
878 * @folio: The folio to test.
879 * @is_locked: Caller holds lock on the folio.
880 * @memcg: target memory cgroup
881 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
882 *
883 * Quick test_and_clear_referenced for all mappings of a folio,
884 *
885 * Return: The number of mappings which referenced the folio.
886 */
887int folio_referenced(struct folio *folio, int is_locked,
888 struct mem_cgroup *memcg, unsigned long *vm_flags)
889{
890 int we_locked = 0;
891 struct folio_referenced_arg pra = {
892 .mapcount = folio_mapcount(folio),
893 .memcg = memcg,
894 };
895 struct rmap_walk_control rwc = {
896 .rmap_one = folio_referenced_one,
897 .arg = (void *)&pra,
898 .anon_lock = folio_lock_anon_vma_read,
899 };
900
901 *vm_flags = 0;
902 if (!pra.mapcount)
903 return 0;
904
905 if (!folio_raw_mapping(folio))
906 return 0;
907
908 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
909 we_locked = folio_trylock(folio);
910 if (!we_locked)
911 return 1;
912 }
913
914 /*
915 * If we are reclaiming on behalf of a cgroup, skip
916 * counting on behalf of references from different
917 * cgroups
918 */
919 if (memcg) {
920 rwc.invalid_vma = invalid_folio_referenced_vma;
921 }
922
923 rmap_walk(folio, &rwc);
924 *vm_flags = pra.vm_flags;
925
926 if (we_locked)
927 folio_unlock(folio);
928
929 return pra.referenced;
930}
931
932static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
933 unsigned long address, void *arg)
934{
935 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
936 struct mmu_notifier_range range;
937 int *cleaned = arg;
938
939 /*
940 * We have to assume the worse case ie pmd for invalidation. Note that
941 * the folio can not be freed from this function.
942 */
943 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
944 0, vma, vma->vm_mm, address,
945 vma_address_end(&pvmw));
946 mmu_notifier_invalidate_range_start(&range);
947
948 while (page_vma_mapped_walk(&pvmw)) {
949 int ret = 0;
950
951 address = pvmw.address;
952 if (pvmw.pte) {
953 pte_t entry;
954 pte_t *pte = pvmw.pte;
955
956 if (!pte_dirty(*pte) && !pte_write(*pte))
957 continue;
958
959 flush_cache_page(vma, address, pte_pfn(*pte));
960 entry = ptep_clear_flush(vma, address, pte);
961 entry = pte_wrprotect(entry);
962 entry = pte_mkclean(entry);
963 set_pte_at(vma->vm_mm, address, pte, entry);
964 ret = 1;
965 } else {
966#ifdef CONFIG_TRANSPARENT_HUGEPAGE
967 pmd_t *pmd = pvmw.pmd;
968 pmd_t entry;
969
970 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
971 continue;
972
973 flush_cache_page(vma, address, folio_pfn(folio));
974 entry = pmdp_invalidate(vma, address, pmd);
975 entry = pmd_wrprotect(entry);
976 entry = pmd_mkclean(entry);
977 set_pmd_at(vma->vm_mm, address, pmd, entry);
978 ret = 1;
979#else
980 /* unexpected pmd-mapped folio? */
981 WARN_ON_ONCE(1);
982#endif
983 }
984
985 /*
986 * No need to call mmu_notifier_invalidate_range() as we are
987 * downgrading page table protection not changing it to point
988 * to a new page.
989 *
990 * See Documentation/vm/mmu_notifier.rst
991 */
992 if (ret)
993 (*cleaned)++;
994 }
995
996 mmu_notifier_invalidate_range_end(&range);
997
998 return true;
999}
1000
1001static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1002{
1003 if (vma->vm_flags & VM_SHARED)
1004 return false;
1005
1006 return true;
1007}
1008
1009int folio_mkclean(struct folio *folio)
1010{
1011 int cleaned = 0;
1012 struct address_space *mapping;
1013 struct rmap_walk_control rwc = {
1014 .arg = (void *)&cleaned,
1015 .rmap_one = page_mkclean_one,
1016 .invalid_vma = invalid_mkclean_vma,
1017 };
1018
1019 BUG_ON(!folio_test_locked(folio));
1020
1021 if (!folio_mapped(folio))
1022 return 0;
1023
1024 mapping = folio_mapping(folio);
1025 if (!mapping)
1026 return 0;
1027
1028 rmap_walk(folio, &rwc);
1029
1030 return cleaned;
1031}
1032EXPORT_SYMBOL_GPL(folio_mkclean);
1033
1034/**
1035 * page_move_anon_rmap - move a page to our anon_vma
1036 * @page: the page to move to our anon_vma
1037 * @vma: the vma the page belongs to
1038 *
1039 * When a page belongs exclusively to one process after a COW event,
1040 * that page can be moved into the anon_vma that belongs to just that
1041 * process, so the rmap code will not search the parent or sibling
1042 * processes.
1043 */
1044void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1045{
1046 struct anon_vma *anon_vma = vma->anon_vma;
1047
1048 page = compound_head(page);
1049
1050 VM_BUG_ON_PAGE(!PageLocked(page), page);
1051 VM_BUG_ON_VMA(!anon_vma, vma);
1052
1053 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1054 /*
1055 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1056 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1057 * folio_test_anon()) will not see one without the other.
1058 */
1059 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1060}
1061
1062/**
1063 * __page_set_anon_rmap - set up new anonymous rmap
1064 * @page: Page or Hugepage to add to rmap
1065 * @vma: VM area to add page to.
1066 * @address: User virtual address of the mapping
1067 * @exclusive: the page is exclusively owned by the current process
1068 */
1069static void __page_set_anon_rmap(struct page *page,
1070 struct vm_area_struct *vma, unsigned long address, int exclusive)
1071{
1072 struct anon_vma *anon_vma = vma->anon_vma;
1073
1074 BUG_ON(!anon_vma);
1075
1076 if (PageAnon(page))
1077 return;
1078
1079 /*
1080 * If the page isn't exclusively mapped into this vma,
1081 * we must use the _oldest_ possible anon_vma for the
1082 * page mapping!
1083 */
1084 if (!exclusive)
1085 anon_vma = anon_vma->root;
1086
1087 /*
1088 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1089 * Make sure the compiler doesn't split the stores of anon_vma and
1090 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1091 * could mistake the mapping for a struct address_space and crash.
1092 */
1093 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1094 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1095 page->index = linear_page_index(vma, address);
1096}
1097
1098/**
1099 * __page_check_anon_rmap - sanity check anonymous rmap addition
1100 * @page: the page to add the mapping to
1101 * @vma: the vm area in which the mapping is added
1102 * @address: the user virtual address mapped
1103 */
1104static void __page_check_anon_rmap(struct page *page,
1105 struct vm_area_struct *vma, unsigned long address)
1106{
1107 struct folio *folio = page_folio(page);
1108 /*
1109 * The page's anon-rmap details (mapping and index) are guaranteed to
1110 * be set up correctly at this point.
1111 *
1112 * We have exclusion against page_add_anon_rmap because the caller
1113 * always holds the page locked.
1114 *
1115 * We have exclusion against page_add_new_anon_rmap because those pages
1116 * are initially only visible via the pagetables, and the pte is locked
1117 * over the call to page_add_new_anon_rmap.
1118 */
1119 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1120 folio);
1121 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1122 page);
1123}
1124
1125/**
1126 * page_add_anon_rmap - add pte mapping to an anonymous page
1127 * @page: the page to add the mapping to
1128 * @vma: the vm area in which the mapping is added
1129 * @address: the user virtual address mapped
1130 * @compound: charge the page as compound or small page
1131 *
1132 * The caller needs to hold the pte lock, and the page must be locked in
1133 * the anon_vma case: to serialize mapping,index checking after setting,
1134 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1135 * (but PageKsm is never downgraded to PageAnon).
1136 */
1137void page_add_anon_rmap(struct page *page,
1138 struct vm_area_struct *vma, unsigned long address, bool compound)
1139{
1140 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1141}
1142
1143/*
1144 * Special version of the above for do_swap_page, which often runs
1145 * into pages that are exclusively owned by the current process.
1146 * Everybody else should continue to use page_add_anon_rmap above.
1147 */
1148void do_page_add_anon_rmap(struct page *page,
1149 struct vm_area_struct *vma, unsigned long address, int flags)
1150{
1151 bool compound = flags & RMAP_COMPOUND;
1152 bool first;
1153
1154 if (unlikely(PageKsm(page)))
1155 lock_page_memcg(page);
1156 else
1157 VM_BUG_ON_PAGE(!PageLocked(page), page);
1158
1159 if (compound) {
1160 atomic_t *mapcount;
1161 VM_BUG_ON_PAGE(!PageLocked(page), page);
1162 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1163 mapcount = compound_mapcount_ptr(page);
1164 first = atomic_inc_and_test(mapcount);
1165 } else {
1166 first = atomic_inc_and_test(&page->_mapcount);
1167 }
1168
1169 if (first) {
1170 int nr = compound ? thp_nr_pages(page) : 1;
1171 /*
1172 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1173 * these counters are not modified in interrupt context, and
1174 * pte lock(a spinlock) is held, which implies preemption
1175 * disabled.
1176 */
1177 if (compound)
1178 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1179 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1180 }
1181
1182 if (unlikely(PageKsm(page)))
1183 unlock_page_memcg(page);
1184
1185 /* address might be in next vma when migration races vma_adjust */
1186 else if (first)
1187 __page_set_anon_rmap(page, vma, address,
1188 flags & RMAP_EXCLUSIVE);
1189 else
1190 __page_check_anon_rmap(page, vma, address);
1191
1192 mlock_vma_page(page, vma, compound);
1193}
1194
1195/**
1196 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1197 * @page: the page to add the mapping to
1198 * @vma: the vm area in which the mapping is added
1199 * @address: the user virtual address mapped
1200 * @compound: charge the page as compound or small page
1201 *
1202 * Same as page_add_anon_rmap but must only be called on *new* pages.
1203 * This means the inc-and-test can be bypassed.
1204 * Page does not have to be locked.
1205 */
1206void page_add_new_anon_rmap(struct page *page,
1207 struct vm_area_struct *vma, unsigned long address, bool compound)
1208{
1209 int nr = compound ? thp_nr_pages(page) : 1;
1210
1211 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1212 __SetPageSwapBacked(page);
1213 if (compound) {
1214 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1215 /* increment count (starts at -1) */
1216 atomic_set(compound_mapcount_ptr(page), 0);
1217 atomic_set(compound_pincount_ptr(page), 0);
1218
1219 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1220 } else {
1221 /* Anon THP always mapped first with PMD */
1222 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1223 /* increment count (starts at -1) */
1224 atomic_set(&page->_mapcount, 0);
1225 }
1226 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1227 __page_set_anon_rmap(page, vma, address, 1);
1228}
1229
1230/**
1231 * page_add_file_rmap - add pte mapping to a file page
1232 * @page: the page to add the mapping to
1233 * @vma: the vm area in which the mapping is added
1234 * @compound: charge the page as compound or small page
1235 *
1236 * The caller needs to hold the pte lock.
1237 */
1238void page_add_file_rmap(struct page *page,
1239 struct vm_area_struct *vma, bool compound)
1240{
1241 int i, nr = 0;
1242
1243 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1244 lock_page_memcg(page);
1245 if (compound && PageTransHuge(page)) {
1246 int nr_pages = thp_nr_pages(page);
1247
1248 for (i = 0; i < nr_pages; i++) {
1249 if (atomic_inc_and_test(&page[i]._mapcount))
1250 nr++;
1251 }
1252 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1253 goto out;
1254
1255 /*
1256 * It is racy to ClearPageDoubleMap in page_remove_file_rmap();
1257 * but page lock is held by all page_add_file_rmap() compound
1258 * callers, and SetPageDoubleMap below warns if !PageLocked:
1259 * so here is a place that DoubleMap can be safely cleared.
1260 */
1261 VM_WARN_ON_ONCE(!PageLocked(page));
1262 if (nr == nr_pages && PageDoubleMap(page))
1263 ClearPageDoubleMap(page);
1264
1265 if (PageSwapBacked(page))
1266 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1267 nr_pages);
1268 else
1269 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1270 nr_pages);
1271 } else {
1272 if (PageTransCompound(page) && page_mapping(page)) {
1273 VM_WARN_ON_ONCE(!PageLocked(page));
1274 SetPageDoubleMap(compound_head(page));
1275 }
1276 if (atomic_inc_and_test(&page->_mapcount))
1277 nr++;
1278 }
1279out:
1280 if (nr)
1281 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1282 unlock_page_memcg(page);
1283
1284 mlock_vma_page(page, vma, compound);
1285}
1286
1287static void page_remove_file_rmap(struct page *page, bool compound)
1288{
1289 int i, nr = 0;
1290
1291 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1292
1293 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1294 if (unlikely(PageHuge(page))) {
1295 /* hugetlb pages are always mapped with pmds */
1296 atomic_dec(compound_mapcount_ptr(page));
1297 return;
1298 }
1299
1300 /* page still mapped by someone else? */
1301 if (compound && PageTransHuge(page)) {
1302 int nr_pages = thp_nr_pages(page);
1303
1304 for (i = 0; i < nr_pages; i++) {
1305 if (atomic_add_negative(-1, &page[i]._mapcount))
1306 nr++;
1307 }
1308 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1309 goto out;
1310 if (PageSwapBacked(page))
1311 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1312 -nr_pages);
1313 else
1314 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1315 -nr_pages);
1316 } else {
1317 if (atomic_add_negative(-1, &page->_mapcount))
1318 nr++;
1319 }
1320out:
1321 if (nr)
1322 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1323}
1324
1325static void page_remove_anon_compound_rmap(struct page *page)
1326{
1327 int i, nr;
1328
1329 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1330 return;
1331
1332 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1333 if (unlikely(PageHuge(page)))
1334 return;
1335
1336 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1337 return;
1338
1339 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1340
1341 if (TestClearPageDoubleMap(page)) {
1342 /*
1343 * Subpages can be mapped with PTEs too. Check how many of
1344 * them are still mapped.
1345 */
1346 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1347 if (atomic_add_negative(-1, &page[i]._mapcount))
1348 nr++;
1349 }
1350
1351 /*
1352 * Queue the page for deferred split if at least one small
1353 * page of the compound page is unmapped, but at least one
1354 * small page is still mapped.
1355 */
1356 if (nr && nr < thp_nr_pages(page))
1357 deferred_split_huge_page(page);
1358 } else {
1359 nr = thp_nr_pages(page);
1360 }
1361
1362 if (nr)
1363 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1364}
1365
1366/**
1367 * page_remove_rmap - take down pte mapping from a page
1368 * @page: page to remove mapping from
1369 * @vma: the vm area from which the mapping is removed
1370 * @compound: uncharge the page as compound or small page
1371 *
1372 * The caller needs to hold the pte lock.
1373 */
1374void page_remove_rmap(struct page *page,
1375 struct vm_area_struct *vma, bool compound)
1376{
1377 lock_page_memcg(page);
1378
1379 if (!PageAnon(page)) {
1380 page_remove_file_rmap(page, compound);
1381 goto out;
1382 }
1383
1384 if (compound) {
1385 page_remove_anon_compound_rmap(page);
1386 goto out;
1387 }
1388
1389 /* page still mapped by someone else? */
1390 if (!atomic_add_negative(-1, &page->_mapcount))
1391 goto out;
1392
1393 /*
1394 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1395 * these counters are not modified in interrupt context, and
1396 * pte lock(a spinlock) is held, which implies preemption disabled.
1397 */
1398 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
1399
1400 if (PageTransCompound(page))
1401 deferred_split_huge_page(compound_head(page));
1402
1403 /*
1404 * It would be tidy to reset the PageAnon mapping here,
1405 * but that might overwrite a racing page_add_anon_rmap
1406 * which increments mapcount after us but sets mapping
1407 * before us: so leave the reset to free_unref_page,
1408 * and remember that it's only reliable while mapped.
1409 * Leaving it set also helps swapoff to reinstate ptes
1410 * faster for those pages still in swapcache.
1411 */
1412out:
1413 unlock_page_memcg(page);
1414
1415 munlock_vma_page(page, vma, compound);
1416}
1417
1418/*
1419 * @arg: enum ttu_flags will be passed to this argument
1420 */
1421static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1422 unsigned long address, void *arg)
1423{
1424 struct mm_struct *mm = vma->vm_mm;
1425 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1426 pte_t pteval;
1427 struct page *subpage;
1428 bool ret = true;
1429 struct mmu_notifier_range range;
1430 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1431
1432 /*
1433 * When racing against e.g. zap_pte_range() on another cpu,
1434 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1435 * try_to_unmap() may return before page_mapped() has become false,
1436 * if page table locking is skipped: use TTU_SYNC to wait for that.
1437 */
1438 if (flags & TTU_SYNC)
1439 pvmw.flags = PVMW_SYNC;
1440
1441 if (flags & TTU_SPLIT_HUGE_PMD)
1442 split_huge_pmd_address(vma, address, false, folio);
1443
1444 /*
1445 * For THP, we have to assume the worse case ie pmd for invalidation.
1446 * For hugetlb, it could be much worse if we need to do pud
1447 * invalidation in the case of pmd sharing.
1448 *
1449 * Note that the folio can not be freed in this function as call of
1450 * try_to_unmap() must hold a reference on the folio.
1451 */
1452 range.end = vma_address_end(&pvmw);
1453 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1454 address, range.end);
1455 if (folio_test_hugetlb(folio)) {
1456 /*
1457 * If sharing is possible, start and end will be adjusted
1458 * accordingly.
1459 */
1460 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1461 &range.end);
1462 }
1463 mmu_notifier_invalidate_range_start(&range);
1464
1465 while (page_vma_mapped_walk(&pvmw)) {
1466 /* Unexpected PMD-mapped THP? */
1467 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1468
1469 /*
1470 * If the folio is in an mlock()d vma, we must not swap it out.
1471 */
1472 if (!(flags & TTU_IGNORE_MLOCK) &&
1473 (vma->vm_flags & VM_LOCKED)) {
1474 /* Restore the mlock which got missed */
1475 mlock_vma_folio(folio, vma, false);
1476 page_vma_mapped_walk_done(&pvmw);
1477 ret = false;
1478 break;
1479 }
1480
1481 subpage = folio_page(folio,
1482 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1483 address = pvmw.address;
1484
1485 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1486 /*
1487 * To call huge_pmd_unshare, i_mmap_rwsem must be
1488 * held in write mode. Caller needs to explicitly
1489 * do this outside rmap routines.
1490 */
1491 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1492 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1493 /*
1494 * huge_pmd_unshare unmapped an entire PMD
1495 * page. There is no way of knowing exactly
1496 * which PMDs may be cached for this mm, so
1497 * we must flush them all. start/end were
1498 * already adjusted above to cover this range.
1499 */
1500 flush_cache_range(vma, range.start, range.end);
1501 flush_tlb_range(vma, range.start, range.end);
1502 mmu_notifier_invalidate_range(mm, range.start,
1503 range.end);
1504
1505 /*
1506 * The ref count of the PMD page was dropped
1507 * which is part of the way map counting
1508 * is done for shared PMDs. Return 'true'
1509 * here. When there is no other sharing,
1510 * huge_pmd_unshare returns false and we will
1511 * unmap the actual page and drop map count
1512 * to zero.
1513 */
1514 page_vma_mapped_walk_done(&pvmw);
1515 break;
1516 }
1517 }
1518
1519 /* Nuke the page table entry. */
1520 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1521 if (should_defer_flush(mm, flags)) {
1522 /*
1523 * We clear the PTE but do not flush so potentially
1524 * a remote CPU could still be writing to the folio.
1525 * If the entry was previously clean then the
1526 * architecture must guarantee that a clear->dirty
1527 * transition on a cached TLB entry is written through
1528 * and traps if the PTE is unmapped.
1529 */
1530 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1531
1532 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1533 } else {
1534 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1535 }
1536
1537 /* Set the dirty flag on the folio now the pte is gone. */
1538 if (pte_dirty(pteval))
1539 folio_mark_dirty(folio);
1540
1541 /* Update high watermark before we lower rss */
1542 update_hiwater_rss(mm);
1543
1544 if (PageHWPoison(subpage) && !(flags & TTU_IGNORE_HWPOISON)) {
1545 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1546 if (folio_test_hugetlb(folio)) {
1547 hugetlb_count_sub(folio_nr_pages(folio), mm);
1548 set_huge_swap_pte_at(mm, address,
1549 pvmw.pte, pteval,
1550 vma_mmu_pagesize(vma));
1551 } else {
1552 dec_mm_counter(mm, mm_counter(&folio->page));
1553 set_pte_at(mm, address, pvmw.pte, pteval);
1554 }
1555
1556 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1557 /*
1558 * The guest indicated that the page content is of no
1559 * interest anymore. Simply discard the pte, vmscan
1560 * will take care of the rest.
1561 * A future reference will then fault in a new zero
1562 * page. When userfaultfd is active, we must not drop
1563 * this page though, as its main user (postcopy
1564 * migration) will not expect userfaults on already
1565 * copied pages.
1566 */
1567 dec_mm_counter(mm, mm_counter(&folio->page));
1568 /* We have to invalidate as we cleared the pte */
1569 mmu_notifier_invalidate_range(mm, address,
1570 address + PAGE_SIZE);
1571 } else if (folio_test_anon(folio)) {
1572 swp_entry_t entry = { .val = page_private(subpage) };
1573 pte_t swp_pte;
1574 /*
1575 * Store the swap location in the pte.
1576 * See handle_pte_fault() ...
1577 */
1578 if (unlikely(folio_test_swapbacked(folio) !=
1579 folio_test_swapcache(folio))) {
1580 WARN_ON_ONCE(1);
1581 ret = false;
1582 /* We have to invalidate as we cleared the pte */
1583 mmu_notifier_invalidate_range(mm, address,
1584 address + PAGE_SIZE);
1585 page_vma_mapped_walk_done(&pvmw);
1586 break;
1587 }
1588
1589 /* MADV_FREE page check */
1590 if (!folio_test_swapbacked(folio)) {
1591 int ref_count, map_count;
1592
1593 /*
1594 * Synchronize with gup_pte_range():
1595 * - clear PTE; barrier; read refcount
1596 * - inc refcount; barrier; read PTE
1597 */
1598 smp_mb();
1599
1600 ref_count = folio_ref_count(folio);
1601 map_count = folio_mapcount(folio);
1602
1603 /*
1604 * Order reads for page refcount and dirty flag
1605 * (see comments in __remove_mapping()).
1606 */
1607 smp_rmb();
1608
1609 /*
1610 * The only page refs must be one from isolation
1611 * plus the rmap(s) (dropped by discard:).
1612 */
1613 if (ref_count == 1 + map_count &&
1614 !folio_test_dirty(folio)) {
1615 /* Invalidate as we cleared the pte */
1616 mmu_notifier_invalidate_range(mm,
1617 address, address + PAGE_SIZE);
1618 dec_mm_counter(mm, MM_ANONPAGES);
1619 goto discard;
1620 }
1621
1622 /*
1623 * If the folio was redirtied, it cannot be
1624 * discarded. Remap the page to page table.
1625 */
1626 set_pte_at(mm, address, pvmw.pte, pteval);
1627 folio_set_swapbacked(folio);
1628 ret = false;
1629 page_vma_mapped_walk_done(&pvmw);
1630 break;
1631 }
1632
1633 if (swap_duplicate(entry) < 0) {
1634 set_pte_at(mm, address, pvmw.pte, pteval);
1635 ret = false;
1636 page_vma_mapped_walk_done(&pvmw);
1637 break;
1638 }
1639 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1640 set_pte_at(mm, address, pvmw.pte, pteval);
1641 ret = false;
1642 page_vma_mapped_walk_done(&pvmw);
1643 break;
1644 }
1645 if (list_empty(&mm->mmlist)) {
1646 spin_lock(&mmlist_lock);
1647 if (list_empty(&mm->mmlist))
1648 list_add(&mm->mmlist, &init_mm.mmlist);
1649 spin_unlock(&mmlist_lock);
1650 }
1651 dec_mm_counter(mm, MM_ANONPAGES);
1652 inc_mm_counter(mm, MM_SWAPENTS);
1653 swp_pte = swp_entry_to_pte(entry);
1654 if (pte_soft_dirty(pteval))
1655 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1656 if (pte_uffd_wp(pteval))
1657 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1658 set_pte_at(mm, address, pvmw.pte, swp_pte);
1659 /* Invalidate as we cleared the pte */
1660 mmu_notifier_invalidate_range(mm, address,
1661 address + PAGE_SIZE);
1662 } else {
1663 /*
1664 * This is a locked file-backed folio,
1665 * so it cannot be removed from the page
1666 * cache and replaced by a new folio before
1667 * mmu_notifier_invalidate_range_end, so no
1668 * concurrent thread might update its page table
1669 * to point at a new folio while a device is
1670 * still using this folio.
1671 *
1672 * See Documentation/vm/mmu_notifier.rst
1673 */
1674 dec_mm_counter(mm, mm_counter_file(&folio->page));
1675 }
1676discard:
1677 /*
1678 * No need to call mmu_notifier_invalidate_range() it has be
1679 * done above for all cases requiring it to happen under page
1680 * table lock before mmu_notifier_invalidate_range_end()
1681 *
1682 * See Documentation/vm/mmu_notifier.rst
1683 */
1684 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1685 if (vma->vm_flags & VM_LOCKED)
1686 mlock_page_drain_local();
1687 folio_put(folio);
1688 }
1689
1690 mmu_notifier_invalidate_range_end(&range);
1691
1692 return ret;
1693}
1694
1695static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1696{
1697 return vma_is_temporary_stack(vma);
1698}
1699
1700static int page_not_mapped(struct folio *folio)
1701{
1702 return !folio_mapped(folio);
1703}
1704
1705/**
1706 * try_to_unmap - Try to remove all page table mappings to a folio.
1707 * @folio: The folio to unmap.
1708 * @flags: action and flags
1709 *
1710 * Tries to remove all the page table entries which are mapping this
1711 * folio. It is the caller's responsibility to check if the folio is
1712 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1713 *
1714 * Context: Caller must hold the folio lock.
1715 */
1716void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1717{
1718 struct rmap_walk_control rwc = {
1719 .rmap_one = try_to_unmap_one,
1720 .arg = (void *)flags,
1721 .done = page_not_mapped,
1722 .anon_lock = folio_lock_anon_vma_read,
1723 };
1724
1725 if (flags & TTU_RMAP_LOCKED)
1726 rmap_walk_locked(folio, &rwc);
1727 else
1728 rmap_walk(folio, &rwc);
1729}
1730
1731/*
1732 * @arg: enum ttu_flags will be passed to this argument.
1733 *
1734 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1735 * containing migration entries.
1736 */
1737static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1738 unsigned long address, void *arg)
1739{
1740 struct mm_struct *mm = vma->vm_mm;
1741 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1742 pte_t pteval;
1743 struct page *subpage;
1744 bool ret = true;
1745 struct mmu_notifier_range range;
1746 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1747
1748 /*
1749 * When racing against e.g. zap_pte_range() on another cpu,
1750 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1751 * try_to_migrate() may return before page_mapped() has become false,
1752 * if page table locking is skipped: use TTU_SYNC to wait for that.
1753 */
1754 if (flags & TTU_SYNC)
1755 pvmw.flags = PVMW_SYNC;
1756
1757 /*
1758 * unmap_page() in mm/huge_memory.c is the only user of migration with
1759 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1760 */
1761 if (flags & TTU_SPLIT_HUGE_PMD)
1762 split_huge_pmd_address(vma, address, true, folio);
1763
1764 /*
1765 * For THP, we have to assume the worse case ie pmd for invalidation.
1766 * For hugetlb, it could be much worse if we need to do pud
1767 * invalidation in the case of pmd sharing.
1768 *
1769 * Note that the page can not be free in this function as call of
1770 * try_to_unmap() must hold a reference on the page.
1771 */
1772 range.end = vma_address_end(&pvmw);
1773 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1774 address, range.end);
1775 if (folio_test_hugetlb(folio)) {
1776 /*
1777 * If sharing is possible, start and end will be adjusted
1778 * accordingly.
1779 */
1780 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1781 &range.end);
1782 }
1783 mmu_notifier_invalidate_range_start(&range);
1784
1785 while (page_vma_mapped_walk(&pvmw)) {
1786#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1787 /* PMD-mapped THP migration entry */
1788 if (!pvmw.pte) {
1789 subpage = folio_page(folio,
1790 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
1791 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
1792 !folio_test_pmd_mappable(folio), folio);
1793
1794 set_pmd_migration_entry(&pvmw, subpage);
1795 continue;
1796 }
1797#endif
1798
1799 /* Unexpected PMD-mapped THP? */
1800 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1801
1802 subpage = folio_page(folio,
1803 pte_pfn(*pvmw.pte) - folio_pfn(folio));
1804 address = pvmw.address;
1805
1806 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1807 /*
1808 * To call huge_pmd_unshare, i_mmap_rwsem must be
1809 * held in write mode. Caller needs to explicitly
1810 * do this outside rmap routines.
1811 */
1812 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1813 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1814 /*
1815 * huge_pmd_unshare unmapped an entire PMD
1816 * page. There is no way of knowing exactly
1817 * which PMDs may be cached for this mm, so
1818 * we must flush them all. start/end were
1819 * already adjusted above to cover this range.
1820 */
1821 flush_cache_range(vma, range.start, range.end);
1822 flush_tlb_range(vma, range.start, range.end);
1823 mmu_notifier_invalidate_range(mm, range.start,
1824 range.end);
1825
1826 /*
1827 * The ref count of the PMD page was dropped
1828 * which is part of the way map counting
1829 * is done for shared PMDs. Return 'true'
1830 * here. When there is no other sharing,
1831 * huge_pmd_unshare returns false and we will
1832 * unmap the actual page and drop map count
1833 * to zero.
1834 */
1835 page_vma_mapped_walk_done(&pvmw);
1836 break;
1837 }
1838 }
1839
1840 /* Nuke the page table entry. */
1841 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1842 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1843
1844 /* Set the dirty flag on the folio now the pte is gone. */
1845 if (pte_dirty(pteval))
1846 folio_mark_dirty(folio);
1847
1848 /* Update high watermark before we lower rss */
1849 update_hiwater_rss(mm);
1850
1851 if (folio_is_zone_device(folio)) {
1852 unsigned long pfn = folio_pfn(folio);
1853 swp_entry_t entry;
1854 pte_t swp_pte;
1855
1856 /*
1857 * Store the pfn of the page in a special migration
1858 * pte. do_swap_page() will wait until the migration
1859 * pte is removed and then restart fault handling.
1860 */
1861 entry = pte_to_swp_entry(pteval);
1862 if (is_writable_device_private_entry(entry))
1863 entry = make_writable_migration_entry(pfn);
1864 else
1865 entry = make_readable_migration_entry(pfn);
1866 swp_pte = swp_entry_to_pte(entry);
1867
1868 /*
1869 * pteval maps a zone device page and is therefore
1870 * a swap pte.
1871 */
1872 if (pte_swp_soft_dirty(pteval))
1873 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1874 if (pte_swp_uffd_wp(pteval))
1875 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1876 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1877 trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
1878 compound_order(&folio->page));
1879 /*
1880 * No need to invalidate here it will synchronize on
1881 * against the special swap migration pte.
1882 *
1883 * The assignment to subpage above was computed from a
1884 * swap PTE which results in an invalid pointer.
1885 * Since only PAGE_SIZE pages can currently be
1886 * migrated, just set it to page. This will need to be
1887 * changed when hugepage migrations to device private
1888 * memory are supported.
1889 */
1890 subpage = &folio->page;
1891 } else if (PageHWPoison(subpage)) {
1892 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1893 if (folio_test_hugetlb(folio)) {
1894 hugetlb_count_sub(folio_nr_pages(folio), mm);
1895 set_huge_swap_pte_at(mm, address,
1896 pvmw.pte, pteval,
1897 vma_mmu_pagesize(vma));
1898 } else {
1899 dec_mm_counter(mm, mm_counter(&folio->page));
1900 set_pte_at(mm, address, pvmw.pte, pteval);
1901 }
1902
1903 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1904 /*
1905 * The guest indicated that the page content is of no
1906 * interest anymore. Simply discard the pte, vmscan
1907 * will take care of the rest.
1908 * A future reference will then fault in a new zero
1909 * page. When userfaultfd is active, we must not drop
1910 * this page though, as its main user (postcopy
1911 * migration) will not expect userfaults on already
1912 * copied pages.
1913 */
1914 dec_mm_counter(mm, mm_counter(&folio->page));
1915 /* We have to invalidate as we cleared the pte */
1916 mmu_notifier_invalidate_range(mm, address,
1917 address + PAGE_SIZE);
1918 } else {
1919 swp_entry_t entry;
1920 pte_t swp_pte;
1921
1922 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1923 set_pte_at(mm, address, pvmw.pte, pteval);
1924 ret = false;
1925 page_vma_mapped_walk_done(&pvmw);
1926 break;
1927 }
1928
1929 /*
1930 * Store the pfn of the page in a special migration
1931 * pte. do_swap_page() will wait until the migration
1932 * pte is removed and then restart fault handling.
1933 */
1934 if (pte_write(pteval))
1935 entry = make_writable_migration_entry(
1936 page_to_pfn(subpage));
1937 else
1938 entry = make_readable_migration_entry(
1939 page_to_pfn(subpage));
1940
1941 swp_pte = swp_entry_to_pte(entry);
1942 if (pte_soft_dirty(pteval))
1943 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1944 if (pte_uffd_wp(pteval))
1945 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1946 set_pte_at(mm, address, pvmw.pte, swp_pte);
1947 trace_set_migration_pte(address, pte_val(swp_pte),
1948 compound_order(&folio->page));
1949 /*
1950 * No need to invalidate here it will synchronize on
1951 * against the special swap migration pte.
1952 */
1953 }
1954
1955 /*
1956 * No need to call mmu_notifier_invalidate_range() it has be
1957 * done above for all cases requiring it to happen under page
1958 * table lock before mmu_notifier_invalidate_range_end()
1959 *
1960 * See Documentation/vm/mmu_notifier.rst
1961 */
1962 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
1963 if (vma->vm_flags & VM_LOCKED)
1964 mlock_page_drain_local();
1965 folio_put(folio);
1966 }
1967
1968 mmu_notifier_invalidate_range_end(&range);
1969
1970 return ret;
1971}
1972
1973/**
1974 * try_to_migrate - try to replace all page table mappings with swap entries
1975 * @folio: the folio to replace page table entries for
1976 * @flags: action and flags
1977 *
1978 * Tries to remove all the page table entries which are mapping this folio and
1979 * replace them with special swap entries. Caller must hold the folio lock.
1980 */
1981void try_to_migrate(struct folio *folio, enum ttu_flags flags)
1982{
1983 struct rmap_walk_control rwc = {
1984 .rmap_one = try_to_migrate_one,
1985 .arg = (void *)flags,
1986 .done = page_not_mapped,
1987 .anon_lock = folio_lock_anon_vma_read,
1988 };
1989
1990 /*
1991 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
1992 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
1993 */
1994 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
1995 TTU_SYNC)))
1996 return;
1997
1998 if (folio_is_zone_device(folio) && !folio_is_device_private(folio))
1999 return;
2000
2001 /*
2002 * During exec, a temporary VMA is setup and later moved.
2003 * The VMA is moved under the anon_vma lock but not the
2004 * page tables leading to a race where migration cannot
2005 * find the migration ptes. Rather than increasing the
2006 * locking requirements of exec(), migration skips
2007 * temporary VMAs until after exec() completes.
2008 */
2009 if (!folio_test_ksm(folio) && folio_test_anon(folio))
2010 rwc.invalid_vma = invalid_migration_vma;
2011
2012 if (flags & TTU_RMAP_LOCKED)
2013 rmap_walk_locked(folio, &rwc);
2014 else
2015 rmap_walk(folio, &rwc);
2016}
2017
2018#ifdef CONFIG_DEVICE_PRIVATE
2019struct make_exclusive_args {
2020 struct mm_struct *mm;
2021 unsigned long address;
2022 void *owner;
2023 bool valid;
2024};
2025
2026static bool page_make_device_exclusive_one(struct folio *folio,
2027 struct vm_area_struct *vma, unsigned long address, void *priv)
2028{
2029 struct mm_struct *mm = vma->vm_mm;
2030 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2031 struct make_exclusive_args *args = priv;
2032 pte_t pteval;
2033 struct page *subpage;
2034 bool ret = true;
2035 struct mmu_notifier_range range;
2036 swp_entry_t entry;
2037 pte_t swp_pte;
2038
2039 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2040 vma->vm_mm, address, min(vma->vm_end,
2041 address + folio_size(folio)),
2042 args->owner);
2043 mmu_notifier_invalidate_range_start(&range);
2044
2045 while (page_vma_mapped_walk(&pvmw)) {
2046 /* Unexpected PMD-mapped THP? */
2047 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2048
2049 if (!pte_present(*pvmw.pte)) {
2050 ret = false;
2051 page_vma_mapped_walk_done(&pvmw);
2052 break;
2053 }
2054
2055 subpage = folio_page(folio,
2056 pte_pfn(*pvmw.pte) - folio_pfn(folio));
2057 address = pvmw.address;
2058
2059 /* Nuke the page table entry. */
2060 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2061 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2062
2063 /* Set the dirty flag on the folio now the pte is gone. */
2064 if (pte_dirty(pteval))
2065 folio_mark_dirty(folio);
2066
2067 /*
2068 * Check that our target page is still mapped at the expected
2069 * address.
2070 */
2071 if (args->mm == mm && args->address == address &&
2072 pte_write(pteval))
2073 args->valid = true;
2074
2075 /*
2076 * Store the pfn of the page in a special migration
2077 * pte. do_swap_page() will wait until the migration
2078 * pte is removed and then restart fault handling.
2079 */
2080 if (pte_write(pteval))
2081 entry = make_writable_device_exclusive_entry(
2082 page_to_pfn(subpage));
2083 else
2084 entry = make_readable_device_exclusive_entry(
2085 page_to_pfn(subpage));
2086 swp_pte = swp_entry_to_pte(entry);
2087 if (pte_soft_dirty(pteval))
2088 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2089 if (pte_uffd_wp(pteval))
2090 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2091
2092 set_pte_at(mm, address, pvmw.pte, swp_pte);
2093
2094 /*
2095 * There is a reference on the page for the swap entry which has
2096 * been removed, so shouldn't take another.
2097 */
2098 page_remove_rmap(subpage, vma, false);
2099 }
2100
2101 mmu_notifier_invalidate_range_end(&range);
2102
2103 return ret;
2104}
2105
2106/**
2107 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2108 * @folio: The folio to replace page table entries for.
2109 * @mm: The mm_struct where the folio is expected to be mapped.
2110 * @address: Address where the folio is expected to be mapped.
2111 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2112 *
2113 * Tries to remove all the page table entries which are mapping this
2114 * folio and replace them with special device exclusive swap entries to
2115 * grant a device exclusive access to the folio.
2116 *
2117 * Context: Caller must hold the folio lock.
2118 * Return: false if the page is still mapped, or if it could not be unmapped
2119 * from the expected address. Otherwise returns true (success).
2120 */
2121static bool folio_make_device_exclusive(struct folio *folio,
2122 struct mm_struct *mm, unsigned long address, void *owner)
2123{
2124 struct make_exclusive_args args = {
2125 .mm = mm,
2126 .address = address,
2127 .owner = owner,
2128 .valid = false,
2129 };
2130 struct rmap_walk_control rwc = {
2131 .rmap_one = page_make_device_exclusive_one,
2132 .done = page_not_mapped,
2133 .anon_lock = folio_lock_anon_vma_read,
2134 .arg = &args,
2135 };
2136
2137 /*
2138 * Restrict to anonymous folios for now to avoid potential writeback
2139 * issues.
2140 */
2141 if (!folio_test_anon(folio))
2142 return false;
2143
2144 rmap_walk(folio, &rwc);
2145
2146 return args.valid && !folio_mapcount(folio);
2147}
2148
2149/**
2150 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2151 * @mm: mm_struct of assoicated target process
2152 * @start: start of the region to mark for exclusive device access
2153 * @end: end address of region
2154 * @pages: returns the pages which were successfully marked for exclusive access
2155 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2156 *
2157 * Returns: number of pages found in the range by GUP. A page is marked for
2158 * exclusive access only if the page pointer is non-NULL.
2159 *
2160 * This function finds ptes mapping page(s) to the given address range, locks
2161 * them and replaces mappings with special swap entries preventing userspace CPU
2162 * access. On fault these entries are replaced with the original mapping after
2163 * calling MMU notifiers.
2164 *
2165 * A driver using this to program access from a device must use a mmu notifier
2166 * critical section to hold a device specific lock during programming. Once
2167 * programming is complete it should drop the page lock and reference after
2168 * which point CPU access to the page will revoke the exclusive access.
2169 */
2170int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2171 unsigned long end, struct page **pages,
2172 void *owner)
2173{
2174 long npages = (end - start) >> PAGE_SHIFT;
2175 long i;
2176
2177 npages = get_user_pages_remote(mm, start, npages,
2178 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2179 pages, NULL, NULL);
2180 if (npages < 0)
2181 return npages;
2182
2183 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2184 struct folio *folio = page_folio(pages[i]);
2185 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2186 folio_put(folio);
2187 pages[i] = NULL;
2188 continue;
2189 }
2190
2191 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2192 folio_unlock(folio);
2193 folio_put(folio);
2194 pages[i] = NULL;
2195 }
2196 }
2197
2198 return npages;
2199}
2200EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2201#endif
2202
2203void __put_anon_vma(struct anon_vma *anon_vma)
2204{
2205 struct anon_vma *root = anon_vma->root;
2206
2207 anon_vma_free(anon_vma);
2208 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2209 anon_vma_free(root);
2210}
2211
2212static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2213 const struct rmap_walk_control *rwc)
2214{
2215 struct anon_vma *anon_vma;
2216
2217 if (rwc->anon_lock)
2218 return rwc->anon_lock(folio);
2219
2220 /*
2221 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2222 * because that depends on page_mapped(); but not all its usages
2223 * are holding mmap_lock. Users without mmap_lock are required to
2224 * take a reference count to prevent the anon_vma disappearing
2225 */
2226 anon_vma = folio_anon_vma(folio);
2227 if (!anon_vma)
2228 return NULL;
2229
2230 anon_vma_lock_read(anon_vma);
2231 return anon_vma;
2232}
2233
2234/*
2235 * rmap_walk_anon - do something to anonymous page using the object-based
2236 * rmap method
2237 * @page: the page to be handled
2238 * @rwc: control variable according to each walk type
2239 *
2240 * Find all the mappings of a page using the mapping pointer and the vma chains
2241 * contained in the anon_vma struct it points to.
2242 */
2243static void rmap_walk_anon(struct folio *folio,
2244 const struct rmap_walk_control *rwc, bool locked)
2245{
2246 struct anon_vma *anon_vma;
2247 pgoff_t pgoff_start, pgoff_end;
2248 struct anon_vma_chain *avc;
2249
2250 if (locked) {
2251 anon_vma = folio_anon_vma(folio);
2252 /* anon_vma disappear under us? */
2253 VM_BUG_ON_FOLIO(!anon_vma, folio);
2254 } else {
2255 anon_vma = rmap_walk_anon_lock(folio, rwc);
2256 }
2257 if (!anon_vma)
2258 return;
2259
2260 pgoff_start = folio_pgoff(folio);
2261 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2262 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2263 pgoff_start, pgoff_end) {
2264 struct vm_area_struct *vma = avc->vma;
2265 unsigned long address = vma_address(&folio->page, vma);
2266
2267 VM_BUG_ON_VMA(address == -EFAULT, vma);
2268 cond_resched();
2269
2270 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2271 continue;
2272
2273 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2274 break;
2275 if (rwc->done && rwc->done(folio))
2276 break;
2277 }
2278
2279 if (!locked)
2280 anon_vma_unlock_read(anon_vma);
2281}
2282
2283/*
2284 * rmap_walk_file - do something to file page using the object-based rmap method
2285 * @page: the page to be handled
2286 * @rwc: control variable according to each walk type
2287 *
2288 * Find all the mappings of a page using the mapping pointer and the vma chains
2289 * contained in the address_space struct it points to.
2290 */
2291static void rmap_walk_file(struct folio *folio,
2292 const struct rmap_walk_control *rwc, bool locked)
2293{
2294 struct address_space *mapping = folio_mapping(folio);
2295 pgoff_t pgoff_start, pgoff_end;
2296 struct vm_area_struct *vma;
2297
2298 /*
2299 * The page lock not only makes sure that page->mapping cannot
2300 * suddenly be NULLified by truncation, it makes sure that the
2301 * structure at mapping cannot be freed and reused yet,
2302 * so we can safely take mapping->i_mmap_rwsem.
2303 */
2304 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2305
2306 if (!mapping)
2307 return;
2308
2309 pgoff_start = folio_pgoff(folio);
2310 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2311 if (!locked)
2312 i_mmap_lock_read(mapping);
2313 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2314 pgoff_start, pgoff_end) {
2315 unsigned long address = vma_address(&folio->page, vma);
2316
2317 VM_BUG_ON_VMA(address == -EFAULT, vma);
2318 cond_resched();
2319
2320 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2321 continue;
2322
2323 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2324 goto done;
2325 if (rwc->done && rwc->done(folio))
2326 goto done;
2327 }
2328
2329done:
2330 if (!locked)
2331 i_mmap_unlock_read(mapping);
2332}
2333
2334void rmap_walk(struct folio *folio, const struct rmap_walk_control *rwc)
2335{
2336 if (unlikely(folio_test_ksm(folio)))
2337 rmap_walk_ksm(folio, rwc);
2338 else if (folio_test_anon(folio))
2339 rmap_walk_anon(folio, rwc, false);
2340 else
2341 rmap_walk_file(folio, rwc, false);
2342}
2343
2344/* Like rmap_walk, but caller holds relevant rmap lock */
2345void rmap_walk_locked(struct folio *folio, const struct rmap_walk_control *rwc)
2346{
2347 /* no ksm support for now */
2348 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2349 if (folio_test_anon(folio))
2350 rmap_walk_anon(folio, rwc, true);
2351 else
2352 rmap_walk_file(folio, rwc, true);
2353}
2354
2355#ifdef CONFIG_HUGETLB_PAGE
2356/*
2357 * The following two functions are for anonymous (private mapped) hugepages.
2358 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2359 * and no lru code, because we handle hugepages differently from common pages.
2360 */
2361void hugepage_add_anon_rmap(struct page *page,
2362 struct vm_area_struct *vma, unsigned long address)
2363{
2364 struct anon_vma *anon_vma = vma->anon_vma;
2365 int first;
2366
2367 BUG_ON(!PageLocked(page));
2368 BUG_ON(!anon_vma);
2369 /* address might be in next vma when migration races vma_adjust */
2370 first = atomic_inc_and_test(compound_mapcount_ptr(page));
2371 if (first)
2372 __page_set_anon_rmap(page, vma, address, 0);
2373}
2374
2375void hugepage_add_new_anon_rmap(struct page *page,
2376 struct vm_area_struct *vma, unsigned long address)
2377{
2378 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2379 atomic_set(compound_mapcount_ptr(page), 0);
2380 atomic_set(compound_pincount_ptr(page), 0);
2381
2382 __page_set_anon_rmap(page, vma, address, 1);
2383}
2384#endif /* CONFIG_HUGETLB_PAGE */