Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13#include <linux/export.h>
14#include <linux/compiler.h>
15#include <linux/dax.h>
16#include <linux/fs.h>
17#include <linux/sched/signal.h>
18#include <linux/uaccess.h>
19#include <linux/capability.h>
20#include <linux/kernel_stat.h>
21#include <linux/gfp.h>
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/swapops.h>
25#include <linux/mman.h>
26#include <linux/pagemap.h>
27#include <linux/file.h>
28#include <linux/uio.h>
29#include <linux/error-injection.h>
30#include <linux/hash.h>
31#include <linux/writeback.h>
32#include <linux/backing-dev.h>
33#include <linux/pagevec.h>
34#include <linux/security.h>
35#include <linux/cpuset.h>
36#include <linux/hugetlb.h>
37#include <linux/memcontrol.h>
38#include <linux/shmem_fs.h>
39#include <linux/rmap.h>
40#include <linux/delayacct.h>
41#include <linux/psi.h>
42#include <linux/ramfs.h>
43#include <linux/page_idle.h>
44#include <linux/migrate.h>
45#include <asm/pgalloc.h>
46#include <asm/tlbflush.h>
47#include "internal.h"
48
49#define CREATE_TRACE_POINTS
50#include <trace/events/filemap.h>
51
52/*
53 * FIXME: remove all knowledge of the buffer layer from the core VM
54 */
55#include <linux/buffer_head.h> /* for try_to_free_buffers */
56
57#include <asm/mman.h>
58
59/*
60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
61 * though.
62 *
63 * Shared mappings now work. 15.8.1995 Bruno.
64 *
65 * finished 'unifying' the page and buffer cache and SMP-threaded the
66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67 *
68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69 */
70
71/*
72 * Lock ordering:
73 *
74 * ->i_mmap_rwsem (truncate_pagecache)
75 * ->private_lock (__free_pte->block_dirty_folio)
76 * ->swap_lock (exclusive_swap_page, others)
77 * ->i_pages lock
78 *
79 * ->i_rwsem
80 * ->invalidate_lock (acquired by fs in truncate path)
81 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
82 *
83 * ->mmap_lock
84 * ->i_mmap_rwsem
85 * ->page_table_lock or pte_lock (various, mainly in memory.c)
86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
87 *
88 * ->mmap_lock
89 * ->invalidate_lock (filemap_fault)
90 * ->lock_page (filemap_fault, access_process_vm)
91 *
92 * ->i_rwsem (generic_perform_write)
93 * ->mmap_lock (fault_in_readable->do_page_fault)
94 *
95 * bdi->wb.list_lock
96 * sb_lock (fs/fs-writeback.c)
97 * ->i_pages lock (__sync_single_inode)
98 *
99 * ->i_mmap_rwsem
100 * ->anon_vma.lock (vma_adjust)
101 *
102 * ->anon_vma.lock
103 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
104 *
105 * ->page_table_lock or pte_lock
106 * ->swap_lock (try_to_unmap_one)
107 * ->private_lock (try_to_unmap_one)
108 * ->i_pages lock (try_to_unmap_one)
109 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
111 * ->private_lock (page_remove_rmap->set_page_dirty)
112 * ->i_pages lock (page_remove_rmap->set_page_dirty)
113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
114 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
117 * ->inode->i_lock (zap_pte_range->set_page_dirty)
118 * ->private_lock (zap_pte_range->block_dirty_folio)
119 *
120 * ->i_mmap_rwsem
121 * ->tasklist_lock (memory_failure, collect_procs_ao)
122 */
123
124static void page_cache_delete(struct address_space *mapping,
125 struct folio *folio, void *shadow)
126{
127 XA_STATE(xas, &mapping->i_pages, folio->index);
128 long nr = 1;
129
130 mapping_set_update(&xas, mapping);
131
132 /* hugetlb pages are represented by a single entry in the xarray */
133 if (!folio_test_hugetlb(folio)) {
134 xas_set_order(&xas, folio->index, folio_order(folio));
135 nr = folio_nr_pages(folio);
136 }
137
138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
139
140 xas_store(&xas, shadow);
141 xas_init_marks(&xas);
142
143 folio->mapping = NULL;
144 /* Leave page->index set: truncation lookup relies upon it */
145 mapping->nrpages -= nr;
146}
147
148static void filemap_unaccount_folio(struct address_space *mapping,
149 struct folio *folio)
150{
151 long nr;
152
153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
156 current->comm, folio_pfn(folio));
157 dump_page(&folio->page, "still mapped when deleted");
158 dump_stack();
159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
160
161 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
162 int mapcount = page_mapcount(&folio->page);
163
164 if (folio_ref_count(folio) >= mapcount + 2) {
165 /*
166 * All vmas have already been torn down, so it's
167 * a good bet that actually the page is unmapped
168 * and we'd rather not leak it: if we're wrong,
169 * another bad page check should catch it later.
170 */
171 page_mapcount_reset(&folio->page);
172 folio_ref_sub(folio, mapcount);
173 }
174 }
175 }
176
177 /* hugetlb folios do not participate in page cache accounting. */
178 if (folio_test_hugetlb(folio))
179 return;
180
181 nr = folio_nr_pages(folio);
182
183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 if (folio_test_swapbacked(folio)) {
185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 if (folio_test_pmd_mappable(folio))
187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 } else if (folio_test_pmd_mappable(folio)) {
189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
190 filemap_nr_thps_dec(mapping);
191 }
192
193 /*
194 * At this point folio must be either written or cleaned by
195 * truncate. Dirty folio here signals a bug and loss of
196 * unwritten data - on ordinary filesystems.
197 *
198 * But it's harmless on in-memory filesystems like tmpfs; and can
199 * occur when a driver which did get_user_pages() sets page dirty
200 * before putting it, while the inode is being finally evicted.
201 *
202 * Below fixes dirty accounting after removing the folio entirely
203 * but leaves the dirty flag set: it has no effect for truncated
204 * folio and anyway will be cleared before returning folio to
205 * buddy allocator.
206 */
207 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
208 mapping_can_writeback(mapping)))
209 folio_account_cleaned(folio, inode_to_wb(mapping->host));
210}
211
212/*
213 * Delete a page from the page cache and free it. Caller has to make
214 * sure the page is locked and that nobody else uses it - or that usage
215 * is safe. The caller must hold the i_pages lock.
216 */
217void __filemap_remove_folio(struct folio *folio, void *shadow)
218{
219 struct address_space *mapping = folio->mapping;
220
221 trace_mm_filemap_delete_from_page_cache(folio);
222 filemap_unaccount_folio(mapping, folio);
223 page_cache_delete(mapping, folio, shadow);
224}
225
226void filemap_free_folio(struct address_space *mapping, struct folio *folio)
227{
228 void (*freepage)(struct page *);
229 int refs = 1;
230
231 freepage = mapping->a_ops->freepage;
232 if (freepage)
233 freepage(&folio->page);
234
235 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
236 refs = folio_nr_pages(folio);
237 folio_put_refs(folio, refs);
238}
239
240/**
241 * filemap_remove_folio - Remove folio from page cache.
242 * @folio: The folio.
243 *
244 * This must be called only on folios that are locked and have been
245 * verified to be in the page cache. It will never put the folio into
246 * the free list because the caller has a reference on the page.
247 */
248void filemap_remove_folio(struct folio *folio)
249{
250 struct address_space *mapping = folio->mapping;
251
252 BUG_ON(!folio_test_locked(folio));
253 spin_lock(&mapping->host->i_lock);
254 xa_lock_irq(&mapping->i_pages);
255 __filemap_remove_folio(folio, NULL);
256 xa_unlock_irq(&mapping->i_pages);
257 if (mapping_shrinkable(mapping))
258 inode_add_lru(mapping->host);
259 spin_unlock(&mapping->host->i_lock);
260
261 filemap_free_folio(mapping, folio);
262}
263
264/*
265 * page_cache_delete_batch - delete several folios from page cache
266 * @mapping: the mapping to which folios belong
267 * @fbatch: batch of folios to delete
268 *
269 * The function walks over mapping->i_pages and removes folios passed in
270 * @fbatch from the mapping. The function expects @fbatch to be sorted
271 * by page index and is optimised for it to be dense.
272 * It tolerates holes in @fbatch (mapping entries at those indices are not
273 * modified).
274 *
275 * The function expects the i_pages lock to be held.
276 */
277static void page_cache_delete_batch(struct address_space *mapping,
278 struct folio_batch *fbatch)
279{
280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
281 long total_pages = 0;
282 int i = 0;
283 struct folio *folio;
284
285 mapping_set_update(&xas, mapping);
286 xas_for_each(&xas, folio, ULONG_MAX) {
287 if (i >= folio_batch_count(fbatch))
288 break;
289
290 /* A swap/dax/shadow entry got inserted? Skip it. */
291 if (xa_is_value(folio))
292 continue;
293 /*
294 * A page got inserted in our range? Skip it. We have our
295 * pages locked so they are protected from being removed.
296 * If we see a page whose index is higher than ours, it
297 * means our page has been removed, which shouldn't be
298 * possible because we're holding the PageLock.
299 */
300 if (folio != fbatch->folios[i]) {
301 VM_BUG_ON_FOLIO(folio->index >
302 fbatch->folios[i]->index, folio);
303 continue;
304 }
305
306 WARN_ON_ONCE(!folio_test_locked(folio));
307
308 folio->mapping = NULL;
309 /* Leave folio->index set: truncation lookup relies on it */
310
311 i++;
312 xas_store(&xas, NULL);
313 total_pages += folio_nr_pages(folio);
314 }
315 mapping->nrpages -= total_pages;
316}
317
318void delete_from_page_cache_batch(struct address_space *mapping,
319 struct folio_batch *fbatch)
320{
321 int i;
322
323 if (!folio_batch_count(fbatch))
324 return;
325
326 spin_lock(&mapping->host->i_lock);
327 xa_lock_irq(&mapping->i_pages);
328 for (i = 0; i < folio_batch_count(fbatch); i++) {
329 struct folio *folio = fbatch->folios[i];
330
331 trace_mm_filemap_delete_from_page_cache(folio);
332 filemap_unaccount_folio(mapping, folio);
333 }
334 page_cache_delete_batch(mapping, fbatch);
335 xa_unlock_irq(&mapping->i_pages);
336 if (mapping_shrinkable(mapping))
337 inode_add_lru(mapping->host);
338 spin_unlock(&mapping->host->i_lock);
339
340 for (i = 0; i < folio_batch_count(fbatch); i++)
341 filemap_free_folio(mapping, fbatch->folios[i]);
342}
343
344int filemap_check_errors(struct address_space *mapping)
345{
346 int ret = 0;
347 /* Check for outstanding write errors */
348 if (test_bit(AS_ENOSPC, &mapping->flags) &&
349 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
350 ret = -ENOSPC;
351 if (test_bit(AS_EIO, &mapping->flags) &&
352 test_and_clear_bit(AS_EIO, &mapping->flags))
353 ret = -EIO;
354 return ret;
355}
356EXPORT_SYMBOL(filemap_check_errors);
357
358static int filemap_check_and_keep_errors(struct address_space *mapping)
359{
360 /* Check for outstanding write errors */
361 if (test_bit(AS_EIO, &mapping->flags))
362 return -EIO;
363 if (test_bit(AS_ENOSPC, &mapping->flags))
364 return -ENOSPC;
365 return 0;
366}
367
368/**
369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
370 * @mapping: address space structure to write
371 * @wbc: the writeback_control controlling the writeout
372 *
373 * Call writepages on the mapping using the provided wbc to control the
374 * writeout.
375 *
376 * Return: %0 on success, negative error code otherwise.
377 */
378int filemap_fdatawrite_wbc(struct address_space *mapping,
379 struct writeback_control *wbc)
380{
381 int ret;
382
383 if (!mapping_can_writeback(mapping) ||
384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
385 return 0;
386
387 wbc_attach_fdatawrite_inode(wbc, mapping->host);
388 ret = do_writepages(mapping, wbc);
389 wbc_detach_inode(wbc);
390 return ret;
391}
392EXPORT_SYMBOL(filemap_fdatawrite_wbc);
393
394/**
395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
396 * @mapping: address space structure to write
397 * @start: offset in bytes where the range starts
398 * @end: offset in bytes where the range ends (inclusive)
399 * @sync_mode: enable synchronous operation
400 *
401 * Start writeback against all of a mapping's dirty pages that lie
402 * within the byte offsets <start, end> inclusive.
403 *
404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
405 * opposed to a regular memory cleansing writeback. The difference between
406 * these two operations is that if a dirty page/buffer is encountered, it must
407 * be waited upon, and not just skipped over.
408 *
409 * Return: %0 on success, negative error code otherwise.
410 */
411int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
412 loff_t end, int sync_mode)
413{
414 struct writeback_control wbc = {
415 .sync_mode = sync_mode,
416 .nr_to_write = LONG_MAX,
417 .range_start = start,
418 .range_end = end,
419 };
420
421 return filemap_fdatawrite_wbc(mapping, &wbc);
422}
423
424static inline int __filemap_fdatawrite(struct address_space *mapping,
425 int sync_mode)
426{
427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
428}
429
430int filemap_fdatawrite(struct address_space *mapping)
431{
432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
433}
434EXPORT_SYMBOL(filemap_fdatawrite);
435
436int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
437 loff_t end)
438{
439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
440}
441EXPORT_SYMBOL(filemap_fdatawrite_range);
442
443/**
444 * filemap_flush - mostly a non-blocking flush
445 * @mapping: target address_space
446 *
447 * This is a mostly non-blocking flush. Not suitable for data-integrity
448 * purposes - I/O may not be started against all dirty pages.
449 *
450 * Return: %0 on success, negative error code otherwise.
451 */
452int filemap_flush(struct address_space *mapping)
453{
454 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
455}
456EXPORT_SYMBOL(filemap_flush);
457
458/**
459 * filemap_range_has_page - check if a page exists in range.
460 * @mapping: address space within which to check
461 * @start_byte: offset in bytes where the range starts
462 * @end_byte: offset in bytes where the range ends (inclusive)
463 *
464 * Find at least one page in the range supplied, usually used to check if
465 * direct writing in this range will trigger a writeback.
466 *
467 * Return: %true if at least one page exists in the specified range,
468 * %false otherwise.
469 */
470bool filemap_range_has_page(struct address_space *mapping,
471 loff_t start_byte, loff_t end_byte)
472{
473 struct page *page;
474 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
475 pgoff_t max = end_byte >> PAGE_SHIFT;
476
477 if (end_byte < start_byte)
478 return false;
479
480 rcu_read_lock();
481 for (;;) {
482 page = xas_find(&xas, max);
483 if (xas_retry(&xas, page))
484 continue;
485 /* Shadow entries don't count */
486 if (xa_is_value(page))
487 continue;
488 /*
489 * We don't need to try to pin this page; we're about to
490 * release the RCU lock anyway. It is enough to know that
491 * there was a page here recently.
492 */
493 break;
494 }
495 rcu_read_unlock();
496
497 return page != NULL;
498}
499EXPORT_SYMBOL(filemap_range_has_page);
500
501static void __filemap_fdatawait_range(struct address_space *mapping,
502 loff_t start_byte, loff_t end_byte)
503{
504 pgoff_t index = start_byte >> PAGE_SHIFT;
505 pgoff_t end = end_byte >> PAGE_SHIFT;
506 struct pagevec pvec;
507 int nr_pages;
508
509 if (end_byte < start_byte)
510 return;
511
512 pagevec_init(&pvec);
513 while (index <= end) {
514 unsigned i;
515
516 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
517 end, PAGECACHE_TAG_WRITEBACK);
518 if (!nr_pages)
519 break;
520
521 for (i = 0; i < nr_pages; i++) {
522 struct page *page = pvec.pages[i];
523
524 wait_on_page_writeback(page);
525 ClearPageError(page);
526 }
527 pagevec_release(&pvec);
528 cond_resched();
529 }
530}
531
532/**
533 * filemap_fdatawait_range - wait for writeback to complete
534 * @mapping: address space structure to wait for
535 * @start_byte: offset in bytes where the range starts
536 * @end_byte: offset in bytes where the range ends (inclusive)
537 *
538 * Walk the list of under-writeback pages of the given address space
539 * in the given range and wait for all of them. Check error status of
540 * the address space and return it.
541 *
542 * Since the error status of the address space is cleared by this function,
543 * callers are responsible for checking the return value and handling and/or
544 * reporting the error.
545 *
546 * Return: error status of the address space.
547 */
548int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
549 loff_t end_byte)
550{
551 __filemap_fdatawait_range(mapping, start_byte, end_byte);
552 return filemap_check_errors(mapping);
553}
554EXPORT_SYMBOL(filemap_fdatawait_range);
555
556/**
557 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
558 * @mapping: address space structure to wait for
559 * @start_byte: offset in bytes where the range starts
560 * @end_byte: offset in bytes where the range ends (inclusive)
561 *
562 * Walk the list of under-writeback pages of the given address space in the
563 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
564 * this function does not clear error status of the address space.
565 *
566 * Use this function if callers don't handle errors themselves. Expected
567 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
568 * fsfreeze(8)
569 */
570int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
571 loff_t start_byte, loff_t end_byte)
572{
573 __filemap_fdatawait_range(mapping, start_byte, end_byte);
574 return filemap_check_and_keep_errors(mapping);
575}
576EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
577
578/**
579 * file_fdatawait_range - wait for writeback to complete
580 * @file: file pointing to address space structure to wait for
581 * @start_byte: offset in bytes where the range starts
582 * @end_byte: offset in bytes where the range ends (inclusive)
583 *
584 * Walk the list of under-writeback pages of the address space that file
585 * refers to, in the given range and wait for all of them. Check error
586 * status of the address space vs. the file->f_wb_err cursor and return it.
587 *
588 * Since the error status of the file is advanced by this function,
589 * callers are responsible for checking the return value and handling and/or
590 * reporting the error.
591 *
592 * Return: error status of the address space vs. the file->f_wb_err cursor.
593 */
594int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
595{
596 struct address_space *mapping = file->f_mapping;
597
598 __filemap_fdatawait_range(mapping, start_byte, end_byte);
599 return file_check_and_advance_wb_err(file);
600}
601EXPORT_SYMBOL(file_fdatawait_range);
602
603/**
604 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
605 * @mapping: address space structure to wait for
606 *
607 * Walk the list of under-writeback pages of the given address space
608 * and wait for all of them. Unlike filemap_fdatawait(), this function
609 * does not clear error status of the address space.
610 *
611 * Use this function if callers don't handle errors themselves. Expected
612 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
613 * fsfreeze(8)
614 *
615 * Return: error status of the address space.
616 */
617int filemap_fdatawait_keep_errors(struct address_space *mapping)
618{
619 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
620 return filemap_check_and_keep_errors(mapping);
621}
622EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
623
624/* Returns true if writeback might be needed or already in progress. */
625static bool mapping_needs_writeback(struct address_space *mapping)
626{
627 return mapping->nrpages;
628}
629
630bool filemap_range_has_writeback(struct address_space *mapping,
631 loff_t start_byte, loff_t end_byte)
632{
633 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
634 pgoff_t max = end_byte >> PAGE_SHIFT;
635 struct page *page;
636
637 if (end_byte < start_byte)
638 return false;
639
640 rcu_read_lock();
641 xas_for_each(&xas, page, max) {
642 if (xas_retry(&xas, page))
643 continue;
644 if (xa_is_value(page))
645 continue;
646 if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
647 break;
648 }
649 rcu_read_unlock();
650 return page != NULL;
651}
652EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
653
654/**
655 * filemap_write_and_wait_range - write out & wait on a file range
656 * @mapping: the address_space for the pages
657 * @lstart: offset in bytes where the range starts
658 * @lend: offset in bytes where the range ends (inclusive)
659 *
660 * Write out and wait upon file offsets lstart->lend, inclusive.
661 *
662 * Note that @lend is inclusive (describes the last byte to be written) so
663 * that this function can be used to write to the very end-of-file (end = -1).
664 *
665 * Return: error status of the address space.
666 */
667int filemap_write_and_wait_range(struct address_space *mapping,
668 loff_t lstart, loff_t lend)
669{
670 int err = 0;
671
672 if (mapping_needs_writeback(mapping)) {
673 err = __filemap_fdatawrite_range(mapping, lstart, lend,
674 WB_SYNC_ALL);
675 /*
676 * Even if the above returned error, the pages may be
677 * written partially (e.g. -ENOSPC), so we wait for it.
678 * But the -EIO is special case, it may indicate the worst
679 * thing (e.g. bug) happened, so we avoid waiting for it.
680 */
681 if (err != -EIO) {
682 int err2 = filemap_fdatawait_range(mapping,
683 lstart, lend);
684 if (!err)
685 err = err2;
686 } else {
687 /* Clear any previously stored errors */
688 filemap_check_errors(mapping);
689 }
690 } else {
691 err = filemap_check_errors(mapping);
692 }
693 return err;
694}
695EXPORT_SYMBOL(filemap_write_and_wait_range);
696
697void __filemap_set_wb_err(struct address_space *mapping, int err)
698{
699 errseq_t eseq = errseq_set(&mapping->wb_err, err);
700
701 trace_filemap_set_wb_err(mapping, eseq);
702}
703EXPORT_SYMBOL(__filemap_set_wb_err);
704
705/**
706 * file_check_and_advance_wb_err - report wb error (if any) that was previously
707 * and advance wb_err to current one
708 * @file: struct file on which the error is being reported
709 *
710 * When userland calls fsync (or something like nfsd does the equivalent), we
711 * want to report any writeback errors that occurred since the last fsync (or
712 * since the file was opened if there haven't been any).
713 *
714 * Grab the wb_err from the mapping. If it matches what we have in the file,
715 * then just quickly return 0. The file is all caught up.
716 *
717 * If it doesn't match, then take the mapping value, set the "seen" flag in
718 * it and try to swap it into place. If it works, or another task beat us
719 * to it with the new value, then update the f_wb_err and return the error
720 * portion. The error at this point must be reported via proper channels
721 * (a'la fsync, or NFS COMMIT operation, etc.).
722 *
723 * While we handle mapping->wb_err with atomic operations, the f_wb_err
724 * value is protected by the f_lock since we must ensure that it reflects
725 * the latest value swapped in for this file descriptor.
726 *
727 * Return: %0 on success, negative error code otherwise.
728 */
729int file_check_and_advance_wb_err(struct file *file)
730{
731 int err = 0;
732 errseq_t old = READ_ONCE(file->f_wb_err);
733 struct address_space *mapping = file->f_mapping;
734
735 /* Locklessly handle the common case where nothing has changed */
736 if (errseq_check(&mapping->wb_err, old)) {
737 /* Something changed, must use slow path */
738 spin_lock(&file->f_lock);
739 old = file->f_wb_err;
740 err = errseq_check_and_advance(&mapping->wb_err,
741 &file->f_wb_err);
742 trace_file_check_and_advance_wb_err(file, old);
743 spin_unlock(&file->f_lock);
744 }
745
746 /*
747 * We're mostly using this function as a drop in replacement for
748 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
749 * that the legacy code would have had on these flags.
750 */
751 clear_bit(AS_EIO, &mapping->flags);
752 clear_bit(AS_ENOSPC, &mapping->flags);
753 return err;
754}
755EXPORT_SYMBOL(file_check_and_advance_wb_err);
756
757/**
758 * file_write_and_wait_range - write out & wait on a file range
759 * @file: file pointing to address_space with pages
760 * @lstart: offset in bytes where the range starts
761 * @lend: offset in bytes where the range ends (inclusive)
762 *
763 * Write out and wait upon file offsets lstart->lend, inclusive.
764 *
765 * Note that @lend is inclusive (describes the last byte to be written) so
766 * that this function can be used to write to the very end-of-file (end = -1).
767 *
768 * After writing out and waiting on the data, we check and advance the
769 * f_wb_err cursor to the latest value, and return any errors detected there.
770 *
771 * Return: %0 on success, negative error code otherwise.
772 */
773int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
774{
775 int err = 0, err2;
776 struct address_space *mapping = file->f_mapping;
777
778 if (mapping_needs_writeback(mapping)) {
779 err = __filemap_fdatawrite_range(mapping, lstart, lend,
780 WB_SYNC_ALL);
781 /* See comment of filemap_write_and_wait() */
782 if (err != -EIO)
783 __filemap_fdatawait_range(mapping, lstart, lend);
784 }
785 err2 = file_check_and_advance_wb_err(file);
786 if (!err)
787 err = err2;
788 return err;
789}
790EXPORT_SYMBOL(file_write_and_wait_range);
791
792/**
793 * replace_page_cache_page - replace a pagecache page with a new one
794 * @old: page to be replaced
795 * @new: page to replace with
796 *
797 * This function replaces a page in the pagecache with a new one. On
798 * success it acquires the pagecache reference for the new page and
799 * drops it for the old page. Both the old and new pages must be
800 * locked. This function does not add the new page to the LRU, the
801 * caller must do that.
802 *
803 * The remove + add is atomic. This function cannot fail.
804 */
805void replace_page_cache_page(struct page *old, struct page *new)
806{
807 struct folio *fold = page_folio(old);
808 struct folio *fnew = page_folio(new);
809 struct address_space *mapping = old->mapping;
810 void (*freepage)(struct page *) = mapping->a_ops->freepage;
811 pgoff_t offset = old->index;
812 XA_STATE(xas, &mapping->i_pages, offset);
813
814 VM_BUG_ON_PAGE(!PageLocked(old), old);
815 VM_BUG_ON_PAGE(!PageLocked(new), new);
816 VM_BUG_ON_PAGE(new->mapping, new);
817
818 get_page(new);
819 new->mapping = mapping;
820 new->index = offset;
821
822 mem_cgroup_migrate(fold, fnew);
823
824 xas_lock_irq(&xas);
825 xas_store(&xas, new);
826
827 old->mapping = NULL;
828 /* hugetlb pages do not participate in page cache accounting. */
829 if (!PageHuge(old))
830 __dec_lruvec_page_state(old, NR_FILE_PAGES);
831 if (!PageHuge(new))
832 __inc_lruvec_page_state(new, NR_FILE_PAGES);
833 if (PageSwapBacked(old))
834 __dec_lruvec_page_state(old, NR_SHMEM);
835 if (PageSwapBacked(new))
836 __inc_lruvec_page_state(new, NR_SHMEM);
837 xas_unlock_irq(&xas);
838 if (freepage)
839 freepage(old);
840 put_page(old);
841}
842EXPORT_SYMBOL_GPL(replace_page_cache_page);
843
844noinline int __filemap_add_folio(struct address_space *mapping,
845 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
846{
847 XA_STATE(xas, &mapping->i_pages, index);
848 int huge = folio_test_hugetlb(folio);
849 bool charged = false;
850 long nr = 1;
851
852 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
853 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
854 mapping_set_update(&xas, mapping);
855
856 if (!huge) {
857 int error = mem_cgroup_charge(folio, NULL, gfp);
858 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
859 if (error)
860 return error;
861 charged = true;
862 xas_set_order(&xas, index, folio_order(folio));
863 nr = folio_nr_pages(folio);
864 }
865
866 gfp &= GFP_RECLAIM_MASK;
867 folio_ref_add(folio, nr);
868 folio->mapping = mapping;
869 folio->index = xas.xa_index;
870
871 do {
872 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
873 void *entry, *old = NULL;
874
875 if (order > folio_order(folio))
876 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
877 order, gfp);
878 xas_lock_irq(&xas);
879 xas_for_each_conflict(&xas, entry) {
880 old = entry;
881 if (!xa_is_value(entry)) {
882 xas_set_err(&xas, -EEXIST);
883 goto unlock;
884 }
885 }
886
887 if (old) {
888 if (shadowp)
889 *shadowp = old;
890 /* entry may have been split before we acquired lock */
891 order = xa_get_order(xas.xa, xas.xa_index);
892 if (order > folio_order(folio)) {
893 /* How to handle large swap entries? */
894 BUG_ON(shmem_mapping(mapping));
895 xas_split(&xas, old, order);
896 xas_reset(&xas);
897 }
898 }
899
900 xas_store(&xas, folio);
901 if (xas_error(&xas))
902 goto unlock;
903
904 mapping->nrpages += nr;
905
906 /* hugetlb pages do not participate in page cache accounting */
907 if (!huge) {
908 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
909 if (folio_test_pmd_mappable(folio))
910 __lruvec_stat_mod_folio(folio,
911 NR_FILE_THPS, nr);
912 }
913unlock:
914 xas_unlock_irq(&xas);
915 } while (xas_nomem(&xas, gfp));
916
917 if (xas_error(&xas))
918 goto error;
919
920 trace_mm_filemap_add_to_page_cache(folio);
921 return 0;
922error:
923 if (charged)
924 mem_cgroup_uncharge(folio);
925 folio->mapping = NULL;
926 /* Leave page->index set: truncation relies upon it */
927 folio_put_refs(folio, nr);
928 return xas_error(&xas);
929}
930ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
931
932/**
933 * add_to_page_cache_locked - add a locked page to the pagecache
934 * @page: page to add
935 * @mapping: the page's address_space
936 * @offset: page index
937 * @gfp_mask: page allocation mode
938 *
939 * This function is used to add a page to the pagecache. It must be locked.
940 * This function does not add the page to the LRU. The caller must do that.
941 *
942 * Return: %0 on success, negative error code otherwise.
943 */
944int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
945 pgoff_t offset, gfp_t gfp_mask)
946{
947 return __filemap_add_folio(mapping, page_folio(page), offset,
948 gfp_mask, NULL);
949}
950EXPORT_SYMBOL(add_to_page_cache_locked);
951
952int filemap_add_folio(struct address_space *mapping, struct folio *folio,
953 pgoff_t index, gfp_t gfp)
954{
955 void *shadow = NULL;
956 int ret;
957
958 __folio_set_locked(folio);
959 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
960 if (unlikely(ret))
961 __folio_clear_locked(folio);
962 else {
963 /*
964 * The folio might have been evicted from cache only
965 * recently, in which case it should be activated like
966 * any other repeatedly accessed folio.
967 * The exception is folios getting rewritten; evicting other
968 * data from the working set, only to cache data that will
969 * get overwritten with something else, is a waste of memory.
970 */
971 WARN_ON_ONCE(folio_test_active(folio));
972 if (!(gfp & __GFP_WRITE) && shadow)
973 workingset_refault(folio, shadow);
974 folio_add_lru(folio);
975 }
976 return ret;
977}
978EXPORT_SYMBOL_GPL(filemap_add_folio);
979
980#ifdef CONFIG_NUMA
981struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
982{
983 int n;
984 struct folio *folio;
985
986 if (cpuset_do_page_mem_spread()) {
987 unsigned int cpuset_mems_cookie;
988 do {
989 cpuset_mems_cookie = read_mems_allowed_begin();
990 n = cpuset_mem_spread_node();
991 folio = __folio_alloc_node(gfp, order, n);
992 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
993
994 return folio;
995 }
996 return folio_alloc(gfp, order);
997}
998EXPORT_SYMBOL(filemap_alloc_folio);
999#endif
1000
1001/*
1002 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1003 *
1004 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1005 *
1006 * @mapping1: the first mapping to lock
1007 * @mapping2: the second mapping to lock
1008 */
1009void filemap_invalidate_lock_two(struct address_space *mapping1,
1010 struct address_space *mapping2)
1011{
1012 if (mapping1 > mapping2)
1013 swap(mapping1, mapping2);
1014 if (mapping1)
1015 down_write(&mapping1->invalidate_lock);
1016 if (mapping2 && mapping1 != mapping2)
1017 down_write_nested(&mapping2->invalidate_lock, 1);
1018}
1019EXPORT_SYMBOL(filemap_invalidate_lock_two);
1020
1021/*
1022 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1023 *
1024 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1025 *
1026 * @mapping1: the first mapping to unlock
1027 * @mapping2: the second mapping to unlock
1028 */
1029void filemap_invalidate_unlock_two(struct address_space *mapping1,
1030 struct address_space *mapping2)
1031{
1032 if (mapping1)
1033 up_write(&mapping1->invalidate_lock);
1034 if (mapping2 && mapping1 != mapping2)
1035 up_write(&mapping2->invalidate_lock);
1036}
1037EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1038
1039/*
1040 * In order to wait for pages to become available there must be
1041 * waitqueues associated with pages. By using a hash table of
1042 * waitqueues where the bucket discipline is to maintain all
1043 * waiters on the same queue and wake all when any of the pages
1044 * become available, and for the woken contexts to check to be
1045 * sure the appropriate page became available, this saves space
1046 * at a cost of "thundering herd" phenomena during rare hash
1047 * collisions.
1048 */
1049#define PAGE_WAIT_TABLE_BITS 8
1050#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1051static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1052
1053static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1054{
1055 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1056}
1057
1058void __init pagecache_init(void)
1059{
1060 int i;
1061
1062 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1063 init_waitqueue_head(&folio_wait_table[i]);
1064
1065 page_writeback_init();
1066}
1067
1068/*
1069 * The page wait code treats the "wait->flags" somewhat unusually, because
1070 * we have multiple different kinds of waits, not just the usual "exclusive"
1071 * one.
1072 *
1073 * We have:
1074 *
1075 * (a) no special bits set:
1076 *
1077 * We're just waiting for the bit to be released, and when a waker
1078 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1079 * and remove it from the wait queue.
1080 *
1081 * Simple and straightforward.
1082 *
1083 * (b) WQ_FLAG_EXCLUSIVE:
1084 *
1085 * The waiter is waiting to get the lock, and only one waiter should
1086 * be woken up to avoid any thundering herd behavior. We'll set the
1087 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1088 *
1089 * This is the traditional exclusive wait.
1090 *
1091 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1092 *
1093 * The waiter is waiting to get the bit, and additionally wants the
1094 * lock to be transferred to it for fair lock behavior. If the lock
1095 * cannot be taken, we stop walking the wait queue without waking
1096 * the waiter.
1097 *
1098 * This is the "fair lock handoff" case, and in addition to setting
1099 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1100 * that it now has the lock.
1101 */
1102static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1103{
1104 unsigned int flags;
1105 struct wait_page_key *key = arg;
1106 struct wait_page_queue *wait_page
1107 = container_of(wait, struct wait_page_queue, wait);
1108
1109 if (!wake_page_match(wait_page, key))
1110 return 0;
1111
1112 /*
1113 * If it's a lock handoff wait, we get the bit for it, and
1114 * stop walking (and do not wake it up) if we can't.
1115 */
1116 flags = wait->flags;
1117 if (flags & WQ_FLAG_EXCLUSIVE) {
1118 if (test_bit(key->bit_nr, &key->folio->flags))
1119 return -1;
1120 if (flags & WQ_FLAG_CUSTOM) {
1121 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1122 return -1;
1123 flags |= WQ_FLAG_DONE;
1124 }
1125 }
1126
1127 /*
1128 * We are holding the wait-queue lock, but the waiter that
1129 * is waiting for this will be checking the flags without
1130 * any locking.
1131 *
1132 * So update the flags atomically, and wake up the waiter
1133 * afterwards to avoid any races. This store-release pairs
1134 * with the load-acquire in folio_wait_bit_common().
1135 */
1136 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1137 wake_up_state(wait->private, mode);
1138
1139 /*
1140 * Ok, we have successfully done what we're waiting for,
1141 * and we can unconditionally remove the wait entry.
1142 *
1143 * Note that this pairs with the "finish_wait()" in the
1144 * waiter, and has to be the absolute last thing we do.
1145 * After this list_del_init(&wait->entry) the wait entry
1146 * might be de-allocated and the process might even have
1147 * exited.
1148 */
1149 list_del_init_careful(&wait->entry);
1150 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1151}
1152
1153static void folio_wake_bit(struct folio *folio, int bit_nr)
1154{
1155 wait_queue_head_t *q = folio_waitqueue(folio);
1156 struct wait_page_key key;
1157 unsigned long flags;
1158 wait_queue_entry_t bookmark;
1159
1160 key.folio = folio;
1161 key.bit_nr = bit_nr;
1162 key.page_match = 0;
1163
1164 bookmark.flags = 0;
1165 bookmark.private = NULL;
1166 bookmark.func = NULL;
1167 INIT_LIST_HEAD(&bookmark.entry);
1168
1169 spin_lock_irqsave(&q->lock, flags);
1170 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1171
1172 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1173 /*
1174 * Take a breather from holding the lock,
1175 * allow pages that finish wake up asynchronously
1176 * to acquire the lock and remove themselves
1177 * from wait queue
1178 */
1179 spin_unlock_irqrestore(&q->lock, flags);
1180 cpu_relax();
1181 spin_lock_irqsave(&q->lock, flags);
1182 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1183 }
1184
1185 /*
1186 * It's possible to miss clearing waiters here, when we woke our page
1187 * waiters, but the hashed waitqueue has waiters for other pages on it.
1188 * That's okay, it's a rare case. The next waker will clear it.
1189 *
1190 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1191 * other), the flag may be cleared in the course of freeing the page;
1192 * but that is not required for correctness.
1193 */
1194 if (!waitqueue_active(q) || !key.page_match)
1195 folio_clear_waiters(folio);
1196
1197 spin_unlock_irqrestore(&q->lock, flags);
1198}
1199
1200static void folio_wake(struct folio *folio, int bit)
1201{
1202 if (!folio_test_waiters(folio))
1203 return;
1204 folio_wake_bit(folio, bit);
1205}
1206
1207/*
1208 * A choice of three behaviors for folio_wait_bit_common():
1209 */
1210enum behavior {
1211 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1212 * __folio_lock() waiting on then setting PG_locked.
1213 */
1214 SHARED, /* Hold ref to page and check the bit when woken, like
1215 * folio_wait_writeback() waiting on PG_writeback.
1216 */
1217 DROP, /* Drop ref to page before wait, no check when woken,
1218 * like folio_put_wait_locked() on PG_locked.
1219 */
1220};
1221
1222/*
1223 * Attempt to check (or get) the folio flag, and mark us done
1224 * if successful.
1225 */
1226static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1227 struct wait_queue_entry *wait)
1228{
1229 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1230 if (test_and_set_bit(bit_nr, &folio->flags))
1231 return false;
1232 } else if (test_bit(bit_nr, &folio->flags))
1233 return false;
1234
1235 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1236 return true;
1237}
1238
1239/* How many times do we accept lock stealing from under a waiter? */
1240int sysctl_page_lock_unfairness = 5;
1241
1242static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1243 int state, enum behavior behavior)
1244{
1245 wait_queue_head_t *q = folio_waitqueue(folio);
1246 int unfairness = sysctl_page_lock_unfairness;
1247 struct wait_page_queue wait_page;
1248 wait_queue_entry_t *wait = &wait_page.wait;
1249 bool thrashing = false;
1250 bool delayacct = false;
1251 unsigned long pflags;
1252
1253 if (bit_nr == PG_locked &&
1254 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1255 if (!folio_test_swapbacked(folio)) {
1256 delayacct_thrashing_start();
1257 delayacct = true;
1258 }
1259 psi_memstall_enter(&pflags);
1260 thrashing = true;
1261 }
1262
1263 init_wait(wait);
1264 wait->func = wake_page_function;
1265 wait_page.folio = folio;
1266 wait_page.bit_nr = bit_nr;
1267
1268repeat:
1269 wait->flags = 0;
1270 if (behavior == EXCLUSIVE) {
1271 wait->flags = WQ_FLAG_EXCLUSIVE;
1272 if (--unfairness < 0)
1273 wait->flags |= WQ_FLAG_CUSTOM;
1274 }
1275
1276 /*
1277 * Do one last check whether we can get the
1278 * page bit synchronously.
1279 *
1280 * Do the folio_set_waiters() marking before that
1281 * to let any waker we _just_ missed know they
1282 * need to wake us up (otherwise they'll never
1283 * even go to the slow case that looks at the
1284 * page queue), and add ourselves to the wait
1285 * queue if we need to sleep.
1286 *
1287 * This part needs to be done under the queue
1288 * lock to avoid races.
1289 */
1290 spin_lock_irq(&q->lock);
1291 folio_set_waiters(folio);
1292 if (!folio_trylock_flag(folio, bit_nr, wait))
1293 __add_wait_queue_entry_tail(q, wait);
1294 spin_unlock_irq(&q->lock);
1295
1296 /*
1297 * From now on, all the logic will be based on
1298 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1299 * see whether the page bit testing has already
1300 * been done by the wake function.
1301 *
1302 * We can drop our reference to the folio.
1303 */
1304 if (behavior == DROP)
1305 folio_put(folio);
1306
1307 /*
1308 * Note that until the "finish_wait()", or until
1309 * we see the WQ_FLAG_WOKEN flag, we need to
1310 * be very careful with the 'wait->flags', because
1311 * we may race with a waker that sets them.
1312 */
1313 for (;;) {
1314 unsigned int flags;
1315
1316 set_current_state(state);
1317
1318 /* Loop until we've been woken or interrupted */
1319 flags = smp_load_acquire(&wait->flags);
1320 if (!(flags & WQ_FLAG_WOKEN)) {
1321 if (signal_pending_state(state, current))
1322 break;
1323
1324 io_schedule();
1325 continue;
1326 }
1327
1328 /* If we were non-exclusive, we're done */
1329 if (behavior != EXCLUSIVE)
1330 break;
1331
1332 /* If the waker got the lock for us, we're done */
1333 if (flags & WQ_FLAG_DONE)
1334 break;
1335
1336 /*
1337 * Otherwise, if we're getting the lock, we need to
1338 * try to get it ourselves.
1339 *
1340 * And if that fails, we'll have to retry this all.
1341 */
1342 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1343 goto repeat;
1344
1345 wait->flags |= WQ_FLAG_DONE;
1346 break;
1347 }
1348
1349 /*
1350 * If a signal happened, this 'finish_wait()' may remove the last
1351 * waiter from the wait-queues, but the folio waiters bit will remain
1352 * set. That's ok. The next wakeup will take care of it, and trying
1353 * to do it here would be difficult and prone to races.
1354 */
1355 finish_wait(q, wait);
1356
1357 if (thrashing) {
1358 if (delayacct)
1359 delayacct_thrashing_end();
1360 psi_memstall_leave(&pflags);
1361 }
1362
1363 /*
1364 * NOTE! The wait->flags weren't stable until we've done the
1365 * 'finish_wait()', and we could have exited the loop above due
1366 * to a signal, and had a wakeup event happen after the signal
1367 * test but before the 'finish_wait()'.
1368 *
1369 * So only after the finish_wait() can we reliably determine
1370 * if we got woken up or not, so we can now figure out the final
1371 * return value based on that state without races.
1372 *
1373 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1374 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1375 */
1376 if (behavior == EXCLUSIVE)
1377 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1378
1379 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1380}
1381
1382#ifdef CONFIG_MIGRATION
1383/**
1384 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1385 * @entry: migration swap entry.
1386 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1387 * for pte entries, pass NULL for pmd entries.
1388 * @ptl: already locked ptl. This function will drop the lock.
1389 *
1390 * Wait for a migration entry referencing the given page to be removed. This is
1391 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1392 * this can be called without taking a reference on the page. Instead this
1393 * should be called while holding the ptl for the migration entry referencing
1394 * the page.
1395 *
1396 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1397 *
1398 * This follows the same logic as folio_wait_bit_common() so see the comments
1399 * there.
1400 */
1401void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1402 spinlock_t *ptl)
1403{
1404 struct wait_page_queue wait_page;
1405 wait_queue_entry_t *wait = &wait_page.wait;
1406 bool thrashing = false;
1407 bool delayacct = false;
1408 unsigned long pflags;
1409 wait_queue_head_t *q;
1410 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1411
1412 q = folio_waitqueue(folio);
1413 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1414 if (!folio_test_swapbacked(folio)) {
1415 delayacct_thrashing_start();
1416 delayacct = true;
1417 }
1418 psi_memstall_enter(&pflags);
1419 thrashing = true;
1420 }
1421
1422 init_wait(wait);
1423 wait->func = wake_page_function;
1424 wait_page.folio = folio;
1425 wait_page.bit_nr = PG_locked;
1426 wait->flags = 0;
1427
1428 spin_lock_irq(&q->lock);
1429 folio_set_waiters(folio);
1430 if (!folio_trylock_flag(folio, PG_locked, wait))
1431 __add_wait_queue_entry_tail(q, wait);
1432 spin_unlock_irq(&q->lock);
1433
1434 /*
1435 * If a migration entry exists for the page the migration path must hold
1436 * a valid reference to the page, and it must take the ptl to remove the
1437 * migration entry. So the page is valid until the ptl is dropped.
1438 */
1439 if (ptep)
1440 pte_unmap_unlock(ptep, ptl);
1441 else
1442 spin_unlock(ptl);
1443
1444 for (;;) {
1445 unsigned int flags;
1446
1447 set_current_state(TASK_UNINTERRUPTIBLE);
1448
1449 /* Loop until we've been woken or interrupted */
1450 flags = smp_load_acquire(&wait->flags);
1451 if (!(flags & WQ_FLAG_WOKEN)) {
1452 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1453 break;
1454
1455 io_schedule();
1456 continue;
1457 }
1458 break;
1459 }
1460
1461 finish_wait(q, wait);
1462
1463 if (thrashing) {
1464 if (delayacct)
1465 delayacct_thrashing_end();
1466 psi_memstall_leave(&pflags);
1467 }
1468}
1469#endif
1470
1471void folio_wait_bit(struct folio *folio, int bit_nr)
1472{
1473 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1474}
1475EXPORT_SYMBOL(folio_wait_bit);
1476
1477int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1478{
1479 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1480}
1481EXPORT_SYMBOL(folio_wait_bit_killable);
1482
1483/**
1484 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1485 * @folio: The folio to wait for.
1486 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1487 *
1488 * The caller should hold a reference on @folio. They expect the page to
1489 * become unlocked relatively soon, but do not wish to hold up migration
1490 * (for example) by holding the reference while waiting for the folio to
1491 * come unlocked. After this function returns, the caller should not
1492 * dereference @folio.
1493 *
1494 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1495 */
1496int folio_put_wait_locked(struct folio *folio, int state)
1497{
1498 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1499}
1500
1501/**
1502 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1503 * @folio: Folio defining the wait queue of interest
1504 * @waiter: Waiter to add to the queue
1505 *
1506 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1507 */
1508void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1509{
1510 wait_queue_head_t *q = folio_waitqueue(folio);
1511 unsigned long flags;
1512
1513 spin_lock_irqsave(&q->lock, flags);
1514 __add_wait_queue_entry_tail(q, waiter);
1515 folio_set_waiters(folio);
1516 spin_unlock_irqrestore(&q->lock, flags);
1517}
1518EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1519
1520#ifndef clear_bit_unlock_is_negative_byte
1521
1522/*
1523 * PG_waiters is the high bit in the same byte as PG_lock.
1524 *
1525 * On x86 (and on many other architectures), we can clear PG_lock and
1526 * test the sign bit at the same time. But if the architecture does
1527 * not support that special operation, we just do this all by hand
1528 * instead.
1529 *
1530 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1531 * being cleared, but a memory barrier should be unnecessary since it is
1532 * in the same byte as PG_locked.
1533 */
1534static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1535{
1536 clear_bit_unlock(nr, mem);
1537 /* smp_mb__after_atomic(); */
1538 return test_bit(PG_waiters, mem);
1539}
1540
1541#endif
1542
1543/**
1544 * folio_unlock - Unlock a locked folio.
1545 * @folio: The folio.
1546 *
1547 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1548 *
1549 * Context: May be called from interrupt or process context. May not be
1550 * called from NMI context.
1551 */
1552void folio_unlock(struct folio *folio)
1553{
1554 /* Bit 7 allows x86 to check the byte's sign bit */
1555 BUILD_BUG_ON(PG_waiters != 7);
1556 BUILD_BUG_ON(PG_locked > 7);
1557 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1558 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1559 folio_wake_bit(folio, PG_locked);
1560}
1561EXPORT_SYMBOL(folio_unlock);
1562
1563/**
1564 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1565 * @folio: The folio.
1566 *
1567 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1568 * it. The folio reference held for PG_private_2 being set is released.
1569 *
1570 * This is, for example, used when a netfs folio is being written to a local
1571 * disk cache, thereby allowing writes to the cache for the same folio to be
1572 * serialised.
1573 */
1574void folio_end_private_2(struct folio *folio)
1575{
1576 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1577 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1578 folio_wake_bit(folio, PG_private_2);
1579 folio_put(folio);
1580}
1581EXPORT_SYMBOL(folio_end_private_2);
1582
1583/**
1584 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1585 * @folio: The folio to wait on.
1586 *
1587 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1588 */
1589void folio_wait_private_2(struct folio *folio)
1590{
1591 while (folio_test_private_2(folio))
1592 folio_wait_bit(folio, PG_private_2);
1593}
1594EXPORT_SYMBOL(folio_wait_private_2);
1595
1596/**
1597 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1598 * @folio: The folio to wait on.
1599 *
1600 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1601 * fatal signal is received by the calling task.
1602 *
1603 * Return:
1604 * - 0 if successful.
1605 * - -EINTR if a fatal signal was encountered.
1606 */
1607int folio_wait_private_2_killable(struct folio *folio)
1608{
1609 int ret = 0;
1610
1611 while (folio_test_private_2(folio)) {
1612 ret = folio_wait_bit_killable(folio, PG_private_2);
1613 if (ret < 0)
1614 break;
1615 }
1616
1617 return ret;
1618}
1619EXPORT_SYMBOL(folio_wait_private_2_killable);
1620
1621/**
1622 * folio_end_writeback - End writeback against a folio.
1623 * @folio: The folio.
1624 */
1625void folio_end_writeback(struct folio *folio)
1626{
1627 /*
1628 * folio_test_clear_reclaim() could be used here but it is an
1629 * atomic operation and overkill in this particular case. Failing
1630 * to shuffle a folio marked for immediate reclaim is too mild
1631 * a gain to justify taking an atomic operation penalty at the
1632 * end of every folio writeback.
1633 */
1634 if (folio_test_reclaim(folio)) {
1635 folio_clear_reclaim(folio);
1636 folio_rotate_reclaimable(folio);
1637 }
1638
1639 /*
1640 * Writeback does not hold a folio reference of its own, relying
1641 * on truncation to wait for the clearing of PG_writeback.
1642 * But here we must make sure that the folio is not freed and
1643 * reused before the folio_wake().
1644 */
1645 folio_get(folio);
1646 if (!__folio_end_writeback(folio))
1647 BUG();
1648
1649 smp_mb__after_atomic();
1650 folio_wake(folio, PG_writeback);
1651 acct_reclaim_writeback(folio);
1652 folio_put(folio);
1653}
1654EXPORT_SYMBOL(folio_end_writeback);
1655
1656/*
1657 * After completing I/O on a page, call this routine to update the page
1658 * flags appropriately
1659 */
1660void page_endio(struct page *page, bool is_write, int err)
1661{
1662 if (!is_write) {
1663 if (!err) {
1664 SetPageUptodate(page);
1665 } else {
1666 ClearPageUptodate(page);
1667 SetPageError(page);
1668 }
1669 unlock_page(page);
1670 } else {
1671 if (err) {
1672 struct address_space *mapping;
1673
1674 SetPageError(page);
1675 mapping = page_mapping(page);
1676 if (mapping)
1677 mapping_set_error(mapping, err);
1678 }
1679 end_page_writeback(page);
1680 }
1681}
1682EXPORT_SYMBOL_GPL(page_endio);
1683
1684/**
1685 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1686 * @folio: The folio to lock
1687 */
1688void __folio_lock(struct folio *folio)
1689{
1690 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1691 EXCLUSIVE);
1692}
1693EXPORT_SYMBOL(__folio_lock);
1694
1695int __folio_lock_killable(struct folio *folio)
1696{
1697 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1698 EXCLUSIVE);
1699}
1700EXPORT_SYMBOL_GPL(__folio_lock_killable);
1701
1702static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1703{
1704 struct wait_queue_head *q = folio_waitqueue(folio);
1705 int ret = 0;
1706
1707 wait->folio = folio;
1708 wait->bit_nr = PG_locked;
1709
1710 spin_lock_irq(&q->lock);
1711 __add_wait_queue_entry_tail(q, &wait->wait);
1712 folio_set_waiters(folio);
1713 ret = !folio_trylock(folio);
1714 /*
1715 * If we were successful now, we know we're still on the
1716 * waitqueue as we're still under the lock. This means it's
1717 * safe to remove and return success, we know the callback
1718 * isn't going to trigger.
1719 */
1720 if (!ret)
1721 __remove_wait_queue(q, &wait->wait);
1722 else
1723 ret = -EIOCBQUEUED;
1724 spin_unlock_irq(&q->lock);
1725 return ret;
1726}
1727
1728/*
1729 * Return values:
1730 * true - folio is locked; mmap_lock is still held.
1731 * false - folio is not locked.
1732 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1733 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1734 * which case mmap_lock is still held.
1735 *
1736 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1737 * with the folio locked and the mmap_lock unperturbed.
1738 */
1739bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1740 unsigned int flags)
1741{
1742 if (fault_flag_allow_retry_first(flags)) {
1743 /*
1744 * CAUTION! In this case, mmap_lock is not released
1745 * even though return 0.
1746 */
1747 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1748 return false;
1749
1750 mmap_read_unlock(mm);
1751 if (flags & FAULT_FLAG_KILLABLE)
1752 folio_wait_locked_killable(folio);
1753 else
1754 folio_wait_locked(folio);
1755 return false;
1756 }
1757 if (flags & FAULT_FLAG_KILLABLE) {
1758 bool ret;
1759
1760 ret = __folio_lock_killable(folio);
1761 if (ret) {
1762 mmap_read_unlock(mm);
1763 return false;
1764 }
1765 } else {
1766 __folio_lock(folio);
1767 }
1768
1769 return true;
1770}
1771
1772/**
1773 * page_cache_next_miss() - Find the next gap in the page cache.
1774 * @mapping: Mapping.
1775 * @index: Index.
1776 * @max_scan: Maximum range to search.
1777 *
1778 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1779 * gap with the lowest index.
1780 *
1781 * This function may be called under the rcu_read_lock. However, this will
1782 * not atomically search a snapshot of the cache at a single point in time.
1783 * For example, if a gap is created at index 5, then subsequently a gap is
1784 * created at index 10, page_cache_next_miss covering both indices may
1785 * return 10 if called under the rcu_read_lock.
1786 *
1787 * Return: The index of the gap if found, otherwise an index outside the
1788 * range specified (in which case 'return - index >= max_scan' will be true).
1789 * In the rare case of index wrap-around, 0 will be returned.
1790 */
1791pgoff_t page_cache_next_miss(struct address_space *mapping,
1792 pgoff_t index, unsigned long max_scan)
1793{
1794 XA_STATE(xas, &mapping->i_pages, index);
1795
1796 while (max_scan--) {
1797 void *entry = xas_next(&xas);
1798 if (!entry || xa_is_value(entry))
1799 break;
1800 if (xas.xa_index == 0)
1801 break;
1802 }
1803
1804 return xas.xa_index;
1805}
1806EXPORT_SYMBOL(page_cache_next_miss);
1807
1808/**
1809 * page_cache_prev_miss() - Find the previous gap in the page cache.
1810 * @mapping: Mapping.
1811 * @index: Index.
1812 * @max_scan: Maximum range to search.
1813 *
1814 * Search the range [max(index - max_scan + 1, 0), index] for the
1815 * gap with the highest index.
1816 *
1817 * This function may be called under the rcu_read_lock. However, this will
1818 * not atomically search a snapshot of the cache at a single point in time.
1819 * For example, if a gap is created at index 10, then subsequently a gap is
1820 * created at index 5, page_cache_prev_miss() covering both indices may
1821 * return 5 if called under the rcu_read_lock.
1822 *
1823 * Return: The index of the gap if found, otherwise an index outside the
1824 * range specified (in which case 'index - return >= max_scan' will be true).
1825 * In the rare case of wrap-around, ULONG_MAX will be returned.
1826 */
1827pgoff_t page_cache_prev_miss(struct address_space *mapping,
1828 pgoff_t index, unsigned long max_scan)
1829{
1830 XA_STATE(xas, &mapping->i_pages, index);
1831
1832 while (max_scan--) {
1833 void *entry = xas_prev(&xas);
1834 if (!entry || xa_is_value(entry))
1835 break;
1836 if (xas.xa_index == ULONG_MAX)
1837 break;
1838 }
1839
1840 return xas.xa_index;
1841}
1842EXPORT_SYMBOL(page_cache_prev_miss);
1843
1844/*
1845 * Lockless page cache protocol:
1846 * On the lookup side:
1847 * 1. Load the folio from i_pages
1848 * 2. Increment the refcount if it's not zero
1849 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1850 *
1851 * On the removal side:
1852 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1853 * B. Remove the page from i_pages
1854 * C. Return the page to the page allocator
1855 *
1856 * This means that any page may have its reference count temporarily
1857 * increased by a speculative page cache (or fast GUP) lookup as it can
1858 * be allocated by another user before the RCU grace period expires.
1859 * Because the refcount temporarily acquired here may end up being the
1860 * last refcount on the page, any page allocation must be freeable by
1861 * folio_put().
1862 */
1863
1864/*
1865 * mapping_get_entry - Get a page cache entry.
1866 * @mapping: the address_space to search
1867 * @index: The page cache index.
1868 *
1869 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1870 * it is returned with an increased refcount. If it is a shadow entry
1871 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1872 * it is returned without further action.
1873 *
1874 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1875 */
1876static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1877{
1878 XA_STATE(xas, &mapping->i_pages, index);
1879 struct folio *folio;
1880
1881 rcu_read_lock();
1882repeat:
1883 xas_reset(&xas);
1884 folio = xas_load(&xas);
1885 if (xas_retry(&xas, folio))
1886 goto repeat;
1887 /*
1888 * A shadow entry of a recently evicted page, or a swap entry from
1889 * shmem/tmpfs. Return it without attempting to raise page count.
1890 */
1891 if (!folio || xa_is_value(folio))
1892 goto out;
1893
1894 if (!folio_try_get_rcu(folio))
1895 goto repeat;
1896
1897 if (unlikely(folio != xas_reload(&xas))) {
1898 folio_put(folio);
1899 goto repeat;
1900 }
1901out:
1902 rcu_read_unlock();
1903
1904 return folio;
1905}
1906
1907/**
1908 * __filemap_get_folio - Find and get a reference to a folio.
1909 * @mapping: The address_space to search.
1910 * @index: The page index.
1911 * @fgp_flags: %FGP flags modify how the folio is returned.
1912 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1913 *
1914 * Looks up the page cache entry at @mapping & @index.
1915 *
1916 * @fgp_flags can be zero or more of these flags:
1917 *
1918 * * %FGP_ACCESSED - The folio will be marked accessed.
1919 * * %FGP_LOCK - The folio is returned locked.
1920 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1921 * instead of allocating a new folio to replace it.
1922 * * %FGP_CREAT - If no page is present then a new page is allocated using
1923 * @gfp and added to the page cache and the VM's LRU list.
1924 * The page is returned locked and with an increased refcount.
1925 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1926 * page is already in cache. If the page was allocated, unlock it before
1927 * returning so the caller can do the same dance.
1928 * * %FGP_WRITE - The page will be written to by the caller.
1929 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1930 * * %FGP_NOWAIT - Don't get blocked by page lock.
1931 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1932 *
1933 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1934 * if the %GFP flags specified for %FGP_CREAT are atomic.
1935 *
1936 * If there is a page cache page, it is returned with an increased refcount.
1937 *
1938 * Return: The found folio or %NULL otherwise.
1939 */
1940struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1941 int fgp_flags, gfp_t gfp)
1942{
1943 struct folio *folio;
1944
1945repeat:
1946 folio = mapping_get_entry(mapping, index);
1947 if (xa_is_value(folio)) {
1948 if (fgp_flags & FGP_ENTRY)
1949 return folio;
1950 folio = NULL;
1951 }
1952 if (!folio)
1953 goto no_page;
1954
1955 if (fgp_flags & FGP_LOCK) {
1956 if (fgp_flags & FGP_NOWAIT) {
1957 if (!folio_trylock(folio)) {
1958 folio_put(folio);
1959 return NULL;
1960 }
1961 } else {
1962 folio_lock(folio);
1963 }
1964
1965 /* Has the page been truncated? */
1966 if (unlikely(folio->mapping != mapping)) {
1967 folio_unlock(folio);
1968 folio_put(folio);
1969 goto repeat;
1970 }
1971 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1972 }
1973
1974 if (fgp_flags & FGP_ACCESSED)
1975 folio_mark_accessed(folio);
1976 else if (fgp_flags & FGP_WRITE) {
1977 /* Clear idle flag for buffer write */
1978 if (folio_test_idle(folio))
1979 folio_clear_idle(folio);
1980 }
1981
1982 if (fgp_flags & FGP_STABLE)
1983 folio_wait_stable(folio);
1984no_page:
1985 if (!folio && (fgp_flags & FGP_CREAT)) {
1986 int err;
1987 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1988 gfp |= __GFP_WRITE;
1989 if (fgp_flags & FGP_NOFS)
1990 gfp &= ~__GFP_FS;
1991
1992 folio = filemap_alloc_folio(gfp, 0);
1993 if (!folio)
1994 return NULL;
1995
1996 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1997 fgp_flags |= FGP_LOCK;
1998
1999 /* Init accessed so avoid atomic mark_page_accessed later */
2000 if (fgp_flags & FGP_ACCESSED)
2001 __folio_set_referenced(folio);
2002
2003 err = filemap_add_folio(mapping, folio, index, gfp);
2004 if (unlikely(err)) {
2005 folio_put(folio);
2006 folio = NULL;
2007 if (err == -EEXIST)
2008 goto repeat;
2009 }
2010
2011 /*
2012 * filemap_add_folio locks the page, and for mmap
2013 * we expect an unlocked page.
2014 */
2015 if (folio && (fgp_flags & FGP_FOR_MMAP))
2016 folio_unlock(folio);
2017 }
2018
2019 return folio;
2020}
2021EXPORT_SYMBOL(__filemap_get_folio);
2022
2023static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2024 xa_mark_t mark)
2025{
2026 struct folio *folio;
2027
2028retry:
2029 if (mark == XA_PRESENT)
2030 folio = xas_find(xas, max);
2031 else
2032 folio = xas_find_marked(xas, max, mark);
2033
2034 if (xas_retry(xas, folio))
2035 goto retry;
2036 /*
2037 * A shadow entry of a recently evicted page, a swap
2038 * entry from shmem/tmpfs or a DAX entry. Return it
2039 * without attempting to raise page count.
2040 */
2041 if (!folio || xa_is_value(folio))
2042 return folio;
2043
2044 if (!folio_try_get_rcu(folio))
2045 goto reset;
2046
2047 if (unlikely(folio != xas_reload(xas))) {
2048 folio_put(folio);
2049 goto reset;
2050 }
2051
2052 return folio;
2053reset:
2054 xas_reset(xas);
2055 goto retry;
2056}
2057
2058/**
2059 * find_get_entries - gang pagecache lookup
2060 * @mapping: The address_space to search
2061 * @start: The starting page cache index
2062 * @end: The final page index (inclusive).
2063 * @fbatch: Where the resulting entries are placed.
2064 * @indices: The cache indices corresponding to the entries in @entries
2065 *
2066 * find_get_entries() will search for and return a batch of entries in
2067 * the mapping. The entries are placed in @fbatch. find_get_entries()
2068 * takes a reference on any actual folios it returns.
2069 *
2070 * The entries have ascending indexes. The indices may not be consecutive
2071 * due to not-present entries or large folios.
2072 *
2073 * Any shadow entries of evicted folios, or swap entries from
2074 * shmem/tmpfs, are included in the returned array.
2075 *
2076 * Return: The number of entries which were found.
2077 */
2078unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
2079 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2080{
2081 XA_STATE(xas, &mapping->i_pages, start);
2082 struct folio *folio;
2083
2084 rcu_read_lock();
2085 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2086 indices[fbatch->nr] = xas.xa_index;
2087 if (!folio_batch_add(fbatch, folio))
2088 break;
2089 }
2090 rcu_read_unlock();
2091
2092 return folio_batch_count(fbatch);
2093}
2094
2095/**
2096 * find_lock_entries - Find a batch of pagecache entries.
2097 * @mapping: The address_space to search.
2098 * @start: The starting page cache index.
2099 * @end: The final page index (inclusive).
2100 * @fbatch: Where the resulting entries are placed.
2101 * @indices: The cache indices of the entries in @fbatch.
2102 *
2103 * find_lock_entries() will return a batch of entries from @mapping.
2104 * Swap, shadow and DAX entries are included. Folios are returned
2105 * locked and with an incremented refcount. Folios which are locked
2106 * by somebody else or under writeback are skipped. Folios which are
2107 * partially outside the range are not returned.
2108 *
2109 * The entries have ascending indexes. The indices may not be consecutive
2110 * due to not-present entries, large folios, folios which could not be
2111 * locked or folios under writeback.
2112 *
2113 * Return: The number of entries which were found.
2114 */
2115unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2116 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2117{
2118 XA_STATE(xas, &mapping->i_pages, start);
2119 struct folio *folio;
2120
2121 rcu_read_lock();
2122 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2123 if (!xa_is_value(folio)) {
2124 if (folio->index < start)
2125 goto put;
2126 if (folio->index + folio_nr_pages(folio) - 1 > end)
2127 goto put;
2128 if (!folio_trylock(folio))
2129 goto put;
2130 if (folio->mapping != mapping ||
2131 folio_test_writeback(folio))
2132 goto unlock;
2133 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2134 folio);
2135 }
2136 indices[fbatch->nr] = xas.xa_index;
2137 if (!folio_batch_add(fbatch, folio))
2138 break;
2139 continue;
2140unlock:
2141 folio_unlock(folio);
2142put:
2143 folio_put(folio);
2144 }
2145 rcu_read_unlock();
2146
2147 return folio_batch_count(fbatch);
2148}
2149
2150static inline
2151bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2152{
2153 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2154 return false;
2155 if (index >= max)
2156 return false;
2157 return index < folio->index + folio_nr_pages(folio) - 1;
2158}
2159
2160/**
2161 * find_get_pages_range - gang pagecache lookup
2162 * @mapping: The address_space to search
2163 * @start: The starting page index
2164 * @end: The final page index (inclusive)
2165 * @nr_pages: The maximum number of pages
2166 * @pages: Where the resulting pages are placed
2167 *
2168 * find_get_pages_range() will search for and return a group of up to @nr_pages
2169 * pages in the mapping starting at index @start and up to index @end
2170 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
2171 * a reference against the returned pages.
2172 *
2173 * The search returns a group of mapping-contiguous pages with ascending
2174 * indexes. There may be holes in the indices due to not-present pages.
2175 * We also update @start to index the next page for the traversal.
2176 *
2177 * Return: the number of pages which were found. If this number is
2178 * smaller than @nr_pages, the end of specified range has been
2179 * reached.
2180 */
2181unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2182 pgoff_t end, unsigned int nr_pages,
2183 struct page **pages)
2184{
2185 XA_STATE(xas, &mapping->i_pages, *start);
2186 struct folio *folio;
2187 unsigned ret = 0;
2188
2189 if (unlikely(!nr_pages))
2190 return 0;
2191
2192 rcu_read_lock();
2193 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2194 /* Skip over shadow, swap and DAX entries */
2195 if (xa_is_value(folio))
2196 continue;
2197
2198again:
2199 pages[ret] = folio_file_page(folio, xas.xa_index);
2200 if (++ret == nr_pages) {
2201 *start = xas.xa_index + 1;
2202 goto out;
2203 }
2204 if (folio_more_pages(folio, xas.xa_index, end)) {
2205 xas.xa_index++;
2206 folio_ref_inc(folio);
2207 goto again;
2208 }
2209 }
2210
2211 /*
2212 * We come here when there is no page beyond @end. We take care to not
2213 * overflow the index @start as it confuses some of the callers. This
2214 * breaks the iteration when there is a page at index -1 but that is
2215 * already broken anyway.
2216 */
2217 if (end == (pgoff_t)-1)
2218 *start = (pgoff_t)-1;
2219 else
2220 *start = end + 1;
2221out:
2222 rcu_read_unlock();
2223
2224 return ret;
2225}
2226
2227/**
2228 * find_get_pages_contig - gang contiguous pagecache lookup
2229 * @mapping: The address_space to search
2230 * @index: The starting page index
2231 * @nr_pages: The maximum number of pages
2232 * @pages: Where the resulting pages are placed
2233 *
2234 * find_get_pages_contig() works exactly like find_get_pages_range(),
2235 * except that the returned number of pages are guaranteed to be
2236 * contiguous.
2237 *
2238 * Return: the number of pages which were found.
2239 */
2240unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2241 unsigned int nr_pages, struct page **pages)
2242{
2243 XA_STATE(xas, &mapping->i_pages, index);
2244 struct folio *folio;
2245 unsigned int ret = 0;
2246
2247 if (unlikely(!nr_pages))
2248 return 0;
2249
2250 rcu_read_lock();
2251 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2252 if (xas_retry(&xas, folio))
2253 continue;
2254 /*
2255 * If the entry has been swapped out, we can stop looking.
2256 * No current caller is looking for DAX entries.
2257 */
2258 if (xa_is_value(folio))
2259 break;
2260
2261 if (!folio_try_get_rcu(folio))
2262 goto retry;
2263
2264 if (unlikely(folio != xas_reload(&xas)))
2265 goto put_page;
2266
2267again:
2268 pages[ret] = folio_file_page(folio, xas.xa_index);
2269 if (++ret == nr_pages)
2270 break;
2271 if (folio_more_pages(folio, xas.xa_index, ULONG_MAX)) {
2272 xas.xa_index++;
2273 folio_ref_inc(folio);
2274 goto again;
2275 }
2276 continue;
2277put_page:
2278 folio_put(folio);
2279retry:
2280 xas_reset(&xas);
2281 }
2282 rcu_read_unlock();
2283 return ret;
2284}
2285EXPORT_SYMBOL(find_get_pages_contig);
2286
2287/**
2288 * find_get_pages_range_tag - Find and return head pages matching @tag.
2289 * @mapping: the address_space to search
2290 * @index: the starting page index
2291 * @end: The final page index (inclusive)
2292 * @tag: the tag index
2293 * @nr_pages: the maximum number of pages
2294 * @pages: where the resulting pages are placed
2295 *
2296 * Like find_get_pages_range(), except we only return head pages which are
2297 * tagged with @tag. @index is updated to the index immediately after the
2298 * last page we return, ready for the next iteration.
2299 *
2300 * Return: the number of pages which were found.
2301 */
2302unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2303 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2304 struct page **pages)
2305{
2306 XA_STATE(xas, &mapping->i_pages, *index);
2307 struct folio *folio;
2308 unsigned ret = 0;
2309
2310 if (unlikely(!nr_pages))
2311 return 0;
2312
2313 rcu_read_lock();
2314 while ((folio = find_get_entry(&xas, end, tag))) {
2315 /*
2316 * Shadow entries should never be tagged, but this iteration
2317 * is lockless so there is a window for page reclaim to evict
2318 * a page we saw tagged. Skip over it.
2319 */
2320 if (xa_is_value(folio))
2321 continue;
2322
2323 pages[ret] = &folio->page;
2324 if (++ret == nr_pages) {
2325 *index = folio->index + folio_nr_pages(folio);
2326 goto out;
2327 }
2328 }
2329
2330 /*
2331 * We come here when we got to @end. We take care to not overflow the
2332 * index @index as it confuses some of the callers. This breaks the
2333 * iteration when there is a page at index -1 but that is already
2334 * broken anyway.
2335 */
2336 if (end == (pgoff_t)-1)
2337 *index = (pgoff_t)-1;
2338 else
2339 *index = end + 1;
2340out:
2341 rcu_read_unlock();
2342
2343 return ret;
2344}
2345EXPORT_SYMBOL(find_get_pages_range_tag);
2346
2347/*
2348 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2349 * a _large_ part of the i/o request. Imagine the worst scenario:
2350 *
2351 * ---R__________________________________________B__________
2352 * ^ reading here ^ bad block(assume 4k)
2353 *
2354 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2355 * => failing the whole request => read(R) => read(R+1) =>
2356 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2357 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2358 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2359 *
2360 * It is going insane. Fix it by quickly scaling down the readahead size.
2361 */
2362static void shrink_readahead_size_eio(struct file_ra_state *ra)
2363{
2364 ra->ra_pages /= 4;
2365}
2366
2367/*
2368 * filemap_get_read_batch - Get a batch of folios for read
2369 *
2370 * Get a batch of folios which represent a contiguous range of bytes in
2371 * the file. No exceptional entries will be returned. If @index is in
2372 * the middle of a folio, the entire folio will be returned. The last
2373 * folio in the batch may have the readahead flag set or the uptodate flag
2374 * clear so that the caller can take the appropriate action.
2375 */
2376static void filemap_get_read_batch(struct address_space *mapping,
2377 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2378{
2379 XA_STATE(xas, &mapping->i_pages, index);
2380 struct folio *folio;
2381
2382 rcu_read_lock();
2383 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2384 if (xas_retry(&xas, folio))
2385 continue;
2386 if (xas.xa_index > max || xa_is_value(folio))
2387 break;
2388 if (!folio_try_get_rcu(folio))
2389 goto retry;
2390
2391 if (unlikely(folio != xas_reload(&xas)))
2392 goto put_folio;
2393
2394 if (!folio_batch_add(fbatch, folio))
2395 break;
2396 if (!folio_test_uptodate(folio))
2397 break;
2398 if (folio_test_readahead(folio))
2399 break;
2400 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
2401 continue;
2402put_folio:
2403 folio_put(folio);
2404retry:
2405 xas_reset(&xas);
2406 }
2407 rcu_read_unlock();
2408}
2409
2410static int filemap_read_folio(struct file *file, struct address_space *mapping,
2411 struct folio *folio)
2412{
2413 int error;
2414
2415 /*
2416 * A previous I/O error may have been due to temporary failures,
2417 * eg. multipath errors. PG_error will be set again if readpage
2418 * fails.
2419 */
2420 folio_clear_error(folio);
2421 /* Start the actual read. The read will unlock the page. */
2422 error = mapping->a_ops->readpage(file, &folio->page);
2423 if (error)
2424 return error;
2425
2426 error = folio_wait_locked_killable(folio);
2427 if (error)
2428 return error;
2429 if (folio_test_uptodate(folio))
2430 return 0;
2431 shrink_readahead_size_eio(&file->f_ra);
2432 return -EIO;
2433}
2434
2435static bool filemap_range_uptodate(struct address_space *mapping,
2436 loff_t pos, struct iov_iter *iter, struct folio *folio)
2437{
2438 int count;
2439
2440 if (folio_test_uptodate(folio))
2441 return true;
2442 /* pipes can't handle partially uptodate pages */
2443 if (iov_iter_is_pipe(iter))
2444 return false;
2445 if (!mapping->a_ops->is_partially_uptodate)
2446 return false;
2447 if (mapping->host->i_blkbits >= folio_shift(folio))
2448 return false;
2449
2450 count = iter->count;
2451 if (folio_pos(folio) > pos) {
2452 count -= folio_pos(folio) - pos;
2453 pos = 0;
2454 } else {
2455 pos -= folio_pos(folio);
2456 }
2457
2458 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2459}
2460
2461static int filemap_update_page(struct kiocb *iocb,
2462 struct address_space *mapping, struct iov_iter *iter,
2463 struct folio *folio)
2464{
2465 int error;
2466
2467 if (iocb->ki_flags & IOCB_NOWAIT) {
2468 if (!filemap_invalidate_trylock_shared(mapping))
2469 return -EAGAIN;
2470 } else {
2471 filemap_invalidate_lock_shared(mapping);
2472 }
2473
2474 if (!folio_trylock(folio)) {
2475 error = -EAGAIN;
2476 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2477 goto unlock_mapping;
2478 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2479 filemap_invalidate_unlock_shared(mapping);
2480 /*
2481 * This is where we usually end up waiting for a
2482 * previously submitted readahead to finish.
2483 */
2484 folio_put_wait_locked(folio, TASK_KILLABLE);
2485 return AOP_TRUNCATED_PAGE;
2486 }
2487 error = __folio_lock_async(folio, iocb->ki_waitq);
2488 if (error)
2489 goto unlock_mapping;
2490 }
2491
2492 error = AOP_TRUNCATED_PAGE;
2493 if (!folio->mapping)
2494 goto unlock;
2495
2496 error = 0;
2497 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio))
2498 goto unlock;
2499
2500 error = -EAGAIN;
2501 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2502 goto unlock;
2503
2504 error = filemap_read_folio(iocb->ki_filp, mapping, folio);
2505 goto unlock_mapping;
2506unlock:
2507 folio_unlock(folio);
2508unlock_mapping:
2509 filemap_invalidate_unlock_shared(mapping);
2510 if (error == AOP_TRUNCATED_PAGE)
2511 folio_put(folio);
2512 return error;
2513}
2514
2515static int filemap_create_folio(struct file *file,
2516 struct address_space *mapping, pgoff_t index,
2517 struct folio_batch *fbatch)
2518{
2519 struct folio *folio;
2520 int error;
2521
2522 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2523 if (!folio)
2524 return -ENOMEM;
2525
2526 /*
2527 * Protect against truncate / hole punch. Grabbing invalidate_lock
2528 * here assures we cannot instantiate and bring uptodate new
2529 * pagecache folios after evicting page cache during truncate
2530 * and before actually freeing blocks. Note that we could
2531 * release invalidate_lock after inserting the folio into
2532 * the page cache as the locked folio would then be enough to
2533 * synchronize with hole punching. But there are code paths
2534 * such as filemap_update_page() filling in partially uptodate
2535 * pages or ->readahead() that need to hold invalidate_lock
2536 * while mapping blocks for IO so let's hold the lock here as
2537 * well to keep locking rules simple.
2538 */
2539 filemap_invalidate_lock_shared(mapping);
2540 error = filemap_add_folio(mapping, folio, index,
2541 mapping_gfp_constraint(mapping, GFP_KERNEL));
2542 if (error == -EEXIST)
2543 error = AOP_TRUNCATED_PAGE;
2544 if (error)
2545 goto error;
2546
2547 error = filemap_read_folio(file, mapping, folio);
2548 if (error)
2549 goto error;
2550
2551 filemap_invalidate_unlock_shared(mapping);
2552 folio_batch_add(fbatch, folio);
2553 return 0;
2554error:
2555 filemap_invalidate_unlock_shared(mapping);
2556 folio_put(folio);
2557 return error;
2558}
2559
2560static int filemap_readahead(struct kiocb *iocb, struct file *file,
2561 struct address_space *mapping, struct folio *folio,
2562 pgoff_t last_index)
2563{
2564 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2565
2566 if (iocb->ki_flags & IOCB_NOIO)
2567 return -EAGAIN;
2568 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2569 return 0;
2570}
2571
2572static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2573 struct folio_batch *fbatch)
2574{
2575 struct file *filp = iocb->ki_filp;
2576 struct address_space *mapping = filp->f_mapping;
2577 struct file_ra_state *ra = &filp->f_ra;
2578 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2579 pgoff_t last_index;
2580 struct folio *folio;
2581 int err = 0;
2582
2583 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2584retry:
2585 if (fatal_signal_pending(current))
2586 return -EINTR;
2587
2588 filemap_get_read_batch(mapping, index, last_index, fbatch);
2589 if (!folio_batch_count(fbatch)) {
2590 if (iocb->ki_flags & IOCB_NOIO)
2591 return -EAGAIN;
2592 page_cache_sync_readahead(mapping, ra, filp, index,
2593 last_index - index);
2594 filemap_get_read_batch(mapping, index, last_index, fbatch);
2595 }
2596 if (!folio_batch_count(fbatch)) {
2597 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2598 return -EAGAIN;
2599 err = filemap_create_folio(filp, mapping,
2600 iocb->ki_pos >> PAGE_SHIFT, fbatch);
2601 if (err == AOP_TRUNCATED_PAGE)
2602 goto retry;
2603 return err;
2604 }
2605
2606 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2607 if (folio_test_readahead(folio)) {
2608 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2609 if (err)
2610 goto err;
2611 }
2612 if (!folio_test_uptodate(folio)) {
2613 if ((iocb->ki_flags & IOCB_WAITQ) &&
2614 folio_batch_count(fbatch) > 1)
2615 iocb->ki_flags |= IOCB_NOWAIT;
2616 err = filemap_update_page(iocb, mapping, iter, folio);
2617 if (err)
2618 goto err;
2619 }
2620
2621 return 0;
2622err:
2623 if (err < 0)
2624 folio_put(folio);
2625 if (likely(--fbatch->nr))
2626 return 0;
2627 if (err == AOP_TRUNCATED_PAGE)
2628 goto retry;
2629 return err;
2630}
2631
2632/**
2633 * filemap_read - Read data from the page cache.
2634 * @iocb: The iocb to read.
2635 * @iter: Destination for the data.
2636 * @already_read: Number of bytes already read by the caller.
2637 *
2638 * Copies data from the page cache. If the data is not currently present,
2639 * uses the readahead and readpage address_space operations to fetch it.
2640 *
2641 * Return: Total number of bytes copied, including those already read by
2642 * the caller. If an error happens before any bytes are copied, returns
2643 * a negative error number.
2644 */
2645ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2646 ssize_t already_read)
2647{
2648 struct file *filp = iocb->ki_filp;
2649 struct file_ra_state *ra = &filp->f_ra;
2650 struct address_space *mapping = filp->f_mapping;
2651 struct inode *inode = mapping->host;
2652 struct folio_batch fbatch;
2653 int i, error = 0;
2654 bool writably_mapped;
2655 loff_t isize, end_offset;
2656
2657 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2658 return 0;
2659 if (unlikely(!iov_iter_count(iter)))
2660 return 0;
2661
2662 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2663 folio_batch_init(&fbatch);
2664
2665 do {
2666 cond_resched();
2667
2668 /*
2669 * If we've already successfully copied some data, then we
2670 * can no longer safely return -EIOCBQUEUED. Hence mark
2671 * an async read NOWAIT at that point.
2672 */
2673 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2674 iocb->ki_flags |= IOCB_NOWAIT;
2675
2676 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2677 break;
2678
2679 error = filemap_get_pages(iocb, iter, &fbatch);
2680 if (error < 0)
2681 break;
2682
2683 /*
2684 * i_size must be checked after we know the pages are Uptodate.
2685 *
2686 * Checking i_size after the check allows us to calculate
2687 * the correct value for "nr", which means the zero-filled
2688 * part of the page is not copied back to userspace (unless
2689 * another truncate extends the file - this is desired though).
2690 */
2691 isize = i_size_read(inode);
2692 if (unlikely(iocb->ki_pos >= isize))
2693 goto put_folios;
2694 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2695
2696 /*
2697 * Once we start copying data, we don't want to be touching any
2698 * cachelines that might be contended:
2699 */
2700 writably_mapped = mapping_writably_mapped(mapping);
2701
2702 /*
2703 * When a sequential read accesses a page several times, only
2704 * mark it as accessed the first time.
2705 */
2706 if (iocb->ki_pos >> PAGE_SHIFT !=
2707 ra->prev_pos >> PAGE_SHIFT)
2708 folio_mark_accessed(fbatch.folios[0]);
2709
2710 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2711 struct folio *folio = fbatch.folios[i];
2712 size_t fsize = folio_size(folio);
2713 size_t offset = iocb->ki_pos & (fsize - 1);
2714 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2715 fsize - offset);
2716 size_t copied;
2717
2718 if (end_offset < folio_pos(folio))
2719 break;
2720 if (i > 0)
2721 folio_mark_accessed(folio);
2722 /*
2723 * If users can be writing to this folio using arbitrary
2724 * virtual addresses, take care of potential aliasing
2725 * before reading the folio on the kernel side.
2726 */
2727 if (writably_mapped)
2728 flush_dcache_folio(folio);
2729
2730 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2731
2732 already_read += copied;
2733 iocb->ki_pos += copied;
2734 ra->prev_pos = iocb->ki_pos;
2735
2736 if (copied < bytes) {
2737 error = -EFAULT;
2738 break;
2739 }
2740 }
2741put_folios:
2742 for (i = 0; i < folio_batch_count(&fbatch); i++)
2743 folio_put(fbatch.folios[i]);
2744 folio_batch_init(&fbatch);
2745 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2746
2747 file_accessed(filp);
2748
2749 return already_read ? already_read : error;
2750}
2751EXPORT_SYMBOL_GPL(filemap_read);
2752
2753/**
2754 * generic_file_read_iter - generic filesystem read routine
2755 * @iocb: kernel I/O control block
2756 * @iter: destination for the data read
2757 *
2758 * This is the "read_iter()" routine for all filesystems
2759 * that can use the page cache directly.
2760 *
2761 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2762 * be returned when no data can be read without waiting for I/O requests
2763 * to complete; it doesn't prevent readahead.
2764 *
2765 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2766 * requests shall be made for the read or for readahead. When no data
2767 * can be read, -EAGAIN shall be returned. When readahead would be
2768 * triggered, a partial, possibly empty read shall be returned.
2769 *
2770 * Return:
2771 * * number of bytes copied, even for partial reads
2772 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2773 */
2774ssize_t
2775generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2776{
2777 size_t count = iov_iter_count(iter);
2778 ssize_t retval = 0;
2779
2780 if (!count)
2781 return 0; /* skip atime */
2782
2783 if (iocb->ki_flags & IOCB_DIRECT) {
2784 struct file *file = iocb->ki_filp;
2785 struct address_space *mapping = file->f_mapping;
2786 struct inode *inode = mapping->host;
2787
2788 if (iocb->ki_flags & IOCB_NOWAIT) {
2789 if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2790 iocb->ki_pos + count - 1))
2791 return -EAGAIN;
2792 } else {
2793 retval = filemap_write_and_wait_range(mapping,
2794 iocb->ki_pos,
2795 iocb->ki_pos + count - 1);
2796 if (retval < 0)
2797 return retval;
2798 }
2799
2800 file_accessed(file);
2801
2802 retval = mapping->a_ops->direct_IO(iocb, iter);
2803 if (retval >= 0) {
2804 iocb->ki_pos += retval;
2805 count -= retval;
2806 }
2807 if (retval != -EIOCBQUEUED)
2808 iov_iter_revert(iter, count - iov_iter_count(iter));
2809
2810 /*
2811 * Btrfs can have a short DIO read if we encounter
2812 * compressed extents, so if there was an error, or if
2813 * we've already read everything we wanted to, or if
2814 * there was a short read because we hit EOF, go ahead
2815 * and return. Otherwise fallthrough to buffered io for
2816 * the rest of the read. Buffered reads will not work for
2817 * DAX files, so don't bother trying.
2818 */
2819 if (retval < 0 || !count || IS_DAX(inode))
2820 return retval;
2821 if (iocb->ki_pos >= i_size_read(inode))
2822 return retval;
2823 }
2824
2825 return filemap_read(iocb, iter, retval);
2826}
2827EXPORT_SYMBOL(generic_file_read_iter);
2828
2829static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2830 struct address_space *mapping, struct folio *folio,
2831 loff_t start, loff_t end, bool seek_data)
2832{
2833 const struct address_space_operations *ops = mapping->a_ops;
2834 size_t offset, bsz = i_blocksize(mapping->host);
2835
2836 if (xa_is_value(folio) || folio_test_uptodate(folio))
2837 return seek_data ? start : end;
2838 if (!ops->is_partially_uptodate)
2839 return seek_data ? end : start;
2840
2841 xas_pause(xas);
2842 rcu_read_unlock();
2843 folio_lock(folio);
2844 if (unlikely(folio->mapping != mapping))
2845 goto unlock;
2846
2847 offset = offset_in_folio(folio, start) & ~(bsz - 1);
2848
2849 do {
2850 if (ops->is_partially_uptodate(folio, offset, bsz) ==
2851 seek_data)
2852 break;
2853 start = (start + bsz) & ~(bsz - 1);
2854 offset += bsz;
2855 } while (offset < folio_size(folio));
2856unlock:
2857 folio_unlock(folio);
2858 rcu_read_lock();
2859 return start;
2860}
2861
2862static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2863{
2864 if (xa_is_value(folio))
2865 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2866 return folio_size(folio);
2867}
2868
2869/**
2870 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2871 * @mapping: Address space to search.
2872 * @start: First byte to consider.
2873 * @end: Limit of search (exclusive).
2874 * @whence: Either SEEK_HOLE or SEEK_DATA.
2875 *
2876 * If the page cache knows which blocks contain holes and which blocks
2877 * contain data, your filesystem can use this function to implement
2878 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2879 * entirely memory-based such as tmpfs, and filesystems which support
2880 * unwritten extents.
2881 *
2882 * Return: The requested offset on success, or -ENXIO if @whence specifies
2883 * SEEK_DATA and there is no data after @start. There is an implicit hole
2884 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2885 * and @end contain data.
2886 */
2887loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2888 loff_t end, int whence)
2889{
2890 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2891 pgoff_t max = (end - 1) >> PAGE_SHIFT;
2892 bool seek_data = (whence == SEEK_DATA);
2893 struct folio *folio;
2894
2895 if (end <= start)
2896 return -ENXIO;
2897
2898 rcu_read_lock();
2899 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
2900 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2901 size_t seek_size;
2902
2903 if (start < pos) {
2904 if (!seek_data)
2905 goto unlock;
2906 start = pos;
2907 }
2908
2909 seek_size = seek_folio_size(&xas, folio);
2910 pos = round_up((u64)pos + 1, seek_size);
2911 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
2912 seek_data);
2913 if (start < pos)
2914 goto unlock;
2915 if (start >= end)
2916 break;
2917 if (seek_size > PAGE_SIZE)
2918 xas_set(&xas, pos >> PAGE_SHIFT);
2919 if (!xa_is_value(folio))
2920 folio_put(folio);
2921 }
2922 if (seek_data)
2923 start = -ENXIO;
2924unlock:
2925 rcu_read_unlock();
2926 if (folio && !xa_is_value(folio))
2927 folio_put(folio);
2928 if (start > end)
2929 return end;
2930 return start;
2931}
2932
2933#ifdef CONFIG_MMU
2934#define MMAP_LOTSAMISS (100)
2935/*
2936 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2937 * @vmf - the vm_fault for this fault.
2938 * @folio - the folio to lock.
2939 * @fpin - the pointer to the file we may pin (or is already pinned).
2940 *
2941 * This works similar to lock_folio_or_retry in that it can drop the
2942 * mmap_lock. It differs in that it actually returns the folio locked
2943 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
2944 * to drop the mmap_lock then fpin will point to the pinned file and
2945 * needs to be fput()'ed at a later point.
2946 */
2947static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
2948 struct file **fpin)
2949{
2950 if (folio_trylock(folio))
2951 return 1;
2952
2953 /*
2954 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2955 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2956 * is supposed to work. We have way too many special cases..
2957 */
2958 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2959 return 0;
2960
2961 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2962 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2963 if (__folio_lock_killable(folio)) {
2964 /*
2965 * We didn't have the right flags to drop the mmap_lock,
2966 * but all fault_handlers only check for fatal signals
2967 * if we return VM_FAULT_RETRY, so we need to drop the
2968 * mmap_lock here and return 0 if we don't have a fpin.
2969 */
2970 if (*fpin == NULL)
2971 mmap_read_unlock(vmf->vma->vm_mm);
2972 return 0;
2973 }
2974 } else
2975 __folio_lock(folio);
2976
2977 return 1;
2978}
2979
2980/*
2981 * Synchronous readahead happens when we don't even find a page in the page
2982 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2983 * to drop the mmap sem we return the file that was pinned in order for us to do
2984 * that. If we didn't pin a file then we return NULL. The file that is
2985 * returned needs to be fput()'ed when we're done with it.
2986 */
2987static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2988{
2989 struct file *file = vmf->vma->vm_file;
2990 struct file_ra_state *ra = &file->f_ra;
2991 struct address_space *mapping = file->f_mapping;
2992 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2993 struct file *fpin = NULL;
2994 unsigned int mmap_miss;
2995
2996#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2997 /* Use the readahead code, even if readahead is disabled */
2998 if (vmf->vma->vm_flags & VM_HUGEPAGE) {
2999 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3000 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3001 ra->size = HPAGE_PMD_NR;
3002 /*
3003 * Fetch two PMD folios, so we get the chance to actually
3004 * readahead, unless we've been told not to.
3005 */
3006 if (!(vmf->vma->vm_flags & VM_RAND_READ))
3007 ra->size *= 2;
3008 ra->async_size = HPAGE_PMD_NR;
3009 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3010 return fpin;
3011 }
3012#endif
3013
3014 /* If we don't want any read-ahead, don't bother */
3015 if (vmf->vma->vm_flags & VM_RAND_READ)
3016 return fpin;
3017 if (!ra->ra_pages)
3018 return fpin;
3019
3020 if (vmf->vma->vm_flags & VM_SEQ_READ) {
3021 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3022 page_cache_sync_ra(&ractl, ra->ra_pages);
3023 return fpin;
3024 }
3025
3026 /* Avoid banging the cache line if not needed */
3027 mmap_miss = READ_ONCE(ra->mmap_miss);
3028 if (mmap_miss < MMAP_LOTSAMISS * 10)
3029 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3030
3031 /*
3032 * Do we miss much more than hit in this file? If so,
3033 * stop bothering with read-ahead. It will only hurt.
3034 */
3035 if (mmap_miss > MMAP_LOTSAMISS)
3036 return fpin;
3037
3038 /*
3039 * mmap read-around
3040 */
3041 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3042 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3043 ra->size = ra->ra_pages;
3044 ra->async_size = ra->ra_pages / 4;
3045 ractl._index = ra->start;
3046 page_cache_ra_order(&ractl, ra, 0);
3047 return fpin;
3048}
3049
3050/*
3051 * Asynchronous readahead happens when we find the page and PG_readahead,
3052 * so we want to possibly extend the readahead further. We return the file that
3053 * was pinned if we have to drop the mmap_lock in order to do IO.
3054 */
3055static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3056 struct folio *folio)
3057{
3058 struct file *file = vmf->vma->vm_file;
3059 struct file_ra_state *ra = &file->f_ra;
3060 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3061 struct file *fpin = NULL;
3062 unsigned int mmap_miss;
3063
3064 /* If we don't want any read-ahead, don't bother */
3065 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3066 return fpin;
3067
3068 mmap_miss = READ_ONCE(ra->mmap_miss);
3069 if (mmap_miss)
3070 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3071
3072 if (folio_test_readahead(folio)) {
3073 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3074 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3075 }
3076 return fpin;
3077}
3078
3079/**
3080 * filemap_fault - read in file data for page fault handling
3081 * @vmf: struct vm_fault containing details of the fault
3082 *
3083 * filemap_fault() is invoked via the vma operations vector for a
3084 * mapped memory region to read in file data during a page fault.
3085 *
3086 * The goto's are kind of ugly, but this streamlines the normal case of having
3087 * it in the page cache, and handles the special cases reasonably without
3088 * having a lot of duplicated code.
3089 *
3090 * vma->vm_mm->mmap_lock must be held on entry.
3091 *
3092 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3093 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3094 *
3095 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3096 * has not been released.
3097 *
3098 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3099 *
3100 * Return: bitwise-OR of %VM_FAULT_ codes.
3101 */
3102vm_fault_t filemap_fault(struct vm_fault *vmf)
3103{
3104 int error;
3105 struct file *file = vmf->vma->vm_file;
3106 struct file *fpin = NULL;
3107 struct address_space *mapping = file->f_mapping;
3108 struct inode *inode = mapping->host;
3109 pgoff_t max_idx, index = vmf->pgoff;
3110 struct folio *folio;
3111 vm_fault_t ret = 0;
3112 bool mapping_locked = false;
3113
3114 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3115 if (unlikely(index >= max_idx))
3116 return VM_FAULT_SIGBUS;
3117
3118 /*
3119 * Do we have something in the page cache already?
3120 */
3121 folio = filemap_get_folio(mapping, index);
3122 if (likely(folio)) {
3123 /*
3124 * We found the page, so try async readahead before waiting for
3125 * the lock.
3126 */
3127 if (!(vmf->flags & FAULT_FLAG_TRIED))
3128 fpin = do_async_mmap_readahead(vmf, folio);
3129 if (unlikely(!folio_test_uptodate(folio))) {
3130 filemap_invalidate_lock_shared(mapping);
3131 mapping_locked = true;
3132 }
3133 } else {
3134 /* No page in the page cache at all */
3135 count_vm_event(PGMAJFAULT);
3136 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3137 ret = VM_FAULT_MAJOR;
3138 fpin = do_sync_mmap_readahead(vmf);
3139retry_find:
3140 /*
3141 * See comment in filemap_create_folio() why we need
3142 * invalidate_lock
3143 */
3144 if (!mapping_locked) {
3145 filemap_invalidate_lock_shared(mapping);
3146 mapping_locked = true;
3147 }
3148 folio = __filemap_get_folio(mapping, index,
3149 FGP_CREAT|FGP_FOR_MMAP,
3150 vmf->gfp_mask);
3151 if (!folio) {
3152 if (fpin)
3153 goto out_retry;
3154 filemap_invalidate_unlock_shared(mapping);
3155 return VM_FAULT_OOM;
3156 }
3157 }
3158
3159 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3160 goto out_retry;
3161
3162 /* Did it get truncated? */
3163 if (unlikely(folio->mapping != mapping)) {
3164 folio_unlock(folio);
3165 folio_put(folio);
3166 goto retry_find;
3167 }
3168 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3169
3170 /*
3171 * We have a locked page in the page cache, now we need to check
3172 * that it's up-to-date. If not, it is going to be due to an error.
3173 */
3174 if (unlikely(!folio_test_uptodate(folio))) {
3175 /*
3176 * The page was in cache and uptodate and now it is not.
3177 * Strange but possible since we didn't hold the page lock all
3178 * the time. Let's drop everything get the invalidate lock and
3179 * try again.
3180 */
3181 if (!mapping_locked) {
3182 folio_unlock(folio);
3183 folio_put(folio);
3184 goto retry_find;
3185 }
3186 goto page_not_uptodate;
3187 }
3188
3189 /*
3190 * We've made it this far and we had to drop our mmap_lock, now is the
3191 * time to return to the upper layer and have it re-find the vma and
3192 * redo the fault.
3193 */
3194 if (fpin) {
3195 folio_unlock(folio);
3196 goto out_retry;
3197 }
3198 if (mapping_locked)
3199 filemap_invalidate_unlock_shared(mapping);
3200
3201 /*
3202 * Found the page and have a reference on it.
3203 * We must recheck i_size under page lock.
3204 */
3205 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3206 if (unlikely(index >= max_idx)) {
3207 folio_unlock(folio);
3208 folio_put(folio);
3209 return VM_FAULT_SIGBUS;
3210 }
3211
3212 vmf->page = folio_file_page(folio, index);
3213 return ret | VM_FAULT_LOCKED;
3214
3215page_not_uptodate:
3216 /*
3217 * Umm, take care of errors if the page isn't up-to-date.
3218 * Try to re-read it _once_. We do this synchronously,
3219 * because there really aren't any performance issues here
3220 * and we need to check for errors.
3221 */
3222 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3223 error = filemap_read_folio(file, mapping, folio);
3224 if (fpin)
3225 goto out_retry;
3226 folio_put(folio);
3227
3228 if (!error || error == AOP_TRUNCATED_PAGE)
3229 goto retry_find;
3230 filemap_invalidate_unlock_shared(mapping);
3231
3232 return VM_FAULT_SIGBUS;
3233
3234out_retry:
3235 /*
3236 * We dropped the mmap_lock, we need to return to the fault handler to
3237 * re-find the vma and come back and find our hopefully still populated
3238 * page.
3239 */
3240 if (folio)
3241 folio_put(folio);
3242 if (mapping_locked)
3243 filemap_invalidate_unlock_shared(mapping);
3244 if (fpin)
3245 fput(fpin);
3246 return ret | VM_FAULT_RETRY;
3247}
3248EXPORT_SYMBOL(filemap_fault);
3249
3250static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3251{
3252 struct mm_struct *mm = vmf->vma->vm_mm;
3253
3254 /* Huge page is mapped? No need to proceed. */
3255 if (pmd_trans_huge(*vmf->pmd)) {
3256 unlock_page(page);
3257 put_page(page);
3258 return true;
3259 }
3260
3261 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3262 vm_fault_t ret = do_set_pmd(vmf, page);
3263 if (!ret) {
3264 /* The page is mapped successfully, reference consumed. */
3265 unlock_page(page);
3266 return true;
3267 }
3268 }
3269
3270 if (pmd_none(*vmf->pmd))
3271 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3272
3273 /* See comment in handle_pte_fault() */
3274 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3275 unlock_page(page);
3276 put_page(page);
3277 return true;
3278 }
3279
3280 return false;
3281}
3282
3283static struct folio *next_uptodate_page(struct folio *folio,
3284 struct address_space *mapping,
3285 struct xa_state *xas, pgoff_t end_pgoff)
3286{
3287 unsigned long max_idx;
3288
3289 do {
3290 if (!folio)
3291 return NULL;
3292 if (xas_retry(xas, folio))
3293 continue;
3294 if (xa_is_value(folio))
3295 continue;
3296 if (folio_test_locked(folio))
3297 continue;
3298 if (!folio_try_get_rcu(folio))
3299 continue;
3300 /* Has the page moved or been split? */
3301 if (unlikely(folio != xas_reload(xas)))
3302 goto skip;
3303 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3304 goto skip;
3305 if (!folio_trylock(folio))
3306 goto skip;
3307 if (folio->mapping != mapping)
3308 goto unlock;
3309 if (!folio_test_uptodate(folio))
3310 goto unlock;
3311 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3312 if (xas->xa_index >= max_idx)
3313 goto unlock;
3314 return folio;
3315unlock:
3316 folio_unlock(folio);
3317skip:
3318 folio_put(folio);
3319 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3320
3321 return NULL;
3322}
3323
3324static inline struct folio *first_map_page(struct address_space *mapping,
3325 struct xa_state *xas,
3326 pgoff_t end_pgoff)
3327{
3328 return next_uptodate_page(xas_find(xas, end_pgoff),
3329 mapping, xas, end_pgoff);
3330}
3331
3332static inline struct folio *next_map_page(struct address_space *mapping,
3333 struct xa_state *xas,
3334 pgoff_t end_pgoff)
3335{
3336 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3337 mapping, xas, end_pgoff);
3338}
3339
3340vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3341 pgoff_t start_pgoff, pgoff_t end_pgoff)
3342{
3343 struct vm_area_struct *vma = vmf->vma;
3344 struct file *file = vma->vm_file;
3345 struct address_space *mapping = file->f_mapping;
3346 pgoff_t last_pgoff = start_pgoff;
3347 unsigned long addr;
3348 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3349 struct folio *folio;
3350 struct page *page;
3351 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3352 vm_fault_t ret = 0;
3353
3354 rcu_read_lock();
3355 folio = first_map_page(mapping, &xas, end_pgoff);
3356 if (!folio)
3357 goto out;
3358
3359 if (filemap_map_pmd(vmf, &folio->page)) {
3360 ret = VM_FAULT_NOPAGE;
3361 goto out;
3362 }
3363
3364 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3365 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3366 do {
3367again:
3368 page = folio_file_page(folio, xas.xa_index);
3369 if (PageHWPoison(page))
3370 goto unlock;
3371
3372 if (mmap_miss > 0)
3373 mmap_miss--;
3374
3375 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3376 vmf->pte += xas.xa_index - last_pgoff;
3377 last_pgoff = xas.xa_index;
3378
3379 if (!pte_none(*vmf->pte))
3380 goto unlock;
3381
3382 /* We're about to handle the fault */
3383 if (vmf->address == addr)
3384 ret = VM_FAULT_NOPAGE;
3385
3386 do_set_pte(vmf, page, addr);
3387 /* no need to invalidate: a not-present page won't be cached */
3388 update_mmu_cache(vma, addr, vmf->pte);
3389 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3390 xas.xa_index++;
3391 folio_ref_inc(folio);
3392 goto again;
3393 }
3394 folio_unlock(folio);
3395 continue;
3396unlock:
3397 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3398 xas.xa_index++;
3399 goto again;
3400 }
3401 folio_unlock(folio);
3402 folio_put(folio);
3403 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3404 pte_unmap_unlock(vmf->pte, vmf->ptl);
3405out:
3406 rcu_read_unlock();
3407 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3408 return ret;
3409}
3410EXPORT_SYMBOL(filemap_map_pages);
3411
3412vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3413{
3414 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3415 struct folio *folio = page_folio(vmf->page);
3416 vm_fault_t ret = VM_FAULT_LOCKED;
3417
3418 sb_start_pagefault(mapping->host->i_sb);
3419 file_update_time(vmf->vma->vm_file);
3420 folio_lock(folio);
3421 if (folio->mapping != mapping) {
3422 folio_unlock(folio);
3423 ret = VM_FAULT_NOPAGE;
3424 goto out;
3425 }
3426 /*
3427 * We mark the folio dirty already here so that when freeze is in
3428 * progress, we are guaranteed that writeback during freezing will
3429 * see the dirty folio and writeprotect it again.
3430 */
3431 folio_mark_dirty(folio);
3432 folio_wait_stable(folio);
3433out:
3434 sb_end_pagefault(mapping->host->i_sb);
3435 return ret;
3436}
3437
3438const struct vm_operations_struct generic_file_vm_ops = {
3439 .fault = filemap_fault,
3440 .map_pages = filemap_map_pages,
3441 .page_mkwrite = filemap_page_mkwrite,
3442};
3443
3444/* This is used for a general mmap of a disk file */
3445
3446int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3447{
3448 struct address_space *mapping = file->f_mapping;
3449
3450 if (!mapping->a_ops->readpage)
3451 return -ENOEXEC;
3452 file_accessed(file);
3453 vma->vm_ops = &generic_file_vm_ops;
3454 return 0;
3455}
3456
3457/*
3458 * This is for filesystems which do not implement ->writepage.
3459 */
3460int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3461{
3462 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3463 return -EINVAL;
3464 return generic_file_mmap(file, vma);
3465}
3466#else
3467vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3468{
3469 return VM_FAULT_SIGBUS;
3470}
3471int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3472{
3473 return -ENOSYS;
3474}
3475int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3476{
3477 return -ENOSYS;
3478}
3479#endif /* CONFIG_MMU */
3480
3481EXPORT_SYMBOL(filemap_page_mkwrite);
3482EXPORT_SYMBOL(generic_file_mmap);
3483EXPORT_SYMBOL(generic_file_readonly_mmap);
3484
3485static struct folio *do_read_cache_folio(struct address_space *mapping,
3486 pgoff_t index, filler_t filler, void *data, gfp_t gfp)
3487{
3488 struct folio *folio;
3489 int err;
3490repeat:
3491 folio = filemap_get_folio(mapping, index);
3492 if (!folio) {
3493 folio = filemap_alloc_folio(gfp, 0);
3494 if (!folio)
3495 return ERR_PTR(-ENOMEM);
3496 err = filemap_add_folio(mapping, folio, index, gfp);
3497 if (unlikely(err)) {
3498 folio_put(folio);
3499 if (err == -EEXIST)
3500 goto repeat;
3501 /* Presumably ENOMEM for xarray node */
3502 return ERR_PTR(err);
3503 }
3504
3505filler:
3506 if (filler)
3507 err = filler(data, &folio->page);
3508 else
3509 err = mapping->a_ops->readpage(data, &folio->page);
3510
3511 if (err < 0) {
3512 folio_put(folio);
3513 return ERR_PTR(err);
3514 }
3515
3516 folio_wait_locked(folio);
3517 if (!folio_test_uptodate(folio)) {
3518 folio_put(folio);
3519 return ERR_PTR(-EIO);
3520 }
3521
3522 goto out;
3523 }
3524 if (folio_test_uptodate(folio))
3525 goto out;
3526
3527 if (!folio_trylock(folio)) {
3528 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3529 goto repeat;
3530 }
3531
3532 /* Folio was truncated from mapping */
3533 if (!folio->mapping) {
3534 folio_unlock(folio);
3535 folio_put(folio);
3536 goto repeat;
3537 }
3538
3539 /* Someone else locked and filled the page in a very small window */
3540 if (folio_test_uptodate(folio)) {
3541 folio_unlock(folio);
3542 goto out;
3543 }
3544
3545 /*
3546 * A previous I/O error may have been due to temporary
3547 * failures.
3548 * Clear page error before actual read, PG_error will be
3549 * set again if read page fails.
3550 */
3551 folio_clear_error(folio);
3552 goto filler;
3553
3554out:
3555 folio_mark_accessed(folio);
3556 return folio;
3557}
3558
3559/**
3560 * read_cache_folio - read into page cache, fill it if needed
3561 * @mapping: the page's address_space
3562 * @index: the page index
3563 * @filler: function to perform the read
3564 * @data: first arg to filler(data, page) function, often left as NULL
3565 *
3566 * Read into the page cache. If a page already exists, and PageUptodate() is
3567 * not set, try to fill the page and wait for it to become unlocked.
3568 *
3569 * If the page does not get brought uptodate, return -EIO.
3570 *
3571 * The function expects mapping->invalidate_lock to be already held.
3572 *
3573 * Return: up to date page on success, ERR_PTR() on failure.
3574 */
3575struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3576 filler_t filler, void *data)
3577{
3578 return do_read_cache_folio(mapping, index, filler, data,
3579 mapping_gfp_mask(mapping));
3580}
3581EXPORT_SYMBOL(read_cache_folio);
3582
3583static struct page *do_read_cache_page(struct address_space *mapping,
3584 pgoff_t index, filler_t *filler, void *data, gfp_t gfp)
3585{
3586 struct folio *folio;
3587
3588 folio = do_read_cache_folio(mapping, index, filler, data, gfp);
3589 if (IS_ERR(folio))
3590 return &folio->page;
3591 return folio_file_page(folio, index);
3592}
3593
3594struct page *read_cache_page(struct address_space *mapping,
3595 pgoff_t index, filler_t *filler, void *data)
3596{
3597 return do_read_cache_page(mapping, index, filler, data,
3598 mapping_gfp_mask(mapping));
3599}
3600EXPORT_SYMBOL(read_cache_page);
3601
3602/**
3603 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3604 * @mapping: the page's address_space
3605 * @index: the page index
3606 * @gfp: the page allocator flags to use if allocating
3607 *
3608 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3609 * any new page allocations done using the specified allocation flags.
3610 *
3611 * If the page does not get brought uptodate, return -EIO.
3612 *
3613 * The function expects mapping->invalidate_lock to be already held.
3614 *
3615 * Return: up to date page on success, ERR_PTR() on failure.
3616 */
3617struct page *read_cache_page_gfp(struct address_space *mapping,
3618 pgoff_t index,
3619 gfp_t gfp)
3620{
3621 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3622}
3623EXPORT_SYMBOL(read_cache_page_gfp);
3624
3625int pagecache_write_begin(struct file *file, struct address_space *mapping,
3626 loff_t pos, unsigned len, unsigned flags,
3627 struct page **pagep, void **fsdata)
3628{
3629 const struct address_space_operations *aops = mapping->a_ops;
3630
3631 return aops->write_begin(file, mapping, pos, len, flags,
3632 pagep, fsdata);
3633}
3634EXPORT_SYMBOL(pagecache_write_begin);
3635
3636int pagecache_write_end(struct file *file, struct address_space *mapping,
3637 loff_t pos, unsigned len, unsigned copied,
3638 struct page *page, void *fsdata)
3639{
3640 const struct address_space_operations *aops = mapping->a_ops;
3641
3642 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3643}
3644EXPORT_SYMBOL(pagecache_write_end);
3645
3646/*
3647 * Warn about a page cache invalidation failure during a direct I/O write.
3648 */
3649void dio_warn_stale_pagecache(struct file *filp)
3650{
3651 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3652 char pathname[128];
3653 char *path;
3654
3655 errseq_set(&filp->f_mapping->wb_err, -EIO);
3656 if (__ratelimit(&_rs)) {
3657 path = file_path(filp, pathname, sizeof(pathname));
3658 if (IS_ERR(path))
3659 path = "(unknown)";
3660 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3661 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3662 current->comm);
3663 }
3664}
3665
3666ssize_t
3667generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3668{
3669 struct file *file = iocb->ki_filp;
3670 struct address_space *mapping = file->f_mapping;
3671 struct inode *inode = mapping->host;
3672 loff_t pos = iocb->ki_pos;
3673 ssize_t written;
3674 size_t write_len;
3675 pgoff_t end;
3676
3677 write_len = iov_iter_count(from);
3678 end = (pos + write_len - 1) >> PAGE_SHIFT;
3679
3680 if (iocb->ki_flags & IOCB_NOWAIT) {
3681 /* If there are pages to writeback, return */
3682 if (filemap_range_has_page(file->f_mapping, pos,
3683 pos + write_len - 1))
3684 return -EAGAIN;
3685 } else {
3686 written = filemap_write_and_wait_range(mapping, pos,
3687 pos + write_len - 1);
3688 if (written)
3689 goto out;
3690 }
3691
3692 /*
3693 * After a write we want buffered reads to be sure to go to disk to get
3694 * the new data. We invalidate clean cached page from the region we're
3695 * about to write. We do this *before* the write so that we can return
3696 * without clobbering -EIOCBQUEUED from ->direct_IO().
3697 */
3698 written = invalidate_inode_pages2_range(mapping,
3699 pos >> PAGE_SHIFT, end);
3700 /*
3701 * If a page can not be invalidated, return 0 to fall back
3702 * to buffered write.
3703 */
3704 if (written) {
3705 if (written == -EBUSY)
3706 return 0;
3707 goto out;
3708 }
3709
3710 written = mapping->a_ops->direct_IO(iocb, from);
3711
3712 /*
3713 * Finally, try again to invalidate clean pages which might have been
3714 * cached by non-direct readahead, or faulted in by get_user_pages()
3715 * if the source of the write was an mmap'ed region of the file
3716 * we're writing. Either one is a pretty crazy thing to do,
3717 * so we don't support it 100%. If this invalidation
3718 * fails, tough, the write still worked...
3719 *
3720 * Most of the time we do not need this since dio_complete() will do
3721 * the invalidation for us. However there are some file systems that
3722 * do not end up with dio_complete() being called, so let's not break
3723 * them by removing it completely.
3724 *
3725 * Noticeable example is a blkdev_direct_IO().
3726 *
3727 * Skip invalidation for async writes or if mapping has no pages.
3728 */
3729 if (written > 0 && mapping->nrpages &&
3730 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3731 dio_warn_stale_pagecache(file);
3732
3733 if (written > 0) {
3734 pos += written;
3735 write_len -= written;
3736 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3737 i_size_write(inode, pos);
3738 mark_inode_dirty(inode);
3739 }
3740 iocb->ki_pos = pos;
3741 }
3742 if (written != -EIOCBQUEUED)
3743 iov_iter_revert(from, write_len - iov_iter_count(from));
3744out:
3745 return written;
3746}
3747EXPORT_SYMBOL(generic_file_direct_write);
3748
3749ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3750{
3751 struct file *file = iocb->ki_filp;
3752 loff_t pos = iocb->ki_pos;
3753 struct address_space *mapping = file->f_mapping;
3754 const struct address_space_operations *a_ops = mapping->a_ops;
3755 long status = 0;
3756 ssize_t written = 0;
3757 unsigned int flags = 0;
3758
3759 do {
3760 struct page *page;
3761 unsigned long offset; /* Offset into pagecache page */
3762 unsigned long bytes; /* Bytes to write to page */
3763 size_t copied; /* Bytes copied from user */
3764 void *fsdata;
3765
3766 offset = (pos & (PAGE_SIZE - 1));
3767 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3768 iov_iter_count(i));
3769
3770again:
3771 /*
3772 * Bring in the user page that we will copy from _first_.
3773 * Otherwise there's a nasty deadlock on copying from the
3774 * same page as we're writing to, without it being marked
3775 * up-to-date.
3776 */
3777 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3778 status = -EFAULT;
3779 break;
3780 }
3781
3782 if (fatal_signal_pending(current)) {
3783 status = -EINTR;
3784 break;
3785 }
3786
3787 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3788 &page, &fsdata);
3789 if (unlikely(status < 0))
3790 break;
3791
3792 if (mapping_writably_mapped(mapping))
3793 flush_dcache_page(page);
3794
3795 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3796 flush_dcache_page(page);
3797
3798 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3799 page, fsdata);
3800 if (unlikely(status != copied)) {
3801 iov_iter_revert(i, copied - max(status, 0L));
3802 if (unlikely(status < 0))
3803 break;
3804 }
3805 cond_resched();
3806
3807 if (unlikely(status == 0)) {
3808 /*
3809 * A short copy made ->write_end() reject the
3810 * thing entirely. Might be memory poisoning
3811 * halfway through, might be a race with munmap,
3812 * might be severe memory pressure.
3813 */
3814 if (copied)
3815 bytes = copied;
3816 goto again;
3817 }
3818 pos += status;
3819 written += status;
3820
3821 balance_dirty_pages_ratelimited(mapping);
3822 } while (iov_iter_count(i));
3823
3824 return written ? written : status;
3825}
3826EXPORT_SYMBOL(generic_perform_write);
3827
3828/**
3829 * __generic_file_write_iter - write data to a file
3830 * @iocb: IO state structure (file, offset, etc.)
3831 * @from: iov_iter with data to write
3832 *
3833 * This function does all the work needed for actually writing data to a
3834 * file. It does all basic checks, removes SUID from the file, updates
3835 * modification times and calls proper subroutines depending on whether we
3836 * do direct IO or a standard buffered write.
3837 *
3838 * It expects i_rwsem to be grabbed unless we work on a block device or similar
3839 * object which does not need locking at all.
3840 *
3841 * This function does *not* take care of syncing data in case of O_SYNC write.
3842 * A caller has to handle it. This is mainly due to the fact that we want to
3843 * avoid syncing under i_rwsem.
3844 *
3845 * Return:
3846 * * number of bytes written, even for truncated writes
3847 * * negative error code if no data has been written at all
3848 */
3849ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3850{
3851 struct file *file = iocb->ki_filp;
3852 struct address_space *mapping = file->f_mapping;
3853 struct inode *inode = mapping->host;
3854 ssize_t written = 0;
3855 ssize_t err;
3856 ssize_t status;
3857
3858 /* We can write back this queue in page reclaim */
3859 current->backing_dev_info = inode_to_bdi(inode);
3860 err = file_remove_privs(file);
3861 if (err)
3862 goto out;
3863
3864 err = file_update_time(file);
3865 if (err)
3866 goto out;
3867
3868 if (iocb->ki_flags & IOCB_DIRECT) {
3869 loff_t pos, endbyte;
3870
3871 written = generic_file_direct_write(iocb, from);
3872 /*
3873 * If the write stopped short of completing, fall back to
3874 * buffered writes. Some filesystems do this for writes to
3875 * holes, for example. For DAX files, a buffered write will
3876 * not succeed (even if it did, DAX does not handle dirty
3877 * page-cache pages correctly).
3878 */
3879 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3880 goto out;
3881
3882 pos = iocb->ki_pos;
3883 status = generic_perform_write(iocb, from);
3884 /*
3885 * If generic_perform_write() returned a synchronous error
3886 * then we want to return the number of bytes which were
3887 * direct-written, or the error code if that was zero. Note
3888 * that this differs from normal direct-io semantics, which
3889 * will return -EFOO even if some bytes were written.
3890 */
3891 if (unlikely(status < 0)) {
3892 err = status;
3893 goto out;
3894 }
3895 /*
3896 * We need to ensure that the page cache pages are written to
3897 * disk and invalidated to preserve the expected O_DIRECT
3898 * semantics.
3899 */
3900 endbyte = pos + status - 1;
3901 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3902 if (err == 0) {
3903 iocb->ki_pos = endbyte + 1;
3904 written += status;
3905 invalidate_mapping_pages(mapping,
3906 pos >> PAGE_SHIFT,
3907 endbyte >> PAGE_SHIFT);
3908 } else {
3909 /*
3910 * We don't know how much we wrote, so just return
3911 * the number of bytes which were direct-written
3912 */
3913 }
3914 } else {
3915 written = generic_perform_write(iocb, from);
3916 if (likely(written > 0))
3917 iocb->ki_pos += written;
3918 }
3919out:
3920 current->backing_dev_info = NULL;
3921 return written ? written : err;
3922}
3923EXPORT_SYMBOL(__generic_file_write_iter);
3924
3925/**
3926 * generic_file_write_iter - write data to a file
3927 * @iocb: IO state structure
3928 * @from: iov_iter with data to write
3929 *
3930 * This is a wrapper around __generic_file_write_iter() to be used by most
3931 * filesystems. It takes care of syncing the file in case of O_SYNC file
3932 * and acquires i_rwsem as needed.
3933 * Return:
3934 * * negative error code if no data has been written at all of
3935 * vfs_fsync_range() failed for a synchronous write
3936 * * number of bytes written, even for truncated writes
3937 */
3938ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3939{
3940 struct file *file = iocb->ki_filp;
3941 struct inode *inode = file->f_mapping->host;
3942 ssize_t ret;
3943
3944 inode_lock(inode);
3945 ret = generic_write_checks(iocb, from);
3946 if (ret > 0)
3947 ret = __generic_file_write_iter(iocb, from);
3948 inode_unlock(inode);
3949
3950 if (ret > 0)
3951 ret = generic_write_sync(iocb, ret);
3952 return ret;
3953}
3954EXPORT_SYMBOL(generic_file_write_iter);
3955
3956/**
3957 * filemap_release_folio() - Release fs-specific metadata on a folio.
3958 * @folio: The folio which the kernel is trying to free.
3959 * @gfp: Memory allocation flags (and I/O mode).
3960 *
3961 * The address_space is trying to release any data attached to a folio
3962 * (presumably at folio->private).
3963 *
3964 * This will also be called if the private_2 flag is set on a page,
3965 * indicating that the folio has other metadata associated with it.
3966 *
3967 * The @gfp argument specifies whether I/O may be performed to release
3968 * this page (__GFP_IO), and whether the call may block
3969 * (__GFP_RECLAIM & __GFP_FS).
3970 *
3971 * Return: %true if the release was successful, otherwise %false.
3972 */
3973bool filemap_release_folio(struct folio *folio, gfp_t gfp)
3974{
3975 struct address_space * const mapping = folio->mapping;
3976
3977 BUG_ON(!folio_test_locked(folio));
3978 if (folio_test_writeback(folio))
3979 return false;
3980
3981 if (mapping && mapping->a_ops->releasepage)
3982 return mapping->a_ops->releasepage(&folio->page, gfp);
3983 return try_to_free_buffers(&folio->page);
3984}
3985EXPORT_SYMBOL(filemap_release_folio);