Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Derived from "arch/i386/kernel/process.c"
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7 * Paul Mackerras (paulus@cs.anu.edu.au)
8 *
9 * PowerPC version
10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 */
12
13#include <linux/errno.h>
14#include <linux/sched.h>
15#include <linux/sched/debug.h>
16#include <linux/sched/task.h>
17#include <linux/sched/task_stack.h>
18#include <linux/kernel.h>
19#include <linux/mm.h>
20#include <linux/smp.h>
21#include <linux/stddef.h>
22#include <linux/unistd.h>
23#include <linux/ptrace.h>
24#include <linux/slab.h>
25#include <linux/user.h>
26#include <linux/elf.h>
27#include <linux/prctl.h>
28#include <linux/init_task.h>
29#include <linux/export.h>
30#include <linux/kallsyms.h>
31#include <linux/mqueue.h>
32#include <linux/hardirq.h>
33#include <linux/utsname.h>
34#include <linux/ftrace.h>
35#include <linux/kernel_stat.h>
36#include <linux/personality.h>
37#include <linux/random.h>
38#include <linux/hw_breakpoint.h>
39#include <linux/uaccess.h>
40#include <linux/elf-randomize.h>
41#include <linux/pkeys.h>
42#include <linux/seq_buf.h>
43
44#include <asm/interrupt.h>
45#include <asm/io.h>
46#include <asm/processor.h>
47#include <asm/mmu.h>
48#include <asm/prom.h>
49#include <asm/machdep.h>
50#include <asm/time.h>
51#include <asm/runlatch.h>
52#include <asm/syscalls.h>
53#include <asm/switch_to.h>
54#include <asm/tm.h>
55#include <asm/debug.h>
56#ifdef CONFIG_PPC64
57#include <asm/firmware.h>
58#include <asm/hw_irq.h>
59#endif
60#include <asm/code-patching.h>
61#include <asm/exec.h>
62#include <asm/livepatch.h>
63#include <asm/cpu_has_feature.h>
64#include <asm/asm-prototypes.h>
65#include <asm/stacktrace.h>
66#include <asm/hw_breakpoint.h>
67
68#include <linux/kprobes.h>
69#include <linux/kdebug.h>
70
71/* Transactional Memory debug */
72#ifdef TM_DEBUG_SW
73#define TM_DEBUG(x...) printk(KERN_INFO x)
74#else
75#define TM_DEBUG(x...) do { } while(0)
76#endif
77
78extern unsigned long _get_SP(void);
79
80#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
81/*
82 * Are we running in "Suspend disabled" mode? If so we have to block any
83 * sigreturn that would get us into suspended state, and we also warn in some
84 * other paths that we should never reach with suspend disabled.
85 */
86bool tm_suspend_disabled __ro_after_init = false;
87
88static void check_if_tm_restore_required(struct task_struct *tsk)
89{
90 /*
91 * If we are saving the current thread's registers, and the
92 * thread is in a transactional state, set the TIF_RESTORE_TM
93 * bit so that we know to restore the registers before
94 * returning to userspace.
95 */
96 if (tsk == current && tsk->thread.regs &&
97 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
98 !test_thread_flag(TIF_RESTORE_TM)) {
99 regs_set_return_msr(&tsk->thread.ckpt_regs,
100 tsk->thread.regs->msr);
101 set_thread_flag(TIF_RESTORE_TM);
102 }
103}
104
105#else
106static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
107#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
108
109bool strict_msr_control;
110EXPORT_SYMBOL(strict_msr_control);
111
112static int __init enable_strict_msr_control(char *str)
113{
114 strict_msr_control = true;
115 pr_info("Enabling strict facility control\n");
116
117 return 0;
118}
119early_param("ppc_strict_facility_enable", enable_strict_msr_control);
120
121/* notrace because it's called by restore_math */
122unsigned long notrace msr_check_and_set(unsigned long bits)
123{
124 unsigned long oldmsr = mfmsr();
125 unsigned long newmsr;
126
127 newmsr = oldmsr | bits;
128
129 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
130 newmsr |= MSR_VSX;
131
132 if (oldmsr != newmsr)
133 mtmsr_isync(newmsr);
134
135 return newmsr;
136}
137EXPORT_SYMBOL_GPL(msr_check_and_set);
138
139/* notrace because it's called by restore_math */
140void notrace __msr_check_and_clear(unsigned long bits)
141{
142 unsigned long oldmsr = mfmsr();
143 unsigned long newmsr;
144
145 newmsr = oldmsr & ~bits;
146
147 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
148 newmsr &= ~MSR_VSX;
149
150 if (oldmsr != newmsr)
151 mtmsr_isync(newmsr);
152}
153EXPORT_SYMBOL(__msr_check_and_clear);
154
155#ifdef CONFIG_PPC_FPU
156static void __giveup_fpu(struct task_struct *tsk)
157{
158 unsigned long msr;
159
160 save_fpu(tsk);
161 msr = tsk->thread.regs->msr;
162 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
163 if (cpu_has_feature(CPU_FTR_VSX))
164 msr &= ~MSR_VSX;
165 regs_set_return_msr(tsk->thread.regs, msr);
166}
167
168void giveup_fpu(struct task_struct *tsk)
169{
170 check_if_tm_restore_required(tsk);
171
172 msr_check_and_set(MSR_FP);
173 __giveup_fpu(tsk);
174 msr_check_and_clear(MSR_FP);
175}
176EXPORT_SYMBOL(giveup_fpu);
177
178/*
179 * Make sure the floating-point register state in the
180 * the thread_struct is up to date for task tsk.
181 */
182void flush_fp_to_thread(struct task_struct *tsk)
183{
184 if (tsk->thread.regs) {
185 /*
186 * We need to disable preemption here because if we didn't,
187 * another process could get scheduled after the regs->msr
188 * test but before we have finished saving the FP registers
189 * to the thread_struct. That process could take over the
190 * FPU, and then when we get scheduled again we would store
191 * bogus values for the remaining FP registers.
192 */
193 preempt_disable();
194 if (tsk->thread.regs->msr & MSR_FP) {
195 /*
196 * This should only ever be called for current or
197 * for a stopped child process. Since we save away
198 * the FP register state on context switch,
199 * there is something wrong if a stopped child appears
200 * to still have its FP state in the CPU registers.
201 */
202 BUG_ON(tsk != current);
203 giveup_fpu(tsk);
204 }
205 preempt_enable();
206 }
207}
208EXPORT_SYMBOL_GPL(flush_fp_to_thread);
209
210void enable_kernel_fp(void)
211{
212 unsigned long cpumsr;
213
214 WARN_ON(preemptible());
215
216 cpumsr = msr_check_and_set(MSR_FP);
217
218 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
219 check_if_tm_restore_required(current);
220 /*
221 * If a thread has already been reclaimed then the
222 * checkpointed registers are on the CPU but have definitely
223 * been saved by the reclaim code. Don't need to and *cannot*
224 * giveup as this would save to the 'live' structure not the
225 * checkpointed structure.
226 */
227 if (!MSR_TM_ACTIVE(cpumsr) &&
228 MSR_TM_ACTIVE(current->thread.regs->msr))
229 return;
230 __giveup_fpu(current);
231 }
232}
233EXPORT_SYMBOL(enable_kernel_fp);
234#else
235static inline void __giveup_fpu(struct task_struct *tsk) { }
236#endif /* CONFIG_PPC_FPU */
237
238#ifdef CONFIG_ALTIVEC
239static void __giveup_altivec(struct task_struct *tsk)
240{
241 unsigned long msr;
242
243 save_altivec(tsk);
244 msr = tsk->thread.regs->msr;
245 msr &= ~MSR_VEC;
246 if (cpu_has_feature(CPU_FTR_VSX))
247 msr &= ~MSR_VSX;
248 regs_set_return_msr(tsk->thread.regs, msr);
249}
250
251void giveup_altivec(struct task_struct *tsk)
252{
253 check_if_tm_restore_required(tsk);
254
255 msr_check_and_set(MSR_VEC);
256 __giveup_altivec(tsk);
257 msr_check_and_clear(MSR_VEC);
258}
259EXPORT_SYMBOL(giveup_altivec);
260
261void enable_kernel_altivec(void)
262{
263 unsigned long cpumsr;
264
265 WARN_ON(preemptible());
266
267 cpumsr = msr_check_and_set(MSR_VEC);
268
269 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
270 check_if_tm_restore_required(current);
271 /*
272 * If a thread has already been reclaimed then the
273 * checkpointed registers are on the CPU but have definitely
274 * been saved by the reclaim code. Don't need to and *cannot*
275 * giveup as this would save to the 'live' structure not the
276 * checkpointed structure.
277 */
278 if (!MSR_TM_ACTIVE(cpumsr) &&
279 MSR_TM_ACTIVE(current->thread.regs->msr))
280 return;
281 __giveup_altivec(current);
282 }
283}
284EXPORT_SYMBOL(enable_kernel_altivec);
285
286/*
287 * Make sure the VMX/Altivec register state in the
288 * the thread_struct is up to date for task tsk.
289 */
290void flush_altivec_to_thread(struct task_struct *tsk)
291{
292 if (tsk->thread.regs) {
293 preempt_disable();
294 if (tsk->thread.regs->msr & MSR_VEC) {
295 BUG_ON(tsk != current);
296 giveup_altivec(tsk);
297 }
298 preempt_enable();
299 }
300}
301EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
302#endif /* CONFIG_ALTIVEC */
303
304#ifdef CONFIG_VSX
305static void __giveup_vsx(struct task_struct *tsk)
306{
307 unsigned long msr = tsk->thread.regs->msr;
308
309 /*
310 * We should never be ssetting MSR_VSX without also setting
311 * MSR_FP and MSR_VEC
312 */
313 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
314
315 /* __giveup_fpu will clear MSR_VSX */
316 if (msr & MSR_FP)
317 __giveup_fpu(tsk);
318 if (msr & MSR_VEC)
319 __giveup_altivec(tsk);
320}
321
322static void giveup_vsx(struct task_struct *tsk)
323{
324 check_if_tm_restore_required(tsk);
325
326 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
327 __giveup_vsx(tsk);
328 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
329}
330
331void enable_kernel_vsx(void)
332{
333 unsigned long cpumsr;
334
335 WARN_ON(preemptible());
336
337 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
338
339 if (current->thread.regs &&
340 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
341 check_if_tm_restore_required(current);
342 /*
343 * If a thread has already been reclaimed then the
344 * checkpointed registers are on the CPU but have definitely
345 * been saved by the reclaim code. Don't need to and *cannot*
346 * giveup as this would save to the 'live' structure not the
347 * checkpointed structure.
348 */
349 if (!MSR_TM_ACTIVE(cpumsr) &&
350 MSR_TM_ACTIVE(current->thread.regs->msr))
351 return;
352 __giveup_vsx(current);
353 }
354}
355EXPORT_SYMBOL(enable_kernel_vsx);
356
357void flush_vsx_to_thread(struct task_struct *tsk)
358{
359 if (tsk->thread.regs) {
360 preempt_disable();
361 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
362 BUG_ON(tsk != current);
363 giveup_vsx(tsk);
364 }
365 preempt_enable();
366 }
367}
368EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
369#endif /* CONFIG_VSX */
370
371#ifdef CONFIG_SPE
372void giveup_spe(struct task_struct *tsk)
373{
374 check_if_tm_restore_required(tsk);
375
376 msr_check_and_set(MSR_SPE);
377 __giveup_spe(tsk);
378 msr_check_and_clear(MSR_SPE);
379}
380EXPORT_SYMBOL(giveup_spe);
381
382void enable_kernel_spe(void)
383{
384 WARN_ON(preemptible());
385
386 msr_check_and_set(MSR_SPE);
387
388 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
389 check_if_tm_restore_required(current);
390 __giveup_spe(current);
391 }
392}
393EXPORT_SYMBOL(enable_kernel_spe);
394
395void flush_spe_to_thread(struct task_struct *tsk)
396{
397 if (tsk->thread.regs) {
398 preempt_disable();
399 if (tsk->thread.regs->msr & MSR_SPE) {
400 BUG_ON(tsk != current);
401 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
402 giveup_spe(tsk);
403 }
404 preempt_enable();
405 }
406}
407#endif /* CONFIG_SPE */
408
409static unsigned long msr_all_available;
410
411static int __init init_msr_all_available(void)
412{
413 if (IS_ENABLED(CONFIG_PPC_FPU))
414 msr_all_available |= MSR_FP;
415 if (cpu_has_feature(CPU_FTR_ALTIVEC))
416 msr_all_available |= MSR_VEC;
417 if (cpu_has_feature(CPU_FTR_VSX))
418 msr_all_available |= MSR_VSX;
419 if (cpu_has_feature(CPU_FTR_SPE))
420 msr_all_available |= MSR_SPE;
421
422 return 0;
423}
424early_initcall(init_msr_all_available);
425
426void giveup_all(struct task_struct *tsk)
427{
428 unsigned long usermsr;
429
430 if (!tsk->thread.regs)
431 return;
432
433 check_if_tm_restore_required(tsk);
434
435 usermsr = tsk->thread.regs->msr;
436
437 if ((usermsr & msr_all_available) == 0)
438 return;
439
440 msr_check_and_set(msr_all_available);
441
442 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
443
444 if (usermsr & MSR_FP)
445 __giveup_fpu(tsk);
446 if (usermsr & MSR_VEC)
447 __giveup_altivec(tsk);
448 if (usermsr & MSR_SPE)
449 __giveup_spe(tsk);
450
451 msr_check_and_clear(msr_all_available);
452}
453EXPORT_SYMBOL(giveup_all);
454
455#ifdef CONFIG_PPC_BOOK3S_64
456#ifdef CONFIG_PPC_FPU
457static bool should_restore_fp(void)
458{
459 if (current->thread.load_fp) {
460 current->thread.load_fp++;
461 return true;
462 }
463 return false;
464}
465
466static void do_restore_fp(void)
467{
468 load_fp_state(¤t->thread.fp_state);
469}
470#else
471static bool should_restore_fp(void) { return false; }
472static void do_restore_fp(void) { }
473#endif /* CONFIG_PPC_FPU */
474
475#ifdef CONFIG_ALTIVEC
476static bool should_restore_altivec(void)
477{
478 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
479 current->thread.load_vec++;
480 return true;
481 }
482 return false;
483}
484
485static void do_restore_altivec(void)
486{
487 load_vr_state(¤t->thread.vr_state);
488 current->thread.used_vr = 1;
489}
490#else
491static bool should_restore_altivec(void) { return false; }
492static void do_restore_altivec(void) { }
493#endif /* CONFIG_ALTIVEC */
494
495static bool should_restore_vsx(void)
496{
497 if (cpu_has_feature(CPU_FTR_VSX))
498 return true;
499 return false;
500}
501#ifdef CONFIG_VSX
502static void do_restore_vsx(void)
503{
504 current->thread.used_vsr = 1;
505}
506#else
507static void do_restore_vsx(void) { }
508#endif /* CONFIG_VSX */
509
510/*
511 * The exception exit path calls restore_math() with interrupts hard disabled
512 * but the soft irq state not "reconciled". ftrace code that calls
513 * local_irq_save/restore causes warnings.
514 *
515 * Rather than complicate the exit path, just don't trace restore_math. This
516 * could be done by having ftrace entry code check for this un-reconciled
517 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
518 * temporarily fix it up for the duration of the ftrace call.
519 */
520void notrace restore_math(struct pt_regs *regs)
521{
522 unsigned long msr;
523 unsigned long new_msr = 0;
524
525 msr = regs->msr;
526
527 /*
528 * new_msr tracks the facilities that are to be restored. Only reload
529 * if the bit is not set in the user MSR (if it is set, the registers
530 * are live for the user thread).
531 */
532 if ((!(msr & MSR_FP)) && should_restore_fp())
533 new_msr |= MSR_FP;
534
535 if ((!(msr & MSR_VEC)) && should_restore_altivec())
536 new_msr |= MSR_VEC;
537
538 if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
539 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
540 new_msr |= MSR_VSX;
541 }
542
543 if (new_msr) {
544 unsigned long fpexc_mode = 0;
545
546 msr_check_and_set(new_msr);
547
548 if (new_msr & MSR_FP) {
549 do_restore_fp();
550
551 // This also covers VSX, because VSX implies FP
552 fpexc_mode = current->thread.fpexc_mode;
553 }
554
555 if (new_msr & MSR_VEC)
556 do_restore_altivec();
557
558 if (new_msr & MSR_VSX)
559 do_restore_vsx();
560
561 msr_check_and_clear(new_msr);
562
563 regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode);
564 }
565}
566#endif /* CONFIG_PPC_BOOK3S_64 */
567
568static void save_all(struct task_struct *tsk)
569{
570 unsigned long usermsr;
571
572 if (!tsk->thread.regs)
573 return;
574
575 usermsr = tsk->thread.regs->msr;
576
577 if ((usermsr & msr_all_available) == 0)
578 return;
579
580 msr_check_and_set(msr_all_available);
581
582 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
583
584 if (usermsr & MSR_FP)
585 save_fpu(tsk);
586
587 if (usermsr & MSR_VEC)
588 save_altivec(tsk);
589
590 if (usermsr & MSR_SPE)
591 __giveup_spe(tsk);
592
593 msr_check_and_clear(msr_all_available);
594}
595
596void flush_all_to_thread(struct task_struct *tsk)
597{
598 if (tsk->thread.regs) {
599 preempt_disable();
600 BUG_ON(tsk != current);
601#ifdef CONFIG_SPE
602 if (tsk->thread.regs->msr & MSR_SPE)
603 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
604#endif
605 save_all(tsk);
606
607 preempt_enable();
608 }
609}
610EXPORT_SYMBOL(flush_all_to_thread);
611
612#ifdef CONFIG_PPC_ADV_DEBUG_REGS
613void do_send_trap(struct pt_regs *regs, unsigned long address,
614 unsigned long error_code, int breakpt)
615{
616 current->thread.trap_nr = TRAP_HWBKPT;
617 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
618 11, SIGSEGV) == NOTIFY_STOP)
619 return;
620
621 /* Deliver the signal to userspace */
622 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
623 (void __user *)address);
624}
625#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
626
627static void do_break_handler(struct pt_regs *regs)
628{
629 struct arch_hw_breakpoint null_brk = {0};
630 struct arch_hw_breakpoint *info;
631 ppc_inst_t instr = ppc_inst(0);
632 int type = 0;
633 int size = 0;
634 unsigned long ea;
635 int i;
636
637 /*
638 * If underneath hw supports only one watchpoint, we know it
639 * caused exception. 8xx also falls into this category.
640 */
641 if (nr_wp_slots() == 1) {
642 __set_breakpoint(0, &null_brk);
643 current->thread.hw_brk[0] = null_brk;
644 current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
645 return;
646 }
647
648 /* Otherwise findout which DAWR caused exception and disable it. */
649 wp_get_instr_detail(regs, &instr, &type, &size, &ea);
650
651 for (i = 0; i < nr_wp_slots(); i++) {
652 info = ¤t->thread.hw_brk[i];
653 if (!info->address)
654 continue;
655
656 if (wp_check_constraints(regs, instr, ea, type, size, info)) {
657 __set_breakpoint(i, &null_brk);
658 current->thread.hw_brk[i] = null_brk;
659 current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
660 }
661 }
662}
663
664DEFINE_INTERRUPT_HANDLER(do_break)
665{
666 current->thread.trap_nr = TRAP_HWBKPT;
667 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr,
668 11, SIGSEGV) == NOTIFY_STOP)
669 return;
670
671 if (debugger_break_match(regs))
672 return;
673
674 /*
675 * We reach here only when watchpoint exception is generated by ptrace
676 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
677 * watchpoint is already handled by hw_breakpoint_handler() so we don't
678 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
679 * we need to manually handle the watchpoint here.
680 */
681 if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
682 do_break_handler(regs);
683
684 /* Deliver the signal to userspace */
685 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar);
686}
687#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
688
689static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
690
691#ifdef CONFIG_PPC_ADV_DEBUG_REGS
692/*
693 * Set the debug registers back to their default "safe" values.
694 */
695static void set_debug_reg_defaults(struct thread_struct *thread)
696{
697 thread->debug.iac1 = thread->debug.iac2 = 0;
698#if CONFIG_PPC_ADV_DEBUG_IACS > 2
699 thread->debug.iac3 = thread->debug.iac4 = 0;
700#endif
701 thread->debug.dac1 = thread->debug.dac2 = 0;
702#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
703 thread->debug.dvc1 = thread->debug.dvc2 = 0;
704#endif
705 thread->debug.dbcr0 = 0;
706#ifdef CONFIG_BOOKE
707 /*
708 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
709 */
710 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
711 DBCR1_IAC3US | DBCR1_IAC4US;
712 /*
713 * Force Data Address Compare User/Supervisor bits to be User-only
714 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
715 */
716 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
717#else
718 thread->debug.dbcr1 = 0;
719#endif
720}
721
722static void prime_debug_regs(struct debug_reg *debug)
723{
724 /*
725 * We could have inherited MSR_DE from userspace, since
726 * it doesn't get cleared on exception entry. Make sure
727 * MSR_DE is clear before we enable any debug events.
728 */
729 mtmsr(mfmsr() & ~MSR_DE);
730
731 mtspr(SPRN_IAC1, debug->iac1);
732 mtspr(SPRN_IAC2, debug->iac2);
733#if CONFIG_PPC_ADV_DEBUG_IACS > 2
734 mtspr(SPRN_IAC3, debug->iac3);
735 mtspr(SPRN_IAC4, debug->iac4);
736#endif
737 mtspr(SPRN_DAC1, debug->dac1);
738 mtspr(SPRN_DAC2, debug->dac2);
739#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
740 mtspr(SPRN_DVC1, debug->dvc1);
741 mtspr(SPRN_DVC2, debug->dvc2);
742#endif
743 mtspr(SPRN_DBCR0, debug->dbcr0);
744 mtspr(SPRN_DBCR1, debug->dbcr1);
745#ifdef CONFIG_BOOKE
746 mtspr(SPRN_DBCR2, debug->dbcr2);
747#endif
748}
749/*
750 * Unless neither the old or new thread are making use of the
751 * debug registers, set the debug registers from the values
752 * stored in the new thread.
753 */
754void switch_booke_debug_regs(struct debug_reg *new_debug)
755{
756 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
757 || (new_debug->dbcr0 & DBCR0_IDM))
758 prime_debug_regs(new_debug);
759}
760EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
761#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
762#ifndef CONFIG_HAVE_HW_BREAKPOINT
763static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
764{
765 preempt_disable();
766 __set_breakpoint(i, brk);
767 preempt_enable();
768}
769
770static void set_debug_reg_defaults(struct thread_struct *thread)
771{
772 int i;
773 struct arch_hw_breakpoint null_brk = {0};
774
775 for (i = 0; i < nr_wp_slots(); i++) {
776 thread->hw_brk[i] = null_brk;
777 if (ppc_breakpoint_available())
778 set_breakpoint(i, &thread->hw_brk[i]);
779 }
780}
781
782static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
783 struct arch_hw_breakpoint *b)
784{
785 if (a->address != b->address)
786 return false;
787 if (a->type != b->type)
788 return false;
789 if (a->len != b->len)
790 return false;
791 /* no need to check hw_len. it's calculated from address and len */
792 return true;
793}
794
795static void switch_hw_breakpoint(struct task_struct *new)
796{
797 int i;
798
799 for (i = 0; i < nr_wp_slots(); i++) {
800 if (likely(hw_brk_match(this_cpu_ptr(¤t_brk[i]),
801 &new->thread.hw_brk[i])))
802 continue;
803
804 __set_breakpoint(i, &new->thread.hw_brk[i]);
805 }
806}
807#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
808#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
809
810static inline int set_dabr(struct arch_hw_breakpoint *brk)
811{
812 unsigned long dabr, dabrx;
813
814 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
815 dabrx = ((brk->type >> 3) & 0x7);
816
817 if (ppc_md.set_dabr)
818 return ppc_md.set_dabr(dabr, dabrx);
819
820 if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
821 mtspr(SPRN_DAC1, dabr);
822 if (IS_ENABLED(CONFIG_PPC_47x))
823 isync();
824 return 0;
825 } else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
826 mtspr(SPRN_DABR, dabr);
827 if (cpu_has_feature(CPU_FTR_DABRX))
828 mtspr(SPRN_DABRX, dabrx);
829 return 0;
830 } else {
831 return -EINVAL;
832 }
833}
834
835static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
836{
837 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
838 LCTRL1_CRWF_RW;
839 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
840 unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
841 unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
842
843 if (start_addr == 0)
844 lctrl2 |= LCTRL2_LW0LA_F;
845 else if (end_addr == 0)
846 lctrl2 |= LCTRL2_LW0LA_E;
847 else
848 lctrl2 |= LCTRL2_LW0LA_EandF;
849
850 mtspr(SPRN_LCTRL2, 0);
851
852 if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
853 return 0;
854
855 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
856 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
857 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
858 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
859
860 mtspr(SPRN_CMPE, start_addr - 1);
861 mtspr(SPRN_CMPF, end_addr);
862 mtspr(SPRN_LCTRL1, lctrl1);
863 mtspr(SPRN_LCTRL2, lctrl2);
864
865 return 0;
866}
867
868void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
869{
870 memcpy(this_cpu_ptr(¤t_brk[nr]), brk, sizeof(*brk));
871
872 if (dawr_enabled())
873 // Power8 or later
874 set_dawr(nr, brk);
875 else if (IS_ENABLED(CONFIG_PPC_8xx))
876 set_breakpoint_8xx(brk);
877 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
878 // Power7 or earlier
879 set_dabr(brk);
880 else
881 // Shouldn't happen due to higher level checks
882 WARN_ON_ONCE(1);
883}
884
885/* Check if we have DAWR or DABR hardware */
886bool ppc_breakpoint_available(void)
887{
888 if (dawr_enabled())
889 return true; /* POWER8 DAWR or POWER9 forced DAWR */
890 if (cpu_has_feature(CPU_FTR_ARCH_207S))
891 return false; /* POWER9 with DAWR disabled */
892 /* DABR: Everything but POWER8 and POWER9 */
893 return true;
894}
895EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
896
897#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
898
899static inline bool tm_enabled(struct task_struct *tsk)
900{
901 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
902}
903
904static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
905{
906 /*
907 * Use the current MSR TM suspended bit to track if we have
908 * checkpointed state outstanding.
909 * On signal delivery, we'd normally reclaim the checkpointed
910 * state to obtain stack pointer (see:get_tm_stackpointer()).
911 * This will then directly return to userspace without going
912 * through __switch_to(). However, if the stack frame is bad,
913 * we need to exit this thread which calls __switch_to() which
914 * will again attempt to reclaim the already saved tm state.
915 * Hence we need to check that we've not already reclaimed
916 * this state.
917 * We do this using the current MSR, rather tracking it in
918 * some specific thread_struct bit, as it has the additional
919 * benefit of checking for a potential TM bad thing exception.
920 */
921 if (!MSR_TM_SUSPENDED(mfmsr()))
922 return;
923
924 giveup_all(container_of(thr, struct task_struct, thread));
925
926 tm_reclaim(thr, cause);
927
928 /*
929 * If we are in a transaction and FP is off then we can't have
930 * used FP inside that transaction. Hence the checkpointed
931 * state is the same as the live state. We need to copy the
932 * live state to the checkpointed state so that when the
933 * transaction is restored, the checkpointed state is correct
934 * and the aborted transaction sees the correct state. We use
935 * ckpt_regs.msr here as that's what tm_reclaim will use to
936 * determine if it's going to write the checkpointed state or
937 * not. So either this will write the checkpointed registers,
938 * or reclaim will. Similarly for VMX.
939 */
940 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
941 memcpy(&thr->ckfp_state, &thr->fp_state,
942 sizeof(struct thread_fp_state));
943 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
944 memcpy(&thr->ckvr_state, &thr->vr_state,
945 sizeof(struct thread_vr_state));
946}
947
948void tm_reclaim_current(uint8_t cause)
949{
950 tm_enable();
951 tm_reclaim_thread(¤t->thread, cause);
952}
953
954static inline void tm_reclaim_task(struct task_struct *tsk)
955{
956 /* We have to work out if we're switching from/to a task that's in the
957 * middle of a transaction.
958 *
959 * In switching we need to maintain a 2nd register state as
960 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
961 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
962 * ckvr_state
963 *
964 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
965 */
966 struct thread_struct *thr = &tsk->thread;
967
968 if (!thr->regs)
969 return;
970
971 if (!MSR_TM_ACTIVE(thr->regs->msr))
972 goto out_and_saveregs;
973
974 WARN_ON(tm_suspend_disabled);
975
976 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
977 "ccr=%lx, msr=%lx, trap=%lx)\n",
978 tsk->pid, thr->regs->nip,
979 thr->regs->ccr, thr->regs->msr,
980 thr->regs->trap);
981
982 tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
983
984 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
985 tsk->pid);
986
987out_and_saveregs:
988 /* Always save the regs here, even if a transaction's not active.
989 * This context-switches a thread's TM info SPRs. We do it here to
990 * be consistent with the restore path (in recheckpoint) which
991 * cannot happen later in _switch().
992 */
993 tm_save_sprs(thr);
994}
995
996extern void __tm_recheckpoint(struct thread_struct *thread);
997
998void tm_recheckpoint(struct thread_struct *thread)
999{
1000 unsigned long flags;
1001
1002 if (!(thread->regs->msr & MSR_TM))
1003 return;
1004
1005 /* We really can't be interrupted here as the TEXASR registers can't
1006 * change and later in the trecheckpoint code, we have a userspace R1.
1007 * So let's hard disable over this region.
1008 */
1009 local_irq_save(flags);
1010 hard_irq_disable();
1011
1012 /* The TM SPRs are restored here, so that TEXASR.FS can be set
1013 * before the trecheckpoint and no explosion occurs.
1014 */
1015 tm_restore_sprs(thread);
1016
1017 __tm_recheckpoint(thread);
1018
1019 local_irq_restore(flags);
1020}
1021
1022static inline void tm_recheckpoint_new_task(struct task_struct *new)
1023{
1024 if (!cpu_has_feature(CPU_FTR_TM))
1025 return;
1026
1027 /* Recheckpoint the registers of the thread we're about to switch to.
1028 *
1029 * If the task was using FP, we non-lazily reload both the original and
1030 * the speculative FP register states. This is because the kernel
1031 * doesn't see if/when a TM rollback occurs, so if we take an FP
1032 * unavailable later, we are unable to determine which set of FP regs
1033 * need to be restored.
1034 */
1035 if (!tm_enabled(new))
1036 return;
1037
1038 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1039 tm_restore_sprs(&new->thread);
1040 return;
1041 }
1042 /* Recheckpoint to restore original checkpointed register state. */
1043 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1044 new->pid, new->thread.regs->msr);
1045
1046 tm_recheckpoint(&new->thread);
1047
1048 /*
1049 * The checkpointed state has been restored but the live state has
1050 * not, ensure all the math functionality is turned off to trigger
1051 * restore_math() to reload.
1052 */
1053 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1054
1055 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1056 "(kernel msr 0x%lx)\n",
1057 new->pid, mfmsr());
1058}
1059
1060static inline void __switch_to_tm(struct task_struct *prev,
1061 struct task_struct *new)
1062{
1063 if (cpu_has_feature(CPU_FTR_TM)) {
1064 if (tm_enabled(prev) || tm_enabled(new))
1065 tm_enable();
1066
1067 if (tm_enabled(prev)) {
1068 prev->thread.load_tm++;
1069 tm_reclaim_task(prev);
1070 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1071 prev->thread.regs->msr &= ~MSR_TM;
1072 }
1073
1074 tm_recheckpoint_new_task(new);
1075 }
1076}
1077
1078/*
1079 * This is called if we are on the way out to userspace and the
1080 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1081 * FP and/or vector state and does so if necessary.
1082 * If userspace is inside a transaction (whether active or
1083 * suspended) and FP/VMX/VSX instructions have ever been enabled
1084 * inside that transaction, then we have to keep them enabled
1085 * and keep the FP/VMX/VSX state loaded while ever the transaction
1086 * continues. The reason is that if we didn't, and subsequently
1087 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1088 * we don't know whether it's the same transaction, and thus we
1089 * don't know which of the checkpointed state and the transactional
1090 * state to use.
1091 */
1092void restore_tm_state(struct pt_regs *regs)
1093{
1094 unsigned long msr_diff;
1095
1096 /*
1097 * This is the only moment we should clear TIF_RESTORE_TM as
1098 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1099 * again, anything else could lead to an incorrect ckpt_msr being
1100 * saved and therefore incorrect signal contexts.
1101 */
1102 clear_thread_flag(TIF_RESTORE_TM);
1103 if (!MSR_TM_ACTIVE(regs->msr))
1104 return;
1105
1106 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1107 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1108
1109 /* Ensure that restore_math() will restore */
1110 if (msr_diff & MSR_FP)
1111 current->thread.load_fp = 1;
1112#ifdef CONFIG_ALTIVEC
1113 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1114 current->thread.load_vec = 1;
1115#endif
1116 restore_math(regs);
1117
1118 regs_set_return_msr(regs, regs->msr | msr_diff);
1119}
1120
1121#else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
1122#define tm_recheckpoint_new_task(new)
1123#define __switch_to_tm(prev, new)
1124void tm_reclaim_current(uint8_t cause) {}
1125#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1126
1127static inline void save_sprs(struct thread_struct *t)
1128{
1129#ifdef CONFIG_ALTIVEC
1130 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1131 t->vrsave = mfspr(SPRN_VRSAVE);
1132#endif
1133#ifdef CONFIG_SPE
1134 if (cpu_has_feature(CPU_FTR_SPE))
1135 t->spefscr = mfspr(SPRN_SPEFSCR);
1136#endif
1137#ifdef CONFIG_PPC_BOOK3S_64
1138 if (cpu_has_feature(CPU_FTR_DSCR))
1139 t->dscr = mfspr(SPRN_DSCR);
1140
1141 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1142 t->bescr = mfspr(SPRN_BESCR);
1143 t->ebbhr = mfspr(SPRN_EBBHR);
1144 t->ebbrr = mfspr(SPRN_EBBRR);
1145
1146 t->fscr = mfspr(SPRN_FSCR);
1147
1148 /*
1149 * Note that the TAR is not available for use in the kernel.
1150 * (To provide this, the TAR should be backed up/restored on
1151 * exception entry/exit instead, and be in pt_regs. FIXME,
1152 * this should be in pt_regs anyway (for debug).)
1153 */
1154 t->tar = mfspr(SPRN_TAR);
1155 }
1156#endif
1157}
1158
1159#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1160void kvmppc_save_user_regs(void)
1161{
1162 unsigned long usermsr;
1163
1164 if (!current->thread.regs)
1165 return;
1166
1167 usermsr = current->thread.regs->msr;
1168
1169 if (usermsr & MSR_FP)
1170 save_fpu(current);
1171
1172 if (usermsr & MSR_VEC)
1173 save_altivec(current);
1174
1175#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1176 if (usermsr & MSR_TM) {
1177 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
1178 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
1179 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
1180 current->thread.regs->msr &= ~MSR_TM;
1181 }
1182#endif
1183}
1184EXPORT_SYMBOL_GPL(kvmppc_save_user_regs);
1185
1186void kvmppc_save_current_sprs(void)
1187{
1188 save_sprs(¤t->thread);
1189}
1190EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs);
1191#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1192
1193static inline void restore_sprs(struct thread_struct *old_thread,
1194 struct thread_struct *new_thread)
1195{
1196#ifdef CONFIG_ALTIVEC
1197 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1198 old_thread->vrsave != new_thread->vrsave)
1199 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1200#endif
1201#ifdef CONFIG_SPE
1202 if (cpu_has_feature(CPU_FTR_SPE) &&
1203 old_thread->spefscr != new_thread->spefscr)
1204 mtspr(SPRN_SPEFSCR, new_thread->spefscr);
1205#endif
1206#ifdef CONFIG_PPC_BOOK3S_64
1207 if (cpu_has_feature(CPU_FTR_DSCR)) {
1208 u64 dscr = get_paca()->dscr_default;
1209 if (new_thread->dscr_inherit)
1210 dscr = new_thread->dscr;
1211
1212 if (old_thread->dscr != dscr)
1213 mtspr(SPRN_DSCR, dscr);
1214 }
1215
1216 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1217 if (old_thread->bescr != new_thread->bescr)
1218 mtspr(SPRN_BESCR, new_thread->bescr);
1219 if (old_thread->ebbhr != new_thread->ebbhr)
1220 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1221 if (old_thread->ebbrr != new_thread->ebbrr)
1222 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1223
1224 if (old_thread->fscr != new_thread->fscr)
1225 mtspr(SPRN_FSCR, new_thread->fscr);
1226
1227 if (old_thread->tar != new_thread->tar)
1228 mtspr(SPRN_TAR, new_thread->tar);
1229 }
1230
1231 if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1232 old_thread->tidr != new_thread->tidr)
1233 mtspr(SPRN_TIDR, new_thread->tidr);
1234#endif
1235
1236}
1237
1238struct task_struct *__switch_to(struct task_struct *prev,
1239 struct task_struct *new)
1240{
1241 struct thread_struct *new_thread, *old_thread;
1242 struct task_struct *last;
1243#ifdef CONFIG_PPC_64S_HASH_MMU
1244 struct ppc64_tlb_batch *batch;
1245#endif
1246
1247 new_thread = &new->thread;
1248 old_thread = ¤t->thread;
1249
1250 WARN_ON(!irqs_disabled());
1251
1252#ifdef CONFIG_PPC_64S_HASH_MMU
1253 batch = this_cpu_ptr(&ppc64_tlb_batch);
1254 if (batch->active) {
1255 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1256 if (batch->index)
1257 __flush_tlb_pending(batch);
1258 batch->active = 0;
1259 }
1260
1261 /*
1262 * On POWER9 the copy-paste buffer can only paste into
1263 * foreign real addresses, so unprivileged processes can not
1264 * see the data or use it in any way unless they have
1265 * foreign real mappings. If the new process has the foreign
1266 * real address mappings, we must issue a cp_abort to clear
1267 * any state and prevent snooping, corruption or a covert
1268 * channel. ISA v3.1 supports paste into local memory.
1269 */
1270 if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) ||
1271 atomic_read(&new->mm->context.vas_windows)))
1272 asm volatile(PPC_CP_ABORT);
1273#endif /* CONFIG_PPC_BOOK3S_64 */
1274
1275#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1276 switch_booke_debug_regs(&new->thread.debug);
1277#else
1278/*
1279 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1280 * schedule DABR
1281 */
1282#ifndef CONFIG_HAVE_HW_BREAKPOINT
1283 switch_hw_breakpoint(new);
1284#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1285#endif
1286
1287 /*
1288 * We need to save SPRs before treclaim/trecheckpoint as these will
1289 * change a number of them.
1290 */
1291 save_sprs(&prev->thread);
1292
1293 /* Save FPU, Altivec, VSX and SPE state */
1294 giveup_all(prev);
1295
1296 __switch_to_tm(prev, new);
1297
1298 if (!radix_enabled()) {
1299 /*
1300 * We can't take a PMU exception inside _switch() since there
1301 * is a window where the kernel stack SLB and the kernel stack
1302 * are out of sync. Hard disable here.
1303 */
1304 hard_irq_disable();
1305 }
1306
1307 /*
1308 * Call restore_sprs() and set_return_regs_changed() before calling
1309 * _switch(). If we move it after _switch() then we miss out on calling
1310 * it for new tasks. The reason for this is we manually create a stack
1311 * frame for new tasks that directly returns through ret_from_fork() or
1312 * ret_from_kernel_thread(). See copy_thread() for details.
1313 */
1314 restore_sprs(old_thread, new_thread);
1315
1316 set_return_regs_changed(); /* _switch changes stack (and regs) */
1317
1318 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1319 kuap_assert_locked();
1320
1321 last = _switch(old_thread, new_thread);
1322
1323 /*
1324 * Nothing after _switch will be run for newly created tasks,
1325 * because they switch directly to ret_from_fork/ret_from_kernel_thread
1326 * etc. Code added here should have a comment explaining why that is
1327 * okay.
1328 */
1329
1330#ifdef CONFIG_PPC_BOOK3S_64
1331#ifdef CONFIG_PPC_64S_HASH_MMU
1332 /*
1333 * This applies to a process that was context switched while inside
1334 * arch_enter_lazy_mmu_mode(), to re-activate the batch that was
1335 * deactivated above, before _switch(). This will never be the case
1336 * for new tasks.
1337 */
1338 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1339 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1340 batch = this_cpu_ptr(&ppc64_tlb_batch);
1341 batch->active = 1;
1342 }
1343#endif
1344
1345 /*
1346 * Math facilities are masked out of the child MSR in copy_thread.
1347 * A new task does not need to restore_math because it will
1348 * demand fault them.
1349 */
1350 if (current->thread.regs)
1351 restore_math(current->thread.regs);
1352#endif /* CONFIG_PPC_BOOK3S_64 */
1353
1354 return last;
1355}
1356
1357#define NR_INSN_TO_PRINT 16
1358
1359static void show_instructions(struct pt_regs *regs)
1360{
1361 int i;
1362 unsigned long nip = regs->nip;
1363 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1364
1365 printk("Instruction dump:");
1366
1367 /*
1368 * If we were executing with the MMU off for instructions, adjust pc
1369 * rather than printing XXXXXXXX.
1370 */
1371 if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1372 pc = (unsigned long)phys_to_virt(pc);
1373 nip = (unsigned long)phys_to_virt(regs->nip);
1374 }
1375
1376 for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1377 int instr;
1378
1379 if (!(i % 8))
1380 pr_cont("\n");
1381
1382 if (!__kernel_text_address(pc) ||
1383 get_kernel_nofault(instr, (const void *)pc)) {
1384 pr_cont("XXXXXXXX ");
1385 } else {
1386 if (nip == pc)
1387 pr_cont("<%08x> ", instr);
1388 else
1389 pr_cont("%08x ", instr);
1390 }
1391
1392 pc += sizeof(int);
1393 }
1394
1395 pr_cont("\n");
1396}
1397
1398void show_user_instructions(struct pt_regs *regs)
1399{
1400 unsigned long pc;
1401 int n = NR_INSN_TO_PRINT;
1402 struct seq_buf s;
1403 char buf[96]; /* enough for 8 times 9 + 2 chars */
1404
1405 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1406
1407 seq_buf_init(&s, buf, sizeof(buf));
1408
1409 while (n) {
1410 int i;
1411
1412 seq_buf_clear(&s);
1413
1414 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1415 int instr;
1416
1417 if (copy_from_user_nofault(&instr, (void __user *)pc,
1418 sizeof(instr))) {
1419 seq_buf_printf(&s, "XXXXXXXX ");
1420 continue;
1421 }
1422 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1423 }
1424
1425 if (!seq_buf_has_overflowed(&s))
1426 pr_info("%s[%d]: code: %s\n", current->comm,
1427 current->pid, s.buffer);
1428 }
1429}
1430
1431struct regbit {
1432 unsigned long bit;
1433 const char *name;
1434};
1435
1436static struct regbit msr_bits[] = {
1437#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1438 {MSR_SF, "SF"},
1439 {MSR_HV, "HV"},
1440#endif
1441 {MSR_VEC, "VEC"},
1442 {MSR_VSX, "VSX"},
1443#ifdef CONFIG_BOOKE
1444 {MSR_CE, "CE"},
1445#endif
1446 {MSR_EE, "EE"},
1447 {MSR_PR, "PR"},
1448 {MSR_FP, "FP"},
1449 {MSR_ME, "ME"},
1450#ifdef CONFIG_BOOKE
1451 {MSR_DE, "DE"},
1452#else
1453 {MSR_SE, "SE"},
1454 {MSR_BE, "BE"},
1455#endif
1456 {MSR_IR, "IR"},
1457 {MSR_DR, "DR"},
1458 {MSR_PMM, "PMM"},
1459#ifndef CONFIG_BOOKE
1460 {MSR_RI, "RI"},
1461 {MSR_LE, "LE"},
1462#endif
1463 {0, NULL}
1464};
1465
1466static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1467{
1468 const char *s = "";
1469
1470 for (; bits->bit; ++bits)
1471 if (val & bits->bit) {
1472 pr_cont("%s%s", s, bits->name);
1473 s = sep;
1474 }
1475}
1476
1477#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1478static struct regbit msr_tm_bits[] = {
1479 {MSR_TS_T, "T"},
1480 {MSR_TS_S, "S"},
1481 {MSR_TM, "E"},
1482 {0, NULL}
1483};
1484
1485static void print_tm_bits(unsigned long val)
1486{
1487/*
1488 * This only prints something if at least one of the TM bit is set.
1489 * Inside the TM[], the output means:
1490 * E: Enabled (bit 32)
1491 * S: Suspended (bit 33)
1492 * T: Transactional (bit 34)
1493 */
1494 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1495 pr_cont(",TM[");
1496 print_bits(val, msr_tm_bits, "");
1497 pr_cont("]");
1498 }
1499}
1500#else
1501static void print_tm_bits(unsigned long val) {}
1502#endif
1503
1504static void print_msr_bits(unsigned long val)
1505{
1506 pr_cont("<");
1507 print_bits(val, msr_bits, ",");
1508 print_tm_bits(val);
1509 pr_cont(">");
1510}
1511
1512#ifdef CONFIG_PPC64
1513#define REG "%016lx"
1514#define REGS_PER_LINE 4
1515#else
1516#define REG "%08lx"
1517#define REGS_PER_LINE 8
1518#endif
1519
1520static void __show_regs(struct pt_regs *regs)
1521{
1522 int i, trap;
1523
1524 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1525 regs->nip, regs->link, regs->ctr);
1526 printk("REGS: %px TRAP: %04lx %s (%s)\n",
1527 regs, regs->trap, print_tainted(), init_utsname()->release);
1528 printk("MSR: "REG" ", regs->msr);
1529 print_msr_bits(regs->msr);
1530 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1531 trap = TRAP(regs);
1532 if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1533 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1534 if (trap == INTERRUPT_MACHINE_CHECK ||
1535 trap == INTERRUPT_DATA_STORAGE ||
1536 trap == INTERRUPT_ALIGNMENT) {
1537 if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE))
1538 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr);
1539 else
1540 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1541 }
1542
1543#ifdef CONFIG_PPC64
1544 pr_cont("IRQMASK: %lx ", regs->softe);
1545#endif
1546#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1547 if (MSR_TM_ACTIVE(regs->msr))
1548 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1549#endif
1550
1551 for (i = 0; i < 32; i++) {
1552 if ((i % REGS_PER_LINE) == 0)
1553 pr_cont("\nGPR%02d: ", i);
1554 pr_cont(REG " ", regs->gpr[i]);
1555 }
1556 pr_cont("\n");
1557 /*
1558 * Lookup NIP late so we have the best change of getting the
1559 * above info out without failing
1560 */
1561 if (IS_ENABLED(CONFIG_KALLSYMS)) {
1562 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1563 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1564 }
1565}
1566
1567void show_regs(struct pt_regs *regs)
1568{
1569 show_regs_print_info(KERN_DEFAULT);
1570 __show_regs(regs);
1571 show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1572 if (!user_mode(regs))
1573 show_instructions(regs);
1574}
1575
1576void flush_thread(void)
1577{
1578#ifdef CONFIG_HAVE_HW_BREAKPOINT
1579 flush_ptrace_hw_breakpoint(current);
1580#else /* CONFIG_HAVE_HW_BREAKPOINT */
1581 set_debug_reg_defaults(¤t->thread);
1582#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1583}
1584
1585void arch_setup_new_exec(void)
1586{
1587
1588#ifdef CONFIG_PPC_BOOK3S_64
1589 if (!radix_enabled())
1590 hash__setup_new_exec();
1591#endif
1592 /*
1593 * If we exec out of a kernel thread then thread.regs will not be
1594 * set. Do it now.
1595 */
1596 if (!current->thread.regs) {
1597 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1598 current->thread.regs = regs - 1;
1599 }
1600
1601#ifdef CONFIG_PPC_MEM_KEYS
1602 current->thread.regs->amr = default_amr;
1603 current->thread.regs->iamr = default_iamr;
1604#endif
1605}
1606
1607#ifdef CONFIG_PPC64
1608/**
1609 * Assign a TIDR (thread ID) for task @t and set it in the thread
1610 * structure. For now, we only support setting TIDR for 'current' task.
1611 *
1612 * Since the TID value is a truncated form of it PID, it is possible
1613 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1614 * that 2 threads share the same TID and are waiting, one of the following
1615 * cases will happen:
1616 *
1617 * 1. The correct thread is running, the wrong thread is not
1618 * In this situation, the correct thread is woken and proceeds to pass it's
1619 * condition check.
1620 *
1621 * 2. Neither threads are running
1622 * In this situation, neither thread will be woken. When scheduled, the waiting
1623 * threads will execute either a wait, which will return immediately, followed
1624 * by a condition check, which will pass for the correct thread and fail
1625 * for the wrong thread, or they will execute the condition check immediately.
1626 *
1627 * 3. The wrong thread is running, the correct thread is not
1628 * The wrong thread will be woken, but will fail it's condition check and
1629 * re-execute wait. The correct thread, when scheduled, will execute either
1630 * it's condition check (which will pass), or wait, which returns immediately
1631 * when called the first time after the thread is scheduled, followed by it's
1632 * condition check (which will pass).
1633 *
1634 * 4. Both threads are running
1635 * Both threads will be woken. The wrong thread will fail it's condition check
1636 * and execute another wait, while the correct thread will pass it's condition
1637 * check.
1638 *
1639 * @t: the task to set the thread ID for
1640 */
1641int set_thread_tidr(struct task_struct *t)
1642{
1643 if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1644 return -EINVAL;
1645
1646 if (t != current)
1647 return -EINVAL;
1648
1649 if (t->thread.tidr)
1650 return 0;
1651
1652 t->thread.tidr = (u16)task_pid_nr(t);
1653 mtspr(SPRN_TIDR, t->thread.tidr);
1654
1655 return 0;
1656}
1657EXPORT_SYMBOL_GPL(set_thread_tidr);
1658
1659#endif /* CONFIG_PPC64 */
1660
1661void
1662release_thread(struct task_struct *t)
1663{
1664}
1665
1666/*
1667 * this gets called so that we can store coprocessor state into memory and
1668 * copy the current task into the new thread.
1669 */
1670int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1671{
1672 flush_all_to_thread(src);
1673 /*
1674 * Flush TM state out so we can copy it. __switch_to_tm() does this
1675 * flush but it removes the checkpointed state from the current CPU and
1676 * transitions the CPU out of TM mode. Hence we need to call
1677 * tm_recheckpoint_new_task() (on the same task) to restore the
1678 * checkpointed state back and the TM mode.
1679 *
1680 * Can't pass dst because it isn't ready. Doesn't matter, passing
1681 * dst is only important for __switch_to()
1682 */
1683 __switch_to_tm(src, src);
1684
1685 *dst = *src;
1686
1687 clear_task_ebb(dst);
1688
1689 return 0;
1690}
1691
1692static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1693{
1694#ifdef CONFIG_PPC_64S_HASH_MMU
1695 unsigned long sp_vsid;
1696 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1697
1698 if (radix_enabled())
1699 return;
1700
1701 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1702 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1703 << SLB_VSID_SHIFT_1T;
1704 else
1705 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1706 << SLB_VSID_SHIFT;
1707 sp_vsid |= SLB_VSID_KERNEL | llp;
1708 p->thread.ksp_vsid = sp_vsid;
1709#endif
1710}
1711
1712/*
1713 * Copy a thread..
1714 */
1715
1716/*
1717 * Copy architecture-specific thread state
1718 */
1719int copy_thread(unsigned long clone_flags, unsigned long usp,
1720 unsigned long kthread_arg, struct task_struct *p,
1721 unsigned long tls)
1722{
1723 struct pt_regs *childregs, *kregs;
1724 extern void ret_from_fork(void);
1725 extern void ret_from_fork_scv(void);
1726 extern void ret_from_kernel_thread(void);
1727 void (*f)(void);
1728 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1729 struct thread_info *ti = task_thread_info(p);
1730#ifdef CONFIG_HAVE_HW_BREAKPOINT
1731 int i;
1732#endif
1733
1734 klp_init_thread_info(p);
1735
1736 /* Copy registers */
1737 sp -= sizeof(struct pt_regs);
1738 childregs = (struct pt_regs *) sp;
1739 if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) {
1740 /* kernel thread */
1741 memset(childregs, 0, sizeof(struct pt_regs));
1742 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1743 /* function */
1744 if (usp)
1745 childregs->gpr[14] = ppc_function_entry((void *)usp);
1746#ifdef CONFIG_PPC64
1747 clear_tsk_thread_flag(p, TIF_32BIT);
1748 childregs->softe = IRQS_ENABLED;
1749#endif
1750 childregs->gpr[15] = kthread_arg;
1751 p->thread.regs = NULL; /* no user register state */
1752 ti->flags |= _TIF_RESTOREALL;
1753 f = ret_from_kernel_thread;
1754 } else {
1755 /* user thread */
1756 struct pt_regs *regs = current_pt_regs();
1757 *childregs = *regs;
1758 if (usp)
1759 childregs->gpr[1] = usp;
1760 p->thread.regs = childregs;
1761 /* 64s sets this in ret_from_fork */
1762 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1763 childregs->gpr[3] = 0; /* Result from fork() */
1764 if (clone_flags & CLONE_SETTLS) {
1765 if (!is_32bit_task())
1766 childregs->gpr[13] = tls;
1767 else
1768 childregs->gpr[2] = tls;
1769 }
1770
1771 if (trap_is_scv(regs))
1772 f = ret_from_fork_scv;
1773 else
1774 f = ret_from_fork;
1775 }
1776 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1777 sp -= STACK_FRAME_OVERHEAD;
1778
1779 /*
1780 * The way this works is that at some point in the future
1781 * some task will call _switch to switch to the new task.
1782 * That will pop off the stack frame created below and start
1783 * the new task running at ret_from_fork. The new task will
1784 * do some house keeping and then return from the fork or clone
1785 * system call, using the stack frame created above.
1786 */
1787 ((unsigned long *)sp)[0] = 0;
1788 sp -= sizeof(struct pt_regs);
1789 kregs = (struct pt_regs *) sp;
1790 sp -= STACK_FRAME_OVERHEAD;
1791 p->thread.ksp = sp;
1792#ifdef CONFIG_HAVE_HW_BREAKPOINT
1793 for (i = 0; i < nr_wp_slots(); i++)
1794 p->thread.ptrace_bps[i] = NULL;
1795#endif
1796
1797#ifdef CONFIG_PPC_FPU_REGS
1798 p->thread.fp_save_area = NULL;
1799#endif
1800#ifdef CONFIG_ALTIVEC
1801 p->thread.vr_save_area = NULL;
1802#endif
1803#if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP)
1804 p->thread.kuap = KUAP_NONE;
1805#endif
1806#if defined(CONFIG_BOOKE_OR_40x) && defined(CONFIG_PPC_KUAP)
1807 p->thread.pid = MMU_NO_CONTEXT;
1808#endif
1809
1810 setup_ksp_vsid(p, sp);
1811
1812#ifdef CONFIG_PPC64
1813 if (cpu_has_feature(CPU_FTR_DSCR)) {
1814 p->thread.dscr_inherit = current->thread.dscr_inherit;
1815 p->thread.dscr = mfspr(SPRN_DSCR);
1816 }
1817 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1818 childregs->ppr = DEFAULT_PPR;
1819
1820 p->thread.tidr = 0;
1821#endif
1822 /*
1823 * Run with the current AMR value of the kernel
1824 */
1825#ifdef CONFIG_PPC_PKEY
1826 if (mmu_has_feature(MMU_FTR_BOOK3S_KUAP))
1827 kregs->amr = AMR_KUAP_BLOCKED;
1828
1829 if (mmu_has_feature(MMU_FTR_BOOK3S_KUEP))
1830 kregs->iamr = AMR_KUEP_BLOCKED;
1831#endif
1832 kregs->nip = ppc_function_entry(f);
1833 return 0;
1834}
1835
1836void preload_new_slb_context(unsigned long start, unsigned long sp);
1837
1838/*
1839 * Set up a thread for executing a new program
1840 */
1841void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1842{
1843#ifdef CONFIG_PPC64
1844 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1845
1846 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
1847 preload_new_slb_context(start, sp);
1848#endif
1849
1850#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1851 /*
1852 * Clear any transactional state, we're exec()ing. The cause is
1853 * not important as there will never be a recheckpoint so it's not
1854 * user visible.
1855 */
1856 if (MSR_TM_SUSPENDED(mfmsr()))
1857 tm_reclaim_current(0);
1858#endif
1859
1860 memset(regs->gpr, 0, sizeof(regs->gpr));
1861 regs->ctr = 0;
1862 regs->link = 0;
1863 regs->xer = 0;
1864 regs->ccr = 0;
1865 regs->gpr[1] = sp;
1866
1867#ifdef CONFIG_PPC32
1868 regs->mq = 0;
1869 regs->nip = start;
1870 regs->msr = MSR_USER;
1871#else
1872 if (!is_32bit_task()) {
1873 unsigned long entry;
1874
1875 if (is_elf2_task()) {
1876 /* Look ma, no function descriptors! */
1877 entry = start;
1878
1879 /*
1880 * Ulrich says:
1881 * The latest iteration of the ABI requires that when
1882 * calling a function (at its global entry point),
1883 * the caller must ensure r12 holds the entry point
1884 * address (so that the function can quickly
1885 * establish addressability).
1886 */
1887 regs->gpr[12] = start;
1888 /* Make sure that's restored on entry to userspace. */
1889 set_thread_flag(TIF_RESTOREALL);
1890 } else {
1891 unsigned long toc;
1892
1893 /* start is a relocated pointer to the function
1894 * descriptor for the elf _start routine. The first
1895 * entry in the function descriptor is the entry
1896 * address of _start and the second entry is the TOC
1897 * value we need to use.
1898 */
1899 __get_user(entry, (unsigned long __user *)start);
1900 __get_user(toc, (unsigned long __user *)start+1);
1901
1902 /* Check whether the e_entry function descriptor entries
1903 * need to be relocated before we can use them.
1904 */
1905 if (load_addr != 0) {
1906 entry += load_addr;
1907 toc += load_addr;
1908 }
1909 regs->gpr[2] = toc;
1910 }
1911 regs_set_return_ip(regs, entry);
1912 regs_set_return_msr(regs, MSR_USER64);
1913 } else {
1914 regs->gpr[2] = 0;
1915 regs_set_return_ip(regs, start);
1916 regs_set_return_msr(regs, MSR_USER32);
1917 }
1918
1919#endif
1920#ifdef CONFIG_VSX
1921 current->thread.used_vsr = 0;
1922#endif
1923 current->thread.load_slb = 0;
1924 current->thread.load_fp = 0;
1925#ifdef CONFIG_PPC_FPU_REGS
1926 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state));
1927 current->thread.fp_save_area = NULL;
1928#endif
1929#ifdef CONFIG_ALTIVEC
1930 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state));
1931 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1932 current->thread.vr_save_area = NULL;
1933 current->thread.vrsave = 0;
1934 current->thread.used_vr = 0;
1935 current->thread.load_vec = 0;
1936#endif /* CONFIG_ALTIVEC */
1937#ifdef CONFIG_SPE
1938 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1939 current->thread.acc = 0;
1940 current->thread.spefscr = 0;
1941 current->thread.used_spe = 0;
1942#endif /* CONFIG_SPE */
1943#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1944 current->thread.tm_tfhar = 0;
1945 current->thread.tm_texasr = 0;
1946 current->thread.tm_tfiar = 0;
1947 current->thread.load_tm = 0;
1948#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1949}
1950EXPORT_SYMBOL(start_thread);
1951
1952#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1953 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1954
1955int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1956{
1957 struct pt_regs *regs = tsk->thread.regs;
1958
1959 /* This is a bit hairy. If we are an SPE enabled processor
1960 * (have embedded fp) we store the IEEE exception enable flags in
1961 * fpexc_mode. fpexc_mode is also used for setting FP exception
1962 * mode (asyn, precise, disabled) for 'Classic' FP. */
1963 if (val & PR_FP_EXC_SW_ENABLE) {
1964 if (cpu_has_feature(CPU_FTR_SPE)) {
1965 /*
1966 * When the sticky exception bits are set
1967 * directly by userspace, it must call prctl
1968 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1969 * in the existing prctl settings) or
1970 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1971 * the bits being set). <fenv.h> functions
1972 * saving and restoring the whole
1973 * floating-point environment need to do so
1974 * anyway to restore the prctl settings from
1975 * the saved environment.
1976 */
1977#ifdef CONFIG_SPE
1978 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1979 tsk->thread.fpexc_mode = val &
1980 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1981#endif
1982 return 0;
1983 } else {
1984 return -EINVAL;
1985 }
1986 }
1987
1988 /* on a CONFIG_SPE this does not hurt us. The bits that
1989 * __pack_fe01 use do not overlap with bits used for
1990 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1991 * on CONFIG_SPE implementations are reserved so writing to
1992 * them does not change anything */
1993 if (val > PR_FP_EXC_PRECISE)
1994 return -EINVAL;
1995 tsk->thread.fpexc_mode = __pack_fe01(val);
1996 if (regs != NULL && (regs->msr & MSR_FP) != 0) {
1997 regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1))
1998 | tsk->thread.fpexc_mode);
1999 }
2000 return 0;
2001}
2002
2003int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
2004{
2005 unsigned int val = 0;
2006
2007 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
2008 if (cpu_has_feature(CPU_FTR_SPE)) {
2009 /*
2010 * When the sticky exception bits are set
2011 * directly by userspace, it must call prctl
2012 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2013 * in the existing prctl settings) or
2014 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2015 * the bits being set). <fenv.h> functions
2016 * saving and restoring the whole
2017 * floating-point environment need to do so
2018 * anyway to restore the prctl settings from
2019 * the saved environment.
2020 */
2021#ifdef CONFIG_SPE
2022 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
2023 val = tsk->thread.fpexc_mode;
2024#endif
2025 } else
2026 return -EINVAL;
2027 } else {
2028 val = __unpack_fe01(tsk->thread.fpexc_mode);
2029 }
2030 return put_user(val, (unsigned int __user *) adr);
2031}
2032
2033int set_endian(struct task_struct *tsk, unsigned int val)
2034{
2035 struct pt_regs *regs = tsk->thread.regs;
2036
2037 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
2038 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
2039 return -EINVAL;
2040
2041 if (regs == NULL)
2042 return -EINVAL;
2043
2044 if (val == PR_ENDIAN_BIG)
2045 regs_set_return_msr(regs, regs->msr & ~MSR_LE);
2046 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
2047 regs_set_return_msr(regs, regs->msr | MSR_LE);
2048 else
2049 return -EINVAL;
2050
2051 return 0;
2052}
2053
2054int get_endian(struct task_struct *tsk, unsigned long adr)
2055{
2056 struct pt_regs *regs = tsk->thread.regs;
2057 unsigned int val;
2058
2059 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
2060 !cpu_has_feature(CPU_FTR_REAL_LE))
2061 return -EINVAL;
2062
2063 if (regs == NULL)
2064 return -EINVAL;
2065
2066 if (regs->msr & MSR_LE) {
2067 if (cpu_has_feature(CPU_FTR_REAL_LE))
2068 val = PR_ENDIAN_LITTLE;
2069 else
2070 val = PR_ENDIAN_PPC_LITTLE;
2071 } else
2072 val = PR_ENDIAN_BIG;
2073
2074 return put_user(val, (unsigned int __user *)adr);
2075}
2076
2077int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2078{
2079 tsk->thread.align_ctl = val;
2080 return 0;
2081}
2082
2083int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2084{
2085 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2086}
2087
2088static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2089 unsigned long nbytes)
2090{
2091 unsigned long stack_page;
2092 unsigned long cpu = task_cpu(p);
2093
2094 stack_page = (unsigned long)hardirq_ctx[cpu];
2095 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2096 return 1;
2097
2098 stack_page = (unsigned long)softirq_ctx[cpu];
2099 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2100 return 1;
2101
2102 return 0;
2103}
2104
2105static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2106 unsigned long nbytes)
2107{
2108#ifdef CONFIG_PPC64
2109 unsigned long stack_page;
2110 unsigned long cpu = task_cpu(p);
2111
2112 if (!paca_ptrs)
2113 return 0;
2114
2115 stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2116 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2117 return 1;
2118
2119# ifdef CONFIG_PPC_BOOK3S_64
2120 stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2121 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2122 return 1;
2123
2124 stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2125 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2126 return 1;
2127# endif
2128#endif
2129
2130 return 0;
2131}
2132
2133
2134int validate_sp(unsigned long sp, struct task_struct *p,
2135 unsigned long nbytes)
2136{
2137 unsigned long stack_page = (unsigned long)task_stack_page(p);
2138
2139 if (sp < THREAD_SIZE)
2140 return 0;
2141
2142 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2143 return 1;
2144
2145 if (valid_irq_stack(sp, p, nbytes))
2146 return 1;
2147
2148 return valid_emergency_stack(sp, p, nbytes);
2149}
2150
2151EXPORT_SYMBOL(validate_sp);
2152
2153static unsigned long ___get_wchan(struct task_struct *p)
2154{
2155 unsigned long ip, sp;
2156 int count = 0;
2157
2158 sp = p->thread.ksp;
2159 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2160 return 0;
2161
2162 do {
2163 sp = *(unsigned long *)sp;
2164 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2165 task_is_running(p))
2166 return 0;
2167 if (count > 0) {
2168 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2169 if (!in_sched_functions(ip))
2170 return ip;
2171 }
2172 } while (count++ < 16);
2173 return 0;
2174}
2175
2176unsigned long __get_wchan(struct task_struct *p)
2177{
2178 unsigned long ret;
2179
2180 if (!try_get_task_stack(p))
2181 return 0;
2182
2183 ret = ___get_wchan(p);
2184
2185 put_task_stack(p);
2186
2187 return ret;
2188}
2189
2190static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2191
2192void __no_sanitize_address show_stack(struct task_struct *tsk,
2193 unsigned long *stack,
2194 const char *loglvl)
2195{
2196 unsigned long sp, ip, lr, newsp;
2197 int count = 0;
2198 int firstframe = 1;
2199 unsigned long ret_addr;
2200 int ftrace_idx = 0;
2201
2202 if (tsk == NULL)
2203 tsk = current;
2204
2205 if (!try_get_task_stack(tsk))
2206 return;
2207
2208 sp = (unsigned long) stack;
2209 if (sp == 0) {
2210 if (tsk == current)
2211 sp = current_stack_frame();
2212 else
2213 sp = tsk->thread.ksp;
2214 }
2215
2216 lr = 0;
2217 printk("%sCall Trace:\n", loglvl);
2218 do {
2219 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2220 break;
2221
2222 stack = (unsigned long *) sp;
2223 newsp = stack[0];
2224 ip = stack[STACK_FRAME_LR_SAVE];
2225 if (!firstframe || ip != lr) {
2226 printk("%s["REG"] ["REG"] %pS",
2227 loglvl, sp, ip, (void *)ip);
2228 ret_addr = ftrace_graph_ret_addr(current,
2229 &ftrace_idx, ip, stack);
2230 if (ret_addr != ip)
2231 pr_cont(" (%pS)", (void *)ret_addr);
2232 if (firstframe)
2233 pr_cont(" (unreliable)");
2234 pr_cont("\n");
2235 }
2236 firstframe = 0;
2237
2238 /*
2239 * See if this is an exception frame.
2240 * We look for the "regshere" marker in the current frame.
2241 */
2242 if (validate_sp(sp, tsk, STACK_FRAME_WITH_PT_REGS)
2243 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2244 struct pt_regs *regs = (struct pt_regs *)
2245 (sp + STACK_FRAME_OVERHEAD);
2246
2247 lr = regs->link;
2248 printk("%s--- interrupt: %lx at %pS\n",
2249 loglvl, regs->trap, (void *)regs->nip);
2250 __show_regs(regs);
2251 printk("%s--- interrupt: %lx\n",
2252 loglvl, regs->trap);
2253
2254 firstframe = 1;
2255 }
2256
2257 sp = newsp;
2258 } while (count++ < kstack_depth_to_print);
2259
2260 put_task_stack(tsk);
2261}
2262
2263#ifdef CONFIG_PPC64
2264/* Called with hard IRQs off */
2265void notrace __ppc64_runlatch_on(void)
2266{
2267 struct thread_info *ti = current_thread_info();
2268
2269 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2270 /*
2271 * Least significant bit (RUN) is the only writable bit of
2272 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2273 * earliest ISA where this is the case, but it's convenient.
2274 */
2275 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2276 } else {
2277 unsigned long ctrl;
2278
2279 /*
2280 * Some architectures (e.g., Cell) have writable fields other
2281 * than RUN, so do the read-modify-write.
2282 */
2283 ctrl = mfspr(SPRN_CTRLF);
2284 ctrl |= CTRL_RUNLATCH;
2285 mtspr(SPRN_CTRLT, ctrl);
2286 }
2287
2288 ti->local_flags |= _TLF_RUNLATCH;
2289}
2290
2291/* Called with hard IRQs off */
2292void notrace __ppc64_runlatch_off(void)
2293{
2294 struct thread_info *ti = current_thread_info();
2295
2296 ti->local_flags &= ~_TLF_RUNLATCH;
2297
2298 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2299 mtspr(SPRN_CTRLT, 0);
2300 } else {
2301 unsigned long ctrl;
2302
2303 ctrl = mfspr(SPRN_CTRLF);
2304 ctrl &= ~CTRL_RUNLATCH;
2305 mtspr(SPRN_CTRLT, ctrl);
2306 }
2307}
2308#endif /* CONFIG_PPC64 */
2309
2310unsigned long arch_align_stack(unsigned long sp)
2311{
2312 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2313 sp -= get_random_int() & ~PAGE_MASK;
2314 return sp & ~0xf;
2315}
2316
2317static inline unsigned long brk_rnd(void)
2318{
2319 unsigned long rnd = 0;
2320
2321 /* 8MB for 32bit, 1GB for 64bit */
2322 if (is_32bit_task())
2323 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2324 else
2325 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2326
2327 return rnd << PAGE_SHIFT;
2328}
2329
2330unsigned long arch_randomize_brk(struct mm_struct *mm)
2331{
2332 unsigned long base = mm->brk;
2333 unsigned long ret;
2334
2335#ifdef CONFIG_PPC_BOOK3S_64
2336 /*
2337 * If we are using 1TB segments and we are allowed to randomise
2338 * the heap, we can put it above 1TB so it is backed by a 1TB
2339 * segment. Otherwise the heap will be in the bottom 1TB
2340 * which always uses 256MB segments and this may result in a
2341 * performance penalty.
2342 */
2343 if (!radix_enabled() && !is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2344 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2345#endif
2346
2347 ret = PAGE_ALIGN(base + brk_rnd());
2348
2349 if (ret < mm->brk)
2350 return mm->brk;
2351
2352 return ret;
2353}
2354