Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Memory subsystem support
4 *
5 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
6 * Dave Hansen <haveblue@us.ibm.com>
7 *
8 * This file provides the necessary infrastructure to represent
9 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
10 * All arch-independent code that assumes MEMORY_HOTPLUG requires
11 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
12 */
13
14#include <linux/module.h>
15#include <linux/init.h>
16#include <linux/topology.h>
17#include <linux/capability.h>
18#include <linux/device.h>
19#include <linux/memory.h>
20#include <linux/memory_hotplug.h>
21#include <linux/mm.h>
22#include <linux/stat.h>
23#include <linux/slab.h>
24#include <linux/xarray.h>
25
26#include <linux/atomic.h>
27#include <linux/uaccess.h>
28
29#define MEMORY_CLASS_NAME "memory"
30
31static const char *const online_type_to_str[] = {
32 [MMOP_OFFLINE] = "offline",
33 [MMOP_ONLINE] = "online",
34 [MMOP_ONLINE_KERNEL] = "online_kernel",
35 [MMOP_ONLINE_MOVABLE] = "online_movable",
36};
37
38int mhp_online_type_from_str(const char *str)
39{
40 int i;
41
42 for (i = 0; i < ARRAY_SIZE(online_type_to_str); i++) {
43 if (sysfs_streq(str, online_type_to_str[i]))
44 return i;
45 }
46 return -EINVAL;
47}
48
49#define to_memory_block(dev) container_of(dev, struct memory_block, dev)
50
51static int sections_per_block;
52
53static inline unsigned long memory_block_id(unsigned long section_nr)
54{
55 return section_nr / sections_per_block;
56}
57
58static inline unsigned long pfn_to_block_id(unsigned long pfn)
59{
60 return memory_block_id(pfn_to_section_nr(pfn));
61}
62
63static inline unsigned long phys_to_block_id(unsigned long phys)
64{
65 return pfn_to_block_id(PFN_DOWN(phys));
66}
67
68static int memory_subsys_online(struct device *dev);
69static int memory_subsys_offline(struct device *dev);
70
71static struct bus_type memory_subsys = {
72 .name = MEMORY_CLASS_NAME,
73 .dev_name = MEMORY_CLASS_NAME,
74 .online = memory_subsys_online,
75 .offline = memory_subsys_offline,
76};
77
78/*
79 * Memory blocks are cached in a local radix tree to avoid
80 * a costly linear search for the corresponding device on
81 * the subsystem bus.
82 */
83static DEFINE_XARRAY(memory_blocks);
84
85/*
86 * Memory groups, indexed by memory group id (mgid).
87 */
88static DEFINE_XARRAY_FLAGS(memory_groups, XA_FLAGS_ALLOC);
89#define MEMORY_GROUP_MARK_DYNAMIC XA_MARK_1
90
91static BLOCKING_NOTIFIER_HEAD(memory_chain);
92
93int register_memory_notifier(struct notifier_block *nb)
94{
95 return blocking_notifier_chain_register(&memory_chain, nb);
96}
97EXPORT_SYMBOL(register_memory_notifier);
98
99void unregister_memory_notifier(struct notifier_block *nb)
100{
101 blocking_notifier_chain_unregister(&memory_chain, nb);
102}
103EXPORT_SYMBOL(unregister_memory_notifier);
104
105static void memory_block_release(struct device *dev)
106{
107 struct memory_block *mem = to_memory_block(dev);
108
109 kfree(mem);
110}
111
112unsigned long __weak memory_block_size_bytes(void)
113{
114 return MIN_MEMORY_BLOCK_SIZE;
115}
116EXPORT_SYMBOL_GPL(memory_block_size_bytes);
117
118/*
119 * Show the first physical section index (number) of this memory block.
120 */
121static ssize_t phys_index_show(struct device *dev,
122 struct device_attribute *attr, char *buf)
123{
124 struct memory_block *mem = to_memory_block(dev);
125 unsigned long phys_index;
126
127 phys_index = mem->start_section_nr / sections_per_block;
128
129 return sysfs_emit(buf, "%08lx\n", phys_index);
130}
131
132/*
133 * Legacy interface that we cannot remove. Always indicate "removable"
134 * with CONFIG_MEMORY_HOTREMOVE - bad heuristic.
135 */
136static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
137 char *buf)
138{
139 return sysfs_emit(buf, "%d\n", (int)IS_ENABLED(CONFIG_MEMORY_HOTREMOVE));
140}
141
142/*
143 * online, offline, going offline, etc.
144 */
145static ssize_t state_show(struct device *dev, struct device_attribute *attr,
146 char *buf)
147{
148 struct memory_block *mem = to_memory_block(dev);
149 const char *output;
150
151 /*
152 * We can probably put these states in a nice little array
153 * so that they're not open-coded
154 */
155 switch (mem->state) {
156 case MEM_ONLINE:
157 output = "online";
158 break;
159 case MEM_OFFLINE:
160 output = "offline";
161 break;
162 case MEM_GOING_OFFLINE:
163 output = "going-offline";
164 break;
165 default:
166 WARN_ON(1);
167 return sysfs_emit(buf, "ERROR-UNKNOWN-%ld\n", mem->state);
168 }
169
170 return sysfs_emit(buf, "%s\n", output);
171}
172
173int memory_notify(unsigned long val, void *v)
174{
175 return blocking_notifier_call_chain(&memory_chain, val, v);
176}
177
178static int memory_block_online(struct memory_block *mem)
179{
180 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
181 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
182 unsigned long nr_vmemmap_pages = mem->nr_vmemmap_pages;
183 struct zone *zone;
184 int ret;
185
186 zone = zone_for_pfn_range(mem->online_type, mem->nid, mem->group,
187 start_pfn, nr_pages);
188
189 /*
190 * Although vmemmap pages have a different lifecycle than the pages
191 * they describe (they remain until the memory is unplugged), doing
192 * their initialization and accounting at memory onlining/offlining
193 * stage helps to keep accounting easier to follow - e.g vmemmaps
194 * belong to the same zone as the memory they backed.
195 */
196 if (nr_vmemmap_pages) {
197 ret = mhp_init_memmap_on_memory(start_pfn, nr_vmemmap_pages, zone);
198 if (ret)
199 return ret;
200 }
201
202 ret = online_pages(start_pfn + nr_vmemmap_pages,
203 nr_pages - nr_vmemmap_pages, zone, mem->group);
204 if (ret) {
205 if (nr_vmemmap_pages)
206 mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
207 return ret;
208 }
209
210 /*
211 * Account once onlining succeeded. If the zone was unpopulated, it is
212 * now already properly populated.
213 */
214 if (nr_vmemmap_pages)
215 adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
216 nr_vmemmap_pages);
217
218 mem->zone = zone;
219 return ret;
220}
221
222static int memory_block_offline(struct memory_block *mem)
223{
224 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
225 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
226 unsigned long nr_vmemmap_pages = mem->nr_vmemmap_pages;
227 int ret;
228
229 if (!mem->zone)
230 return -EINVAL;
231
232 /*
233 * Unaccount before offlining, such that unpopulated zone and kthreads
234 * can properly be torn down in offline_pages().
235 */
236 if (nr_vmemmap_pages)
237 adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
238 -nr_vmemmap_pages);
239
240 ret = offline_pages(start_pfn + nr_vmemmap_pages,
241 nr_pages - nr_vmemmap_pages, mem->zone, mem->group);
242 if (ret) {
243 /* offline_pages() failed. Account back. */
244 if (nr_vmemmap_pages)
245 adjust_present_page_count(pfn_to_page(start_pfn),
246 mem->group, nr_vmemmap_pages);
247 return ret;
248 }
249
250 if (nr_vmemmap_pages)
251 mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
252
253 mem->zone = NULL;
254 return ret;
255}
256
257/*
258 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
259 * OK to have direct references to sparsemem variables in here.
260 */
261static int
262memory_block_action(struct memory_block *mem, unsigned long action)
263{
264 int ret;
265
266 switch (action) {
267 case MEM_ONLINE:
268 ret = memory_block_online(mem);
269 break;
270 case MEM_OFFLINE:
271 ret = memory_block_offline(mem);
272 break;
273 default:
274 WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
275 "%ld\n", __func__, mem->start_section_nr, action, action);
276 ret = -EINVAL;
277 }
278
279 return ret;
280}
281
282static int memory_block_change_state(struct memory_block *mem,
283 unsigned long to_state, unsigned long from_state_req)
284{
285 int ret = 0;
286
287 if (mem->state != from_state_req)
288 return -EINVAL;
289
290 if (to_state == MEM_OFFLINE)
291 mem->state = MEM_GOING_OFFLINE;
292
293 ret = memory_block_action(mem, to_state);
294 mem->state = ret ? from_state_req : to_state;
295
296 return ret;
297}
298
299/* The device lock serializes operations on memory_subsys_[online|offline] */
300static int memory_subsys_online(struct device *dev)
301{
302 struct memory_block *mem = to_memory_block(dev);
303 int ret;
304
305 if (mem->state == MEM_ONLINE)
306 return 0;
307
308 /*
309 * When called via device_online() without configuring the online_type,
310 * we want to default to MMOP_ONLINE.
311 */
312 if (mem->online_type == MMOP_OFFLINE)
313 mem->online_type = MMOP_ONLINE;
314
315 ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
316 mem->online_type = MMOP_OFFLINE;
317
318 return ret;
319}
320
321static int memory_subsys_offline(struct device *dev)
322{
323 struct memory_block *mem = to_memory_block(dev);
324
325 if (mem->state == MEM_OFFLINE)
326 return 0;
327
328 return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
329}
330
331static ssize_t state_store(struct device *dev, struct device_attribute *attr,
332 const char *buf, size_t count)
333{
334 const int online_type = mhp_online_type_from_str(buf);
335 struct memory_block *mem = to_memory_block(dev);
336 int ret;
337
338 if (online_type < 0)
339 return -EINVAL;
340
341 ret = lock_device_hotplug_sysfs();
342 if (ret)
343 return ret;
344
345 switch (online_type) {
346 case MMOP_ONLINE_KERNEL:
347 case MMOP_ONLINE_MOVABLE:
348 case MMOP_ONLINE:
349 /* mem->online_type is protected by device_hotplug_lock */
350 mem->online_type = online_type;
351 ret = device_online(&mem->dev);
352 break;
353 case MMOP_OFFLINE:
354 ret = device_offline(&mem->dev);
355 break;
356 default:
357 ret = -EINVAL; /* should never happen */
358 }
359
360 unlock_device_hotplug();
361
362 if (ret < 0)
363 return ret;
364 if (ret)
365 return -EINVAL;
366
367 return count;
368}
369
370/*
371 * Legacy interface that we cannot remove: s390x exposes the storage increment
372 * covered by a memory block, allowing for identifying which memory blocks
373 * comprise a storage increment. Since a memory block spans complete
374 * storage increments nowadays, this interface is basically unused. Other
375 * archs never exposed != 0.
376 */
377static ssize_t phys_device_show(struct device *dev,
378 struct device_attribute *attr, char *buf)
379{
380 struct memory_block *mem = to_memory_block(dev);
381 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
382
383 return sysfs_emit(buf, "%d\n",
384 arch_get_memory_phys_device(start_pfn));
385}
386
387#ifdef CONFIG_MEMORY_HOTREMOVE
388static int print_allowed_zone(char *buf, int len, int nid,
389 struct memory_group *group,
390 unsigned long start_pfn, unsigned long nr_pages,
391 int online_type, struct zone *default_zone)
392{
393 struct zone *zone;
394
395 zone = zone_for_pfn_range(online_type, nid, group, start_pfn, nr_pages);
396 if (zone == default_zone)
397 return 0;
398
399 return sysfs_emit_at(buf, len, " %s", zone->name);
400}
401
402static ssize_t valid_zones_show(struct device *dev,
403 struct device_attribute *attr, char *buf)
404{
405 struct memory_block *mem = to_memory_block(dev);
406 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
407 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
408 struct memory_group *group = mem->group;
409 struct zone *default_zone;
410 int nid = mem->nid;
411 int len = 0;
412
413 /*
414 * Check the existing zone. Make sure that we do that only on the
415 * online nodes otherwise the page_zone is not reliable
416 */
417 if (mem->state == MEM_ONLINE) {
418 /*
419 * If !mem->zone, the memory block spans multiple zones and
420 * cannot get offlined.
421 */
422 default_zone = mem->zone;
423 if (!default_zone)
424 return sysfs_emit(buf, "%s\n", "none");
425 len += sysfs_emit_at(buf, len, "%s", default_zone->name);
426 goto out;
427 }
428
429 default_zone = zone_for_pfn_range(MMOP_ONLINE, nid, group,
430 start_pfn, nr_pages);
431
432 len += sysfs_emit_at(buf, len, "%s", default_zone->name);
433 len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
434 MMOP_ONLINE_KERNEL, default_zone);
435 len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
436 MMOP_ONLINE_MOVABLE, default_zone);
437out:
438 len += sysfs_emit_at(buf, len, "\n");
439 return len;
440}
441static DEVICE_ATTR_RO(valid_zones);
442#endif
443
444static DEVICE_ATTR_RO(phys_index);
445static DEVICE_ATTR_RW(state);
446static DEVICE_ATTR_RO(phys_device);
447static DEVICE_ATTR_RO(removable);
448
449/*
450 * Show the memory block size (shared by all memory blocks).
451 */
452static ssize_t block_size_bytes_show(struct device *dev,
453 struct device_attribute *attr, char *buf)
454{
455 return sysfs_emit(buf, "%lx\n", memory_block_size_bytes());
456}
457
458static DEVICE_ATTR_RO(block_size_bytes);
459
460/*
461 * Memory auto online policy.
462 */
463
464static ssize_t auto_online_blocks_show(struct device *dev,
465 struct device_attribute *attr, char *buf)
466{
467 return sysfs_emit(buf, "%s\n",
468 online_type_to_str[mhp_default_online_type]);
469}
470
471static ssize_t auto_online_blocks_store(struct device *dev,
472 struct device_attribute *attr,
473 const char *buf, size_t count)
474{
475 const int online_type = mhp_online_type_from_str(buf);
476
477 if (online_type < 0)
478 return -EINVAL;
479
480 mhp_default_online_type = online_type;
481 return count;
482}
483
484static DEVICE_ATTR_RW(auto_online_blocks);
485
486/*
487 * Some architectures will have custom drivers to do this, and
488 * will not need to do it from userspace. The fake hot-add code
489 * as well as ppc64 will do all of their discovery in userspace
490 * and will require this interface.
491 */
492#ifdef CONFIG_ARCH_MEMORY_PROBE
493static ssize_t probe_store(struct device *dev, struct device_attribute *attr,
494 const char *buf, size_t count)
495{
496 u64 phys_addr;
497 int nid, ret;
498 unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
499
500 ret = kstrtoull(buf, 0, &phys_addr);
501 if (ret)
502 return ret;
503
504 if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
505 return -EINVAL;
506
507 ret = lock_device_hotplug_sysfs();
508 if (ret)
509 return ret;
510
511 nid = memory_add_physaddr_to_nid(phys_addr);
512 ret = __add_memory(nid, phys_addr,
513 MIN_MEMORY_BLOCK_SIZE * sections_per_block,
514 MHP_NONE);
515
516 if (ret)
517 goto out;
518
519 ret = count;
520out:
521 unlock_device_hotplug();
522 return ret;
523}
524
525static DEVICE_ATTR_WO(probe);
526#endif
527
528#ifdef CONFIG_MEMORY_FAILURE
529/*
530 * Support for offlining pages of memory
531 */
532
533/* Soft offline a page */
534static ssize_t soft_offline_page_store(struct device *dev,
535 struct device_attribute *attr,
536 const char *buf, size_t count)
537{
538 int ret;
539 u64 pfn;
540 if (!capable(CAP_SYS_ADMIN))
541 return -EPERM;
542 if (kstrtoull(buf, 0, &pfn) < 0)
543 return -EINVAL;
544 pfn >>= PAGE_SHIFT;
545 ret = soft_offline_page(pfn, 0);
546 return ret == 0 ? count : ret;
547}
548
549/* Forcibly offline a page, including killing processes. */
550static ssize_t hard_offline_page_store(struct device *dev,
551 struct device_attribute *attr,
552 const char *buf, size_t count)
553{
554 int ret;
555 u64 pfn;
556 if (!capable(CAP_SYS_ADMIN))
557 return -EPERM;
558 if (kstrtoull(buf, 0, &pfn) < 0)
559 return -EINVAL;
560 pfn >>= PAGE_SHIFT;
561 ret = memory_failure(pfn, 0);
562 if (ret == -EOPNOTSUPP)
563 ret = 0;
564 return ret ? ret : count;
565}
566
567static DEVICE_ATTR_WO(soft_offline_page);
568static DEVICE_ATTR_WO(hard_offline_page);
569#endif
570
571/* See phys_device_show(). */
572int __weak arch_get_memory_phys_device(unsigned long start_pfn)
573{
574 return 0;
575}
576
577/*
578 * A reference for the returned memory block device is acquired.
579 *
580 * Called under device_hotplug_lock.
581 */
582static struct memory_block *find_memory_block_by_id(unsigned long block_id)
583{
584 struct memory_block *mem;
585
586 mem = xa_load(&memory_blocks, block_id);
587 if (mem)
588 get_device(&mem->dev);
589 return mem;
590}
591
592/*
593 * Called under device_hotplug_lock.
594 */
595struct memory_block *find_memory_block(unsigned long section_nr)
596{
597 unsigned long block_id = memory_block_id(section_nr);
598
599 return find_memory_block_by_id(block_id);
600}
601
602static struct attribute *memory_memblk_attrs[] = {
603 &dev_attr_phys_index.attr,
604 &dev_attr_state.attr,
605 &dev_attr_phys_device.attr,
606 &dev_attr_removable.attr,
607#ifdef CONFIG_MEMORY_HOTREMOVE
608 &dev_attr_valid_zones.attr,
609#endif
610 NULL
611};
612
613static const struct attribute_group memory_memblk_attr_group = {
614 .attrs = memory_memblk_attrs,
615};
616
617static const struct attribute_group *memory_memblk_attr_groups[] = {
618 &memory_memblk_attr_group,
619 NULL,
620};
621
622static int __add_memory_block(struct memory_block *memory)
623{
624 int ret;
625
626 memory->dev.bus = &memory_subsys;
627 memory->dev.id = memory->start_section_nr / sections_per_block;
628 memory->dev.release = memory_block_release;
629 memory->dev.groups = memory_memblk_attr_groups;
630 memory->dev.offline = memory->state == MEM_OFFLINE;
631
632 ret = device_register(&memory->dev);
633 if (ret) {
634 put_device(&memory->dev);
635 return ret;
636 }
637 ret = xa_err(xa_store(&memory_blocks, memory->dev.id, memory,
638 GFP_KERNEL));
639 if (ret) {
640 put_device(&memory->dev);
641 device_unregister(&memory->dev);
642 }
643 return ret;
644}
645
646static struct zone *early_node_zone_for_memory_block(struct memory_block *mem,
647 int nid)
648{
649 const unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
650 const unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
651 struct zone *zone, *matching_zone = NULL;
652 pg_data_t *pgdat = NODE_DATA(nid);
653 int i;
654
655 /*
656 * This logic only works for early memory, when the applicable zones
657 * already span the memory block. We don't expect overlapping zones on
658 * a single node for early memory. So if we're told that some PFNs
659 * of a node fall into this memory block, we can assume that all node
660 * zones that intersect with the memory block are actually applicable.
661 * No need to look at the memmap.
662 */
663 for (i = 0; i < MAX_NR_ZONES; i++) {
664 zone = pgdat->node_zones + i;
665 if (!populated_zone(zone))
666 continue;
667 if (!zone_intersects(zone, start_pfn, nr_pages))
668 continue;
669 if (!matching_zone) {
670 matching_zone = zone;
671 continue;
672 }
673 /* Spans multiple zones ... */
674 matching_zone = NULL;
675 break;
676 }
677 return matching_zone;
678}
679
680#ifdef CONFIG_NUMA
681/**
682 * memory_block_add_nid() - Indicate that system RAM falling into this memory
683 * block device (partially) belongs to the given node.
684 * @mem: The memory block device.
685 * @nid: The node id.
686 * @context: The memory initialization context.
687 *
688 * Indicate that system RAM falling into this memory block (partially) belongs
689 * to the given node. If the context indicates ("early") that we are adding the
690 * node during node device subsystem initialization, this will also properly
691 * set/adjust mem->zone based on the zone ranges of the given node.
692 */
693void memory_block_add_nid(struct memory_block *mem, int nid,
694 enum meminit_context context)
695{
696 if (context == MEMINIT_EARLY && mem->nid != nid) {
697 /*
698 * For early memory we have to determine the zone when setting
699 * the node id and handle multiple nodes spanning a single
700 * memory block by indicate via zone == NULL that we're not
701 * dealing with a single zone. So if we're setting the node id
702 * the first time, determine if there is a single zone. If we're
703 * setting the node id a second time to a different node,
704 * invalidate the single detected zone.
705 */
706 if (mem->nid == NUMA_NO_NODE)
707 mem->zone = early_node_zone_for_memory_block(mem, nid);
708 else
709 mem->zone = NULL;
710 }
711
712 /*
713 * If this memory block spans multiple nodes, we only indicate
714 * the last processed node. If we span multiple nodes (not applicable
715 * to hotplugged memory), zone == NULL will prohibit memory offlining
716 * and consequently unplug.
717 */
718 mem->nid = nid;
719}
720#endif
721
722static int add_memory_block(unsigned long block_id, unsigned long state,
723 unsigned long nr_vmemmap_pages,
724 struct memory_group *group)
725{
726 struct memory_block *mem;
727 int ret = 0;
728
729 mem = find_memory_block_by_id(block_id);
730 if (mem) {
731 put_device(&mem->dev);
732 return -EEXIST;
733 }
734 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
735 if (!mem)
736 return -ENOMEM;
737
738 mem->start_section_nr = block_id * sections_per_block;
739 mem->state = state;
740 mem->nid = NUMA_NO_NODE;
741 mem->nr_vmemmap_pages = nr_vmemmap_pages;
742 INIT_LIST_HEAD(&mem->group_next);
743
744#ifndef CONFIG_NUMA
745 if (state == MEM_ONLINE)
746 /*
747 * MEM_ONLINE at this point implies early memory. With NUMA,
748 * we'll determine the zone when setting the node id via
749 * memory_block_add_nid(). Memory hotplug updated the zone
750 * manually when memory onlining/offlining succeeds.
751 */
752 mem->zone = early_node_zone_for_memory_block(mem, NUMA_NO_NODE);
753#endif /* CONFIG_NUMA */
754
755 ret = __add_memory_block(mem);
756 if (ret)
757 return ret;
758
759 if (group) {
760 mem->group = group;
761 list_add(&mem->group_next, &group->memory_blocks);
762 }
763
764 return 0;
765}
766
767static int __init add_boot_memory_block(unsigned long base_section_nr)
768{
769 int section_count = 0;
770 unsigned long nr;
771
772 for (nr = base_section_nr; nr < base_section_nr + sections_per_block;
773 nr++)
774 if (present_section_nr(nr))
775 section_count++;
776
777 if (section_count == 0)
778 return 0;
779 return add_memory_block(memory_block_id(base_section_nr),
780 MEM_ONLINE, 0, NULL);
781}
782
783static int add_hotplug_memory_block(unsigned long block_id,
784 unsigned long nr_vmemmap_pages,
785 struct memory_group *group)
786{
787 return add_memory_block(block_id, MEM_OFFLINE, nr_vmemmap_pages, group);
788}
789
790static void remove_memory_block(struct memory_block *memory)
791{
792 if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys))
793 return;
794
795 WARN_ON(xa_erase(&memory_blocks, memory->dev.id) == NULL);
796
797 if (memory->group) {
798 list_del(&memory->group_next);
799 memory->group = NULL;
800 }
801
802 /* drop the ref. we got via find_memory_block() */
803 put_device(&memory->dev);
804 device_unregister(&memory->dev);
805}
806
807/*
808 * Create memory block devices for the given memory area. Start and size
809 * have to be aligned to memory block granularity. Memory block devices
810 * will be initialized as offline.
811 *
812 * Called under device_hotplug_lock.
813 */
814int create_memory_block_devices(unsigned long start, unsigned long size,
815 unsigned long vmemmap_pages,
816 struct memory_group *group)
817{
818 const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
819 unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
820 struct memory_block *mem;
821 unsigned long block_id;
822 int ret = 0;
823
824 if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
825 !IS_ALIGNED(size, memory_block_size_bytes())))
826 return -EINVAL;
827
828 for (block_id = start_block_id; block_id != end_block_id; block_id++) {
829 ret = add_hotplug_memory_block(block_id, vmemmap_pages, group);
830 if (ret)
831 break;
832 }
833 if (ret) {
834 end_block_id = block_id;
835 for (block_id = start_block_id; block_id != end_block_id;
836 block_id++) {
837 mem = find_memory_block_by_id(block_id);
838 if (WARN_ON_ONCE(!mem))
839 continue;
840 remove_memory_block(mem);
841 }
842 }
843 return ret;
844}
845
846/*
847 * Remove memory block devices for the given memory area. Start and size
848 * have to be aligned to memory block granularity. Memory block devices
849 * have to be offline.
850 *
851 * Called under device_hotplug_lock.
852 */
853void remove_memory_block_devices(unsigned long start, unsigned long size)
854{
855 const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
856 const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
857 struct memory_block *mem;
858 unsigned long block_id;
859
860 if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
861 !IS_ALIGNED(size, memory_block_size_bytes())))
862 return;
863
864 for (block_id = start_block_id; block_id != end_block_id; block_id++) {
865 mem = find_memory_block_by_id(block_id);
866 if (WARN_ON_ONCE(!mem))
867 continue;
868 unregister_memory_block_under_nodes(mem);
869 remove_memory_block(mem);
870 }
871}
872
873/* return true if the memory block is offlined, otherwise, return false */
874bool is_memblock_offlined(struct memory_block *mem)
875{
876 return mem->state == MEM_OFFLINE;
877}
878
879static struct attribute *memory_root_attrs[] = {
880#ifdef CONFIG_ARCH_MEMORY_PROBE
881 &dev_attr_probe.attr,
882#endif
883
884#ifdef CONFIG_MEMORY_FAILURE
885 &dev_attr_soft_offline_page.attr,
886 &dev_attr_hard_offline_page.attr,
887#endif
888
889 &dev_attr_block_size_bytes.attr,
890 &dev_attr_auto_online_blocks.attr,
891 NULL
892};
893
894static const struct attribute_group memory_root_attr_group = {
895 .attrs = memory_root_attrs,
896};
897
898static const struct attribute_group *memory_root_attr_groups[] = {
899 &memory_root_attr_group,
900 NULL,
901};
902
903/*
904 * Initialize the sysfs support for memory devices. At the time this function
905 * is called, we cannot have concurrent creation/deletion of memory block
906 * devices, the device_hotplug_lock is not needed.
907 */
908void __init memory_dev_init(void)
909{
910 int ret;
911 unsigned long block_sz, nr;
912
913 /* Validate the configured memory block size */
914 block_sz = memory_block_size_bytes();
915 if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE)
916 panic("Memory block size not suitable: 0x%lx\n", block_sz);
917 sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
918
919 ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
920 if (ret)
921 panic("%s() failed to register subsystem: %d\n", __func__, ret);
922
923 /*
924 * Create entries for memory sections that were found
925 * during boot and have been initialized
926 */
927 for (nr = 0; nr <= __highest_present_section_nr;
928 nr += sections_per_block) {
929 ret = add_boot_memory_block(nr);
930 if (ret)
931 panic("%s() failed to add memory block: %d\n", __func__,
932 ret);
933 }
934}
935
936/**
937 * walk_memory_blocks - walk through all present memory blocks overlapped
938 * by the range [start, start + size)
939 *
940 * @start: start address of the memory range
941 * @size: size of the memory range
942 * @arg: argument passed to func
943 * @func: callback for each memory section walked
944 *
945 * This function walks through all present memory blocks overlapped by the
946 * range [start, start + size), calling func on each memory block.
947 *
948 * In case func() returns an error, walking is aborted and the error is
949 * returned.
950 *
951 * Called under device_hotplug_lock.
952 */
953int walk_memory_blocks(unsigned long start, unsigned long size,
954 void *arg, walk_memory_blocks_func_t func)
955{
956 const unsigned long start_block_id = phys_to_block_id(start);
957 const unsigned long end_block_id = phys_to_block_id(start + size - 1);
958 struct memory_block *mem;
959 unsigned long block_id;
960 int ret = 0;
961
962 if (!size)
963 return 0;
964
965 for (block_id = start_block_id; block_id <= end_block_id; block_id++) {
966 mem = find_memory_block_by_id(block_id);
967 if (!mem)
968 continue;
969
970 ret = func(mem, arg);
971 put_device(&mem->dev);
972 if (ret)
973 break;
974 }
975 return ret;
976}
977
978struct for_each_memory_block_cb_data {
979 walk_memory_blocks_func_t func;
980 void *arg;
981};
982
983static int for_each_memory_block_cb(struct device *dev, void *data)
984{
985 struct memory_block *mem = to_memory_block(dev);
986 struct for_each_memory_block_cb_data *cb_data = data;
987
988 return cb_data->func(mem, cb_data->arg);
989}
990
991/**
992 * for_each_memory_block - walk through all present memory blocks
993 *
994 * @arg: argument passed to func
995 * @func: callback for each memory block walked
996 *
997 * This function walks through all present memory blocks, calling func on
998 * each memory block.
999 *
1000 * In case func() returns an error, walking is aborted and the error is
1001 * returned.
1002 */
1003int for_each_memory_block(void *arg, walk_memory_blocks_func_t func)
1004{
1005 struct for_each_memory_block_cb_data cb_data = {
1006 .func = func,
1007 .arg = arg,
1008 };
1009
1010 return bus_for_each_dev(&memory_subsys, NULL, &cb_data,
1011 for_each_memory_block_cb);
1012}
1013
1014/*
1015 * This is an internal helper to unify allocation and initialization of
1016 * memory groups. Note that the passed memory group will be copied to a
1017 * dynamically allocated memory group. After this call, the passed
1018 * memory group should no longer be used.
1019 */
1020static int memory_group_register(struct memory_group group)
1021{
1022 struct memory_group *new_group;
1023 uint32_t mgid;
1024 int ret;
1025
1026 if (!node_possible(group.nid))
1027 return -EINVAL;
1028
1029 new_group = kzalloc(sizeof(group), GFP_KERNEL);
1030 if (!new_group)
1031 return -ENOMEM;
1032 *new_group = group;
1033 INIT_LIST_HEAD(&new_group->memory_blocks);
1034
1035 ret = xa_alloc(&memory_groups, &mgid, new_group, xa_limit_31b,
1036 GFP_KERNEL);
1037 if (ret) {
1038 kfree(new_group);
1039 return ret;
1040 } else if (group.is_dynamic) {
1041 xa_set_mark(&memory_groups, mgid, MEMORY_GROUP_MARK_DYNAMIC);
1042 }
1043 return mgid;
1044}
1045
1046/**
1047 * memory_group_register_static() - Register a static memory group.
1048 * @nid: The node id.
1049 * @max_pages: The maximum number of pages we'll have in this static memory
1050 * group.
1051 *
1052 * Register a new static memory group and return the memory group id.
1053 * All memory in the group belongs to a single unit, such as a DIMM. All
1054 * memory belonging to a static memory group is added in one go to be removed
1055 * in one go -- it's static.
1056 *
1057 * Returns an error if out of memory, if the node id is invalid, if no new
1058 * memory groups can be registered, or if max_pages is invalid (0). Otherwise,
1059 * returns the new memory group id.
1060 */
1061int memory_group_register_static(int nid, unsigned long max_pages)
1062{
1063 struct memory_group group = {
1064 .nid = nid,
1065 .s = {
1066 .max_pages = max_pages,
1067 },
1068 };
1069
1070 if (!max_pages)
1071 return -EINVAL;
1072 return memory_group_register(group);
1073}
1074EXPORT_SYMBOL_GPL(memory_group_register_static);
1075
1076/**
1077 * memory_group_register_dynamic() - Register a dynamic memory group.
1078 * @nid: The node id.
1079 * @unit_pages: Unit in pages in which is memory added/removed in this dynamic
1080 * memory group.
1081 *
1082 * Register a new dynamic memory group and return the memory group id.
1083 * Memory within a dynamic memory group is added/removed dynamically
1084 * in unit_pages.
1085 *
1086 * Returns an error if out of memory, if the node id is invalid, if no new
1087 * memory groups can be registered, or if unit_pages is invalid (0, not a
1088 * power of two, smaller than a single memory block). Otherwise, returns the
1089 * new memory group id.
1090 */
1091int memory_group_register_dynamic(int nid, unsigned long unit_pages)
1092{
1093 struct memory_group group = {
1094 .nid = nid,
1095 .is_dynamic = true,
1096 .d = {
1097 .unit_pages = unit_pages,
1098 },
1099 };
1100
1101 if (!unit_pages || !is_power_of_2(unit_pages) ||
1102 unit_pages < PHYS_PFN(memory_block_size_bytes()))
1103 return -EINVAL;
1104 return memory_group_register(group);
1105}
1106EXPORT_SYMBOL_GPL(memory_group_register_dynamic);
1107
1108/**
1109 * memory_group_unregister() - Unregister a memory group.
1110 * @mgid: the memory group id
1111 *
1112 * Unregister a memory group. If any memory block still belongs to this
1113 * memory group, unregistering will fail.
1114 *
1115 * Returns -EINVAL if the memory group id is invalid, returns -EBUSY if some
1116 * memory blocks still belong to this memory group and returns 0 if
1117 * unregistering succeeded.
1118 */
1119int memory_group_unregister(int mgid)
1120{
1121 struct memory_group *group;
1122
1123 if (mgid < 0)
1124 return -EINVAL;
1125
1126 group = xa_load(&memory_groups, mgid);
1127 if (!group)
1128 return -EINVAL;
1129 if (!list_empty(&group->memory_blocks))
1130 return -EBUSY;
1131 xa_erase(&memory_groups, mgid);
1132 kfree(group);
1133 return 0;
1134}
1135EXPORT_SYMBOL_GPL(memory_group_unregister);
1136
1137/*
1138 * This is an internal helper only to be used in core memory hotplug code to
1139 * lookup a memory group. We don't care about locking, as we don't expect a
1140 * memory group to get unregistered while adding memory to it -- because
1141 * the group and the memory is managed by the same driver.
1142 */
1143struct memory_group *memory_group_find_by_id(int mgid)
1144{
1145 return xa_load(&memory_groups, mgid);
1146}
1147
1148/*
1149 * This is an internal helper only to be used in core memory hotplug code to
1150 * walk all dynamic memory groups excluding a given memory group, either
1151 * belonging to a specific node, or belonging to any node.
1152 */
1153int walk_dynamic_memory_groups(int nid, walk_memory_groups_func_t func,
1154 struct memory_group *excluded, void *arg)
1155{
1156 struct memory_group *group;
1157 unsigned long index;
1158 int ret = 0;
1159
1160 xa_for_each_marked(&memory_groups, index, group,
1161 MEMORY_GROUP_MARK_DYNAMIC) {
1162 if (group == excluded)
1163 continue;
1164#ifdef CONFIG_NUMA
1165 if (nid != NUMA_NO_NODE && group->nid != nid)
1166 continue;
1167#endif /* CONFIG_NUMA */
1168 ret = func(group, arg);
1169 if (ret)
1170 break;
1171 }
1172 return ret;
1173}