Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2/*
3 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
6 *
7 * This driver produces cryptographically secure pseudorandom data. It is divided
8 * into roughly six sections, each with a section header:
9 *
10 * - Initialization and readiness waiting.
11 * - Fast key erasure RNG, the "crng".
12 * - Entropy accumulation and extraction routines.
13 * - Entropy collection routines.
14 * - Userspace reader/writer interfaces.
15 * - Sysctl interface.
16 *
17 * The high level overview is that there is one input pool, into which
18 * various pieces of data are hashed. Some of that data is then "credited" as
19 * having a certain number of bits of entropy. When enough bits of entropy are
20 * available, the hash is finalized and handed as a key to a stream cipher that
21 * expands it indefinitely for various consumers. This key is periodically
22 * refreshed as the various entropy collectors, described below, add data to the
23 * input pool and credit it. There is currently no Fortuna-like scheduler
24 * involved, which can lead to malicious entropy sources causing a premature
25 * reseed, and the entropy estimates are, at best, conservative guesses.
26 */
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/utsname.h>
31#include <linux/module.h>
32#include <linux/kernel.h>
33#include <linux/major.h>
34#include <linux/string.h>
35#include <linux/fcntl.h>
36#include <linux/slab.h>
37#include <linux/random.h>
38#include <linux/poll.h>
39#include <linux/init.h>
40#include <linux/fs.h>
41#include <linux/blkdev.h>
42#include <linux/interrupt.h>
43#include <linux/mm.h>
44#include <linux/nodemask.h>
45#include <linux/spinlock.h>
46#include <linux/kthread.h>
47#include <linux/percpu.h>
48#include <linux/ptrace.h>
49#include <linux/workqueue.h>
50#include <linux/irq.h>
51#include <linux/ratelimit.h>
52#include <linux/syscalls.h>
53#include <linux/completion.h>
54#include <linux/uuid.h>
55#include <linux/uaccess.h>
56#include <crypto/chacha.h>
57#include <crypto/blake2s.h>
58#include <asm/processor.h>
59#include <asm/irq.h>
60#include <asm/irq_regs.h>
61#include <asm/io.h>
62
63/*********************************************************************
64 *
65 * Initialization and readiness waiting.
66 *
67 * Much of the RNG infrastructure is devoted to various dependencies
68 * being able to wait until the RNG has collected enough entropy and
69 * is ready for safe consumption.
70 *
71 *********************************************************************/
72
73/*
74 * crng_init = 0 --> Uninitialized
75 * 1 --> Initialized
76 * 2 --> Initialized from input_pool
77 *
78 * crng_init is protected by base_crng->lock, and only increases
79 * its value (from 0->1->2).
80 */
81static int crng_init = 0;
82#define crng_ready() (likely(crng_init > 1))
83/* Various types of waiters for crng_init->2 transition. */
84static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
85static struct fasync_struct *fasync;
86static DEFINE_SPINLOCK(random_ready_chain_lock);
87static RAW_NOTIFIER_HEAD(random_ready_chain);
88
89/* Control how we warn userspace. */
90static struct ratelimit_state unseeded_warning =
91 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
92static struct ratelimit_state urandom_warning =
93 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
94static int ratelimit_disable __read_mostly;
95module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
96MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
97
98/*
99 * Returns whether or not the input pool has been seeded and thus guaranteed
100 * to supply cryptographically secure random numbers. This applies to: the
101 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
102 * ,u64,int,long} family of functions.
103 *
104 * Returns: true if the input pool has been seeded.
105 * false if the input pool has not been seeded.
106 */
107bool rng_is_initialized(void)
108{
109 return crng_ready();
110}
111EXPORT_SYMBOL(rng_is_initialized);
112
113/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
114static void try_to_generate_entropy(void);
115
116/*
117 * Wait for the input pool to be seeded and thus guaranteed to supply
118 * cryptographically secure random numbers. This applies to: the /dev/urandom
119 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
120 * family of functions. Using any of these functions without first calling
121 * this function forfeits the guarantee of security.
122 *
123 * Returns: 0 if the input pool has been seeded.
124 * -ERESTARTSYS if the function was interrupted by a signal.
125 */
126int wait_for_random_bytes(void)
127{
128 while (!crng_ready()) {
129 int ret;
130
131 try_to_generate_entropy();
132 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
133 if (ret)
134 return ret > 0 ? 0 : ret;
135 }
136 return 0;
137}
138EXPORT_SYMBOL(wait_for_random_bytes);
139
140/*
141 * Add a callback function that will be invoked when the input
142 * pool is initialised.
143 *
144 * returns: 0 if callback is successfully added
145 * -EALREADY if pool is already initialised (callback not called)
146 */
147int register_random_ready_notifier(struct notifier_block *nb)
148{
149 unsigned long flags;
150 int ret = -EALREADY;
151
152 if (crng_ready())
153 return ret;
154
155 spin_lock_irqsave(&random_ready_chain_lock, flags);
156 if (!crng_ready())
157 ret = raw_notifier_chain_register(&random_ready_chain, nb);
158 spin_unlock_irqrestore(&random_ready_chain_lock, flags);
159 return ret;
160}
161
162/*
163 * Delete a previously registered readiness callback function.
164 */
165int unregister_random_ready_notifier(struct notifier_block *nb)
166{
167 unsigned long flags;
168 int ret;
169
170 spin_lock_irqsave(&random_ready_chain_lock, flags);
171 ret = raw_notifier_chain_unregister(&random_ready_chain, nb);
172 spin_unlock_irqrestore(&random_ready_chain_lock, flags);
173 return ret;
174}
175
176static void process_random_ready_list(void)
177{
178 unsigned long flags;
179
180 spin_lock_irqsave(&random_ready_chain_lock, flags);
181 raw_notifier_call_chain(&random_ready_chain, 0, NULL);
182 spin_unlock_irqrestore(&random_ready_chain_lock, flags);
183}
184
185#define warn_unseeded_randomness(previous) \
186 _warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous))
187
188static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)
189{
190#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
191 const bool print_once = false;
192#else
193 static bool print_once __read_mostly;
194#endif
195
196 if (print_once || crng_ready() ||
197 (previous && (caller == READ_ONCE(*previous))))
198 return;
199 WRITE_ONCE(*previous, caller);
200#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
201 print_once = true;
202#endif
203 if (__ratelimit(&unseeded_warning))
204 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
205 func_name, caller, crng_init);
206}
207
208
209/*********************************************************************
210 *
211 * Fast key erasure RNG, the "crng".
212 *
213 * These functions expand entropy from the entropy extractor into
214 * long streams for external consumption using the "fast key erasure"
215 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
216 *
217 * There are a few exported interfaces for use by other drivers:
218 *
219 * void get_random_bytes(void *buf, size_t nbytes)
220 * u32 get_random_u32()
221 * u64 get_random_u64()
222 * unsigned int get_random_int()
223 * unsigned long get_random_long()
224 *
225 * These interfaces will return the requested number of random bytes
226 * into the given buffer or as a return value. This is equivalent to
227 * a read from /dev/urandom. The u32, u64, int, and long family of
228 * functions may be higher performance for one-off random integers,
229 * because they do a bit of buffering and do not invoke reseeding
230 * until the buffer is emptied.
231 *
232 *********************************************************************/
233
234enum {
235 CRNG_RESEED_INTERVAL = 300 * HZ,
236 CRNG_INIT_CNT_THRESH = 2 * CHACHA_KEY_SIZE
237};
238
239static struct {
240 u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
241 unsigned long birth;
242 unsigned long generation;
243 spinlock_t lock;
244} base_crng = {
245 .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
246};
247
248struct crng {
249 u8 key[CHACHA_KEY_SIZE];
250 unsigned long generation;
251 local_lock_t lock;
252};
253
254static DEFINE_PER_CPU(struct crng, crngs) = {
255 .generation = ULONG_MAX,
256 .lock = INIT_LOCAL_LOCK(crngs.lock),
257};
258
259/* Used by crng_reseed() to extract a new seed from the input pool. */
260static bool drain_entropy(void *buf, size_t nbytes, bool force);
261
262/*
263 * This extracts a new crng key from the input pool, but only if there is a
264 * sufficient amount of entropy available or force is true, in order to
265 * mitigate bruteforcing of newly added bits.
266 */
267static void crng_reseed(bool force)
268{
269 unsigned long flags;
270 unsigned long next_gen;
271 u8 key[CHACHA_KEY_SIZE];
272 bool finalize_init = false;
273
274 /* Only reseed if we can, to prevent brute forcing a small amount of new bits. */
275 if (!drain_entropy(key, sizeof(key), force))
276 return;
277
278 /*
279 * We copy the new key into the base_crng, overwriting the old one,
280 * and update the generation counter. We avoid hitting ULONG_MAX,
281 * because the per-cpu crngs are initialized to ULONG_MAX, so this
282 * forces new CPUs that come online to always initialize.
283 */
284 spin_lock_irqsave(&base_crng.lock, flags);
285 memcpy(base_crng.key, key, sizeof(base_crng.key));
286 next_gen = base_crng.generation + 1;
287 if (next_gen == ULONG_MAX)
288 ++next_gen;
289 WRITE_ONCE(base_crng.generation, next_gen);
290 WRITE_ONCE(base_crng.birth, jiffies);
291 if (!crng_ready()) {
292 crng_init = 2;
293 finalize_init = true;
294 }
295 spin_unlock_irqrestore(&base_crng.lock, flags);
296 memzero_explicit(key, sizeof(key));
297 if (finalize_init) {
298 process_random_ready_list();
299 wake_up_interruptible(&crng_init_wait);
300 kill_fasync(&fasync, SIGIO, POLL_IN);
301 pr_notice("crng init done\n");
302 if (unseeded_warning.missed) {
303 pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
304 unseeded_warning.missed);
305 unseeded_warning.missed = 0;
306 }
307 if (urandom_warning.missed) {
308 pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
309 urandom_warning.missed);
310 urandom_warning.missed = 0;
311 }
312 }
313}
314
315/*
316 * This generates a ChaCha block using the provided key, and then
317 * immediately overwites that key with half the block. It returns
318 * the resultant ChaCha state to the user, along with the second
319 * half of the block containing 32 bytes of random data that may
320 * be used; random_data_len may not be greater than 32.
321 */
322static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
323 u32 chacha_state[CHACHA_STATE_WORDS],
324 u8 *random_data, size_t random_data_len)
325{
326 u8 first_block[CHACHA_BLOCK_SIZE];
327
328 BUG_ON(random_data_len > 32);
329
330 chacha_init_consts(chacha_state);
331 memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
332 memset(&chacha_state[12], 0, sizeof(u32) * 4);
333 chacha20_block(chacha_state, first_block);
334
335 memcpy(key, first_block, CHACHA_KEY_SIZE);
336 memmove(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
337 memzero_explicit(first_block, sizeof(first_block));
338}
339
340/*
341 * Return whether the crng seed is considered to be sufficiently
342 * old that a reseeding might be attempted. This happens if the last
343 * reseeding was CRNG_RESEED_INTERVAL ago, or during early boot, at
344 * an interval proportional to the uptime.
345 */
346static bool crng_has_old_seed(void)
347{
348 static bool early_boot = true;
349 unsigned long interval = CRNG_RESEED_INTERVAL;
350
351 if (unlikely(READ_ONCE(early_boot))) {
352 time64_t uptime = ktime_get_seconds();
353 if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
354 WRITE_ONCE(early_boot, false);
355 else
356 interval = max_t(unsigned int, 5 * HZ,
357 (unsigned int)uptime / 2 * HZ);
358 }
359 return time_after(jiffies, READ_ONCE(base_crng.birth) + interval);
360}
361
362/*
363 * This function returns a ChaCha state that you may use for generating
364 * random data. It also returns up to 32 bytes on its own of random data
365 * that may be used; random_data_len may not be greater than 32.
366 */
367static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
368 u8 *random_data, size_t random_data_len)
369{
370 unsigned long flags;
371 struct crng *crng;
372
373 BUG_ON(random_data_len > 32);
374
375 /*
376 * For the fast path, we check whether we're ready, unlocked first, and
377 * then re-check once locked later. In the case where we're really not
378 * ready, we do fast key erasure with the base_crng directly, because
379 * this is what crng_pre_init_inject() mutates during early init.
380 */
381 if (!crng_ready()) {
382 bool ready;
383
384 spin_lock_irqsave(&base_crng.lock, flags);
385 ready = crng_ready();
386 if (!ready)
387 crng_fast_key_erasure(base_crng.key, chacha_state,
388 random_data, random_data_len);
389 spin_unlock_irqrestore(&base_crng.lock, flags);
390 if (!ready)
391 return;
392 }
393
394 /*
395 * If the base_crng is old enough, we try to reseed, which in turn
396 * bumps the generation counter that we check below.
397 */
398 if (unlikely(crng_has_old_seed()))
399 crng_reseed(false);
400
401 local_lock_irqsave(&crngs.lock, flags);
402 crng = raw_cpu_ptr(&crngs);
403
404 /*
405 * If our per-cpu crng is older than the base_crng, then it means
406 * somebody reseeded the base_crng. In that case, we do fast key
407 * erasure on the base_crng, and use its output as the new key
408 * for our per-cpu crng. This brings us up to date with base_crng.
409 */
410 if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
411 spin_lock(&base_crng.lock);
412 crng_fast_key_erasure(base_crng.key, chacha_state,
413 crng->key, sizeof(crng->key));
414 crng->generation = base_crng.generation;
415 spin_unlock(&base_crng.lock);
416 }
417
418 /*
419 * Finally, when we've made it this far, our per-cpu crng has an up
420 * to date key, and we can do fast key erasure with it to produce
421 * some random data and a ChaCha state for the caller. All other
422 * branches of this function are "unlikely", so most of the time we
423 * should wind up here immediately.
424 */
425 crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
426 local_unlock_irqrestore(&crngs.lock, flags);
427}
428
429/*
430 * This function is for crng_init == 0 only. It loads entropy directly
431 * into the crng's key, without going through the input pool. It is,
432 * generally speaking, not very safe, but we use this only at early
433 * boot time when it's better to have something there rather than
434 * nothing.
435 *
436 * If account is set, then the crng_init_cnt counter is incremented.
437 * This shouldn't be set by functions like add_device_randomness(),
438 * where we can't trust the buffer passed to it is guaranteed to be
439 * unpredictable (so it might not have any entropy at all).
440 */
441static void crng_pre_init_inject(const void *input, size_t len, bool account)
442{
443 static int crng_init_cnt = 0;
444 struct blake2s_state hash;
445 unsigned long flags;
446
447 blake2s_init(&hash, sizeof(base_crng.key));
448
449 spin_lock_irqsave(&base_crng.lock, flags);
450 if (crng_init != 0) {
451 spin_unlock_irqrestore(&base_crng.lock, flags);
452 return;
453 }
454
455 blake2s_update(&hash, base_crng.key, sizeof(base_crng.key));
456 blake2s_update(&hash, input, len);
457 blake2s_final(&hash, base_crng.key);
458
459 if (account) {
460 crng_init_cnt += min_t(size_t, len, CRNG_INIT_CNT_THRESH - crng_init_cnt);
461 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
462 ++base_crng.generation;
463 crng_init = 1;
464 }
465 }
466
467 spin_unlock_irqrestore(&base_crng.lock, flags);
468
469 if (crng_init == 1)
470 pr_notice("fast init done\n");
471}
472
473static void _get_random_bytes(void *buf, size_t nbytes)
474{
475 u32 chacha_state[CHACHA_STATE_WORDS];
476 u8 tmp[CHACHA_BLOCK_SIZE];
477 size_t len;
478
479 if (!nbytes)
480 return;
481
482 len = min_t(size_t, 32, nbytes);
483 crng_make_state(chacha_state, buf, len);
484 nbytes -= len;
485 buf += len;
486
487 while (nbytes) {
488 if (nbytes < CHACHA_BLOCK_SIZE) {
489 chacha20_block(chacha_state, tmp);
490 memcpy(buf, tmp, nbytes);
491 memzero_explicit(tmp, sizeof(tmp));
492 break;
493 }
494
495 chacha20_block(chacha_state, buf);
496 if (unlikely(chacha_state[12] == 0))
497 ++chacha_state[13];
498 nbytes -= CHACHA_BLOCK_SIZE;
499 buf += CHACHA_BLOCK_SIZE;
500 }
501
502 memzero_explicit(chacha_state, sizeof(chacha_state));
503}
504
505/*
506 * This function is the exported kernel interface. It returns some
507 * number of good random numbers, suitable for key generation, seeding
508 * TCP sequence numbers, etc. It does not rely on the hardware random
509 * number generator. For random bytes direct from the hardware RNG
510 * (when available), use get_random_bytes_arch(). In order to ensure
511 * that the randomness provided by this function is okay, the function
512 * wait_for_random_bytes() should be called and return 0 at least once
513 * at any point prior.
514 */
515void get_random_bytes(void *buf, size_t nbytes)
516{
517 static void *previous;
518
519 warn_unseeded_randomness(&previous);
520 _get_random_bytes(buf, nbytes);
521}
522EXPORT_SYMBOL(get_random_bytes);
523
524static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes)
525{
526 size_t len, left, ret = 0;
527 u32 chacha_state[CHACHA_STATE_WORDS];
528 u8 output[CHACHA_BLOCK_SIZE];
529
530 if (!nbytes)
531 return 0;
532
533 /*
534 * Immediately overwrite the ChaCha key at index 4 with random
535 * bytes, in case userspace causes copy_to_user() below to sleep
536 * forever, so that we still retain forward secrecy in that case.
537 */
538 crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
539 /*
540 * However, if we're doing a read of len <= 32, we don't need to
541 * use chacha_state after, so we can simply return those bytes to
542 * the user directly.
543 */
544 if (nbytes <= CHACHA_KEY_SIZE) {
545 ret = nbytes - copy_to_user(buf, &chacha_state[4], nbytes);
546 goto out_zero_chacha;
547 }
548
549 for (;;) {
550 chacha20_block(chacha_state, output);
551 if (unlikely(chacha_state[12] == 0))
552 ++chacha_state[13];
553
554 len = min_t(size_t, nbytes, CHACHA_BLOCK_SIZE);
555 left = copy_to_user(buf, output, len);
556 if (left) {
557 ret += len - left;
558 break;
559 }
560
561 buf += len;
562 ret += len;
563 nbytes -= len;
564 if (!nbytes)
565 break;
566
567 BUILD_BUG_ON(PAGE_SIZE % CHACHA_BLOCK_SIZE != 0);
568 if (ret % PAGE_SIZE == 0) {
569 if (signal_pending(current))
570 break;
571 cond_resched();
572 }
573 }
574
575 memzero_explicit(output, sizeof(output));
576out_zero_chacha:
577 memzero_explicit(chacha_state, sizeof(chacha_state));
578 return ret ? ret : -EFAULT;
579}
580
581/*
582 * Batched entropy returns random integers. The quality of the random
583 * number is good as /dev/urandom. In order to ensure that the randomness
584 * provided by this function is okay, the function wait_for_random_bytes()
585 * should be called and return 0 at least once at any point prior.
586 */
587struct batched_entropy {
588 union {
589 /*
590 * We make this 1.5x a ChaCha block, so that we get the
591 * remaining 32 bytes from fast key erasure, plus one full
592 * block from the detached ChaCha state. We can increase
593 * the size of this later if needed so long as we keep the
594 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.
595 */
596 u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))];
597 u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))];
598 };
599 local_lock_t lock;
600 unsigned long generation;
601 unsigned int position;
602};
603
604
605static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
606 .lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock),
607 .position = UINT_MAX
608};
609
610u64 get_random_u64(void)
611{
612 u64 ret;
613 unsigned long flags;
614 struct batched_entropy *batch;
615 static void *previous;
616 unsigned long next_gen;
617
618 warn_unseeded_randomness(&previous);
619
620 local_lock_irqsave(&batched_entropy_u64.lock, flags);
621 batch = raw_cpu_ptr(&batched_entropy_u64);
622
623 next_gen = READ_ONCE(base_crng.generation);
624 if (batch->position >= ARRAY_SIZE(batch->entropy_u64) ||
625 next_gen != batch->generation) {
626 _get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64));
627 batch->position = 0;
628 batch->generation = next_gen;
629 }
630
631 ret = batch->entropy_u64[batch->position];
632 batch->entropy_u64[batch->position] = 0;
633 ++batch->position;
634 local_unlock_irqrestore(&batched_entropy_u64.lock, flags);
635 return ret;
636}
637EXPORT_SYMBOL(get_random_u64);
638
639static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
640 .lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock),
641 .position = UINT_MAX
642};
643
644u32 get_random_u32(void)
645{
646 u32 ret;
647 unsigned long flags;
648 struct batched_entropy *batch;
649 static void *previous;
650 unsigned long next_gen;
651
652 warn_unseeded_randomness(&previous);
653
654 local_lock_irqsave(&batched_entropy_u32.lock, flags);
655 batch = raw_cpu_ptr(&batched_entropy_u32);
656
657 next_gen = READ_ONCE(base_crng.generation);
658 if (batch->position >= ARRAY_SIZE(batch->entropy_u32) ||
659 next_gen != batch->generation) {
660 _get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32));
661 batch->position = 0;
662 batch->generation = next_gen;
663 }
664
665 ret = batch->entropy_u32[batch->position];
666 batch->entropy_u32[batch->position] = 0;
667 ++batch->position;
668 local_unlock_irqrestore(&batched_entropy_u32.lock, flags);
669 return ret;
670}
671EXPORT_SYMBOL(get_random_u32);
672
673#ifdef CONFIG_SMP
674/*
675 * This function is called when the CPU is coming up, with entry
676 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
677 */
678int random_prepare_cpu(unsigned int cpu)
679{
680 /*
681 * When the cpu comes back online, immediately invalidate both
682 * the per-cpu crng and all batches, so that we serve fresh
683 * randomness.
684 */
685 per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
686 per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
687 per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
688 return 0;
689}
690#endif
691
692/**
693 * randomize_page - Generate a random, page aligned address
694 * @start: The smallest acceptable address the caller will take.
695 * @range: The size of the area, starting at @start, within which the
696 * random address must fall.
697 *
698 * If @start + @range would overflow, @range is capped.
699 *
700 * NOTE: Historical use of randomize_range, which this replaces, presumed that
701 * @start was already page aligned. We now align it regardless.
702 *
703 * Return: A page aligned address within [start, start + range). On error,
704 * @start is returned.
705 */
706unsigned long randomize_page(unsigned long start, unsigned long range)
707{
708 if (!PAGE_ALIGNED(start)) {
709 range -= PAGE_ALIGN(start) - start;
710 start = PAGE_ALIGN(start);
711 }
712
713 if (start > ULONG_MAX - range)
714 range = ULONG_MAX - start;
715
716 range >>= PAGE_SHIFT;
717
718 if (range == 0)
719 return start;
720
721 return start + (get_random_long() % range << PAGE_SHIFT);
722}
723
724/*
725 * This function will use the architecture-specific hardware random
726 * number generator if it is available. It is not recommended for
727 * use. Use get_random_bytes() instead. It returns the number of
728 * bytes filled in.
729 */
730size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes)
731{
732 size_t left = nbytes;
733 u8 *p = buf;
734
735 while (left) {
736 unsigned long v;
737 size_t chunk = min_t(size_t, left, sizeof(unsigned long));
738
739 if (!arch_get_random_long(&v))
740 break;
741
742 memcpy(p, &v, chunk);
743 p += chunk;
744 left -= chunk;
745 }
746
747 return nbytes - left;
748}
749EXPORT_SYMBOL(get_random_bytes_arch);
750
751
752/**********************************************************************
753 *
754 * Entropy accumulation and extraction routines.
755 *
756 * Callers may add entropy via:
757 *
758 * static void mix_pool_bytes(const void *in, size_t nbytes)
759 *
760 * After which, if added entropy should be credited:
761 *
762 * static void credit_entropy_bits(size_t nbits)
763 *
764 * Finally, extract entropy via these two, with the latter one
765 * setting the entropy count to zero and extracting only if there
766 * is POOL_MIN_BITS entropy credited prior or force is true:
767 *
768 * static void extract_entropy(void *buf, size_t nbytes)
769 * static bool drain_entropy(void *buf, size_t nbytes, bool force)
770 *
771 **********************************************************************/
772
773enum {
774 POOL_BITS = BLAKE2S_HASH_SIZE * 8,
775 POOL_MIN_BITS = POOL_BITS /* No point in settling for less. */
776};
777
778/* For notifying userspace should write into /dev/random. */
779static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
780
781static struct {
782 struct blake2s_state hash;
783 spinlock_t lock;
784 unsigned int entropy_count;
785} input_pool = {
786 .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
787 BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
788 BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
789 .hash.outlen = BLAKE2S_HASH_SIZE,
790 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
791};
792
793static void _mix_pool_bytes(const void *in, size_t nbytes)
794{
795 blake2s_update(&input_pool.hash, in, nbytes);
796}
797
798/*
799 * This function adds bytes into the entropy "pool". It does not
800 * update the entropy estimate. The caller should call
801 * credit_entropy_bits if this is appropriate.
802 */
803static void mix_pool_bytes(const void *in, size_t nbytes)
804{
805 unsigned long flags;
806
807 spin_lock_irqsave(&input_pool.lock, flags);
808 _mix_pool_bytes(in, nbytes);
809 spin_unlock_irqrestore(&input_pool.lock, flags);
810}
811
812static void credit_entropy_bits(size_t nbits)
813{
814 unsigned int entropy_count, orig, add;
815
816 if (!nbits)
817 return;
818
819 add = min_t(size_t, nbits, POOL_BITS);
820
821 do {
822 orig = READ_ONCE(input_pool.entropy_count);
823 entropy_count = min_t(unsigned int, POOL_BITS, orig + add);
824 } while (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig);
825
826 if (!crng_ready() && entropy_count >= POOL_MIN_BITS)
827 crng_reseed(false);
828}
829
830/*
831 * This is an HKDF-like construction for using the hashed collected entropy
832 * as a PRF key, that's then expanded block-by-block.
833 */
834static void extract_entropy(void *buf, size_t nbytes)
835{
836 unsigned long flags;
837 u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
838 struct {
839 unsigned long rdseed[32 / sizeof(long)];
840 size_t counter;
841 } block;
842 size_t i;
843
844 for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
845 if (!arch_get_random_seed_long(&block.rdseed[i]) &&
846 !arch_get_random_long(&block.rdseed[i]))
847 block.rdseed[i] = random_get_entropy();
848 }
849
850 spin_lock_irqsave(&input_pool.lock, flags);
851
852 /* seed = HASHPRF(last_key, entropy_input) */
853 blake2s_final(&input_pool.hash, seed);
854
855 /* next_key = HASHPRF(seed, RDSEED || 0) */
856 block.counter = 0;
857 blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
858 blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
859
860 spin_unlock_irqrestore(&input_pool.lock, flags);
861 memzero_explicit(next_key, sizeof(next_key));
862
863 while (nbytes) {
864 i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE);
865 /* output = HASHPRF(seed, RDSEED || ++counter) */
866 ++block.counter;
867 blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
868 nbytes -= i;
869 buf += i;
870 }
871
872 memzero_explicit(seed, sizeof(seed));
873 memzero_explicit(&block, sizeof(block));
874}
875
876/*
877 * First we make sure we have POOL_MIN_BITS of entropy in the pool unless force
878 * is true, and then we set the entropy count to zero (but don't actually touch
879 * any data). Only then can we extract a new key with extract_entropy().
880 */
881static bool drain_entropy(void *buf, size_t nbytes, bool force)
882{
883 unsigned int entropy_count;
884 do {
885 entropy_count = READ_ONCE(input_pool.entropy_count);
886 if (!force && entropy_count < POOL_MIN_BITS)
887 return false;
888 } while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count);
889 extract_entropy(buf, nbytes);
890 wake_up_interruptible(&random_write_wait);
891 kill_fasync(&fasync, SIGIO, POLL_OUT);
892 return true;
893}
894
895
896/**********************************************************************
897 *
898 * Entropy collection routines.
899 *
900 * The following exported functions are used for pushing entropy into
901 * the above entropy accumulation routines:
902 *
903 * void add_device_randomness(const void *buf, size_t size);
904 * void add_input_randomness(unsigned int type, unsigned int code,
905 * unsigned int value);
906 * void add_disk_randomness(struct gendisk *disk);
907 * void add_hwgenerator_randomness(const void *buffer, size_t count,
908 * size_t entropy);
909 * void add_bootloader_randomness(const void *buf, size_t size);
910 * void add_vmfork_randomness(const void *unique_vm_id, size_t size);
911 * void add_interrupt_randomness(int irq);
912 *
913 * add_device_randomness() adds data to the input pool that
914 * is likely to differ between two devices (or possibly even per boot).
915 * This would be things like MAC addresses or serial numbers, or the
916 * read-out of the RTC. This does *not* credit any actual entropy to
917 * the pool, but it initializes the pool to different values for devices
918 * that might otherwise be identical and have very little entropy
919 * available to them (particularly common in the embedded world).
920 *
921 * add_input_randomness() uses the input layer interrupt timing, as well
922 * as the event type information from the hardware.
923 *
924 * add_disk_randomness() uses what amounts to the seek time of block
925 * layer request events, on a per-disk_devt basis, as input to the
926 * entropy pool. Note that high-speed solid state drives with very low
927 * seek times do not make for good sources of entropy, as their seek
928 * times are usually fairly consistent.
929 *
930 * The above two routines try to estimate how many bits of entropy
931 * to credit. They do this by keeping track of the first and second
932 * order deltas of the event timings.
933 *
934 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
935 * entropy as specified by the caller. If the entropy pool is full it will
936 * block until more entropy is needed.
937 *
938 * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
939 * add_device_randomness(), depending on whether or not the configuration
940 * option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
941 *
942 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
943 * representing the current instance of a VM to the pool, without crediting,
944 * and then force-reseeds the crng so that it takes effect immediately.
945 *
946 * add_interrupt_randomness() uses the interrupt timing as random
947 * inputs to the entropy pool. Using the cycle counters and the irq source
948 * as inputs, it feeds the input pool roughly once a second or after 64
949 * interrupts, crediting 1 bit of entropy for whichever comes first.
950 *
951 **********************************************************************/
952
953static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
954static bool trust_bootloader __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
955static int __init parse_trust_cpu(char *arg)
956{
957 return kstrtobool(arg, &trust_cpu);
958}
959static int __init parse_trust_bootloader(char *arg)
960{
961 return kstrtobool(arg, &trust_bootloader);
962}
963early_param("random.trust_cpu", parse_trust_cpu);
964early_param("random.trust_bootloader", parse_trust_bootloader);
965
966/*
967 * The first collection of entropy occurs at system boot while interrupts
968 * are still turned off. Here we push in RDSEED, a timestamp, and utsname().
969 * Depending on the above configuration knob, RDSEED may be considered
970 * sufficient for initialization. Note that much earlier setup may already
971 * have pushed entropy into the input pool by the time we get here.
972 */
973int __init rand_initialize(void)
974{
975 size_t i;
976 ktime_t now = ktime_get_real();
977 bool arch_init = true;
978 unsigned long rv;
979
980#if defined(LATENT_ENTROPY_PLUGIN)
981 static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
982 _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
983#endif
984
985 for (i = 0; i < BLAKE2S_BLOCK_SIZE; i += sizeof(rv)) {
986 if (!arch_get_random_seed_long_early(&rv) &&
987 !arch_get_random_long_early(&rv)) {
988 rv = random_get_entropy();
989 arch_init = false;
990 }
991 _mix_pool_bytes(&rv, sizeof(rv));
992 }
993 _mix_pool_bytes(&now, sizeof(now));
994 _mix_pool_bytes(utsname(), sizeof(*(utsname())));
995
996 extract_entropy(base_crng.key, sizeof(base_crng.key));
997 ++base_crng.generation;
998
999 if (arch_init && trust_cpu && !crng_ready()) {
1000 crng_init = 2;
1001 pr_notice("crng init done (trusting CPU's manufacturer)\n");
1002 }
1003
1004 if (ratelimit_disable) {
1005 urandom_warning.interval = 0;
1006 unseeded_warning.interval = 0;
1007 }
1008 return 0;
1009}
1010
1011/*
1012 * Add device- or boot-specific data to the input pool to help
1013 * initialize it.
1014 *
1015 * None of this adds any entropy; it is meant to avoid the problem of
1016 * the entropy pool having similar initial state across largely
1017 * identical devices.
1018 */
1019void add_device_randomness(const void *buf, size_t size)
1020{
1021 unsigned long cycles = random_get_entropy();
1022 unsigned long flags, now = jiffies;
1023
1024 if (crng_init == 0 && size)
1025 crng_pre_init_inject(buf, size, false);
1026
1027 spin_lock_irqsave(&input_pool.lock, flags);
1028 _mix_pool_bytes(&cycles, sizeof(cycles));
1029 _mix_pool_bytes(&now, sizeof(now));
1030 _mix_pool_bytes(buf, size);
1031 spin_unlock_irqrestore(&input_pool.lock, flags);
1032}
1033EXPORT_SYMBOL(add_device_randomness);
1034
1035/* There is one of these per entropy source */
1036struct timer_rand_state {
1037 unsigned long last_time;
1038 long last_delta, last_delta2;
1039};
1040
1041/*
1042 * This function adds entropy to the entropy "pool" by using timing
1043 * delays. It uses the timer_rand_state structure to make an estimate
1044 * of how many bits of entropy this call has added to the pool.
1045 *
1046 * The number "num" is also added to the pool - it should somehow describe
1047 * the type of event which just happened. This is currently 0-255 for
1048 * keyboard scan codes, and 256 upwards for interrupts.
1049 */
1050static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1051{
1052 unsigned long cycles = random_get_entropy(), now = jiffies, flags;
1053 long delta, delta2, delta3;
1054
1055 spin_lock_irqsave(&input_pool.lock, flags);
1056 _mix_pool_bytes(&cycles, sizeof(cycles));
1057 _mix_pool_bytes(&now, sizeof(now));
1058 _mix_pool_bytes(&num, sizeof(num));
1059 spin_unlock_irqrestore(&input_pool.lock, flags);
1060
1061 /*
1062 * Calculate number of bits of randomness we probably added.
1063 * We take into account the first, second and third-order deltas
1064 * in order to make our estimate.
1065 */
1066 delta = now - READ_ONCE(state->last_time);
1067 WRITE_ONCE(state->last_time, now);
1068
1069 delta2 = delta - READ_ONCE(state->last_delta);
1070 WRITE_ONCE(state->last_delta, delta);
1071
1072 delta3 = delta2 - READ_ONCE(state->last_delta2);
1073 WRITE_ONCE(state->last_delta2, delta2);
1074
1075 if (delta < 0)
1076 delta = -delta;
1077 if (delta2 < 0)
1078 delta2 = -delta2;
1079 if (delta3 < 0)
1080 delta3 = -delta3;
1081 if (delta > delta2)
1082 delta = delta2;
1083 if (delta > delta3)
1084 delta = delta3;
1085
1086 /*
1087 * delta is now minimum absolute delta.
1088 * Round down by 1 bit on general principles,
1089 * and limit entropy estimate to 12 bits.
1090 */
1091 credit_entropy_bits(min_t(unsigned int, fls(delta >> 1), 11));
1092}
1093
1094void add_input_randomness(unsigned int type, unsigned int code,
1095 unsigned int value)
1096{
1097 static unsigned char last_value;
1098 static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1099
1100 /* Ignore autorepeat and the like. */
1101 if (value == last_value)
1102 return;
1103
1104 last_value = value;
1105 add_timer_randomness(&input_timer_state,
1106 (type << 4) ^ code ^ (code >> 4) ^ value);
1107}
1108EXPORT_SYMBOL_GPL(add_input_randomness);
1109
1110#ifdef CONFIG_BLOCK
1111void add_disk_randomness(struct gendisk *disk)
1112{
1113 if (!disk || !disk->random)
1114 return;
1115 /* First major is 1, so we get >= 0x200 here. */
1116 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1117}
1118EXPORT_SYMBOL_GPL(add_disk_randomness);
1119
1120void rand_initialize_disk(struct gendisk *disk)
1121{
1122 struct timer_rand_state *state;
1123
1124 /*
1125 * If kzalloc returns null, we just won't use that entropy
1126 * source.
1127 */
1128 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1129 if (state) {
1130 state->last_time = INITIAL_JIFFIES;
1131 disk->random = state;
1132 }
1133}
1134#endif
1135
1136/*
1137 * Interface for in-kernel drivers of true hardware RNGs.
1138 * Those devices may produce endless random bits and will be throttled
1139 * when our pool is full.
1140 */
1141void add_hwgenerator_randomness(const void *buffer, size_t count,
1142 size_t entropy)
1143{
1144 if (unlikely(crng_init == 0 && entropy < POOL_MIN_BITS)) {
1145 crng_pre_init_inject(buffer, count, true);
1146 mix_pool_bytes(buffer, count);
1147 return;
1148 }
1149
1150 /*
1151 * Throttle writing if we're above the trickle threshold.
1152 * We'll be woken up again once below POOL_MIN_BITS, when
1153 * the calling thread is about to terminate, or once
1154 * CRNG_RESEED_INTERVAL has elapsed.
1155 */
1156 wait_event_interruptible_timeout(random_write_wait,
1157 !system_wq || kthread_should_stop() ||
1158 input_pool.entropy_count < POOL_MIN_BITS,
1159 CRNG_RESEED_INTERVAL);
1160 mix_pool_bytes(buffer, count);
1161 credit_entropy_bits(entropy);
1162}
1163EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
1164
1165/*
1166 * Handle random seed passed by bootloader.
1167 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
1168 * it would be regarded as device data.
1169 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
1170 */
1171void add_bootloader_randomness(const void *buf, size_t size)
1172{
1173 if (trust_bootloader)
1174 add_hwgenerator_randomness(buf, size, size * 8);
1175 else
1176 add_device_randomness(buf, size);
1177}
1178EXPORT_SYMBOL_GPL(add_bootloader_randomness);
1179
1180#if IS_ENABLED(CONFIG_VMGENID)
1181static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
1182
1183/*
1184 * Handle a new unique VM ID, which is unique, not secret, so we
1185 * don't credit it, but we do immediately force a reseed after so
1186 * that it's used by the crng posthaste.
1187 */
1188void add_vmfork_randomness(const void *unique_vm_id, size_t size)
1189{
1190 add_device_randomness(unique_vm_id, size);
1191 if (crng_ready()) {
1192 crng_reseed(true);
1193 pr_notice("crng reseeded due to virtual machine fork\n");
1194 }
1195 blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
1196}
1197#if IS_MODULE(CONFIG_VMGENID)
1198EXPORT_SYMBOL_GPL(add_vmfork_randomness);
1199#endif
1200
1201int register_random_vmfork_notifier(struct notifier_block *nb)
1202{
1203 return blocking_notifier_chain_register(&vmfork_chain, nb);
1204}
1205EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
1206
1207int unregister_random_vmfork_notifier(struct notifier_block *nb)
1208{
1209 return blocking_notifier_chain_unregister(&vmfork_chain, nb);
1210}
1211EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
1212#endif
1213
1214struct fast_pool {
1215 struct work_struct mix;
1216 unsigned long pool[4];
1217 unsigned long last;
1218 unsigned int count;
1219 u16 reg_idx;
1220};
1221
1222static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
1223#ifdef CONFIG_64BIT
1224 /* SipHash constants */
1225 .pool = { 0x736f6d6570736575UL, 0x646f72616e646f6dUL,
1226 0x6c7967656e657261UL, 0x7465646279746573UL }
1227#else
1228 /* HalfSipHash constants */
1229 .pool = { 0, 0, 0x6c796765U, 0x74656462U }
1230#endif
1231};
1232
1233/*
1234 * This is [Half]SipHash-1-x, starting from an empty key. Because
1235 * the key is fixed, it assumes that its inputs are non-malicious,
1236 * and therefore this has no security on its own. s represents the
1237 * 128 or 256-bit SipHash state, while v represents a 128-bit input.
1238 */
1239static void fast_mix(unsigned long s[4], const unsigned long *v)
1240{
1241 size_t i;
1242
1243 for (i = 0; i < 16 / sizeof(long); ++i) {
1244 s[3] ^= v[i];
1245#ifdef CONFIG_64BIT
1246 s[0] += s[1]; s[1] = rol64(s[1], 13); s[1] ^= s[0]; s[0] = rol64(s[0], 32);
1247 s[2] += s[3]; s[3] = rol64(s[3], 16); s[3] ^= s[2];
1248 s[0] += s[3]; s[3] = rol64(s[3], 21); s[3] ^= s[0];
1249 s[2] += s[1]; s[1] = rol64(s[1], 17); s[1] ^= s[2]; s[2] = rol64(s[2], 32);
1250#else
1251 s[0] += s[1]; s[1] = rol32(s[1], 5); s[1] ^= s[0]; s[0] = rol32(s[0], 16);
1252 s[2] += s[3]; s[3] = rol32(s[3], 8); s[3] ^= s[2];
1253 s[0] += s[3]; s[3] = rol32(s[3], 7); s[3] ^= s[0];
1254 s[2] += s[1]; s[1] = rol32(s[1], 13); s[1] ^= s[2]; s[2] = rol32(s[2], 16);
1255#endif
1256 s[0] ^= v[i];
1257 }
1258}
1259
1260#ifdef CONFIG_SMP
1261/*
1262 * This function is called when the CPU has just come online, with
1263 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
1264 */
1265int random_online_cpu(unsigned int cpu)
1266{
1267 /*
1268 * During CPU shutdown and before CPU onlining, add_interrupt_
1269 * randomness() may schedule mix_interrupt_randomness(), and
1270 * set the MIX_INFLIGHT flag. However, because the worker can
1271 * be scheduled on a different CPU during this period, that
1272 * flag will never be cleared. For that reason, we zero out
1273 * the flag here, which runs just after workqueues are onlined
1274 * for the CPU again. This also has the effect of setting the
1275 * irq randomness count to zero so that new accumulated irqs
1276 * are fresh.
1277 */
1278 per_cpu_ptr(&irq_randomness, cpu)->count = 0;
1279 return 0;
1280}
1281#endif
1282
1283static unsigned long get_reg(struct fast_pool *f, struct pt_regs *regs)
1284{
1285 unsigned long *ptr = (unsigned long *)regs;
1286 unsigned int idx;
1287
1288 if (regs == NULL)
1289 return 0;
1290 idx = READ_ONCE(f->reg_idx);
1291 if (idx >= sizeof(struct pt_regs) / sizeof(unsigned long))
1292 idx = 0;
1293 ptr += idx++;
1294 WRITE_ONCE(f->reg_idx, idx);
1295 return *ptr;
1296}
1297
1298static void mix_interrupt_randomness(struct work_struct *work)
1299{
1300 struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1301 /*
1302 * The size of the copied stack pool is explicitly 16 bytes so that we
1303 * tax mix_pool_byte()'s compression function the same amount on all
1304 * platforms. This means on 64-bit we copy half the pool into this,
1305 * while on 32-bit we copy all of it. The entropy is supposed to be
1306 * sufficiently dispersed between bits that in the sponge-like
1307 * half case, on average we don't wind up "losing" some.
1308 */
1309 u8 pool[16];
1310
1311 /* Check to see if we're running on the wrong CPU due to hotplug. */
1312 local_irq_disable();
1313 if (fast_pool != this_cpu_ptr(&irq_randomness)) {
1314 local_irq_enable();
1315 return;
1316 }
1317
1318 /*
1319 * Copy the pool to the stack so that the mixer always has a
1320 * consistent view, before we reenable irqs again.
1321 */
1322 memcpy(pool, fast_pool->pool, sizeof(pool));
1323 fast_pool->count = 0;
1324 fast_pool->last = jiffies;
1325 local_irq_enable();
1326
1327 if (unlikely(crng_init == 0)) {
1328 crng_pre_init_inject(pool, sizeof(pool), true);
1329 mix_pool_bytes(pool, sizeof(pool));
1330 } else {
1331 mix_pool_bytes(pool, sizeof(pool));
1332 credit_entropy_bits(1);
1333 }
1334
1335 memzero_explicit(pool, sizeof(pool));
1336}
1337
1338void add_interrupt_randomness(int irq)
1339{
1340 enum { MIX_INFLIGHT = 1U << 31 };
1341 unsigned long cycles = random_get_entropy(), now = jiffies;
1342 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1343 struct pt_regs *regs = get_irq_regs();
1344 unsigned int new_count;
1345 union {
1346 u32 u32[4];
1347 u64 u64[2];
1348 unsigned long longs[16 / sizeof(long)];
1349 } irq_data;
1350
1351 if (cycles == 0)
1352 cycles = get_reg(fast_pool, regs);
1353
1354 if (sizeof(unsigned long) == 8) {
1355 irq_data.u64[0] = cycles ^ rol64(now, 32) ^ irq;
1356 irq_data.u64[1] = regs ? instruction_pointer(regs) : _RET_IP_;
1357 } else {
1358 irq_data.u32[0] = cycles ^ irq;
1359 irq_data.u32[1] = now;
1360 irq_data.u32[2] = regs ? instruction_pointer(regs) : _RET_IP_;
1361 irq_data.u32[3] = get_reg(fast_pool, regs);
1362 }
1363
1364 fast_mix(fast_pool->pool, irq_data.longs);
1365 new_count = ++fast_pool->count;
1366
1367 if (new_count & MIX_INFLIGHT)
1368 return;
1369
1370 if (new_count < 64 && (!time_after(now, fast_pool->last + HZ) ||
1371 unlikely(crng_init == 0)))
1372 return;
1373
1374 if (unlikely(!fast_pool->mix.func))
1375 INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
1376 fast_pool->count |= MIX_INFLIGHT;
1377 queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
1378}
1379EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1380
1381/*
1382 * Each time the timer fires, we expect that we got an unpredictable
1383 * jump in the cycle counter. Even if the timer is running on another
1384 * CPU, the timer activity will be touching the stack of the CPU that is
1385 * generating entropy..
1386 *
1387 * Note that we don't re-arm the timer in the timer itself - we are
1388 * happy to be scheduled away, since that just makes the load more
1389 * complex, but we do not want the timer to keep ticking unless the
1390 * entropy loop is running.
1391 *
1392 * So the re-arming always happens in the entropy loop itself.
1393 */
1394static void entropy_timer(struct timer_list *t)
1395{
1396 credit_entropy_bits(1);
1397}
1398
1399/*
1400 * If we have an actual cycle counter, see if we can
1401 * generate enough entropy with timing noise
1402 */
1403static void try_to_generate_entropy(void)
1404{
1405 struct {
1406 unsigned long cycles;
1407 struct timer_list timer;
1408 } stack;
1409
1410 stack.cycles = random_get_entropy();
1411
1412 /* Slow counter - or none. Don't even bother */
1413 if (stack.cycles == random_get_entropy())
1414 return;
1415
1416 timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1417 while (!crng_ready() && !signal_pending(current)) {
1418 if (!timer_pending(&stack.timer))
1419 mod_timer(&stack.timer, jiffies + 1);
1420 mix_pool_bytes(&stack.cycles, sizeof(stack.cycles));
1421 schedule();
1422 stack.cycles = random_get_entropy();
1423 }
1424
1425 del_timer_sync(&stack.timer);
1426 destroy_timer_on_stack(&stack.timer);
1427 mix_pool_bytes(&stack.cycles, sizeof(stack.cycles));
1428}
1429
1430
1431/**********************************************************************
1432 *
1433 * Userspace reader/writer interfaces.
1434 *
1435 * getrandom(2) is the primary modern interface into the RNG and should
1436 * be used in preference to anything else.
1437 *
1438 * Reading from /dev/random has the same functionality as calling
1439 * getrandom(2) with flags=0. In earlier versions, however, it had
1440 * vastly different semantics and should therefore be avoided, to
1441 * prevent backwards compatibility issues.
1442 *
1443 * Reading from /dev/urandom has the same functionality as calling
1444 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1445 * waiting for the RNG to be ready, it should not be used.
1446 *
1447 * Writing to either /dev/random or /dev/urandom adds entropy to
1448 * the input pool but does not credit it.
1449 *
1450 * Polling on /dev/random indicates when the RNG is initialized, on
1451 * the read side, and when it wants new entropy, on the write side.
1452 *
1453 * Both /dev/random and /dev/urandom have the same set of ioctls for
1454 * adding entropy, getting the entropy count, zeroing the count, and
1455 * reseeding the crng.
1456 *
1457 **********************************************************************/
1458
1459SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
1460 flags)
1461{
1462 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1463 return -EINVAL;
1464
1465 /*
1466 * Requesting insecure and blocking randomness at the same time makes
1467 * no sense.
1468 */
1469 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1470 return -EINVAL;
1471
1472 if (count > INT_MAX)
1473 count = INT_MAX;
1474
1475 if (!(flags & GRND_INSECURE) && !crng_ready()) {
1476 int ret;
1477
1478 if (flags & GRND_NONBLOCK)
1479 return -EAGAIN;
1480 ret = wait_for_random_bytes();
1481 if (unlikely(ret))
1482 return ret;
1483 }
1484 return get_random_bytes_user(buf, count);
1485}
1486
1487static __poll_t random_poll(struct file *file, poll_table *wait)
1488{
1489 __poll_t mask;
1490
1491 poll_wait(file, &crng_init_wait, wait);
1492 poll_wait(file, &random_write_wait, wait);
1493 mask = 0;
1494 if (crng_ready())
1495 mask |= EPOLLIN | EPOLLRDNORM;
1496 if (input_pool.entropy_count < POOL_MIN_BITS)
1497 mask |= EPOLLOUT | EPOLLWRNORM;
1498 return mask;
1499}
1500
1501static int write_pool(const char __user *ubuf, size_t count)
1502{
1503 size_t len;
1504 int ret = 0;
1505 u8 block[BLAKE2S_BLOCK_SIZE];
1506
1507 while (count) {
1508 len = min(count, sizeof(block));
1509 if (copy_from_user(block, ubuf, len)) {
1510 ret = -EFAULT;
1511 goto out;
1512 }
1513 count -= len;
1514 ubuf += len;
1515 mix_pool_bytes(block, len);
1516 cond_resched();
1517 }
1518
1519out:
1520 memzero_explicit(block, sizeof(block));
1521 return ret;
1522}
1523
1524static ssize_t random_write(struct file *file, const char __user *buffer,
1525 size_t count, loff_t *ppos)
1526{
1527 int ret;
1528
1529 ret = write_pool(buffer, count);
1530 if (ret)
1531 return ret;
1532
1533 return (ssize_t)count;
1534}
1535
1536static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes,
1537 loff_t *ppos)
1538{
1539 static int maxwarn = 10;
1540
1541 /*
1542 * Opportunistically attempt to initialize the RNG on platforms that
1543 * have fast cycle counters, but don't (for now) require it to succeed.
1544 */
1545 if (!crng_ready())
1546 try_to_generate_entropy();
1547
1548 if (!crng_ready() && maxwarn > 0) {
1549 maxwarn--;
1550 if (__ratelimit(&urandom_warning))
1551 pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
1552 current->comm, nbytes);
1553 }
1554
1555 return get_random_bytes_user(buf, nbytes);
1556}
1557
1558static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
1559 loff_t *ppos)
1560{
1561 int ret;
1562
1563 ret = wait_for_random_bytes();
1564 if (ret != 0)
1565 return ret;
1566 return get_random_bytes_user(buf, nbytes);
1567}
1568
1569static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1570{
1571 int size, ent_count;
1572 int __user *p = (int __user *)arg;
1573 int retval;
1574
1575 switch (cmd) {
1576 case RNDGETENTCNT:
1577 /* Inherently racy, no point locking. */
1578 if (put_user(input_pool.entropy_count, p))
1579 return -EFAULT;
1580 return 0;
1581 case RNDADDTOENTCNT:
1582 if (!capable(CAP_SYS_ADMIN))
1583 return -EPERM;
1584 if (get_user(ent_count, p))
1585 return -EFAULT;
1586 if (ent_count < 0)
1587 return -EINVAL;
1588 credit_entropy_bits(ent_count);
1589 return 0;
1590 case RNDADDENTROPY:
1591 if (!capable(CAP_SYS_ADMIN))
1592 return -EPERM;
1593 if (get_user(ent_count, p++))
1594 return -EFAULT;
1595 if (ent_count < 0)
1596 return -EINVAL;
1597 if (get_user(size, p++))
1598 return -EFAULT;
1599 retval = write_pool((const char __user *)p, size);
1600 if (retval < 0)
1601 return retval;
1602 credit_entropy_bits(ent_count);
1603 return 0;
1604 case RNDZAPENTCNT:
1605 case RNDCLEARPOOL:
1606 /*
1607 * Clear the entropy pool counters. We no longer clear
1608 * the entropy pool, as that's silly.
1609 */
1610 if (!capable(CAP_SYS_ADMIN))
1611 return -EPERM;
1612 if (xchg(&input_pool.entropy_count, 0) >= POOL_MIN_BITS) {
1613 wake_up_interruptible(&random_write_wait);
1614 kill_fasync(&fasync, SIGIO, POLL_OUT);
1615 }
1616 return 0;
1617 case RNDRESEEDCRNG:
1618 if (!capable(CAP_SYS_ADMIN))
1619 return -EPERM;
1620 if (!crng_ready())
1621 return -ENODATA;
1622 crng_reseed(false);
1623 return 0;
1624 default:
1625 return -EINVAL;
1626 }
1627}
1628
1629static int random_fasync(int fd, struct file *filp, int on)
1630{
1631 return fasync_helper(fd, filp, on, &fasync);
1632}
1633
1634const struct file_operations random_fops = {
1635 .read = random_read,
1636 .write = random_write,
1637 .poll = random_poll,
1638 .unlocked_ioctl = random_ioctl,
1639 .compat_ioctl = compat_ptr_ioctl,
1640 .fasync = random_fasync,
1641 .llseek = noop_llseek,
1642};
1643
1644const struct file_operations urandom_fops = {
1645 .read = urandom_read,
1646 .write = random_write,
1647 .unlocked_ioctl = random_ioctl,
1648 .compat_ioctl = compat_ptr_ioctl,
1649 .fasync = random_fasync,
1650 .llseek = noop_llseek,
1651};
1652
1653
1654/********************************************************************
1655 *
1656 * Sysctl interface.
1657 *
1658 * These are partly unused legacy knobs with dummy values to not break
1659 * userspace and partly still useful things. They are usually accessible
1660 * in /proc/sys/kernel/random/ and are as follows:
1661 *
1662 * - boot_id - a UUID representing the current boot.
1663 *
1664 * - uuid - a random UUID, different each time the file is read.
1665 *
1666 * - poolsize - the number of bits of entropy that the input pool can
1667 * hold, tied to the POOL_BITS constant.
1668 *
1669 * - entropy_avail - the number of bits of entropy currently in the
1670 * input pool. Always <= poolsize.
1671 *
1672 * - write_wakeup_threshold - the amount of entropy in the input pool
1673 * below which write polls to /dev/random will unblock, requesting
1674 * more entropy, tied to the POOL_MIN_BITS constant. It is writable
1675 * to avoid breaking old userspaces, but writing to it does not
1676 * change any behavior of the RNG.
1677 *
1678 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1679 * It is writable to avoid breaking old userspaces, but writing
1680 * to it does not change any behavior of the RNG.
1681 *
1682 ********************************************************************/
1683
1684#ifdef CONFIG_SYSCTL
1685
1686#include <linux/sysctl.h>
1687
1688static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1689static int sysctl_random_write_wakeup_bits = POOL_MIN_BITS;
1690static int sysctl_poolsize = POOL_BITS;
1691static u8 sysctl_bootid[UUID_SIZE];
1692
1693/*
1694 * This function is used to return both the bootid UUID, and random
1695 * UUID. The difference is in whether table->data is NULL; if it is,
1696 * then a new UUID is generated and returned to the user.
1697 */
1698static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
1699 size_t *lenp, loff_t *ppos)
1700{
1701 u8 tmp_uuid[UUID_SIZE], *uuid;
1702 char uuid_string[UUID_STRING_LEN + 1];
1703 struct ctl_table fake_table = {
1704 .data = uuid_string,
1705 .maxlen = UUID_STRING_LEN
1706 };
1707
1708 if (write)
1709 return -EPERM;
1710
1711 uuid = table->data;
1712 if (!uuid) {
1713 uuid = tmp_uuid;
1714 generate_random_uuid(uuid);
1715 } else {
1716 static DEFINE_SPINLOCK(bootid_spinlock);
1717
1718 spin_lock(&bootid_spinlock);
1719 if (!uuid[8])
1720 generate_random_uuid(uuid);
1721 spin_unlock(&bootid_spinlock);
1722 }
1723
1724 snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1725 return proc_dostring(&fake_table, 0, buffer, lenp, ppos);
1726}
1727
1728/* The same as proc_dointvec, but writes don't change anything. */
1729static int proc_do_rointvec(struct ctl_table *table, int write, void *buffer,
1730 size_t *lenp, loff_t *ppos)
1731{
1732 return write ? 0 : proc_dointvec(table, 0, buffer, lenp, ppos);
1733}
1734
1735static struct ctl_table random_table[] = {
1736 {
1737 .procname = "poolsize",
1738 .data = &sysctl_poolsize,
1739 .maxlen = sizeof(int),
1740 .mode = 0444,
1741 .proc_handler = proc_dointvec,
1742 },
1743 {
1744 .procname = "entropy_avail",
1745 .data = &input_pool.entropy_count,
1746 .maxlen = sizeof(int),
1747 .mode = 0444,
1748 .proc_handler = proc_dointvec,
1749 },
1750 {
1751 .procname = "write_wakeup_threshold",
1752 .data = &sysctl_random_write_wakeup_bits,
1753 .maxlen = sizeof(int),
1754 .mode = 0644,
1755 .proc_handler = proc_do_rointvec,
1756 },
1757 {
1758 .procname = "urandom_min_reseed_secs",
1759 .data = &sysctl_random_min_urandom_seed,
1760 .maxlen = sizeof(int),
1761 .mode = 0644,
1762 .proc_handler = proc_do_rointvec,
1763 },
1764 {
1765 .procname = "boot_id",
1766 .data = &sysctl_bootid,
1767 .mode = 0444,
1768 .proc_handler = proc_do_uuid,
1769 },
1770 {
1771 .procname = "uuid",
1772 .mode = 0444,
1773 .proc_handler = proc_do_uuid,
1774 },
1775 { }
1776};
1777
1778/*
1779 * rand_initialize() is called before sysctl_init(),
1780 * so we cannot call register_sysctl_init() in rand_initialize()
1781 */
1782static int __init random_sysctls_init(void)
1783{
1784 register_sysctl_init("kernel/random", random_table);
1785 return 0;
1786}
1787device_initcall(random_sysctls_init);
1788#endif