Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28#include <linux/page_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/pagewalk.h>
32#include <linux/sched/mm.h>
33#include <linux/shmem_fs.h>
34#include <linux/hugetlb.h>
35#include <linux/pagemap.h>
36#include <linux/vm_event_item.h>
37#include <linux/smp.h>
38#include <linux/page-flags.h>
39#include <linux/backing-dev.h>
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
42#include <linux/limits.h>
43#include <linux/export.h>
44#include <linux/mutex.h>
45#include <linux/rbtree.h>
46#include <linux/slab.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/spinlock.h>
50#include <linux/eventfd.h>
51#include <linux/poll.h>
52#include <linux/sort.h>
53#include <linux/fs.h>
54#include <linux/seq_file.h>
55#include <linux/vmpressure.h>
56#include <linux/memremap.h>
57#include <linux/mm_inline.h>
58#include <linux/swap_cgroup.h>
59#include <linux/cpu.h>
60#include <linux/oom.h>
61#include <linux/lockdep.h>
62#include <linux/file.h>
63#include <linux/resume_user_mode.h>
64#include <linux/psi.h>
65#include <linux/seq_buf.h>
66#include "internal.h"
67#include <net/sock.h>
68#include <net/ip.h>
69#include "slab.h"
70
71#include <linux/uaccess.h>
72
73#include <trace/events/vmscan.h>
74
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
77
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80/* Active memory cgroup to use from an interrupt context */
81DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
82EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
83
84/* Socket memory accounting disabled? */
85static bool cgroup_memory_nosocket __ro_after_init;
86
87/* Kernel memory accounting disabled? */
88static bool cgroup_memory_nokmem __ro_after_init;
89
90/* Whether the swap controller is active */
91#ifdef CONFIG_MEMCG_SWAP
92bool cgroup_memory_noswap __ro_after_init;
93#else
94#define cgroup_memory_noswap 1
95#endif
96
97#ifdef CONFIG_CGROUP_WRITEBACK
98static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
99#endif
100
101/* Whether legacy memory+swap accounting is active */
102static bool do_memsw_account(void)
103{
104 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
105}
106
107#define THRESHOLDS_EVENTS_TARGET 128
108#define SOFTLIMIT_EVENTS_TARGET 1024
109
110/*
111 * Cgroups above their limits are maintained in a RB-Tree, independent of
112 * their hierarchy representation
113 */
114
115struct mem_cgroup_tree_per_node {
116 struct rb_root rb_root;
117 struct rb_node *rb_rightmost;
118 spinlock_t lock;
119};
120
121struct mem_cgroup_tree {
122 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
123};
124
125static struct mem_cgroup_tree soft_limit_tree __read_mostly;
126
127/* for OOM */
128struct mem_cgroup_eventfd_list {
129 struct list_head list;
130 struct eventfd_ctx *eventfd;
131};
132
133/*
134 * cgroup_event represents events which userspace want to receive.
135 */
136struct mem_cgroup_event {
137 /*
138 * memcg which the event belongs to.
139 */
140 struct mem_cgroup *memcg;
141 /*
142 * eventfd to signal userspace about the event.
143 */
144 struct eventfd_ctx *eventfd;
145 /*
146 * Each of these stored in a list by the cgroup.
147 */
148 struct list_head list;
149 /*
150 * register_event() callback will be used to add new userspace
151 * waiter for changes related to this event. Use eventfd_signal()
152 * on eventfd to send notification to userspace.
153 */
154 int (*register_event)(struct mem_cgroup *memcg,
155 struct eventfd_ctx *eventfd, const char *args);
156 /*
157 * unregister_event() callback will be called when userspace closes
158 * the eventfd or on cgroup removing. This callback must be set,
159 * if you want provide notification functionality.
160 */
161 void (*unregister_event)(struct mem_cgroup *memcg,
162 struct eventfd_ctx *eventfd);
163 /*
164 * All fields below needed to unregister event when
165 * userspace closes eventfd.
166 */
167 poll_table pt;
168 wait_queue_head_t *wqh;
169 wait_queue_entry_t wait;
170 struct work_struct remove;
171};
172
173static void mem_cgroup_threshold(struct mem_cgroup *memcg);
174static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
175
176/* Stuffs for move charges at task migration. */
177/*
178 * Types of charges to be moved.
179 */
180#define MOVE_ANON 0x1U
181#define MOVE_FILE 0x2U
182#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
183
184/* "mc" and its members are protected by cgroup_mutex */
185static struct move_charge_struct {
186 spinlock_t lock; /* for from, to */
187 struct mm_struct *mm;
188 struct mem_cgroup *from;
189 struct mem_cgroup *to;
190 unsigned long flags;
191 unsigned long precharge;
192 unsigned long moved_charge;
193 unsigned long moved_swap;
194 struct task_struct *moving_task; /* a task moving charges */
195 wait_queue_head_t waitq; /* a waitq for other context */
196} mc = {
197 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
198 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
199};
200
201/*
202 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
203 * limit reclaim to prevent infinite loops, if they ever occur.
204 */
205#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
206#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
207
208/* for encoding cft->private value on file */
209enum res_type {
210 _MEM,
211 _MEMSWAP,
212 _OOM_TYPE,
213 _KMEM,
214 _TCP,
215};
216
217#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
218#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
219#define MEMFILE_ATTR(val) ((val) & 0xffff)
220/* Used for OOM notifier */
221#define OOM_CONTROL (0)
222
223/*
224 * Iteration constructs for visiting all cgroups (under a tree). If
225 * loops are exited prematurely (break), mem_cgroup_iter_break() must
226 * be used for reference counting.
227 */
228#define for_each_mem_cgroup_tree(iter, root) \
229 for (iter = mem_cgroup_iter(root, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(root, iter, NULL))
232
233#define for_each_mem_cgroup(iter) \
234 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
235 iter != NULL; \
236 iter = mem_cgroup_iter(NULL, iter, NULL))
237
238static inline bool task_is_dying(void)
239{
240 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
241 (current->flags & PF_EXITING);
242}
243
244/* Some nice accessors for the vmpressure. */
245struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
246{
247 if (!memcg)
248 memcg = root_mem_cgroup;
249 return &memcg->vmpressure;
250}
251
252struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
253{
254 return container_of(vmpr, struct mem_cgroup, vmpressure);
255}
256
257#ifdef CONFIG_MEMCG_KMEM
258static DEFINE_SPINLOCK(objcg_lock);
259
260bool mem_cgroup_kmem_disabled(void)
261{
262 return cgroup_memory_nokmem;
263}
264
265static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
266 unsigned int nr_pages);
267
268static void obj_cgroup_release(struct percpu_ref *ref)
269{
270 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
271 unsigned int nr_bytes;
272 unsigned int nr_pages;
273 unsigned long flags;
274
275 /*
276 * At this point all allocated objects are freed, and
277 * objcg->nr_charged_bytes can't have an arbitrary byte value.
278 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
279 *
280 * The following sequence can lead to it:
281 * 1) CPU0: objcg == stock->cached_objcg
282 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
283 * PAGE_SIZE bytes are charged
284 * 3) CPU1: a process from another memcg is allocating something,
285 * the stock if flushed,
286 * objcg->nr_charged_bytes = PAGE_SIZE - 92
287 * 5) CPU0: we do release this object,
288 * 92 bytes are added to stock->nr_bytes
289 * 6) CPU0: stock is flushed,
290 * 92 bytes are added to objcg->nr_charged_bytes
291 *
292 * In the result, nr_charged_bytes == PAGE_SIZE.
293 * This page will be uncharged in obj_cgroup_release().
294 */
295 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
296 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
297 nr_pages = nr_bytes >> PAGE_SHIFT;
298
299 if (nr_pages)
300 obj_cgroup_uncharge_pages(objcg, nr_pages);
301
302 spin_lock_irqsave(&objcg_lock, flags);
303 list_del(&objcg->list);
304 spin_unlock_irqrestore(&objcg_lock, flags);
305
306 percpu_ref_exit(ref);
307 kfree_rcu(objcg, rcu);
308}
309
310static struct obj_cgroup *obj_cgroup_alloc(void)
311{
312 struct obj_cgroup *objcg;
313 int ret;
314
315 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
316 if (!objcg)
317 return NULL;
318
319 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
320 GFP_KERNEL);
321 if (ret) {
322 kfree(objcg);
323 return NULL;
324 }
325 INIT_LIST_HEAD(&objcg->list);
326 return objcg;
327}
328
329static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
330 struct mem_cgroup *parent)
331{
332 struct obj_cgroup *objcg, *iter;
333
334 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
335
336 spin_lock_irq(&objcg_lock);
337
338 /* 1) Ready to reparent active objcg. */
339 list_add(&objcg->list, &memcg->objcg_list);
340 /* 2) Reparent active objcg and already reparented objcgs to parent. */
341 list_for_each_entry(iter, &memcg->objcg_list, list)
342 WRITE_ONCE(iter->memcg, parent);
343 /* 3) Move already reparented objcgs to the parent's list */
344 list_splice(&memcg->objcg_list, &parent->objcg_list);
345
346 spin_unlock_irq(&objcg_lock);
347
348 percpu_ref_kill(&objcg->refcnt);
349}
350
351/*
352 * A lot of the calls to the cache allocation functions are expected to be
353 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
354 * conditional to this static branch, we'll have to allow modules that does
355 * kmem_cache_alloc and the such to see this symbol as well
356 */
357DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
358EXPORT_SYMBOL(memcg_kmem_enabled_key);
359#endif
360
361/**
362 * mem_cgroup_css_from_page - css of the memcg associated with a page
363 * @page: page of interest
364 *
365 * If memcg is bound to the default hierarchy, css of the memcg associated
366 * with @page is returned. The returned css remains associated with @page
367 * until it is released.
368 *
369 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
370 * is returned.
371 */
372struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
373{
374 struct mem_cgroup *memcg;
375
376 memcg = page_memcg(page);
377
378 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
379 memcg = root_mem_cgroup;
380
381 return &memcg->css;
382}
383
384/**
385 * page_cgroup_ino - return inode number of the memcg a page is charged to
386 * @page: the page
387 *
388 * Look up the closest online ancestor of the memory cgroup @page is charged to
389 * and return its inode number or 0 if @page is not charged to any cgroup. It
390 * is safe to call this function without holding a reference to @page.
391 *
392 * Note, this function is inherently racy, because there is nothing to prevent
393 * the cgroup inode from getting torn down and potentially reallocated a moment
394 * after page_cgroup_ino() returns, so it only should be used by callers that
395 * do not care (such as procfs interfaces).
396 */
397ino_t page_cgroup_ino(struct page *page)
398{
399 struct mem_cgroup *memcg;
400 unsigned long ino = 0;
401
402 rcu_read_lock();
403 memcg = page_memcg_check(page);
404
405 while (memcg && !(memcg->css.flags & CSS_ONLINE))
406 memcg = parent_mem_cgroup(memcg);
407 if (memcg)
408 ino = cgroup_ino(memcg->css.cgroup);
409 rcu_read_unlock();
410 return ino;
411}
412
413static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
414 struct mem_cgroup_tree_per_node *mctz,
415 unsigned long new_usage_in_excess)
416{
417 struct rb_node **p = &mctz->rb_root.rb_node;
418 struct rb_node *parent = NULL;
419 struct mem_cgroup_per_node *mz_node;
420 bool rightmost = true;
421
422 if (mz->on_tree)
423 return;
424
425 mz->usage_in_excess = new_usage_in_excess;
426 if (!mz->usage_in_excess)
427 return;
428 while (*p) {
429 parent = *p;
430 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
431 tree_node);
432 if (mz->usage_in_excess < mz_node->usage_in_excess) {
433 p = &(*p)->rb_left;
434 rightmost = false;
435 } else {
436 p = &(*p)->rb_right;
437 }
438 }
439
440 if (rightmost)
441 mctz->rb_rightmost = &mz->tree_node;
442
443 rb_link_node(&mz->tree_node, parent, p);
444 rb_insert_color(&mz->tree_node, &mctz->rb_root);
445 mz->on_tree = true;
446}
447
448static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
449 struct mem_cgroup_tree_per_node *mctz)
450{
451 if (!mz->on_tree)
452 return;
453
454 if (&mz->tree_node == mctz->rb_rightmost)
455 mctz->rb_rightmost = rb_prev(&mz->tree_node);
456
457 rb_erase(&mz->tree_node, &mctz->rb_root);
458 mz->on_tree = false;
459}
460
461static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
462 struct mem_cgroup_tree_per_node *mctz)
463{
464 unsigned long flags;
465
466 spin_lock_irqsave(&mctz->lock, flags);
467 __mem_cgroup_remove_exceeded(mz, mctz);
468 spin_unlock_irqrestore(&mctz->lock, flags);
469}
470
471static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
472{
473 unsigned long nr_pages = page_counter_read(&memcg->memory);
474 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
475 unsigned long excess = 0;
476
477 if (nr_pages > soft_limit)
478 excess = nr_pages - soft_limit;
479
480 return excess;
481}
482
483static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
484{
485 unsigned long excess;
486 struct mem_cgroup_per_node *mz;
487 struct mem_cgroup_tree_per_node *mctz;
488
489 mctz = soft_limit_tree.rb_tree_per_node[nid];
490 if (!mctz)
491 return;
492 /*
493 * Necessary to update all ancestors when hierarchy is used.
494 * because their event counter is not touched.
495 */
496 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
497 mz = memcg->nodeinfo[nid];
498 excess = soft_limit_excess(memcg);
499 /*
500 * We have to update the tree if mz is on RB-tree or
501 * mem is over its softlimit.
502 */
503 if (excess || mz->on_tree) {
504 unsigned long flags;
505
506 spin_lock_irqsave(&mctz->lock, flags);
507 /* if on-tree, remove it */
508 if (mz->on_tree)
509 __mem_cgroup_remove_exceeded(mz, mctz);
510 /*
511 * Insert again. mz->usage_in_excess will be updated.
512 * If excess is 0, no tree ops.
513 */
514 __mem_cgroup_insert_exceeded(mz, mctz, excess);
515 spin_unlock_irqrestore(&mctz->lock, flags);
516 }
517 }
518}
519
520static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
521{
522 struct mem_cgroup_tree_per_node *mctz;
523 struct mem_cgroup_per_node *mz;
524 int nid;
525
526 for_each_node(nid) {
527 mz = memcg->nodeinfo[nid];
528 mctz = soft_limit_tree.rb_tree_per_node[nid];
529 if (mctz)
530 mem_cgroup_remove_exceeded(mz, mctz);
531 }
532}
533
534static struct mem_cgroup_per_node *
535__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
536{
537 struct mem_cgroup_per_node *mz;
538
539retry:
540 mz = NULL;
541 if (!mctz->rb_rightmost)
542 goto done; /* Nothing to reclaim from */
543
544 mz = rb_entry(mctz->rb_rightmost,
545 struct mem_cgroup_per_node, tree_node);
546 /*
547 * Remove the node now but someone else can add it back,
548 * we will to add it back at the end of reclaim to its correct
549 * position in the tree.
550 */
551 __mem_cgroup_remove_exceeded(mz, mctz);
552 if (!soft_limit_excess(mz->memcg) ||
553 !css_tryget(&mz->memcg->css))
554 goto retry;
555done:
556 return mz;
557}
558
559static struct mem_cgroup_per_node *
560mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
561{
562 struct mem_cgroup_per_node *mz;
563
564 spin_lock_irq(&mctz->lock);
565 mz = __mem_cgroup_largest_soft_limit_node(mctz);
566 spin_unlock_irq(&mctz->lock);
567 return mz;
568}
569
570/*
571 * memcg and lruvec stats flushing
572 *
573 * Many codepaths leading to stats update or read are performance sensitive and
574 * adding stats flushing in such codepaths is not desirable. So, to optimize the
575 * flushing the kernel does:
576 *
577 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
578 * rstat update tree grow unbounded.
579 *
580 * 2) Flush the stats synchronously on reader side only when there are more than
581 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
582 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
583 * only for 2 seconds due to (1).
584 */
585static void flush_memcg_stats_dwork(struct work_struct *w);
586static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
587static DEFINE_SPINLOCK(stats_flush_lock);
588static DEFINE_PER_CPU(unsigned int, stats_updates);
589static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
590static u64 flush_next_time;
591
592#define FLUSH_TIME (2UL*HZ)
593
594/*
595 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
596 * not rely on this as part of an acquired spinlock_t lock. These functions are
597 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
598 * is sufficient.
599 */
600static void memcg_stats_lock(void)
601{
602#ifdef CONFIG_PREEMPT_RT
603 preempt_disable();
604#else
605 VM_BUG_ON(!irqs_disabled());
606#endif
607}
608
609static void __memcg_stats_lock(void)
610{
611#ifdef CONFIG_PREEMPT_RT
612 preempt_disable();
613#endif
614}
615
616static void memcg_stats_unlock(void)
617{
618#ifdef CONFIG_PREEMPT_RT
619 preempt_enable();
620#endif
621}
622
623static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
624{
625 unsigned int x;
626
627 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
628
629 x = __this_cpu_add_return(stats_updates, abs(val));
630 if (x > MEMCG_CHARGE_BATCH) {
631 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
632 __this_cpu_write(stats_updates, 0);
633 }
634}
635
636static void __mem_cgroup_flush_stats(void)
637{
638 unsigned long flag;
639
640 if (!spin_trylock_irqsave(&stats_flush_lock, flag))
641 return;
642
643 flush_next_time = jiffies_64 + 2*FLUSH_TIME;
644 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
645 atomic_set(&stats_flush_threshold, 0);
646 spin_unlock_irqrestore(&stats_flush_lock, flag);
647}
648
649void mem_cgroup_flush_stats(void)
650{
651 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
652 __mem_cgroup_flush_stats();
653}
654
655void mem_cgroup_flush_stats_delayed(void)
656{
657 if (time_after64(jiffies_64, flush_next_time))
658 mem_cgroup_flush_stats();
659}
660
661static void flush_memcg_stats_dwork(struct work_struct *w)
662{
663 __mem_cgroup_flush_stats();
664 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
665}
666
667/**
668 * __mod_memcg_state - update cgroup memory statistics
669 * @memcg: the memory cgroup
670 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
671 * @val: delta to add to the counter, can be negative
672 */
673void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
674{
675 if (mem_cgroup_disabled())
676 return;
677
678 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
679 memcg_rstat_updated(memcg, val);
680}
681
682/* idx can be of type enum memcg_stat_item or node_stat_item. */
683static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
684{
685 long x = 0;
686 int cpu;
687
688 for_each_possible_cpu(cpu)
689 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
690#ifdef CONFIG_SMP
691 if (x < 0)
692 x = 0;
693#endif
694 return x;
695}
696
697void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
698 int val)
699{
700 struct mem_cgroup_per_node *pn;
701 struct mem_cgroup *memcg;
702
703 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
704 memcg = pn->memcg;
705
706 /*
707 * The caller from rmap relay on disabled preemption becase they never
708 * update their counter from in-interrupt context. For these two
709 * counters we check that the update is never performed from an
710 * interrupt context while other caller need to have disabled interrupt.
711 */
712 __memcg_stats_lock();
713 if (IS_ENABLED(CONFIG_DEBUG_VM) && !IS_ENABLED(CONFIG_PREEMPT_RT)) {
714 switch (idx) {
715 case NR_ANON_MAPPED:
716 case NR_FILE_MAPPED:
717 case NR_ANON_THPS:
718 case NR_SHMEM_PMDMAPPED:
719 case NR_FILE_PMDMAPPED:
720 WARN_ON_ONCE(!in_task());
721 break;
722 default:
723 WARN_ON_ONCE(!irqs_disabled());
724 }
725 }
726
727 /* Update memcg */
728 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
729
730 /* Update lruvec */
731 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
732
733 memcg_rstat_updated(memcg, val);
734 memcg_stats_unlock();
735}
736
737/**
738 * __mod_lruvec_state - update lruvec memory statistics
739 * @lruvec: the lruvec
740 * @idx: the stat item
741 * @val: delta to add to the counter, can be negative
742 *
743 * The lruvec is the intersection of the NUMA node and a cgroup. This
744 * function updates the all three counters that are affected by a
745 * change of state at this level: per-node, per-cgroup, per-lruvec.
746 */
747void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
748 int val)
749{
750 /* Update node */
751 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
752
753 /* Update memcg and lruvec */
754 if (!mem_cgroup_disabled())
755 __mod_memcg_lruvec_state(lruvec, idx, val);
756}
757
758void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
759 int val)
760{
761 struct page *head = compound_head(page); /* rmap on tail pages */
762 struct mem_cgroup *memcg;
763 pg_data_t *pgdat = page_pgdat(page);
764 struct lruvec *lruvec;
765
766 rcu_read_lock();
767 memcg = page_memcg(head);
768 /* Untracked pages have no memcg, no lruvec. Update only the node */
769 if (!memcg) {
770 rcu_read_unlock();
771 __mod_node_page_state(pgdat, idx, val);
772 return;
773 }
774
775 lruvec = mem_cgroup_lruvec(memcg, pgdat);
776 __mod_lruvec_state(lruvec, idx, val);
777 rcu_read_unlock();
778}
779EXPORT_SYMBOL(__mod_lruvec_page_state);
780
781void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
782{
783 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
784 struct mem_cgroup *memcg;
785 struct lruvec *lruvec;
786
787 rcu_read_lock();
788 memcg = mem_cgroup_from_obj(p);
789
790 /*
791 * Untracked pages have no memcg, no lruvec. Update only the
792 * node. If we reparent the slab objects to the root memcg,
793 * when we free the slab object, we need to update the per-memcg
794 * vmstats to keep it correct for the root memcg.
795 */
796 if (!memcg) {
797 __mod_node_page_state(pgdat, idx, val);
798 } else {
799 lruvec = mem_cgroup_lruvec(memcg, pgdat);
800 __mod_lruvec_state(lruvec, idx, val);
801 }
802 rcu_read_unlock();
803}
804
805/**
806 * __count_memcg_events - account VM events in a cgroup
807 * @memcg: the memory cgroup
808 * @idx: the event item
809 * @count: the number of events that occurred
810 */
811void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
812 unsigned long count)
813{
814 if (mem_cgroup_disabled())
815 return;
816
817 memcg_stats_lock();
818 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
819 memcg_rstat_updated(memcg, count);
820 memcg_stats_unlock();
821}
822
823static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
824{
825 return READ_ONCE(memcg->vmstats.events[event]);
826}
827
828static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
829{
830 long x = 0;
831 int cpu;
832
833 for_each_possible_cpu(cpu)
834 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
835 return x;
836}
837
838static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
839 int nr_pages)
840{
841 /* pagein of a big page is an event. So, ignore page size */
842 if (nr_pages > 0)
843 __count_memcg_events(memcg, PGPGIN, 1);
844 else {
845 __count_memcg_events(memcg, PGPGOUT, 1);
846 nr_pages = -nr_pages; /* for event */
847 }
848
849 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
850}
851
852static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
853 enum mem_cgroup_events_target target)
854{
855 unsigned long val, next;
856
857 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
858 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
859 /* from time_after() in jiffies.h */
860 if ((long)(next - val) < 0) {
861 switch (target) {
862 case MEM_CGROUP_TARGET_THRESH:
863 next = val + THRESHOLDS_EVENTS_TARGET;
864 break;
865 case MEM_CGROUP_TARGET_SOFTLIMIT:
866 next = val + SOFTLIMIT_EVENTS_TARGET;
867 break;
868 default:
869 break;
870 }
871 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
872 return true;
873 }
874 return false;
875}
876
877/*
878 * Check events in order.
879 *
880 */
881static void memcg_check_events(struct mem_cgroup *memcg, int nid)
882{
883 if (IS_ENABLED(CONFIG_PREEMPT_RT))
884 return;
885
886 /* threshold event is triggered in finer grain than soft limit */
887 if (unlikely(mem_cgroup_event_ratelimit(memcg,
888 MEM_CGROUP_TARGET_THRESH))) {
889 bool do_softlimit;
890
891 do_softlimit = mem_cgroup_event_ratelimit(memcg,
892 MEM_CGROUP_TARGET_SOFTLIMIT);
893 mem_cgroup_threshold(memcg);
894 if (unlikely(do_softlimit))
895 mem_cgroup_update_tree(memcg, nid);
896 }
897}
898
899struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
900{
901 /*
902 * mm_update_next_owner() may clear mm->owner to NULL
903 * if it races with swapoff, page migration, etc.
904 * So this can be called with p == NULL.
905 */
906 if (unlikely(!p))
907 return NULL;
908
909 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
910}
911EXPORT_SYMBOL(mem_cgroup_from_task);
912
913static __always_inline struct mem_cgroup *active_memcg(void)
914{
915 if (!in_task())
916 return this_cpu_read(int_active_memcg);
917 else
918 return current->active_memcg;
919}
920
921/**
922 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
923 * @mm: mm from which memcg should be extracted. It can be NULL.
924 *
925 * Obtain a reference on mm->memcg and returns it if successful. If mm
926 * is NULL, then the memcg is chosen as follows:
927 * 1) The active memcg, if set.
928 * 2) current->mm->memcg, if available
929 * 3) root memcg
930 * If mem_cgroup is disabled, NULL is returned.
931 */
932struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
933{
934 struct mem_cgroup *memcg;
935
936 if (mem_cgroup_disabled())
937 return NULL;
938
939 /*
940 * Page cache insertions can happen without an
941 * actual mm context, e.g. during disk probing
942 * on boot, loopback IO, acct() writes etc.
943 *
944 * No need to css_get on root memcg as the reference
945 * counting is disabled on the root level in the
946 * cgroup core. See CSS_NO_REF.
947 */
948 if (unlikely(!mm)) {
949 memcg = active_memcg();
950 if (unlikely(memcg)) {
951 /* remote memcg must hold a ref */
952 css_get(&memcg->css);
953 return memcg;
954 }
955 mm = current->mm;
956 if (unlikely(!mm))
957 return root_mem_cgroup;
958 }
959
960 rcu_read_lock();
961 do {
962 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
963 if (unlikely(!memcg))
964 memcg = root_mem_cgroup;
965 } while (!css_tryget(&memcg->css));
966 rcu_read_unlock();
967 return memcg;
968}
969EXPORT_SYMBOL(get_mem_cgroup_from_mm);
970
971static __always_inline bool memcg_kmem_bypass(void)
972{
973 /* Allow remote memcg charging from any context. */
974 if (unlikely(active_memcg()))
975 return false;
976
977 /* Memcg to charge can't be determined. */
978 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
979 return true;
980
981 return false;
982}
983
984/**
985 * mem_cgroup_iter - iterate over memory cgroup hierarchy
986 * @root: hierarchy root
987 * @prev: previously returned memcg, NULL on first invocation
988 * @reclaim: cookie for shared reclaim walks, NULL for full walks
989 *
990 * Returns references to children of the hierarchy below @root, or
991 * @root itself, or %NULL after a full round-trip.
992 *
993 * Caller must pass the return value in @prev on subsequent
994 * invocations for reference counting, or use mem_cgroup_iter_break()
995 * to cancel a hierarchy walk before the round-trip is complete.
996 *
997 * Reclaimers can specify a node in @reclaim to divide up the memcgs
998 * in the hierarchy among all concurrent reclaimers operating on the
999 * same node.
1000 */
1001struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1002 struct mem_cgroup *prev,
1003 struct mem_cgroup_reclaim_cookie *reclaim)
1004{
1005 struct mem_cgroup_reclaim_iter *iter;
1006 struct cgroup_subsys_state *css = NULL;
1007 struct mem_cgroup *memcg = NULL;
1008 struct mem_cgroup *pos = NULL;
1009
1010 if (mem_cgroup_disabled())
1011 return NULL;
1012
1013 if (!root)
1014 root = root_mem_cgroup;
1015
1016 if (prev && !reclaim)
1017 pos = prev;
1018
1019 rcu_read_lock();
1020
1021 if (reclaim) {
1022 struct mem_cgroup_per_node *mz;
1023
1024 mz = root->nodeinfo[reclaim->pgdat->node_id];
1025 iter = &mz->iter;
1026
1027 if (prev && reclaim->generation != iter->generation)
1028 goto out_unlock;
1029
1030 while (1) {
1031 pos = READ_ONCE(iter->position);
1032 if (!pos || css_tryget(&pos->css))
1033 break;
1034 /*
1035 * css reference reached zero, so iter->position will
1036 * be cleared by ->css_released. However, we should not
1037 * rely on this happening soon, because ->css_released
1038 * is called from a work queue, and by busy-waiting we
1039 * might block it. So we clear iter->position right
1040 * away.
1041 */
1042 (void)cmpxchg(&iter->position, pos, NULL);
1043 }
1044 }
1045
1046 if (pos)
1047 css = &pos->css;
1048
1049 for (;;) {
1050 css = css_next_descendant_pre(css, &root->css);
1051 if (!css) {
1052 /*
1053 * Reclaimers share the hierarchy walk, and a
1054 * new one might jump in right at the end of
1055 * the hierarchy - make sure they see at least
1056 * one group and restart from the beginning.
1057 */
1058 if (!prev)
1059 continue;
1060 break;
1061 }
1062
1063 /*
1064 * Verify the css and acquire a reference. The root
1065 * is provided by the caller, so we know it's alive
1066 * and kicking, and don't take an extra reference.
1067 */
1068 memcg = mem_cgroup_from_css(css);
1069
1070 if (css == &root->css)
1071 break;
1072
1073 if (css_tryget(css))
1074 break;
1075
1076 memcg = NULL;
1077 }
1078
1079 if (reclaim) {
1080 /*
1081 * The position could have already been updated by a competing
1082 * thread, so check that the value hasn't changed since we read
1083 * it to avoid reclaiming from the same cgroup twice.
1084 */
1085 (void)cmpxchg(&iter->position, pos, memcg);
1086
1087 if (pos)
1088 css_put(&pos->css);
1089
1090 if (!memcg)
1091 iter->generation++;
1092 else if (!prev)
1093 reclaim->generation = iter->generation;
1094 }
1095
1096out_unlock:
1097 rcu_read_unlock();
1098 if (prev && prev != root)
1099 css_put(&prev->css);
1100
1101 return memcg;
1102}
1103
1104/**
1105 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1106 * @root: hierarchy root
1107 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1108 */
1109void mem_cgroup_iter_break(struct mem_cgroup *root,
1110 struct mem_cgroup *prev)
1111{
1112 if (!root)
1113 root = root_mem_cgroup;
1114 if (prev && prev != root)
1115 css_put(&prev->css);
1116}
1117
1118static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1119 struct mem_cgroup *dead_memcg)
1120{
1121 struct mem_cgroup_reclaim_iter *iter;
1122 struct mem_cgroup_per_node *mz;
1123 int nid;
1124
1125 for_each_node(nid) {
1126 mz = from->nodeinfo[nid];
1127 iter = &mz->iter;
1128 cmpxchg(&iter->position, dead_memcg, NULL);
1129 }
1130}
1131
1132static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1133{
1134 struct mem_cgroup *memcg = dead_memcg;
1135 struct mem_cgroup *last;
1136
1137 do {
1138 __invalidate_reclaim_iterators(memcg, dead_memcg);
1139 last = memcg;
1140 } while ((memcg = parent_mem_cgroup(memcg)));
1141
1142 /*
1143 * When cgruop1 non-hierarchy mode is used,
1144 * parent_mem_cgroup() does not walk all the way up to the
1145 * cgroup root (root_mem_cgroup). So we have to handle
1146 * dead_memcg from cgroup root separately.
1147 */
1148 if (last != root_mem_cgroup)
1149 __invalidate_reclaim_iterators(root_mem_cgroup,
1150 dead_memcg);
1151}
1152
1153/**
1154 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1155 * @memcg: hierarchy root
1156 * @fn: function to call for each task
1157 * @arg: argument passed to @fn
1158 *
1159 * This function iterates over tasks attached to @memcg or to any of its
1160 * descendants and calls @fn for each task. If @fn returns a non-zero
1161 * value, the function breaks the iteration loop and returns the value.
1162 * Otherwise, it will iterate over all tasks and return 0.
1163 *
1164 * This function must not be called for the root memory cgroup.
1165 */
1166int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1167 int (*fn)(struct task_struct *, void *), void *arg)
1168{
1169 struct mem_cgroup *iter;
1170 int ret = 0;
1171
1172 BUG_ON(memcg == root_mem_cgroup);
1173
1174 for_each_mem_cgroup_tree(iter, memcg) {
1175 struct css_task_iter it;
1176 struct task_struct *task;
1177
1178 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1179 while (!ret && (task = css_task_iter_next(&it)))
1180 ret = fn(task, arg);
1181 css_task_iter_end(&it);
1182 if (ret) {
1183 mem_cgroup_iter_break(memcg, iter);
1184 break;
1185 }
1186 }
1187 return ret;
1188}
1189
1190#ifdef CONFIG_DEBUG_VM
1191void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1192{
1193 struct mem_cgroup *memcg;
1194
1195 if (mem_cgroup_disabled())
1196 return;
1197
1198 memcg = folio_memcg(folio);
1199
1200 if (!memcg)
1201 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
1202 else
1203 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1204}
1205#endif
1206
1207/**
1208 * folio_lruvec_lock - Lock the lruvec for a folio.
1209 * @folio: Pointer to the folio.
1210 *
1211 * These functions are safe to use under any of the following conditions:
1212 * - folio locked
1213 * - folio_test_lru false
1214 * - folio_memcg_lock()
1215 * - folio frozen (refcount of 0)
1216 *
1217 * Return: The lruvec this folio is on with its lock held.
1218 */
1219struct lruvec *folio_lruvec_lock(struct folio *folio)
1220{
1221 struct lruvec *lruvec = folio_lruvec(folio);
1222
1223 spin_lock(&lruvec->lru_lock);
1224 lruvec_memcg_debug(lruvec, folio);
1225
1226 return lruvec;
1227}
1228
1229/**
1230 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1231 * @folio: Pointer to the folio.
1232 *
1233 * These functions are safe to use under any of the following conditions:
1234 * - folio locked
1235 * - folio_test_lru false
1236 * - folio_memcg_lock()
1237 * - folio frozen (refcount of 0)
1238 *
1239 * Return: The lruvec this folio is on with its lock held and interrupts
1240 * disabled.
1241 */
1242struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1243{
1244 struct lruvec *lruvec = folio_lruvec(folio);
1245
1246 spin_lock_irq(&lruvec->lru_lock);
1247 lruvec_memcg_debug(lruvec, folio);
1248
1249 return lruvec;
1250}
1251
1252/**
1253 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1254 * @folio: Pointer to the folio.
1255 * @flags: Pointer to irqsave flags.
1256 *
1257 * These functions are safe to use under any of the following conditions:
1258 * - folio locked
1259 * - folio_test_lru false
1260 * - folio_memcg_lock()
1261 * - folio frozen (refcount of 0)
1262 *
1263 * Return: The lruvec this folio is on with its lock held and interrupts
1264 * disabled.
1265 */
1266struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1267 unsigned long *flags)
1268{
1269 struct lruvec *lruvec = folio_lruvec(folio);
1270
1271 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1272 lruvec_memcg_debug(lruvec, folio);
1273
1274 return lruvec;
1275}
1276
1277/**
1278 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1279 * @lruvec: mem_cgroup per zone lru vector
1280 * @lru: index of lru list the page is sitting on
1281 * @zid: zone id of the accounted pages
1282 * @nr_pages: positive when adding or negative when removing
1283 *
1284 * This function must be called under lru_lock, just before a page is added
1285 * to or just after a page is removed from an lru list.
1286 */
1287void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1288 int zid, int nr_pages)
1289{
1290 struct mem_cgroup_per_node *mz;
1291 unsigned long *lru_size;
1292 long size;
1293
1294 if (mem_cgroup_disabled())
1295 return;
1296
1297 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1298 lru_size = &mz->lru_zone_size[zid][lru];
1299
1300 if (nr_pages < 0)
1301 *lru_size += nr_pages;
1302
1303 size = *lru_size;
1304 if (WARN_ONCE(size < 0,
1305 "%s(%p, %d, %d): lru_size %ld\n",
1306 __func__, lruvec, lru, nr_pages, size)) {
1307 VM_BUG_ON(1);
1308 *lru_size = 0;
1309 }
1310
1311 if (nr_pages > 0)
1312 *lru_size += nr_pages;
1313}
1314
1315/**
1316 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1317 * @memcg: the memory cgroup
1318 *
1319 * Returns the maximum amount of memory @mem can be charged with, in
1320 * pages.
1321 */
1322static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1323{
1324 unsigned long margin = 0;
1325 unsigned long count;
1326 unsigned long limit;
1327
1328 count = page_counter_read(&memcg->memory);
1329 limit = READ_ONCE(memcg->memory.max);
1330 if (count < limit)
1331 margin = limit - count;
1332
1333 if (do_memsw_account()) {
1334 count = page_counter_read(&memcg->memsw);
1335 limit = READ_ONCE(memcg->memsw.max);
1336 if (count < limit)
1337 margin = min(margin, limit - count);
1338 else
1339 margin = 0;
1340 }
1341
1342 return margin;
1343}
1344
1345/*
1346 * A routine for checking "mem" is under move_account() or not.
1347 *
1348 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1349 * moving cgroups. This is for waiting at high-memory pressure
1350 * caused by "move".
1351 */
1352static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1353{
1354 struct mem_cgroup *from;
1355 struct mem_cgroup *to;
1356 bool ret = false;
1357 /*
1358 * Unlike task_move routines, we access mc.to, mc.from not under
1359 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1360 */
1361 spin_lock(&mc.lock);
1362 from = mc.from;
1363 to = mc.to;
1364 if (!from)
1365 goto unlock;
1366
1367 ret = mem_cgroup_is_descendant(from, memcg) ||
1368 mem_cgroup_is_descendant(to, memcg);
1369unlock:
1370 spin_unlock(&mc.lock);
1371 return ret;
1372}
1373
1374static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1375{
1376 if (mc.moving_task && current != mc.moving_task) {
1377 if (mem_cgroup_under_move(memcg)) {
1378 DEFINE_WAIT(wait);
1379 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1380 /* moving charge context might have finished. */
1381 if (mc.moving_task)
1382 schedule();
1383 finish_wait(&mc.waitq, &wait);
1384 return true;
1385 }
1386 }
1387 return false;
1388}
1389
1390struct memory_stat {
1391 const char *name;
1392 unsigned int idx;
1393};
1394
1395static const struct memory_stat memory_stats[] = {
1396 { "anon", NR_ANON_MAPPED },
1397 { "file", NR_FILE_PAGES },
1398 { "kernel", MEMCG_KMEM },
1399 { "kernel_stack", NR_KERNEL_STACK_KB },
1400 { "pagetables", NR_PAGETABLE },
1401 { "percpu", MEMCG_PERCPU_B },
1402 { "sock", MEMCG_SOCK },
1403 { "vmalloc", MEMCG_VMALLOC },
1404 { "shmem", NR_SHMEM },
1405 { "file_mapped", NR_FILE_MAPPED },
1406 { "file_dirty", NR_FILE_DIRTY },
1407 { "file_writeback", NR_WRITEBACK },
1408#ifdef CONFIG_SWAP
1409 { "swapcached", NR_SWAPCACHE },
1410#endif
1411#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1412 { "anon_thp", NR_ANON_THPS },
1413 { "file_thp", NR_FILE_THPS },
1414 { "shmem_thp", NR_SHMEM_THPS },
1415#endif
1416 { "inactive_anon", NR_INACTIVE_ANON },
1417 { "active_anon", NR_ACTIVE_ANON },
1418 { "inactive_file", NR_INACTIVE_FILE },
1419 { "active_file", NR_ACTIVE_FILE },
1420 { "unevictable", NR_UNEVICTABLE },
1421 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1422 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1423
1424 /* The memory events */
1425 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1426 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1427 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1428 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1429 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1430 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1431 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1432};
1433
1434/* Translate stat items to the correct unit for memory.stat output */
1435static int memcg_page_state_unit(int item)
1436{
1437 switch (item) {
1438 case MEMCG_PERCPU_B:
1439 case NR_SLAB_RECLAIMABLE_B:
1440 case NR_SLAB_UNRECLAIMABLE_B:
1441 case WORKINGSET_REFAULT_ANON:
1442 case WORKINGSET_REFAULT_FILE:
1443 case WORKINGSET_ACTIVATE_ANON:
1444 case WORKINGSET_ACTIVATE_FILE:
1445 case WORKINGSET_RESTORE_ANON:
1446 case WORKINGSET_RESTORE_FILE:
1447 case WORKINGSET_NODERECLAIM:
1448 return 1;
1449 case NR_KERNEL_STACK_KB:
1450 return SZ_1K;
1451 default:
1452 return PAGE_SIZE;
1453 }
1454}
1455
1456static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1457 int item)
1458{
1459 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1460}
1461
1462static char *memory_stat_format(struct mem_cgroup *memcg)
1463{
1464 struct seq_buf s;
1465 int i;
1466
1467 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1468 if (!s.buffer)
1469 return NULL;
1470
1471 /*
1472 * Provide statistics on the state of the memory subsystem as
1473 * well as cumulative event counters that show past behavior.
1474 *
1475 * This list is ordered following a combination of these gradients:
1476 * 1) generic big picture -> specifics and details
1477 * 2) reflecting userspace activity -> reflecting kernel heuristics
1478 *
1479 * Current memory state:
1480 */
1481 mem_cgroup_flush_stats();
1482
1483 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1484 u64 size;
1485
1486 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1487 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1488
1489 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1490 size += memcg_page_state_output(memcg,
1491 NR_SLAB_RECLAIMABLE_B);
1492 seq_buf_printf(&s, "slab %llu\n", size);
1493 }
1494 }
1495
1496 /* Accumulated memory events */
1497
1498 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1499 memcg_events(memcg, PGFAULT));
1500 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1501 memcg_events(memcg, PGMAJFAULT));
1502 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1503 memcg_events(memcg, PGREFILL));
1504 seq_buf_printf(&s, "pgscan %lu\n",
1505 memcg_events(memcg, PGSCAN_KSWAPD) +
1506 memcg_events(memcg, PGSCAN_DIRECT));
1507 seq_buf_printf(&s, "pgsteal %lu\n",
1508 memcg_events(memcg, PGSTEAL_KSWAPD) +
1509 memcg_events(memcg, PGSTEAL_DIRECT));
1510 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1511 memcg_events(memcg, PGACTIVATE));
1512 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1513 memcg_events(memcg, PGDEACTIVATE));
1514 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1515 memcg_events(memcg, PGLAZYFREE));
1516 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1517 memcg_events(memcg, PGLAZYFREED));
1518
1519#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1520 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1521 memcg_events(memcg, THP_FAULT_ALLOC));
1522 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1523 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1524#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1525
1526 /* The above should easily fit into one page */
1527 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1528
1529 return s.buffer;
1530}
1531
1532#define K(x) ((x) << (PAGE_SHIFT-10))
1533/**
1534 * mem_cgroup_print_oom_context: Print OOM information relevant to
1535 * memory controller.
1536 * @memcg: The memory cgroup that went over limit
1537 * @p: Task that is going to be killed
1538 *
1539 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1540 * enabled
1541 */
1542void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1543{
1544 rcu_read_lock();
1545
1546 if (memcg) {
1547 pr_cont(",oom_memcg=");
1548 pr_cont_cgroup_path(memcg->css.cgroup);
1549 } else
1550 pr_cont(",global_oom");
1551 if (p) {
1552 pr_cont(",task_memcg=");
1553 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1554 }
1555 rcu_read_unlock();
1556}
1557
1558/**
1559 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1560 * memory controller.
1561 * @memcg: The memory cgroup that went over limit
1562 */
1563void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1564{
1565 char *buf;
1566
1567 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1568 K((u64)page_counter_read(&memcg->memory)),
1569 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1570 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1571 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1572 K((u64)page_counter_read(&memcg->swap)),
1573 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1574 else {
1575 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1576 K((u64)page_counter_read(&memcg->memsw)),
1577 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1578 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1579 K((u64)page_counter_read(&memcg->kmem)),
1580 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1581 }
1582
1583 pr_info("Memory cgroup stats for ");
1584 pr_cont_cgroup_path(memcg->css.cgroup);
1585 pr_cont(":");
1586 buf = memory_stat_format(memcg);
1587 if (!buf)
1588 return;
1589 pr_info("%s", buf);
1590 kfree(buf);
1591}
1592
1593/*
1594 * Return the memory (and swap, if configured) limit for a memcg.
1595 */
1596unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1597{
1598 unsigned long max = READ_ONCE(memcg->memory.max);
1599
1600 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1601 if (mem_cgroup_swappiness(memcg))
1602 max += min(READ_ONCE(memcg->swap.max),
1603 (unsigned long)total_swap_pages);
1604 } else { /* v1 */
1605 if (mem_cgroup_swappiness(memcg)) {
1606 /* Calculate swap excess capacity from memsw limit */
1607 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1608
1609 max += min(swap, (unsigned long)total_swap_pages);
1610 }
1611 }
1612 return max;
1613}
1614
1615unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1616{
1617 return page_counter_read(&memcg->memory);
1618}
1619
1620static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1621 int order)
1622{
1623 struct oom_control oc = {
1624 .zonelist = NULL,
1625 .nodemask = NULL,
1626 .memcg = memcg,
1627 .gfp_mask = gfp_mask,
1628 .order = order,
1629 };
1630 bool ret = true;
1631
1632 if (mutex_lock_killable(&oom_lock))
1633 return true;
1634
1635 if (mem_cgroup_margin(memcg) >= (1 << order))
1636 goto unlock;
1637
1638 /*
1639 * A few threads which were not waiting at mutex_lock_killable() can
1640 * fail to bail out. Therefore, check again after holding oom_lock.
1641 */
1642 ret = task_is_dying() || out_of_memory(&oc);
1643
1644unlock:
1645 mutex_unlock(&oom_lock);
1646 return ret;
1647}
1648
1649static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1650 pg_data_t *pgdat,
1651 gfp_t gfp_mask,
1652 unsigned long *total_scanned)
1653{
1654 struct mem_cgroup *victim = NULL;
1655 int total = 0;
1656 int loop = 0;
1657 unsigned long excess;
1658 unsigned long nr_scanned;
1659 struct mem_cgroup_reclaim_cookie reclaim = {
1660 .pgdat = pgdat,
1661 };
1662
1663 excess = soft_limit_excess(root_memcg);
1664
1665 while (1) {
1666 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1667 if (!victim) {
1668 loop++;
1669 if (loop >= 2) {
1670 /*
1671 * If we have not been able to reclaim
1672 * anything, it might because there are
1673 * no reclaimable pages under this hierarchy
1674 */
1675 if (!total)
1676 break;
1677 /*
1678 * We want to do more targeted reclaim.
1679 * excess >> 2 is not to excessive so as to
1680 * reclaim too much, nor too less that we keep
1681 * coming back to reclaim from this cgroup
1682 */
1683 if (total >= (excess >> 2) ||
1684 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1685 break;
1686 }
1687 continue;
1688 }
1689 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1690 pgdat, &nr_scanned);
1691 *total_scanned += nr_scanned;
1692 if (!soft_limit_excess(root_memcg))
1693 break;
1694 }
1695 mem_cgroup_iter_break(root_memcg, victim);
1696 return total;
1697}
1698
1699#ifdef CONFIG_LOCKDEP
1700static struct lockdep_map memcg_oom_lock_dep_map = {
1701 .name = "memcg_oom_lock",
1702};
1703#endif
1704
1705static DEFINE_SPINLOCK(memcg_oom_lock);
1706
1707/*
1708 * Check OOM-Killer is already running under our hierarchy.
1709 * If someone is running, return false.
1710 */
1711static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1712{
1713 struct mem_cgroup *iter, *failed = NULL;
1714
1715 spin_lock(&memcg_oom_lock);
1716
1717 for_each_mem_cgroup_tree(iter, memcg) {
1718 if (iter->oom_lock) {
1719 /*
1720 * this subtree of our hierarchy is already locked
1721 * so we cannot give a lock.
1722 */
1723 failed = iter;
1724 mem_cgroup_iter_break(memcg, iter);
1725 break;
1726 } else
1727 iter->oom_lock = true;
1728 }
1729
1730 if (failed) {
1731 /*
1732 * OK, we failed to lock the whole subtree so we have
1733 * to clean up what we set up to the failing subtree
1734 */
1735 for_each_mem_cgroup_tree(iter, memcg) {
1736 if (iter == failed) {
1737 mem_cgroup_iter_break(memcg, iter);
1738 break;
1739 }
1740 iter->oom_lock = false;
1741 }
1742 } else
1743 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1744
1745 spin_unlock(&memcg_oom_lock);
1746
1747 return !failed;
1748}
1749
1750static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1751{
1752 struct mem_cgroup *iter;
1753
1754 spin_lock(&memcg_oom_lock);
1755 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1756 for_each_mem_cgroup_tree(iter, memcg)
1757 iter->oom_lock = false;
1758 spin_unlock(&memcg_oom_lock);
1759}
1760
1761static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1762{
1763 struct mem_cgroup *iter;
1764
1765 spin_lock(&memcg_oom_lock);
1766 for_each_mem_cgroup_tree(iter, memcg)
1767 iter->under_oom++;
1768 spin_unlock(&memcg_oom_lock);
1769}
1770
1771static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1772{
1773 struct mem_cgroup *iter;
1774
1775 /*
1776 * Be careful about under_oom underflows because a child memcg
1777 * could have been added after mem_cgroup_mark_under_oom.
1778 */
1779 spin_lock(&memcg_oom_lock);
1780 for_each_mem_cgroup_tree(iter, memcg)
1781 if (iter->under_oom > 0)
1782 iter->under_oom--;
1783 spin_unlock(&memcg_oom_lock);
1784}
1785
1786static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1787
1788struct oom_wait_info {
1789 struct mem_cgroup *memcg;
1790 wait_queue_entry_t wait;
1791};
1792
1793static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1794 unsigned mode, int sync, void *arg)
1795{
1796 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1797 struct mem_cgroup *oom_wait_memcg;
1798 struct oom_wait_info *oom_wait_info;
1799
1800 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1801 oom_wait_memcg = oom_wait_info->memcg;
1802
1803 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1804 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1805 return 0;
1806 return autoremove_wake_function(wait, mode, sync, arg);
1807}
1808
1809static void memcg_oom_recover(struct mem_cgroup *memcg)
1810{
1811 /*
1812 * For the following lockless ->under_oom test, the only required
1813 * guarantee is that it must see the state asserted by an OOM when
1814 * this function is called as a result of userland actions
1815 * triggered by the notification of the OOM. This is trivially
1816 * achieved by invoking mem_cgroup_mark_under_oom() before
1817 * triggering notification.
1818 */
1819 if (memcg && memcg->under_oom)
1820 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1821}
1822
1823/*
1824 * Returns true if successfully killed one or more processes. Though in some
1825 * corner cases it can return true even without killing any process.
1826 */
1827static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1828{
1829 bool locked, ret;
1830
1831 if (order > PAGE_ALLOC_COSTLY_ORDER)
1832 return false;
1833
1834 memcg_memory_event(memcg, MEMCG_OOM);
1835
1836 /*
1837 * We are in the middle of the charge context here, so we
1838 * don't want to block when potentially sitting on a callstack
1839 * that holds all kinds of filesystem and mm locks.
1840 *
1841 * cgroup1 allows disabling the OOM killer and waiting for outside
1842 * handling until the charge can succeed; remember the context and put
1843 * the task to sleep at the end of the page fault when all locks are
1844 * released.
1845 *
1846 * On the other hand, in-kernel OOM killer allows for an async victim
1847 * memory reclaim (oom_reaper) and that means that we are not solely
1848 * relying on the oom victim to make a forward progress and we can
1849 * invoke the oom killer here.
1850 *
1851 * Please note that mem_cgroup_out_of_memory might fail to find a
1852 * victim and then we have to bail out from the charge path.
1853 */
1854 if (memcg->oom_kill_disable) {
1855 if (current->in_user_fault) {
1856 css_get(&memcg->css);
1857 current->memcg_in_oom = memcg;
1858 current->memcg_oom_gfp_mask = mask;
1859 current->memcg_oom_order = order;
1860 }
1861 return false;
1862 }
1863
1864 mem_cgroup_mark_under_oom(memcg);
1865
1866 locked = mem_cgroup_oom_trylock(memcg);
1867
1868 if (locked)
1869 mem_cgroup_oom_notify(memcg);
1870
1871 mem_cgroup_unmark_under_oom(memcg);
1872 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1873
1874 if (locked)
1875 mem_cgroup_oom_unlock(memcg);
1876
1877 return ret;
1878}
1879
1880/**
1881 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1882 * @handle: actually kill/wait or just clean up the OOM state
1883 *
1884 * This has to be called at the end of a page fault if the memcg OOM
1885 * handler was enabled.
1886 *
1887 * Memcg supports userspace OOM handling where failed allocations must
1888 * sleep on a waitqueue until the userspace task resolves the
1889 * situation. Sleeping directly in the charge context with all kinds
1890 * of locks held is not a good idea, instead we remember an OOM state
1891 * in the task and mem_cgroup_oom_synchronize() has to be called at
1892 * the end of the page fault to complete the OOM handling.
1893 *
1894 * Returns %true if an ongoing memcg OOM situation was detected and
1895 * completed, %false otherwise.
1896 */
1897bool mem_cgroup_oom_synchronize(bool handle)
1898{
1899 struct mem_cgroup *memcg = current->memcg_in_oom;
1900 struct oom_wait_info owait;
1901 bool locked;
1902
1903 /* OOM is global, do not handle */
1904 if (!memcg)
1905 return false;
1906
1907 if (!handle)
1908 goto cleanup;
1909
1910 owait.memcg = memcg;
1911 owait.wait.flags = 0;
1912 owait.wait.func = memcg_oom_wake_function;
1913 owait.wait.private = current;
1914 INIT_LIST_HEAD(&owait.wait.entry);
1915
1916 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1917 mem_cgroup_mark_under_oom(memcg);
1918
1919 locked = mem_cgroup_oom_trylock(memcg);
1920
1921 if (locked)
1922 mem_cgroup_oom_notify(memcg);
1923
1924 if (locked && !memcg->oom_kill_disable) {
1925 mem_cgroup_unmark_under_oom(memcg);
1926 finish_wait(&memcg_oom_waitq, &owait.wait);
1927 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1928 current->memcg_oom_order);
1929 } else {
1930 schedule();
1931 mem_cgroup_unmark_under_oom(memcg);
1932 finish_wait(&memcg_oom_waitq, &owait.wait);
1933 }
1934
1935 if (locked) {
1936 mem_cgroup_oom_unlock(memcg);
1937 /*
1938 * There is no guarantee that an OOM-lock contender
1939 * sees the wakeups triggered by the OOM kill
1940 * uncharges. Wake any sleepers explicitly.
1941 */
1942 memcg_oom_recover(memcg);
1943 }
1944cleanup:
1945 current->memcg_in_oom = NULL;
1946 css_put(&memcg->css);
1947 return true;
1948}
1949
1950/**
1951 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1952 * @victim: task to be killed by the OOM killer
1953 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1954 *
1955 * Returns a pointer to a memory cgroup, which has to be cleaned up
1956 * by killing all belonging OOM-killable tasks.
1957 *
1958 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1959 */
1960struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1961 struct mem_cgroup *oom_domain)
1962{
1963 struct mem_cgroup *oom_group = NULL;
1964 struct mem_cgroup *memcg;
1965
1966 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1967 return NULL;
1968
1969 if (!oom_domain)
1970 oom_domain = root_mem_cgroup;
1971
1972 rcu_read_lock();
1973
1974 memcg = mem_cgroup_from_task(victim);
1975 if (memcg == root_mem_cgroup)
1976 goto out;
1977
1978 /*
1979 * If the victim task has been asynchronously moved to a different
1980 * memory cgroup, we might end up killing tasks outside oom_domain.
1981 * In this case it's better to ignore memory.group.oom.
1982 */
1983 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1984 goto out;
1985
1986 /*
1987 * Traverse the memory cgroup hierarchy from the victim task's
1988 * cgroup up to the OOMing cgroup (or root) to find the
1989 * highest-level memory cgroup with oom.group set.
1990 */
1991 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1992 if (memcg->oom_group)
1993 oom_group = memcg;
1994
1995 if (memcg == oom_domain)
1996 break;
1997 }
1998
1999 if (oom_group)
2000 css_get(&oom_group->css);
2001out:
2002 rcu_read_unlock();
2003
2004 return oom_group;
2005}
2006
2007void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2008{
2009 pr_info("Tasks in ");
2010 pr_cont_cgroup_path(memcg->css.cgroup);
2011 pr_cont(" are going to be killed due to memory.oom.group set\n");
2012}
2013
2014/**
2015 * folio_memcg_lock - Bind a folio to its memcg.
2016 * @folio: The folio.
2017 *
2018 * This function prevents unlocked LRU folios from being moved to
2019 * another cgroup.
2020 *
2021 * It ensures lifetime of the bound memcg. The caller is responsible
2022 * for the lifetime of the folio.
2023 */
2024void folio_memcg_lock(struct folio *folio)
2025{
2026 struct mem_cgroup *memcg;
2027 unsigned long flags;
2028
2029 /*
2030 * The RCU lock is held throughout the transaction. The fast
2031 * path can get away without acquiring the memcg->move_lock
2032 * because page moving starts with an RCU grace period.
2033 */
2034 rcu_read_lock();
2035
2036 if (mem_cgroup_disabled())
2037 return;
2038again:
2039 memcg = folio_memcg(folio);
2040 if (unlikely(!memcg))
2041 return;
2042
2043#ifdef CONFIG_PROVE_LOCKING
2044 local_irq_save(flags);
2045 might_lock(&memcg->move_lock);
2046 local_irq_restore(flags);
2047#endif
2048
2049 if (atomic_read(&memcg->moving_account) <= 0)
2050 return;
2051
2052 spin_lock_irqsave(&memcg->move_lock, flags);
2053 if (memcg != folio_memcg(folio)) {
2054 spin_unlock_irqrestore(&memcg->move_lock, flags);
2055 goto again;
2056 }
2057
2058 /*
2059 * When charge migration first begins, we can have multiple
2060 * critical sections holding the fast-path RCU lock and one
2061 * holding the slowpath move_lock. Track the task who has the
2062 * move_lock for unlock_page_memcg().
2063 */
2064 memcg->move_lock_task = current;
2065 memcg->move_lock_flags = flags;
2066}
2067
2068void lock_page_memcg(struct page *page)
2069{
2070 folio_memcg_lock(page_folio(page));
2071}
2072
2073static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2074{
2075 if (memcg && memcg->move_lock_task == current) {
2076 unsigned long flags = memcg->move_lock_flags;
2077
2078 memcg->move_lock_task = NULL;
2079 memcg->move_lock_flags = 0;
2080
2081 spin_unlock_irqrestore(&memcg->move_lock, flags);
2082 }
2083
2084 rcu_read_unlock();
2085}
2086
2087/**
2088 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2089 * @folio: The folio.
2090 *
2091 * This releases the binding created by folio_memcg_lock(). This does
2092 * not change the accounting of this folio to its memcg, but it does
2093 * permit others to change it.
2094 */
2095void folio_memcg_unlock(struct folio *folio)
2096{
2097 __folio_memcg_unlock(folio_memcg(folio));
2098}
2099
2100void unlock_page_memcg(struct page *page)
2101{
2102 folio_memcg_unlock(page_folio(page));
2103}
2104
2105struct memcg_stock_pcp {
2106 local_lock_t stock_lock;
2107 struct mem_cgroup *cached; /* this never be root cgroup */
2108 unsigned int nr_pages;
2109
2110#ifdef CONFIG_MEMCG_KMEM
2111 struct obj_cgroup *cached_objcg;
2112 struct pglist_data *cached_pgdat;
2113 unsigned int nr_bytes;
2114 int nr_slab_reclaimable_b;
2115 int nr_slab_unreclaimable_b;
2116#endif
2117
2118 struct work_struct work;
2119 unsigned long flags;
2120#define FLUSHING_CACHED_CHARGE 0
2121};
2122static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2123 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2124};
2125static DEFINE_MUTEX(percpu_charge_mutex);
2126
2127#ifdef CONFIG_MEMCG_KMEM
2128static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2129static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2130 struct mem_cgroup *root_memcg);
2131static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2132
2133#else
2134static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2135{
2136 return NULL;
2137}
2138static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2139 struct mem_cgroup *root_memcg)
2140{
2141 return false;
2142}
2143static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2144{
2145}
2146#endif
2147
2148/**
2149 * consume_stock: Try to consume stocked charge on this cpu.
2150 * @memcg: memcg to consume from.
2151 * @nr_pages: how many pages to charge.
2152 *
2153 * The charges will only happen if @memcg matches the current cpu's memcg
2154 * stock, and at least @nr_pages are available in that stock. Failure to
2155 * service an allocation will refill the stock.
2156 *
2157 * returns true if successful, false otherwise.
2158 */
2159static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2160{
2161 struct memcg_stock_pcp *stock;
2162 unsigned long flags;
2163 bool ret = false;
2164
2165 if (nr_pages > MEMCG_CHARGE_BATCH)
2166 return ret;
2167
2168 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2169
2170 stock = this_cpu_ptr(&memcg_stock);
2171 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2172 stock->nr_pages -= nr_pages;
2173 ret = true;
2174 }
2175
2176 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2177
2178 return ret;
2179}
2180
2181/*
2182 * Returns stocks cached in percpu and reset cached information.
2183 */
2184static void drain_stock(struct memcg_stock_pcp *stock)
2185{
2186 struct mem_cgroup *old = stock->cached;
2187
2188 if (!old)
2189 return;
2190
2191 if (stock->nr_pages) {
2192 page_counter_uncharge(&old->memory, stock->nr_pages);
2193 if (do_memsw_account())
2194 page_counter_uncharge(&old->memsw, stock->nr_pages);
2195 stock->nr_pages = 0;
2196 }
2197
2198 css_put(&old->css);
2199 stock->cached = NULL;
2200}
2201
2202static void drain_local_stock(struct work_struct *dummy)
2203{
2204 struct memcg_stock_pcp *stock;
2205 struct obj_cgroup *old = NULL;
2206 unsigned long flags;
2207
2208 /*
2209 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2210 * drain_stock races is that we always operate on local CPU stock
2211 * here with IRQ disabled
2212 */
2213 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2214
2215 stock = this_cpu_ptr(&memcg_stock);
2216 old = drain_obj_stock(stock);
2217 drain_stock(stock);
2218 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2219
2220 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2221 if (old)
2222 obj_cgroup_put(old);
2223}
2224
2225/*
2226 * Cache charges(val) to local per_cpu area.
2227 * This will be consumed by consume_stock() function, later.
2228 */
2229static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2230{
2231 struct memcg_stock_pcp *stock;
2232
2233 stock = this_cpu_ptr(&memcg_stock);
2234 if (stock->cached != memcg) { /* reset if necessary */
2235 drain_stock(stock);
2236 css_get(&memcg->css);
2237 stock->cached = memcg;
2238 }
2239 stock->nr_pages += nr_pages;
2240
2241 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2242 drain_stock(stock);
2243}
2244
2245static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2246{
2247 unsigned long flags;
2248
2249 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2250 __refill_stock(memcg, nr_pages);
2251 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2252}
2253
2254/*
2255 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2256 * of the hierarchy under it.
2257 */
2258static void drain_all_stock(struct mem_cgroup *root_memcg)
2259{
2260 int cpu, curcpu;
2261
2262 /* If someone's already draining, avoid adding running more workers. */
2263 if (!mutex_trylock(&percpu_charge_mutex))
2264 return;
2265 /*
2266 * Notify other cpus that system-wide "drain" is running
2267 * We do not care about races with the cpu hotplug because cpu down
2268 * as well as workers from this path always operate on the local
2269 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2270 */
2271 migrate_disable();
2272 curcpu = smp_processor_id();
2273 for_each_online_cpu(cpu) {
2274 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2275 struct mem_cgroup *memcg;
2276 bool flush = false;
2277
2278 rcu_read_lock();
2279 memcg = stock->cached;
2280 if (memcg && stock->nr_pages &&
2281 mem_cgroup_is_descendant(memcg, root_memcg))
2282 flush = true;
2283 else if (obj_stock_flush_required(stock, root_memcg))
2284 flush = true;
2285 rcu_read_unlock();
2286
2287 if (flush &&
2288 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2289 if (cpu == curcpu)
2290 drain_local_stock(&stock->work);
2291 else
2292 schedule_work_on(cpu, &stock->work);
2293 }
2294 }
2295 migrate_enable();
2296 mutex_unlock(&percpu_charge_mutex);
2297}
2298
2299static int memcg_hotplug_cpu_dead(unsigned int cpu)
2300{
2301 struct memcg_stock_pcp *stock;
2302
2303 stock = &per_cpu(memcg_stock, cpu);
2304 drain_stock(stock);
2305
2306 return 0;
2307}
2308
2309static unsigned long reclaim_high(struct mem_cgroup *memcg,
2310 unsigned int nr_pages,
2311 gfp_t gfp_mask)
2312{
2313 unsigned long nr_reclaimed = 0;
2314
2315 do {
2316 unsigned long pflags;
2317
2318 if (page_counter_read(&memcg->memory) <=
2319 READ_ONCE(memcg->memory.high))
2320 continue;
2321
2322 memcg_memory_event(memcg, MEMCG_HIGH);
2323
2324 psi_memstall_enter(&pflags);
2325 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2326 gfp_mask, true);
2327 psi_memstall_leave(&pflags);
2328 } while ((memcg = parent_mem_cgroup(memcg)) &&
2329 !mem_cgroup_is_root(memcg));
2330
2331 return nr_reclaimed;
2332}
2333
2334static void high_work_func(struct work_struct *work)
2335{
2336 struct mem_cgroup *memcg;
2337
2338 memcg = container_of(work, struct mem_cgroup, high_work);
2339 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2340}
2341
2342/*
2343 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2344 * enough to still cause a significant slowdown in most cases, while still
2345 * allowing diagnostics and tracing to proceed without becoming stuck.
2346 */
2347#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2348
2349/*
2350 * When calculating the delay, we use these either side of the exponentiation to
2351 * maintain precision and scale to a reasonable number of jiffies (see the table
2352 * below.
2353 *
2354 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2355 * overage ratio to a delay.
2356 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2357 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2358 * to produce a reasonable delay curve.
2359 *
2360 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2361 * reasonable delay curve compared to precision-adjusted overage, not
2362 * penalising heavily at first, but still making sure that growth beyond the
2363 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2364 * example, with a high of 100 megabytes:
2365 *
2366 * +-------+------------------------+
2367 * | usage | time to allocate in ms |
2368 * +-------+------------------------+
2369 * | 100M | 0 |
2370 * | 101M | 6 |
2371 * | 102M | 25 |
2372 * | 103M | 57 |
2373 * | 104M | 102 |
2374 * | 105M | 159 |
2375 * | 106M | 230 |
2376 * | 107M | 313 |
2377 * | 108M | 409 |
2378 * | 109M | 518 |
2379 * | 110M | 639 |
2380 * | 111M | 774 |
2381 * | 112M | 921 |
2382 * | 113M | 1081 |
2383 * | 114M | 1254 |
2384 * | 115M | 1439 |
2385 * | 116M | 1638 |
2386 * | 117M | 1849 |
2387 * | 118M | 2000 |
2388 * | 119M | 2000 |
2389 * | 120M | 2000 |
2390 * +-------+------------------------+
2391 */
2392 #define MEMCG_DELAY_PRECISION_SHIFT 20
2393 #define MEMCG_DELAY_SCALING_SHIFT 14
2394
2395static u64 calculate_overage(unsigned long usage, unsigned long high)
2396{
2397 u64 overage;
2398
2399 if (usage <= high)
2400 return 0;
2401
2402 /*
2403 * Prevent division by 0 in overage calculation by acting as if
2404 * it was a threshold of 1 page
2405 */
2406 high = max(high, 1UL);
2407
2408 overage = usage - high;
2409 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2410 return div64_u64(overage, high);
2411}
2412
2413static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2414{
2415 u64 overage, max_overage = 0;
2416
2417 do {
2418 overage = calculate_overage(page_counter_read(&memcg->memory),
2419 READ_ONCE(memcg->memory.high));
2420 max_overage = max(overage, max_overage);
2421 } while ((memcg = parent_mem_cgroup(memcg)) &&
2422 !mem_cgroup_is_root(memcg));
2423
2424 return max_overage;
2425}
2426
2427static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2428{
2429 u64 overage, max_overage = 0;
2430
2431 do {
2432 overage = calculate_overage(page_counter_read(&memcg->swap),
2433 READ_ONCE(memcg->swap.high));
2434 if (overage)
2435 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2436 max_overage = max(overage, max_overage);
2437 } while ((memcg = parent_mem_cgroup(memcg)) &&
2438 !mem_cgroup_is_root(memcg));
2439
2440 return max_overage;
2441}
2442
2443/*
2444 * Get the number of jiffies that we should penalise a mischievous cgroup which
2445 * is exceeding its memory.high by checking both it and its ancestors.
2446 */
2447static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2448 unsigned int nr_pages,
2449 u64 max_overage)
2450{
2451 unsigned long penalty_jiffies;
2452
2453 if (!max_overage)
2454 return 0;
2455
2456 /*
2457 * We use overage compared to memory.high to calculate the number of
2458 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2459 * fairly lenient on small overages, and increasingly harsh when the
2460 * memcg in question makes it clear that it has no intention of stopping
2461 * its crazy behaviour, so we exponentially increase the delay based on
2462 * overage amount.
2463 */
2464 penalty_jiffies = max_overage * max_overage * HZ;
2465 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2466 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2467
2468 /*
2469 * Factor in the task's own contribution to the overage, such that four
2470 * N-sized allocations are throttled approximately the same as one
2471 * 4N-sized allocation.
2472 *
2473 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2474 * larger the current charge patch is than that.
2475 */
2476 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2477}
2478
2479/*
2480 * Scheduled by try_charge() to be executed from the userland return path
2481 * and reclaims memory over the high limit.
2482 */
2483void mem_cgroup_handle_over_high(void)
2484{
2485 unsigned long penalty_jiffies;
2486 unsigned long pflags;
2487 unsigned long nr_reclaimed;
2488 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2489 int nr_retries = MAX_RECLAIM_RETRIES;
2490 struct mem_cgroup *memcg;
2491 bool in_retry = false;
2492
2493 if (likely(!nr_pages))
2494 return;
2495
2496 memcg = get_mem_cgroup_from_mm(current->mm);
2497 current->memcg_nr_pages_over_high = 0;
2498
2499retry_reclaim:
2500 /*
2501 * The allocating task should reclaim at least the batch size, but for
2502 * subsequent retries we only want to do what's necessary to prevent oom
2503 * or breaching resource isolation.
2504 *
2505 * This is distinct from memory.max or page allocator behaviour because
2506 * memory.high is currently batched, whereas memory.max and the page
2507 * allocator run every time an allocation is made.
2508 */
2509 nr_reclaimed = reclaim_high(memcg,
2510 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2511 GFP_KERNEL);
2512
2513 /*
2514 * memory.high is breached and reclaim is unable to keep up. Throttle
2515 * allocators proactively to slow down excessive growth.
2516 */
2517 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2518 mem_find_max_overage(memcg));
2519
2520 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2521 swap_find_max_overage(memcg));
2522
2523 /*
2524 * Clamp the max delay per usermode return so as to still keep the
2525 * application moving forwards and also permit diagnostics, albeit
2526 * extremely slowly.
2527 */
2528 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2529
2530 /*
2531 * Don't sleep if the amount of jiffies this memcg owes us is so low
2532 * that it's not even worth doing, in an attempt to be nice to those who
2533 * go only a small amount over their memory.high value and maybe haven't
2534 * been aggressively reclaimed enough yet.
2535 */
2536 if (penalty_jiffies <= HZ / 100)
2537 goto out;
2538
2539 /*
2540 * If reclaim is making forward progress but we're still over
2541 * memory.high, we want to encourage that rather than doing allocator
2542 * throttling.
2543 */
2544 if (nr_reclaimed || nr_retries--) {
2545 in_retry = true;
2546 goto retry_reclaim;
2547 }
2548
2549 /*
2550 * If we exit early, we're guaranteed to die (since
2551 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2552 * need to account for any ill-begotten jiffies to pay them off later.
2553 */
2554 psi_memstall_enter(&pflags);
2555 schedule_timeout_killable(penalty_jiffies);
2556 psi_memstall_leave(&pflags);
2557
2558out:
2559 css_put(&memcg->css);
2560}
2561
2562static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2563 unsigned int nr_pages)
2564{
2565 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2566 int nr_retries = MAX_RECLAIM_RETRIES;
2567 struct mem_cgroup *mem_over_limit;
2568 struct page_counter *counter;
2569 unsigned long nr_reclaimed;
2570 bool passed_oom = false;
2571 bool may_swap = true;
2572 bool drained = false;
2573 unsigned long pflags;
2574
2575retry:
2576 if (consume_stock(memcg, nr_pages))
2577 return 0;
2578
2579 if (!do_memsw_account() ||
2580 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2581 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2582 goto done_restock;
2583 if (do_memsw_account())
2584 page_counter_uncharge(&memcg->memsw, batch);
2585 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2586 } else {
2587 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2588 may_swap = false;
2589 }
2590
2591 if (batch > nr_pages) {
2592 batch = nr_pages;
2593 goto retry;
2594 }
2595
2596 /*
2597 * Prevent unbounded recursion when reclaim operations need to
2598 * allocate memory. This might exceed the limits temporarily,
2599 * but we prefer facilitating memory reclaim and getting back
2600 * under the limit over triggering OOM kills in these cases.
2601 */
2602 if (unlikely(current->flags & PF_MEMALLOC))
2603 goto force;
2604
2605 if (unlikely(task_in_memcg_oom(current)))
2606 goto nomem;
2607
2608 if (!gfpflags_allow_blocking(gfp_mask))
2609 goto nomem;
2610
2611 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2612
2613 psi_memstall_enter(&pflags);
2614 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2615 gfp_mask, may_swap);
2616 psi_memstall_leave(&pflags);
2617
2618 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2619 goto retry;
2620
2621 if (!drained) {
2622 drain_all_stock(mem_over_limit);
2623 drained = true;
2624 goto retry;
2625 }
2626
2627 if (gfp_mask & __GFP_NORETRY)
2628 goto nomem;
2629 /*
2630 * Even though the limit is exceeded at this point, reclaim
2631 * may have been able to free some pages. Retry the charge
2632 * before killing the task.
2633 *
2634 * Only for regular pages, though: huge pages are rather
2635 * unlikely to succeed so close to the limit, and we fall back
2636 * to regular pages anyway in case of failure.
2637 */
2638 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2639 goto retry;
2640 /*
2641 * At task move, charge accounts can be doubly counted. So, it's
2642 * better to wait until the end of task_move if something is going on.
2643 */
2644 if (mem_cgroup_wait_acct_move(mem_over_limit))
2645 goto retry;
2646
2647 if (nr_retries--)
2648 goto retry;
2649
2650 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2651 goto nomem;
2652
2653 /* Avoid endless loop for tasks bypassed by the oom killer */
2654 if (passed_oom && task_is_dying())
2655 goto nomem;
2656
2657 /*
2658 * keep retrying as long as the memcg oom killer is able to make
2659 * a forward progress or bypass the charge if the oom killer
2660 * couldn't make any progress.
2661 */
2662 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2663 get_order(nr_pages * PAGE_SIZE))) {
2664 passed_oom = true;
2665 nr_retries = MAX_RECLAIM_RETRIES;
2666 goto retry;
2667 }
2668nomem:
2669 /*
2670 * Memcg doesn't have a dedicated reserve for atomic
2671 * allocations. But like the global atomic pool, we need to
2672 * put the burden of reclaim on regular allocation requests
2673 * and let these go through as privileged allocations.
2674 */
2675 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2676 return -ENOMEM;
2677force:
2678 /*
2679 * The allocation either can't fail or will lead to more memory
2680 * being freed very soon. Allow memory usage go over the limit
2681 * temporarily by force charging it.
2682 */
2683 page_counter_charge(&memcg->memory, nr_pages);
2684 if (do_memsw_account())
2685 page_counter_charge(&memcg->memsw, nr_pages);
2686
2687 return 0;
2688
2689done_restock:
2690 if (batch > nr_pages)
2691 refill_stock(memcg, batch - nr_pages);
2692
2693 /*
2694 * If the hierarchy is above the normal consumption range, schedule
2695 * reclaim on returning to userland. We can perform reclaim here
2696 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2697 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2698 * not recorded as it most likely matches current's and won't
2699 * change in the meantime. As high limit is checked again before
2700 * reclaim, the cost of mismatch is negligible.
2701 */
2702 do {
2703 bool mem_high, swap_high;
2704
2705 mem_high = page_counter_read(&memcg->memory) >
2706 READ_ONCE(memcg->memory.high);
2707 swap_high = page_counter_read(&memcg->swap) >
2708 READ_ONCE(memcg->swap.high);
2709
2710 /* Don't bother a random interrupted task */
2711 if (!in_task()) {
2712 if (mem_high) {
2713 schedule_work(&memcg->high_work);
2714 break;
2715 }
2716 continue;
2717 }
2718
2719 if (mem_high || swap_high) {
2720 /*
2721 * The allocating tasks in this cgroup will need to do
2722 * reclaim or be throttled to prevent further growth
2723 * of the memory or swap footprints.
2724 *
2725 * Target some best-effort fairness between the tasks,
2726 * and distribute reclaim work and delay penalties
2727 * based on how much each task is actually allocating.
2728 */
2729 current->memcg_nr_pages_over_high += batch;
2730 set_notify_resume(current);
2731 break;
2732 }
2733 } while ((memcg = parent_mem_cgroup(memcg)));
2734
2735 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2736 !(current->flags & PF_MEMALLOC) &&
2737 gfpflags_allow_blocking(gfp_mask)) {
2738 mem_cgroup_handle_over_high();
2739 }
2740 return 0;
2741}
2742
2743static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2744 unsigned int nr_pages)
2745{
2746 if (mem_cgroup_is_root(memcg))
2747 return 0;
2748
2749 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2750}
2751
2752static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2753{
2754 if (mem_cgroup_is_root(memcg))
2755 return;
2756
2757 page_counter_uncharge(&memcg->memory, nr_pages);
2758 if (do_memsw_account())
2759 page_counter_uncharge(&memcg->memsw, nr_pages);
2760}
2761
2762static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2763{
2764 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2765 /*
2766 * Any of the following ensures page's memcg stability:
2767 *
2768 * - the page lock
2769 * - LRU isolation
2770 * - lock_page_memcg()
2771 * - exclusive reference
2772 */
2773 folio->memcg_data = (unsigned long)memcg;
2774}
2775
2776#ifdef CONFIG_MEMCG_KMEM
2777/*
2778 * The allocated objcg pointers array is not accounted directly.
2779 * Moreover, it should not come from DMA buffer and is not readily
2780 * reclaimable. So those GFP bits should be masked off.
2781 */
2782#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2783
2784/*
2785 * mod_objcg_mlstate() may be called with irq enabled, so
2786 * mod_memcg_lruvec_state() should be used.
2787 */
2788static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2789 struct pglist_data *pgdat,
2790 enum node_stat_item idx, int nr)
2791{
2792 struct mem_cgroup *memcg;
2793 struct lruvec *lruvec;
2794
2795 rcu_read_lock();
2796 memcg = obj_cgroup_memcg(objcg);
2797 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2798 mod_memcg_lruvec_state(lruvec, idx, nr);
2799 rcu_read_unlock();
2800}
2801
2802int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2803 gfp_t gfp, bool new_slab)
2804{
2805 unsigned int objects = objs_per_slab(s, slab);
2806 unsigned long memcg_data;
2807 void *vec;
2808
2809 gfp &= ~OBJCGS_CLEAR_MASK;
2810 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2811 slab_nid(slab));
2812 if (!vec)
2813 return -ENOMEM;
2814
2815 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2816 if (new_slab) {
2817 /*
2818 * If the slab is brand new and nobody can yet access its
2819 * memcg_data, no synchronization is required and memcg_data can
2820 * be simply assigned.
2821 */
2822 slab->memcg_data = memcg_data;
2823 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2824 /*
2825 * If the slab is already in use, somebody can allocate and
2826 * assign obj_cgroups in parallel. In this case the existing
2827 * objcg vector should be reused.
2828 */
2829 kfree(vec);
2830 return 0;
2831 }
2832
2833 kmemleak_not_leak(vec);
2834 return 0;
2835}
2836
2837/*
2838 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2839 *
2840 * A passed kernel object can be a slab object or a generic kernel page, so
2841 * different mechanisms for getting the memory cgroup pointer should be used.
2842 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2843 * can not know for sure how the kernel object is implemented.
2844 * mem_cgroup_from_obj() can be safely used in such cases.
2845 *
2846 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2847 * cgroup_mutex, etc.
2848 */
2849struct mem_cgroup *mem_cgroup_from_obj(void *p)
2850{
2851 struct folio *folio;
2852
2853 if (mem_cgroup_disabled())
2854 return NULL;
2855
2856 folio = virt_to_folio(p);
2857
2858 /*
2859 * Slab objects are accounted individually, not per-page.
2860 * Memcg membership data for each individual object is saved in
2861 * slab->memcg_data.
2862 */
2863 if (folio_test_slab(folio)) {
2864 struct obj_cgroup **objcgs;
2865 struct slab *slab;
2866 unsigned int off;
2867
2868 slab = folio_slab(folio);
2869 objcgs = slab_objcgs(slab);
2870 if (!objcgs)
2871 return NULL;
2872
2873 off = obj_to_index(slab->slab_cache, slab, p);
2874 if (objcgs[off])
2875 return obj_cgroup_memcg(objcgs[off]);
2876
2877 return NULL;
2878 }
2879
2880 /*
2881 * page_memcg_check() is used here, because in theory we can encounter
2882 * a folio where the slab flag has been cleared already, but
2883 * slab->memcg_data has not been freed yet
2884 * page_memcg_check(page) will guarantee that a proper memory
2885 * cgroup pointer or NULL will be returned.
2886 */
2887 return page_memcg_check(folio_page(folio, 0));
2888}
2889
2890__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2891{
2892 struct obj_cgroup *objcg = NULL;
2893 struct mem_cgroup *memcg;
2894
2895 if (memcg_kmem_bypass())
2896 return NULL;
2897
2898 rcu_read_lock();
2899 if (unlikely(active_memcg()))
2900 memcg = active_memcg();
2901 else
2902 memcg = mem_cgroup_from_task(current);
2903
2904 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2905 objcg = rcu_dereference(memcg->objcg);
2906 if (objcg && obj_cgroup_tryget(objcg))
2907 break;
2908 objcg = NULL;
2909 }
2910 rcu_read_unlock();
2911
2912 return objcg;
2913}
2914
2915static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2916{
2917 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2918 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
2919 if (nr_pages > 0)
2920 page_counter_charge(&memcg->kmem, nr_pages);
2921 else
2922 page_counter_uncharge(&memcg->kmem, -nr_pages);
2923 }
2924}
2925
2926
2927/*
2928 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2929 * @objcg: object cgroup to uncharge
2930 * @nr_pages: number of pages to uncharge
2931 */
2932static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2933 unsigned int nr_pages)
2934{
2935 struct mem_cgroup *memcg;
2936
2937 memcg = get_mem_cgroup_from_objcg(objcg);
2938
2939 memcg_account_kmem(memcg, -nr_pages);
2940 refill_stock(memcg, nr_pages);
2941
2942 css_put(&memcg->css);
2943}
2944
2945/*
2946 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2947 * @objcg: object cgroup to charge
2948 * @gfp: reclaim mode
2949 * @nr_pages: number of pages to charge
2950 *
2951 * Returns 0 on success, an error code on failure.
2952 */
2953static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2954 unsigned int nr_pages)
2955{
2956 struct mem_cgroup *memcg;
2957 int ret;
2958
2959 memcg = get_mem_cgroup_from_objcg(objcg);
2960
2961 ret = try_charge_memcg(memcg, gfp, nr_pages);
2962 if (ret)
2963 goto out;
2964
2965 memcg_account_kmem(memcg, nr_pages);
2966out:
2967 css_put(&memcg->css);
2968
2969 return ret;
2970}
2971
2972/**
2973 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2974 * @page: page to charge
2975 * @gfp: reclaim mode
2976 * @order: allocation order
2977 *
2978 * Returns 0 on success, an error code on failure.
2979 */
2980int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2981{
2982 struct obj_cgroup *objcg;
2983 int ret = 0;
2984
2985 objcg = get_obj_cgroup_from_current();
2986 if (objcg) {
2987 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2988 if (!ret) {
2989 page->memcg_data = (unsigned long)objcg |
2990 MEMCG_DATA_KMEM;
2991 return 0;
2992 }
2993 obj_cgroup_put(objcg);
2994 }
2995 return ret;
2996}
2997
2998/**
2999 * __memcg_kmem_uncharge_page: uncharge a kmem page
3000 * @page: page to uncharge
3001 * @order: allocation order
3002 */
3003void __memcg_kmem_uncharge_page(struct page *page, int order)
3004{
3005 struct folio *folio = page_folio(page);
3006 struct obj_cgroup *objcg;
3007 unsigned int nr_pages = 1 << order;
3008
3009 if (!folio_memcg_kmem(folio))
3010 return;
3011
3012 objcg = __folio_objcg(folio);
3013 obj_cgroup_uncharge_pages(objcg, nr_pages);
3014 folio->memcg_data = 0;
3015 obj_cgroup_put(objcg);
3016}
3017
3018void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3019 enum node_stat_item idx, int nr)
3020{
3021 struct memcg_stock_pcp *stock;
3022 struct obj_cgroup *old = NULL;
3023 unsigned long flags;
3024 int *bytes;
3025
3026 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3027 stock = this_cpu_ptr(&memcg_stock);
3028
3029 /*
3030 * Save vmstat data in stock and skip vmstat array update unless
3031 * accumulating over a page of vmstat data or when pgdat or idx
3032 * changes.
3033 */
3034 if (stock->cached_objcg != objcg) {
3035 old = drain_obj_stock(stock);
3036 obj_cgroup_get(objcg);
3037 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3038 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3039 stock->cached_objcg = objcg;
3040 stock->cached_pgdat = pgdat;
3041 } else if (stock->cached_pgdat != pgdat) {
3042 /* Flush the existing cached vmstat data */
3043 struct pglist_data *oldpg = stock->cached_pgdat;
3044
3045 if (stock->nr_slab_reclaimable_b) {
3046 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3047 stock->nr_slab_reclaimable_b);
3048 stock->nr_slab_reclaimable_b = 0;
3049 }
3050 if (stock->nr_slab_unreclaimable_b) {
3051 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3052 stock->nr_slab_unreclaimable_b);
3053 stock->nr_slab_unreclaimable_b = 0;
3054 }
3055 stock->cached_pgdat = pgdat;
3056 }
3057
3058 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3059 : &stock->nr_slab_unreclaimable_b;
3060 /*
3061 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3062 * cached locally at least once before pushing it out.
3063 */
3064 if (!*bytes) {
3065 *bytes = nr;
3066 nr = 0;
3067 } else {
3068 *bytes += nr;
3069 if (abs(*bytes) > PAGE_SIZE) {
3070 nr = *bytes;
3071 *bytes = 0;
3072 } else {
3073 nr = 0;
3074 }
3075 }
3076 if (nr)
3077 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3078
3079 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3080 if (old)
3081 obj_cgroup_put(old);
3082}
3083
3084static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3085{
3086 struct memcg_stock_pcp *stock;
3087 unsigned long flags;
3088 bool ret = false;
3089
3090 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3091
3092 stock = this_cpu_ptr(&memcg_stock);
3093 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3094 stock->nr_bytes -= nr_bytes;
3095 ret = true;
3096 }
3097
3098 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3099
3100 return ret;
3101}
3102
3103static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3104{
3105 struct obj_cgroup *old = stock->cached_objcg;
3106
3107 if (!old)
3108 return NULL;
3109
3110 if (stock->nr_bytes) {
3111 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3112 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3113
3114 if (nr_pages) {
3115 struct mem_cgroup *memcg;
3116
3117 memcg = get_mem_cgroup_from_objcg(old);
3118
3119 memcg_account_kmem(memcg, -nr_pages);
3120 __refill_stock(memcg, nr_pages);
3121
3122 css_put(&memcg->css);
3123 }
3124
3125 /*
3126 * The leftover is flushed to the centralized per-memcg value.
3127 * On the next attempt to refill obj stock it will be moved
3128 * to a per-cpu stock (probably, on an other CPU), see
3129 * refill_obj_stock().
3130 *
3131 * How often it's flushed is a trade-off between the memory
3132 * limit enforcement accuracy and potential CPU contention,
3133 * so it might be changed in the future.
3134 */
3135 atomic_add(nr_bytes, &old->nr_charged_bytes);
3136 stock->nr_bytes = 0;
3137 }
3138
3139 /*
3140 * Flush the vmstat data in current stock
3141 */
3142 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3143 if (stock->nr_slab_reclaimable_b) {
3144 mod_objcg_mlstate(old, stock->cached_pgdat,
3145 NR_SLAB_RECLAIMABLE_B,
3146 stock->nr_slab_reclaimable_b);
3147 stock->nr_slab_reclaimable_b = 0;
3148 }
3149 if (stock->nr_slab_unreclaimable_b) {
3150 mod_objcg_mlstate(old, stock->cached_pgdat,
3151 NR_SLAB_UNRECLAIMABLE_B,
3152 stock->nr_slab_unreclaimable_b);
3153 stock->nr_slab_unreclaimable_b = 0;
3154 }
3155 stock->cached_pgdat = NULL;
3156 }
3157
3158 stock->cached_objcg = NULL;
3159 /*
3160 * The `old' objects needs to be released by the caller via
3161 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3162 */
3163 return old;
3164}
3165
3166static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3167 struct mem_cgroup *root_memcg)
3168{
3169 struct mem_cgroup *memcg;
3170
3171 if (stock->cached_objcg) {
3172 memcg = obj_cgroup_memcg(stock->cached_objcg);
3173 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3174 return true;
3175 }
3176
3177 return false;
3178}
3179
3180static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3181 bool allow_uncharge)
3182{
3183 struct memcg_stock_pcp *stock;
3184 struct obj_cgroup *old = NULL;
3185 unsigned long flags;
3186 unsigned int nr_pages = 0;
3187
3188 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3189
3190 stock = this_cpu_ptr(&memcg_stock);
3191 if (stock->cached_objcg != objcg) { /* reset if necessary */
3192 old = drain_obj_stock(stock);
3193 obj_cgroup_get(objcg);
3194 stock->cached_objcg = objcg;
3195 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3196 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3197 allow_uncharge = true; /* Allow uncharge when objcg changes */
3198 }
3199 stock->nr_bytes += nr_bytes;
3200
3201 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3202 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3203 stock->nr_bytes &= (PAGE_SIZE - 1);
3204 }
3205
3206 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3207 if (old)
3208 obj_cgroup_put(old);
3209
3210 if (nr_pages)
3211 obj_cgroup_uncharge_pages(objcg, nr_pages);
3212}
3213
3214int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3215{
3216 unsigned int nr_pages, nr_bytes;
3217 int ret;
3218
3219 if (consume_obj_stock(objcg, size))
3220 return 0;
3221
3222 /*
3223 * In theory, objcg->nr_charged_bytes can have enough
3224 * pre-charged bytes to satisfy the allocation. However,
3225 * flushing objcg->nr_charged_bytes requires two atomic
3226 * operations, and objcg->nr_charged_bytes can't be big.
3227 * The shared objcg->nr_charged_bytes can also become a
3228 * performance bottleneck if all tasks of the same memcg are
3229 * trying to update it. So it's better to ignore it and try
3230 * grab some new pages. The stock's nr_bytes will be flushed to
3231 * objcg->nr_charged_bytes later on when objcg changes.
3232 *
3233 * The stock's nr_bytes may contain enough pre-charged bytes
3234 * to allow one less page from being charged, but we can't rely
3235 * on the pre-charged bytes not being changed outside of
3236 * consume_obj_stock() or refill_obj_stock(). So ignore those
3237 * pre-charged bytes as well when charging pages. To avoid a
3238 * page uncharge right after a page charge, we set the
3239 * allow_uncharge flag to false when calling refill_obj_stock()
3240 * to temporarily allow the pre-charged bytes to exceed the page
3241 * size limit. The maximum reachable value of the pre-charged
3242 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3243 * race.
3244 */
3245 nr_pages = size >> PAGE_SHIFT;
3246 nr_bytes = size & (PAGE_SIZE - 1);
3247
3248 if (nr_bytes)
3249 nr_pages += 1;
3250
3251 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3252 if (!ret && nr_bytes)
3253 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3254
3255 return ret;
3256}
3257
3258void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3259{
3260 refill_obj_stock(objcg, size, true);
3261}
3262
3263#endif /* CONFIG_MEMCG_KMEM */
3264
3265/*
3266 * Because page_memcg(head) is not set on tails, set it now.
3267 */
3268void split_page_memcg(struct page *head, unsigned int nr)
3269{
3270 struct folio *folio = page_folio(head);
3271 struct mem_cgroup *memcg = folio_memcg(folio);
3272 int i;
3273
3274 if (mem_cgroup_disabled() || !memcg)
3275 return;
3276
3277 for (i = 1; i < nr; i++)
3278 folio_page(folio, i)->memcg_data = folio->memcg_data;
3279
3280 if (folio_memcg_kmem(folio))
3281 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3282 else
3283 css_get_many(&memcg->css, nr - 1);
3284}
3285
3286#ifdef CONFIG_MEMCG_SWAP
3287/**
3288 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3289 * @entry: swap entry to be moved
3290 * @from: mem_cgroup which the entry is moved from
3291 * @to: mem_cgroup which the entry is moved to
3292 *
3293 * It succeeds only when the swap_cgroup's record for this entry is the same
3294 * as the mem_cgroup's id of @from.
3295 *
3296 * Returns 0 on success, -EINVAL on failure.
3297 *
3298 * The caller must have charged to @to, IOW, called page_counter_charge() about
3299 * both res and memsw, and called css_get().
3300 */
3301static int mem_cgroup_move_swap_account(swp_entry_t entry,
3302 struct mem_cgroup *from, struct mem_cgroup *to)
3303{
3304 unsigned short old_id, new_id;
3305
3306 old_id = mem_cgroup_id(from);
3307 new_id = mem_cgroup_id(to);
3308
3309 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3310 mod_memcg_state(from, MEMCG_SWAP, -1);
3311 mod_memcg_state(to, MEMCG_SWAP, 1);
3312 return 0;
3313 }
3314 return -EINVAL;
3315}
3316#else
3317static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3318 struct mem_cgroup *from, struct mem_cgroup *to)
3319{
3320 return -EINVAL;
3321}
3322#endif
3323
3324static DEFINE_MUTEX(memcg_max_mutex);
3325
3326static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3327 unsigned long max, bool memsw)
3328{
3329 bool enlarge = false;
3330 bool drained = false;
3331 int ret;
3332 bool limits_invariant;
3333 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3334
3335 do {
3336 if (signal_pending(current)) {
3337 ret = -EINTR;
3338 break;
3339 }
3340
3341 mutex_lock(&memcg_max_mutex);
3342 /*
3343 * Make sure that the new limit (memsw or memory limit) doesn't
3344 * break our basic invariant rule memory.max <= memsw.max.
3345 */
3346 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3347 max <= memcg->memsw.max;
3348 if (!limits_invariant) {
3349 mutex_unlock(&memcg_max_mutex);
3350 ret = -EINVAL;
3351 break;
3352 }
3353 if (max > counter->max)
3354 enlarge = true;
3355 ret = page_counter_set_max(counter, max);
3356 mutex_unlock(&memcg_max_mutex);
3357
3358 if (!ret)
3359 break;
3360
3361 if (!drained) {
3362 drain_all_stock(memcg);
3363 drained = true;
3364 continue;
3365 }
3366
3367 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3368 GFP_KERNEL, !memsw)) {
3369 ret = -EBUSY;
3370 break;
3371 }
3372 } while (true);
3373
3374 if (!ret && enlarge)
3375 memcg_oom_recover(memcg);
3376
3377 return ret;
3378}
3379
3380unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3381 gfp_t gfp_mask,
3382 unsigned long *total_scanned)
3383{
3384 unsigned long nr_reclaimed = 0;
3385 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3386 unsigned long reclaimed;
3387 int loop = 0;
3388 struct mem_cgroup_tree_per_node *mctz;
3389 unsigned long excess;
3390 unsigned long nr_scanned;
3391
3392 if (order > 0)
3393 return 0;
3394
3395 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3396
3397 /*
3398 * Do not even bother to check the largest node if the root
3399 * is empty. Do it lockless to prevent lock bouncing. Races
3400 * are acceptable as soft limit is best effort anyway.
3401 */
3402 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3403 return 0;
3404
3405 /*
3406 * This loop can run a while, specially if mem_cgroup's continuously
3407 * keep exceeding their soft limit and putting the system under
3408 * pressure
3409 */
3410 do {
3411 if (next_mz)
3412 mz = next_mz;
3413 else
3414 mz = mem_cgroup_largest_soft_limit_node(mctz);
3415 if (!mz)
3416 break;
3417
3418 nr_scanned = 0;
3419 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3420 gfp_mask, &nr_scanned);
3421 nr_reclaimed += reclaimed;
3422 *total_scanned += nr_scanned;
3423 spin_lock_irq(&mctz->lock);
3424 __mem_cgroup_remove_exceeded(mz, mctz);
3425
3426 /*
3427 * If we failed to reclaim anything from this memory cgroup
3428 * it is time to move on to the next cgroup
3429 */
3430 next_mz = NULL;
3431 if (!reclaimed)
3432 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3433
3434 excess = soft_limit_excess(mz->memcg);
3435 /*
3436 * One school of thought says that we should not add
3437 * back the node to the tree if reclaim returns 0.
3438 * But our reclaim could return 0, simply because due
3439 * to priority we are exposing a smaller subset of
3440 * memory to reclaim from. Consider this as a longer
3441 * term TODO.
3442 */
3443 /* If excess == 0, no tree ops */
3444 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3445 spin_unlock_irq(&mctz->lock);
3446 css_put(&mz->memcg->css);
3447 loop++;
3448 /*
3449 * Could not reclaim anything and there are no more
3450 * mem cgroups to try or we seem to be looping without
3451 * reclaiming anything.
3452 */
3453 if (!nr_reclaimed &&
3454 (next_mz == NULL ||
3455 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3456 break;
3457 } while (!nr_reclaimed);
3458 if (next_mz)
3459 css_put(&next_mz->memcg->css);
3460 return nr_reclaimed;
3461}
3462
3463/*
3464 * Reclaims as many pages from the given memcg as possible.
3465 *
3466 * Caller is responsible for holding css reference for memcg.
3467 */
3468static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3469{
3470 int nr_retries = MAX_RECLAIM_RETRIES;
3471
3472 /* we call try-to-free pages for make this cgroup empty */
3473 lru_add_drain_all();
3474
3475 drain_all_stock(memcg);
3476
3477 /* try to free all pages in this cgroup */
3478 while (nr_retries && page_counter_read(&memcg->memory)) {
3479 if (signal_pending(current))
3480 return -EINTR;
3481
3482 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true))
3483 nr_retries--;
3484 }
3485
3486 return 0;
3487}
3488
3489static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3490 char *buf, size_t nbytes,
3491 loff_t off)
3492{
3493 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3494
3495 if (mem_cgroup_is_root(memcg))
3496 return -EINVAL;
3497 return mem_cgroup_force_empty(memcg) ?: nbytes;
3498}
3499
3500static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3501 struct cftype *cft)
3502{
3503 return 1;
3504}
3505
3506static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3507 struct cftype *cft, u64 val)
3508{
3509 if (val == 1)
3510 return 0;
3511
3512 pr_warn_once("Non-hierarchical mode is deprecated. "
3513 "Please report your usecase to linux-mm@kvack.org if you "
3514 "depend on this functionality.\n");
3515
3516 return -EINVAL;
3517}
3518
3519static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3520{
3521 unsigned long val;
3522
3523 if (mem_cgroup_is_root(memcg)) {
3524 mem_cgroup_flush_stats();
3525 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3526 memcg_page_state(memcg, NR_ANON_MAPPED);
3527 if (swap)
3528 val += memcg_page_state(memcg, MEMCG_SWAP);
3529 } else {
3530 if (!swap)
3531 val = page_counter_read(&memcg->memory);
3532 else
3533 val = page_counter_read(&memcg->memsw);
3534 }
3535 return val;
3536}
3537
3538enum {
3539 RES_USAGE,
3540 RES_LIMIT,
3541 RES_MAX_USAGE,
3542 RES_FAILCNT,
3543 RES_SOFT_LIMIT,
3544};
3545
3546static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3547 struct cftype *cft)
3548{
3549 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3550 struct page_counter *counter;
3551
3552 switch (MEMFILE_TYPE(cft->private)) {
3553 case _MEM:
3554 counter = &memcg->memory;
3555 break;
3556 case _MEMSWAP:
3557 counter = &memcg->memsw;
3558 break;
3559 case _KMEM:
3560 counter = &memcg->kmem;
3561 break;
3562 case _TCP:
3563 counter = &memcg->tcpmem;
3564 break;
3565 default:
3566 BUG();
3567 }
3568
3569 switch (MEMFILE_ATTR(cft->private)) {
3570 case RES_USAGE:
3571 if (counter == &memcg->memory)
3572 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3573 if (counter == &memcg->memsw)
3574 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3575 return (u64)page_counter_read(counter) * PAGE_SIZE;
3576 case RES_LIMIT:
3577 return (u64)counter->max * PAGE_SIZE;
3578 case RES_MAX_USAGE:
3579 return (u64)counter->watermark * PAGE_SIZE;
3580 case RES_FAILCNT:
3581 return counter->failcnt;
3582 case RES_SOFT_LIMIT:
3583 return (u64)memcg->soft_limit * PAGE_SIZE;
3584 default:
3585 BUG();
3586 }
3587}
3588
3589#ifdef CONFIG_MEMCG_KMEM
3590static int memcg_online_kmem(struct mem_cgroup *memcg)
3591{
3592 struct obj_cgroup *objcg;
3593
3594 if (cgroup_memory_nokmem)
3595 return 0;
3596
3597 if (unlikely(mem_cgroup_is_root(memcg)))
3598 return 0;
3599
3600 objcg = obj_cgroup_alloc();
3601 if (!objcg)
3602 return -ENOMEM;
3603
3604 objcg->memcg = memcg;
3605 rcu_assign_pointer(memcg->objcg, objcg);
3606
3607 static_branch_enable(&memcg_kmem_enabled_key);
3608
3609 memcg->kmemcg_id = memcg->id.id;
3610
3611 return 0;
3612}
3613
3614static void memcg_offline_kmem(struct mem_cgroup *memcg)
3615{
3616 struct mem_cgroup *parent;
3617
3618 if (cgroup_memory_nokmem)
3619 return;
3620
3621 if (unlikely(mem_cgroup_is_root(memcg)))
3622 return;
3623
3624 parent = parent_mem_cgroup(memcg);
3625 if (!parent)
3626 parent = root_mem_cgroup;
3627
3628 memcg_reparent_objcgs(memcg, parent);
3629
3630 /*
3631 * After we have finished memcg_reparent_objcgs(), all list_lrus
3632 * corresponding to this cgroup are guaranteed to remain empty.
3633 * The ordering is imposed by list_lru_node->lock taken by
3634 * memcg_reparent_list_lrus().
3635 */
3636 memcg_reparent_list_lrus(memcg, parent);
3637}
3638#else
3639static int memcg_online_kmem(struct mem_cgroup *memcg)
3640{
3641 return 0;
3642}
3643static void memcg_offline_kmem(struct mem_cgroup *memcg)
3644{
3645}
3646#endif /* CONFIG_MEMCG_KMEM */
3647
3648static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3649{
3650 int ret;
3651
3652 mutex_lock(&memcg_max_mutex);
3653
3654 ret = page_counter_set_max(&memcg->tcpmem, max);
3655 if (ret)
3656 goto out;
3657
3658 if (!memcg->tcpmem_active) {
3659 /*
3660 * The active flag needs to be written after the static_key
3661 * update. This is what guarantees that the socket activation
3662 * function is the last one to run. See mem_cgroup_sk_alloc()
3663 * for details, and note that we don't mark any socket as
3664 * belonging to this memcg until that flag is up.
3665 *
3666 * We need to do this, because static_keys will span multiple
3667 * sites, but we can't control their order. If we mark a socket
3668 * as accounted, but the accounting functions are not patched in
3669 * yet, we'll lose accounting.
3670 *
3671 * We never race with the readers in mem_cgroup_sk_alloc(),
3672 * because when this value change, the code to process it is not
3673 * patched in yet.
3674 */
3675 static_branch_inc(&memcg_sockets_enabled_key);
3676 memcg->tcpmem_active = true;
3677 }
3678out:
3679 mutex_unlock(&memcg_max_mutex);
3680 return ret;
3681}
3682
3683/*
3684 * The user of this function is...
3685 * RES_LIMIT.
3686 */
3687static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3688 char *buf, size_t nbytes, loff_t off)
3689{
3690 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3691 unsigned long nr_pages;
3692 int ret;
3693
3694 buf = strstrip(buf);
3695 ret = page_counter_memparse(buf, "-1", &nr_pages);
3696 if (ret)
3697 return ret;
3698
3699 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3700 case RES_LIMIT:
3701 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3702 ret = -EINVAL;
3703 break;
3704 }
3705 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3706 case _MEM:
3707 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3708 break;
3709 case _MEMSWAP:
3710 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3711 break;
3712 case _KMEM:
3713 /* kmem.limit_in_bytes is deprecated. */
3714 ret = -EOPNOTSUPP;
3715 break;
3716 case _TCP:
3717 ret = memcg_update_tcp_max(memcg, nr_pages);
3718 break;
3719 }
3720 break;
3721 case RES_SOFT_LIMIT:
3722 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3723 ret = -EOPNOTSUPP;
3724 } else {
3725 memcg->soft_limit = nr_pages;
3726 ret = 0;
3727 }
3728 break;
3729 }
3730 return ret ?: nbytes;
3731}
3732
3733static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3734 size_t nbytes, loff_t off)
3735{
3736 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3737 struct page_counter *counter;
3738
3739 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3740 case _MEM:
3741 counter = &memcg->memory;
3742 break;
3743 case _MEMSWAP:
3744 counter = &memcg->memsw;
3745 break;
3746 case _KMEM:
3747 counter = &memcg->kmem;
3748 break;
3749 case _TCP:
3750 counter = &memcg->tcpmem;
3751 break;
3752 default:
3753 BUG();
3754 }
3755
3756 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3757 case RES_MAX_USAGE:
3758 page_counter_reset_watermark(counter);
3759 break;
3760 case RES_FAILCNT:
3761 counter->failcnt = 0;
3762 break;
3763 default:
3764 BUG();
3765 }
3766
3767 return nbytes;
3768}
3769
3770static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3771 struct cftype *cft)
3772{
3773 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3774}
3775
3776#ifdef CONFIG_MMU
3777static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3778 struct cftype *cft, u64 val)
3779{
3780 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3781
3782 if (val & ~MOVE_MASK)
3783 return -EINVAL;
3784
3785 /*
3786 * No kind of locking is needed in here, because ->can_attach() will
3787 * check this value once in the beginning of the process, and then carry
3788 * on with stale data. This means that changes to this value will only
3789 * affect task migrations starting after the change.
3790 */
3791 memcg->move_charge_at_immigrate = val;
3792 return 0;
3793}
3794#else
3795static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3796 struct cftype *cft, u64 val)
3797{
3798 return -ENOSYS;
3799}
3800#endif
3801
3802#ifdef CONFIG_NUMA
3803
3804#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3805#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3806#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3807
3808static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3809 int nid, unsigned int lru_mask, bool tree)
3810{
3811 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3812 unsigned long nr = 0;
3813 enum lru_list lru;
3814
3815 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3816
3817 for_each_lru(lru) {
3818 if (!(BIT(lru) & lru_mask))
3819 continue;
3820 if (tree)
3821 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3822 else
3823 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3824 }
3825 return nr;
3826}
3827
3828static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3829 unsigned int lru_mask,
3830 bool tree)
3831{
3832 unsigned long nr = 0;
3833 enum lru_list lru;
3834
3835 for_each_lru(lru) {
3836 if (!(BIT(lru) & lru_mask))
3837 continue;
3838 if (tree)
3839 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3840 else
3841 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3842 }
3843 return nr;
3844}
3845
3846static int memcg_numa_stat_show(struct seq_file *m, void *v)
3847{
3848 struct numa_stat {
3849 const char *name;
3850 unsigned int lru_mask;
3851 };
3852
3853 static const struct numa_stat stats[] = {
3854 { "total", LRU_ALL },
3855 { "file", LRU_ALL_FILE },
3856 { "anon", LRU_ALL_ANON },
3857 { "unevictable", BIT(LRU_UNEVICTABLE) },
3858 };
3859 const struct numa_stat *stat;
3860 int nid;
3861 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3862
3863 mem_cgroup_flush_stats();
3864
3865 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3866 seq_printf(m, "%s=%lu", stat->name,
3867 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3868 false));
3869 for_each_node_state(nid, N_MEMORY)
3870 seq_printf(m, " N%d=%lu", nid,
3871 mem_cgroup_node_nr_lru_pages(memcg, nid,
3872 stat->lru_mask, false));
3873 seq_putc(m, '\n');
3874 }
3875
3876 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3877
3878 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3879 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3880 true));
3881 for_each_node_state(nid, N_MEMORY)
3882 seq_printf(m, " N%d=%lu", nid,
3883 mem_cgroup_node_nr_lru_pages(memcg, nid,
3884 stat->lru_mask, true));
3885 seq_putc(m, '\n');
3886 }
3887
3888 return 0;
3889}
3890#endif /* CONFIG_NUMA */
3891
3892static const unsigned int memcg1_stats[] = {
3893 NR_FILE_PAGES,
3894 NR_ANON_MAPPED,
3895#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3896 NR_ANON_THPS,
3897#endif
3898 NR_SHMEM,
3899 NR_FILE_MAPPED,
3900 NR_FILE_DIRTY,
3901 NR_WRITEBACK,
3902 MEMCG_SWAP,
3903};
3904
3905static const char *const memcg1_stat_names[] = {
3906 "cache",
3907 "rss",
3908#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3909 "rss_huge",
3910#endif
3911 "shmem",
3912 "mapped_file",
3913 "dirty",
3914 "writeback",
3915 "swap",
3916};
3917
3918/* Universal VM events cgroup1 shows, original sort order */
3919static const unsigned int memcg1_events[] = {
3920 PGPGIN,
3921 PGPGOUT,
3922 PGFAULT,
3923 PGMAJFAULT,
3924};
3925
3926static int memcg_stat_show(struct seq_file *m, void *v)
3927{
3928 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3929 unsigned long memory, memsw;
3930 struct mem_cgroup *mi;
3931 unsigned int i;
3932
3933 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3934
3935 mem_cgroup_flush_stats();
3936
3937 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3938 unsigned long nr;
3939
3940 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3941 continue;
3942 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3943 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3944 }
3945
3946 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3947 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3948 memcg_events_local(memcg, memcg1_events[i]));
3949
3950 for (i = 0; i < NR_LRU_LISTS; i++)
3951 seq_printf(m, "%s %lu\n", lru_list_name(i),
3952 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3953 PAGE_SIZE);
3954
3955 /* Hierarchical information */
3956 memory = memsw = PAGE_COUNTER_MAX;
3957 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3958 memory = min(memory, READ_ONCE(mi->memory.max));
3959 memsw = min(memsw, READ_ONCE(mi->memsw.max));
3960 }
3961 seq_printf(m, "hierarchical_memory_limit %llu\n",
3962 (u64)memory * PAGE_SIZE);
3963 if (do_memsw_account())
3964 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3965 (u64)memsw * PAGE_SIZE);
3966
3967 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3968 unsigned long nr;
3969
3970 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3971 continue;
3972 nr = memcg_page_state(memcg, memcg1_stats[i]);
3973 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3974 (u64)nr * PAGE_SIZE);
3975 }
3976
3977 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3978 seq_printf(m, "total_%s %llu\n",
3979 vm_event_name(memcg1_events[i]),
3980 (u64)memcg_events(memcg, memcg1_events[i]));
3981
3982 for (i = 0; i < NR_LRU_LISTS; i++)
3983 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3984 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3985 PAGE_SIZE);
3986
3987#ifdef CONFIG_DEBUG_VM
3988 {
3989 pg_data_t *pgdat;
3990 struct mem_cgroup_per_node *mz;
3991 unsigned long anon_cost = 0;
3992 unsigned long file_cost = 0;
3993
3994 for_each_online_pgdat(pgdat) {
3995 mz = memcg->nodeinfo[pgdat->node_id];
3996
3997 anon_cost += mz->lruvec.anon_cost;
3998 file_cost += mz->lruvec.file_cost;
3999 }
4000 seq_printf(m, "anon_cost %lu\n", anon_cost);
4001 seq_printf(m, "file_cost %lu\n", file_cost);
4002 }
4003#endif
4004
4005 return 0;
4006}
4007
4008static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4009 struct cftype *cft)
4010{
4011 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4012
4013 return mem_cgroup_swappiness(memcg);
4014}
4015
4016static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4017 struct cftype *cft, u64 val)
4018{
4019 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4020
4021 if (val > 200)
4022 return -EINVAL;
4023
4024 if (!mem_cgroup_is_root(memcg))
4025 memcg->swappiness = val;
4026 else
4027 vm_swappiness = val;
4028
4029 return 0;
4030}
4031
4032static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4033{
4034 struct mem_cgroup_threshold_ary *t;
4035 unsigned long usage;
4036 int i;
4037
4038 rcu_read_lock();
4039 if (!swap)
4040 t = rcu_dereference(memcg->thresholds.primary);
4041 else
4042 t = rcu_dereference(memcg->memsw_thresholds.primary);
4043
4044 if (!t)
4045 goto unlock;
4046
4047 usage = mem_cgroup_usage(memcg, swap);
4048
4049 /*
4050 * current_threshold points to threshold just below or equal to usage.
4051 * If it's not true, a threshold was crossed after last
4052 * call of __mem_cgroup_threshold().
4053 */
4054 i = t->current_threshold;
4055
4056 /*
4057 * Iterate backward over array of thresholds starting from
4058 * current_threshold and check if a threshold is crossed.
4059 * If none of thresholds below usage is crossed, we read
4060 * only one element of the array here.
4061 */
4062 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4063 eventfd_signal(t->entries[i].eventfd, 1);
4064
4065 /* i = current_threshold + 1 */
4066 i++;
4067
4068 /*
4069 * Iterate forward over array of thresholds starting from
4070 * current_threshold+1 and check if a threshold is crossed.
4071 * If none of thresholds above usage is crossed, we read
4072 * only one element of the array here.
4073 */
4074 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4075 eventfd_signal(t->entries[i].eventfd, 1);
4076
4077 /* Update current_threshold */
4078 t->current_threshold = i - 1;
4079unlock:
4080 rcu_read_unlock();
4081}
4082
4083static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4084{
4085 while (memcg) {
4086 __mem_cgroup_threshold(memcg, false);
4087 if (do_memsw_account())
4088 __mem_cgroup_threshold(memcg, true);
4089
4090 memcg = parent_mem_cgroup(memcg);
4091 }
4092}
4093
4094static int compare_thresholds(const void *a, const void *b)
4095{
4096 const struct mem_cgroup_threshold *_a = a;
4097 const struct mem_cgroup_threshold *_b = b;
4098
4099 if (_a->threshold > _b->threshold)
4100 return 1;
4101
4102 if (_a->threshold < _b->threshold)
4103 return -1;
4104
4105 return 0;
4106}
4107
4108static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4109{
4110 struct mem_cgroup_eventfd_list *ev;
4111
4112 spin_lock(&memcg_oom_lock);
4113
4114 list_for_each_entry(ev, &memcg->oom_notify, list)
4115 eventfd_signal(ev->eventfd, 1);
4116
4117 spin_unlock(&memcg_oom_lock);
4118 return 0;
4119}
4120
4121static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4122{
4123 struct mem_cgroup *iter;
4124
4125 for_each_mem_cgroup_tree(iter, memcg)
4126 mem_cgroup_oom_notify_cb(iter);
4127}
4128
4129static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4130 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4131{
4132 struct mem_cgroup_thresholds *thresholds;
4133 struct mem_cgroup_threshold_ary *new;
4134 unsigned long threshold;
4135 unsigned long usage;
4136 int i, size, ret;
4137
4138 ret = page_counter_memparse(args, "-1", &threshold);
4139 if (ret)
4140 return ret;
4141
4142 mutex_lock(&memcg->thresholds_lock);
4143
4144 if (type == _MEM) {
4145 thresholds = &memcg->thresholds;
4146 usage = mem_cgroup_usage(memcg, false);
4147 } else if (type == _MEMSWAP) {
4148 thresholds = &memcg->memsw_thresholds;
4149 usage = mem_cgroup_usage(memcg, true);
4150 } else
4151 BUG();
4152
4153 /* Check if a threshold crossed before adding a new one */
4154 if (thresholds->primary)
4155 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4156
4157 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4158
4159 /* Allocate memory for new array of thresholds */
4160 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4161 if (!new) {
4162 ret = -ENOMEM;
4163 goto unlock;
4164 }
4165 new->size = size;
4166
4167 /* Copy thresholds (if any) to new array */
4168 if (thresholds->primary)
4169 memcpy(new->entries, thresholds->primary->entries,
4170 flex_array_size(new, entries, size - 1));
4171
4172 /* Add new threshold */
4173 new->entries[size - 1].eventfd = eventfd;
4174 new->entries[size - 1].threshold = threshold;
4175
4176 /* Sort thresholds. Registering of new threshold isn't time-critical */
4177 sort(new->entries, size, sizeof(*new->entries),
4178 compare_thresholds, NULL);
4179
4180 /* Find current threshold */
4181 new->current_threshold = -1;
4182 for (i = 0; i < size; i++) {
4183 if (new->entries[i].threshold <= usage) {
4184 /*
4185 * new->current_threshold will not be used until
4186 * rcu_assign_pointer(), so it's safe to increment
4187 * it here.
4188 */
4189 ++new->current_threshold;
4190 } else
4191 break;
4192 }
4193
4194 /* Free old spare buffer and save old primary buffer as spare */
4195 kfree(thresholds->spare);
4196 thresholds->spare = thresholds->primary;
4197
4198 rcu_assign_pointer(thresholds->primary, new);
4199
4200 /* To be sure that nobody uses thresholds */
4201 synchronize_rcu();
4202
4203unlock:
4204 mutex_unlock(&memcg->thresholds_lock);
4205
4206 return ret;
4207}
4208
4209static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4210 struct eventfd_ctx *eventfd, const char *args)
4211{
4212 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4213}
4214
4215static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4216 struct eventfd_ctx *eventfd, const char *args)
4217{
4218 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4219}
4220
4221static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4222 struct eventfd_ctx *eventfd, enum res_type type)
4223{
4224 struct mem_cgroup_thresholds *thresholds;
4225 struct mem_cgroup_threshold_ary *new;
4226 unsigned long usage;
4227 int i, j, size, entries;
4228
4229 mutex_lock(&memcg->thresholds_lock);
4230
4231 if (type == _MEM) {
4232 thresholds = &memcg->thresholds;
4233 usage = mem_cgroup_usage(memcg, false);
4234 } else if (type == _MEMSWAP) {
4235 thresholds = &memcg->memsw_thresholds;
4236 usage = mem_cgroup_usage(memcg, true);
4237 } else
4238 BUG();
4239
4240 if (!thresholds->primary)
4241 goto unlock;
4242
4243 /* Check if a threshold crossed before removing */
4244 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4245
4246 /* Calculate new number of threshold */
4247 size = entries = 0;
4248 for (i = 0; i < thresholds->primary->size; i++) {
4249 if (thresholds->primary->entries[i].eventfd != eventfd)
4250 size++;
4251 else
4252 entries++;
4253 }
4254
4255 new = thresholds->spare;
4256
4257 /* If no items related to eventfd have been cleared, nothing to do */
4258 if (!entries)
4259 goto unlock;
4260
4261 /* Set thresholds array to NULL if we don't have thresholds */
4262 if (!size) {
4263 kfree(new);
4264 new = NULL;
4265 goto swap_buffers;
4266 }
4267
4268 new->size = size;
4269
4270 /* Copy thresholds and find current threshold */
4271 new->current_threshold = -1;
4272 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4273 if (thresholds->primary->entries[i].eventfd == eventfd)
4274 continue;
4275
4276 new->entries[j] = thresholds->primary->entries[i];
4277 if (new->entries[j].threshold <= usage) {
4278 /*
4279 * new->current_threshold will not be used
4280 * until rcu_assign_pointer(), so it's safe to increment
4281 * it here.
4282 */
4283 ++new->current_threshold;
4284 }
4285 j++;
4286 }
4287
4288swap_buffers:
4289 /* Swap primary and spare array */
4290 thresholds->spare = thresholds->primary;
4291
4292 rcu_assign_pointer(thresholds->primary, new);
4293
4294 /* To be sure that nobody uses thresholds */
4295 synchronize_rcu();
4296
4297 /* If all events are unregistered, free the spare array */
4298 if (!new) {
4299 kfree(thresholds->spare);
4300 thresholds->spare = NULL;
4301 }
4302unlock:
4303 mutex_unlock(&memcg->thresholds_lock);
4304}
4305
4306static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4307 struct eventfd_ctx *eventfd)
4308{
4309 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4310}
4311
4312static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4313 struct eventfd_ctx *eventfd)
4314{
4315 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4316}
4317
4318static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4319 struct eventfd_ctx *eventfd, const char *args)
4320{
4321 struct mem_cgroup_eventfd_list *event;
4322
4323 event = kmalloc(sizeof(*event), GFP_KERNEL);
4324 if (!event)
4325 return -ENOMEM;
4326
4327 spin_lock(&memcg_oom_lock);
4328
4329 event->eventfd = eventfd;
4330 list_add(&event->list, &memcg->oom_notify);
4331
4332 /* already in OOM ? */
4333 if (memcg->under_oom)
4334 eventfd_signal(eventfd, 1);
4335 spin_unlock(&memcg_oom_lock);
4336
4337 return 0;
4338}
4339
4340static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4341 struct eventfd_ctx *eventfd)
4342{
4343 struct mem_cgroup_eventfd_list *ev, *tmp;
4344
4345 spin_lock(&memcg_oom_lock);
4346
4347 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4348 if (ev->eventfd == eventfd) {
4349 list_del(&ev->list);
4350 kfree(ev);
4351 }
4352 }
4353
4354 spin_unlock(&memcg_oom_lock);
4355}
4356
4357static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4358{
4359 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4360
4361 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4362 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4363 seq_printf(sf, "oom_kill %lu\n",
4364 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4365 return 0;
4366}
4367
4368static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4369 struct cftype *cft, u64 val)
4370{
4371 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4372
4373 /* cannot set to root cgroup and only 0 and 1 are allowed */
4374 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4375 return -EINVAL;
4376
4377 memcg->oom_kill_disable = val;
4378 if (!val)
4379 memcg_oom_recover(memcg);
4380
4381 return 0;
4382}
4383
4384#ifdef CONFIG_CGROUP_WRITEBACK
4385
4386#include <trace/events/writeback.h>
4387
4388static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4389{
4390 return wb_domain_init(&memcg->cgwb_domain, gfp);
4391}
4392
4393static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4394{
4395 wb_domain_exit(&memcg->cgwb_domain);
4396}
4397
4398static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4399{
4400 wb_domain_size_changed(&memcg->cgwb_domain);
4401}
4402
4403struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4404{
4405 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4406
4407 if (!memcg->css.parent)
4408 return NULL;
4409
4410 return &memcg->cgwb_domain;
4411}
4412
4413/**
4414 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4415 * @wb: bdi_writeback in question
4416 * @pfilepages: out parameter for number of file pages
4417 * @pheadroom: out parameter for number of allocatable pages according to memcg
4418 * @pdirty: out parameter for number of dirty pages
4419 * @pwriteback: out parameter for number of pages under writeback
4420 *
4421 * Determine the numbers of file, headroom, dirty, and writeback pages in
4422 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4423 * is a bit more involved.
4424 *
4425 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4426 * headroom is calculated as the lowest headroom of itself and the
4427 * ancestors. Note that this doesn't consider the actual amount of
4428 * available memory in the system. The caller should further cap
4429 * *@pheadroom accordingly.
4430 */
4431void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4432 unsigned long *pheadroom, unsigned long *pdirty,
4433 unsigned long *pwriteback)
4434{
4435 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4436 struct mem_cgroup *parent;
4437
4438 mem_cgroup_flush_stats();
4439
4440 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4441 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4442 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4443 memcg_page_state(memcg, NR_ACTIVE_FILE);
4444
4445 *pheadroom = PAGE_COUNTER_MAX;
4446 while ((parent = parent_mem_cgroup(memcg))) {
4447 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4448 READ_ONCE(memcg->memory.high));
4449 unsigned long used = page_counter_read(&memcg->memory);
4450
4451 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4452 memcg = parent;
4453 }
4454}
4455
4456/*
4457 * Foreign dirty flushing
4458 *
4459 * There's an inherent mismatch between memcg and writeback. The former
4460 * tracks ownership per-page while the latter per-inode. This was a
4461 * deliberate design decision because honoring per-page ownership in the
4462 * writeback path is complicated, may lead to higher CPU and IO overheads
4463 * and deemed unnecessary given that write-sharing an inode across
4464 * different cgroups isn't a common use-case.
4465 *
4466 * Combined with inode majority-writer ownership switching, this works well
4467 * enough in most cases but there are some pathological cases. For
4468 * example, let's say there are two cgroups A and B which keep writing to
4469 * different but confined parts of the same inode. B owns the inode and
4470 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4471 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4472 * triggering background writeback. A will be slowed down without a way to
4473 * make writeback of the dirty pages happen.
4474 *
4475 * Conditions like the above can lead to a cgroup getting repeatedly and
4476 * severely throttled after making some progress after each
4477 * dirty_expire_interval while the underlying IO device is almost
4478 * completely idle.
4479 *
4480 * Solving this problem completely requires matching the ownership tracking
4481 * granularities between memcg and writeback in either direction. However,
4482 * the more egregious behaviors can be avoided by simply remembering the
4483 * most recent foreign dirtying events and initiating remote flushes on
4484 * them when local writeback isn't enough to keep the memory clean enough.
4485 *
4486 * The following two functions implement such mechanism. When a foreign
4487 * page - a page whose memcg and writeback ownerships don't match - is
4488 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4489 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4490 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4491 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4492 * foreign bdi_writebacks which haven't expired. Both the numbers of
4493 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4494 * limited to MEMCG_CGWB_FRN_CNT.
4495 *
4496 * The mechanism only remembers IDs and doesn't hold any object references.
4497 * As being wrong occasionally doesn't matter, updates and accesses to the
4498 * records are lockless and racy.
4499 */
4500void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4501 struct bdi_writeback *wb)
4502{
4503 struct mem_cgroup *memcg = folio_memcg(folio);
4504 struct memcg_cgwb_frn *frn;
4505 u64 now = get_jiffies_64();
4506 u64 oldest_at = now;
4507 int oldest = -1;
4508 int i;
4509
4510 trace_track_foreign_dirty(folio, wb);
4511
4512 /*
4513 * Pick the slot to use. If there is already a slot for @wb, keep
4514 * using it. If not replace the oldest one which isn't being
4515 * written out.
4516 */
4517 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4518 frn = &memcg->cgwb_frn[i];
4519 if (frn->bdi_id == wb->bdi->id &&
4520 frn->memcg_id == wb->memcg_css->id)
4521 break;
4522 if (time_before64(frn->at, oldest_at) &&
4523 atomic_read(&frn->done.cnt) == 1) {
4524 oldest = i;
4525 oldest_at = frn->at;
4526 }
4527 }
4528
4529 if (i < MEMCG_CGWB_FRN_CNT) {
4530 /*
4531 * Re-using an existing one. Update timestamp lazily to
4532 * avoid making the cacheline hot. We want them to be
4533 * reasonably up-to-date and significantly shorter than
4534 * dirty_expire_interval as that's what expires the record.
4535 * Use the shorter of 1s and dirty_expire_interval / 8.
4536 */
4537 unsigned long update_intv =
4538 min_t(unsigned long, HZ,
4539 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4540
4541 if (time_before64(frn->at, now - update_intv))
4542 frn->at = now;
4543 } else if (oldest >= 0) {
4544 /* replace the oldest free one */
4545 frn = &memcg->cgwb_frn[oldest];
4546 frn->bdi_id = wb->bdi->id;
4547 frn->memcg_id = wb->memcg_css->id;
4548 frn->at = now;
4549 }
4550}
4551
4552/* issue foreign writeback flushes for recorded foreign dirtying events */
4553void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4554{
4555 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4556 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4557 u64 now = jiffies_64;
4558 int i;
4559
4560 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4561 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4562
4563 /*
4564 * If the record is older than dirty_expire_interval,
4565 * writeback on it has already started. No need to kick it
4566 * off again. Also, don't start a new one if there's
4567 * already one in flight.
4568 */
4569 if (time_after64(frn->at, now - intv) &&
4570 atomic_read(&frn->done.cnt) == 1) {
4571 frn->at = 0;
4572 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4573 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4574 WB_REASON_FOREIGN_FLUSH,
4575 &frn->done);
4576 }
4577 }
4578}
4579
4580#else /* CONFIG_CGROUP_WRITEBACK */
4581
4582static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4583{
4584 return 0;
4585}
4586
4587static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4588{
4589}
4590
4591static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4592{
4593}
4594
4595#endif /* CONFIG_CGROUP_WRITEBACK */
4596
4597/*
4598 * DO NOT USE IN NEW FILES.
4599 *
4600 * "cgroup.event_control" implementation.
4601 *
4602 * This is way over-engineered. It tries to support fully configurable
4603 * events for each user. Such level of flexibility is completely
4604 * unnecessary especially in the light of the planned unified hierarchy.
4605 *
4606 * Please deprecate this and replace with something simpler if at all
4607 * possible.
4608 */
4609
4610/*
4611 * Unregister event and free resources.
4612 *
4613 * Gets called from workqueue.
4614 */
4615static void memcg_event_remove(struct work_struct *work)
4616{
4617 struct mem_cgroup_event *event =
4618 container_of(work, struct mem_cgroup_event, remove);
4619 struct mem_cgroup *memcg = event->memcg;
4620
4621 remove_wait_queue(event->wqh, &event->wait);
4622
4623 event->unregister_event(memcg, event->eventfd);
4624
4625 /* Notify userspace the event is going away. */
4626 eventfd_signal(event->eventfd, 1);
4627
4628 eventfd_ctx_put(event->eventfd);
4629 kfree(event);
4630 css_put(&memcg->css);
4631}
4632
4633/*
4634 * Gets called on EPOLLHUP on eventfd when user closes it.
4635 *
4636 * Called with wqh->lock held and interrupts disabled.
4637 */
4638static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4639 int sync, void *key)
4640{
4641 struct mem_cgroup_event *event =
4642 container_of(wait, struct mem_cgroup_event, wait);
4643 struct mem_cgroup *memcg = event->memcg;
4644 __poll_t flags = key_to_poll(key);
4645
4646 if (flags & EPOLLHUP) {
4647 /*
4648 * If the event has been detached at cgroup removal, we
4649 * can simply return knowing the other side will cleanup
4650 * for us.
4651 *
4652 * We can't race against event freeing since the other
4653 * side will require wqh->lock via remove_wait_queue(),
4654 * which we hold.
4655 */
4656 spin_lock(&memcg->event_list_lock);
4657 if (!list_empty(&event->list)) {
4658 list_del_init(&event->list);
4659 /*
4660 * We are in atomic context, but cgroup_event_remove()
4661 * may sleep, so we have to call it in workqueue.
4662 */
4663 schedule_work(&event->remove);
4664 }
4665 spin_unlock(&memcg->event_list_lock);
4666 }
4667
4668 return 0;
4669}
4670
4671static void memcg_event_ptable_queue_proc(struct file *file,
4672 wait_queue_head_t *wqh, poll_table *pt)
4673{
4674 struct mem_cgroup_event *event =
4675 container_of(pt, struct mem_cgroup_event, pt);
4676
4677 event->wqh = wqh;
4678 add_wait_queue(wqh, &event->wait);
4679}
4680
4681/*
4682 * DO NOT USE IN NEW FILES.
4683 *
4684 * Parse input and register new cgroup event handler.
4685 *
4686 * Input must be in format '<event_fd> <control_fd> <args>'.
4687 * Interpretation of args is defined by control file implementation.
4688 */
4689static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4690 char *buf, size_t nbytes, loff_t off)
4691{
4692 struct cgroup_subsys_state *css = of_css(of);
4693 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4694 struct mem_cgroup_event *event;
4695 struct cgroup_subsys_state *cfile_css;
4696 unsigned int efd, cfd;
4697 struct fd efile;
4698 struct fd cfile;
4699 const char *name;
4700 char *endp;
4701 int ret;
4702
4703 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4704 return -EOPNOTSUPP;
4705
4706 buf = strstrip(buf);
4707
4708 efd = simple_strtoul(buf, &endp, 10);
4709 if (*endp != ' ')
4710 return -EINVAL;
4711 buf = endp + 1;
4712
4713 cfd = simple_strtoul(buf, &endp, 10);
4714 if ((*endp != ' ') && (*endp != '\0'))
4715 return -EINVAL;
4716 buf = endp + 1;
4717
4718 event = kzalloc(sizeof(*event), GFP_KERNEL);
4719 if (!event)
4720 return -ENOMEM;
4721
4722 event->memcg = memcg;
4723 INIT_LIST_HEAD(&event->list);
4724 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4725 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4726 INIT_WORK(&event->remove, memcg_event_remove);
4727
4728 efile = fdget(efd);
4729 if (!efile.file) {
4730 ret = -EBADF;
4731 goto out_kfree;
4732 }
4733
4734 event->eventfd = eventfd_ctx_fileget(efile.file);
4735 if (IS_ERR(event->eventfd)) {
4736 ret = PTR_ERR(event->eventfd);
4737 goto out_put_efile;
4738 }
4739
4740 cfile = fdget(cfd);
4741 if (!cfile.file) {
4742 ret = -EBADF;
4743 goto out_put_eventfd;
4744 }
4745
4746 /* the process need read permission on control file */
4747 /* AV: shouldn't we check that it's been opened for read instead? */
4748 ret = file_permission(cfile.file, MAY_READ);
4749 if (ret < 0)
4750 goto out_put_cfile;
4751
4752 /*
4753 * Determine the event callbacks and set them in @event. This used
4754 * to be done via struct cftype but cgroup core no longer knows
4755 * about these events. The following is crude but the whole thing
4756 * is for compatibility anyway.
4757 *
4758 * DO NOT ADD NEW FILES.
4759 */
4760 name = cfile.file->f_path.dentry->d_name.name;
4761
4762 if (!strcmp(name, "memory.usage_in_bytes")) {
4763 event->register_event = mem_cgroup_usage_register_event;
4764 event->unregister_event = mem_cgroup_usage_unregister_event;
4765 } else if (!strcmp(name, "memory.oom_control")) {
4766 event->register_event = mem_cgroup_oom_register_event;
4767 event->unregister_event = mem_cgroup_oom_unregister_event;
4768 } else if (!strcmp(name, "memory.pressure_level")) {
4769 event->register_event = vmpressure_register_event;
4770 event->unregister_event = vmpressure_unregister_event;
4771 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4772 event->register_event = memsw_cgroup_usage_register_event;
4773 event->unregister_event = memsw_cgroup_usage_unregister_event;
4774 } else {
4775 ret = -EINVAL;
4776 goto out_put_cfile;
4777 }
4778
4779 /*
4780 * Verify @cfile should belong to @css. Also, remaining events are
4781 * automatically removed on cgroup destruction but the removal is
4782 * asynchronous, so take an extra ref on @css.
4783 */
4784 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4785 &memory_cgrp_subsys);
4786 ret = -EINVAL;
4787 if (IS_ERR(cfile_css))
4788 goto out_put_cfile;
4789 if (cfile_css != css) {
4790 css_put(cfile_css);
4791 goto out_put_cfile;
4792 }
4793
4794 ret = event->register_event(memcg, event->eventfd, buf);
4795 if (ret)
4796 goto out_put_css;
4797
4798 vfs_poll(efile.file, &event->pt);
4799
4800 spin_lock_irq(&memcg->event_list_lock);
4801 list_add(&event->list, &memcg->event_list);
4802 spin_unlock_irq(&memcg->event_list_lock);
4803
4804 fdput(cfile);
4805 fdput(efile);
4806
4807 return nbytes;
4808
4809out_put_css:
4810 css_put(css);
4811out_put_cfile:
4812 fdput(cfile);
4813out_put_eventfd:
4814 eventfd_ctx_put(event->eventfd);
4815out_put_efile:
4816 fdput(efile);
4817out_kfree:
4818 kfree(event);
4819
4820 return ret;
4821}
4822
4823#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4824static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4825{
4826 /*
4827 * Deprecated.
4828 * Please, take a look at tools/cgroup/slabinfo.py .
4829 */
4830 return 0;
4831}
4832#endif
4833
4834static struct cftype mem_cgroup_legacy_files[] = {
4835 {
4836 .name = "usage_in_bytes",
4837 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4838 .read_u64 = mem_cgroup_read_u64,
4839 },
4840 {
4841 .name = "max_usage_in_bytes",
4842 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4843 .write = mem_cgroup_reset,
4844 .read_u64 = mem_cgroup_read_u64,
4845 },
4846 {
4847 .name = "limit_in_bytes",
4848 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4849 .write = mem_cgroup_write,
4850 .read_u64 = mem_cgroup_read_u64,
4851 },
4852 {
4853 .name = "soft_limit_in_bytes",
4854 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4855 .write = mem_cgroup_write,
4856 .read_u64 = mem_cgroup_read_u64,
4857 },
4858 {
4859 .name = "failcnt",
4860 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4861 .write = mem_cgroup_reset,
4862 .read_u64 = mem_cgroup_read_u64,
4863 },
4864 {
4865 .name = "stat",
4866 .seq_show = memcg_stat_show,
4867 },
4868 {
4869 .name = "force_empty",
4870 .write = mem_cgroup_force_empty_write,
4871 },
4872 {
4873 .name = "use_hierarchy",
4874 .write_u64 = mem_cgroup_hierarchy_write,
4875 .read_u64 = mem_cgroup_hierarchy_read,
4876 },
4877 {
4878 .name = "cgroup.event_control", /* XXX: for compat */
4879 .write = memcg_write_event_control,
4880 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4881 },
4882 {
4883 .name = "swappiness",
4884 .read_u64 = mem_cgroup_swappiness_read,
4885 .write_u64 = mem_cgroup_swappiness_write,
4886 },
4887 {
4888 .name = "move_charge_at_immigrate",
4889 .read_u64 = mem_cgroup_move_charge_read,
4890 .write_u64 = mem_cgroup_move_charge_write,
4891 },
4892 {
4893 .name = "oom_control",
4894 .seq_show = mem_cgroup_oom_control_read,
4895 .write_u64 = mem_cgroup_oom_control_write,
4896 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4897 },
4898 {
4899 .name = "pressure_level",
4900 },
4901#ifdef CONFIG_NUMA
4902 {
4903 .name = "numa_stat",
4904 .seq_show = memcg_numa_stat_show,
4905 },
4906#endif
4907 {
4908 .name = "kmem.limit_in_bytes",
4909 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4910 .write = mem_cgroup_write,
4911 .read_u64 = mem_cgroup_read_u64,
4912 },
4913 {
4914 .name = "kmem.usage_in_bytes",
4915 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4916 .read_u64 = mem_cgroup_read_u64,
4917 },
4918 {
4919 .name = "kmem.failcnt",
4920 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4921 .write = mem_cgroup_reset,
4922 .read_u64 = mem_cgroup_read_u64,
4923 },
4924 {
4925 .name = "kmem.max_usage_in_bytes",
4926 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4927 .write = mem_cgroup_reset,
4928 .read_u64 = mem_cgroup_read_u64,
4929 },
4930#if defined(CONFIG_MEMCG_KMEM) && \
4931 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4932 {
4933 .name = "kmem.slabinfo",
4934 .seq_show = mem_cgroup_slab_show,
4935 },
4936#endif
4937 {
4938 .name = "kmem.tcp.limit_in_bytes",
4939 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4940 .write = mem_cgroup_write,
4941 .read_u64 = mem_cgroup_read_u64,
4942 },
4943 {
4944 .name = "kmem.tcp.usage_in_bytes",
4945 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4946 .read_u64 = mem_cgroup_read_u64,
4947 },
4948 {
4949 .name = "kmem.tcp.failcnt",
4950 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4951 .write = mem_cgroup_reset,
4952 .read_u64 = mem_cgroup_read_u64,
4953 },
4954 {
4955 .name = "kmem.tcp.max_usage_in_bytes",
4956 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4957 .write = mem_cgroup_reset,
4958 .read_u64 = mem_cgroup_read_u64,
4959 },
4960 { }, /* terminate */
4961};
4962
4963/*
4964 * Private memory cgroup IDR
4965 *
4966 * Swap-out records and page cache shadow entries need to store memcg
4967 * references in constrained space, so we maintain an ID space that is
4968 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4969 * memory-controlled cgroups to 64k.
4970 *
4971 * However, there usually are many references to the offline CSS after
4972 * the cgroup has been destroyed, such as page cache or reclaimable
4973 * slab objects, that don't need to hang on to the ID. We want to keep
4974 * those dead CSS from occupying IDs, or we might quickly exhaust the
4975 * relatively small ID space and prevent the creation of new cgroups
4976 * even when there are much fewer than 64k cgroups - possibly none.
4977 *
4978 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4979 * be freed and recycled when it's no longer needed, which is usually
4980 * when the CSS is offlined.
4981 *
4982 * The only exception to that are records of swapped out tmpfs/shmem
4983 * pages that need to be attributed to live ancestors on swapin. But
4984 * those references are manageable from userspace.
4985 */
4986
4987static DEFINE_IDR(mem_cgroup_idr);
4988
4989static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4990{
4991 if (memcg->id.id > 0) {
4992 idr_remove(&mem_cgroup_idr, memcg->id.id);
4993 memcg->id.id = 0;
4994 }
4995}
4996
4997static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
4998 unsigned int n)
4999{
5000 refcount_add(n, &memcg->id.ref);
5001}
5002
5003static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5004{
5005 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5006 mem_cgroup_id_remove(memcg);
5007
5008 /* Memcg ID pins CSS */
5009 css_put(&memcg->css);
5010 }
5011}
5012
5013static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5014{
5015 mem_cgroup_id_put_many(memcg, 1);
5016}
5017
5018/**
5019 * mem_cgroup_from_id - look up a memcg from a memcg id
5020 * @id: the memcg id to look up
5021 *
5022 * Caller must hold rcu_read_lock().
5023 */
5024struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5025{
5026 WARN_ON_ONCE(!rcu_read_lock_held());
5027 return idr_find(&mem_cgroup_idr, id);
5028}
5029
5030static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5031{
5032 struct mem_cgroup_per_node *pn;
5033
5034 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5035 if (!pn)
5036 return 1;
5037
5038 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5039 GFP_KERNEL_ACCOUNT);
5040 if (!pn->lruvec_stats_percpu) {
5041 kfree(pn);
5042 return 1;
5043 }
5044
5045 lruvec_init(&pn->lruvec);
5046 pn->memcg = memcg;
5047
5048 memcg->nodeinfo[node] = pn;
5049 return 0;
5050}
5051
5052static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5053{
5054 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5055
5056 if (!pn)
5057 return;
5058
5059 free_percpu(pn->lruvec_stats_percpu);
5060 kfree(pn);
5061}
5062
5063static void __mem_cgroup_free(struct mem_cgroup *memcg)
5064{
5065 int node;
5066
5067 for_each_node(node)
5068 free_mem_cgroup_per_node_info(memcg, node);
5069 free_percpu(memcg->vmstats_percpu);
5070 kfree(memcg);
5071}
5072
5073static void mem_cgroup_free(struct mem_cgroup *memcg)
5074{
5075 memcg_wb_domain_exit(memcg);
5076 __mem_cgroup_free(memcg);
5077}
5078
5079static struct mem_cgroup *mem_cgroup_alloc(void)
5080{
5081 struct mem_cgroup *memcg;
5082 int node;
5083 int __maybe_unused i;
5084 long error = -ENOMEM;
5085
5086 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5087 if (!memcg)
5088 return ERR_PTR(error);
5089
5090 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5091 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5092 if (memcg->id.id < 0) {
5093 error = memcg->id.id;
5094 goto fail;
5095 }
5096
5097 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5098 GFP_KERNEL_ACCOUNT);
5099 if (!memcg->vmstats_percpu)
5100 goto fail;
5101
5102 for_each_node(node)
5103 if (alloc_mem_cgroup_per_node_info(memcg, node))
5104 goto fail;
5105
5106 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5107 goto fail;
5108
5109 INIT_WORK(&memcg->high_work, high_work_func);
5110 INIT_LIST_HEAD(&memcg->oom_notify);
5111 mutex_init(&memcg->thresholds_lock);
5112 spin_lock_init(&memcg->move_lock);
5113 vmpressure_init(&memcg->vmpressure);
5114 INIT_LIST_HEAD(&memcg->event_list);
5115 spin_lock_init(&memcg->event_list_lock);
5116 memcg->socket_pressure = jiffies;
5117#ifdef CONFIG_MEMCG_KMEM
5118 memcg->kmemcg_id = -1;
5119 INIT_LIST_HEAD(&memcg->objcg_list);
5120#endif
5121#ifdef CONFIG_CGROUP_WRITEBACK
5122 INIT_LIST_HEAD(&memcg->cgwb_list);
5123 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5124 memcg->cgwb_frn[i].done =
5125 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5126#endif
5127#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5128 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5129 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5130 memcg->deferred_split_queue.split_queue_len = 0;
5131#endif
5132 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5133 return memcg;
5134fail:
5135 mem_cgroup_id_remove(memcg);
5136 __mem_cgroup_free(memcg);
5137 return ERR_PTR(error);
5138}
5139
5140static struct cgroup_subsys_state * __ref
5141mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5142{
5143 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5144 struct mem_cgroup *memcg, *old_memcg;
5145
5146 old_memcg = set_active_memcg(parent);
5147 memcg = mem_cgroup_alloc();
5148 set_active_memcg(old_memcg);
5149 if (IS_ERR(memcg))
5150 return ERR_CAST(memcg);
5151
5152 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5153 memcg->soft_limit = PAGE_COUNTER_MAX;
5154 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5155 if (parent) {
5156 memcg->swappiness = mem_cgroup_swappiness(parent);
5157 memcg->oom_kill_disable = parent->oom_kill_disable;
5158
5159 page_counter_init(&memcg->memory, &parent->memory);
5160 page_counter_init(&memcg->swap, &parent->swap);
5161 page_counter_init(&memcg->kmem, &parent->kmem);
5162 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5163 } else {
5164 page_counter_init(&memcg->memory, NULL);
5165 page_counter_init(&memcg->swap, NULL);
5166 page_counter_init(&memcg->kmem, NULL);
5167 page_counter_init(&memcg->tcpmem, NULL);
5168
5169 root_mem_cgroup = memcg;
5170 return &memcg->css;
5171 }
5172
5173 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5174 static_branch_inc(&memcg_sockets_enabled_key);
5175
5176 return &memcg->css;
5177}
5178
5179static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5180{
5181 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5182
5183 if (memcg_online_kmem(memcg))
5184 goto remove_id;
5185
5186 /*
5187 * A memcg must be visible for expand_shrinker_info()
5188 * by the time the maps are allocated. So, we allocate maps
5189 * here, when for_each_mem_cgroup() can't skip it.
5190 */
5191 if (alloc_shrinker_info(memcg))
5192 goto offline_kmem;
5193
5194 /* Online state pins memcg ID, memcg ID pins CSS */
5195 refcount_set(&memcg->id.ref, 1);
5196 css_get(css);
5197
5198 if (unlikely(mem_cgroup_is_root(memcg)))
5199 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5200 2UL*HZ);
5201 return 0;
5202offline_kmem:
5203 memcg_offline_kmem(memcg);
5204remove_id:
5205 mem_cgroup_id_remove(memcg);
5206 return -ENOMEM;
5207}
5208
5209static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5210{
5211 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5212 struct mem_cgroup_event *event, *tmp;
5213
5214 /*
5215 * Unregister events and notify userspace.
5216 * Notify userspace about cgroup removing only after rmdir of cgroup
5217 * directory to avoid race between userspace and kernelspace.
5218 */
5219 spin_lock_irq(&memcg->event_list_lock);
5220 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5221 list_del_init(&event->list);
5222 schedule_work(&event->remove);
5223 }
5224 spin_unlock_irq(&memcg->event_list_lock);
5225
5226 page_counter_set_min(&memcg->memory, 0);
5227 page_counter_set_low(&memcg->memory, 0);
5228
5229 memcg_offline_kmem(memcg);
5230 reparent_shrinker_deferred(memcg);
5231 wb_memcg_offline(memcg);
5232
5233 drain_all_stock(memcg);
5234
5235 mem_cgroup_id_put(memcg);
5236}
5237
5238static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5239{
5240 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5241
5242 invalidate_reclaim_iterators(memcg);
5243}
5244
5245static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5246{
5247 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5248 int __maybe_unused i;
5249
5250#ifdef CONFIG_CGROUP_WRITEBACK
5251 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5252 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5253#endif
5254 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5255 static_branch_dec(&memcg_sockets_enabled_key);
5256
5257 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5258 static_branch_dec(&memcg_sockets_enabled_key);
5259
5260 vmpressure_cleanup(&memcg->vmpressure);
5261 cancel_work_sync(&memcg->high_work);
5262 mem_cgroup_remove_from_trees(memcg);
5263 free_shrinker_info(memcg);
5264 mem_cgroup_free(memcg);
5265}
5266
5267/**
5268 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5269 * @css: the target css
5270 *
5271 * Reset the states of the mem_cgroup associated with @css. This is
5272 * invoked when the userland requests disabling on the default hierarchy
5273 * but the memcg is pinned through dependency. The memcg should stop
5274 * applying policies and should revert to the vanilla state as it may be
5275 * made visible again.
5276 *
5277 * The current implementation only resets the essential configurations.
5278 * This needs to be expanded to cover all the visible parts.
5279 */
5280static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5281{
5282 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5283
5284 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5285 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5286 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5287 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5288 page_counter_set_min(&memcg->memory, 0);
5289 page_counter_set_low(&memcg->memory, 0);
5290 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5291 memcg->soft_limit = PAGE_COUNTER_MAX;
5292 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5293 memcg_wb_domain_size_changed(memcg);
5294}
5295
5296static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5297{
5298 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5299 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5300 struct memcg_vmstats_percpu *statc;
5301 long delta, v;
5302 int i, nid;
5303
5304 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5305
5306 for (i = 0; i < MEMCG_NR_STAT; i++) {
5307 /*
5308 * Collect the aggregated propagation counts of groups
5309 * below us. We're in a per-cpu loop here and this is
5310 * a global counter, so the first cycle will get them.
5311 */
5312 delta = memcg->vmstats.state_pending[i];
5313 if (delta)
5314 memcg->vmstats.state_pending[i] = 0;
5315
5316 /* Add CPU changes on this level since the last flush */
5317 v = READ_ONCE(statc->state[i]);
5318 if (v != statc->state_prev[i]) {
5319 delta += v - statc->state_prev[i];
5320 statc->state_prev[i] = v;
5321 }
5322
5323 if (!delta)
5324 continue;
5325
5326 /* Aggregate counts on this level and propagate upwards */
5327 memcg->vmstats.state[i] += delta;
5328 if (parent)
5329 parent->vmstats.state_pending[i] += delta;
5330 }
5331
5332 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5333 delta = memcg->vmstats.events_pending[i];
5334 if (delta)
5335 memcg->vmstats.events_pending[i] = 0;
5336
5337 v = READ_ONCE(statc->events[i]);
5338 if (v != statc->events_prev[i]) {
5339 delta += v - statc->events_prev[i];
5340 statc->events_prev[i] = v;
5341 }
5342
5343 if (!delta)
5344 continue;
5345
5346 memcg->vmstats.events[i] += delta;
5347 if (parent)
5348 parent->vmstats.events_pending[i] += delta;
5349 }
5350
5351 for_each_node_state(nid, N_MEMORY) {
5352 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5353 struct mem_cgroup_per_node *ppn = NULL;
5354 struct lruvec_stats_percpu *lstatc;
5355
5356 if (parent)
5357 ppn = parent->nodeinfo[nid];
5358
5359 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5360
5361 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5362 delta = pn->lruvec_stats.state_pending[i];
5363 if (delta)
5364 pn->lruvec_stats.state_pending[i] = 0;
5365
5366 v = READ_ONCE(lstatc->state[i]);
5367 if (v != lstatc->state_prev[i]) {
5368 delta += v - lstatc->state_prev[i];
5369 lstatc->state_prev[i] = v;
5370 }
5371
5372 if (!delta)
5373 continue;
5374
5375 pn->lruvec_stats.state[i] += delta;
5376 if (ppn)
5377 ppn->lruvec_stats.state_pending[i] += delta;
5378 }
5379 }
5380}
5381
5382#ifdef CONFIG_MMU
5383/* Handlers for move charge at task migration. */
5384static int mem_cgroup_do_precharge(unsigned long count)
5385{
5386 int ret;
5387
5388 /* Try a single bulk charge without reclaim first, kswapd may wake */
5389 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5390 if (!ret) {
5391 mc.precharge += count;
5392 return ret;
5393 }
5394
5395 /* Try charges one by one with reclaim, but do not retry */
5396 while (count--) {
5397 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5398 if (ret)
5399 return ret;
5400 mc.precharge++;
5401 cond_resched();
5402 }
5403 return 0;
5404}
5405
5406union mc_target {
5407 struct page *page;
5408 swp_entry_t ent;
5409};
5410
5411enum mc_target_type {
5412 MC_TARGET_NONE = 0,
5413 MC_TARGET_PAGE,
5414 MC_TARGET_SWAP,
5415 MC_TARGET_DEVICE,
5416};
5417
5418static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5419 unsigned long addr, pte_t ptent)
5420{
5421 struct page *page = vm_normal_page(vma, addr, ptent);
5422
5423 if (!page || !page_mapped(page))
5424 return NULL;
5425 if (PageAnon(page)) {
5426 if (!(mc.flags & MOVE_ANON))
5427 return NULL;
5428 } else {
5429 if (!(mc.flags & MOVE_FILE))
5430 return NULL;
5431 }
5432 if (!get_page_unless_zero(page))
5433 return NULL;
5434
5435 return page;
5436}
5437
5438#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5439static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5440 pte_t ptent, swp_entry_t *entry)
5441{
5442 struct page *page = NULL;
5443 swp_entry_t ent = pte_to_swp_entry(ptent);
5444
5445 if (!(mc.flags & MOVE_ANON))
5446 return NULL;
5447
5448 /*
5449 * Handle device private pages that are not accessible by the CPU, but
5450 * stored as special swap entries in the page table.
5451 */
5452 if (is_device_private_entry(ent)) {
5453 page = pfn_swap_entry_to_page(ent);
5454 if (!get_page_unless_zero(page))
5455 return NULL;
5456 return page;
5457 }
5458
5459 if (non_swap_entry(ent))
5460 return NULL;
5461
5462 /*
5463 * Because lookup_swap_cache() updates some statistics counter,
5464 * we call find_get_page() with swapper_space directly.
5465 */
5466 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5467 entry->val = ent.val;
5468
5469 return page;
5470}
5471#else
5472static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5473 pte_t ptent, swp_entry_t *entry)
5474{
5475 return NULL;
5476}
5477#endif
5478
5479static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5480 unsigned long addr, pte_t ptent)
5481{
5482 if (!vma->vm_file) /* anonymous vma */
5483 return NULL;
5484 if (!(mc.flags & MOVE_FILE))
5485 return NULL;
5486
5487 /* page is moved even if it's not RSS of this task(page-faulted). */
5488 /* shmem/tmpfs may report page out on swap: account for that too. */
5489 return find_get_incore_page(vma->vm_file->f_mapping,
5490 linear_page_index(vma, addr));
5491}
5492
5493/**
5494 * mem_cgroup_move_account - move account of the page
5495 * @page: the page
5496 * @compound: charge the page as compound or small page
5497 * @from: mem_cgroup which the page is moved from.
5498 * @to: mem_cgroup which the page is moved to. @from != @to.
5499 *
5500 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5501 *
5502 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5503 * from old cgroup.
5504 */
5505static int mem_cgroup_move_account(struct page *page,
5506 bool compound,
5507 struct mem_cgroup *from,
5508 struct mem_cgroup *to)
5509{
5510 struct folio *folio = page_folio(page);
5511 struct lruvec *from_vec, *to_vec;
5512 struct pglist_data *pgdat;
5513 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5514 int nid, ret;
5515
5516 VM_BUG_ON(from == to);
5517 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5518 VM_BUG_ON(compound && !folio_test_large(folio));
5519
5520 /*
5521 * Prevent mem_cgroup_migrate() from looking at
5522 * page's memory cgroup of its source page while we change it.
5523 */
5524 ret = -EBUSY;
5525 if (!folio_trylock(folio))
5526 goto out;
5527
5528 ret = -EINVAL;
5529 if (folio_memcg(folio) != from)
5530 goto out_unlock;
5531
5532 pgdat = folio_pgdat(folio);
5533 from_vec = mem_cgroup_lruvec(from, pgdat);
5534 to_vec = mem_cgroup_lruvec(to, pgdat);
5535
5536 folio_memcg_lock(folio);
5537
5538 if (folio_test_anon(folio)) {
5539 if (folio_mapped(folio)) {
5540 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5541 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5542 if (folio_test_transhuge(folio)) {
5543 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5544 -nr_pages);
5545 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5546 nr_pages);
5547 }
5548 }
5549 } else {
5550 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5551 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5552
5553 if (folio_test_swapbacked(folio)) {
5554 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5555 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5556 }
5557
5558 if (folio_mapped(folio)) {
5559 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5560 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5561 }
5562
5563 if (folio_test_dirty(folio)) {
5564 struct address_space *mapping = folio_mapping(folio);
5565
5566 if (mapping_can_writeback(mapping)) {
5567 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5568 -nr_pages);
5569 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5570 nr_pages);
5571 }
5572 }
5573 }
5574
5575 if (folio_test_writeback(folio)) {
5576 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5577 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5578 }
5579
5580 /*
5581 * All state has been migrated, let's switch to the new memcg.
5582 *
5583 * It is safe to change page's memcg here because the page
5584 * is referenced, charged, isolated, and locked: we can't race
5585 * with (un)charging, migration, LRU putback, or anything else
5586 * that would rely on a stable page's memory cgroup.
5587 *
5588 * Note that lock_page_memcg is a memcg lock, not a page lock,
5589 * to save space. As soon as we switch page's memory cgroup to a
5590 * new memcg that isn't locked, the above state can change
5591 * concurrently again. Make sure we're truly done with it.
5592 */
5593 smp_mb();
5594
5595 css_get(&to->css);
5596 css_put(&from->css);
5597
5598 folio->memcg_data = (unsigned long)to;
5599
5600 __folio_memcg_unlock(from);
5601
5602 ret = 0;
5603 nid = folio_nid(folio);
5604
5605 local_irq_disable();
5606 mem_cgroup_charge_statistics(to, nr_pages);
5607 memcg_check_events(to, nid);
5608 mem_cgroup_charge_statistics(from, -nr_pages);
5609 memcg_check_events(from, nid);
5610 local_irq_enable();
5611out_unlock:
5612 folio_unlock(folio);
5613out:
5614 return ret;
5615}
5616
5617/**
5618 * get_mctgt_type - get target type of moving charge
5619 * @vma: the vma the pte to be checked belongs
5620 * @addr: the address corresponding to the pte to be checked
5621 * @ptent: the pte to be checked
5622 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5623 *
5624 * Returns
5625 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5626 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5627 * move charge. if @target is not NULL, the page is stored in target->page
5628 * with extra refcnt got(Callers should handle it).
5629 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5630 * target for charge migration. if @target is not NULL, the entry is stored
5631 * in target->ent.
5632 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5633 * (so ZONE_DEVICE page and thus not on the lru).
5634 * For now we such page is charge like a regular page would be as for all
5635 * intent and purposes it is just special memory taking the place of a
5636 * regular page.
5637 *
5638 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5639 *
5640 * Called with pte lock held.
5641 */
5642
5643static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5644 unsigned long addr, pte_t ptent, union mc_target *target)
5645{
5646 struct page *page = NULL;
5647 enum mc_target_type ret = MC_TARGET_NONE;
5648 swp_entry_t ent = { .val = 0 };
5649
5650 if (pte_present(ptent))
5651 page = mc_handle_present_pte(vma, addr, ptent);
5652 else if (is_swap_pte(ptent))
5653 page = mc_handle_swap_pte(vma, ptent, &ent);
5654 else if (pte_none(ptent))
5655 page = mc_handle_file_pte(vma, addr, ptent);
5656
5657 if (!page && !ent.val)
5658 return ret;
5659 if (page) {
5660 /*
5661 * Do only loose check w/o serialization.
5662 * mem_cgroup_move_account() checks the page is valid or
5663 * not under LRU exclusion.
5664 */
5665 if (page_memcg(page) == mc.from) {
5666 ret = MC_TARGET_PAGE;
5667 if (is_device_private_page(page))
5668 ret = MC_TARGET_DEVICE;
5669 if (target)
5670 target->page = page;
5671 }
5672 if (!ret || !target)
5673 put_page(page);
5674 }
5675 /*
5676 * There is a swap entry and a page doesn't exist or isn't charged.
5677 * But we cannot move a tail-page in a THP.
5678 */
5679 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5680 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5681 ret = MC_TARGET_SWAP;
5682 if (target)
5683 target->ent = ent;
5684 }
5685 return ret;
5686}
5687
5688#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5689/*
5690 * We don't consider PMD mapped swapping or file mapped pages because THP does
5691 * not support them for now.
5692 * Caller should make sure that pmd_trans_huge(pmd) is true.
5693 */
5694static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5695 unsigned long addr, pmd_t pmd, union mc_target *target)
5696{
5697 struct page *page = NULL;
5698 enum mc_target_type ret = MC_TARGET_NONE;
5699
5700 if (unlikely(is_swap_pmd(pmd))) {
5701 VM_BUG_ON(thp_migration_supported() &&
5702 !is_pmd_migration_entry(pmd));
5703 return ret;
5704 }
5705 page = pmd_page(pmd);
5706 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5707 if (!(mc.flags & MOVE_ANON))
5708 return ret;
5709 if (page_memcg(page) == mc.from) {
5710 ret = MC_TARGET_PAGE;
5711 if (target) {
5712 get_page(page);
5713 target->page = page;
5714 }
5715 }
5716 return ret;
5717}
5718#else
5719static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5720 unsigned long addr, pmd_t pmd, union mc_target *target)
5721{
5722 return MC_TARGET_NONE;
5723}
5724#endif
5725
5726static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5727 unsigned long addr, unsigned long end,
5728 struct mm_walk *walk)
5729{
5730 struct vm_area_struct *vma = walk->vma;
5731 pte_t *pte;
5732 spinlock_t *ptl;
5733
5734 ptl = pmd_trans_huge_lock(pmd, vma);
5735 if (ptl) {
5736 /*
5737 * Note their can not be MC_TARGET_DEVICE for now as we do not
5738 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5739 * this might change.
5740 */
5741 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5742 mc.precharge += HPAGE_PMD_NR;
5743 spin_unlock(ptl);
5744 return 0;
5745 }
5746
5747 if (pmd_trans_unstable(pmd))
5748 return 0;
5749 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5750 for (; addr != end; pte++, addr += PAGE_SIZE)
5751 if (get_mctgt_type(vma, addr, *pte, NULL))
5752 mc.precharge++; /* increment precharge temporarily */
5753 pte_unmap_unlock(pte - 1, ptl);
5754 cond_resched();
5755
5756 return 0;
5757}
5758
5759static const struct mm_walk_ops precharge_walk_ops = {
5760 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5761};
5762
5763static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5764{
5765 unsigned long precharge;
5766
5767 mmap_read_lock(mm);
5768 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5769 mmap_read_unlock(mm);
5770
5771 precharge = mc.precharge;
5772 mc.precharge = 0;
5773
5774 return precharge;
5775}
5776
5777static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5778{
5779 unsigned long precharge = mem_cgroup_count_precharge(mm);
5780
5781 VM_BUG_ON(mc.moving_task);
5782 mc.moving_task = current;
5783 return mem_cgroup_do_precharge(precharge);
5784}
5785
5786/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5787static void __mem_cgroup_clear_mc(void)
5788{
5789 struct mem_cgroup *from = mc.from;
5790 struct mem_cgroup *to = mc.to;
5791
5792 /* we must uncharge all the leftover precharges from mc.to */
5793 if (mc.precharge) {
5794 cancel_charge(mc.to, mc.precharge);
5795 mc.precharge = 0;
5796 }
5797 /*
5798 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5799 * we must uncharge here.
5800 */
5801 if (mc.moved_charge) {
5802 cancel_charge(mc.from, mc.moved_charge);
5803 mc.moved_charge = 0;
5804 }
5805 /* we must fixup refcnts and charges */
5806 if (mc.moved_swap) {
5807 /* uncharge swap account from the old cgroup */
5808 if (!mem_cgroup_is_root(mc.from))
5809 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5810
5811 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5812
5813 /*
5814 * we charged both to->memory and to->memsw, so we
5815 * should uncharge to->memory.
5816 */
5817 if (!mem_cgroup_is_root(mc.to))
5818 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5819
5820 mc.moved_swap = 0;
5821 }
5822 memcg_oom_recover(from);
5823 memcg_oom_recover(to);
5824 wake_up_all(&mc.waitq);
5825}
5826
5827static void mem_cgroup_clear_mc(void)
5828{
5829 struct mm_struct *mm = mc.mm;
5830
5831 /*
5832 * we must clear moving_task before waking up waiters at the end of
5833 * task migration.
5834 */
5835 mc.moving_task = NULL;
5836 __mem_cgroup_clear_mc();
5837 spin_lock(&mc.lock);
5838 mc.from = NULL;
5839 mc.to = NULL;
5840 mc.mm = NULL;
5841 spin_unlock(&mc.lock);
5842
5843 mmput(mm);
5844}
5845
5846static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5847{
5848 struct cgroup_subsys_state *css;
5849 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5850 struct mem_cgroup *from;
5851 struct task_struct *leader, *p;
5852 struct mm_struct *mm;
5853 unsigned long move_flags;
5854 int ret = 0;
5855
5856 /* charge immigration isn't supported on the default hierarchy */
5857 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5858 return 0;
5859
5860 /*
5861 * Multi-process migrations only happen on the default hierarchy
5862 * where charge immigration is not used. Perform charge
5863 * immigration if @tset contains a leader and whine if there are
5864 * multiple.
5865 */
5866 p = NULL;
5867 cgroup_taskset_for_each_leader(leader, css, tset) {
5868 WARN_ON_ONCE(p);
5869 p = leader;
5870 memcg = mem_cgroup_from_css(css);
5871 }
5872 if (!p)
5873 return 0;
5874
5875 /*
5876 * We are now committed to this value whatever it is. Changes in this
5877 * tunable will only affect upcoming migrations, not the current one.
5878 * So we need to save it, and keep it going.
5879 */
5880 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5881 if (!move_flags)
5882 return 0;
5883
5884 from = mem_cgroup_from_task(p);
5885
5886 VM_BUG_ON(from == memcg);
5887
5888 mm = get_task_mm(p);
5889 if (!mm)
5890 return 0;
5891 /* We move charges only when we move a owner of the mm */
5892 if (mm->owner == p) {
5893 VM_BUG_ON(mc.from);
5894 VM_BUG_ON(mc.to);
5895 VM_BUG_ON(mc.precharge);
5896 VM_BUG_ON(mc.moved_charge);
5897 VM_BUG_ON(mc.moved_swap);
5898
5899 spin_lock(&mc.lock);
5900 mc.mm = mm;
5901 mc.from = from;
5902 mc.to = memcg;
5903 mc.flags = move_flags;
5904 spin_unlock(&mc.lock);
5905 /* We set mc.moving_task later */
5906
5907 ret = mem_cgroup_precharge_mc(mm);
5908 if (ret)
5909 mem_cgroup_clear_mc();
5910 } else {
5911 mmput(mm);
5912 }
5913 return ret;
5914}
5915
5916static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5917{
5918 if (mc.to)
5919 mem_cgroup_clear_mc();
5920}
5921
5922static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5923 unsigned long addr, unsigned long end,
5924 struct mm_walk *walk)
5925{
5926 int ret = 0;
5927 struct vm_area_struct *vma = walk->vma;
5928 pte_t *pte;
5929 spinlock_t *ptl;
5930 enum mc_target_type target_type;
5931 union mc_target target;
5932 struct page *page;
5933
5934 ptl = pmd_trans_huge_lock(pmd, vma);
5935 if (ptl) {
5936 if (mc.precharge < HPAGE_PMD_NR) {
5937 spin_unlock(ptl);
5938 return 0;
5939 }
5940 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5941 if (target_type == MC_TARGET_PAGE) {
5942 page = target.page;
5943 if (!isolate_lru_page(page)) {
5944 if (!mem_cgroup_move_account(page, true,
5945 mc.from, mc.to)) {
5946 mc.precharge -= HPAGE_PMD_NR;
5947 mc.moved_charge += HPAGE_PMD_NR;
5948 }
5949 putback_lru_page(page);
5950 }
5951 put_page(page);
5952 } else if (target_type == MC_TARGET_DEVICE) {
5953 page = target.page;
5954 if (!mem_cgroup_move_account(page, true,
5955 mc.from, mc.to)) {
5956 mc.precharge -= HPAGE_PMD_NR;
5957 mc.moved_charge += HPAGE_PMD_NR;
5958 }
5959 put_page(page);
5960 }
5961 spin_unlock(ptl);
5962 return 0;
5963 }
5964
5965 if (pmd_trans_unstable(pmd))
5966 return 0;
5967retry:
5968 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5969 for (; addr != end; addr += PAGE_SIZE) {
5970 pte_t ptent = *(pte++);
5971 bool device = false;
5972 swp_entry_t ent;
5973
5974 if (!mc.precharge)
5975 break;
5976
5977 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5978 case MC_TARGET_DEVICE:
5979 device = true;
5980 fallthrough;
5981 case MC_TARGET_PAGE:
5982 page = target.page;
5983 /*
5984 * We can have a part of the split pmd here. Moving it
5985 * can be done but it would be too convoluted so simply
5986 * ignore such a partial THP and keep it in original
5987 * memcg. There should be somebody mapping the head.
5988 */
5989 if (PageTransCompound(page))
5990 goto put;
5991 if (!device && isolate_lru_page(page))
5992 goto put;
5993 if (!mem_cgroup_move_account(page, false,
5994 mc.from, mc.to)) {
5995 mc.precharge--;
5996 /* we uncharge from mc.from later. */
5997 mc.moved_charge++;
5998 }
5999 if (!device)
6000 putback_lru_page(page);
6001put: /* get_mctgt_type() gets the page */
6002 put_page(page);
6003 break;
6004 case MC_TARGET_SWAP:
6005 ent = target.ent;
6006 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6007 mc.precharge--;
6008 mem_cgroup_id_get_many(mc.to, 1);
6009 /* we fixup other refcnts and charges later. */
6010 mc.moved_swap++;
6011 }
6012 break;
6013 default:
6014 break;
6015 }
6016 }
6017 pte_unmap_unlock(pte - 1, ptl);
6018 cond_resched();
6019
6020 if (addr != end) {
6021 /*
6022 * We have consumed all precharges we got in can_attach().
6023 * We try charge one by one, but don't do any additional
6024 * charges to mc.to if we have failed in charge once in attach()
6025 * phase.
6026 */
6027 ret = mem_cgroup_do_precharge(1);
6028 if (!ret)
6029 goto retry;
6030 }
6031
6032 return ret;
6033}
6034
6035static const struct mm_walk_ops charge_walk_ops = {
6036 .pmd_entry = mem_cgroup_move_charge_pte_range,
6037};
6038
6039static void mem_cgroup_move_charge(void)
6040{
6041 lru_add_drain_all();
6042 /*
6043 * Signal lock_page_memcg() to take the memcg's move_lock
6044 * while we're moving its pages to another memcg. Then wait
6045 * for already started RCU-only updates to finish.
6046 */
6047 atomic_inc(&mc.from->moving_account);
6048 synchronize_rcu();
6049retry:
6050 if (unlikely(!mmap_read_trylock(mc.mm))) {
6051 /*
6052 * Someone who are holding the mmap_lock might be waiting in
6053 * waitq. So we cancel all extra charges, wake up all waiters,
6054 * and retry. Because we cancel precharges, we might not be able
6055 * to move enough charges, but moving charge is a best-effort
6056 * feature anyway, so it wouldn't be a big problem.
6057 */
6058 __mem_cgroup_clear_mc();
6059 cond_resched();
6060 goto retry;
6061 }
6062 /*
6063 * When we have consumed all precharges and failed in doing
6064 * additional charge, the page walk just aborts.
6065 */
6066 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6067 NULL);
6068
6069 mmap_read_unlock(mc.mm);
6070 atomic_dec(&mc.from->moving_account);
6071}
6072
6073static void mem_cgroup_move_task(void)
6074{
6075 if (mc.to) {
6076 mem_cgroup_move_charge();
6077 mem_cgroup_clear_mc();
6078 }
6079}
6080#else /* !CONFIG_MMU */
6081static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6082{
6083 return 0;
6084}
6085static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6086{
6087}
6088static void mem_cgroup_move_task(void)
6089{
6090}
6091#endif
6092
6093static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6094{
6095 if (value == PAGE_COUNTER_MAX)
6096 seq_puts(m, "max\n");
6097 else
6098 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6099
6100 return 0;
6101}
6102
6103static u64 memory_current_read(struct cgroup_subsys_state *css,
6104 struct cftype *cft)
6105{
6106 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6107
6108 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6109}
6110
6111static int memory_min_show(struct seq_file *m, void *v)
6112{
6113 return seq_puts_memcg_tunable(m,
6114 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6115}
6116
6117static ssize_t memory_min_write(struct kernfs_open_file *of,
6118 char *buf, size_t nbytes, loff_t off)
6119{
6120 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6121 unsigned long min;
6122 int err;
6123
6124 buf = strstrip(buf);
6125 err = page_counter_memparse(buf, "max", &min);
6126 if (err)
6127 return err;
6128
6129 page_counter_set_min(&memcg->memory, min);
6130
6131 return nbytes;
6132}
6133
6134static int memory_low_show(struct seq_file *m, void *v)
6135{
6136 return seq_puts_memcg_tunable(m,
6137 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6138}
6139
6140static ssize_t memory_low_write(struct kernfs_open_file *of,
6141 char *buf, size_t nbytes, loff_t off)
6142{
6143 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6144 unsigned long low;
6145 int err;
6146
6147 buf = strstrip(buf);
6148 err = page_counter_memparse(buf, "max", &low);
6149 if (err)
6150 return err;
6151
6152 page_counter_set_low(&memcg->memory, low);
6153
6154 return nbytes;
6155}
6156
6157static int memory_high_show(struct seq_file *m, void *v)
6158{
6159 return seq_puts_memcg_tunable(m,
6160 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6161}
6162
6163static ssize_t memory_high_write(struct kernfs_open_file *of,
6164 char *buf, size_t nbytes, loff_t off)
6165{
6166 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6167 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6168 bool drained = false;
6169 unsigned long high;
6170 int err;
6171
6172 buf = strstrip(buf);
6173 err = page_counter_memparse(buf, "max", &high);
6174 if (err)
6175 return err;
6176
6177 page_counter_set_high(&memcg->memory, high);
6178
6179 for (;;) {
6180 unsigned long nr_pages = page_counter_read(&memcg->memory);
6181 unsigned long reclaimed;
6182
6183 if (nr_pages <= high)
6184 break;
6185
6186 if (signal_pending(current))
6187 break;
6188
6189 if (!drained) {
6190 drain_all_stock(memcg);
6191 drained = true;
6192 continue;
6193 }
6194
6195 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6196 GFP_KERNEL, true);
6197
6198 if (!reclaimed && !nr_retries--)
6199 break;
6200 }
6201
6202 memcg_wb_domain_size_changed(memcg);
6203 return nbytes;
6204}
6205
6206static int memory_max_show(struct seq_file *m, void *v)
6207{
6208 return seq_puts_memcg_tunable(m,
6209 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6210}
6211
6212static ssize_t memory_max_write(struct kernfs_open_file *of,
6213 char *buf, size_t nbytes, loff_t off)
6214{
6215 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6216 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6217 bool drained = false;
6218 unsigned long max;
6219 int err;
6220
6221 buf = strstrip(buf);
6222 err = page_counter_memparse(buf, "max", &max);
6223 if (err)
6224 return err;
6225
6226 xchg(&memcg->memory.max, max);
6227
6228 for (;;) {
6229 unsigned long nr_pages = page_counter_read(&memcg->memory);
6230
6231 if (nr_pages <= max)
6232 break;
6233
6234 if (signal_pending(current))
6235 break;
6236
6237 if (!drained) {
6238 drain_all_stock(memcg);
6239 drained = true;
6240 continue;
6241 }
6242
6243 if (nr_reclaims) {
6244 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6245 GFP_KERNEL, true))
6246 nr_reclaims--;
6247 continue;
6248 }
6249
6250 memcg_memory_event(memcg, MEMCG_OOM);
6251 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6252 break;
6253 }
6254
6255 memcg_wb_domain_size_changed(memcg);
6256 return nbytes;
6257}
6258
6259static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6260{
6261 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6262 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6263 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6264 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6265 seq_printf(m, "oom_kill %lu\n",
6266 atomic_long_read(&events[MEMCG_OOM_KILL]));
6267 seq_printf(m, "oom_group_kill %lu\n",
6268 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6269}
6270
6271static int memory_events_show(struct seq_file *m, void *v)
6272{
6273 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6274
6275 __memory_events_show(m, memcg->memory_events);
6276 return 0;
6277}
6278
6279static int memory_events_local_show(struct seq_file *m, void *v)
6280{
6281 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6282
6283 __memory_events_show(m, memcg->memory_events_local);
6284 return 0;
6285}
6286
6287static int memory_stat_show(struct seq_file *m, void *v)
6288{
6289 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6290 char *buf;
6291
6292 buf = memory_stat_format(memcg);
6293 if (!buf)
6294 return -ENOMEM;
6295 seq_puts(m, buf);
6296 kfree(buf);
6297 return 0;
6298}
6299
6300#ifdef CONFIG_NUMA
6301static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6302 int item)
6303{
6304 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6305}
6306
6307static int memory_numa_stat_show(struct seq_file *m, void *v)
6308{
6309 int i;
6310 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6311
6312 mem_cgroup_flush_stats();
6313
6314 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6315 int nid;
6316
6317 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6318 continue;
6319
6320 seq_printf(m, "%s", memory_stats[i].name);
6321 for_each_node_state(nid, N_MEMORY) {
6322 u64 size;
6323 struct lruvec *lruvec;
6324
6325 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6326 size = lruvec_page_state_output(lruvec,
6327 memory_stats[i].idx);
6328 seq_printf(m, " N%d=%llu", nid, size);
6329 }
6330 seq_putc(m, '\n');
6331 }
6332
6333 return 0;
6334}
6335#endif
6336
6337static int memory_oom_group_show(struct seq_file *m, void *v)
6338{
6339 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6340
6341 seq_printf(m, "%d\n", memcg->oom_group);
6342
6343 return 0;
6344}
6345
6346static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6347 char *buf, size_t nbytes, loff_t off)
6348{
6349 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6350 int ret, oom_group;
6351
6352 buf = strstrip(buf);
6353 if (!buf)
6354 return -EINVAL;
6355
6356 ret = kstrtoint(buf, 0, &oom_group);
6357 if (ret)
6358 return ret;
6359
6360 if (oom_group != 0 && oom_group != 1)
6361 return -EINVAL;
6362
6363 memcg->oom_group = oom_group;
6364
6365 return nbytes;
6366}
6367
6368static struct cftype memory_files[] = {
6369 {
6370 .name = "current",
6371 .flags = CFTYPE_NOT_ON_ROOT,
6372 .read_u64 = memory_current_read,
6373 },
6374 {
6375 .name = "min",
6376 .flags = CFTYPE_NOT_ON_ROOT,
6377 .seq_show = memory_min_show,
6378 .write = memory_min_write,
6379 },
6380 {
6381 .name = "low",
6382 .flags = CFTYPE_NOT_ON_ROOT,
6383 .seq_show = memory_low_show,
6384 .write = memory_low_write,
6385 },
6386 {
6387 .name = "high",
6388 .flags = CFTYPE_NOT_ON_ROOT,
6389 .seq_show = memory_high_show,
6390 .write = memory_high_write,
6391 },
6392 {
6393 .name = "max",
6394 .flags = CFTYPE_NOT_ON_ROOT,
6395 .seq_show = memory_max_show,
6396 .write = memory_max_write,
6397 },
6398 {
6399 .name = "events",
6400 .flags = CFTYPE_NOT_ON_ROOT,
6401 .file_offset = offsetof(struct mem_cgroup, events_file),
6402 .seq_show = memory_events_show,
6403 },
6404 {
6405 .name = "events.local",
6406 .flags = CFTYPE_NOT_ON_ROOT,
6407 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6408 .seq_show = memory_events_local_show,
6409 },
6410 {
6411 .name = "stat",
6412 .seq_show = memory_stat_show,
6413 },
6414#ifdef CONFIG_NUMA
6415 {
6416 .name = "numa_stat",
6417 .seq_show = memory_numa_stat_show,
6418 },
6419#endif
6420 {
6421 .name = "oom.group",
6422 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6423 .seq_show = memory_oom_group_show,
6424 .write = memory_oom_group_write,
6425 },
6426 { } /* terminate */
6427};
6428
6429struct cgroup_subsys memory_cgrp_subsys = {
6430 .css_alloc = mem_cgroup_css_alloc,
6431 .css_online = mem_cgroup_css_online,
6432 .css_offline = mem_cgroup_css_offline,
6433 .css_released = mem_cgroup_css_released,
6434 .css_free = mem_cgroup_css_free,
6435 .css_reset = mem_cgroup_css_reset,
6436 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6437 .can_attach = mem_cgroup_can_attach,
6438 .cancel_attach = mem_cgroup_cancel_attach,
6439 .post_attach = mem_cgroup_move_task,
6440 .dfl_cftypes = memory_files,
6441 .legacy_cftypes = mem_cgroup_legacy_files,
6442 .early_init = 0,
6443};
6444
6445/*
6446 * This function calculates an individual cgroup's effective
6447 * protection which is derived from its own memory.min/low, its
6448 * parent's and siblings' settings, as well as the actual memory
6449 * distribution in the tree.
6450 *
6451 * The following rules apply to the effective protection values:
6452 *
6453 * 1. At the first level of reclaim, effective protection is equal to
6454 * the declared protection in memory.min and memory.low.
6455 *
6456 * 2. To enable safe delegation of the protection configuration, at
6457 * subsequent levels the effective protection is capped to the
6458 * parent's effective protection.
6459 *
6460 * 3. To make complex and dynamic subtrees easier to configure, the
6461 * user is allowed to overcommit the declared protection at a given
6462 * level. If that is the case, the parent's effective protection is
6463 * distributed to the children in proportion to how much protection
6464 * they have declared and how much of it they are utilizing.
6465 *
6466 * This makes distribution proportional, but also work-conserving:
6467 * if one cgroup claims much more protection than it uses memory,
6468 * the unused remainder is available to its siblings.
6469 *
6470 * 4. Conversely, when the declared protection is undercommitted at a
6471 * given level, the distribution of the larger parental protection
6472 * budget is NOT proportional. A cgroup's protection from a sibling
6473 * is capped to its own memory.min/low setting.
6474 *
6475 * 5. However, to allow protecting recursive subtrees from each other
6476 * without having to declare each individual cgroup's fixed share
6477 * of the ancestor's claim to protection, any unutilized -
6478 * "floating" - protection from up the tree is distributed in
6479 * proportion to each cgroup's *usage*. This makes the protection
6480 * neutral wrt sibling cgroups and lets them compete freely over
6481 * the shared parental protection budget, but it protects the
6482 * subtree as a whole from neighboring subtrees.
6483 *
6484 * Note that 4. and 5. are not in conflict: 4. is about protecting
6485 * against immediate siblings whereas 5. is about protecting against
6486 * neighboring subtrees.
6487 */
6488static unsigned long effective_protection(unsigned long usage,
6489 unsigned long parent_usage,
6490 unsigned long setting,
6491 unsigned long parent_effective,
6492 unsigned long siblings_protected)
6493{
6494 unsigned long protected;
6495 unsigned long ep;
6496
6497 protected = min(usage, setting);
6498 /*
6499 * If all cgroups at this level combined claim and use more
6500 * protection then what the parent affords them, distribute
6501 * shares in proportion to utilization.
6502 *
6503 * We are using actual utilization rather than the statically
6504 * claimed protection in order to be work-conserving: claimed
6505 * but unused protection is available to siblings that would
6506 * otherwise get a smaller chunk than what they claimed.
6507 */
6508 if (siblings_protected > parent_effective)
6509 return protected * parent_effective / siblings_protected;
6510
6511 /*
6512 * Ok, utilized protection of all children is within what the
6513 * parent affords them, so we know whatever this child claims
6514 * and utilizes is effectively protected.
6515 *
6516 * If there is unprotected usage beyond this value, reclaim
6517 * will apply pressure in proportion to that amount.
6518 *
6519 * If there is unutilized protection, the cgroup will be fully
6520 * shielded from reclaim, but we do return a smaller value for
6521 * protection than what the group could enjoy in theory. This
6522 * is okay. With the overcommit distribution above, effective
6523 * protection is always dependent on how memory is actually
6524 * consumed among the siblings anyway.
6525 */
6526 ep = protected;
6527
6528 /*
6529 * If the children aren't claiming (all of) the protection
6530 * afforded to them by the parent, distribute the remainder in
6531 * proportion to the (unprotected) memory of each cgroup. That
6532 * way, cgroups that aren't explicitly prioritized wrt each
6533 * other compete freely over the allowance, but they are
6534 * collectively protected from neighboring trees.
6535 *
6536 * We're using unprotected memory for the weight so that if
6537 * some cgroups DO claim explicit protection, we don't protect
6538 * the same bytes twice.
6539 *
6540 * Check both usage and parent_usage against the respective
6541 * protected values. One should imply the other, but they
6542 * aren't read atomically - make sure the division is sane.
6543 */
6544 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6545 return ep;
6546 if (parent_effective > siblings_protected &&
6547 parent_usage > siblings_protected &&
6548 usage > protected) {
6549 unsigned long unclaimed;
6550
6551 unclaimed = parent_effective - siblings_protected;
6552 unclaimed *= usage - protected;
6553 unclaimed /= parent_usage - siblings_protected;
6554
6555 ep += unclaimed;
6556 }
6557
6558 return ep;
6559}
6560
6561/**
6562 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6563 * @root: the top ancestor of the sub-tree being checked
6564 * @memcg: the memory cgroup to check
6565 *
6566 * WARNING: This function is not stateless! It can only be used as part
6567 * of a top-down tree iteration, not for isolated queries.
6568 */
6569void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6570 struct mem_cgroup *memcg)
6571{
6572 unsigned long usage, parent_usage;
6573 struct mem_cgroup *parent;
6574
6575 if (mem_cgroup_disabled())
6576 return;
6577
6578 if (!root)
6579 root = root_mem_cgroup;
6580
6581 /*
6582 * Effective values of the reclaim targets are ignored so they
6583 * can be stale. Have a look at mem_cgroup_protection for more
6584 * details.
6585 * TODO: calculation should be more robust so that we do not need
6586 * that special casing.
6587 */
6588 if (memcg == root)
6589 return;
6590
6591 usage = page_counter_read(&memcg->memory);
6592 if (!usage)
6593 return;
6594
6595 parent = parent_mem_cgroup(memcg);
6596 /* No parent means a non-hierarchical mode on v1 memcg */
6597 if (!parent)
6598 return;
6599
6600 if (parent == root) {
6601 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6602 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6603 return;
6604 }
6605
6606 parent_usage = page_counter_read(&parent->memory);
6607
6608 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6609 READ_ONCE(memcg->memory.min),
6610 READ_ONCE(parent->memory.emin),
6611 atomic_long_read(&parent->memory.children_min_usage)));
6612
6613 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6614 READ_ONCE(memcg->memory.low),
6615 READ_ONCE(parent->memory.elow),
6616 atomic_long_read(&parent->memory.children_low_usage)));
6617}
6618
6619static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6620 gfp_t gfp)
6621{
6622 long nr_pages = folio_nr_pages(folio);
6623 int ret;
6624
6625 ret = try_charge(memcg, gfp, nr_pages);
6626 if (ret)
6627 goto out;
6628
6629 css_get(&memcg->css);
6630 commit_charge(folio, memcg);
6631
6632 local_irq_disable();
6633 mem_cgroup_charge_statistics(memcg, nr_pages);
6634 memcg_check_events(memcg, folio_nid(folio));
6635 local_irq_enable();
6636out:
6637 return ret;
6638}
6639
6640int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6641{
6642 struct mem_cgroup *memcg;
6643 int ret;
6644
6645 memcg = get_mem_cgroup_from_mm(mm);
6646 ret = charge_memcg(folio, memcg, gfp);
6647 css_put(&memcg->css);
6648
6649 return ret;
6650}
6651
6652/**
6653 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6654 * @page: page to charge
6655 * @mm: mm context of the victim
6656 * @gfp: reclaim mode
6657 * @entry: swap entry for which the page is allocated
6658 *
6659 * This function charges a page allocated for swapin. Please call this before
6660 * adding the page to the swapcache.
6661 *
6662 * Returns 0 on success. Otherwise, an error code is returned.
6663 */
6664int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6665 gfp_t gfp, swp_entry_t entry)
6666{
6667 struct folio *folio = page_folio(page);
6668 struct mem_cgroup *memcg;
6669 unsigned short id;
6670 int ret;
6671
6672 if (mem_cgroup_disabled())
6673 return 0;
6674
6675 id = lookup_swap_cgroup_id(entry);
6676 rcu_read_lock();
6677 memcg = mem_cgroup_from_id(id);
6678 if (!memcg || !css_tryget_online(&memcg->css))
6679 memcg = get_mem_cgroup_from_mm(mm);
6680 rcu_read_unlock();
6681
6682 ret = charge_memcg(folio, memcg, gfp);
6683
6684 css_put(&memcg->css);
6685 return ret;
6686}
6687
6688/*
6689 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6690 * @entry: swap entry for which the page is charged
6691 *
6692 * Call this function after successfully adding the charged page to swapcache.
6693 *
6694 * Note: This function assumes the page for which swap slot is being uncharged
6695 * is order 0 page.
6696 */
6697void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6698{
6699 /*
6700 * Cgroup1's unified memory+swap counter has been charged with the
6701 * new swapcache page, finish the transfer by uncharging the swap
6702 * slot. The swap slot would also get uncharged when it dies, but
6703 * it can stick around indefinitely and we'd count the page twice
6704 * the entire time.
6705 *
6706 * Cgroup2 has separate resource counters for memory and swap,
6707 * so this is a non-issue here. Memory and swap charge lifetimes
6708 * correspond 1:1 to page and swap slot lifetimes: we charge the
6709 * page to memory here, and uncharge swap when the slot is freed.
6710 */
6711 if (!mem_cgroup_disabled() && do_memsw_account()) {
6712 /*
6713 * The swap entry might not get freed for a long time,
6714 * let's not wait for it. The page already received a
6715 * memory+swap charge, drop the swap entry duplicate.
6716 */
6717 mem_cgroup_uncharge_swap(entry, 1);
6718 }
6719}
6720
6721struct uncharge_gather {
6722 struct mem_cgroup *memcg;
6723 unsigned long nr_memory;
6724 unsigned long pgpgout;
6725 unsigned long nr_kmem;
6726 int nid;
6727};
6728
6729static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6730{
6731 memset(ug, 0, sizeof(*ug));
6732}
6733
6734static void uncharge_batch(const struct uncharge_gather *ug)
6735{
6736 unsigned long flags;
6737
6738 if (ug->nr_memory) {
6739 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6740 if (do_memsw_account())
6741 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6742 if (ug->nr_kmem)
6743 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
6744 memcg_oom_recover(ug->memcg);
6745 }
6746
6747 local_irq_save(flags);
6748 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6749 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6750 memcg_check_events(ug->memcg, ug->nid);
6751 local_irq_restore(flags);
6752
6753 /* drop reference from uncharge_folio */
6754 css_put(&ug->memcg->css);
6755}
6756
6757static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
6758{
6759 long nr_pages;
6760 struct mem_cgroup *memcg;
6761 struct obj_cgroup *objcg;
6762
6763 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6764
6765 /*
6766 * Nobody should be changing or seriously looking at
6767 * folio memcg or objcg at this point, we have fully
6768 * exclusive access to the folio.
6769 */
6770 if (folio_memcg_kmem(folio)) {
6771 objcg = __folio_objcg(folio);
6772 /*
6773 * This get matches the put at the end of the function and
6774 * kmem pages do not hold memcg references anymore.
6775 */
6776 memcg = get_mem_cgroup_from_objcg(objcg);
6777 } else {
6778 memcg = __folio_memcg(folio);
6779 }
6780
6781 if (!memcg)
6782 return;
6783
6784 if (ug->memcg != memcg) {
6785 if (ug->memcg) {
6786 uncharge_batch(ug);
6787 uncharge_gather_clear(ug);
6788 }
6789 ug->memcg = memcg;
6790 ug->nid = folio_nid(folio);
6791
6792 /* pairs with css_put in uncharge_batch */
6793 css_get(&memcg->css);
6794 }
6795
6796 nr_pages = folio_nr_pages(folio);
6797
6798 if (folio_memcg_kmem(folio)) {
6799 ug->nr_memory += nr_pages;
6800 ug->nr_kmem += nr_pages;
6801
6802 folio->memcg_data = 0;
6803 obj_cgroup_put(objcg);
6804 } else {
6805 /* LRU pages aren't accounted at the root level */
6806 if (!mem_cgroup_is_root(memcg))
6807 ug->nr_memory += nr_pages;
6808 ug->pgpgout++;
6809
6810 folio->memcg_data = 0;
6811 }
6812
6813 css_put(&memcg->css);
6814}
6815
6816void __mem_cgroup_uncharge(struct folio *folio)
6817{
6818 struct uncharge_gather ug;
6819
6820 /* Don't touch folio->lru of any random page, pre-check: */
6821 if (!folio_memcg(folio))
6822 return;
6823
6824 uncharge_gather_clear(&ug);
6825 uncharge_folio(folio, &ug);
6826 uncharge_batch(&ug);
6827}
6828
6829/**
6830 * __mem_cgroup_uncharge_list - uncharge a list of page
6831 * @page_list: list of pages to uncharge
6832 *
6833 * Uncharge a list of pages previously charged with
6834 * __mem_cgroup_charge().
6835 */
6836void __mem_cgroup_uncharge_list(struct list_head *page_list)
6837{
6838 struct uncharge_gather ug;
6839 struct folio *folio;
6840
6841 uncharge_gather_clear(&ug);
6842 list_for_each_entry(folio, page_list, lru)
6843 uncharge_folio(folio, &ug);
6844 if (ug.memcg)
6845 uncharge_batch(&ug);
6846}
6847
6848/**
6849 * mem_cgroup_migrate - Charge a folio's replacement.
6850 * @old: Currently circulating folio.
6851 * @new: Replacement folio.
6852 *
6853 * Charge @new as a replacement folio for @old. @old will
6854 * be uncharged upon free.
6855 *
6856 * Both folios must be locked, @new->mapping must be set up.
6857 */
6858void mem_cgroup_migrate(struct folio *old, struct folio *new)
6859{
6860 struct mem_cgroup *memcg;
6861 long nr_pages = folio_nr_pages(new);
6862 unsigned long flags;
6863
6864 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
6865 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
6866 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
6867 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
6868
6869 if (mem_cgroup_disabled())
6870 return;
6871
6872 /* Page cache replacement: new folio already charged? */
6873 if (folio_memcg(new))
6874 return;
6875
6876 memcg = folio_memcg(old);
6877 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
6878 if (!memcg)
6879 return;
6880
6881 /* Force-charge the new page. The old one will be freed soon */
6882 if (!mem_cgroup_is_root(memcg)) {
6883 page_counter_charge(&memcg->memory, nr_pages);
6884 if (do_memsw_account())
6885 page_counter_charge(&memcg->memsw, nr_pages);
6886 }
6887
6888 css_get(&memcg->css);
6889 commit_charge(new, memcg);
6890
6891 local_irq_save(flags);
6892 mem_cgroup_charge_statistics(memcg, nr_pages);
6893 memcg_check_events(memcg, folio_nid(new));
6894 local_irq_restore(flags);
6895}
6896
6897DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6898EXPORT_SYMBOL(memcg_sockets_enabled_key);
6899
6900void mem_cgroup_sk_alloc(struct sock *sk)
6901{
6902 struct mem_cgroup *memcg;
6903
6904 if (!mem_cgroup_sockets_enabled)
6905 return;
6906
6907 /* Do not associate the sock with unrelated interrupted task's memcg. */
6908 if (!in_task())
6909 return;
6910
6911 rcu_read_lock();
6912 memcg = mem_cgroup_from_task(current);
6913 if (memcg == root_mem_cgroup)
6914 goto out;
6915 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6916 goto out;
6917 if (css_tryget(&memcg->css))
6918 sk->sk_memcg = memcg;
6919out:
6920 rcu_read_unlock();
6921}
6922
6923void mem_cgroup_sk_free(struct sock *sk)
6924{
6925 if (sk->sk_memcg)
6926 css_put(&sk->sk_memcg->css);
6927}
6928
6929/**
6930 * mem_cgroup_charge_skmem - charge socket memory
6931 * @memcg: memcg to charge
6932 * @nr_pages: number of pages to charge
6933 * @gfp_mask: reclaim mode
6934 *
6935 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6936 * @memcg's configured limit, %false if it doesn't.
6937 */
6938bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
6939 gfp_t gfp_mask)
6940{
6941 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6942 struct page_counter *fail;
6943
6944 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6945 memcg->tcpmem_pressure = 0;
6946 return true;
6947 }
6948 memcg->tcpmem_pressure = 1;
6949 if (gfp_mask & __GFP_NOFAIL) {
6950 page_counter_charge(&memcg->tcpmem, nr_pages);
6951 return true;
6952 }
6953 return false;
6954 }
6955
6956 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
6957 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6958 return true;
6959 }
6960
6961 return false;
6962}
6963
6964/**
6965 * mem_cgroup_uncharge_skmem - uncharge socket memory
6966 * @memcg: memcg to uncharge
6967 * @nr_pages: number of pages to uncharge
6968 */
6969void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6970{
6971 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6972 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6973 return;
6974 }
6975
6976 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6977
6978 refill_stock(memcg, nr_pages);
6979}
6980
6981static int __init cgroup_memory(char *s)
6982{
6983 char *token;
6984
6985 while ((token = strsep(&s, ",")) != NULL) {
6986 if (!*token)
6987 continue;
6988 if (!strcmp(token, "nosocket"))
6989 cgroup_memory_nosocket = true;
6990 if (!strcmp(token, "nokmem"))
6991 cgroup_memory_nokmem = true;
6992 }
6993 return 1;
6994}
6995__setup("cgroup.memory=", cgroup_memory);
6996
6997/*
6998 * subsys_initcall() for memory controller.
6999 *
7000 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7001 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7002 * basically everything that doesn't depend on a specific mem_cgroup structure
7003 * should be initialized from here.
7004 */
7005static int __init mem_cgroup_init(void)
7006{
7007 int cpu, node;
7008
7009 /*
7010 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7011 * used for per-memcg-per-cpu caching of per-node statistics. In order
7012 * to work fine, we should make sure that the overfill threshold can't
7013 * exceed S32_MAX / PAGE_SIZE.
7014 */
7015 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7016
7017 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7018 memcg_hotplug_cpu_dead);
7019
7020 for_each_possible_cpu(cpu)
7021 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7022 drain_local_stock);
7023
7024 for_each_node(node) {
7025 struct mem_cgroup_tree_per_node *rtpn;
7026
7027 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7028 node_online(node) ? node : NUMA_NO_NODE);
7029
7030 rtpn->rb_root = RB_ROOT;
7031 rtpn->rb_rightmost = NULL;
7032 spin_lock_init(&rtpn->lock);
7033 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7034 }
7035
7036 return 0;
7037}
7038subsys_initcall(mem_cgroup_init);
7039
7040#ifdef CONFIG_MEMCG_SWAP
7041static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7042{
7043 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7044 /*
7045 * The root cgroup cannot be destroyed, so it's refcount must
7046 * always be >= 1.
7047 */
7048 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7049 VM_BUG_ON(1);
7050 break;
7051 }
7052 memcg = parent_mem_cgroup(memcg);
7053 if (!memcg)
7054 memcg = root_mem_cgroup;
7055 }
7056 return memcg;
7057}
7058
7059/**
7060 * mem_cgroup_swapout - transfer a memsw charge to swap
7061 * @folio: folio whose memsw charge to transfer
7062 * @entry: swap entry to move the charge to
7063 *
7064 * Transfer the memsw charge of @folio to @entry.
7065 */
7066void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7067{
7068 struct mem_cgroup *memcg, *swap_memcg;
7069 unsigned int nr_entries;
7070 unsigned short oldid;
7071
7072 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7073 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7074
7075 if (mem_cgroup_disabled())
7076 return;
7077
7078 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7079 return;
7080
7081 memcg = folio_memcg(folio);
7082
7083 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7084 if (!memcg)
7085 return;
7086
7087 /*
7088 * In case the memcg owning these pages has been offlined and doesn't
7089 * have an ID allocated to it anymore, charge the closest online
7090 * ancestor for the swap instead and transfer the memory+swap charge.
7091 */
7092 swap_memcg = mem_cgroup_id_get_online(memcg);
7093 nr_entries = folio_nr_pages(folio);
7094 /* Get references for the tail pages, too */
7095 if (nr_entries > 1)
7096 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7097 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7098 nr_entries);
7099 VM_BUG_ON_FOLIO(oldid, folio);
7100 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7101
7102 folio->memcg_data = 0;
7103
7104 if (!mem_cgroup_is_root(memcg))
7105 page_counter_uncharge(&memcg->memory, nr_entries);
7106
7107 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7108 if (!mem_cgroup_is_root(swap_memcg))
7109 page_counter_charge(&swap_memcg->memsw, nr_entries);
7110 page_counter_uncharge(&memcg->memsw, nr_entries);
7111 }
7112
7113 /*
7114 * Interrupts should be disabled here because the caller holds the
7115 * i_pages lock which is taken with interrupts-off. It is
7116 * important here to have the interrupts disabled because it is the
7117 * only synchronisation we have for updating the per-CPU variables.
7118 */
7119 memcg_stats_lock();
7120 mem_cgroup_charge_statistics(memcg, -nr_entries);
7121 memcg_stats_unlock();
7122 memcg_check_events(memcg, folio_nid(folio));
7123
7124 css_put(&memcg->css);
7125}
7126
7127/**
7128 * __mem_cgroup_try_charge_swap - try charging swap space for a page
7129 * @page: page being added to swap
7130 * @entry: swap entry to charge
7131 *
7132 * Try to charge @page's memcg for the swap space at @entry.
7133 *
7134 * Returns 0 on success, -ENOMEM on failure.
7135 */
7136int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7137{
7138 unsigned int nr_pages = thp_nr_pages(page);
7139 struct page_counter *counter;
7140 struct mem_cgroup *memcg;
7141 unsigned short oldid;
7142
7143 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7144 return 0;
7145
7146 memcg = page_memcg(page);
7147
7148 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7149 if (!memcg)
7150 return 0;
7151
7152 if (!entry.val) {
7153 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7154 return 0;
7155 }
7156
7157 memcg = mem_cgroup_id_get_online(memcg);
7158
7159 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7160 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7161 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7162 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7163 mem_cgroup_id_put(memcg);
7164 return -ENOMEM;
7165 }
7166
7167 /* Get references for the tail pages, too */
7168 if (nr_pages > 1)
7169 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7170 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7171 VM_BUG_ON_PAGE(oldid, page);
7172 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7173
7174 return 0;
7175}
7176
7177/**
7178 * __mem_cgroup_uncharge_swap - uncharge swap space
7179 * @entry: swap entry to uncharge
7180 * @nr_pages: the amount of swap space to uncharge
7181 */
7182void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7183{
7184 struct mem_cgroup *memcg;
7185 unsigned short id;
7186
7187 id = swap_cgroup_record(entry, 0, nr_pages);
7188 rcu_read_lock();
7189 memcg = mem_cgroup_from_id(id);
7190 if (memcg) {
7191 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7192 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7193 page_counter_uncharge(&memcg->swap, nr_pages);
7194 else
7195 page_counter_uncharge(&memcg->memsw, nr_pages);
7196 }
7197 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7198 mem_cgroup_id_put_many(memcg, nr_pages);
7199 }
7200 rcu_read_unlock();
7201}
7202
7203long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7204{
7205 long nr_swap_pages = get_nr_swap_pages();
7206
7207 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7208 return nr_swap_pages;
7209 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7210 nr_swap_pages = min_t(long, nr_swap_pages,
7211 READ_ONCE(memcg->swap.max) -
7212 page_counter_read(&memcg->swap));
7213 return nr_swap_pages;
7214}
7215
7216bool mem_cgroup_swap_full(struct page *page)
7217{
7218 struct mem_cgroup *memcg;
7219
7220 VM_BUG_ON_PAGE(!PageLocked(page), page);
7221
7222 if (vm_swap_full())
7223 return true;
7224 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7225 return false;
7226
7227 memcg = page_memcg(page);
7228 if (!memcg)
7229 return false;
7230
7231 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7232 unsigned long usage = page_counter_read(&memcg->swap);
7233
7234 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7235 usage * 2 >= READ_ONCE(memcg->swap.max))
7236 return true;
7237 }
7238
7239 return false;
7240}
7241
7242static int __init setup_swap_account(char *s)
7243{
7244 if (!strcmp(s, "1"))
7245 cgroup_memory_noswap = false;
7246 else if (!strcmp(s, "0"))
7247 cgroup_memory_noswap = true;
7248 return 1;
7249}
7250__setup("swapaccount=", setup_swap_account);
7251
7252static u64 swap_current_read(struct cgroup_subsys_state *css,
7253 struct cftype *cft)
7254{
7255 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7256
7257 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7258}
7259
7260static int swap_high_show(struct seq_file *m, void *v)
7261{
7262 return seq_puts_memcg_tunable(m,
7263 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7264}
7265
7266static ssize_t swap_high_write(struct kernfs_open_file *of,
7267 char *buf, size_t nbytes, loff_t off)
7268{
7269 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7270 unsigned long high;
7271 int err;
7272
7273 buf = strstrip(buf);
7274 err = page_counter_memparse(buf, "max", &high);
7275 if (err)
7276 return err;
7277
7278 page_counter_set_high(&memcg->swap, high);
7279
7280 return nbytes;
7281}
7282
7283static int swap_max_show(struct seq_file *m, void *v)
7284{
7285 return seq_puts_memcg_tunable(m,
7286 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7287}
7288
7289static ssize_t swap_max_write(struct kernfs_open_file *of,
7290 char *buf, size_t nbytes, loff_t off)
7291{
7292 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7293 unsigned long max;
7294 int err;
7295
7296 buf = strstrip(buf);
7297 err = page_counter_memparse(buf, "max", &max);
7298 if (err)
7299 return err;
7300
7301 xchg(&memcg->swap.max, max);
7302
7303 return nbytes;
7304}
7305
7306static int swap_events_show(struct seq_file *m, void *v)
7307{
7308 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7309
7310 seq_printf(m, "high %lu\n",
7311 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7312 seq_printf(m, "max %lu\n",
7313 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7314 seq_printf(m, "fail %lu\n",
7315 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7316
7317 return 0;
7318}
7319
7320static struct cftype swap_files[] = {
7321 {
7322 .name = "swap.current",
7323 .flags = CFTYPE_NOT_ON_ROOT,
7324 .read_u64 = swap_current_read,
7325 },
7326 {
7327 .name = "swap.high",
7328 .flags = CFTYPE_NOT_ON_ROOT,
7329 .seq_show = swap_high_show,
7330 .write = swap_high_write,
7331 },
7332 {
7333 .name = "swap.max",
7334 .flags = CFTYPE_NOT_ON_ROOT,
7335 .seq_show = swap_max_show,
7336 .write = swap_max_write,
7337 },
7338 {
7339 .name = "swap.events",
7340 .flags = CFTYPE_NOT_ON_ROOT,
7341 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7342 .seq_show = swap_events_show,
7343 },
7344 { } /* terminate */
7345};
7346
7347static struct cftype memsw_files[] = {
7348 {
7349 .name = "memsw.usage_in_bytes",
7350 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7351 .read_u64 = mem_cgroup_read_u64,
7352 },
7353 {
7354 .name = "memsw.max_usage_in_bytes",
7355 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7356 .write = mem_cgroup_reset,
7357 .read_u64 = mem_cgroup_read_u64,
7358 },
7359 {
7360 .name = "memsw.limit_in_bytes",
7361 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7362 .write = mem_cgroup_write,
7363 .read_u64 = mem_cgroup_read_u64,
7364 },
7365 {
7366 .name = "memsw.failcnt",
7367 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7368 .write = mem_cgroup_reset,
7369 .read_u64 = mem_cgroup_read_u64,
7370 },
7371 { }, /* terminate */
7372};
7373
7374/*
7375 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7376 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7377 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7378 * boot parameter. This may result in premature OOPS inside
7379 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7380 */
7381static int __init mem_cgroup_swap_init(void)
7382{
7383 /* No memory control -> no swap control */
7384 if (mem_cgroup_disabled())
7385 cgroup_memory_noswap = true;
7386
7387 if (cgroup_memory_noswap)
7388 return 0;
7389
7390 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7391 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7392
7393 return 0;
7394}
7395core_initcall(mem_cgroup_swap_init);
7396
7397#endif /* CONFIG_MEMCG_SWAP */