at v5.18-rc6 67 kB view raw
1/* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6#include <linux/sched/mm.h> 7#include <linux/proc_fs.h> 8#include <linux/smp.h> 9#include <linux/init.h> 10#include <linux/notifier.h> 11#include <linux/sched/signal.h> 12#include <linux/sched/hotplug.h> 13#include <linux/sched/isolation.h> 14#include <linux/sched/task.h> 15#include <linux/sched/smt.h> 16#include <linux/unistd.h> 17#include <linux/cpu.h> 18#include <linux/oom.h> 19#include <linux/rcupdate.h> 20#include <linux/export.h> 21#include <linux/bug.h> 22#include <linux/kthread.h> 23#include <linux/stop_machine.h> 24#include <linux/mutex.h> 25#include <linux/gfp.h> 26#include <linux/suspend.h> 27#include <linux/lockdep.h> 28#include <linux/tick.h> 29#include <linux/irq.h> 30#include <linux/nmi.h> 31#include <linux/smpboot.h> 32#include <linux/relay.h> 33#include <linux/slab.h> 34#include <linux/scs.h> 35#include <linux/percpu-rwsem.h> 36#include <linux/cpuset.h> 37#include <linux/random.h> 38 39#include <trace/events/power.h> 40#define CREATE_TRACE_POINTS 41#include <trace/events/cpuhp.h> 42 43#include "smpboot.h" 44 45/** 46 * struct cpuhp_cpu_state - Per cpu hotplug state storage 47 * @state: The current cpu state 48 * @target: The target state 49 * @fail: Current CPU hotplug callback state 50 * @thread: Pointer to the hotplug thread 51 * @should_run: Thread should execute 52 * @rollback: Perform a rollback 53 * @single: Single callback invocation 54 * @bringup: Single callback bringup or teardown selector 55 * @cpu: CPU number 56 * @node: Remote CPU node; for multi-instance, do a 57 * single entry callback for install/remove 58 * @last: For multi-instance rollback, remember how far we got 59 * @cb_state: The state for a single callback (install/uninstall) 60 * @result: Result of the operation 61 * @done_up: Signal completion to the issuer of the task for cpu-up 62 * @done_down: Signal completion to the issuer of the task for cpu-down 63 */ 64struct cpuhp_cpu_state { 65 enum cpuhp_state state; 66 enum cpuhp_state target; 67 enum cpuhp_state fail; 68#ifdef CONFIG_SMP 69 struct task_struct *thread; 70 bool should_run; 71 bool rollback; 72 bool single; 73 bool bringup; 74 struct hlist_node *node; 75 struct hlist_node *last; 76 enum cpuhp_state cb_state; 77 int result; 78 struct completion done_up; 79 struct completion done_down; 80#endif 81}; 82 83static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 84 .fail = CPUHP_INVALID, 85}; 86 87#ifdef CONFIG_SMP 88cpumask_t cpus_booted_once_mask; 89#endif 90 91#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 92static struct lockdep_map cpuhp_state_up_map = 93 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 94static struct lockdep_map cpuhp_state_down_map = 95 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 96 97 98static inline void cpuhp_lock_acquire(bool bringup) 99{ 100 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 101} 102 103static inline void cpuhp_lock_release(bool bringup) 104{ 105 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 106} 107#else 108 109static inline void cpuhp_lock_acquire(bool bringup) { } 110static inline void cpuhp_lock_release(bool bringup) { } 111 112#endif 113 114/** 115 * struct cpuhp_step - Hotplug state machine step 116 * @name: Name of the step 117 * @startup: Startup function of the step 118 * @teardown: Teardown function of the step 119 * @cant_stop: Bringup/teardown can't be stopped at this step 120 * @multi_instance: State has multiple instances which get added afterwards 121 */ 122struct cpuhp_step { 123 const char *name; 124 union { 125 int (*single)(unsigned int cpu); 126 int (*multi)(unsigned int cpu, 127 struct hlist_node *node); 128 } startup; 129 union { 130 int (*single)(unsigned int cpu); 131 int (*multi)(unsigned int cpu, 132 struct hlist_node *node); 133 } teardown; 134 /* private: */ 135 struct hlist_head list; 136 /* public: */ 137 bool cant_stop; 138 bool multi_instance; 139}; 140 141static DEFINE_MUTEX(cpuhp_state_mutex); 142static struct cpuhp_step cpuhp_hp_states[]; 143 144static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 145{ 146 return cpuhp_hp_states + state; 147} 148 149static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) 150{ 151 return bringup ? !step->startup.single : !step->teardown.single; 152} 153 154/** 155 * cpuhp_invoke_callback - Invoke the callbacks for a given state 156 * @cpu: The cpu for which the callback should be invoked 157 * @state: The state to do callbacks for 158 * @bringup: True if the bringup callback should be invoked 159 * @node: For multi-instance, do a single entry callback for install/remove 160 * @lastp: For multi-instance rollback, remember how far we got 161 * 162 * Called from cpu hotplug and from the state register machinery. 163 * 164 * Return: %0 on success or a negative errno code 165 */ 166static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 167 bool bringup, struct hlist_node *node, 168 struct hlist_node **lastp) 169{ 170 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 171 struct cpuhp_step *step = cpuhp_get_step(state); 172 int (*cbm)(unsigned int cpu, struct hlist_node *node); 173 int (*cb)(unsigned int cpu); 174 int ret, cnt; 175 176 if (st->fail == state) { 177 st->fail = CPUHP_INVALID; 178 return -EAGAIN; 179 } 180 181 if (cpuhp_step_empty(bringup, step)) { 182 WARN_ON_ONCE(1); 183 return 0; 184 } 185 186 if (!step->multi_instance) { 187 WARN_ON_ONCE(lastp && *lastp); 188 cb = bringup ? step->startup.single : step->teardown.single; 189 190 trace_cpuhp_enter(cpu, st->target, state, cb); 191 ret = cb(cpu); 192 trace_cpuhp_exit(cpu, st->state, state, ret); 193 return ret; 194 } 195 cbm = bringup ? step->startup.multi : step->teardown.multi; 196 197 /* Single invocation for instance add/remove */ 198 if (node) { 199 WARN_ON_ONCE(lastp && *lastp); 200 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 201 ret = cbm(cpu, node); 202 trace_cpuhp_exit(cpu, st->state, state, ret); 203 return ret; 204 } 205 206 /* State transition. Invoke on all instances */ 207 cnt = 0; 208 hlist_for_each(node, &step->list) { 209 if (lastp && node == *lastp) 210 break; 211 212 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 213 ret = cbm(cpu, node); 214 trace_cpuhp_exit(cpu, st->state, state, ret); 215 if (ret) { 216 if (!lastp) 217 goto err; 218 219 *lastp = node; 220 return ret; 221 } 222 cnt++; 223 } 224 if (lastp) 225 *lastp = NULL; 226 return 0; 227err: 228 /* Rollback the instances if one failed */ 229 cbm = !bringup ? step->startup.multi : step->teardown.multi; 230 if (!cbm) 231 return ret; 232 233 hlist_for_each(node, &step->list) { 234 if (!cnt--) 235 break; 236 237 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 238 ret = cbm(cpu, node); 239 trace_cpuhp_exit(cpu, st->state, state, ret); 240 /* 241 * Rollback must not fail, 242 */ 243 WARN_ON_ONCE(ret); 244 } 245 return ret; 246} 247 248#ifdef CONFIG_SMP 249static bool cpuhp_is_ap_state(enum cpuhp_state state) 250{ 251 /* 252 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 253 * purposes as that state is handled explicitly in cpu_down. 254 */ 255 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 256} 257 258static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 259{ 260 struct completion *done = bringup ? &st->done_up : &st->done_down; 261 wait_for_completion(done); 262} 263 264static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 265{ 266 struct completion *done = bringup ? &st->done_up : &st->done_down; 267 complete(done); 268} 269 270/* 271 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 272 */ 273static bool cpuhp_is_atomic_state(enum cpuhp_state state) 274{ 275 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 276} 277 278/* Serializes the updates to cpu_online_mask, cpu_present_mask */ 279static DEFINE_MUTEX(cpu_add_remove_lock); 280bool cpuhp_tasks_frozen; 281EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 282 283/* 284 * The following two APIs (cpu_maps_update_begin/done) must be used when 285 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 286 */ 287void cpu_maps_update_begin(void) 288{ 289 mutex_lock(&cpu_add_remove_lock); 290} 291 292void cpu_maps_update_done(void) 293{ 294 mutex_unlock(&cpu_add_remove_lock); 295} 296 297/* 298 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 299 * Should always be manipulated under cpu_add_remove_lock 300 */ 301static int cpu_hotplug_disabled; 302 303#ifdef CONFIG_HOTPLUG_CPU 304 305DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 306 307void cpus_read_lock(void) 308{ 309 percpu_down_read(&cpu_hotplug_lock); 310} 311EXPORT_SYMBOL_GPL(cpus_read_lock); 312 313int cpus_read_trylock(void) 314{ 315 return percpu_down_read_trylock(&cpu_hotplug_lock); 316} 317EXPORT_SYMBOL_GPL(cpus_read_trylock); 318 319void cpus_read_unlock(void) 320{ 321 percpu_up_read(&cpu_hotplug_lock); 322} 323EXPORT_SYMBOL_GPL(cpus_read_unlock); 324 325void cpus_write_lock(void) 326{ 327 percpu_down_write(&cpu_hotplug_lock); 328} 329 330void cpus_write_unlock(void) 331{ 332 percpu_up_write(&cpu_hotplug_lock); 333} 334 335void lockdep_assert_cpus_held(void) 336{ 337 /* 338 * We can't have hotplug operations before userspace starts running, 339 * and some init codepaths will knowingly not take the hotplug lock. 340 * This is all valid, so mute lockdep until it makes sense to report 341 * unheld locks. 342 */ 343 if (system_state < SYSTEM_RUNNING) 344 return; 345 346 percpu_rwsem_assert_held(&cpu_hotplug_lock); 347} 348 349#ifdef CONFIG_LOCKDEP 350int lockdep_is_cpus_held(void) 351{ 352 return percpu_rwsem_is_held(&cpu_hotplug_lock); 353} 354#endif 355 356static void lockdep_acquire_cpus_lock(void) 357{ 358 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 359} 360 361static void lockdep_release_cpus_lock(void) 362{ 363 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 364} 365 366/* 367 * Wait for currently running CPU hotplug operations to complete (if any) and 368 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 369 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 370 * hotplug path before performing hotplug operations. So acquiring that lock 371 * guarantees mutual exclusion from any currently running hotplug operations. 372 */ 373void cpu_hotplug_disable(void) 374{ 375 cpu_maps_update_begin(); 376 cpu_hotplug_disabled++; 377 cpu_maps_update_done(); 378} 379EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 380 381static void __cpu_hotplug_enable(void) 382{ 383 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 384 return; 385 cpu_hotplug_disabled--; 386} 387 388void cpu_hotplug_enable(void) 389{ 390 cpu_maps_update_begin(); 391 __cpu_hotplug_enable(); 392 cpu_maps_update_done(); 393} 394EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 395 396#else 397 398static void lockdep_acquire_cpus_lock(void) 399{ 400} 401 402static void lockdep_release_cpus_lock(void) 403{ 404} 405 406#endif /* CONFIG_HOTPLUG_CPU */ 407 408/* 409 * Architectures that need SMT-specific errata handling during SMT hotplug 410 * should override this. 411 */ 412void __weak arch_smt_update(void) { } 413 414#ifdef CONFIG_HOTPLUG_SMT 415enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 416 417void __init cpu_smt_disable(bool force) 418{ 419 if (!cpu_smt_possible()) 420 return; 421 422 if (force) { 423 pr_info("SMT: Force disabled\n"); 424 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 425 } else { 426 pr_info("SMT: disabled\n"); 427 cpu_smt_control = CPU_SMT_DISABLED; 428 } 429} 430 431/* 432 * The decision whether SMT is supported can only be done after the full 433 * CPU identification. Called from architecture code. 434 */ 435void __init cpu_smt_check_topology(void) 436{ 437 if (!topology_smt_supported()) 438 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 439} 440 441static int __init smt_cmdline_disable(char *str) 442{ 443 cpu_smt_disable(str && !strcmp(str, "force")); 444 return 0; 445} 446early_param("nosmt", smt_cmdline_disable); 447 448static inline bool cpu_smt_allowed(unsigned int cpu) 449{ 450 if (cpu_smt_control == CPU_SMT_ENABLED) 451 return true; 452 453 if (topology_is_primary_thread(cpu)) 454 return true; 455 456 /* 457 * On x86 it's required to boot all logical CPUs at least once so 458 * that the init code can get a chance to set CR4.MCE on each 459 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any 460 * core will shutdown the machine. 461 */ 462 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 463} 464 465/* Returns true if SMT is not supported of forcefully (irreversibly) disabled */ 466bool cpu_smt_possible(void) 467{ 468 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 469 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 470} 471EXPORT_SYMBOL_GPL(cpu_smt_possible); 472#else 473static inline bool cpu_smt_allowed(unsigned int cpu) { return true; } 474#endif 475 476static inline enum cpuhp_state 477cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) 478{ 479 enum cpuhp_state prev_state = st->state; 480 bool bringup = st->state < target; 481 482 st->rollback = false; 483 st->last = NULL; 484 485 st->target = target; 486 st->single = false; 487 st->bringup = bringup; 488 if (cpu_dying(cpu) != !bringup) 489 set_cpu_dying(cpu, !bringup); 490 491 return prev_state; 492} 493 494static inline void 495cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st, 496 enum cpuhp_state prev_state) 497{ 498 bool bringup = !st->bringup; 499 500 st->target = prev_state; 501 502 /* 503 * Already rolling back. No need invert the bringup value or to change 504 * the current state. 505 */ 506 if (st->rollback) 507 return; 508 509 st->rollback = true; 510 511 /* 512 * If we have st->last we need to undo partial multi_instance of this 513 * state first. Otherwise start undo at the previous state. 514 */ 515 if (!st->last) { 516 if (st->bringup) 517 st->state--; 518 else 519 st->state++; 520 } 521 522 st->bringup = bringup; 523 if (cpu_dying(cpu) != !bringup) 524 set_cpu_dying(cpu, !bringup); 525} 526 527/* Regular hotplug invocation of the AP hotplug thread */ 528static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 529{ 530 if (!st->single && st->state == st->target) 531 return; 532 533 st->result = 0; 534 /* 535 * Make sure the above stores are visible before should_run becomes 536 * true. Paired with the mb() above in cpuhp_thread_fun() 537 */ 538 smp_mb(); 539 st->should_run = true; 540 wake_up_process(st->thread); 541 wait_for_ap_thread(st, st->bringup); 542} 543 544static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st, 545 enum cpuhp_state target) 546{ 547 enum cpuhp_state prev_state; 548 int ret; 549 550 prev_state = cpuhp_set_state(cpu, st, target); 551 __cpuhp_kick_ap(st); 552 if ((ret = st->result)) { 553 cpuhp_reset_state(cpu, st, prev_state); 554 __cpuhp_kick_ap(st); 555 } 556 557 return ret; 558} 559 560static int bringup_wait_for_ap(unsigned int cpu) 561{ 562 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 563 564 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 565 wait_for_ap_thread(st, true); 566 if (WARN_ON_ONCE((!cpu_online(cpu)))) 567 return -ECANCELED; 568 569 /* Unpark the hotplug thread of the target cpu */ 570 kthread_unpark(st->thread); 571 572 /* 573 * SMT soft disabling on X86 requires to bring the CPU out of the 574 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 575 * CPU marked itself as booted_once in notify_cpu_starting() so the 576 * cpu_smt_allowed() check will now return false if this is not the 577 * primary sibling. 578 */ 579 if (!cpu_smt_allowed(cpu)) 580 return -ECANCELED; 581 582 if (st->target <= CPUHP_AP_ONLINE_IDLE) 583 return 0; 584 585 return cpuhp_kick_ap(cpu, st, st->target); 586} 587 588static int bringup_cpu(unsigned int cpu) 589{ 590 struct task_struct *idle = idle_thread_get(cpu); 591 int ret; 592 593 /* 594 * Reset stale stack state from the last time this CPU was online. 595 */ 596 scs_task_reset(idle); 597 kasan_unpoison_task_stack(idle); 598 599 /* 600 * Some architectures have to walk the irq descriptors to 601 * setup the vector space for the cpu which comes online. 602 * Prevent irq alloc/free across the bringup. 603 */ 604 irq_lock_sparse(); 605 606 /* Arch-specific enabling code. */ 607 ret = __cpu_up(cpu, idle); 608 irq_unlock_sparse(); 609 if (ret) 610 return ret; 611 return bringup_wait_for_ap(cpu); 612} 613 614static int finish_cpu(unsigned int cpu) 615{ 616 struct task_struct *idle = idle_thread_get(cpu); 617 struct mm_struct *mm = idle->active_mm; 618 619 /* 620 * idle_task_exit() will have switched to &init_mm, now 621 * clean up any remaining active_mm state. 622 */ 623 if (mm != &init_mm) 624 idle->active_mm = &init_mm; 625 mmdrop(mm); 626 return 0; 627} 628 629/* 630 * Hotplug state machine related functions 631 */ 632 633/* 634 * Get the next state to run. Empty ones will be skipped. Returns true if a 635 * state must be run. 636 * 637 * st->state will be modified ahead of time, to match state_to_run, as if it 638 * has already ran. 639 */ 640static bool cpuhp_next_state(bool bringup, 641 enum cpuhp_state *state_to_run, 642 struct cpuhp_cpu_state *st, 643 enum cpuhp_state target) 644{ 645 do { 646 if (bringup) { 647 if (st->state >= target) 648 return false; 649 650 *state_to_run = ++st->state; 651 } else { 652 if (st->state <= target) 653 return false; 654 655 *state_to_run = st->state--; 656 } 657 658 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run))) 659 break; 660 } while (true); 661 662 return true; 663} 664 665static int cpuhp_invoke_callback_range(bool bringup, 666 unsigned int cpu, 667 struct cpuhp_cpu_state *st, 668 enum cpuhp_state target) 669{ 670 enum cpuhp_state state; 671 int err = 0; 672 673 while (cpuhp_next_state(bringup, &state, st, target)) { 674 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); 675 if (err) 676 break; 677 } 678 679 return err; 680} 681 682static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 683{ 684 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 685 return true; 686 /* 687 * When CPU hotplug is disabled, then taking the CPU down is not 688 * possible because takedown_cpu() and the architecture and 689 * subsystem specific mechanisms are not available. So the CPU 690 * which would be completely unplugged again needs to stay around 691 * in the current state. 692 */ 693 return st->state <= CPUHP_BRINGUP_CPU; 694} 695 696static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 697 enum cpuhp_state target) 698{ 699 enum cpuhp_state prev_state = st->state; 700 int ret = 0; 701 702 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 703 if (ret) { 704 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n", 705 ret, cpu, cpuhp_get_step(st->state)->name, 706 st->state); 707 708 cpuhp_reset_state(cpu, st, prev_state); 709 if (can_rollback_cpu(st)) 710 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, 711 prev_state)); 712 } 713 return ret; 714} 715 716/* 717 * The cpu hotplug threads manage the bringup and teardown of the cpus 718 */ 719static void cpuhp_create(unsigned int cpu) 720{ 721 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 722 723 init_completion(&st->done_up); 724 init_completion(&st->done_down); 725} 726 727static int cpuhp_should_run(unsigned int cpu) 728{ 729 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 730 731 return st->should_run; 732} 733 734/* 735 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 736 * callbacks when a state gets [un]installed at runtime. 737 * 738 * Each invocation of this function by the smpboot thread does a single AP 739 * state callback. 740 * 741 * It has 3 modes of operation: 742 * - single: runs st->cb_state 743 * - up: runs ++st->state, while st->state < st->target 744 * - down: runs st->state--, while st->state > st->target 745 * 746 * When complete or on error, should_run is cleared and the completion is fired. 747 */ 748static void cpuhp_thread_fun(unsigned int cpu) 749{ 750 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 751 bool bringup = st->bringup; 752 enum cpuhp_state state; 753 754 if (WARN_ON_ONCE(!st->should_run)) 755 return; 756 757 /* 758 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 759 * that if we see ->should_run we also see the rest of the state. 760 */ 761 smp_mb(); 762 763 /* 764 * The BP holds the hotplug lock, but we're now running on the AP, 765 * ensure that anybody asserting the lock is held, will actually find 766 * it so. 767 */ 768 lockdep_acquire_cpus_lock(); 769 cpuhp_lock_acquire(bringup); 770 771 if (st->single) { 772 state = st->cb_state; 773 st->should_run = false; 774 } else { 775 st->should_run = cpuhp_next_state(bringup, &state, st, st->target); 776 if (!st->should_run) 777 goto end; 778 } 779 780 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 781 782 if (cpuhp_is_atomic_state(state)) { 783 local_irq_disable(); 784 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 785 local_irq_enable(); 786 787 /* 788 * STARTING/DYING must not fail! 789 */ 790 WARN_ON_ONCE(st->result); 791 } else { 792 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 793 } 794 795 if (st->result) { 796 /* 797 * If we fail on a rollback, we're up a creek without no 798 * paddle, no way forward, no way back. We loose, thanks for 799 * playing. 800 */ 801 WARN_ON_ONCE(st->rollback); 802 st->should_run = false; 803 } 804 805end: 806 cpuhp_lock_release(bringup); 807 lockdep_release_cpus_lock(); 808 809 if (!st->should_run) 810 complete_ap_thread(st, bringup); 811} 812 813/* Invoke a single callback on a remote cpu */ 814static int 815cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 816 struct hlist_node *node) 817{ 818 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 819 int ret; 820 821 if (!cpu_online(cpu)) 822 return 0; 823 824 cpuhp_lock_acquire(false); 825 cpuhp_lock_release(false); 826 827 cpuhp_lock_acquire(true); 828 cpuhp_lock_release(true); 829 830 /* 831 * If we are up and running, use the hotplug thread. For early calls 832 * we invoke the thread function directly. 833 */ 834 if (!st->thread) 835 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 836 837 st->rollback = false; 838 st->last = NULL; 839 840 st->node = node; 841 st->bringup = bringup; 842 st->cb_state = state; 843 st->single = true; 844 845 __cpuhp_kick_ap(st); 846 847 /* 848 * If we failed and did a partial, do a rollback. 849 */ 850 if ((ret = st->result) && st->last) { 851 st->rollback = true; 852 st->bringup = !bringup; 853 854 __cpuhp_kick_ap(st); 855 } 856 857 /* 858 * Clean up the leftovers so the next hotplug operation wont use stale 859 * data. 860 */ 861 st->node = st->last = NULL; 862 return ret; 863} 864 865static int cpuhp_kick_ap_work(unsigned int cpu) 866{ 867 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 868 enum cpuhp_state prev_state = st->state; 869 int ret; 870 871 cpuhp_lock_acquire(false); 872 cpuhp_lock_release(false); 873 874 cpuhp_lock_acquire(true); 875 cpuhp_lock_release(true); 876 877 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 878 ret = cpuhp_kick_ap(cpu, st, st->target); 879 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 880 881 return ret; 882} 883 884static struct smp_hotplug_thread cpuhp_threads = { 885 .store = &cpuhp_state.thread, 886 .create = &cpuhp_create, 887 .thread_should_run = cpuhp_should_run, 888 .thread_fn = cpuhp_thread_fun, 889 .thread_comm = "cpuhp/%u", 890 .selfparking = true, 891}; 892 893void __init cpuhp_threads_init(void) 894{ 895 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 896 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 897} 898 899/* 900 * 901 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock 902 * protected region. 903 * 904 * The operation is still serialized against concurrent CPU hotplug via 905 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_ 906 * serialized against other hotplug related activity like adding or 907 * removing of state callbacks and state instances, which invoke either the 908 * startup or the teardown callback of the affected state. 909 * 910 * This is required for subsystems which are unfixable vs. CPU hotplug and 911 * evade lock inversion problems by scheduling work which has to be 912 * completed _before_ cpu_up()/_cpu_down() returns. 913 * 914 * Don't even think about adding anything to this for any new code or even 915 * drivers. It's only purpose is to keep existing lock order trainwrecks 916 * working. 917 * 918 * For cpu_down() there might be valid reasons to finish cleanups which are 919 * not required to be done under cpu_hotplug_lock, but that's a different 920 * story and would be not invoked via this. 921 */ 922static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen) 923{ 924 /* 925 * cpusets delegate hotplug operations to a worker to "solve" the 926 * lock order problems. Wait for the worker, but only if tasks are 927 * _not_ frozen (suspend, hibernate) as that would wait forever. 928 * 929 * The wait is required because otherwise the hotplug operation 930 * returns with inconsistent state, which could even be observed in 931 * user space when a new CPU is brought up. The CPU plug uevent 932 * would be delivered and user space reacting on it would fail to 933 * move tasks to the newly plugged CPU up to the point where the 934 * work has finished because up to that point the newly plugged CPU 935 * is not assignable in cpusets/cgroups. On unplug that's not 936 * necessarily a visible issue, but it is still inconsistent state, 937 * which is the real problem which needs to be "fixed". This can't 938 * prevent the transient state between scheduling the work and 939 * returning from waiting for it. 940 */ 941 if (!tasks_frozen) 942 cpuset_wait_for_hotplug(); 943} 944 945#ifdef CONFIG_HOTPLUG_CPU 946#ifndef arch_clear_mm_cpumask_cpu 947#define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) 948#endif 949 950/** 951 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 952 * @cpu: a CPU id 953 * 954 * This function walks all processes, finds a valid mm struct for each one and 955 * then clears a corresponding bit in mm's cpumask. While this all sounds 956 * trivial, there are various non-obvious corner cases, which this function 957 * tries to solve in a safe manner. 958 * 959 * Also note that the function uses a somewhat relaxed locking scheme, so it may 960 * be called only for an already offlined CPU. 961 */ 962void clear_tasks_mm_cpumask(int cpu) 963{ 964 struct task_struct *p; 965 966 /* 967 * This function is called after the cpu is taken down and marked 968 * offline, so its not like new tasks will ever get this cpu set in 969 * their mm mask. -- Peter Zijlstra 970 * Thus, we may use rcu_read_lock() here, instead of grabbing 971 * full-fledged tasklist_lock. 972 */ 973 WARN_ON(cpu_online(cpu)); 974 rcu_read_lock(); 975 for_each_process(p) { 976 struct task_struct *t; 977 978 /* 979 * Main thread might exit, but other threads may still have 980 * a valid mm. Find one. 981 */ 982 t = find_lock_task_mm(p); 983 if (!t) 984 continue; 985 arch_clear_mm_cpumask_cpu(cpu, t->mm); 986 task_unlock(t); 987 } 988 rcu_read_unlock(); 989} 990 991/* Take this CPU down. */ 992static int take_cpu_down(void *_param) 993{ 994 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 995 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 996 int err, cpu = smp_processor_id(); 997 int ret; 998 999 /* Ensure this CPU doesn't handle any more interrupts. */ 1000 err = __cpu_disable(); 1001 if (err < 0) 1002 return err; 1003 1004 /* 1005 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going 1006 * down, that the current state is CPUHP_TEARDOWN_CPU - 1. 1007 */ 1008 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); 1009 1010 /* Invoke the former CPU_DYING callbacks */ 1011 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1012 1013 /* 1014 * DYING must not fail! 1015 */ 1016 WARN_ON_ONCE(ret); 1017 1018 /* Give up timekeeping duties */ 1019 tick_handover_do_timer(); 1020 /* Remove CPU from timer broadcasting */ 1021 tick_offline_cpu(cpu); 1022 /* Park the stopper thread */ 1023 stop_machine_park(cpu); 1024 return 0; 1025} 1026 1027static int takedown_cpu(unsigned int cpu) 1028{ 1029 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1030 int err; 1031 1032 /* Park the smpboot threads */ 1033 kthread_park(st->thread); 1034 1035 /* 1036 * Prevent irq alloc/free while the dying cpu reorganizes the 1037 * interrupt affinities. 1038 */ 1039 irq_lock_sparse(); 1040 1041 /* 1042 * So now all preempt/rcu users must observe !cpu_active(). 1043 */ 1044 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 1045 if (err) { 1046 /* CPU refused to die */ 1047 irq_unlock_sparse(); 1048 /* Unpark the hotplug thread so we can rollback there */ 1049 kthread_unpark(st->thread); 1050 return err; 1051 } 1052 BUG_ON(cpu_online(cpu)); 1053 1054 /* 1055 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 1056 * all runnable tasks from the CPU, there's only the idle task left now 1057 * that the migration thread is done doing the stop_machine thing. 1058 * 1059 * Wait for the stop thread to go away. 1060 */ 1061 wait_for_ap_thread(st, false); 1062 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 1063 1064 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 1065 irq_unlock_sparse(); 1066 1067 hotplug_cpu__broadcast_tick_pull(cpu); 1068 /* This actually kills the CPU. */ 1069 __cpu_die(cpu); 1070 1071 tick_cleanup_dead_cpu(cpu); 1072 rcutree_migrate_callbacks(cpu); 1073 return 0; 1074} 1075 1076static void cpuhp_complete_idle_dead(void *arg) 1077{ 1078 struct cpuhp_cpu_state *st = arg; 1079 1080 complete_ap_thread(st, false); 1081} 1082 1083void cpuhp_report_idle_dead(void) 1084{ 1085 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1086 1087 BUG_ON(st->state != CPUHP_AP_OFFLINE); 1088 rcu_report_dead(smp_processor_id()); 1089 st->state = CPUHP_AP_IDLE_DEAD; 1090 /* 1091 * We cannot call complete after rcu_report_dead() so we delegate it 1092 * to an online cpu. 1093 */ 1094 smp_call_function_single(cpumask_first(cpu_online_mask), 1095 cpuhp_complete_idle_dead, st, 0); 1096} 1097 1098static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1099 enum cpuhp_state target) 1100{ 1101 enum cpuhp_state prev_state = st->state; 1102 int ret = 0; 1103 1104 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1105 if (ret) { 1106 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n", 1107 ret, cpu, cpuhp_get_step(st->state)->name, 1108 st->state); 1109 1110 cpuhp_reset_state(cpu, st, prev_state); 1111 1112 if (st->state < prev_state) 1113 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, 1114 prev_state)); 1115 } 1116 1117 return ret; 1118} 1119 1120/* Requires cpu_add_remove_lock to be held */ 1121static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 1122 enum cpuhp_state target) 1123{ 1124 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1125 int prev_state, ret = 0; 1126 1127 if (num_online_cpus() == 1) 1128 return -EBUSY; 1129 1130 if (!cpu_present(cpu)) 1131 return -EINVAL; 1132 1133 cpus_write_lock(); 1134 1135 cpuhp_tasks_frozen = tasks_frozen; 1136 1137 prev_state = cpuhp_set_state(cpu, st, target); 1138 /* 1139 * If the current CPU state is in the range of the AP hotplug thread, 1140 * then we need to kick the thread. 1141 */ 1142 if (st->state > CPUHP_TEARDOWN_CPU) { 1143 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1144 ret = cpuhp_kick_ap_work(cpu); 1145 /* 1146 * The AP side has done the error rollback already. Just 1147 * return the error code.. 1148 */ 1149 if (ret) 1150 goto out; 1151 1152 /* 1153 * We might have stopped still in the range of the AP hotplug 1154 * thread. Nothing to do anymore. 1155 */ 1156 if (st->state > CPUHP_TEARDOWN_CPU) 1157 goto out; 1158 1159 st->target = target; 1160 } 1161 /* 1162 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1163 * to do the further cleanups. 1164 */ 1165 ret = cpuhp_down_callbacks(cpu, st, target); 1166 if (ret && st->state < prev_state) { 1167 if (st->state == CPUHP_TEARDOWN_CPU) { 1168 cpuhp_reset_state(cpu, st, prev_state); 1169 __cpuhp_kick_ap(st); 1170 } else { 1171 WARN(1, "DEAD callback error for CPU%d", cpu); 1172 } 1173 } 1174 1175out: 1176 cpus_write_unlock(); 1177 /* 1178 * Do post unplug cleanup. This is still protected against 1179 * concurrent CPU hotplug via cpu_add_remove_lock. 1180 */ 1181 lockup_detector_cleanup(); 1182 arch_smt_update(); 1183 cpu_up_down_serialize_trainwrecks(tasks_frozen); 1184 return ret; 1185} 1186 1187static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1188{ 1189 if (cpu_hotplug_disabled) 1190 return -EBUSY; 1191 return _cpu_down(cpu, 0, target); 1192} 1193 1194static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1195{ 1196 int err; 1197 1198 cpu_maps_update_begin(); 1199 err = cpu_down_maps_locked(cpu, target); 1200 cpu_maps_update_done(); 1201 return err; 1202} 1203 1204/** 1205 * cpu_device_down - Bring down a cpu device 1206 * @dev: Pointer to the cpu device to offline 1207 * 1208 * This function is meant to be used by device core cpu subsystem only. 1209 * 1210 * Other subsystems should use remove_cpu() instead. 1211 * 1212 * Return: %0 on success or a negative errno code 1213 */ 1214int cpu_device_down(struct device *dev) 1215{ 1216 return cpu_down(dev->id, CPUHP_OFFLINE); 1217} 1218 1219int remove_cpu(unsigned int cpu) 1220{ 1221 int ret; 1222 1223 lock_device_hotplug(); 1224 ret = device_offline(get_cpu_device(cpu)); 1225 unlock_device_hotplug(); 1226 1227 return ret; 1228} 1229EXPORT_SYMBOL_GPL(remove_cpu); 1230 1231void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1232{ 1233 unsigned int cpu; 1234 int error; 1235 1236 cpu_maps_update_begin(); 1237 1238 /* 1239 * Make certain the cpu I'm about to reboot on is online. 1240 * 1241 * This is inline to what migrate_to_reboot_cpu() already do. 1242 */ 1243 if (!cpu_online(primary_cpu)) 1244 primary_cpu = cpumask_first(cpu_online_mask); 1245 1246 for_each_online_cpu(cpu) { 1247 if (cpu == primary_cpu) 1248 continue; 1249 1250 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1251 if (error) { 1252 pr_err("Failed to offline CPU%d - error=%d", 1253 cpu, error); 1254 break; 1255 } 1256 } 1257 1258 /* 1259 * Ensure all but the reboot CPU are offline. 1260 */ 1261 BUG_ON(num_online_cpus() > 1); 1262 1263 /* 1264 * Make sure the CPUs won't be enabled by someone else after this 1265 * point. Kexec will reboot to a new kernel shortly resetting 1266 * everything along the way. 1267 */ 1268 cpu_hotplug_disabled++; 1269 1270 cpu_maps_update_done(); 1271} 1272 1273#else 1274#define takedown_cpu NULL 1275#endif /*CONFIG_HOTPLUG_CPU*/ 1276 1277/** 1278 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1279 * @cpu: cpu that just started 1280 * 1281 * It must be called by the arch code on the new cpu, before the new cpu 1282 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1283 */ 1284void notify_cpu_starting(unsigned int cpu) 1285{ 1286 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1287 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1288 int ret; 1289 1290 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1291 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1292 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 1293 1294 /* 1295 * STARTING must not fail! 1296 */ 1297 WARN_ON_ONCE(ret); 1298} 1299 1300/* 1301 * Called from the idle task. Wake up the controlling task which brings the 1302 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1303 * online bringup to the hotplug thread. 1304 */ 1305void cpuhp_online_idle(enum cpuhp_state state) 1306{ 1307 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1308 1309 /* Happens for the boot cpu */ 1310 if (state != CPUHP_AP_ONLINE_IDLE) 1311 return; 1312 1313 /* 1314 * Unpart the stopper thread before we start the idle loop (and start 1315 * scheduling); this ensures the stopper task is always available. 1316 */ 1317 stop_machine_unpark(smp_processor_id()); 1318 1319 st->state = CPUHP_AP_ONLINE_IDLE; 1320 complete_ap_thread(st, true); 1321} 1322 1323/* Requires cpu_add_remove_lock to be held */ 1324static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1325{ 1326 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1327 struct task_struct *idle; 1328 int ret = 0; 1329 1330 cpus_write_lock(); 1331 1332 if (!cpu_present(cpu)) { 1333 ret = -EINVAL; 1334 goto out; 1335 } 1336 1337 /* 1338 * The caller of cpu_up() might have raced with another 1339 * caller. Nothing to do. 1340 */ 1341 if (st->state >= target) 1342 goto out; 1343 1344 if (st->state == CPUHP_OFFLINE) { 1345 /* Let it fail before we try to bring the cpu up */ 1346 idle = idle_thread_get(cpu); 1347 if (IS_ERR(idle)) { 1348 ret = PTR_ERR(idle); 1349 goto out; 1350 } 1351 } 1352 1353 cpuhp_tasks_frozen = tasks_frozen; 1354 1355 cpuhp_set_state(cpu, st, target); 1356 /* 1357 * If the current CPU state is in the range of the AP hotplug thread, 1358 * then we need to kick the thread once more. 1359 */ 1360 if (st->state > CPUHP_BRINGUP_CPU) { 1361 ret = cpuhp_kick_ap_work(cpu); 1362 /* 1363 * The AP side has done the error rollback already. Just 1364 * return the error code.. 1365 */ 1366 if (ret) 1367 goto out; 1368 } 1369 1370 /* 1371 * Try to reach the target state. We max out on the BP at 1372 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1373 * responsible for bringing it up to the target state. 1374 */ 1375 target = min((int)target, CPUHP_BRINGUP_CPU); 1376 ret = cpuhp_up_callbacks(cpu, st, target); 1377out: 1378 cpus_write_unlock(); 1379 arch_smt_update(); 1380 cpu_up_down_serialize_trainwrecks(tasks_frozen); 1381 return ret; 1382} 1383 1384static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1385{ 1386 int err = 0; 1387 1388 if (!cpu_possible(cpu)) { 1389 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1390 cpu); 1391#if defined(CONFIG_IA64) 1392 pr_err("please check additional_cpus= boot parameter\n"); 1393#endif 1394 return -EINVAL; 1395 } 1396 1397 err = try_online_node(cpu_to_node(cpu)); 1398 if (err) 1399 return err; 1400 1401 cpu_maps_update_begin(); 1402 1403 if (cpu_hotplug_disabled) { 1404 err = -EBUSY; 1405 goto out; 1406 } 1407 if (!cpu_smt_allowed(cpu)) { 1408 err = -EPERM; 1409 goto out; 1410 } 1411 1412 err = _cpu_up(cpu, 0, target); 1413out: 1414 cpu_maps_update_done(); 1415 return err; 1416} 1417 1418/** 1419 * cpu_device_up - Bring up a cpu device 1420 * @dev: Pointer to the cpu device to online 1421 * 1422 * This function is meant to be used by device core cpu subsystem only. 1423 * 1424 * Other subsystems should use add_cpu() instead. 1425 * 1426 * Return: %0 on success or a negative errno code 1427 */ 1428int cpu_device_up(struct device *dev) 1429{ 1430 return cpu_up(dev->id, CPUHP_ONLINE); 1431} 1432 1433int add_cpu(unsigned int cpu) 1434{ 1435 int ret; 1436 1437 lock_device_hotplug(); 1438 ret = device_online(get_cpu_device(cpu)); 1439 unlock_device_hotplug(); 1440 1441 return ret; 1442} 1443EXPORT_SYMBOL_GPL(add_cpu); 1444 1445/** 1446 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1447 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1448 * 1449 * On some architectures like arm64, we can hibernate on any CPU, but on 1450 * wake up the CPU we hibernated on might be offline as a side effect of 1451 * using maxcpus= for example. 1452 * 1453 * Return: %0 on success or a negative errno code 1454 */ 1455int bringup_hibernate_cpu(unsigned int sleep_cpu) 1456{ 1457 int ret; 1458 1459 if (!cpu_online(sleep_cpu)) { 1460 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1461 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1462 if (ret) { 1463 pr_err("Failed to bring hibernate-CPU up!\n"); 1464 return ret; 1465 } 1466 } 1467 return 0; 1468} 1469 1470void bringup_nonboot_cpus(unsigned int setup_max_cpus) 1471{ 1472 unsigned int cpu; 1473 1474 for_each_present_cpu(cpu) { 1475 if (num_online_cpus() >= setup_max_cpus) 1476 break; 1477 if (!cpu_online(cpu)) 1478 cpu_up(cpu, CPUHP_ONLINE); 1479 } 1480} 1481 1482#ifdef CONFIG_PM_SLEEP_SMP 1483static cpumask_var_t frozen_cpus; 1484 1485int freeze_secondary_cpus(int primary) 1486{ 1487 int cpu, error = 0; 1488 1489 cpu_maps_update_begin(); 1490 if (primary == -1) { 1491 primary = cpumask_first(cpu_online_mask); 1492 if (!housekeeping_cpu(primary, HK_TYPE_TIMER)) 1493 primary = housekeeping_any_cpu(HK_TYPE_TIMER); 1494 } else { 1495 if (!cpu_online(primary)) 1496 primary = cpumask_first(cpu_online_mask); 1497 } 1498 1499 /* 1500 * We take down all of the non-boot CPUs in one shot to avoid races 1501 * with the userspace trying to use the CPU hotplug at the same time 1502 */ 1503 cpumask_clear(frozen_cpus); 1504 1505 pr_info("Disabling non-boot CPUs ...\n"); 1506 for_each_online_cpu(cpu) { 1507 if (cpu == primary) 1508 continue; 1509 1510 if (pm_wakeup_pending()) { 1511 pr_info("Wakeup pending. Abort CPU freeze\n"); 1512 error = -EBUSY; 1513 break; 1514 } 1515 1516 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1517 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1518 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1519 if (!error) 1520 cpumask_set_cpu(cpu, frozen_cpus); 1521 else { 1522 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1523 break; 1524 } 1525 } 1526 1527 if (!error) 1528 BUG_ON(num_online_cpus() > 1); 1529 else 1530 pr_err("Non-boot CPUs are not disabled\n"); 1531 1532 /* 1533 * Make sure the CPUs won't be enabled by someone else. We need to do 1534 * this even in case of failure as all freeze_secondary_cpus() users are 1535 * supposed to do thaw_secondary_cpus() on the failure path. 1536 */ 1537 cpu_hotplug_disabled++; 1538 1539 cpu_maps_update_done(); 1540 return error; 1541} 1542 1543void __weak arch_thaw_secondary_cpus_begin(void) 1544{ 1545} 1546 1547void __weak arch_thaw_secondary_cpus_end(void) 1548{ 1549} 1550 1551void thaw_secondary_cpus(void) 1552{ 1553 int cpu, error; 1554 1555 /* Allow everyone to use the CPU hotplug again */ 1556 cpu_maps_update_begin(); 1557 __cpu_hotplug_enable(); 1558 if (cpumask_empty(frozen_cpus)) 1559 goto out; 1560 1561 pr_info("Enabling non-boot CPUs ...\n"); 1562 1563 arch_thaw_secondary_cpus_begin(); 1564 1565 for_each_cpu(cpu, frozen_cpus) { 1566 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1567 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1568 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1569 if (!error) { 1570 pr_info("CPU%d is up\n", cpu); 1571 continue; 1572 } 1573 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1574 } 1575 1576 arch_thaw_secondary_cpus_end(); 1577 1578 cpumask_clear(frozen_cpus); 1579out: 1580 cpu_maps_update_done(); 1581} 1582 1583static int __init alloc_frozen_cpus(void) 1584{ 1585 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1586 return -ENOMEM; 1587 return 0; 1588} 1589core_initcall(alloc_frozen_cpus); 1590 1591/* 1592 * When callbacks for CPU hotplug notifications are being executed, we must 1593 * ensure that the state of the system with respect to the tasks being frozen 1594 * or not, as reported by the notification, remains unchanged *throughout the 1595 * duration* of the execution of the callbacks. 1596 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1597 * 1598 * This synchronization is implemented by mutually excluding regular CPU 1599 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1600 * Hibernate notifications. 1601 */ 1602static int 1603cpu_hotplug_pm_callback(struct notifier_block *nb, 1604 unsigned long action, void *ptr) 1605{ 1606 switch (action) { 1607 1608 case PM_SUSPEND_PREPARE: 1609 case PM_HIBERNATION_PREPARE: 1610 cpu_hotplug_disable(); 1611 break; 1612 1613 case PM_POST_SUSPEND: 1614 case PM_POST_HIBERNATION: 1615 cpu_hotplug_enable(); 1616 break; 1617 1618 default: 1619 return NOTIFY_DONE; 1620 } 1621 1622 return NOTIFY_OK; 1623} 1624 1625 1626static int __init cpu_hotplug_pm_sync_init(void) 1627{ 1628 /* 1629 * cpu_hotplug_pm_callback has higher priority than x86 1630 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1631 * to disable cpu hotplug to avoid cpu hotplug race. 1632 */ 1633 pm_notifier(cpu_hotplug_pm_callback, 0); 1634 return 0; 1635} 1636core_initcall(cpu_hotplug_pm_sync_init); 1637 1638#endif /* CONFIG_PM_SLEEP_SMP */ 1639 1640int __boot_cpu_id; 1641 1642#endif /* CONFIG_SMP */ 1643 1644/* Boot processor state steps */ 1645static struct cpuhp_step cpuhp_hp_states[] = { 1646 [CPUHP_OFFLINE] = { 1647 .name = "offline", 1648 .startup.single = NULL, 1649 .teardown.single = NULL, 1650 }, 1651#ifdef CONFIG_SMP 1652 [CPUHP_CREATE_THREADS]= { 1653 .name = "threads:prepare", 1654 .startup.single = smpboot_create_threads, 1655 .teardown.single = NULL, 1656 .cant_stop = true, 1657 }, 1658 [CPUHP_PERF_PREPARE] = { 1659 .name = "perf:prepare", 1660 .startup.single = perf_event_init_cpu, 1661 .teardown.single = perf_event_exit_cpu, 1662 }, 1663 [CPUHP_RANDOM_PREPARE] = { 1664 .name = "random:prepare", 1665 .startup.single = random_prepare_cpu, 1666 .teardown.single = NULL, 1667 }, 1668 [CPUHP_WORKQUEUE_PREP] = { 1669 .name = "workqueue:prepare", 1670 .startup.single = workqueue_prepare_cpu, 1671 .teardown.single = NULL, 1672 }, 1673 [CPUHP_HRTIMERS_PREPARE] = { 1674 .name = "hrtimers:prepare", 1675 .startup.single = hrtimers_prepare_cpu, 1676 .teardown.single = hrtimers_dead_cpu, 1677 }, 1678 [CPUHP_SMPCFD_PREPARE] = { 1679 .name = "smpcfd:prepare", 1680 .startup.single = smpcfd_prepare_cpu, 1681 .teardown.single = smpcfd_dead_cpu, 1682 }, 1683 [CPUHP_RELAY_PREPARE] = { 1684 .name = "relay:prepare", 1685 .startup.single = relay_prepare_cpu, 1686 .teardown.single = NULL, 1687 }, 1688 [CPUHP_SLAB_PREPARE] = { 1689 .name = "slab:prepare", 1690 .startup.single = slab_prepare_cpu, 1691 .teardown.single = slab_dead_cpu, 1692 }, 1693 [CPUHP_RCUTREE_PREP] = { 1694 .name = "RCU/tree:prepare", 1695 .startup.single = rcutree_prepare_cpu, 1696 .teardown.single = rcutree_dead_cpu, 1697 }, 1698 /* 1699 * On the tear-down path, timers_dead_cpu() must be invoked 1700 * before blk_mq_queue_reinit_notify() from notify_dead(), 1701 * otherwise a RCU stall occurs. 1702 */ 1703 [CPUHP_TIMERS_PREPARE] = { 1704 .name = "timers:prepare", 1705 .startup.single = timers_prepare_cpu, 1706 .teardown.single = timers_dead_cpu, 1707 }, 1708 /* Kicks the plugged cpu into life */ 1709 [CPUHP_BRINGUP_CPU] = { 1710 .name = "cpu:bringup", 1711 .startup.single = bringup_cpu, 1712 .teardown.single = finish_cpu, 1713 .cant_stop = true, 1714 }, 1715 /* Final state before CPU kills itself */ 1716 [CPUHP_AP_IDLE_DEAD] = { 1717 .name = "idle:dead", 1718 }, 1719 /* 1720 * Last state before CPU enters the idle loop to die. Transient state 1721 * for synchronization. 1722 */ 1723 [CPUHP_AP_OFFLINE] = { 1724 .name = "ap:offline", 1725 .cant_stop = true, 1726 }, 1727 /* First state is scheduler control. Interrupts are disabled */ 1728 [CPUHP_AP_SCHED_STARTING] = { 1729 .name = "sched:starting", 1730 .startup.single = sched_cpu_starting, 1731 .teardown.single = sched_cpu_dying, 1732 }, 1733 [CPUHP_AP_RCUTREE_DYING] = { 1734 .name = "RCU/tree:dying", 1735 .startup.single = NULL, 1736 .teardown.single = rcutree_dying_cpu, 1737 }, 1738 [CPUHP_AP_SMPCFD_DYING] = { 1739 .name = "smpcfd:dying", 1740 .startup.single = NULL, 1741 .teardown.single = smpcfd_dying_cpu, 1742 }, 1743 /* Entry state on starting. Interrupts enabled from here on. Transient 1744 * state for synchronsization */ 1745 [CPUHP_AP_ONLINE] = { 1746 .name = "ap:online", 1747 }, 1748 /* 1749 * Handled on control processor until the plugged processor manages 1750 * this itself. 1751 */ 1752 [CPUHP_TEARDOWN_CPU] = { 1753 .name = "cpu:teardown", 1754 .startup.single = NULL, 1755 .teardown.single = takedown_cpu, 1756 .cant_stop = true, 1757 }, 1758 1759 [CPUHP_AP_SCHED_WAIT_EMPTY] = { 1760 .name = "sched:waitempty", 1761 .startup.single = NULL, 1762 .teardown.single = sched_cpu_wait_empty, 1763 }, 1764 1765 /* Handle smpboot threads park/unpark */ 1766 [CPUHP_AP_SMPBOOT_THREADS] = { 1767 .name = "smpboot/threads:online", 1768 .startup.single = smpboot_unpark_threads, 1769 .teardown.single = smpboot_park_threads, 1770 }, 1771 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1772 .name = "irq/affinity:online", 1773 .startup.single = irq_affinity_online_cpu, 1774 .teardown.single = NULL, 1775 }, 1776 [CPUHP_AP_PERF_ONLINE] = { 1777 .name = "perf:online", 1778 .startup.single = perf_event_init_cpu, 1779 .teardown.single = perf_event_exit_cpu, 1780 }, 1781 [CPUHP_AP_WATCHDOG_ONLINE] = { 1782 .name = "lockup_detector:online", 1783 .startup.single = lockup_detector_online_cpu, 1784 .teardown.single = lockup_detector_offline_cpu, 1785 }, 1786 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1787 .name = "workqueue:online", 1788 .startup.single = workqueue_online_cpu, 1789 .teardown.single = workqueue_offline_cpu, 1790 }, 1791 [CPUHP_AP_RANDOM_ONLINE] = { 1792 .name = "random:online", 1793 .startup.single = random_online_cpu, 1794 .teardown.single = NULL, 1795 }, 1796 [CPUHP_AP_RCUTREE_ONLINE] = { 1797 .name = "RCU/tree:online", 1798 .startup.single = rcutree_online_cpu, 1799 .teardown.single = rcutree_offline_cpu, 1800 }, 1801#endif 1802 /* 1803 * The dynamically registered state space is here 1804 */ 1805 1806#ifdef CONFIG_SMP 1807 /* Last state is scheduler control setting the cpu active */ 1808 [CPUHP_AP_ACTIVE] = { 1809 .name = "sched:active", 1810 .startup.single = sched_cpu_activate, 1811 .teardown.single = sched_cpu_deactivate, 1812 }, 1813#endif 1814 1815 /* CPU is fully up and running. */ 1816 [CPUHP_ONLINE] = { 1817 .name = "online", 1818 .startup.single = NULL, 1819 .teardown.single = NULL, 1820 }, 1821}; 1822 1823/* Sanity check for callbacks */ 1824static int cpuhp_cb_check(enum cpuhp_state state) 1825{ 1826 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1827 return -EINVAL; 1828 return 0; 1829} 1830 1831/* 1832 * Returns a free for dynamic slot assignment of the Online state. The states 1833 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1834 * by having no name assigned. 1835 */ 1836static int cpuhp_reserve_state(enum cpuhp_state state) 1837{ 1838 enum cpuhp_state i, end; 1839 struct cpuhp_step *step; 1840 1841 switch (state) { 1842 case CPUHP_AP_ONLINE_DYN: 1843 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 1844 end = CPUHP_AP_ONLINE_DYN_END; 1845 break; 1846 case CPUHP_BP_PREPARE_DYN: 1847 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 1848 end = CPUHP_BP_PREPARE_DYN_END; 1849 break; 1850 default: 1851 return -EINVAL; 1852 } 1853 1854 for (i = state; i <= end; i++, step++) { 1855 if (!step->name) 1856 return i; 1857 } 1858 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1859 return -ENOSPC; 1860} 1861 1862static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1863 int (*startup)(unsigned int cpu), 1864 int (*teardown)(unsigned int cpu), 1865 bool multi_instance) 1866{ 1867 /* (Un)Install the callbacks for further cpu hotplug operations */ 1868 struct cpuhp_step *sp; 1869 int ret = 0; 1870 1871 /* 1872 * If name is NULL, then the state gets removed. 1873 * 1874 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 1875 * the first allocation from these dynamic ranges, so the removal 1876 * would trigger a new allocation and clear the wrong (already 1877 * empty) state, leaving the callbacks of the to be cleared state 1878 * dangling, which causes wreckage on the next hotplug operation. 1879 */ 1880 if (name && (state == CPUHP_AP_ONLINE_DYN || 1881 state == CPUHP_BP_PREPARE_DYN)) { 1882 ret = cpuhp_reserve_state(state); 1883 if (ret < 0) 1884 return ret; 1885 state = ret; 1886 } 1887 sp = cpuhp_get_step(state); 1888 if (name && sp->name) 1889 return -EBUSY; 1890 1891 sp->startup.single = startup; 1892 sp->teardown.single = teardown; 1893 sp->name = name; 1894 sp->multi_instance = multi_instance; 1895 INIT_HLIST_HEAD(&sp->list); 1896 return ret; 1897} 1898 1899static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1900{ 1901 return cpuhp_get_step(state)->teardown.single; 1902} 1903 1904/* 1905 * Call the startup/teardown function for a step either on the AP or 1906 * on the current CPU. 1907 */ 1908static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1909 struct hlist_node *node) 1910{ 1911 struct cpuhp_step *sp = cpuhp_get_step(state); 1912 int ret; 1913 1914 /* 1915 * If there's nothing to do, we done. 1916 * Relies on the union for multi_instance. 1917 */ 1918 if (cpuhp_step_empty(bringup, sp)) 1919 return 0; 1920 /* 1921 * The non AP bound callbacks can fail on bringup. On teardown 1922 * e.g. module removal we crash for now. 1923 */ 1924#ifdef CONFIG_SMP 1925 if (cpuhp_is_ap_state(state)) 1926 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1927 else 1928 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1929#else 1930 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1931#endif 1932 BUG_ON(ret && !bringup); 1933 return ret; 1934} 1935 1936/* 1937 * Called from __cpuhp_setup_state on a recoverable failure. 1938 * 1939 * Note: The teardown callbacks for rollback are not allowed to fail! 1940 */ 1941static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1942 struct hlist_node *node) 1943{ 1944 int cpu; 1945 1946 /* Roll back the already executed steps on the other cpus */ 1947 for_each_present_cpu(cpu) { 1948 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1949 int cpustate = st->state; 1950 1951 if (cpu >= failedcpu) 1952 break; 1953 1954 /* Did we invoke the startup call on that cpu ? */ 1955 if (cpustate >= state) 1956 cpuhp_issue_call(cpu, state, false, node); 1957 } 1958} 1959 1960int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 1961 struct hlist_node *node, 1962 bool invoke) 1963{ 1964 struct cpuhp_step *sp; 1965 int cpu; 1966 int ret; 1967 1968 lockdep_assert_cpus_held(); 1969 1970 sp = cpuhp_get_step(state); 1971 if (sp->multi_instance == false) 1972 return -EINVAL; 1973 1974 mutex_lock(&cpuhp_state_mutex); 1975 1976 if (!invoke || !sp->startup.multi) 1977 goto add_node; 1978 1979 /* 1980 * Try to call the startup callback for each present cpu 1981 * depending on the hotplug state of the cpu. 1982 */ 1983 for_each_present_cpu(cpu) { 1984 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1985 int cpustate = st->state; 1986 1987 if (cpustate < state) 1988 continue; 1989 1990 ret = cpuhp_issue_call(cpu, state, true, node); 1991 if (ret) { 1992 if (sp->teardown.multi) 1993 cpuhp_rollback_install(cpu, state, node); 1994 goto unlock; 1995 } 1996 } 1997add_node: 1998 ret = 0; 1999 hlist_add_head(node, &sp->list); 2000unlock: 2001 mutex_unlock(&cpuhp_state_mutex); 2002 return ret; 2003} 2004 2005int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 2006 bool invoke) 2007{ 2008 int ret; 2009 2010 cpus_read_lock(); 2011 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 2012 cpus_read_unlock(); 2013 return ret; 2014} 2015EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 2016 2017/** 2018 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 2019 * @state: The state to setup 2020 * @name: Name of the step 2021 * @invoke: If true, the startup function is invoked for cpus where 2022 * cpu state >= @state 2023 * @startup: startup callback function 2024 * @teardown: teardown callback function 2025 * @multi_instance: State is set up for multiple instances which get 2026 * added afterwards. 2027 * 2028 * The caller needs to hold cpus read locked while calling this function. 2029 * Return: 2030 * On success: 2031 * Positive state number if @state is CPUHP_AP_ONLINE_DYN; 2032 * 0 for all other states 2033 * On failure: proper (negative) error code 2034 */ 2035int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 2036 const char *name, bool invoke, 2037 int (*startup)(unsigned int cpu), 2038 int (*teardown)(unsigned int cpu), 2039 bool multi_instance) 2040{ 2041 int cpu, ret = 0; 2042 bool dynstate; 2043 2044 lockdep_assert_cpus_held(); 2045 2046 if (cpuhp_cb_check(state) || !name) 2047 return -EINVAL; 2048 2049 mutex_lock(&cpuhp_state_mutex); 2050 2051 ret = cpuhp_store_callbacks(state, name, startup, teardown, 2052 multi_instance); 2053 2054 dynstate = state == CPUHP_AP_ONLINE_DYN; 2055 if (ret > 0 && dynstate) { 2056 state = ret; 2057 ret = 0; 2058 } 2059 2060 if (ret || !invoke || !startup) 2061 goto out; 2062 2063 /* 2064 * Try to call the startup callback for each present cpu 2065 * depending on the hotplug state of the cpu. 2066 */ 2067 for_each_present_cpu(cpu) { 2068 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2069 int cpustate = st->state; 2070 2071 if (cpustate < state) 2072 continue; 2073 2074 ret = cpuhp_issue_call(cpu, state, true, NULL); 2075 if (ret) { 2076 if (teardown) 2077 cpuhp_rollback_install(cpu, state, NULL); 2078 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2079 goto out; 2080 } 2081 } 2082out: 2083 mutex_unlock(&cpuhp_state_mutex); 2084 /* 2085 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 2086 * dynamically allocated state in case of success. 2087 */ 2088 if (!ret && dynstate) 2089 return state; 2090 return ret; 2091} 2092EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 2093 2094int __cpuhp_setup_state(enum cpuhp_state state, 2095 const char *name, bool invoke, 2096 int (*startup)(unsigned int cpu), 2097 int (*teardown)(unsigned int cpu), 2098 bool multi_instance) 2099{ 2100 int ret; 2101 2102 cpus_read_lock(); 2103 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 2104 teardown, multi_instance); 2105 cpus_read_unlock(); 2106 return ret; 2107} 2108EXPORT_SYMBOL(__cpuhp_setup_state); 2109 2110int __cpuhp_state_remove_instance(enum cpuhp_state state, 2111 struct hlist_node *node, bool invoke) 2112{ 2113 struct cpuhp_step *sp = cpuhp_get_step(state); 2114 int cpu; 2115 2116 BUG_ON(cpuhp_cb_check(state)); 2117 2118 if (!sp->multi_instance) 2119 return -EINVAL; 2120 2121 cpus_read_lock(); 2122 mutex_lock(&cpuhp_state_mutex); 2123 2124 if (!invoke || !cpuhp_get_teardown_cb(state)) 2125 goto remove; 2126 /* 2127 * Call the teardown callback for each present cpu depending 2128 * on the hotplug state of the cpu. This function is not 2129 * allowed to fail currently! 2130 */ 2131 for_each_present_cpu(cpu) { 2132 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2133 int cpustate = st->state; 2134 2135 if (cpustate >= state) 2136 cpuhp_issue_call(cpu, state, false, node); 2137 } 2138 2139remove: 2140 hlist_del(node); 2141 mutex_unlock(&cpuhp_state_mutex); 2142 cpus_read_unlock(); 2143 2144 return 0; 2145} 2146EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 2147 2148/** 2149 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 2150 * @state: The state to remove 2151 * @invoke: If true, the teardown function is invoked for cpus where 2152 * cpu state >= @state 2153 * 2154 * The caller needs to hold cpus read locked while calling this function. 2155 * The teardown callback is currently not allowed to fail. Think 2156 * about module removal! 2157 */ 2158void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2159{ 2160 struct cpuhp_step *sp = cpuhp_get_step(state); 2161 int cpu; 2162 2163 BUG_ON(cpuhp_cb_check(state)); 2164 2165 lockdep_assert_cpus_held(); 2166 2167 mutex_lock(&cpuhp_state_mutex); 2168 if (sp->multi_instance) { 2169 WARN(!hlist_empty(&sp->list), 2170 "Error: Removing state %d which has instances left.\n", 2171 state); 2172 goto remove; 2173 } 2174 2175 if (!invoke || !cpuhp_get_teardown_cb(state)) 2176 goto remove; 2177 2178 /* 2179 * Call the teardown callback for each present cpu depending 2180 * on the hotplug state of the cpu. This function is not 2181 * allowed to fail currently! 2182 */ 2183 for_each_present_cpu(cpu) { 2184 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2185 int cpustate = st->state; 2186 2187 if (cpustate >= state) 2188 cpuhp_issue_call(cpu, state, false, NULL); 2189 } 2190remove: 2191 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2192 mutex_unlock(&cpuhp_state_mutex); 2193} 2194EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2195 2196void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2197{ 2198 cpus_read_lock(); 2199 __cpuhp_remove_state_cpuslocked(state, invoke); 2200 cpus_read_unlock(); 2201} 2202EXPORT_SYMBOL(__cpuhp_remove_state); 2203 2204#ifdef CONFIG_HOTPLUG_SMT 2205static void cpuhp_offline_cpu_device(unsigned int cpu) 2206{ 2207 struct device *dev = get_cpu_device(cpu); 2208 2209 dev->offline = true; 2210 /* Tell user space about the state change */ 2211 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2212} 2213 2214static void cpuhp_online_cpu_device(unsigned int cpu) 2215{ 2216 struct device *dev = get_cpu_device(cpu); 2217 2218 dev->offline = false; 2219 /* Tell user space about the state change */ 2220 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2221} 2222 2223int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2224{ 2225 int cpu, ret = 0; 2226 2227 cpu_maps_update_begin(); 2228 for_each_online_cpu(cpu) { 2229 if (topology_is_primary_thread(cpu)) 2230 continue; 2231 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2232 if (ret) 2233 break; 2234 /* 2235 * As this needs to hold the cpu maps lock it's impossible 2236 * to call device_offline() because that ends up calling 2237 * cpu_down() which takes cpu maps lock. cpu maps lock 2238 * needs to be held as this might race against in kernel 2239 * abusers of the hotplug machinery (thermal management). 2240 * 2241 * So nothing would update device:offline state. That would 2242 * leave the sysfs entry stale and prevent onlining after 2243 * smt control has been changed to 'off' again. This is 2244 * called under the sysfs hotplug lock, so it is properly 2245 * serialized against the regular offline usage. 2246 */ 2247 cpuhp_offline_cpu_device(cpu); 2248 } 2249 if (!ret) 2250 cpu_smt_control = ctrlval; 2251 cpu_maps_update_done(); 2252 return ret; 2253} 2254 2255int cpuhp_smt_enable(void) 2256{ 2257 int cpu, ret = 0; 2258 2259 cpu_maps_update_begin(); 2260 cpu_smt_control = CPU_SMT_ENABLED; 2261 for_each_present_cpu(cpu) { 2262 /* Skip online CPUs and CPUs on offline nodes */ 2263 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2264 continue; 2265 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2266 if (ret) 2267 break; 2268 /* See comment in cpuhp_smt_disable() */ 2269 cpuhp_online_cpu_device(cpu); 2270 } 2271 cpu_maps_update_done(); 2272 return ret; 2273} 2274#endif 2275 2276#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2277static ssize_t state_show(struct device *dev, 2278 struct device_attribute *attr, char *buf) 2279{ 2280 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2281 2282 return sprintf(buf, "%d\n", st->state); 2283} 2284static DEVICE_ATTR_RO(state); 2285 2286static ssize_t target_store(struct device *dev, struct device_attribute *attr, 2287 const char *buf, size_t count) 2288{ 2289 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2290 struct cpuhp_step *sp; 2291 int target, ret; 2292 2293 ret = kstrtoint(buf, 10, &target); 2294 if (ret) 2295 return ret; 2296 2297#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2298 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2299 return -EINVAL; 2300#else 2301 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2302 return -EINVAL; 2303#endif 2304 2305 ret = lock_device_hotplug_sysfs(); 2306 if (ret) 2307 return ret; 2308 2309 mutex_lock(&cpuhp_state_mutex); 2310 sp = cpuhp_get_step(target); 2311 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2312 mutex_unlock(&cpuhp_state_mutex); 2313 if (ret) 2314 goto out; 2315 2316 if (st->state < target) 2317 ret = cpu_up(dev->id, target); 2318 else 2319 ret = cpu_down(dev->id, target); 2320out: 2321 unlock_device_hotplug(); 2322 return ret ? ret : count; 2323} 2324 2325static ssize_t target_show(struct device *dev, 2326 struct device_attribute *attr, char *buf) 2327{ 2328 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2329 2330 return sprintf(buf, "%d\n", st->target); 2331} 2332static DEVICE_ATTR_RW(target); 2333 2334static ssize_t fail_store(struct device *dev, struct device_attribute *attr, 2335 const char *buf, size_t count) 2336{ 2337 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2338 struct cpuhp_step *sp; 2339 int fail, ret; 2340 2341 ret = kstrtoint(buf, 10, &fail); 2342 if (ret) 2343 return ret; 2344 2345 if (fail == CPUHP_INVALID) { 2346 st->fail = fail; 2347 return count; 2348 } 2349 2350 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2351 return -EINVAL; 2352 2353 /* 2354 * Cannot fail STARTING/DYING callbacks. 2355 */ 2356 if (cpuhp_is_atomic_state(fail)) 2357 return -EINVAL; 2358 2359 /* 2360 * DEAD callbacks cannot fail... 2361 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter 2362 * triggering STARTING callbacks, a failure in this state would 2363 * hinder rollback. 2364 */ 2365 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) 2366 return -EINVAL; 2367 2368 /* 2369 * Cannot fail anything that doesn't have callbacks. 2370 */ 2371 mutex_lock(&cpuhp_state_mutex); 2372 sp = cpuhp_get_step(fail); 2373 if (!sp->startup.single && !sp->teardown.single) 2374 ret = -EINVAL; 2375 mutex_unlock(&cpuhp_state_mutex); 2376 if (ret) 2377 return ret; 2378 2379 st->fail = fail; 2380 2381 return count; 2382} 2383 2384static ssize_t fail_show(struct device *dev, 2385 struct device_attribute *attr, char *buf) 2386{ 2387 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2388 2389 return sprintf(buf, "%d\n", st->fail); 2390} 2391 2392static DEVICE_ATTR_RW(fail); 2393 2394static struct attribute *cpuhp_cpu_attrs[] = { 2395 &dev_attr_state.attr, 2396 &dev_attr_target.attr, 2397 &dev_attr_fail.attr, 2398 NULL 2399}; 2400 2401static const struct attribute_group cpuhp_cpu_attr_group = { 2402 .attrs = cpuhp_cpu_attrs, 2403 .name = "hotplug", 2404 NULL 2405}; 2406 2407static ssize_t states_show(struct device *dev, 2408 struct device_attribute *attr, char *buf) 2409{ 2410 ssize_t cur, res = 0; 2411 int i; 2412 2413 mutex_lock(&cpuhp_state_mutex); 2414 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2415 struct cpuhp_step *sp = cpuhp_get_step(i); 2416 2417 if (sp->name) { 2418 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2419 buf += cur; 2420 res += cur; 2421 } 2422 } 2423 mutex_unlock(&cpuhp_state_mutex); 2424 return res; 2425} 2426static DEVICE_ATTR_RO(states); 2427 2428static struct attribute *cpuhp_cpu_root_attrs[] = { 2429 &dev_attr_states.attr, 2430 NULL 2431}; 2432 2433static const struct attribute_group cpuhp_cpu_root_attr_group = { 2434 .attrs = cpuhp_cpu_root_attrs, 2435 .name = "hotplug", 2436 NULL 2437}; 2438 2439#ifdef CONFIG_HOTPLUG_SMT 2440 2441static ssize_t 2442__store_smt_control(struct device *dev, struct device_attribute *attr, 2443 const char *buf, size_t count) 2444{ 2445 int ctrlval, ret; 2446 2447 if (sysfs_streq(buf, "on")) 2448 ctrlval = CPU_SMT_ENABLED; 2449 else if (sysfs_streq(buf, "off")) 2450 ctrlval = CPU_SMT_DISABLED; 2451 else if (sysfs_streq(buf, "forceoff")) 2452 ctrlval = CPU_SMT_FORCE_DISABLED; 2453 else 2454 return -EINVAL; 2455 2456 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2457 return -EPERM; 2458 2459 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2460 return -ENODEV; 2461 2462 ret = lock_device_hotplug_sysfs(); 2463 if (ret) 2464 return ret; 2465 2466 if (ctrlval != cpu_smt_control) { 2467 switch (ctrlval) { 2468 case CPU_SMT_ENABLED: 2469 ret = cpuhp_smt_enable(); 2470 break; 2471 case CPU_SMT_DISABLED: 2472 case CPU_SMT_FORCE_DISABLED: 2473 ret = cpuhp_smt_disable(ctrlval); 2474 break; 2475 } 2476 } 2477 2478 unlock_device_hotplug(); 2479 return ret ? ret : count; 2480} 2481 2482#else /* !CONFIG_HOTPLUG_SMT */ 2483static ssize_t 2484__store_smt_control(struct device *dev, struct device_attribute *attr, 2485 const char *buf, size_t count) 2486{ 2487 return -ENODEV; 2488} 2489#endif /* CONFIG_HOTPLUG_SMT */ 2490 2491static const char *smt_states[] = { 2492 [CPU_SMT_ENABLED] = "on", 2493 [CPU_SMT_DISABLED] = "off", 2494 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2495 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2496 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2497}; 2498 2499static ssize_t control_show(struct device *dev, 2500 struct device_attribute *attr, char *buf) 2501{ 2502 const char *state = smt_states[cpu_smt_control]; 2503 2504 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state); 2505} 2506 2507static ssize_t control_store(struct device *dev, struct device_attribute *attr, 2508 const char *buf, size_t count) 2509{ 2510 return __store_smt_control(dev, attr, buf, count); 2511} 2512static DEVICE_ATTR_RW(control); 2513 2514static ssize_t active_show(struct device *dev, 2515 struct device_attribute *attr, char *buf) 2516{ 2517 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active()); 2518} 2519static DEVICE_ATTR_RO(active); 2520 2521static struct attribute *cpuhp_smt_attrs[] = { 2522 &dev_attr_control.attr, 2523 &dev_attr_active.attr, 2524 NULL 2525}; 2526 2527static const struct attribute_group cpuhp_smt_attr_group = { 2528 .attrs = cpuhp_smt_attrs, 2529 .name = "smt", 2530 NULL 2531}; 2532 2533static int __init cpu_smt_sysfs_init(void) 2534{ 2535 return sysfs_create_group(&cpu_subsys.dev_root->kobj, 2536 &cpuhp_smt_attr_group); 2537} 2538 2539static int __init cpuhp_sysfs_init(void) 2540{ 2541 int cpu, ret; 2542 2543 ret = cpu_smt_sysfs_init(); 2544 if (ret) 2545 return ret; 2546 2547 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 2548 &cpuhp_cpu_root_attr_group); 2549 if (ret) 2550 return ret; 2551 2552 for_each_possible_cpu(cpu) { 2553 struct device *dev = get_cpu_device(cpu); 2554 2555 if (!dev) 2556 continue; 2557 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 2558 if (ret) 2559 return ret; 2560 } 2561 return 0; 2562} 2563device_initcall(cpuhp_sysfs_init); 2564#endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 2565 2566/* 2567 * cpu_bit_bitmap[] is a special, "compressed" data structure that 2568 * represents all NR_CPUS bits binary values of 1<<nr. 2569 * 2570 * It is used by cpumask_of() to get a constant address to a CPU 2571 * mask value that has a single bit set only. 2572 */ 2573 2574/* cpu_bit_bitmap[0] is empty - so we can back into it */ 2575#define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 2576#define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 2577#define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 2578#define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 2579 2580const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 2581 2582 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 2583 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 2584#if BITS_PER_LONG > 32 2585 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 2586 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 2587#endif 2588}; 2589EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 2590 2591const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 2592EXPORT_SYMBOL(cpu_all_bits); 2593 2594#ifdef CONFIG_INIT_ALL_POSSIBLE 2595struct cpumask __cpu_possible_mask __read_mostly 2596 = {CPU_BITS_ALL}; 2597#else 2598struct cpumask __cpu_possible_mask __read_mostly; 2599#endif 2600EXPORT_SYMBOL(__cpu_possible_mask); 2601 2602struct cpumask __cpu_online_mask __read_mostly; 2603EXPORT_SYMBOL(__cpu_online_mask); 2604 2605struct cpumask __cpu_present_mask __read_mostly; 2606EXPORT_SYMBOL(__cpu_present_mask); 2607 2608struct cpumask __cpu_active_mask __read_mostly; 2609EXPORT_SYMBOL(__cpu_active_mask); 2610 2611struct cpumask __cpu_dying_mask __read_mostly; 2612EXPORT_SYMBOL(__cpu_dying_mask); 2613 2614atomic_t __num_online_cpus __read_mostly; 2615EXPORT_SYMBOL(__num_online_cpus); 2616 2617void init_cpu_present(const struct cpumask *src) 2618{ 2619 cpumask_copy(&__cpu_present_mask, src); 2620} 2621 2622void init_cpu_possible(const struct cpumask *src) 2623{ 2624 cpumask_copy(&__cpu_possible_mask, src); 2625} 2626 2627void init_cpu_online(const struct cpumask *src) 2628{ 2629 cpumask_copy(&__cpu_online_mask, src); 2630} 2631 2632void set_cpu_online(unsigned int cpu, bool online) 2633{ 2634 /* 2635 * atomic_inc/dec() is required to handle the horrid abuse of this 2636 * function by the reboot and kexec code which invoke it from 2637 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 2638 * regular CPU hotplug is properly serialized. 2639 * 2640 * Note, that the fact that __num_online_cpus is of type atomic_t 2641 * does not protect readers which are not serialized against 2642 * concurrent hotplug operations. 2643 */ 2644 if (online) { 2645 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 2646 atomic_inc(&__num_online_cpus); 2647 } else { 2648 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 2649 atomic_dec(&__num_online_cpus); 2650 } 2651} 2652 2653/* 2654 * Activate the first processor. 2655 */ 2656void __init boot_cpu_init(void) 2657{ 2658 int cpu = smp_processor_id(); 2659 2660 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 2661 set_cpu_online(cpu, true); 2662 set_cpu_active(cpu, true); 2663 set_cpu_present(cpu, true); 2664 set_cpu_possible(cpu, true); 2665 2666#ifdef CONFIG_SMP 2667 __boot_cpu_id = cpu; 2668#endif 2669} 2670 2671/* 2672 * Must be called _AFTER_ setting up the per_cpu areas 2673 */ 2674void __init boot_cpu_hotplug_init(void) 2675{ 2676#ifdef CONFIG_SMP 2677 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 2678#endif 2679 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 2680} 2681 2682/* 2683 * These are used for a global "mitigations=" cmdline option for toggling 2684 * optional CPU mitigations. 2685 */ 2686enum cpu_mitigations { 2687 CPU_MITIGATIONS_OFF, 2688 CPU_MITIGATIONS_AUTO, 2689 CPU_MITIGATIONS_AUTO_NOSMT, 2690}; 2691 2692static enum cpu_mitigations cpu_mitigations __ro_after_init = 2693 CPU_MITIGATIONS_AUTO; 2694 2695static int __init mitigations_parse_cmdline(char *arg) 2696{ 2697 if (!strcmp(arg, "off")) 2698 cpu_mitigations = CPU_MITIGATIONS_OFF; 2699 else if (!strcmp(arg, "auto")) 2700 cpu_mitigations = CPU_MITIGATIONS_AUTO; 2701 else if (!strcmp(arg, "auto,nosmt")) 2702 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 2703 else 2704 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 2705 arg); 2706 2707 return 0; 2708} 2709early_param("mitigations", mitigations_parse_cmdline); 2710 2711/* mitigations=off */ 2712bool cpu_mitigations_off(void) 2713{ 2714 return cpu_mitigations == CPU_MITIGATIONS_OFF; 2715} 2716EXPORT_SYMBOL_GPL(cpu_mitigations_off); 2717 2718/* mitigations=auto,nosmt */ 2719bool cpu_mitigations_auto_nosmt(void) 2720{ 2721 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 2722} 2723EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);