Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36#include <linux/kernel.h>
37#include <linux/mm.h>
38#include <linux/page-flags.h>
39#include <linux/kernel-page-flags.h>
40#include <linux/sched/signal.h>
41#include <linux/sched/task.h>
42#include <linux/dax.h>
43#include <linux/ksm.h>
44#include <linux/rmap.h>
45#include <linux/export.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/backing-dev.h>
49#include <linux/migrate.h>
50#include <linux/suspend.h>
51#include <linux/slab.h>
52#include <linux/swapops.h>
53#include <linux/hugetlb.h>
54#include <linux/memory_hotplug.h>
55#include <linux/mm_inline.h>
56#include <linux/memremap.h>
57#include <linux/kfifo.h>
58#include <linux/ratelimit.h>
59#include <linux/page-isolation.h>
60#include <linux/pagewalk.h>
61#include <linux/shmem_fs.h>
62#include "internal.h"
63#include "ras/ras_event.h"
64
65int sysctl_memory_failure_early_kill __read_mostly = 0;
66
67int sysctl_memory_failure_recovery __read_mostly = 1;
68
69atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
70
71static bool __page_handle_poison(struct page *page)
72{
73 int ret;
74
75 zone_pcp_disable(page_zone(page));
76 ret = dissolve_free_huge_page(page);
77 if (!ret)
78 ret = take_page_off_buddy(page);
79 zone_pcp_enable(page_zone(page));
80
81 return ret > 0;
82}
83
84static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
85{
86 if (hugepage_or_freepage) {
87 /*
88 * Doing this check for free pages is also fine since dissolve_free_huge_page
89 * returns 0 for non-hugetlb pages as well.
90 */
91 if (!__page_handle_poison(page))
92 /*
93 * We could fail to take off the target page from buddy
94 * for example due to racy page allocation, but that's
95 * acceptable because soft-offlined page is not broken
96 * and if someone really want to use it, they should
97 * take it.
98 */
99 return false;
100 }
101
102 SetPageHWPoison(page);
103 if (release)
104 put_page(page);
105 page_ref_inc(page);
106 num_poisoned_pages_inc();
107
108 return true;
109}
110
111#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
112
113u32 hwpoison_filter_enable = 0;
114u32 hwpoison_filter_dev_major = ~0U;
115u32 hwpoison_filter_dev_minor = ~0U;
116u64 hwpoison_filter_flags_mask;
117u64 hwpoison_filter_flags_value;
118EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
119EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
120EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
121EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
122EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
123
124static int hwpoison_filter_dev(struct page *p)
125{
126 struct address_space *mapping;
127 dev_t dev;
128
129 if (hwpoison_filter_dev_major == ~0U &&
130 hwpoison_filter_dev_minor == ~0U)
131 return 0;
132
133 mapping = page_mapping(p);
134 if (mapping == NULL || mapping->host == NULL)
135 return -EINVAL;
136
137 dev = mapping->host->i_sb->s_dev;
138 if (hwpoison_filter_dev_major != ~0U &&
139 hwpoison_filter_dev_major != MAJOR(dev))
140 return -EINVAL;
141 if (hwpoison_filter_dev_minor != ~0U &&
142 hwpoison_filter_dev_minor != MINOR(dev))
143 return -EINVAL;
144
145 return 0;
146}
147
148static int hwpoison_filter_flags(struct page *p)
149{
150 if (!hwpoison_filter_flags_mask)
151 return 0;
152
153 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
154 hwpoison_filter_flags_value)
155 return 0;
156 else
157 return -EINVAL;
158}
159
160/*
161 * This allows stress tests to limit test scope to a collection of tasks
162 * by putting them under some memcg. This prevents killing unrelated/important
163 * processes such as /sbin/init. Note that the target task may share clean
164 * pages with init (eg. libc text), which is harmless. If the target task
165 * share _dirty_ pages with another task B, the test scheme must make sure B
166 * is also included in the memcg. At last, due to race conditions this filter
167 * can only guarantee that the page either belongs to the memcg tasks, or is
168 * a freed page.
169 */
170#ifdef CONFIG_MEMCG
171u64 hwpoison_filter_memcg;
172EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
173static int hwpoison_filter_task(struct page *p)
174{
175 if (!hwpoison_filter_memcg)
176 return 0;
177
178 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
179 return -EINVAL;
180
181 return 0;
182}
183#else
184static int hwpoison_filter_task(struct page *p) { return 0; }
185#endif
186
187int hwpoison_filter(struct page *p)
188{
189 if (!hwpoison_filter_enable)
190 return 0;
191
192 if (hwpoison_filter_dev(p))
193 return -EINVAL;
194
195 if (hwpoison_filter_flags(p))
196 return -EINVAL;
197
198 if (hwpoison_filter_task(p))
199 return -EINVAL;
200
201 return 0;
202}
203#else
204int hwpoison_filter(struct page *p)
205{
206 return 0;
207}
208#endif
209
210EXPORT_SYMBOL_GPL(hwpoison_filter);
211
212/*
213 * Kill all processes that have a poisoned page mapped and then isolate
214 * the page.
215 *
216 * General strategy:
217 * Find all processes having the page mapped and kill them.
218 * But we keep a page reference around so that the page is not
219 * actually freed yet.
220 * Then stash the page away
221 *
222 * There's no convenient way to get back to mapped processes
223 * from the VMAs. So do a brute-force search over all
224 * running processes.
225 *
226 * Remember that machine checks are not common (or rather
227 * if they are common you have other problems), so this shouldn't
228 * be a performance issue.
229 *
230 * Also there are some races possible while we get from the
231 * error detection to actually handle it.
232 */
233
234struct to_kill {
235 struct list_head nd;
236 struct task_struct *tsk;
237 unsigned long addr;
238 short size_shift;
239};
240
241/*
242 * Send all the processes who have the page mapped a signal.
243 * ``action optional'' if they are not immediately affected by the error
244 * ``action required'' if error happened in current execution context
245 */
246static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
247{
248 struct task_struct *t = tk->tsk;
249 short addr_lsb = tk->size_shift;
250 int ret = 0;
251
252 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
253 pfn, t->comm, t->pid);
254
255 if ((flags & MF_ACTION_REQUIRED) && (t == current))
256 ret = force_sig_mceerr(BUS_MCEERR_AR,
257 (void __user *)tk->addr, addr_lsb);
258 else
259 /*
260 * Signal other processes sharing the page if they have
261 * PF_MCE_EARLY set.
262 * Don't use force here, it's convenient if the signal
263 * can be temporarily blocked.
264 * This could cause a loop when the user sets SIGBUS
265 * to SIG_IGN, but hopefully no one will do that?
266 */
267 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
268 addr_lsb, t); /* synchronous? */
269 if (ret < 0)
270 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
271 t->comm, t->pid, ret);
272 return ret;
273}
274
275/*
276 * Unknown page type encountered. Try to check whether it can turn PageLRU by
277 * lru_add_drain_all.
278 */
279void shake_page(struct page *p)
280{
281 if (PageHuge(p))
282 return;
283
284 if (!PageSlab(p)) {
285 lru_add_drain_all();
286 if (PageLRU(p) || is_free_buddy_page(p))
287 return;
288 }
289
290 /*
291 * TODO: Could shrink slab caches here if a lightweight range-based
292 * shrinker will be available.
293 */
294}
295EXPORT_SYMBOL_GPL(shake_page);
296
297static unsigned long dev_pagemap_mapping_shift(struct page *page,
298 struct vm_area_struct *vma)
299{
300 unsigned long address = vma_address(page, vma);
301 unsigned long ret = 0;
302 pgd_t *pgd;
303 p4d_t *p4d;
304 pud_t *pud;
305 pmd_t *pmd;
306 pte_t *pte;
307
308 VM_BUG_ON_VMA(address == -EFAULT, vma);
309 pgd = pgd_offset(vma->vm_mm, address);
310 if (!pgd_present(*pgd))
311 return 0;
312 p4d = p4d_offset(pgd, address);
313 if (!p4d_present(*p4d))
314 return 0;
315 pud = pud_offset(p4d, address);
316 if (!pud_present(*pud))
317 return 0;
318 if (pud_devmap(*pud))
319 return PUD_SHIFT;
320 pmd = pmd_offset(pud, address);
321 if (!pmd_present(*pmd))
322 return 0;
323 if (pmd_devmap(*pmd))
324 return PMD_SHIFT;
325 pte = pte_offset_map(pmd, address);
326 if (pte_present(*pte) && pte_devmap(*pte))
327 ret = PAGE_SHIFT;
328 pte_unmap(pte);
329 return ret;
330}
331
332/*
333 * Failure handling: if we can't find or can't kill a process there's
334 * not much we can do. We just print a message and ignore otherwise.
335 */
336
337/*
338 * Schedule a process for later kill.
339 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
340 */
341static void add_to_kill(struct task_struct *tsk, struct page *p,
342 struct vm_area_struct *vma,
343 struct list_head *to_kill)
344{
345 struct to_kill *tk;
346
347 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
348 if (!tk) {
349 pr_err("Memory failure: Out of memory while machine check handling\n");
350 return;
351 }
352
353 tk->addr = page_address_in_vma(p, vma);
354 if (is_zone_device_page(p))
355 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
356 else
357 tk->size_shift = page_shift(compound_head(p));
358
359 /*
360 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
361 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
362 * so "tk->size_shift == 0" effectively checks no mapping on
363 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
364 * to a process' address space, it's possible not all N VMAs
365 * contain mappings for the page, but at least one VMA does.
366 * Only deliver SIGBUS with payload derived from the VMA that
367 * has a mapping for the page.
368 */
369 if (tk->addr == -EFAULT) {
370 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
371 page_to_pfn(p), tsk->comm);
372 } else if (tk->size_shift == 0) {
373 kfree(tk);
374 return;
375 }
376
377 get_task_struct(tsk);
378 tk->tsk = tsk;
379 list_add_tail(&tk->nd, to_kill);
380}
381
382/*
383 * Kill the processes that have been collected earlier.
384 *
385 * Only do anything when FORCEKILL is set, otherwise just free the
386 * list (this is used for clean pages which do not need killing)
387 * Also when FAIL is set do a force kill because something went
388 * wrong earlier.
389 */
390static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
391 unsigned long pfn, int flags)
392{
393 struct to_kill *tk, *next;
394
395 list_for_each_entry_safe (tk, next, to_kill, nd) {
396 if (forcekill) {
397 /*
398 * In case something went wrong with munmapping
399 * make sure the process doesn't catch the
400 * signal and then access the memory. Just kill it.
401 */
402 if (fail || tk->addr == -EFAULT) {
403 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
404 pfn, tk->tsk->comm, tk->tsk->pid);
405 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
406 tk->tsk, PIDTYPE_PID);
407 }
408
409 /*
410 * In theory the process could have mapped
411 * something else on the address in-between. We could
412 * check for that, but we need to tell the
413 * process anyways.
414 */
415 else if (kill_proc(tk, pfn, flags) < 0)
416 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
417 pfn, tk->tsk->comm, tk->tsk->pid);
418 }
419 put_task_struct(tk->tsk);
420 kfree(tk);
421 }
422}
423
424/*
425 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
426 * on behalf of the thread group. Return task_struct of the (first found)
427 * dedicated thread if found, and return NULL otherwise.
428 *
429 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
430 * have to call rcu_read_lock/unlock() in this function.
431 */
432static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
433{
434 struct task_struct *t;
435
436 for_each_thread(tsk, t) {
437 if (t->flags & PF_MCE_PROCESS) {
438 if (t->flags & PF_MCE_EARLY)
439 return t;
440 } else {
441 if (sysctl_memory_failure_early_kill)
442 return t;
443 }
444 }
445 return NULL;
446}
447
448/*
449 * Determine whether a given process is "early kill" process which expects
450 * to be signaled when some page under the process is hwpoisoned.
451 * Return task_struct of the dedicated thread (main thread unless explicitly
452 * specified) if the process is "early kill" and otherwise returns NULL.
453 *
454 * Note that the above is true for Action Optional case. For Action Required
455 * case, it's only meaningful to the current thread which need to be signaled
456 * with SIGBUS, this error is Action Optional for other non current
457 * processes sharing the same error page,if the process is "early kill", the
458 * task_struct of the dedicated thread will also be returned.
459 */
460static struct task_struct *task_early_kill(struct task_struct *tsk,
461 int force_early)
462{
463 if (!tsk->mm)
464 return NULL;
465 /*
466 * Comparing ->mm here because current task might represent
467 * a subthread, while tsk always points to the main thread.
468 */
469 if (force_early && tsk->mm == current->mm)
470 return current;
471
472 return find_early_kill_thread(tsk);
473}
474
475/*
476 * Collect processes when the error hit an anonymous page.
477 */
478static void collect_procs_anon(struct page *page, struct list_head *to_kill,
479 int force_early)
480{
481 struct folio *folio = page_folio(page);
482 struct vm_area_struct *vma;
483 struct task_struct *tsk;
484 struct anon_vma *av;
485 pgoff_t pgoff;
486
487 av = folio_lock_anon_vma_read(folio);
488 if (av == NULL) /* Not actually mapped anymore */
489 return;
490
491 pgoff = page_to_pgoff(page);
492 read_lock(&tasklist_lock);
493 for_each_process (tsk) {
494 struct anon_vma_chain *vmac;
495 struct task_struct *t = task_early_kill(tsk, force_early);
496
497 if (!t)
498 continue;
499 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
500 pgoff, pgoff) {
501 vma = vmac->vma;
502 if (!page_mapped_in_vma(page, vma))
503 continue;
504 if (vma->vm_mm == t->mm)
505 add_to_kill(t, page, vma, to_kill);
506 }
507 }
508 read_unlock(&tasklist_lock);
509 page_unlock_anon_vma_read(av);
510}
511
512/*
513 * Collect processes when the error hit a file mapped page.
514 */
515static void collect_procs_file(struct page *page, struct list_head *to_kill,
516 int force_early)
517{
518 struct vm_area_struct *vma;
519 struct task_struct *tsk;
520 struct address_space *mapping = page->mapping;
521 pgoff_t pgoff;
522
523 i_mmap_lock_read(mapping);
524 read_lock(&tasklist_lock);
525 pgoff = page_to_pgoff(page);
526 for_each_process(tsk) {
527 struct task_struct *t = task_early_kill(tsk, force_early);
528
529 if (!t)
530 continue;
531 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
532 pgoff) {
533 /*
534 * Send early kill signal to tasks where a vma covers
535 * the page but the corrupted page is not necessarily
536 * mapped it in its pte.
537 * Assume applications who requested early kill want
538 * to be informed of all such data corruptions.
539 */
540 if (vma->vm_mm == t->mm)
541 add_to_kill(t, page, vma, to_kill);
542 }
543 }
544 read_unlock(&tasklist_lock);
545 i_mmap_unlock_read(mapping);
546}
547
548/*
549 * Collect the processes who have the corrupted page mapped to kill.
550 */
551static void collect_procs(struct page *page, struct list_head *tokill,
552 int force_early)
553{
554 if (!page->mapping)
555 return;
556
557 if (PageAnon(page))
558 collect_procs_anon(page, tokill, force_early);
559 else
560 collect_procs_file(page, tokill, force_early);
561}
562
563struct hwp_walk {
564 struct to_kill tk;
565 unsigned long pfn;
566 int flags;
567};
568
569static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
570{
571 tk->addr = addr;
572 tk->size_shift = shift;
573}
574
575static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
576 unsigned long poisoned_pfn, struct to_kill *tk)
577{
578 unsigned long pfn = 0;
579
580 if (pte_present(pte)) {
581 pfn = pte_pfn(pte);
582 } else {
583 swp_entry_t swp = pte_to_swp_entry(pte);
584
585 if (is_hwpoison_entry(swp))
586 pfn = hwpoison_entry_to_pfn(swp);
587 }
588
589 if (!pfn || pfn != poisoned_pfn)
590 return 0;
591
592 set_to_kill(tk, addr, shift);
593 return 1;
594}
595
596#ifdef CONFIG_TRANSPARENT_HUGEPAGE
597static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
598 struct hwp_walk *hwp)
599{
600 pmd_t pmd = *pmdp;
601 unsigned long pfn;
602 unsigned long hwpoison_vaddr;
603
604 if (!pmd_present(pmd))
605 return 0;
606 pfn = pmd_pfn(pmd);
607 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
608 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
609 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
610 return 1;
611 }
612 return 0;
613}
614#else
615static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
616 struct hwp_walk *hwp)
617{
618 return 0;
619}
620#endif
621
622static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
623 unsigned long end, struct mm_walk *walk)
624{
625 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
626 int ret = 0;
627 pte_t *ptep, *mapped_pte;
628 spinlock_t *ptl;
629
630 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
631 if (ptl) {
632 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
633 spin_unlock(ptl);
634 goto out;
635 }
636
637 if (pmd_trans_unstable(pmdp))
638 goto out;
639
640 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
641 addr, &ptl);
642 for (; addr != end; ptep++, addr += PAGE_SIZE) {
643 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
644 hwp->pfn, &hwp->tk);
645 if (ret == 1)
646 break;
647 }
648 pte_unmap_unlock(mapped_pte, ptl);
649out:
650 cond_resched();
651 return ret;
652}
653
654#ifdef CONFIG_HUGETLB_PAGE
655static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
656 unsigned long addr, unsigned long end,
657 struct mm_walk *walk)
658{
659 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
660 pte_t pte = huge_ptep_get(ptep);
661 struct hstate *h = hstate_vma(walk->vma);
662
663 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
664 hwp->pfn, &hwp->tk);
665}
666#else
667#define hwpoison_hugetlb_range NULL
668#endif
669
670static const struct mm_walk_ops hwp_walk_ops = {
671 .pmd_entry = hwpoison_pte_range,
672 .hugetlb_entry = hwpoison_hugetlb_range,
673};
674
675/*
676 * Sends SIGBUS to the current process with error info.
677 *
678 * This function is intended to handle "Action Required" MCEs on already
679 * hardware poisoned pages. They could happen, for example, when
680 * memory_failure() failed to unmap the error page at the first call, or
681 * when multiple local machine checks happened on different CPUs.
682 *
683 * MCE handler currently has no easy access to the error virtual address,
684 * so this function walks page table to find it. The returned virtual address
685 * is proper in most cases, but it could be wrong when the application
686 * process has multiple entries mapping the error page.
687 */
688static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
689 int flags)
690{
691 int ret;
692 struct hwp_walk priv = {
693 .pfn = pfn,
694 };
695 priv.tk.tsk = p;
696
697 mmap_read_lock(p->mm);
698 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
699 (void *)&priv);
700 if (ret == 1 && priv.tk.addr)
701 kill_proc(&priv.tk, pfn, flags);
702 else
703 ret = 0;
704 mmap_read_unlock(p->mm);
705 return ret > 0 ? -EHWPOISON : -EFAULT;
706}
707
708static const char *action_name[] = {
709 [MF_IGNORED] = "Ignored",
710 [MF_FAILED] = "Failed",
711 [MF_DELAYED] = "Delayed",
712 [MF_RECOVERED] = "Recovered",
713};
714
715static const char * const action_page_types[] = {
716 [MF_MSG_KERNEL] = "reserved kernel page",
717 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
718 [MF_MSG_SLAB] = "kernel slab page",
719 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
720 [MF_MSG_HUGE] = "huge page",
721 [MF_MSG_FREE_HUGE] = "free huge page",
722 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
723 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
724 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
725 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
726 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
727 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
728 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
729 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
730 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
731 [MF_MSG_CLEAN_LRU] = "clean LRU page",
732 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
733 [MF_MSG_BUDDY] = "free buddy page",
734 [MF_MSG_DAX] = "dax page",
735 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
736 [MF_MSG_DIFFERENT_PAGE_SIZE] = "different page size",
737 [MF_MSG_UNKNOWN] = "unknown page",
738};
739
740/*
741 * XXX: It is possible that a page is isolated from LRU cache,
742 * and then kept in swap cache or failed to remove from page cache.
743 * The page count will stop it from being freed by unpoison.
744 * Stress tests should be aware of this memory leak problem.
745 */
746static int delete_from_lru_cache(struct page *p)
747{
748 if (!isolate_lru_page(p)) {
749 /*
750 * Clear sensible page flags, so that the buddy system won't
751 * complain when the page is unpoison-and-freed.
752 */
753 ClearPageActive(p);
754 ClearPageUnevictable(p);
755
756 /*
757 * Poisoned page might never drop its ref count to 0 so we have
758 * to uncharge it manually from its memcg.
759 */
760 mem_cgroup_uncharge(page_folio(p));
761
762 /*
763 * drop the page count elevated by isolate_lru_page()
764 */
765 put_page(p);
766 return 0;
767 }
768 return -EIO;
769}
770
771static int truncate_error_page(struct page *p, unsigned long pfn,
772 struct address_space *mapping)
773{
774 int ret = MF_FAILED;
775
776 if (mapping->a_ops->error_remove_page) {
777 int err = mapping->a_ops->error_remove_page(mapping, p);
778
779 if (err != 0) {
780 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
781 pfn, err);
782 } else if (page_has_private(p) &&
783 !try_to_release_page(p, GFP_NOIO)) {
784 pr_info("Memory failure: %#lx: failed to release buffers\n",
785 pfn);
786 } else {
787 ret = MF_RECOVERED;
788 }
789 } else {
790 /*
791 * If the file system doesn't support it just invalidate
792 * This fails on dirty or anything with private pages
793 */
794 if (invalidate_inode_page(p))
795 ret = MF_RECOVERED;
796 else
797 pr_info("Memory failure: %#lx: Failed to invalidate\n",
798 pfn);
799 }
800
801 return ret;
802}
803
804struct page_state {
805 unsigned long mask;
806 unsigned long res;
807 enum mf_action_page_type type;
808
809 /* Callback ->action() has to unlock the relevant page inside it. */
810 int (*action)(struct page_state *ps, struct page *p);
811};
812
813/*
814 * Return true if page is still referenced by others, otherwise return
815 * false.
816 *
817 * The extra_pins is true when one extra refcount is expected.
818 */
819static bool has_extra_refcount(struct page_state *ps, struct page *p,
820 bool extra_pins)
821{
822 int count = page_count(p) - 1;
823
824 if (extra_pins)
825 count -= 1;
826
827 if (count > 0) {
828 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
829 page_to_pfn(p), action_page_types[ps->type], count);
830 return true;
831 }
832
833 return false;
834}
835
836/*
837 * Error hit kernel page.
838 * Do nothing, try to be lucky and not touch this instead. For a few cases we
839 * could be more sophisticated.
840 */
841static int me_kernel(struct page_state *ps, struct page *p)
842{
843 unlock_page(p);
844 return MF_IGNORED;
845}
846
847/*
848 * Page in unknown state. Do nothing.
849 */
850static int me_unknown(struct page_state *ps, struct page *p)
851{
852 pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p));
853 unlock_page(p);
854 return MF_FAILED;
855}
856
857/*
858 * Clean (or cleaned) page cache page.
859 */
860static int me_pagecache_clean(struct page_state *ps, struct page *p)
861{
862 int ret;
863 struct address_space *mapping;
864 bool extra_pins;
865
866 delete_from_lru_cache(p);
867
868 /*
869 * For anonymous pages we're done the only reference left
870 * should be the one m_f() holds.
871 */
872 if (PageAnon(p)) {
873 ret = MF_RECOVERED;
874 goto out;
875 }
876
877 /*
878 * Now truncate the page in the page cache. This is really
879 * more like a "temporary hole punch"
880 * Don't do this for block devices when someone else
881 * has a reference, because it could be file system metadata
882 * and that's not safe to truncate.
883 */
884 mapping = page_mapping(p);
885 if (!mapping) {
886 /*
887 * Page has been teared down in the meanwhile
888 */
889 ret = MF_FAILED;
890 goto out;
891 }
892
893 /*
894 * The shmem page is kept in page cache instead of truncating
895 * so is expected to have an extra refcount after error-handling.
896 */
897 extra_pins = shmem_mapping(mapping);
898
899 /*
900 * Truncation is a bit tricky. Enable it per file system for now.
901 *
902 * Open: to take i_rwsem or not for this? Right now we don't.
903 */
904 ret = truncate_error_page(p, page_to_pfn(p), mapping);
905 if (has_extra_refcount(ps, p, extra_pins))
906 ret = MF_FAILED;
907
908out:
909 unlock_page(p);
910
911 return ret;
912}
913
914/*
915 * Dirty pagecache page
916 * Issues: when the error hit a hole page the error is not properly
917 * propagated.
918 */
919static int me_pagecache_dirty(struct page_state *ps, struct page *p)
920{
921 struct address_space *mapping = page_mapping(p);
922
923 SetPageError(p);
924 /* TBD: print more information about the file. */
925 if (mapping) {
926 /*
927 * IO error will be reported by write(), fsync(), etc.
928 * who check the mapping.
929 * This way the application knows that something went
930 * wrong with its dirty file data.
931 *
932 * There's one open issue:
933 *
934 * The EIO will be only reported on the next IO
935 * operation and then cleared through the IO map.
936 * Normally Linux has two mechanisms to pass IO error
937 * first through the AS_EIO flag in the address space
938 * and then through the PageError flag in the page.
939 * Since we drop pages on memory failure handling the
940 * only mechanism open to use is through AS_AIO.
941 *
942 * This has the disadvantage that it gets cleared on
943 * the first operation that returns an error, while
944 * the PageError bit is more sticky and only cleared
945 * when the page is reread or dropped. If an
946 * application assumes it will always get error on
947 * fsync, but does other operations on the fd before
948 * and the page is dropped between then the error
949 * will not be properly reported.
950 *
951 * This can already happen even without hwpoisoned
952 * pages: first on metadata IO errors (which only
953 * report through AS_EIO) or when the page is dropped
954 * at the wrong time.
955 *
956 * So right now we assume that the application DTRT on
957 * the first EIO, but we're not worse than other parts
958 * of the kernel.
959 */
960 mapping_set_error(mapping, -EIO);
961 }
962
963 return me_pagecache_clean(ps, p);
964}
965
966/*
967 * Clean and dirty swap cache.
968 *
969 * Dirty swap cache page is tricky to handle. The page could live both in page
970 * cache and swap cache(ie. page is freshly swapped in). So it could be
971 * referenced concurrently by 2 types of PTEs:
972 * normal PTEs and swap PTEs. We try to handle them consistently by calling
973 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
974 * and then
975 * - clear dirty bit to prevent IO
976 * - remove from LRU
977 * - but keep in the swap cache, so that when we return to it on
978 * a later page fault, we know the application is accessing
979 * corrupted data and shall be killed (we installed simple
980 * interception code in do_swap_page to catch it).
981 *
982 * Clean swap cache pages can be directly isolated. A later page fault will
983 * bring in the known good data from disk.
984 */
985static int me_swapcache_dirty(struct page_state *ps, struct page *p)
986{
987 int ret;
988 bool extra_pins = false;
989
990 ClearPageDirty(p);
991 /* Trigger EIO in shmem: */
992 ClearPageUptodate(p);
993
994 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
995 unlock_page(p);
996
997 if (ret == MF_DELAYED)
998 extra_pins = true;
999
1000 if (has_extra_refcount(ps, p, extra_pins))
1001 ret = MF_FAILED;
1002
1003 return ret;
1004}
1005
1006static int me_swapcache_clean(struct page_state *ps, struct page *p)
1007{
1008 int ret;
1009
1010 delete_from_swap_cache(p);
1011
1012 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1013 unlock_page(p);
1014
1015 if (has_extra_refcount(ps, p, false))
1016 ret = MF_FAILED;
1017
1018 return ret;
1019}
1020
1021/*
1022 * Huge pages. Needs work.
1023 * Issues:
1024 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1025 * To narrow down kill region to one page, we need to break up pmd.
1026 */
1027static int me_huge_page(struct page_state *ps, struct page *p)
1028{
1029 int res;
1030 struct page *hpage = compound_head(p);
1031 struct address_space *mapping;
1032
1033 if (!PageHuge(hpage))
1034 return MF_DELAYED;
1035
1036 mapping = page_mapping(hpage);
1037 if (mapping) {
1038 res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1039 unlock_page(hpage);
1040 } else {
1041 res = MF_FAILED;
1042 unlock_page(hpage);
1043 /*
1044 * migration entry prevents later access on error anonymous
1045 * hugepage, so we can free and dissolve it into buddy to
1046 * save healthy subpages.
1047 */
1048 if (PageAnon(hpage))
1049 put_page(hpage);
1050 if (__page_handle_poison(p)) {
1051 page_ref_inc(p);
1052 res = MF_RECOVERED;
1053 }
1054 }
1055
1056 if (has_extra_refcount(ps, p, false))
1057 res = MF_FAILED;
1058
1059 return res;
1060}
1061
1062/*
1063 * Various page states we can handle.
1064 *
1065 * A page state is defined by its current page->flags bits.
1066 * The table matches them in order and calls the right handler.
1067 *
1068 * This is quite tricky because we can access page at any time
1069 * in its live cycle, so all accesses have to be extremely careful.
1070 *
1071 * This is not complete. More states could be added.
1072 * For any missing state don't attempt recovery.
1073 */
1074
1075#define dirty (1UL << PG_dirty)
1076#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1077#define unevict (1UL << PG_unevictable)
1078#define mlock (1UL << PG_mlocked)
1079#define lru (1UL << PG_lru)
1080#define head (1UL << PG_head)
1081#define slab (1UL << PG_slab)
1082#define reserved (1UL << PG_reserved)
1083
1084static struct page_state error_states[] = {
1085 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1086 /*
1087 * free pages are specially detected outside this table:
1088 * PG_buddy pages only make a small fraction of all free pages.
1089 */
1090
1091 /*
1092 * Could in theory check if slab page is free or if we can drop
1093 * currently unused objects without touching them. But just
1094 * treat it as standard kernel for now.
1095 */
1096 { slab, slab, MF_MSG_SLAB, me_kernel },
1097
1098 { head, head, MF_MSG_HUGE, me_huge_page },
1099
1100 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1101 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1102
1103 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1104 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1105
1106 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1107 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1108
1109 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1110 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1111
1112 /*
1113 * Catchall entry: must be at end.
1114 */
1115 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1116};
1117
1118#undef dirty
1119#undef sc
1120#undef unevict
1121#undef mlock
1122#undef lru
1123#undef head
1124#undef slab
1125#undef reserved
1126
1127/*
1128 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1129 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1130 */
1131static void action_result(unsigned long pfn, enum mf_action_page_type type,
1132 enum mf_result result)
1133{
1134 trace_memory_failure_event(pfn, type, result);
1135
1136 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1137 pfn, action_page_types[type], action_name[result]);
1138}
1139
1140static int page_action(struct page_state *ps, struct page *p,
1141 unsigned long pfn)
1142{
1143 int result;
1144
1145 /* page p should be unlocked after returning from ps->action(). */
1146 result = ps->action(ps, p);
1147
1148 action_result(pfn, ps->type, result);
1149
1150 /* Could do more checks here if page looks ok */
1151 /*
1152 * Could adjust zone counters here to correct for the missing page.
1153 */
1154
1155 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1156}
1157
1158static inline bool PageHWPoisonTakenOff(struct page *page)
1159{
1160 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1161}
1162
1163void SetPageHWPoisonTakenOff(struct page *page)
1164{
1165 set_page_private(page, MAGIC_HWPOISON);
1166}
1167
1168void ClearPageHWPoisonTakenOff(struct page *page)
1169{
1170 if (PageHWPoison(page))
1171 set_page_private(page, 0);
1172}
1173
1174/*
1175 * Return true if a page type of a given page is supported by hwpoison
1176 * mechanism (while handling could fail), otherwise false. This function
1177 * does not return true for hugetlb or device memory pages, so it's assumed
1178 * to be called only in the context where we never have such pages.
1179 */
1180static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1181{
1182 bool movable = false;
1183
1184 /* Soft offline could mirgate non-LRU movable pages */
1185 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1186 movable = true;
1187
1188 return movable || PageLRU(page) || is_free_buddy_page(page);
1189}
1190
1191static int __get_hwpoison_page(struct page *page, unsigned long flags)
1192{
1193 struct page *head = compound_head(page);
1194 int ret = 0;
1195 bool hugetlb = false;
1196
1197 ret = get_hwpoison_huge_page(head, &hugetlb);
1198 if (hugetlb)
1199 return ret;
1200
1201 /*
1202 * This check prevents from calling get_hwpoison_unless_zero()
1203 * for any unsupported type of page in order to reduce the risk of
1204 * unexpected races caused by taking a page refcount.
1205 */
1206 if (!HWPoisonHandlable(head, flags))
1207 return -EBUSY;
1208
1209 if (get_page_unless_zero(head)) {
1210 if (head == compound_head(page))
1211 return 1;
1212
1213 pr_info("Memory failure: %#lx cannot catch tail\n",
1214 page_to_pfn(page));
1215 put_page(head);
1216 }
1217
1218 return 0;
1219}
1220
1221static int get_any_page(struct page *p, unsigned long flags)
1222{
1223 int ret = 0, pass = 0;
1224 bool count_increased = false;
1225
1226 if (flags & MF_COUNT_INCREASED)
1227 count_increased = true;
1228
1229try_again:
1230 if (!count_increased) {
1231 ret = __get_hwpoison_page(p, flags);
1232 if (!ret) {
1233 if (page_count(p)) {
1234 /* We raced with an allocation, retry. */
1235 if (pass++ < 3)
1236 goto try_again;
1237 ret = -EBUSY;
1238 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1239 /* We raced with put_page, retry. */
1240 if (pass++ < 3)
1241 goto try_again;
1242 ret = -EIO;
1243 }
1244 goto out;
1245 } else if (ret == -EBUSY) {
1246 /*
1247 * We raced with (possibly temporary) unhandlable
1248 * page, retry.
1249 */
1250 if (pass++ < 3) {
1251 shake_page(p);
1252 goto try_again;
1253 }
1254 ret = -EIO;
1255 goto out;
1256 }
1257 }
1258
1259 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1260 ret = 1;
1261 } else {
1262 /*
1263 * A page we cannot handle. Check whether we can turn
1264 * it into something we can handle.
1265 */
1266 if (pass++ < 3) {
1267 put_page(p);
1268 shake_page(p);
1269 count_increased = false;
1270 goto try_again;
1271 }
1272 put_page(p);
1273 ret = -EIO;
1274 }
1275out:
1276 if (ret == -EIO)
1277 pr_err("Memory failure: %#lx: unhandlable page.\n", page_to_pfn(p));
1278
1279 return ret;
1280}
1281
1282static int __get_unpoison_page(struct page *page)
1283{
1284 struct page *head = compound_head(page);
1285 int ret = 0;
1286 bool hugetlb = false;
1287
1288 ret = get_hwpoison_huge_page(head, &hugetlb);
1289 if (hugetlb)
1290 return ret;
1291
1292 /*
1293 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1294 * but also isolated from buddy freelist, so need to identify the
1295 * state and have to cancel both operations to unpoison.
1296 */
1297 if (PageHWPoisonTakenOff(page))
1298 return -EHWPOISON;
1299
1300 return get_page_unless_zero(page) ? 1 : 0;
1301}
1302
1303/**
1304 * get_hwpoison_page() - Get refcount for memory error handling
1305 * @p: Raw error page (hit by memory error)
1306 * @flags: Flags controlling behavior of error handling
1307 *
1308 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1309 * error on it, after checking that the error page is in a well-defined state
1310 * (defined as a page-type we can successfully handle the memory error on it,
1311 * such as LRU page and hugetlb page).
1312 *
1313 * Memory error handling could be triggered at any time on any type of page,
1314 * so it's prone to race with typical memory management lifecycle (like
1315 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1316 * extra care for the error page's state (as done in __get_hwpoison_page()),
1317 * and has some retry logic in get_any_page().
1318 *
1319 * When called from unpoison_memory(), the caller should already ensure that
1320 * the given page has PG_hwpoison. So it's never reused for other page
1321 * allocations, and __get_unpoison_page() never races with them.
1322 *
1323 * Return: 0 on failure,
1324 * 1 on success for in-use pages in a well-defined state,
1325 * -EIO for pages on which we can not handle memory errors,
1326 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1327 * operations like allocation and free,
1328 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1329 */
1330static int get_hwpoison_page(struct page *p, unsigned long flags)
1331{
1332 int ret;
1333
1334 zone_pcp_disable(page_zone(p));
1335 if (flags & MF_UNPOISON)
1336 ret = __get_unpoison_page(p);
1337 else
1338 ret = get_any_page(p, flags);
1339 zone_pcp_enable(page_zone(p));
1340
1341 return ret;
1342}
1343
1344/*
1345 * Do all that is necessary to remove user space mappings. Unmap
1346 * the pages and send SIGBUS to the processes if the data was dirty.
1347 */
1348static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1349 int flags, struct page *hpage)
1350{
1351 struct folio *folio = page_folio(hpage);
1352 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1353 struct address_space *mapping;
1354 LIST_HEAD(tokill);
1355 bool unmap_success;
1356 int kill = 1, forcekill;
1357 bool mlocked = PageMlocked(hpage);
1358
1359 /*
1360 * Here we are interested only in user-mapped pages, so skip any
1361 * other types of pages.
1362 */
1363 if (PageReserved(p) || PageSlab(p))
1364 return true;
1365 if (!(PageLRU(hpage) || PageHuge(p)))
1366 return true;
1367
1368 /*
1369 * This check implies we don't kill processes if their pages
1370 * are in the swap cache early. Those are always late kills.
1371 */
1372 if (!page_mapped(hpage))
1373 return true;
1374
1375 if (PageKsm(p)) {
1376 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1377 return false;
1378 }
1379
1380 if (PageSwapCache(p)) {
1381 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1382 pfn);
1383 ttu |= TTU_IGNORE_HWPOISON;
1384 }
1385
1386 /*
1387 * Propagate the dirty bit from PTEs to struct page first, because we
1388 * need this to decide if we should kill or just drop the page.
1389 * XXX: the dirty test could be racy: set_page_dirty() may not always
1390 * be called inside page lock (it's recommended but not enforced).
1391 */
1392 mapping = page_mapping(hpage);
1393 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1394 mapping_can_writeback(mapping)) {
1395 if (page_mkclean(hpage)) {
1396 SetPageDirty(hpage);
1397 } else {
1398 kill = 0;
1399 ttu |= TTU_IGNORE_HWPOISON;
1400 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1401 pfn);
1402 }
1403 }
1404
1405 /*
1406 * First collect all the processes that have the page
1407 * mapped in dirty form. This has to be done before try_to_unmap,
1408 * because ttu takes the rmap data structures down.
1409 *
1410 * Error handling: We ignore errors here because
1411 * there's nothing that can be done.
1412 */
1413 if (kill)
1414 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1415
1416 if (PageHuge(hpage) && !PageAnon(hpage)) {
1417 /*
1418 * For hugetlb pages in shared mappings, try_to_unmap
1419 * could potentially call huge_pmd_unshare. Because of
1420 * this, take semaphore in write mode here and set
1421 * TTU_RMAP_LOCKED to indicate we have taken the lock
1422 * at this higher level.
1423 */
1424 mapping = hugetlb_page_mapping_lock_write(hpage);
1425 if (mapping) {
1426 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1427 i_mmap_unlock_write(mapping);
1428 } else
1429 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1430 } else {
1431 try_to_unmap(folio, ttu);
1432 }
1433
1434 unmap_success = !page_mapped(hpage);
1435 if (!unmap_success)
1436 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1437 pfn, page_mapcount(hpage));
1438
1439 /*
1440 * try_to_unmap() might put mlocked page in lru cache, so call
1441 * shake_page() again to ensure that it's flushed.
1442 */
1443 if (mlocked)
1444 shake_page(hpage);
1445
1446 /*
1447 * Now that the dirty bit has been propagated to the
1448 * struct page and all unmaps done we can decide if
1449 * killing is needed or not. Only kill when the page
1450 * was dirty or the process is not restartable,
1451 * otherwise the tokill list is merely
1452 * freed. When there was a problem unmapping earlier
1453 * use a more force-full uncatchable kill to prevent
1454 * any accesses to the poisoned memory.
1455 */
1456 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1457 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1458
1459 return unmap_success;
1460}
1461
1462static int identify_page_state(unsigned long pfn, struct page *p,
1463 unsigned long page_flags)
1464{
1465 struct page_state *ps;
1466
1467 /*
1468 * The first check uses the current page flags which may not have any
1469 * relevant information. The second check with the saved page flags is
1470 * carried out only if the first check can't determine the page status.
1471 */
1472 for (ps = error_states;; ps++)
1473 if ((p->flags & ps->mask) == ps->res)
1474 break;
1475
1476 page_flags |= (p->flags & (1UL << PG_dirty));
1477
1478 if (!ps->mask)
1479 for (ps = error_states;; ps++)
1480 if ((page_flags & ps->mask) == ps->res)
1481 break;
1482 return page_action(ps, p, pfn);
1483}
1484
1485static int try_to_split_thp_page(struct page *page, const char *msg)
1486{
1487 lock_page(page);
1488 if (unlikely(split_huge_page(page))) {
1489 unsigned long pfn = page_to_pfn(page);
1490
1491 unlock_page(page);
1492 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1493 put_page(page);
1494 return -EBUSY;
1495 }
1496 unlock_page(page);
1497
1498 return 0;
1499}
1500
1501/*
1502 * Called from hugetlb code with hugetlb_lock held.
1503 *
1504 * Return values:
1505 * 0 - free hugepage
1506 * 1 - in-use hugepage
1507 * 2 - not a hugepage
1508 * -EBUSY - the hugepage is busy (try to retry)
1509 * -EHWPOISON - the hugepage is already hwpoisoned
1510 */
1511int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
1512{
1513 struct page *page = pfn_to_page(pfn);
1514 struct page *head = compound_head(page);
1515 int ret = 2; /* fallback to normal page handling */
1516 bool count_increased = false;
1517
1518 if (!PageHeadHuge(head))
1519 goto out;
1520
1521 if (flags & MF_COUNT_INCREASED) {
1522 ret = 1;
1523 count_increased = true;
1524 } else if (HPageFreed(head) || HPageMigratable(head)) {
1525 ret = get_page_unless_zero(head);
1526 if (ret)
1527 count_increased = true;
1528 } else {
1529 ret = -EBUSY;
1530 goto out;
1531 }
1532
1533 if (TestSetPageHWPoison(head)) {
1534 ret = -EHWPOISON;
1535 goto out;
1536 }
1537
1538 return ret;
1539out:
1540 if (count_increased)
1541 put_page(head);
1542 return ret;
1543}
1544
1545#ifdef CONFIG_HUGETLB_PAGE
1546/*
1547 * Taking refcount of hugetlb pages needs extra care about race conditions
1548 * with basic operations like hugepage allocation/free/demotion.
1549 * So some of prechecks for hwpoison (pinning, and testing/setting
1550 * PageHWPoison) should be done in single hugetlb_lock range.
1551 */
1552static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1553{
1554 int res;
1555 struct page *p = pfn_to_page(pfn);
1556 struct page *head;
1557 unsigned long page_flags;
1558 bool retry = true;
1559
1560 *hugetlb = 1;
1561retry:
1562 res = get_huge_page_for_hwpoison(pfn, flags);
1563 if (res == 2) { /* fallback to normal page handling */
1564 *hugetlb = 0;
1565 return 0;
1566 } else if (res == -EHWPOISON) {
1567 pr_err("Memory failure: %#lx: already hardware poisoned\n", pfn);
1568 if (flags & MF_ACTION_REQUIRED) {
1569 head = compound_head(p);
1570 res = kill_accessing_process(current, page_to_pfn(head), flags);
1571 }
1572 return res;
1573 } else if (res == -EBUSY) {
1574 if (retry) {
1575 retry = false;
1576 goto retry;
1577 }
1578 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1579 return res;
1580 }
1581
1582 head = compound_head(p);
1583 lock_page(head);
1584
1585 if (hwpoison_filter(p)) {
1586 ClearPageHWPoison(head);
1587 res = -EOPNOTSUPP;
1588 goto out;
1589 }
1590
1591 num_poisoned_pages_inc();
1592
1593 /*
1594 * Handling free hugepage. The possible race with hugepage allocation
1595 * or demotion can be prevented by PageHWPoison flag.
1596 */
1597 if (res == 0) {
1598 unlock_page(head);
1599 res = MF_FAILED;
1600 if (__page_handle_poison(p)) {
1601 page_ref_inc(p);
1602 res = MF_RECOVERED;
1603 }
1604 action_result(pfn, MF_MSG_FREE_HUGE, res);
1605 return res == MF_RECOVERED ? 0 : -EBUSY;
1606 }
1607
1608 /*
1609 * The page could have changed compound pages due to race window.
1610 * If this happens just bail out.
1611 */
1612 if (!PageHuge(p) || compound_head(p) != head) {
1613 action_result(pfn, MF_MSG_DIFFERENT_PAGE_SIZE, MF_IGNORED);
1614 res = -EBUSY;
1615 goto out;
1616 }
1617
1618 page_flags = head->flags;
1619
1620 /*
1621 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1622 * simply disable it. In order to make it work properly, we need
1623 * make sure that:
1624 * - conversion of a pud that maps an error hugetlb into hwpoison
1625 * entry properly works, and
1626 * - other mm code walking over page table is aware of pud-aligned
1627 * hwpoison entries.
1628 */
1629 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1630 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1631 res = -EBUSY;
1632 goto out;
1633 }
1634
1635 if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1636 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1637 res = -EBUSY;
1638 goto out;
1639 }
1640
1641 return identify_page_state(pfn, p, page_flags);
1642out:
1643 unlock_page(head);
1644 return res;
1645}
1646#else
1647static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1648{
1649 return 0;
1650}
1651#endif
1652
1653static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1654 struct dev_pagemap *pgmap)
1655{
1656 struct page *page = pfn_to_page(pfn);
1657 unsigned long size = 0;
1658 struct to_kill *tk;
1659 LIST_HEAD(tokill);
1660 int rc = -EBUSY;
1661 loff_t start;
1662 dax_entry_t cookie;
1663
1664 if (flags & MF_COUNT_INCREASED)
1665 /*
1666 * Drop the extra refcount in case we come from madvise().
1667 */
1668 put_page(page);
1669
1670 /* device metadata space is not recoverable */
1671 if (!pgmap_pfn_valid(pgmap, pfn)) {
1672 rc = -ENXIO;
1673 goto out;
1674 }
1675
1676 /*
1677 * Pages instantiated by device-dax (not filesystem-dax)
1678 * may be compound pages.
1679 */
1680 page = compound_head(page);
1681
1682 /*
1683 * Prevent the inode from being freed while we are interrogating
1684 * the address_space, typically this would be handled by
1685 * lock_page(), but dax pages do not use the page lock. This
1686 * also prevents changes to the mapping of this pfn until
1687 * poison signaling is complete.
1688 */
1689 cookie = dax_lock_page(page);
1690 if (!cookie)
1691 goto out;
1692
1693 if (hwpoison_filter(page)) {
1694 rc = -EOPNOTSUPP;
1695 goto unlock;
1696 }
1697
1698 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1699 /*
1700 * TODO: Handle HMM pages which may need coordination
1701 * with device-side memory.
1702 */
1703 goto unlock;
1704 }
1705
1706 /*
1707 * Use this flag as an indication that the dax page has been
1708 * remapped UC to prevent speculative consumption of poison.
1709 */
1710 SetPageHWPoison(page);
1711
1712 /*
1713 * Unlike System-RAM there is no possibility to swap in a
1714 * different physical page at a given virtual address, so all
1715 * userspace consumption of ZONE_DEVICE memory necessitates
1716 * SIGBUS (i.e. MF_MUST_KILL)
1717 */
1718 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1719 collect_procs(page, &tokill, true);
1720
1721 list_for_each_entry(tk, &tokill, nd)
1722 if (tk->size_shift)
1723 size = max(size, 1UL << tk->size_shift);
1724 if (size) {
1725 /*
1726 * Unmap the largest mapping to avoid breaking up
1727 * device-dax mappings which are constant size. The
1728 * actual size of the mapping being torn down is
1729 * communicated in siginfo, see kill_proc()
1730 */
1731 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1732 unmap_mapping_range(page->mapping, start, size, 0);
1733 }
1734 kill_procs(&tokill, true, false, pfn, flags);
1735 rc = 0;
1736unlock:
1737 dax_unlock_page(page, cookie);
1738out:
1739 /* drop pgmap ref acquired in caller */
1740 put_dev_pagemap(pgmap);
1741 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1742 return rc;
1743}
1744
1745static DEFINE_MUTEX(mf_mutex);
1746
1747/**
1748 * memory_failure - Handle memory failure of a page.
1749 * @pfn: Page Number of the corrupted page
1750 * @flags: fine tune action taken
1751 *
1752 * This function is called by the low level machine check code
1753 * of an architecture when it detects hardware memory corruption
1754 * of a page. It tries its best to recover, which includes
1755 * dropping pages, killing processes etc.
1756 *
1757 * The function is primarily of use for corruptions that
1758 * happen outside the current execution context (e.g. when
1759 * detected by a background scrubber)
1760 *
1761 * Must run in process context (e.g. a work queue) with interrupts
1762 * enabled and no spinlocks hold.
1763 *
1764 * Return: 0 for successfully handled the memory error,
1765 * -EOPNOTSUPP for memory_filter() filtered the error event,
1766 * < 0(except -EOPNOTSUPP) on failure.
1767 */
1768int memory_failure(unsigned long pfn, int flags)
1769{
1770 struct page *p;
1771 struct page *hpage;
1772 struct dev_pagemap *pgmap;
1773 int res = 0;
1774 unsigned long page_flags;
1775 bool retry = true;
1776 int hugetlb = 0;
1777
1778 if (!sysctl_memory_failure_recovery)
1779 panic("Memory failure on page %lx", pfn);
1780
1781 mutex_lock(&mf_mutex);
1782
1783 p = pfn_to_online_page(pfn);
1784 if (!p) {
1785 res = arch_memory_failure(pfn, flags);
1786 if (res == 0)
1787 goto unlock_mutex;
1788
1789 if (pfn_valid(pfn)) {
1790 pgmap = get_dev_pagemap(pfn, NULL);
1791 if (pgmap) {
1792 res = memory_failure_dev_pagemap(pfn, flags,
1793 pgmap);
1794 goto unlock_mutex;
1795 }
1796 }
1797 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1798 pfn);
1799 res = -ENXIO;
1800 goto unlock_mutex;
1801 }
1802
1803try_again:
1804 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
1805 if (hugetlb)
1806 goto unlock_mutex;
1807
1808 if (TestSetPageHWPoison(p)) {
1809 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1810 pfn);
1811 res = -EHWPOISON;
1812 if (flags & MF_ACTION_REQUIRED)
1813 res = kill_accessing_process(current, pfn, flags);
1814 goto unlock_mutex;
1815 }
1816
1817 hpage = compound_head(p);
1818 num_poisoned_pages_inc();
1819
1820 /*
1821 * We need/can do nothing about count=0 pages.
1822 * 1) it's a free page, and therefore in safe hand:
1823 * prep_new_page() will be the gate keeper.
1824 * 2) it's part of a non-compound high order page.
1825 * Implies some kernel user: cannot stop them from
1826 * R/W the page; let's pray that the page has been
1827 * used and will be freed some time later.
1828 * In fact it's dangerous to directly bump up page count from 0,
1829 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1830 */
1831 if (!(flags & MF_COUNT_INCREASED)) {
1832 res = get_hwpoison_page(p, flags);
1833 if (!res) {
1834 if (is_free_buddy_page(p)) {
1835 if (take_page_off_buddy(p)) {
1836 page_ref_inc(p);
1837 res = MF_RECOVERED;
1838 } else {
1839 /* We lost the race, try again */
1840 if (retry) {
1841 ClearPageHWPoison(p);
1842 num_poisoned_pages_dec();
1843 retry = false;
1844 goto try_again;
1845 }
1846 res = MF_FAILED;
1847 }
1848 action_result(pfn, MF_MSG_BUDDY, res);
1849 res = res == MF_RECOVERED ? 0 : -EBUSY;
1850 } else {
1851 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1852 res = -EBUSY;
1853 }
1854 goto unlock_mutex;
1855 } else if (res < 0) {
1856 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1857 res = -EBUSY;
1858 goto unlock_mutex;
1859 }
1860 }
1861
1862 if (PageTransHuge(hpage)) {
1863 /*
1864 * The flag must be set after the refcount is bumped
1865 * otherwise it may race with THP split.
1866 * And the flag can't be set in get_hwpoison_page() since
1867 * it is called by soft offline too and it is just called
1868 * for !MF_COUNT_INCREASE. So here seems to be the best
1869 * place.
1870 *
1871 * Don't need care about the above error handling paths for
1872 * get_hwpoison_page() since they handle either free page
1873 * or unhandlable page. The refcount is bumped iff the
1874 * page is a valid handlable page.
1875 */
1876 SetPageHasHWPoisoned(hpage);
1877 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1878 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1879 res = -EBUSY;
1880 goto unlock_mutex;
1881 }
1882 VM_BUG_ON_PAGE(!page_count(p), p);
1883 }
1884
1885 /*
1886 * We ignore non-LRU pages for good reasons.
1887 * - PG_locked is only well defined for LRU pages and a few others
1888 * - to avoid races with __SetPageLocked()
1889 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1890 * The check (unnecessarily) ignores LRU pages being isolated and
1891 * walked by the page reclaim code, however that's not a big loss.
1892 */
1893 shake_page(p);
1894
1895 lock_page(p);
1896
1897 /*
1898 * We're only intended to deal with the non-Compound page here.
1899 * However, the page could have changed compound pages due to
1900 * race window. If this happens, we could try again to hopefully
1901 * handle the page next round.
1902 */
1903 if (PageCompound(p)) {
1904 if (retry) {
1905 if (TestClearPageHWPoison(p))
1906 num_poisoned_pages_dec();
1907 unlock_page(p);
1908 put_page(p);
1909 flags &= ~MF_COUNT_INCREASED;
1910 retry = false;
1911 goto try_again;
1912 }
1913 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1914 res = -EBUSY;
1915 goto unlock_page;
1916 }
1917
1918 /*
1919 * We use page flags to determine what action should be taken, but
1920 * the flags can be modified by the error containment action. One
1921 * example is an mlocked page, where PG_mlocked is cleared by
1922 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1923 * correctly, we save a copy of the page flags at this time.
1924 */
1925 page_flags = p->flags;
1926
1927 if (hwpoison_filter(p)) {
1928 if (TestClearPageHWPoison(p))
1929 num_poisoned_pages_dec();
1930 unlock_page(p);
1931 put_page(p);
1932 res = -EOPNOTSUPP;
1933 goto unlock_mutex;
1934 }
1935
1936 /*
1937 * __munlock_pagevec may clear a writeback page's LRU flag without
1938 * page_lock. We need wait writeback completion for this page or it
1939 * may trigger vfs BUG while evict inode.
1940 */
1941 if (!PageLRU(p) && !PageWriteback(p))
1942 goto identify_page_state;
1943
1944 /*
1945 * It's very difficult to mess with pages currently under IO
1946 * and in many cases impossible, so we just avoid it here.
1947 */
1948 wait_on_page_writeback(p);
1949
1950 /*
1951 * Now take care of user space mappings.
1952 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1953 */
1954 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
1955 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1956 res = -EBUSY;
1957 goto unlock_page;
1958 }
1959
1960 /*
1961 * Torn down by someone else?
1962 */
1963 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1964 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1965 res = -EBUSY;
1966 goto unlock_page;
1967 }
1968
1969identify_page_state:
1970 res = identify_page_state(pfn, p, page_flags);
1971 mutex_unlock(&mf_mutex);
1972 return res;
1973unlock_page:
1974 unlock_page(p);
1975unlock_mutex:
1976 mutex_unlock(&mf_mutex);
1977 return res;
1978}
1979EXPORT_SYMBOL_GPL(memory_failure);
1980
1981#define MEMORY_FAILURE_FIFO_ORDER 4
1982#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1983
1984struct memory_failure_entry {
1985 unsigned long pfn;
1986 int flags;
1987};
1988
1989struct memory_failure_cpu {
1990 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1991 MEMORY_FAILURE_FIFO_SIZE);
1992 spinlock_t lock;
1993 struct work_struct work;
1994};
1995
1996static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1997
1998/**
1999 * memory_failure_queue - Schedule handling memory failure of a page.
2000 * @pfn: Page Number of the corrupted page
2001 * @flags: Flags for memory failure handling
2002 *
2003 * This function is called by the low level hardware error handler
2004 * when it detects hardware memory corruption of a page. It schedules
2005 * the recovering of error page, including dropping pages, killing
2006 * processes etc.
2007 *
2008 * The function is primarily of use for corruptions that
2009 * happen outside the current execution context (e.g. when
2010 * detected by a background scrubber)
2011 *
2012 * Can run in IRQ context.
2013 */
2014void memory_failure_queue(unsigned long pfn, int flags)
2015{
2016 struct memory_failure_cpu *mf_cpu;
2017 unsigned long proc_flags;
2018 struct memory_failure_entry entry = {
2019 .pfn = pfn,
2020 .flags = flags,
2021 };
2022
2023 mf_cpu = &get_cpu_var(memory_failure_cpu);
2024 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2025 if (kfifo_put(&mf_cpu->fifo, entry))
2026 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2027 else
2028 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
2029 pfn);
2030 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2031 put_cpu_var(memory_failure_cpu);
2032}
2033EXPORT_SYMBOL_GPL(memory_failure_queue);
2034
2035static void memory_failure_work_func(struct work_struct *work)
2036{
2037 struct memory_failure_cpu *mf_cpu;
2038 struct memory_failure_entry entry = { 0, };
2039 unsigned long proc_flags;
2040 int gotten;
2041
2042 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2043 for (;;) {
2044 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2045 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2046 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2047 if (!gotten)
2048 break;
2049 if (entry.flags & MF_SOFT_OFFLINE)
2050 soft_offline_page(entry.pfn, entry.flags);
2051 else
2052 memory_failure(entry.pfn, entry.flags);
2053 }
2054}
2055
2056/*
2057 * Process memory_failure work queued on the specified CPU.
2058 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2059 */
2060void memory_failure_queue_kick(int cpu)
2061{
2062 struct memory_failure_cpu *mf_cpu;
2063
2064 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2065 cancel_work_sync(&mf_cpu->work);
2066 memory_failure_work_func(&mf_cpu->work);
2067}
2068
2069static int __init memory_failure_init(void)
2070{
2071 struct memory_failure_cpu *mf_cpu;
2072 int cpu;
2073
2074 for_each_possible_cpu(cpu) {
2075 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2076 spin_lock_init(&mf_cpu->lock);
2077 INIT_KFIFO(mf_cpu->fifo);
2078 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2079 }
2080
2081 return 0;
2082}
2083core_initcall(memory_failure_init);
2084
2085#define unpoison_pr_info(fmt, pfn, rs) \
2086({ \
2087 if (__ratelimit(rs)) \
2088 pr_info(fmt, pfn); \
2089})
2090
2091static inline int clear_page_hwpoison(struct ratelimit_state *rs, struct page *p)
2092{
2093 if (TestClearPageHWPoison(p)) {
2094 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2095 page_to_pfn(p), rs);
2096 num_poisoned_pages_dec();
2097 return 1;
2098 }
2099 return 0;
2100}
2101
2102static inline int unpoison_taken_off_page(struct ratelimit_state *rs,
2103 struct page *p)
2104{
2105 if (put_page_back_buddy(p)) {
2106 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2107 page_to_pfn(p), rs);
2108 return 0;
2109 }
2110 return -EBUSY;
2111}
2112
2113/**
2114 * unpoison_memory - Unpoison a previously poisoned page
2115 * @pfn: Page number of the to be unpoisoned page
2116 *
2117 * Software-unpoison a page that has been poisoned by
2118 * memory_failure() earlier.
2119 *
2120 * This is only done on the software-level, so it only works
2121 * for linux injected failures, not real hardware failures
2122 *
2123 * Returns 0 for success, otherwise -errno.
2124 */
2125int unpoison_memory(unsigned long pfn)
2126{
2127 struct page *page;
2128 struct page *p;
2129 int ret = -EBUSY;
2130 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2131 DEFAULT_RATELIMIT_BURST);
2132
2133 if (!pfn_valid(pfn))
2134 return -ENXIO;
2135
2136 p = pfn_to_page(pfn);
2137 page = compound_head(p);
2138
2139 mutex_lock(&mf_mutex);
2140
2141 if (!PageHWPoison(p)) {
2142 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2143 pfn, &unpoison_rs);
2144 goto unlock_mutex;
2145 }
2146
2147 if (page_count(page) > 1) {
2148 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2149 pfn, &unpoison_rs);
2150 goto unlock_mutex;
2151 }
2152
2153 if (page_mapped(page)) {
2154 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2155 pfn, &unpoison_rs);
2156 goto unlock_mutex;
2157 }
2158
2159 if (page_mapping(page)) {
2160 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2161 pfn, &unpoison_rs);
2162 goto unlock_mutex;
2163 }
2164
2165 if (PageSlab(page) || PageTable(page))
2166 goto unlock_mutex;
2167
2168 ret = get_hwpoison_page(p, MF_UNPOISON);
2169 if (!ret) {
2170 if (clear_page_hwpoison(&unpoison_rs, page))
2171 ret = 0;
2172 else
2173 ret = -EBUSY;
2174 } else if (ret < 0) {
2175 if (ret == -EHWPOISON) {
2176 ret = unpoison_taken_off_page(&unpoison_rs, p);
2177 } else
2178 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2179 pfn, &unpoison_rs);
2180 } else {
2181 int freeit = clear_page_hwpoison(&unpoison_rs, p);
2182
2183 put_page(page);
2184 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) {
2185 put_page(page);
2186 ret = 0;
2187 }
2188 }
2189
2190unlock_mutex:
2191 mutex_unlock(&mf_mutex);
2192 return ret;
2193}
2194EXPORT_SYMBOL(unpoison_memory);
2195
2196static bool isolate_page(struct page *page, struct list_head *pagelist)
2197{
2198 bool isolated = false;
2199 bool lru = PageLRU(page);
2200
2201 if (PageHuge(page)) {
2202 isolated = isolate_huge_page(page, pagelist);
2203 } else {
2204 if (lru)
2205 isolated = !isolate_lru_page(page);
2206 else
2207 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2208
2209 if (isolated)
2210 list_add(&page->lru, pagelist);
2211 }
2212
2213 if (isolated && lru)
2214 inc_node_page_state(page, NR_ISOLATED_ANON +
2215 page_is_file_lru(page));
2216
2217 /*
2218 * If we succeed to isolate the page, we grabbed another refcount on
2219 * the page, so we can safely drop the one we got from get_any_pages().
2220 * If we failed to isolate the page, it means that we cannot go further
2221 * and we will return an error, so drop the reference we got from
2222 * get_any_pages() as well.
2223 */
2224 put_page(page);
2225 return isolated;
2226}
2227
2228/*
2229 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2230 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2231 * If the page is mapped, it migrates the contents over.
2232 */
2233static int __soft_offline_page(struct page *page)
2234{
2235 long ret = 0;
2236 unsigned long pfn = page_to_pfn(page);
2237 struct page *hpage = compound_head(page);
2238 char const *msg_page[] = {"page", "hugepage"};
2239 bool huge = PageHuge(page);
2240 LIST_HEAD(pagelist);
2241 struct migration_target_control mtc = {
2242 .nid = NUMA_NO_NODE,
2243 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2244 };
2245
2246 lock_page(page);
2247 if (!PageHuge(page))
2248 wait_on_page_writeback(page);
2249 if (PageHWPoison(page)) {
2250 unlock_page(page);
2251 put_page(page);
2252 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2253 return 0;
2254 }
2255
2256 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2257 /*
2258 * Try to invalidate first. This should work for
2259 * non dirty unmapped page cache pages.
2260 */
2261 ret = invalidate_inode_page(page);
2262 unlock_page(page);
2263
2264 if (ret) {
2265 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2266 page_handle_poison(page, false, true);
2267 return 0;
2268 }
2269
2270 if (isolate_page(hpage, &pagelist)) {
2271 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2272 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2273 if (!ret) {
2274 bool release = !huge;
2275
2276 if (!page_handle_poison(page, huge, release))
2277 ret = -EBUSY;
2278 } else {
2279 if (!list_empty(&pagelist))
2280 putback_movable_pages(&pagelist);
2281
2282 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2283 pfn, msg_page[huge], ret, &page->flags);
2284 if (ret > 0)
2285 ret = -EBUSY;
2286 }
2287 } else {
2288 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2289 pfn, msg_page[huge], page_count(page), &page->flags);
2290 ret = -EBUSY;
2291 }
2292 return ret;
2293}
2294
2295static int soft_offline_in_use_page(struct page *page)
2296{
2297 struct page *hpage = compound_head(page);
2298
2299 if (!PageHuge(page) && PageTransHuge(hpage))
2300 if (try_to_split_thp_page(page, "soft offline") < 0)
2301 return -EBUSY;
2302 return __soft_offline_page(page);
2303}
2304
2305static int soft_offline_free_page(struct page *page)
2306{
2307 int rc = 0;
2308
2309 if (!page_handle_poison(page, true, false))
2310 rc = -EBUSY;
2311
2312 return rc;
2313}
2314
2315static void put_ref_page(struct page *page)
2316{
2317 if (page)
2318 put_page(page);
2319}
2320
2321/**
2322 * soft_offline_page - Soft offline a page.
2323 * @pfn: pfn to soft-offline
2324 * @flags: flags. Same as memory_failure().
2325 *
2326 * Returns 0 on success, otherwise negated errno.
2327 *
2328 * Soft offline a page, by migration or invalidation,
2329 * without killing anything. This is for the case when
2330 * a page is not corrupted yet (so it's still valid to access),
2331 * but has had a number of corrected errors and is better taken
2332 * out.
2333 *
2334 * The actual policy on when to do that is maintained by
2335 * user space.
2336 *
2337 * This should never impact any application or cause data loss,
2338 * however it might take some time.
2339 *
2340 * This is not a 100% solution for all memory, but tries to be
2341 * ``good enough'' for the majority of memory.
2342 */
2343int soft_offline_page(unsigned long pfn, int flags)
2344{
2345 int ret;
2346 bool try_again = true;
2347 struct page *page, *ref_page = NULL;
2348
2349 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2350
2351 if (!pfn_valid(pfn))
2352 return -ENXIO;
2353 if (flags & MF_COUNT_INCREASED)
2354 ref_page = pfn_to_page(pfn);
2355
2356 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2357 page = pfn_to_online_page(pfn);
2358 if (!page) {
2359 put_ref_page(ref_page);
2360 return -EIO;
2361 }
2362
2363 mutex_lock(&mf_mutex);
2364
2365 if (PageHWPoison(page)) {
2366 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2367 put_ref_page(ref_page);
2368 mutex_unlock(&mf_mutex);
2369 return 0;
2370 }
2371
2372retry:
2373 get_online_mems();
2374 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2375 put_online_mems();
2376
2377 if (ret > 0) {
2378 ret = soft_offline_in_use_page(page);
2379 } else if (ret == 0) {
2380 if (soft_offline_free_page(page) && try_again) {
2381 try_again = false;
2382 flags &= ~MF_COUNT_INCREASED;
2383 goto retry;
2384 }
2385 }
2386
2387 mutex_unlock(&mf_mutex);
2388
2389 return ret;
2390}