Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/proc/vmcore.c Interface for accessing the crash
4 * dump from the system's previous life.
5 * Heavily borrowed from fs/proc/kcore.c
6 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
7 * Copyright (C) IBM Corporation, 2004. All rights reserved
8 *
9 */
10
11#include <linux/mm.h>
12#include <linux/kcore.h>
13#include <linux/user.h>
14#include <linux/elf.h>
15#include <linux/elfcore.h>
16#include <linux/export.h>
17#include <linux/slab.h>
18#include <linux/highmem.h>
19#include <linux/printk.h>
20#include <linux/memblock.h>
21#include <linux/init.h>
22#include <linux/crash_dump.h>
23#include <linux/list.h>
24#include <linux/moduleparam.h>
25#include <linux/mutex.h>
26#include <linux/vmalloc.h>
27#include <linux/pagemap.h>
28#include <linux/uaccess.h>
29#include <linux/cc_platform.h>
30#include <asm/io.h>
31#include "internal.h"
32
33/* List representing chunks of contiguous memory areas and their offsets in
34 * vmcore file.
35 */
36static LIST_HEAD(vmcore_list);
37
38/* Stores the pointer to the buffer containing kernel elf core headers. */
39static char *elfcorebuf;
40static size_t elfcorebuf_sz;
41static size_t elfcorebuf_sz_orig;
42
43static char *elfnotes_buf;
44static size_t elfnotes_sz;
45/* Size of all notes minus the device dump notes */
46static size_t elfnotes_orig_sz;
47
48/* Total size of vmcore file. */
49static u64 vmcore_size;
50
51static struct proc_dir_entry *proc_vmcore;
52
53#ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP
54/* Device Dump list and mutex to synchronize access to list */
55static LIST_HEAD(vmcoredd_list);
56static DEFINE_MUTEX(vmcoredd_mutex);
57
58static bool vmcoredd_disabled;
59core_param(novmcoredd, vmcoredd_disabled, bool, 0);
60#endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */
61
62/* Device Dump Size */
63static size_t vmcoredd_orig_sz;
64
65static DEFINE_SPINLOCK(vmcore_cb_lock);
66DEFINE_STATIC_SRCU(vmcore_cb_srcu);
67/* List of registered vmcore callbacks. */
68static LIST_HEAD(vmcore_cb_list);
69/* Whether the vmcore has been opened once. */
70static bool vmcore_opened;
71
72void register_vmcore_cb(struct vmcore_cb *cb)
73{
74 INIT_LIST_HEAD(&cb->next);
75 spin_lock(&vmcore_cb_lock);
76 list_add_tail(&cb->next, &vmcore_cb_list);
77 /*
78 * Registering a vmcore callback after the vmcore was opened is
79 * very unusual (e.g., manual driver loading).
80 */
81 if (vmcore_opened)
82 pr_warn_once("Unexpected vmcore callback registration\n");
83 spin_unlock(&vmcore_cb_lock);
84}
85EXPORT_SYMBOL_GPL(register_vmcore_cb);
86
87void unregister_vmcore_cb(struct vmcore_cb *cb)
88{
89 spin_lock(&vmcore_cb_lock);
90 list_del_rcu(&cb->next);
91 /*
92 * Unregistering a vmcore callback after the vmcore was opened is
93 * very unusual (e.g., forced driver removal), but we cannot stop
94 * unregistering.
95 */
96 if (vmcore_opened)
97 pr_warn_once("Unexpected vmcore callback unregistration\n");
98 spin_unlock(&vmcore_cb_lock);
99
100 synchronize_srcu(&vmcore_cb_srcu);
101}
102EXPORT_SYMBOL_GPL(unregister_vmcore_cb);
103
104static bool pfn_is_ram(unsigned long pfn)
105{
106 struct vmcore_cb *cb;
107 bool ret = true;
108
109 list_for_each_entry_srcu(cb, &vmcore_cb_list, next,
110 srcu_read_lock_held(&vmcore_cb_srcu)) {
111 if (unlikely(!cb->pfn_is_ram))
112 continue;
113 ret = cb->pfn_is_ram(cb, pfn);
114 if (!ret)
115 break;
116 }
117
118 return ret;
119}
120
121static int open_vmcore(struct inode *inode, struct file *file)
122{
123 spin_lock(&vmcore_cb_lock);
124 vmcore_opened = true;
125 spin_unlock(&vmcore_cb_lock);
126
127 return 0;
128}
129
130/* Reads a page from the oldmem device from given offset. */
131ssize_t read_from_oldmem(char *buf, size_t count,
132 u64 *ppos, int userbuf,
133 bool encrypted)
134{
135 unsigned long pfn, offset;
136 size_t nr_bytes;
137 ssize_t read = 0, tmp;
138 int idx;
139
140 if (!count)
141 return 0;
142
143 offset = (unsigned long)(*ppos % PAGE_SIZE);
144 pfn = (unsigned long)(*ppos / PAGE_SIZE);
145
146 idx = srcu_read_lock(&vmcore_cb_srcu);
147 do {
148 if (count > (PAGE_SIZE - offset))
149 nr_bytes = PAGE_SIZE - offset;
150 else
151 nr_bytes = count;
152
153 /* If pfn is not ram, return zeros for sparse dump files */
154 if (!pfn_is_ram(pfn)) {
155 tmp = 0;
156 if (!userbuf)
157 memset(buf, 0, nr_bytes);
158 else if (clear_user(buf, nr_bytes))
159 tmp = -EFAULT;
160 } else {
161 if (encrypted)
162 tmp = copy_oldmem_page_encrypted(pfn, buf,
163 nr_bytes,
164 offset,
165 userbuf);
166 else
167 tmp = copy_oldmem_page(pfn, buf, nr_bytes,
168 offset, userbuf);
169 }
170 if (tmp < 0) {
171 srcu_read_unlock(&vmcore_cb_srcu, idx);
172 return tmp;
173 }
174
175 *ppos += nr_bytes;
176 count -= nr_bytes;
177 buf += nr_bytes;
178 read += nr_bytes;
179 ++pfn;
180 offset = 0;
181 } while (count);
182 srcu_read_unlock(&vmcore_cb_srcu, idx);
183
184 return read;
185}
186
187/*
188 * Architectures may override this function to allocate ELF header in 2nd kernel
189 */
190int __weak elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
191{
192 return 0;
193}
194
195/*
196 * Architectures may override this function to free header
197 */
198void __weak elfcorehdr_free(unsigned long long addr)
199{}
200
201/*
202 * Architectures may override this function to read from ELF header
203 */
204ssize_t __weak elfcorehdr_read(char *buf, size_t count, u64 *ppos)
205{
206 return read_from_oldmem(buf, count, ppos, 0, false);
207}
208
209/*
210 * Architectures may override this function to read from notes sections
211 */
212ssize_t __weak elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
213{
214 return read_from_oldmem(buf, count, ppos, 0, cc_platform_has(CC_ATTR_MEM_ENCRYPT));
215}
216
217/*
218 * Architectures may override this function to map oldmem
219 */
220int __weak remap_oldmem_pfn_range(struct vm_area_struct *vma,
221 unsigned long from, unsigned long pfn,
222 unsigned long size, pgprot_t prot)
223{
224 prot = pgprot_encrypted(prot);
225 return remap_pfn_range(vma, from, pfn, size, prot);
226}
227
228/*
229 * Architectures which support memory encryption override this.
230 */
231ssize_t __weak
232copy_oldmem_page_encrypted(unsigned long pfn, char *buf, size_t csize,
233 unsigned long offset, int userbuf)
234{
235 return copy_oldmem_page(pfn, buf, csize, offset, userbuf);
236}
237
238/*
239 * Copy to either kernel or user space
240 */
241static int copy_to(void *target, void *src, size_t size, int userbuf)
242{
243 if (userbuf) {
244 if (copy_to_user((char __user *) target, src, size))
245 return -EFAULT;
246 } else {
247 memcpy(target, src, size);
248 }
249 return 0;
250}
251
252#ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP
253static int vmcoredd_copy_dumps(void *dst, u64 start, size_t size, int userbuf)
254{
255 struct vmcoredd_node *dump;
256 u64 offset = 0;
257 int ret = 0;
258 size_t tsz;
259 char *buf;
260
261 mutex_lock(&vmcoredd_mutex);
262 list_for_each_entry(dump, &vmcoredd_list, list) {
263 if (start < offset + dump->size) {
264 tsz = min(offset + (u64)dump->size - start, (u64)size);
265 buf = dump->buf + start - offset;
266 if (copy_to(dst, buf, tsz, userbuf)) {
267 ret = -EFAULT;
268 goto out_unlock;
269 }
270
271 size -= tsz;
272 start += tsz;
273 dst += tsz;
274
275 /* Leave now if buffer filled already */
276 if (!size)
277 goto out_unlock;
278 }
279 offset += dump->size;
280 }
281
282out_unlock:
283 mutex_unlock(&vmcoredd_mutex);
284 return ret;
285}
286
287#ifdef CONFIG_MMU
288static int vmcoredd_mmap_dumps(struct vm_area_struct *vma, unsigned long dst,
289 u64 start, size_t size)
290{
291 struct vmcoredd_node *dump;
292 u64 offset = 0;
293 int ret = 0;
294 size_t tsz;
295 char *buf;
296
297 mutex_lock(&vmcoredd_mutex);
298 list_for_each_entry(dump, &vmcoredd_list, list) {
299 if (start < offset + dump->size) {
300 tsz = min(offset + (u64)dump->size - start, (u64)size);
301 buf = dump->buf + start - offset;
302 if (remap_vmalloc_range_partial(vma, dst, buf, 0,
303 tsz)) {
304 ret = -EFAULT;
305 goto out_unlock;
306 }
307
308 size -= tsz;
309 start += tsz;
310 dst += tsz;
311
312 /* Leave now if buffer filled already */
313 if (!size)
314 goto out_unlock;
315 }
316 offset += dump->size;
317 }
318
319out_unlock:
320 mutex_unlock(&vmcoredd_mutex);
321 return ret;
322}
323#endif /* CONFIG_MMU */
324#endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */
325
326/* Read from the ELF header and then the crash dump. On error, negative value is
327 * returned otherwise number of bytes read are returned.
328 */
329static ssize_t __read_vmcore(char *buffer, size_t buflen, loff_t *fpos,
330 int userbuf)
331{
332 ssize_t acc = 0, tmp;
333 size_t tsz;
334 u64 start;
335 struct vmcore *m = NULL;
336
337 if (buflen == 0 || *fpos >= vmcore_size)
338 return 0;
339
340 /* trim buflen to not go beyond EOF */
341 if (buflen > vmcore_size - *fpos)
342 buflen = vmcore_size - *fpos;
343
344 /* Read ELF core header */
345 if (*fpos < elfcorebuf_sz) {
346 tsz = min(elfcorebuf_sz - (size_t)*fpos, buflen);
347 if (copy_to(buffer, elfcorebuf + *fpos, tsz, userbuf))
348 return -EFAULT;
349 buflen -= tsz;
350 *fpos += tsz;
351 buffer += tsz;
352 acc += tsz;
353
354 /* leave now if filled buffer already */
355 if (buflen == 0)
356 return acc;
357 }
358
359 /* Read Elf note segment */
360 if (*fpos < elfcorebuf_sz + elfnotes_sz) {
361 void *kaddr;
362
363 /* We add device dumps before other elf notes because the
364 * other elf notes may not fill the elf notes buffer
365 * completely and we will end up with zero-filled data
366 * between the elf notes and the device dumps. Tools will
367 * then try to decode this zero-filled data as valid notes
368 * and we don't want that. Hence, adding device dumps before
369 * the other elf notes ensure that zero-filled data can be
370 * avoided.
371 */
372#ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP
373 /* Read device dumps */
374 if (*fpos < elfcorebuf_sz + vmcoredd_orig_sz) {
375 tsz = min(elfcorebuf_sz + vmcoredd_orig_sz -
376 (size_t)*fpos, buflen);
377 start = *fpos - elfcorebuf_sz;
378 if (vmcoredd_copy_dumps(buffer, start, tsz, userbuf))
379 return -EFAULT;
380
381 buflen -= tsz;
382 *fpos += tsz;
383 buffer += tsz;
384 acc += tsz;
385
386 /* leave now if filled buffer already */
387 if (!buflen)
388 return acc;
389 }
390#endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */
391
392 /* Read remaining elf notes */
393 tsz = min(elfcorebuf_sz + elfnotes_sz - (size_t)*fpos, buflen);
394 kaddr = elfnotes_buf + *fpos - elfcorebuf_sz - vmcoredd_orig_sz;
395 if (copy_to(buffer, kaddr, tsz, userbuf))
396 return -EFAULT;
397
398 buflen -= tsz;
399 *fpos += tsz;
400 buffer += tsz;
401 acc += tsz;
402
403 /* leave now if filled buffer already */
404 if (buflen == 0)
405 return acc;
406 }
407
408 list_for_each_entry(m, &vmcore_list, list) {
409 if (*fpos < m->offset + m->size) {
410 tsz = (size_t)min_t(unsigned long long,
411 m->offset + m->size - *fpos,
412 buflen);
413 start = m->paddr + *fpos - m->offset;
414 tmp = read_from_oldmem(buffer, tsz, &start,
415 userbuf, cc_platform_has(CC_ATTR_MEM_ENCRYPT));
416 if (tmp < 0)
417 return tmp;
418 buflen -= tsz;
419 *fpos += tsz;
420 buffer += tsz;
421 acc += tsz;
422
423 /* leave now if filled buffer already */
424 if (buflen == 0)
425 return acc;
426 }
427 }
428
429 return acc;
430}
431
432static ssize_t read_vmcore(struct file *file, char __user *buffer,
433 size_t buflen, loff_t *fpos)
434{
435 return __read_vmcore((__force char *) buffer, buflen, fpos, 1);
436}
437
438/*
439 * The vmcore fault handler uses the page cache and fills data using the
440 * standard __vmcore_read() function.
441 *
442 * On s390 the fault handler is used for memory regions that can't be mapped
443 * directly with remap_pfn_range().
444 */
445static vm_fault_t mmap_vmcore_fault(struct vm_fault *vmf)
446{
447#ifdef CONFIG_S390
448 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
449 pgoff_t index = vmf->pgoff;
450 struct page *page;
451 loff_t offset;
452 char *buf;
453 int rc;
454
455 page = find_or_create_page(mapping, index, GFP_KERNEL);
456 if (!page)
457 return VM_FAULT_OOM;
458 if (!PageUptodate(page)) {
459 offset = (loff_t) index << PAGE_SHIFT;
460 buf = __va((page_to_pfn(page) << PAGE_SHIFT));
461 rc = __read_vmcore(buf, PAGE_SIZE, &offset, 0);
462 if (rc < 0) {
463 unlock_page(page);
464 put_page(page);
465 return vmf_error(rc);
466 }
467 SetPageUptodate(page);
468 }
469 unlock_page(page);
470 vmf->page = page;
471 return 0;
472#else
473 return VM_FAULT_SIGBUS;
474#endif
475}
476
477static const struct vm_operations_struct vmcore_mmap_ops = {
478 .fault = mmap_vmcore_fault,
479};
480
481/**
482 * vmcore_alloc_buf - allocate buffer in vmalloc memory
483 * @size: size of buffer
484 *
485 * If CONFIG_MMU is defined, use vmalloc_user() to allow users to mmap
486 * the buffer to user-space by means of remap_vmalloc_range().
487 *
488 * If CONFIG_MMU is not defined, use vzalloc() since mmap_vmcore() is
489 * disabled and there's no need to allow users to mmap the buffer.
490 */
491static inline char *vmcore_alloc_buf(size_t size)
492{
493#ifdef CONFIG_MMU
494 return vmalloc_user(size);
495#else
496 return vzalloc(size);
497#endif
498}
499
500/*
501 * Disable mmap_vmcore() if CONFIG_MMU is not defined. MMU is
502 * essential for mmap_vmcore() in order to map physically
503 * non-contiguous objects (ELF header, ELF note segment and memory
504 * regions in the 1st kernel pointed to by PT_LOAD entries) into
505 * virtually contiguous user-space in ELF layout.
506 */
507#ifdef CONFIG_MMU
508/*
509 * remap_oldmem_pfn_checked - do remap_oldmem_pfn_range replacing all pages
510 * reported as not being ram with the zero page.
511 *
512 * @vma: vm_area_struct describing requested mapping
513 * @from: start remapping from
514 * @pfn: page frame number to start remapping to
515 * @size: remapping size
516 * @prot: protection bits
517 *
518 * Returns zero on success, -EAGAIN on failure.
519 */
520static int remap_oldmem_pfn_checked(struct vm_area_struct *vma,
521 unsigned long from, unsigned long pfn,
522 unsigned long size, pgprot_t prot)
523{
524 unsigned long map_size;
525 unsigned long pos_start, pos_end, pos;
526 unsigned long zeropage_pfn = my_zero_pfn(0);
527 size_t len = 0;
528
529 pos_start = pfn;
530 pos_end = pfn + (size >> PAGE_SHIFT);
531
532 for (pos = pos_start; pos < pos_end; ++pos) {
533 if (!pfn_is_ram(pos)) {
534 /*
535 * We hit a page which is not ram. Remap the continuous
536 * region between pos_start and pos-1 and replace
537 * the non-ram page at pos with the zero page.
538 */
539 if (pos > pos_start) {
540 /* Remap continuous region */
541 map_size = (pos - pos_start) << PAGE_SHIFT;
542 if (remap_oldmem_pfn_range(vma, from + len,
543 pos_start, map_size,
544 prot))
545 goto fail;
546 len += map_size;
547 }
548 /* Remap the zero page */
549 if (remap_oldmem_pfn_range(vma, from + len,
550 zeropage_pfn,
551 PAGE_SIZE, prot))
552 goto fail;
553 len += PAGE_SIZE;
554 pos_start = pos + 1;
555 }
556 }
557 if (pos > pos_start) {
558 /* Remap the rest */
559 map_size = (pos - pos_start) << PAGE_SHIFT;
560 if (remap_oldmem_pfn_range(vma, from + len, pos_start,
561 map_size, prot))
562 goto fail;
563 }
564 return 0;
565fail:
566 do_munmap(vma->vm_mm, from, len, NULL);
567 return -EAGAIN;
568}
569
570static int vmcore_remap_oldmem_pfn(struct vm_area_struct *vma,
571 unsigned long from, unsigned long pfn,
572 unsigned long size, pgprot_t prot)
573{
574 int ret, idx;
575
576 /*
577 * Check if a callback was registered to avoid looping over all
578 * pages without a reason.
579 */
580 idx = srcu_read_lock(&vmcore_cb_srcu);
581 if (!list_empty(&vmcore_cb_list))
582 ret = remap_oldmem_pfn_checked(vma, from, pfn, size, prot);
583 else
584 ret = remap_oldmem_pfn_range(vma, from, pfn, size, prot);
585 srcu_read_unlock(&vmcore_cb_srcu, idx);
586 return ret;
587}
588
589static int mmap_vmcore(struct file *file, struct vm_area_struct *vma)
590{
591 size_t size = vma->vm_end - vma->vm_start;
592 u64 start, end, len, tsz;
593 struct vmcore *m;
594
595 start = (u64)vma->vm_pgoff << PAGE_SHIFT;
596 end = start + size;
597
598 if (size > vmcore_size || end > vmcore_size)
599 return -EINVAL;
600
601 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
602 return -EPERM;
603
604 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
605 vma->vm_flags |= VM_MIXEDMAP;
606 vma->vm_ops = &vmcore_mmap_ops;
607
608 len = 0;
609
610 if (start < elfcorebuf_sz) {
611 u64 pfn;
612
613 tsz = min(elfcorebuf_sz - (size_t)start, size);
614 pfn = __pa(elfcorebuf + start) >> PAGE_SHIFT;
615 if (remap_pfn_range(vma, vma->vm_start, pfn, tsz,
616 vma->vm_page_prot))
617 return -EAGAIN;
618 size -= tsz;
619 start += tsz;
620 len += tsz;
621
622 if (size == 0)
623 return 0;
624 }
625
626 if (start < elfcorebuf_sz + elfnotes_sz) {
627 void *kaddr;
628
629 /* We add device dumps before other elf notes because the
630 * other elf notes may not fill the elf notes buffer
631 * completely and we will end up with zero-filled data
632 * between the elf notes and the device dumps. Tools will
633 * then try to decode this zero-filled data as valid notes
634 * and we don't want that. Hence, adding device dumps before
635 * the other elf notes ensure that zero-filled data can be
636 * avoided. This also ensures that the device dumps and
637 * other elf notes can be properly mmaped at page aligned
638 * address.
639 */
640#ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP
641 /* Read device dumps */
642 if (start < elfcorebuf_sz + vmcoredd_orig_sz) {
643 u64 start_off;
644
645 tsz = min(elfcorebuf_sz + vmcoredd_orig_sz -
646 (size_t)start, size);
647 start_off = start - elfcorebuf_sz;
648 if (vmcoredd_mmap_dumps(vma, vma->vm_start + len,
649 start_off, tsz))
650 goto fail;
651
652 size -= tsz;
653 start += tsz;
654 len += tsz;
655
656 /* leave now if filled buffer already */
657 if (!size)
658 return 0;
659 }
660#endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */
661
662 /* Read remaining elf notes */
663 tsz = min(elfcorebuf_sz + elfnotes_sz - (size_t)start, size);
664 kaddr = elfnotes_buf + start - elfcorebuf_sz - vmcoredd_orig_sz;
665 if (remap_vmalloc_range_partial(vma, vma->vm_start + len,
666 kaddr, 0, tsz))
667 goto fail;
668
669 size -= tsz;
670 start += tsz;
671 len += tsz;
672
673 if (size == 0)
674 return 0;
675 }
676
677 list_for_each_entry(m, &vmcore_list, list) {
678 if (start < m->offset + m->size) {
679 u64 paddr = 0;
680
681 tsz = (size_t)min_t(unsigned long long,
682 m->offset + m->size - start, size);
683 paddr = m->paddr + start - m->offset;
684 if (vmcore_remap_oldmem_pfn(vma, vma->vm_start + len,
685 paddr >> PAGE_SHIFT, tsz,
686 vma->vm_page_prot))
687 goto fail;
688 size -= tsz;
689 start += tsz;
690 len += tsz;
691
692 if (size == 0)
693 return 0;
694 }
695 }
696
697 return 0;
698fail:
699 do_munmap(vma->vm_mm, vma->vm_start, len, NULL);
700 return -EAGAIN;
701}
702#else
703static int mmap_vmcore(struct file *file, struct vm_area_struct *vma)
704{
705 return -ENOSYS;
706}
707#endif
708
709static const struct proc_ops vmcore_proc_ops = {
710 .proc_open = open_vmcore,
711 .proc_read = read_vmcore,
712 .proc_lseek = default_llseek,
713 .proc_mmap = mmap_vmcore,
714};
715
716static struct vmcore* __init get_new_element(void)
717{
718 return kzalloc(sizeof(struct vmcore), GFP_KERNEL);
719}
720
721static u64 get_vmcore_size(size_t elfsz, size_t elfnotesegsz,
722 struct list_head *vc_list)
723{
724 u64 size;
725 struct vmcore *m;
726
727 size = elfsz + elfnotesegsz;
728 list_for_each_entry(m, vc_list, list) {
729 size += m->size;
730 }
731 return size;
732}
733
734/**
735 * update_note_header_size_elf64 - update p_memsz member of each PT_NOTE entry
736 *
737 * @ehdr_ptr: ELF header
738 *
739 * This function updates p_memsz member of each PT_NOTE entry in the
740 * program header table pointed to by @ehdr_ptr to real size of ELF
741 * note segment.
742 */
743static int __init update_note_header_size_elf64(const Elf64_Ehdr *ehdr_ptr)
744{
745 int i, rc=0;
746 Elf64_Phdr *phdr_ptr;
747 Elf64_Nhdr *nhdr_ptr;
748
749 phdr_ptr = (Elf64_Phdr *)(ehdr_ptr + 1);
750 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
751 void *notes_section;
752 u64 offset, max_sz, sz, real_sz = 0;
753 if (phdr_ptr->p_type != PT_NOTE)
754 continue;
755 max_sz = phdr_ptr->p_memsz;
756 offset = phdr_ptr->p_offset;
757 notes_section = kmalloc(max_sz, GFP_KERNEL);
758 if (!notes_section)
759 return -ENOMEM;
760 rc = elfcorehdr_read_notes(notes_section, max_sz, &offset);
761 if (rc < 0) {
762 kfree(notes_section);
763 return rc;
764 }
765 nhdr_ptr = notes_section;
766 while (nhdr_ptr->n_namesz != 0) {
767 sz = sizeof(Elf64_Nhdr) +
768 (((u64)nhdr_ptr->n_namesz + 3) & ~3) +
769 (((u64)nhdr_ptr->n_descsz + 3) & ~3);
770 if ((real_sz + sz) > max_sz) {
771 pr_warn("Warning: Exceeded p_memsz, dropping PT_NOTE entry n_namesz=0x%x, n_descsz=0x%x\n",
772 nhdr_ptr->n_namesz, nhdr_ptr->n_descsz);
773 break;
774 }
775 real_sz += sz;
776 nhdr_ptr = (Elf64_Nhdr*)((char*)nhdr_ptr + sz);
777 }
778 kfree(notes_section);
779 phdr_ptr->p_memsz = real_sz;
780 if (real_sz == 0) {
781 pr_warn("Warning: Zero PT_NOTE entries found\n");
782 }
783 }
784
785 return 0;
786}
787
788/**
789 * get_note_number_and_size_elf64 - get the number of PT_NOTE program
790 * headers and sum of real size of their ELF note segment headers and
791 * data.
792 *
793 * @ehdr_ptr: ELF header
794 * @nr_ptnote: buffer for the number of PT_NOTE program headers
795 * @sz_ptnote: buffer for size of unique PT_NOTE program header
796 *
797 * This function is used to merge multiple PT_NOTE program headers
798 * into a unique single one. The resulting unique entry will have
799 * @sz_ptnote in its phdr->p_mem.
800 *
801 * It is assumed that program headers with PT_NOTE type pointed to by
802 * @ehdr_ptr has already been updated by update_note_header_size_elf64
803 * and each of PT_NOTE program headers has actual ELF note segment
804 * size in its p_memsz member.
805 */
806static int __init get_note_number_and_size_elf64(const Elf64_Ehdr *ehdr_ptr,
807 int *nr_ptnote, u64 *sz_ptnote)
808{
809 int i;
810 Elf64_Phdr *phdr_ptr;
811
812 *nr_ptnote = *sz_ptnote = 0;
813
814 phdr_ptr = (Elf64_Phdr *)(ehdr_ptr + 1);
815 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
816 if (phdr_ptr->p_type != PT_NOTE)
817 continue;
818 *nr_ptnote += 1;
819 *sz_ptnote += phdr_ptr->p_memsz;
820 }
821
822 return 0;
823}
824
825/**
826 * copy_notes_elf64 - copy ELF note segments in a given buffer
827 *
828 * @ehdr_ptr: ELF header
829 * @notes_buf: buffer into which ELF note segments are copied
830 *
831 * This function is used to copy ELF note segment in the 1st kernel
832 * into the buffer @notes_buf in the 2nd kernel. It is assumed that
833 * size of the buffer @notes_buf is equal to or larger than sum of the
834 * real ELF note segment headers and data.
835 *
836 * It is assumed that program headers with PT_NOTE type pointed to by
837 * @ehdr_ptr has already been updated by update_note_header_size_elf64
838 * and each of PT_NOTE program headers has actual ELF note segment
839 * size in its p_memsz member.
840 */
841static int __init copy_notes_elf64(const Elf64_Ehdr *ehdr_ptr, char *notes_buf)
842{
843 int i, rc=0;
844 Elf64_Phdr *phdr_ptr;
845
846 phdr_ptr = (Elf64_Phdr*)(ehdr_ptr + 1);
847
848 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
849 u64 offset;
850 if (phdr_ptr->p_type != PT_NOTE)
851 continue;
852 offset = phdr_ptr->p_offset;
853 rc = elfcorehdr_read_notes(notes_buf, phdr_ptr->p_memsz,
854 &offset);
855 if (rc < 0)
856 return rc;
857 notes_buf += phdr_ptr->p_memsz;
858 }
859
860 return 0;
861}
862
863/* Merges all the PT_NOTE headers into one. */
864static int __init merge_note_headers_elf64(char *elfptr, size_t *elfsz,
865 char **notes_buf, size_t *notes_sz)
866{
867 int i, nr_ptnote=0, rc=0;
868 char *tmp;
869 Elf64_Ehdr *ehdr_ptr;
870 Elf64_Phdr phdr;
871 u64 phdr_sz = 0, note_off;
872
873 ehdr_ptr = (Elf64_Ehdr *)elfptr;
874
875 rc = update_note_header_size_elf64(ehdr_ptr);
876 if (rc < 0)
877 return rc;
878
879 rc = get_note_number_and_size_elf64(ehdr_ptr, &nr_ptnote, &phdr_sz);
880 if (rc < 0)
881 return rc;
882
883 *notes_sz = roundup(phdr_sz, PAGE_SIZE);
884 *notes_buf = vmcore_alloc_buf(*notes_sz);
885 if (!*notes_buf)
886 return -ENOMEM;
887
888 rc = copy_notes_elf64(ehdr_ptr, *notes_buf);
889 if (rc < 0)
890 return rc;
891
892 /* Prepare merged PT_NOTE program header. */
893 phdr.p_type = PT_NOTE;
894 phdr.p_flags = 0;
895 note_off = sizeof(Elf64_Ehdr) +
896 (ehdr_ptr->e_phnum - nr_ptnote +1) * sizeof(Elf64_Phdr);
897 phdr.p_offset = roundup(note_off, PAGE_SIZE);
898 phdr.p_vaddr = phdr.p_paddr = 0;
899 phdr.p_filesz = phdr.p_memsz = phdr_sz;
900 phdr.p_align = 0;
901
902 /* Add merged PT_NOTE program header*/
903 tmp = elfptr + sizeof(Elf64_Ehdr);
904 memcpy(tmp, &phdr, sizeof(phdr));
905 tmp += sizeof(phdr);
906
907 /* Remove unwanted PT_NOTE program headers. */
908 i = (nr_ptnote - 1) * sizeof(Elf64_Phdr);
909 *elfsz = *elfsz - i;
910 memmove(tmp, tmp+i, ((*elfsz)-sizeof(Elf64_Ehdr)-sizeof(Elf64_Phdr)));
911 memset(elfptr + *elfsz, 0, i);
912 *elfsz = roundup(*elfsz, PAGE_SIZE);
913
914 /* Modify e_phnum to reflect merged headers. */
915 ehdr_ptr->e_phnum = ehdr_ptr->e_phnum - nr_ptnote + 1;
916
917 /* Store the size of all notes. We need this to update the note
918 * header when the device dumps will be added.
919 */
920 elfnotes_orig_sz = phdr.p_memsz;
921
922 return 0;
923}
924
925/**
926 * update_note_header_size_elf32 - update p_memsz member of each PT_NOTE entry
927 *
928 * @ehdr_ptr: ELF header
929 *
930 * This function updates p_memsz member of each PT_NOTE entry in the
931 * program header table pointed to by @ehdr_ptr to real size of ELF
932 * note segment.
933 */
934static int __init update_note_header_size_elf32(const Elf32_Ehdr *ehdr_ptr)
935{
936 int i, rc=0;
937 Elf32_Phdr *phdr_ptr;
938 Elf32_Nhdr *nhdr_ptr;
939
940 phdr_ptr = (Elf32_Phdr *)(ehdr_ptr + 1);
941 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
942 void *notes_section;
943 u64 offset, max_sz, sz, real_sz = 0;
944 if (phdr_ptr->p_type != PT_NOTE)
945 continue;
946 max_sz = phdr_ptr->p_memsz;
947 offset = phdr_ptr->p_offset;
948 notes_section = kmalloc(max_sz, GFP_KERNEL);
949 if (!notes_section)
950 return -ENOMEM;
951 rc = elfcorehdr_read_notes(notes_section, max_sz, &offset);
952 if (rc < 0) {
953 kfree(notes_section);
954 return rc;
955 }
956 nhdr_ptr = notes_section;
957 while (nhdr_ptr->n_namesz != 0) {
958 sz = sizeof(Elf32_Nhdr) +
959 (((u64)nhdr_ptr->n_namesz + 3) & ~3) +
960 (((u64)nhdr_ptr->n_descsz + 3) & ~3);
961 if ((real_sz + sz) > max_sz) {
962 pr_warn("Warning: Exceeded p_memsz, dropping PT_NOTE entry n_namesz=0x%x, n_descsz=0x%x\n",
963 nhdr_ptr->n_namesz, nhdr_ptr->n_descsz);
964 break;
965 }
966 real_sz += sz;
967 nhdr_ptr = (Elf32_Nhdr*)((char*)nhdr_ptr + sz);
968 }
969 kfree(notes_section);
970 phdr_ptr->p_memsz = real_sz;
971 if (real_sz == 0) {
972 pr_warn("Warning: Zero PT_NOTE entries found\n");
973 }
974 }
975
976 return 0;
977}
978
979/**
980 * get_note_number_and_size_elf32 - get the number of PT_NOTE program
981 * headers and sum of real size of their ELF note segment headers and
982 * data.
983 *
984 * @ehdr_ptr: ELF header
985 * @nr_ptnote: buffer for the number of PT_NOTE program headers
986 * @sz_ptnote: buffer for size of unique PT_NOTE program header
987 *
988 * This function is used to merge multiple PT_NOTE program headers
989 * into a unique single one. The resulting unique entry will have
990 * @sz_ptnote in its phdr->p_mem.
991 *
992 * It is assumed that program headers with PT_NOTE type pointed to by
993 * @ehdr_ptr has already been updated by update_note_header_size_elf32
994 * and each of PT_NOTE program headers has actual ELF note segment
995 * size in its p_memsz member.
996 */
997static int __init get_note_number_and_size_elf32(const Elf32_Ehdr *ehdr_ptr,
998 int *nr_ptnote, u64 *sz_ptnote)
999{
1000 int i;
1001 Elf32_Phdr *phdr_ptr;
1002
1003 *nr_ptnote = *sz_ptnote = 0;
1004
1005 phdr_ptr = (Elf32_Phdr *)(ehdr_ptr + 1);
1006 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
1007 if (phdr_ptr->p_type != PT_NOTE)
1008 continue;
1009 *nr_ptnote += 1;
1010 *sz_ptnote += phdr_ptr->p_memsz;
1011 }
1012
1013 return 0;
1014}
1015
1016/**
1017 * copy_notes_elf32 - copy ELF note segments in a given buffer
1018 *
1019 * @ehdr_ptr: ELF header
1020 * @notes_buf: buffer into which ELF note segments are copied
1021 *
1022 * This function is used to copy ELF note segment in the 1st kernel
1023 * into the buffer @notes_buf in the 2nd kernel. It is assumed that
1024 * size of the buffer @notes_buf is equal to or larger than sum of the
1025 * real ELF note segment headers and data.
1026 *
1027 * It is assumed that program headers with PT_NOTE type pointed to by
1028 * @ehdr_ptr has already been updated by update_note_header_size_elf32
1029 * and each of PT_NOTE program headers has actual ELF note segment
1030 * size in its p_memsz member.
1031 */
1032static int __init copy_notes_elf32(const Elf32_Ehdr *ehdr_ptr, char *notes_buf)
1033{
1034 int i, rc=0;
1035 Elf32_Phdr *phdr_ptr;
1036
1037 phdr_ptr = (Elf32_Phdr*)(ehdr_ptr + 1);
1038
1039 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
1040 u64 offset;
1041 if (phdr_ptr->p_type != PT_NOTE)
1042 continue;
1043 offset = phdr_ptr->p_offset;
1044 rc = elfcorehdr_read_notes(notes_buf, phdr_ptr->p_memsz,
1045 &offset);
1046 if (rc < 0)
1047 return rc;
1048 notes_buf += phdr_ptr->p_memsz;
1049 }
1050
1051 return 0;
1052}
1053
1054/* Merges all the PT_NOTE headers into one. */
1055static int __init merge_note_headers_elf32(char *elfptr, size_t *elfsz,
1056 char **notes_buf, size_t *notes_sz)
1057{
1058 int i, nr_ptnote=0, rc=0;
1059 char *tmp;
1060 Elf32_Ehdr *ehdr_ptr;
1061 Elf32_Phdr phdr;
1062 u64 phdr_sz = 0, note_off;
1063
1064 ehdr_ptr = (Elf32_Ehdr *)elfptr;
1065
1066 rc = update_note_header_size_elf32(ehdr_ptr);
1067 if (rc < 0)
1068 return rc;
1069
1070 rc = get_note_number_and_size_elf32(ehdr_ptr, &nr_ptnote, &phdr_sz);
1071 if (rc < 0)
1072 return rc;
1073
1074 *notes_sz = roundup(phdr_sz, PAGE_SIZE);
1075 *notes_buf = vmcore_alloc_buf(*notes_sz);
1076 if (!*notes_buf)
1077 return -ENOMEM;
1078
1079 rc = copy_notes_elf32(ehdr_ptr, *notes_buf);
1080 if (rc < 0)
1081 return rc;
1082
1083 /* Prepare merged PT_NOTE program header. */
1084 phdr.p_type = PT_NOTE;
1085 phdr.p_flags = 0;
1086 note_off = sizeof(Elf32_Ehdr) +
1087 (ehdr_ptr->e_phnum - nr_ptnote +1) * sizeof(Elf32_Phdr);
1088 phdr.p_offset = roundup(note_off, PAGE_SIZE);
1089 phdr.p_vaddr = phdr.p_paddr = 0;
1090 phdr.p_filesz = phdr.p_memsz = phdr_sz;
1091 phdr.p_align = 0;
1092
1093 /* Add merged PT_NOTE program header*/
1094 tmp = elfptr + sizeof(Elf32_Ehdr);
1095 memcpy(tmp, &phdr, sizeof(phdr));
1096 tmp += sizeof(phdr);
1097
1098 /* Remove unwanted PT_NOTE program headers. */
1099 i = (nr_ptnote - 1) * sizeof(Elf32_Phdr);
1100 *elfsz = *elfsz - i;
1101 memmove(tmp, tmp+i, ((*elfsz)-sizeof(Elf32_Ehdr)-sizeof(Elf32_Phdr)));
1102 memset(elfptr + *elfsz, 0, i);
1103 *elfsz = roundup(*elfsz, PAGE_SIZE);
1104
1105 /* Modify e_phnum to reflect merged headers. */
1106 ehdr_ptr->e_phnum = ehdr_ptr->e_phnum - nr_ptnote + 1;
1107
1108 /* Store the size of all notes. We need this to update the note
1109 * header when the device dumps will be added.
1110 */
1111 elfnotes_orig_sz = phdr.p_memsz;
1112
1113 return 0;
1114}
1115
1116/* Add memory chunks represented by program headers to vmcore list. Also update
1117 * the new offset fields of exported program headers. */
1118static int __init process_ptload_program_headers_elf64(char *elfptr,
1119 size_t elfsz,
1120 size_t elfnotes_sz,
1121 struct list_head *vc_list)
1122{
1123 int i;
1124 Elf64_Ehdr *ehdr_ptr;
1125 Elf64_Phdr *phdr_ptr;
1126 loff_t vmcore_off;
1127 struct vmcore *new;
1128
1129 ehdr_ptr = (Elf64_Ehdr *)elfptr;
1130 phdr_ptr = (Elf64_Phdr*)(elfptr + sizeof(Elf64_Ehdr)); /* PT_NOTE hdr */
1131
1132 /* Skip Elf header, program headers and Elf note segment. */
1133 vmcore_off = elfsz + elfnotes_sz;
1134
1135 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
1136 u64 paddr, start, end, size;
1137
1138 if (phdr_ptr->p_type != PT_LOAD)
1139 continue;
1140
1141 paddr = phdr_ptr->p_offset;
1142 start = rounddown(paddr, PAGE_SIZE);
1143 end = roundup(paddr + phdr_ptr->p_memsz, PAGE_SIZE);
1144 size = end - start;
1145
1146 /* Add this contiguous chunk of memory to vmcore list.*/
1147 new = get_new_element();
1148 if (!new)
1149 return -ENOMEM;
1150 new->paddr = start;
1151 new->size = size;
1152 list_add_tail(&new->list, vc_list);
1153
1154 /* Update the program header offset. */
1155 phdr_ptr->p_offset = vmcore_off + (paddr - start);
1156 vmcore_off = vmcore_off + size;
1157 }
1158 return 0;
1159}
1160
1161static int __init process_ptload_program_headers_elf32(char *elfptr,
1162 size_t elfsz,
1163 size_t elfnotes_sz,
1164 struct list_head *vc_list)
1165{
1166 int i;
1167 Elf32_Ehdr *ehdr_ptr;
1168 Elf32_Phdr *phdr_ptr;
1169 loff_t vmcore_off;
1170 struct vmcore *new;
1171
1172 ehdr_ptr = (Elf32_Ehdr *)elfptr;
1173 phdr_ptr = (Elf32_Phdr*)(elfptr + sizeof(Elf32_Ehdr)); /* PT_NOTE hdr */
1174
1175 /* Skip Elf header, program headers and Elf note segment. */
1176 vmcore_off = elfsz + elfnotes_sz;
1177
1178 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
1179 u64 paddr, start, end, size;
1180
1181 if (phdr_ptr->p_type != PT_LOAD)
1182 continue;
1183
1184 paddr = phdr_ptr->p_offset;
1185 start = rounddown(paddr, PAGE_SIZE);
1186 end = roundup(paddr + phdr_ptr->p_memsz, PAGE_SIZE);
1187 size = end - start;
1188
1189 /* Add this contiguous chunk of memory to vmcore list.*/
1190 new = get_new_element();
1191 if (!new)
1192 return -ENOMEM;
1193 new->paddr = start;
1194 new->size = size;
1195 list_add_tail(&new->list, vc_list);
1196
1197 /* Update the program header offset */
1198 phdr_ptr->p_offset = vmcore_off + (paddr - start);
1199 vmcore_off = vmcore_off + size;
1200 }
1201 return 0;
1202}
1203
1204/* Sets offset fields of vmcore elements. */
1205static void set_vmcore_list_offsets(size_t elfsz, size_t elfnotes_sz,
1206 struct list_head *vc_list)
1207{
1208 loff_t vmcore_off;
1209 struct vmcore *m;
1210
1211 /* Skip Elf header, program headers and Elf note segment. */
1212 vmcore_off = elfsz + elfnotes_sz;
1213
1214 list_for_each_entry(m, vc_list, list) {
1215 m->offset = vmcore_off;
1216 vmcore_off += m->size;
1217 }
1218}
1219
1220static void free_elfcorebuf(void)
1221{
1222 free_pages((unsigned long)elfcorebuf, get_order(elfcorebuf_sz_orig));
1223 elfcorebuf = NULL;
1224 vfree(elfnotes_buf);
1225 elfnotes_buf = NULL;
1226}
1227
1228static int __init parse_crash_elf64_headers(void)
1229{
1230 int rc=0;
1231 Elf64_Ehdr ehdr;
1232 u64 addr;
1233
1234 addr = elfcorehdr_addr;
1235
1236 /* Read Elf header */
1237 rc = elfcorehdr_read((char *)&ehdr, sizeof(Elf64_Ehdr), &addr);
1238 if (rc < 0)
1239 return rc;
1240
1241 /* Do some basic Verification. */
1242 if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0 ||
1243 (ehdr.e_type != ET_CORE) ||
1244 !vmcore_elf64_check_arch(&ehdr) ||
1245 ehdr.e_ident[EI_CLASS] != ELFCLASS64 ||
1246 ehdr.e_ident[EI_VERSION] != EV_CURRENT ||
1247 ehdr.e_version != EV_CURRENT ||
1248 ehdr.e_ehsize != sizeof(Elf64_Ehdr) ||
1249 ehdr.e_phentsize != sizeof(Elf64_Phdr) ||
1250 ehdr.e_phnum == 0) {
1251 pr_warn("Warning: Core image elf header is not sane\n");
1252 return -EINVAL;
1253 }
1254
1255 /* Read in all elf headers. */
1256 elfcorebuf_sz_orig = sizeof(Elf64_Ehdr) +
1257 ehdr.e_phnum * sizeof(Elf64_Phdr);
1258 elfcorebuf_sz = elfcorebuf_sz_orig;
1259 elfcorebuf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1260 get_order(elfcorebuf_sz_orig));
1261 if (!elfcorebuf)
1262 return -ENOMEM;
1263 addr = elfcorehdr_addr;
1264 rc = elfcorehdr_read(elfcorebuf, elfcorebuf_sz_orig, &addr);
1265 if (rc < 0)
1266 goto fail;
1267
1268 /* Merge all PT_NOTE headers into one. */
1269 rc = merge_note_headers_elf64(elfcorebuf, &elfcorebuf_sz,
1270 &elfnotes_buf, &elfnotes_sz);
1271 if (rc)
1272 goto fail;
1273 rc = process_ptload_program_headers_elf64(elfcorebuf, elfcorebuf_sz,
1274 elfnotes_sz, &vmcore_list);
1275 if (rc)
1276 goto fail;
1277 set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list);
1278 return 0;
1279fail:
1280 free_elfcorebuf();
1281 return rc;
1282}
1283
1284static int __init parse_crash_elf32_headers(void)
1285{
1286 int rc=0;
1287 Elf32_Ehdr ehdr;
1288 u64 addr;
1289
1290 addr = elfcorehdr_addr;
1291
1292 /* Read Elf header */
1293 rc = elfcorehdr_read((char *)&ehdr, sizeof(Elf32_Ehdr), &addr);
1294 if (rc < 0)
1295 return rc;
1296
1297 /* Do some basic Verification. */
1298 if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0 ||
1299 (ehdr.e_type != ET_CORE) ||
1300 !vmcore_elf32_check_arch(&ehdr) ||
1301 ehdr.e_ident[EI_CLASS] != ELFCLASS32||
1302 ehdr.e_ident[EI_VERSION] != EV_CURRENT ||
1303 ehdr.e_version != EV_CURRENT ||
1304 ehdr.e_ehsize != sizeof(Elf32_Ehdr) ||
1305 ehdr.e_phentsize != sizeof(Elf32_Phdr) ||
1306 ehdr.e_phnum == 0) {
1307 pr_warn("Warning: Core image elf header is not sane\n");
1308 return -EINVAL;
1309 }
1310
1311 /* Read in all elf headers. */
1312 elfcorebuf_sz_orig = sizeof(Elf32_Ehdr) + ehdr.e_phnum * sizeof(Elf32_Phdr);
1313 elfcorebuf_sz = elfcorebuf_sz_orig;
1314 elfcorebuf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1315 get_order(elfcorebuf_sz_orig));
1316 if (!elfcorebuf)
1317 return -ENOMEM;
1318 addr = elfcorehdr_addr;
1319 rc = elfcorehdr_read(elfcorebuf, elfcorebuf_sz_orig, &addr);
1320 if (rc < 0)
1321 goto fail;
1322
1323 /* Merge all PT_NOTE headers into one. */
1324 rc = merge_note_headers_elf32(elfcorebuf, &elfcorebuf_sz,
1325 &elfnotes_buf, &elfnotes_sz);
1326 if (rc)
1327 goto fail;
1328 rc = process_ptload_program_headers_elf32(elfcorebuf, elfcorebuf_sz,
1329 elfnotes_sz, &vmcore_list);
1330 if (rc)
1331 goto fail;
1332 set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list);
1333 return 0;
1334fail:
1335 free_elfcorebuf();
1336 return rc;
1337}
1338
1339static int __init parse_crash_elf_headers(void)
1340{
1341 unsigned char e_ident[EI_NIDENT];
1342 u64 addr;
1343 int rc=0;
1344
1345 addr = elfcorehdr_addr;
1346 rc = elfcorehdr_read(e_ident, EI_NIDENT, &addr);
1347 if (rc < 0)
1348 return rc;
1349 if (memcmp(e_ident, ELFMAG, SELFMAG) != 0) {
1350 pr_warn("Warning: Core image elf header not found\n");
1351 return -EINVAL;
1352 }
1353
1354 if (e_ident[EI_CLASS] == ELFCLASS64) {
1355 rc = parse_crash_elf64_headers();
1356 if (rc)
1357 return rc;
1358 } else if (e_ident[EI_CLASS] == ELFCLASS32) {
1359 rc = parse_crash_elf32_headers();
1360 if (rc)
1361 return rc;
1362 } else {
1363 pr_warn("Warning: Core image elf header is not sane\n");
1364 return -EINVAL;
1365 }
1366
1367 /* Determine vmcore size. */
1368 vmcore_size = get_vmcore_size(elfcorebuf_sz, elfnotes_sz,
1369 &vmcore_list);
1370
1371 return 0;
1372}
1373
1374#ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP
1375/**
1376 * vmcoredd_write_header - Write vmcore device dump header at the
1377 * beginning of the dump's buffer.
1378 * @buf: Output buffer where the note is written
1379 * @data: Dump info
1380 * @size: Size of the dump
1381 *
1382 * Fills beginning of the dump's buffer with vmcore device dump header.
1383 */
1384static void vmcoredd_write_header(void *buf, struct vmcoredd_data *data,
1385 u32 size)
1386{
1387 struct vmcoredd_header *vdd_hdr = (struct vmcoredd_header *)buf;
1388
1389 vdd_hdr->n_namesz = sizeof(vdd_hdr->name);
1390 vdd_hdr->n_descsz = size + sizeof(vdd_hdr->dump_name);
1391 vdd_hdr->n_type = NT_VMCOREDD;
1392
1393 strncpy((char *)vdd_hdr->name, VMCOREDD_NOTE_NAME,
1394 sizeof(vdd_hdr->name));
1395 memcpy(vdd_hdr->dump_name, data->dump_name, sizeof(vdd_hdr->dump_name));
1396}
1397
1398/**
1399 * vmcoredd_update_program_headers - Update all Elf program headers
1400 * @elfptr: Pointer to elf header
1401 * @elfnotesz: Size of elf notes aligned to page size
1402 * @vmcoreddsz: Size of device dumps to be added to elf note header
1403 *
1404 * Determine type of Elf header (Elf64 or Elf32) and update the elf note size.
1405 * Also update the offsets of all the program headers after the elf note header.
1406 */
1407static void vmcoredd_update_program_headers(char *elfptr, size_t elfnotesz,
1408 size_t vmcoreddsz)
1409{
1410 unsigned char *e_ident = (unsigned char *)elfptr;
1411 u64 start, end, size;
1412 loff_t vmcore_off;
1413 u32 i;
1414
1415 vmcore_off = elfcorebuf_sz + elfnotesz;
1416
1417 if (e_ident[EI_CLASS] == ELFCLASS64) {
1418 Elf64_Ehdr *ehdr = (Elf64_Ehdr *)elfptr;
1419 Elf64_Phdr *phdr = (Elf64_Phdr *)(elfptr + sizeof(Elf64_Ehdr));
1420
1421 /* Update all program headers */
1422 for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
1423 if (phdr->p_type == PT_NOTE) {
1424 /* Update note size */
1425 phdr->p_memsz = elfnotes_orig_sz + vmcoreddsz;
1426 phdr->p_filesz = phdr->p_memsz;
1427 continue;
1428 }
1429
1430 start = rounddown(phdr->p_offset, PAGE_SIZE);
1431 end = roundup(phdr->p_offset + phdr->p_memsz,
1432 PAGE_SIZE);
1433 size = end - start;
1434 phdr->p_offset = vmcore_off + (phdr->p_offset - start);
1435 vmcore_off += size;
1436 }
1437 } else {
1438 Elf32_Ehdr *ehdr = (Elf32_Ehdr *)elfptr;
1439 Elf32_Phdr *phdr = (Elf32_Phdr *)(elfptr + sizeof(Elf32_Ehdr));
1440
1441 /* Update all program headers */
1442 for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
1443 if (phdr->p_type == PT_NOTE) {
1444 /* Update note size */
1445 phdr->p_memsz = elfnotes_orig_sz + vmcoreddsz;
1446 phdr->p_filesz = phdr->p_memsz;
1447 continue;
1448 }
1449
1450 start = rounddown(phdr->p_offset, PAGE_SIZE);
1451 end = roundup(phdr->p_offset + phdr->p_memsz,
1452 PAGE_SIZE);
1453 size = end - start;
1454 phdr->p_offset = vmcore_off + (phdr->p_offset - start);
1455 vmcore_off += size;
1456 }
1457 }
1458}
1459
1460/**
1461 * vmcoredd_update_size - Update the total size of the device dumps and update
1462 * Elf header
1463 * @dump_size: Size of the current device dump to be added to total size
1464 *
1465 * Update the total size of all the device dumps and update the Elf program
1466 * headers. Calculate the new offsets for the vmcore list and update the
1467 * total vmcore size.
1468 */
1469static void vmcoredd_update_size(size_t dump_size)
1470{
1471 vmcoredd_orig_sz += dump_size;
1472 elfnotes_sz = roundup(elfnotes_orig_sz, PAGE_SIZE) + vmcoredd_orig_sz;
1473 vmcoredd_update_program_headers(elfcorebuf, elfnotes_sz,
1474 vmcoredd_orig_sz);
1475
1476 /* Update vmcore list offsets */
1477 set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list);
1478
1479 vmcore_size = get_vmcore_size(elfcorebuf_sz, elfnotes_sz,
1480 &vmcore_list);
1481 proc_vmcore->size = vmcore_size;
1482}
1483
1484/**
1485 * vmcore_add_device_dump - Add a buffer containing device dump to vmcore
1486 * @data: dump info.
1487 *
1488 * Allocate a buffer and invoke the calling driver's dump collect routine.
1489 * Write Elf note at the beginning of the buffer to indicate vmcore device
1490 * dump and add the dump to global list.
1491 */
1492int vmcore_add_device_dump(struct vmcoredd_data *data)
1493{
1494 struct vmcoredd_node *dump;
1495 void *buf = NULL;
1496 size_t data_size;
1497 int ret;
1498
1499 if (vmcoredd_disabled) {
1500 pr_err_once("Device dump is disabled\n");
1501 return -EINVAL;
1502 }
1503
1504 if (!data || !strlen(data->dump_name) ||
1505 !data->vmcoredd_callback || !data->size)
1506 return -EINVAL;
1507
1508 dump = vzalloc(sizeof(*dump));
1509 if (!dump) {
1510 ret = -ENOMEM;
1511 goto out_err;
1512 }
1513
1514 /* Keep size of the buffer page aligned so that it can be mmaped */
1515 data_size = roundup(sizeof(struct vmcoredd_header) + data->size,
1516 PAGE_SIZE);
1517
1518 /* Allocate buffer for driver's to write their dumps */
1519 buf = vmcore_alloc_buf(data_size);
1520 if (!buf) {
1521 ret = -ENOMEM;
1522 goto out_err;
1523 }
1524
1525 vmcoredd_write_header(buf, data, data_size -
1526 sizeof(struct vmcoredd_header));
1527
1528 /* Invoke the driver's dump collection routing */
1529 ret = data->vmcoredd_callback(data, buf +
1530 sizeof(struct vmcoredd_header));
1531 if (ret)
1532 goto out_err;
1533
1534 dump->buf = buf;
1535 dump->size = data_size;
1536
1537 /* Add the dump to driver sysfs list */
1538 mutex_lock(&vmcoredd_mutex);
1539 list_add_tail(&dump->list, &vmcoredd_list);
1540 mutex_unlock(&vmcoredd_mutex);
1541
1542 vmcoredd_update_size(data_size);
1543 return 0;
1544
1545out_err:
1546 vfree(buf);
1547 vfree(dump);
1548
1549 return ret;
1550}
1551EXPORT_SYMBOL(vmcore_add_device_dump);
1552#endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */
1553
1554/* Free all dumps in vmcore device dump list */
1555static void vmcore_free_device_dumps(void)
1556{
1557#ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP
1558 mutex_lock(&vmcoredd_mutex);
1559 while (!list_empty(&vmcoredd_list)) {
1560 struct vmcoredd_node *dump;
1561
1562 dump = list_first_entry(&vmcoredd_list, struct vmcoredd_node,
1563 list);
1564 list_del(&dump->list);
1565 vfree(dump->buf);
1566 vfree(dump);
1567 }
1568 mutex_unlock(&vmcoredd_mutex);
1569#endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */
1570}
1571
1572/* Init function for vmcore module. */
1573static int __init vmcore_init(void)
1574{
1575 int rc = 0;
1576
1577 /* Allow architectures to allocate ELF header in 2nd kernel */
1578 rc = elfcorehdr_alloc(&elfcorehdr_addr, &elfcorehdr_size);
1579 if (rc)
1580 return rc;
1581 /*
1582 * If elfcorehdr= has been passed in cmdline or created in 2nd kernel,
1583 * then capture the dump.
1584 */
1585 if (!(is_vmcore_usable()))
1586 return rc;
1587 rc = parse_crash_elf_headers();
1588 if (rc) {
1589 pr_warn("Kdump: vmcore not initialized\n");
1590 return rc;
1591 }
1592 elfcorehdr_free(elfcorehdr_addr);
1593 elfcorehdr_addr = ELFCORE_ADDR_ERR;
1594
1595 proc_vmcore = proc_create("vmcore", S_IRUSR, NULL, &vmcore_proc_ops);
1596 if (proc_vmcore)
1597 proc_vmcore->size = vmcore_size;
1598 return 0;
1599}
1600fs_initcall(vmcore_init);
1601
1602/* Cleanup function for vmcore module. */
1603void vmcore_cleanup(void)
1604{
1605 if (proc_vmcore) {
1606 proc_remove(proc_vmcore);
1607 proc_vmcore = NULL;
1608 }
1609
1610 /* clear the vmcore list. */
1611 while (!list_empty(&vmcore_list)) {
1612 struct vmcore *m;
1613
1614 m = list_first_entry(&vmcore_list, struct vmcore, list);
1615 list_del(&m->list);
1616 kfree(m);
1617 }
1618 free_elfcorebuf();
1619
1620 /* clear vmcore device dump list */
1621 vmcore_free_device_dumps();
1622}