Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2//
3// Register map access API
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/slab.h>
11#include <linux/export.h>
12#include <linux/mutex.h>
13#include <linux/err.h>
14#include <linux/property.h>
15#include <linux/rbtree.h>
16#include <linux/sched.h>
17#include <linux/delay.h>
18#include <linux/log2.h>
19#include <linux/hwspinlock.h>
20#include <asm/unaligned.h>
21
22#define CREATE_TRACE_POINTS
23#include "trace.h"
24
25#include "internal.h"
26
27/*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33#undef LOG_DEVICE
34
35#ifdef LOG_DEVICE
36static inline bool regmap_should_log(struct regmap *map)
37{
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39}
40#else
41static inline bool regmap_should_log(struct regmap *map) { return false; }
42#endif
43
44
45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
60bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63{
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71}
72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76{
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87}
88EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
90bool regmap_writeable(struct regmap *map, unsigned int reg)
91{
92 if (map->max_register && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102}
103
104bool regmap_cached(struct regmap *map, unsigned int reg)
105{
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125}
126
127bool regmap_readable(struct regmap *map, unsigned int reg)
128{
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145}
146
147bool regmap_volatile(struct regmap *map, unsigned int reg)
148{
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162}
163
164bool regmap_precious(struct regmap *map, unsigned int reg)
165{
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176}
177
178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179{
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187}
188
189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190{
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198}
199
200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202{
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
208
209 return true;
210}
211
212static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214{
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221}
222
223
224static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226{
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230}
231
232static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234{
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237}
238
239static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241{
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244}
245
246static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248{
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = val >> 8;
253 out[0] = (val >> 16) | (reg << 1);
254}
255
256static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
258{
259 u8 *out = map->work_buf;
260
261 out[2] = val;
262 out[1] = (val >> 8) | (reg << 6);
263 out[0] = reg >> 2;
264}
265
266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267{
268 u8 *b = buf;
269
270 b[0] = val << shift;
271}
272
273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274{
275 put_unaligned_be16(val << shift, buf);
276}
277
278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279{
280 put_unaligned_le16(val << shift, buf);
281}
282
283static void regmap_format_16_native(void *buf, unsigned int val,
284 unsigned int shift)
285{
286 u16 v = val << shift;
287
288 memcpy(buf, &v, sizeof(v));
289}
290
291static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
292{
293 u8 *b = buf;
294
295 val <<= shift;
296
297 b[0] = val >> 16;
298 b[1] = val >> 8;
299 b[2] = val;
300}
301
302static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
303{
304 put_unaligned_be32(val << shift, buf);
305}
306
307static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
308{
309 put_unaligned_le32(val << shift, buf);
310}
311
312static void regmap_format_32_native(void *buf, unsigned int val,
313 unsigned int shift)
314{
315 u32 v = val << shift;
316
317 memcpy(buf, &v, sizeof(v));
318}
319
320#ifdef CONFIG_64BIT
321static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
322{
323 put_unaligned_be64((u64) val << shift, buf);
324}
325
326static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
327{
328 put_unaligned_le64((u64) val << shift, buf);
329}
330
331static void regmap_format_64_native(void *buf, unsigned int val,
332 unsigned int shift)
333{
334 u64 v = (u64) val << shift;
335
336 memcpy(buf, &v, sizeof(v));
337}
338#endif
339
340static void regmap_parse_inplace_noop(void *buf)
341{
342}
343
344static unsigned int regmap_parse_8(const void *buf)
345{
346 const u8 *b = buf;
347
348 return b[0];
349}
350
351static unsigned int regmap_parse_16_be(const void *buf)
352{
353 return get_unaligned_be16(buf);
354}
355
356static unsigned int regmap_parse_16_le(const void *buf)
357{
358 return get_unaligned_le16(buf);
359}
360
361static void regmap_parse_16_be_inplace(void *buf)
362{
363 u16 v = get_unaligned_be16(buf);
364
365 memcpy(buf, &v, sizeof(v));
366}
367
368static void regmap_parse_16_le_inplace(void *buf)
369{
370 u16 v = get_unaligned_le16(buf);
371
372 memcpy(buf, &v, sizeof(v));
373}
374
375static unsigned int regmap_parse_16_native(const void *buf)
376{
377 u16 v;
378
379 memcpy(&v, buf, sizeof(v));
380 return v;
381}
382
383static unsigned int regmap_parse_24(const void *buf)
384{
385 const u8 *b = buf;
386 unsigned int ret = b[2];
387 ret |= ((unsigned int)b[1]) << 8;
388 ret |= ((unsigned int)b[0]) << 16;
389
390 return ret;
391}
392
393static unsigned int regmap_parse_32_be(const void *buf)
394{
395 return get_unaligned_be32(buf);
396}
397
398static unsigned int regmap_parse_32_le(const void *buf)
399{
400 return get_unaligned_le32(buf);
401}
402
403static void regmap_parse_32_be_inplace(void *buf)
404{
405 u32 v = get_unaligned_be32(buf);
406
407 memcpy(buf, &v, sizeof(v));
408}
409
410static void regmap_parse_32_le_inplace(void *buf)
411{
412 u32 v = get_unaligned_le32(buf);
413
414 memcpy(buf, &v, sizeof(v));
415}
416
417static unsigned int regmap_parse_32_native(const void *buf)
418{
419 u32 v;
420
421 memcpy(&v, buf, sizeof(v));
422 return v;
423}
424
425#ifdef CONFIG_64BIT
426static unsigned int regmap_parse_64_be(const void *buf)
427{
428 return get_unaligned_be64(buf);
429}
430
431static unsigned int regmap_parse_64_le(const void *buf)
432{
433 return get_unaligned_le64(buf);
434}
435
436static void regmap_parse_64_be_inplace(void *buf)
437{
438 u64 v = get_unaligned_be64(buf);
439
440 memcpy(buf, &v, sizeof(v));
441}
442
443static void regmap_parse_64_le_inplace(void *buf)
444{
445 u64 v = get_unaligned_le64(buf);
446
447 memcpy(buf, &v, sizeof(v));
448}
449
450static unsigned int regmap_parse_64_native(const void *buf)
451{
452 u64 v;
453
454 memcpy(&v, buf, sizeof(v));
455 return v;
456}
457#endif
458
459static void regmap_lock_hwlock(void *__map)
460{
461 struct regmap *map = __map;
462
463 hwspin_lock_timeout(map->hwlock, UINT_MAX);
464}
465
466static void regmap_lock_hwlock_irq(void *__map)
467{
468 struct regmap *map = __map;
469
470 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
471}
472
473static void regmap_lock_hwlock_irqsave(void *__map)
474{
475 struct regmap *map = __map;
476
477 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
478 &map->spinlock_flags);
479}
480
481static void regmap_unlock_hwlock(void *__map)
482{
483 struct regmap *map = __map;
484
485 hwspin_unlock(map->hwlock);
486}
487
488static void regmap_unlock_hwlock_irq(void *__map)
489{
490 struct regmap *map = __map;
491
492 hwspin_unlock_irq(map->hwlock);
493}
494
495static void regmap_unlock_hwlock_irqrestore(void *__map)
496{
497 struct regmap *map = __map;
498
499 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
500}
501
502static void regmap_lock_unlock_none(void *__map)
503{
504
505}
506
507static void regmap_lock_mutex(void *__map)
508{
509 struct regmap *map = __map;
510 mutex_lock(&map->mutex);
511}
512
513static void regmap_unlock_mutex(void *__map)
514{
515 struct regmap *map = __map;
516 mutex_unlock(&map->mutex);
517}
518
519static void regmap_lock_spinlock(void *__map)
520__acquires(&map->spinlock)
521{
522 struct regmap *map = __map;
523 unsigned long flags;
524
525 spin_lock_irqsave(&map->spinlock, flags);
526 map->spinlock_flags = flags;
527}
528
529static void regmap_unlock_spinlock(void *__map)
530__releases(&map->spinlock)
531{
532 struct regmap *map = __map;
533 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
534}
535
536static void regmap_lock_raw_spinlock(void *__map)
537__acquires(&map->raw_spinlock)
538{
539 struct regmap *map = __map;
540 unsigned long flags;
541
542 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
543 map->raw_spinlock_flags = flags;
544}
545
546static void regmap_unlock_raw_spinlock(void *__map)
547__releases(&map->raw_spinlock)
548{
549 struct regmap *map = __map;
550 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
551}
552
553static void dev_get_regmap_release(struct device *dev, void *res)
554{
555 /*
556 * We don't actually have anything to do here; the goal here
557 * is not to manage the regmap but to provide a simple way to
558 * get the regmap back given a struct device.
559 */
560}
561
562static bool _regmap_range_add(struct regmap *map,
563 struct regmap_range_node *data)
564{
565 struct rb_root *root = &map->range_tree;
566 struct rb_node **new = &(root->rb_node), *parent = NULL;
567
568 while (*new) {
569 struct regmap_range_node *this =
570 rb_entry(*new, struct regmap_range_node, node);
571
572 parent = *new;
573 if (data->range_max < this->range_min)
574 new = &((*new)->rb_left);
575 else if (data->range_min > this->range_max)
576 new = &((*new)->rb_right);
577 else
578 return false;
579 }
580
581 rb_link_node(&data->node, parent, new);
582 rb_insert_color(&data->node, root);
583
584 return true;
585}
586
587static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
588 unsigned int reg)
589{
590 struct rb_node *node = map->range_tree.rb_node;
591
592 while (node) {
593 struct regmap_range_node *this =
594 rb_entry(node, struct regmap_range_node, node);
595
596 if (reg < this->range_min)
597 node = node->rb_left;
598 else if (reg > this->range_max)
599 node = node->rb_right;
600 else
601 return this;
602 }
603
604 return NULL;
605}
606
607static void regmap_range_exit(struct regmap *map)
608{
609 struct rb_node *next;
610 struct regmap_range_node *range_node;
611
612 next = rb_first(&map->range_tree);
613 while (next) {
614 range_node = rb_entry(next, struct regmap_range_node, node);
615 next = rb_next(&range_node->node);
616 rb_erase(&range_node->node, &map->range_tree);
617 kfree(range_node);
618 }
619
620 kfree(map->selector_work_buf);
621}
622
623static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
624{
625 if (config->name) {
626 const char *name = kstrdup_const(config->name, GFP_KERNEL);
627
628 if (!name)
629 return -ENOMEM;
630
631 kfree_const(map->name);
632 map->name = name;
633 }
634
635 return 0;
636}
637
638int regmap_attach_dev(struct device *dev, struct regmap *map,
639 const struct regmap_config *config)
640{
641 struct regmap **m;
642 int ret;
643
644 map->dev = dev;
645
646 ret = regmap_set_name(map, config);
647 if (ret)
648 return ret;
649
650 regmap_debugfs_exit(map);
651 regmap_debugfs_init(map);
652
653 /* Add a devres resource for dev_get_regmap() */
654 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
655 if (!m) {
656 regmap_debugfs_exit(map);
657 return -ENOMEM;
658 }
659 *m = map;
660 devres_add(dev, m);
661
662 return 0;
663}
664EXPORT_SYMBOL_GPL(regmap_attach_dev);
665
666static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
667 const struct regmap_config *config)
668{
669 enum regmap_endian endian;
670
671 /* Retrieve the endianness specification from the regmap config */
672 endian = config->reg_format_endian;
673
674 /* If the regmap config specified a non-default value, use that */
675 if (endian != REGMAP_ENDIAN_DEFAULT)
676 return endian;
677
678 /* Retrieve the endianness specification from the bus config */
679 if (bus && bus->reg_format_endian_default)
680 endian = bus->reg_format_endian_default;
681
682 /* If the bus specified a non-default value, use that */
683 if (endian != REGMAP_ENDIAN_DEFAULT)
684 return endian;
685
686 /* Use this if no other value was found */
687 return REGMAP_ENDIAN_BIG;
688}
689
690enum regmap_endian regmap_get_val_endian(struct device *dev,
691 const struct regmap_bus *bus,
692 const struct regmap_config *config)
693{
694 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
695 enum regmap_endian endian;
696
697 /* Retrieve the endianness specification from the regmap config */
698 endian = config->val_format_endian;
699
700 /* If the regmap config specified a non-default value, use that */
701 if (endian != REGMAP_ENDIAN_DEFAULT)
702 return endian;
703
704 /* If the firmware node exist try to get endianness from it */
705 if (fwnode_property_read_bool(fwnode, "big-endian"))
706 endian = REGMAP_ENDIAN_BIG;
707 else if (fwnode_property_read_bool(fwnode, "little-endian"))
708 endian = REGMAP_ENDIAN_LITTLE;
709 else if (fwnode_property_read_bool(fwnode, "native-endian"))
710 endian = REGMAP_ENDIAN_NATIVE;
711
712 /* If the endianness was specified in fwnode, use that */
713 if (endian != REGMAP_ENDIAN_DEFAULT)
714 return endian;
715
716 /* Retrieve the endianness specification from the bus config */
717 if (bus && bus->val_format_endian_default)
718 endian = bus->val_format_endian_default;
719
720 /* If the bus specified a non-default value, use that */
721 if (endian != REGMAP_ENDIAN_DEFAULT)
722 return endian;
723
724 /* Use this if no other value was found */
725 return REGMAP_ENDIAN_BIG;
726}
727EXPORT_SYMBOL_GPL(regmap_get_val_endian);
728
729struct regmap *__regmap_init(struct device *dev,
730 const struct regmap_bus *bus,
731 void *bus_context,
732 const struct regmap_config *config,
733 struct lock_class_key *lock_key,
734 const char *lock_name)
735{
736 struct regmap *map;
737 int ret = -EINVAL;
738 enum regmap_endian reg_endian, val_endian;
739 int i, j;
740
741 if (!config)
742 goto err;
743
744 map = kzalloc(sizeof(*map), GFP_KERNEL);
745 if (map == NULL) {
746 ret = -ENOMEM;
747 goto err;
748 }
749
750 ret = regmap_set_name(map, config);
751 if (ret)
752 goto err_map;
753
754 ret = -EINVAL; /* Later error paths rely on this */
755
756 if (config->disable_locking) {
757 map->lock = map->unlock = regmap_lock_unlock_none;
758 map->can_sleep = config->can_sleep;
759 regmap_debugfs_disable(map);
760 } else if (config->lock && config->unlock) {
761 map->lock = config->lock;
762 map->unlock = config->unlock;
763 map->lock_arg = config->lock_arg;
764 map->can_sleep = config->can_sleep;
765 } else if (config->use_hwlock) {
766 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
767 if (!map->hwlock) {
768 ret = -ENXIO;
769 goto err_name;
770 }
771
772 switch (config->hwlock_mode) {
773 case HWLOCK_IRQSTATE:
774 map->lock = regmap_lock_hwlock_irqsave;
775 map->unlock = regmap_unlock_hwlock_irqrestore;
776 break;
777 case HWLOCK_IRQ:
778 map->lock = regmap_lock_hwlock_irq;
779 map->unlock = regmap_unlock_hwlock_irq;
780 break;
781 default:
782 map->lock = regmap_lock_hwlock;
783 map->unlock = regmap_unlock_hwlock;
784 break;
785 }
786
787 map->lock_arg = map;
788 } else {
789 if ((bus && bus->fast_io) ||
790 config->fast_io) {
791 if (config->use_raw_spinlock) {
792 raw_spin_lock_init(&map->raw_spinlock);
793 map->lock = regmap_lock_raw_spinlock;
794 map->unlock = regmap_unlock_raw_spinlock;
795 lockdep_set_class_and_name(&map->raw_spinlock,
796 lock_key, lock_name);
797 } else {
798 spin_lock_init(&map->spinlock);
799 map->lock = regmap_lock_spinlock;
800 map->unlock = regmap_unlock_spinlock;
801 lockdep_set_class_and_name(&map->spinlock,
802 lock_key, lock_name);
803 }
804 } else {
805 mutex_init(&map->mutex);
806 map->lock = regmap_lock_mutex;
807 map->unlock = regmap_unlock_mutex;
808 map->can_sleep = true;
809 lockdep_set_class_and_name(&map->mutex,
810 lock_key, lock_name);
811 }
812 map->lock_arg = map;
813 }
814
815 /*
816 * When we write in fast-paths with regmap_bulk_write() don't allocate
817 * scratch buffers with sleeping allocations.
818 */
819 if ((bus && bus->fast_io) || config->fast_io)
820 map->alloc_flags = GFP_ATOMIC;
821 else
822 map->alloc_flags = GFP_KERNEL;
823
824 map->reg_base = config->reg_base;
825
826 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
827 map->format.pad_bytes = config->pad_bits / 8;
828 map->format.reg_downshift = config->reg_downshift;
829 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
830 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
831 config->val_bits + config->pad_bits, 8);
832 map->reg_shift = config->pad_bits % 8;
833 if (config->reg_stride)
834 map->reg_stride = config->reg_stride;
835 else
836 map->reg_stride = 1;
837 if (is_power_of_2(map->reg_stride))
838 map->reg_stride_order = ilog2(map->reg_stride);
839 else
840 map->reg_stride_order = -1;
841 map->use_single_read = config->use_single_read || !bus || !bus->read;
842 map->use_single_write = config->use_single_write || !bus || !bus->write;
843 map->can_multi_write = config->can_multi_write && bus && bus->write;
844 if (bus) {
845 map->max_raw_read = bus->max_raw_read;
846 map->max_raw_write = bus->max_raw_write;
847 }
848 map->dev = dev;
849 map->bus = bus;
850 map->bus_context = bus_context;
851 map->max_register = config->max_register;
852 map->wr_table = config->wr_table;
853 map->rd_table = config->rd_table;
854 map->volatile_table = config->volatile_table;
855 map->precious_table = config->precious_table;
856 map->wr_noinc_table = config->wr_noinc_table;
857 map->rd_noinc_table = config->rd_noinc_table;
858 map->writeable_reg = config->writeable_reg;
859 map->readable_reg = config->readable_reg;
860 map->volatile_reg = config->volatile_reg;
861 map->precious_reg = config->precious_reg;
862 map->writeable_noinc_reg = config->writeable_noinc_reg;
863 map->readable_noinc_reg = config->readable_noinc_reg;
864 map->cache_type = config->cache_type;
865
866 spin_lock_init(&map->async_lock);
867 INIT_LIST_HEAD(&map->async_list);
868 INIT_LIST_HEAD(&map->async_free);
869 init_waitqueue_head(&map->async_waitq);
870
871 if (config->read_flag_mask ||
872 config->write_flag_mask ||
873 config->zero_flag_mask) {
874 map->read_flag_mask = config->read_flag_mask;
875 map->write_flag_mask = config->write_flag_mask;
876 } else if (bus) {
877 map->read_flag_mask = bus->read_flag_mask;
878 }
879
880 if (!bus) {
881 map->reg_read = config->reg_read;
882 map->reg_write = config->reg_write;
883 map->reg_update_bits = config->reg_update_bits;
884
885 map->defer_caching = false;
886 goto skip_format_initialization;
887 } else if (!bus->read || !bus->write) {
888 map->reg_read = _regmap_bus_reg_read;
889 map->reg_write = _regmap_bus_reg_write;
890 map->reg_update_bits = bus->reg_update_bits;
891
892 map->defer_caching = false;
893 goto skip_format_initialization;
894 } else {
895 map->reg_read = _regmap_bus_read;
896 map->reg_update_bits = bus->reg_update_bits;
897 }
898
899 reg_endian = regmap_get_reg_endian(bus, config);
900 val_endian = regmap_get_val_endian(dev, bus, config);
901
902 switch (config->reg_bits + map->reg_shift) {
903 case 2:
904 switch (config->val_bits) {
905 case 6:
906 map->format.format_write = regmap_format_2_6_write;
907 break;
908 default:
909 goto err_hwlock;
910 }
911 break;
912
913 case 4:
914 switch (config->val_bits) {
915 case 12:
916 map->format.format_write = regmap_format_4_12_write;
917 break;
918 default:
919 goto err_hwlock;
920 }
921 break;
922
923 case 7:
924 switch (config->val_bits) {
925 case 9:
926 map->format.format_write = regmap_format_7_9_write;
927 break;
928 case 17:
929 map->format.format_write = regmap_format_7_17_write;
930 break;
931 default:
932 goto err_hwlock;
933 }
934 break;
935
936 case 10:
937 switch (config->val_bits) {
938 case 14:
939 map->format.format_write = regmap_format_10_14_write;
940 break;
941 default:
942 goto err_hwlock;
943 }
944 break;
945
946 case 12:
947 switch (config->val_bits) {
948 case 20:
949 map->format.format_write = regmap_format_12_20_write;
950 break;
951 default:
952 goto err_hwlock;
953 }
954 break;
955
956 case 8:
957 map->format.format_reg = regmap_format_8;
958 break;
959
960 case 16:
961 switch (reg_endian) {
962 case REGMAP_ENDIAN_BIG:
963 map->format.format_reg = regmap_format_16_be;
964 break;
965 case REGMAP_ENDIAN_LITTLE:
966 map->format.format_reg = regmap_format_16_le;
967 break;
968 case REGMAP_ENDIAN_NATIVE:
969 map->format.format_reg = regmap_format_16_native;
970 break;
971 default:
972 goto err_hwlock;
973 }
974 break;
975
976 case 24:
977 if (reg_endian != REGMAP_ENDIAN_BIG)
978 goto err_hwlock;
979 map->format.format_reg = regmap_format_24;
980 break;
981
982 case 32:
983 switch (reg_endian) {
984 case REGMAP_ENDIAN_BIG:
985 map->format.format_reg = regmap_format_32_be;
986 break;
987 case REGMAP_ENDIAN_LITTLE:
988 map->format.format_reg = regmap_format_32_le;
989 break;
990 case REGMAP_ENDIAN_NATIVE:
991 map->format.format_reg = regmap_format_32_native;
992 break;
993 default:
994 goto err_hwlock;
995 }
996 break;
997
998#ifdef CONFIG_64BIT
999 case 64:
1000 switch (reg_endian) {
1001 case REGMAP_ENDIAN_BIG:
1002 map->format.format_reg = regmap_format_64_be;
1003 break;
1004 case REGMAP_ENDIAN_LITTLE:
1005 map->format.format_reg = regmap_format_64_le;
1006 break;
1007 case REGMAP_ENDIAN_NATIVE:
1008 map->format.format_reg = regmap_format_64_native;
1009 break;
1010 default:
1011 goto err_hwlock;
1012 }
1013 break;
1014#endif
1015
1016 default:
1017 goto err_hwlock;
1018 }
1019
1020 if (val_endian == REGMAP_ENDIAN_NATIVE)
1021 map->format.parse_inplace = regmap_parse_inplace_noop;
1022
1023 switch (config->val_bits) {
1024 case 8:
1025 map->format.format_val = regmap_format_8;
1026 map->format.parse_val = regmap_parse_8;
1027 map->format.parse_inplace = regmap_parse_inplace_noop;
1028 break;
1029 case 16:
1030 switch (val_endian) {
1031 case REGMAP_ENDIAN_BIG:
1032 map->format.format_val = regmap_format_16_be;
1033 map->format.parse_val = regmap_parse_16_be;
1034 map->format.parse_inplace = regmap_parse_16_be_inplace;
1035 break;
1036 case REGMAP_ENDIAN_LITTLE:
1037 map->format.format_val = regmap_format_16_le;
1038 map->format.parse_val = regmap_parse_16_le;
1039 map->format.parse_inplace = regmap_parse_16_le_inplace;
1040 break;
1041 case REGMAP_ENDIAN_NATIVE:
1042 map->format.format_val = regmap_format_16_native;
1043 map->format.parse_val = regmap_parse_16_native;
1044 break;
1045 default:
1046 goto err_hwlock;
1047 }
1048 break;
1049 case 24:
1050 if (val_endian != REGMAP_ENDIAN_BIG)
1051 goto err_hwlock;
1052 map->format.format_val = regmap_format_24;
1053 map->format.parse_val = regmap_parse_24;
1054 break;
1055 case 32:
1056 switch (val_endian) {
1057 case REGMAP_ENDIAN_BIG:
1058 map->format.format_val = regmap_format_32_be;
1059 map->format.parse_val = regmap_parse_32_be;
1060 map->format.parse_inplace = regmap_parse_32_be_inplace;
1061 break;
1062 case REGMAP_ENDIAN_LITTLE:
1063 map->format.format_val = regmap_format_32_le;
1064 map->format.parse_val = regmap_parse_32_le;
1065 map->format.parse_inplace = regmap_parse_32_le_inplace;
1066 break;
1067 case REGMAP_ENDIAN_NATIVE:
1068 map->format.format_val = regmap_format_32_native;
1069 map->format.parse_val = regmap_parse_32_native;
1070 break;
1071 default:
1072 goto err_hwlock;
1073 }
1074 break;
1075#ifdef CONFIG_64BIT
1076 case 64:
1077 switch (val_endian) {
1078 case REGMAP_ENDIAN_BIG:
1079 map->format.format_val = regmap_format_64_be;
1080 map->format.parse_val = regmap_parse_64_be;
1081 map->format.parse_inplace = regmap_parse_64_be_inplace;
1082 break;
1083 case REGMAP_ENDIAN_LITTLE:
1084 map->format.format_val = regmap_format_64_le;
1085 map->format.parse_val = regmap_parse_64_le;
1086 map->format.parse_inplace = regmap_parse_64_le_inplace;
1087 break;
1088 case REGMAP_ENDIAN_NATIVE:
1089 map->format.format_val = regmap_format_64_native;
1090 map->format.parse_val = regmap_parse_64_native;
1091 break;
1092 default:
1093 goto err_hwlock;
1094 }
1095 break;
1096#endif
1097 }
1098
1099 if (map->format.format_write) {
1100 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1101 (val_endian != REGMAP_ENDIAN_BIG))
1102 goto err_hwlock;
1103 map->use_single_write = true;
1104 }
1105
1106 if (!map->format.format_write &&
1107 !(map->format.format_reg && map->format.format_val))
1108 goto err_hwlock;
1109
1110 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1111 if (map->work_buf == NULL) {
1112 ret = -ENOMEM;
1113 goto err_hwlock;
1114 }
1115
1116 if (map->format.format_write) {
1117 map->defer_caching = false;
1118 map->reg_write = _regmap_bus_formatted_write;
1119 } else if (map->format.format_val) {
1120 map->defer_caching = true;
1121 map->reg_write = _regmap_bus_raw_write;
1122 }
1123
1124skip_format_initialization:
1125
1126 map->range_tree = RB_ROOT;
1127 for (i = 0; i < config->num_ranges; i++) {
1128 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1129 struct regmap_range_node *new;
1130
1131 /* Sanity check */
1132 if (range_cfg->range_max < range_cfg->range_min) {
1133 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1134 range_cfg->range_max, range_cfg->range_min);
1135 goto err_range;
1136 }
1137
1138 if (range_cfg->range_max > map->max_register) {
1139 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1140 range_cfg->range_max, map->max_register);
1141 goto err_range;
1142 }
1143
1144 if (range_cfg->selector_reg > map->max_register) {
1145 dev_err(map->dev,
1146 "Invalid range %d: selector out of map\n", i);
1147 goto err_range;
1148 }
1149
1150 if (range_cfg->window_len == 0) {
1151 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1152 i);
1153 goto err_range;
1154 }
1155
1156 /* Make sure, that this register range has no selector
1157 or data window within its boundary */
1158 for (j = 0; j < config->num_ranges; j++) {
1159 unsigned int sel_reg = config->ranges[j].selector_reg;
1160 unsigned int win_min = config->ranges[j].window_start;
1161 unsigned int win_max = win_min +
1162 config->ranges[j].window_len - 1;
1163
1164 /* Allow data window inside its own virtual range */
1165 if (j == i)
1166 continue;
1167
1168 if (range_cfg->range_min <= sel_reg &&
1169 sel_reg <= range_cfg->range_max) {
1170 dev_err(map->dev,
1171 "Range %d: selector for %d in window\n",
1172 i, j);
1173 goto err_range;
1174 }
1175
1176 if (!(win_max < range_cfg->range_min ||
1177 win_min > range_cfg->range_max)) {
1178 dev_err(map->dev,
1179 "Range %d: window for %d in window\n",
1180 i, j);
1181 goto err_range;
1182 }
1183 }
1184
1185 new = kzalloc(sizeof(*new), GFP_KERNEL);
1186 if (new == NULL) {
1187 ret = -ENOMEM;
1188 goto err_range;
1189 }
1190
1191 new->map = map;
1192 new->name = range_cfg->name;
1193 new->range_min = range_cfg->range_min;
1194 new->range_max = range_cfg->range_max;
1195 new->selector_reg = range_cfg->selector_reg;
1196 new->selector_mask = range_cfg->selector_mask;
1197 new->selector_shift = range_cfg->selector_shift;
1198 new->window_start = range_cfg->window_start;
1199 new->window_len = range_cfg->window_len;
1200
1201 if (!_regmap_range_add(map, new)) {
1202 dev_err(map->dev, "Failed to add range %d\n", i);
1203 kfree(new);
1204 goto err_range;
1205 }
1206
1207 if (map->selector_work_buf == NULL) {
1208 map->selector_work_buf =
1209 kzalloc(map->format.buf_size, GFP_KERNEL);
1210 if (map->selector_work_buf == NULL) {
1211 ret = -ENOMEM;
1212 goto err_range;
1213 }
1214 }
1215 }
1216
1217 ret = regcache_init(map, config);
1218 if (ret != 0)
1219 goto err_range;
1220
1221 if (dev) {
1222 ret = regmap_attach_dev(dev, map, config);
1223 if (ret != 0)
1224 goto err_regcache;
1225 } else {
1226 regmap_debugfs_init(map);
1227 }
1228
1229 return map;
1230
1231err_regcache:
1232 regcache_exit(map);
1233err_range:
1234 regmap_range_exit(map);
1235 kfree(map->work_buf);
1236err_hwlock:
1237 if (map->hwlock)
1238 hwspin_lock_free(map->hwlock);
1239err_name:
1240 kfree_const(map->name);
1241err_map:
1242 kfree(map);
1243err:
1244 return ERR_PTR(ret);
1245}
1246EXPORT_SYMBOL_GPL(__regmap_init);
1247
1248static void devm_regmap_release(struct device *dev, void *res)
1249{
1250 regmap_exit(*(struct regmap **)res);
1251}
1252
1253struct regmap *__devm_regmap_init(struct device *dev,
1254 const struct regmap_bus *bus,
1255 void *bus_context,
1256 const struct regmap_config *config,
1257 struct lock_class_key *lock_key,
1258 const char *lock_name)
1259{
1260 struct regmap **ptr, *regmap;
1261
1262 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1263 if (!ptr)
1264 return ERR_PTR(-ENOMEM);
1265
1266 regmap = __regmap_init(dev, bus, bus_context, config,
1267 lock_key, lock_name);
1268 if (!IS_ERR(regmap)) {
1269 *ptr = regmap;
1270 devres_add(dev, ptr);
1271 } else {
1272 devres_free(ptr);
1273 }
1274
1275 return regmap;
1276}
1277EXPORT_SYMBOL_GPL(__devm_regmap_init);
1278
1279static void regmap_field_init(struct regmap_field *rm_field,
1280 struct regmap *regmap, struct reg_field reg_field)
1281{
1282 rm_field->regmap = regmap;
1283 rm_field->reg = reg_field.reg;
1284 rm_field->shift = reg_field.lsb;
1285 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1286 rm_field->id_size = reg_field.id_size;
1287 rm_field->id_offset = reg_field.id_offset;
1288}
1289
1290/**
1291 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1292 *
1293 * @dev: Device that will be interacted with
1294 * @regmap: regmap bank in which this register field is located.
1295 * @reg_field: Register field with in the bank.
1296 *
1297 * The return value will be an ERR_PTR() on error or a valid pointer
1298 * to a struct regmap_field. The regmap_field will be automatically freed
1299 * by the device management code.
1300 */
1301struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1302 struct regmap *regmap, struct reg_field reg_field)
1303{
1304 struct regmap_field *rm_field = devm_kzalloc(dev,
1305 sizeof(*rm_field), GFP_KERNEL);
1306 if (!rm_field)
1307 return ERR_PTR(-ENOMEM);
1308
1309 regmap_field_init(rm_field, regmap, reg_field);
1310
1311 return rm_field;
1312
1313}
1314EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1315
1316
1317/**
1318 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1319 *
1320 * @regmap: regmap bank in which this register field is located.
1321 * @rm_field: regmap register fields within the bank.
1322 * @reg_field: Register fields within the bank.
1323 * @num_fields: Number of register fields.
1324 *
1325 * The return value will be an -ENOMEM on error or zero for success.
1326 * Newly allocated regmap_fields should be freed by calling
1327 * regmap_field_bulk_free()
1328 */
1329int regmap_field_bulk_alloc(struct regmap *regmap,
1330 struct regmap_field **rm_field,
1331 const struct reg_field *reg_field,
1332 int num_fields)
1333{
1334 struct regmap_field *rf;
1335 int i;
1336
1337 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1338 if (!rf)
1339 return -ENOMEM;
1340
1341 for (i = 0; i < num_fields; i++) {
1342 regmap_field_init(&rf[i], regmap, reg_field[i]);
1343 rm_field[i] = &rf[i];
1344 }
1345
1346 return 0;
1347}
1348EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1349
1350/**
1351 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1352 * fields.
1353 *
1354 * @dev: Device that will be interacted with
1355 * @regmap: regmap bank in which this register field is located.
1356 * @rm_field: regmap register fields within the bank.
1357 * @reg_field: Register fields within the bank.
1358 * @num_fields: Number of register fields.
1359 *
1360 * The return value will be an -ENOMEM on error or zero for success.
1361 * Newly allocated regmap_fields will be automatically freed by the
1362 * device management code.
1363 */
1364int devm_regmap_field_bulk_alloc(struct device *dev,
1365 struct regmap *regmap,
1366 struct regmap_field **rm_field,
1367 const struct reg_field *reg_field,
1368 int num_fields)
1369{
1370 struct regmap_field *rf;
1371 int i;
1372
1373 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1374 if (!rf)
1375 return -ENOMEM;
1376
1377 for (i = 0; i < num_fields; i++) {
1378 regmap_field_init(&rf[i], regmap, reg_field[i]);
1379 rm_field[i] = &rf[i];
1380 }
1381
1382 return 0;
1383}
1384EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1385
1386/**
1387 * regmap_field_bulk_free() - Free register field allocated using
1388 * regmap_field_bulk_alloc.
1389 *
1390 * @field: regmap fields which should be freed.
1391 */
1392void regmap_field_bulk_free(struct regmap_field *field)
1393{
1394 kfree(field);
1395}
1396EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1397
1398/**
1399 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1400 * devm_regmap_field_bulk_alloc.
1401 *
1402 * @dev: Device that will be interacted with
1403 * @field: regmap field which should be freed.
1404 *
1405 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1406 * drivers need not call this function, as the memory allocated via devm
1407 * will be freed as per device-driver life-cycle.
1408 */
1409void devm_regmap_field_bulk_free(struct device *dev,
1410 struct regmap_field *field)
1411{
1412 devm_kfree(dev, field);
1413}
1414EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1415
1416/**
1417 * devm_regmap_field_free() - Free a register field allocated using
1418 * devm_regmap_field_alloc.
1419 *
1420 * @dev: Device that will be interacted with
1421 * @field: regmap field which should be freed.
1422 *
1423 * Free register field allocated using devm_regmap_field_alloc(). Usually
1424 * drivers need not call this function, as the memory allocated via devm
1425 * will be freed as per device-driver life-cyle.
1426 */
1427void devm_regmap_field_free(struct device *dev,
1428 struct regmap_field *field)
1429{
1430 devm_kfree(dev, field);
1431}
1432EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1433
1434/**
1435 * regmap_field_alloc() - Allocate and initialise a register field.
1436 *
1437 * @regmap: regmap bank in which this register field is located.
1438 * @reg_field: Register field with in the bank.
1439 *
1440 * The return value will be an ERR_PTR() on error or a valid pointer
1441 * to a struct regmap_field. The regmap_field should be freed by the
1442 * user once its finished working with it using regmap_field_free().
1443 */
1444struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1445 struct reg_field reg_field)
1446{
1447 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1448
1449 if (!rm_field)
1450 return ERR_PTR(-ENOMEM);
1451
1452 regmap_field_init(rm_field, regmap, reg_field);
1453
1454 return rm_field;
1455}
1456EXPORT_SYMBOL_GPL(regmap_field_alloc);
1457
1458/**
1459 * regmap_field_free() - Free register field allocated using
1460 * regmap_field_alloc.
1461 *
1462 * @field: regmap field which should be freed.
1463 */
1464void regmap_field_free(struct regmap_field *field)
1465{
1466 kfree(field);
1467}
1468EXPORT_SYMBOL_GPL(regmap_field_free);
1469
1470/**
1471 * regmap_reinit_cache() - Reinitialise the current register cache
1472 *
1473 * @map: Register map to operate on.
1474 * @config: New configuration. Only the cache data will be used.
1475 *
1476 * Discard any existing register cache for the map and initialize a
1477 * new cache. This can be used to restore the cache to defaults or to
1478 * update the cache configuration to reflect runtime discovery of the
1479 * hardware.
1480 *
1481 * No explicit locking is done here, the user needs to ensure that
1482 * this function will not race with other calls to regmap.
1483 */
1484int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1485{
1486 int ret;
1487
1488 regcache_exit(map);
1489 regmap_debugfs_exit(map);
1490
1491 map->max_register = config->max_register;
1492 map->writeable_reg = config->writeable_reg;
1493 map->readable_reg = config->readable_reg;
1494 map->volatile_reg = config->volatile_reg;
1495 map->precious_reg = config->precious_reg;
1496 map->writeable_noinc_reg = config->writeable_noinc_reg;
1497 map->readable_noinc_reg = config->readable_noinc_reg;
1498 map->cache_type = config->cache_type;
1499
1500 ret = regmap_set_name(map, config);
1501 if (ret)
1502 return ret;
1503
1504 regmap_debugfs_init(map);
1505
1506 map->cache_bypass = false;
1507 map->cache_only = false;
1508
1509 return regcache_init(map, config);
1510}
1511EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1512
1513/**
1514 * regmap_exit() - Free a previously allocated register map
1515 *
1516 * @map: Register map to operate on.
1517 */
1518void regmap_exit(struct regmap *map)
1519{
1520 struct regmap_async *async;
1521
1522 regcache_exit(map);
1523 regmap_debugfs_exit(map);
1524 regmap_range_exit(map);
1525 if (map->bus && map->bus->free_context)
1526 map->bus->free_context(map->bus_context);
1527 kfree(map->work_buf);
1528 while (!list_empty(&map->async_free)) {
1529 async = list_first_entry_or_null(&map->async_free,
1530 struct regmap_async,
1531 list);
1532 list_del(&async->list);
1533 kfree(async->work_buf);
1534 kfree(async);
1535 }
1536 if (map->hwlock)
1537 hwspin_lock_free(map->hwlock);
1538 if (map->lock == regmap_lock_mutex)
1539 mutex_destroy(&map->mutex);
1540 kfree_const(map->name);
1541 kfree(map->patch);
1542 if (map->bus && map->bus->free_on_exit)
1543 kfree(map->bus);
1544 kfree(map);
1545}
1546EXPORT_SYMBOL_GPL(regmap_exit);
1547
1548static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1549{
1550 struct regmap **r = res;
1551 if (!r || !*r) {
1552 WARN_ON(!r || !*r);
1553 return 0;
1554 }
1555
1556 /* If the user didn't specify a name match any */
1557 if (data)
1558 return !strcmp((*r)->name, data);
1559 else
1560 return 1;
1561}
1562
1563/**
1564 * dev_get_regmap() - Obtain the regmap (if any) for a device
1565 *
1566 * @dev: Device to retrieve the map for
1567 * @name: Optional name for the register map, usually NULL.
1568 *
1569 * Returns the regmap for the device if one is present, or NULL. If
1570 * name is specified then it must match the name specified when
1571 * registering the device, if it is NULL then the first regmap found
1572 * will be used. Devices with multiple register maps are very rare,
1573 * generic code should normally not need to specify a name.
1574 */
1575struct regmap *dev_get_regmap(struct device *dev, const char *name)
1576{
1577 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1578 dev_get_regmap_match, (void *)name);
1579
1580 if (!r)
1581 return NULL;
1582 return *r;
1583}
1584EXPORT_SYMBOL_GPL(dev_get_regmap);
1585
1586/**
1587 * regmap_get_device() - Obtain the device from a regmap
1588 *
1589 * @map: Register map to operate on.
1590 *
1591 * Returns the underlying device that the regmap has been created for.
1592 */
1593struct device *regmap_get_device(struct regmap *map)
1594{
1595 return map->dev;
1596}
1597EXPORT_SYMBOL_GPL(regmap_get_device);
1598
1599static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1600 struct regmap_range_node *range,
1601 unsigned int val_num)
1602{
1603 void *orig_work_buf;
1604 unsigned int win_offset;
1605 unsigned int win_page;
1606 bool page_chg;
1607 int ret;
1608
1609 win_offset = (*reg - range->range_min) % range->window_len;
1610 win_page = (*reg - range->range_min) / range->window_len;
1611
1612 if (val_num > 1) {
1613 /* Bulk write shouldn't cross range boundary */
1614 if (*reg + val_num - 1 > range->range_max)
1615 return -EINVAL;
1616
1617 /* ... or single page boundary */
1618 if (val_num > range->window_len - win_offset)
1619 return -EINVAL;
1620 }
1621
1622 /* It is possible to have selector register inside data window.
1623 In that case, selector register is located on every page and
1624 it needs no page switching, when accessed alone. */
1625 if (val_num > 1 ||
1626 range->window_start + win_offset != range->selector_reg) {
1627 /* Use separate work_buf during page switching */
1628 orig_work_buf = map->work_buf;
1629 map->work_buf = map->selector_work_buf;
1630
1631 ret = _regmap_update_bits(map, range->selector_reg,
1632 range->selector_mask,
1633 win_page << range->selector_shift,
1634 &page_chg, false);
1635
1636 map->work_buf = orig_work_buf;
1637
1638 if (ret != 0)
1639 return ret;
1640 }
1641
1642 *reg = range->window_start + win_offset;
1643
1644 return 0;
1645}
1646
1647static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1648 unsigned long mask)
1649{
1650 u8 *buf;
1651 int i;
1652
1653 if (!mask || !map->work_buf)
1654 return;
1655
1656 buf = map->work_buf;
1657
1658 for (i = 0; i < max_bytes; i++)
1659 buf[i] |= (mask >> (8 * i)) & 0xff;
1660}
1661
1662static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1663 const void *val, size_t val_len, bool noinc)
1664{
1665 struct regmap_range_node *range;
1666 unsigned long flags;
1667 void *work_val = map->work_buf + map->format.reg_bytes +
1668 map->format.pad_bytes;
1669 void *buf;
1670 int ret = -ENOTSUPP;
1671 size_t len;
1672 int i;
1673
1674 WARN_ON(!map->bus);
1675
1676 /* Check for unwritable or noinc registers in range
1677 * before we start
1678 */
1679 if (!regmap_writeable_noinc(map, reg)) {
1680 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1681 unsigned int element =
1682 reg + regmap_get_offset(map, i);
1683 if (!regmap_writeable(map, element) ||
1684 regmap_writeable_noinc(map, element))
1685 return -EINVAL;
1686 }
1687 }
1688
1689 if (!map->cache_bypass && map->format.parse_val) {
1690 unsigned int ival;
1691 int val_bytes = map->format.val_bytes;
1692 for (i = 0; i < val_len / val_bytes; i++) {
1693 ival = map->format.parse_val(val + (i * val_bytes));
1694 ret = regcache_write(map,
1695 reg + regmap_get_offset(map, i),
1696 ival);
1697 if (ret) {
1698 dev_err(map->dev,
1699 "Error in caching of register: %x ret: %d\n",
1700 reg + regmap_get_offset(map, i), ret);
1701 return ret;
1702 }
1703 }
1704 if (map->cache_only) {
1705 map->cache_dirty = true;
1706 return 0;
1707 }
1708 }
1709
1710 range = _regmap_range_lookup(map, reg);
1711 if (range) {
1712 int val_num = val_len / map->format.val_bytes;
1713 int win_offset = (reg - range->range_min) % range->window_len;
1714 int win_residue = range->window_len - win_offset;
1715
1716 /* If the write goes beyond the end of the window split it */
1717 while (val_num > win_residue) {
1718 dev_dbg(map->dev, "Writing window %d/%zu\n",
1719 win_residue, val_len / map->format.val_bytes);
1720 ret = _regmap_raw_write_impl(map, reg, val,
1721 win_residue *
1722 map->format.val_bytes, noinc);
1723 if (ret != 0)
1724 return ret;
1725
1726 reg += win_residue;
1727 val_num -= win_residue;
1728 val += win_residue * map->format.val_bytes;
1729 val_len -= win_residue * map->format.val_bytes;
1730
1731 win_offset = (reg - range->range_min) %
1732 range->window_len;
1733 win_residue = range->window_len - win_offset;
1734 }
1735
1736 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1737 if (ret != 0)
1738 return ret;
1739 }
1740
1741 reg += map->reg_base;
1742 reg >>= map->format.reg_downshift;
1743 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1744 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1745 map->write_flag_mask);
1746
1747 /*
1748 * Essentially all I/O mechanisms will be faster with a single
1749 * buffer to write. Since register syncs often generate raw
1750 * writes of single registers optimise that case.
1751 */
1752 if (val != work_val && val_len == map->format.val_bytes) {
1753 memcpy(work_val, val, map->format.val_bytes);
1754 val = work_val;
1755 }
1756
1757 if (map->async && map->bus->async_write) {
1758 struct regmap_async *async;
1759
1760 trace_regmap_async_write_start(map, reg, val_len);
1761
1762 spin_lock_irqsave(&map->async_lock, flags);
1763 async = list_first_entry_or_null(&map->async_free,
1764 struct regmap_async,
1765 list);
1766 if (async)
1767 list_del(&async->list);
1768 spin_unlock_irqrestore(&map->async_lock, flags);
1769
1770 if (!async) {
1771 async = map->bus->async_alloc();
1772 if (!async)
1773 return -ENOMEM;
1774
1775 async->work_buf = kzalloc(map->format.buf_size,
1776 GFP_KERNEL | GFP_DMA);
1777 if (!async->work_buf) {
1778 kfree(async);
1779 return -ENOMEM;
1780 }
1781 }
1782
1783 async->map = map;
1784
1785 /* If the caller supplied the value we can use it safely. */
1786 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1787 map->format.reg_bytes + map->format.val_bytes);
1788
1789 spin_lock_irqsave(&map->async_lock, flags);
1790 list_add_tail(&async->list, &map->async_list);
1791 spin_unlock_irqrestore(&map->async_lock, flags);
1792
1793 if (val != work_val)
1794 ret = map->bus->async_write(map->bus_context,
1795 async->work_buf,
1796 map->format.reg_bytes +
1797 map->format.pad_bytes,
1798 val, val_len, async);
1799 else
1800 ret = map->bus->async_write(map->bus_context,
1801 async->work_buf,
1802 map->format.reg_bytes +
1803 map->format.pad_bytes +
1804 val_len, NULL, 0, async);
1805
1806 if (ret != 0) {
1807 dev_err(map->dev, "Failed to schedule write: %d\n",
1808 ret);
1809
1810 spin_lock_irqsave(&map->async_lock, flags);
1811 list_move(&async->list, &map->async_free);
1812 spin_unlock_irqrestore(&map->async_lock, flags);
1813 }
1814
1815 return ret;
1816 }
1817
1818 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1819
1820 /* If we're doing a single register write we can probably just
1821 * send the work_buf directly, otherwise try to do a gather
1822 * write.
1823 */
1824 if (val == work_val)
1825 ret = map->bus->write(map->bus_context, map->work_buf,
1826 map->format.reg_bytes +
1827 map->format.pad_bytes +
1828 val_len);
1829 else if (map->bus->gather_write)
1830 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1831 map->format.reg_bytes +
1832 map->format.pad_bytes,
1833 val, val_len);
1834 else
1835 ret = -ENOTSUPP;
1836
1837 /* If that didn't work fall back on linearising by hand. */
1838 if (ret == -ENOTSUPP) {
1839 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1840 buf = kzalloc(len, GFP_KERNEL);
1841 if (!buf)
1842 return -ENOMEM;
1843
1844 memcpy(buf, map->work_buf, map->format.reg_bytes);
1845 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1846 val, val_len);
1847 ret = map->bus->write(map->bus_context, buf, len);
1848
1849 kfree(buf);
1850 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1851 /* regcache_drop_region() takes lock that we already have,
1852 * thus call map->cache_ops->drop() directly
1853 */
1854 if (map->cache_ops && map->cache_ops->drop)
1855 map->cache_ops->drop(map, reg, reg + 1);
1856 }
1857
1858 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1859
1860 return ret;
1861}
1862
1863/**
1864 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1865 *
1866 * @map: Map to check.
1867 */
1868bool regmap_can_raw_write(struct regmap *map)
1869{
1870 return map->bus && map->bus->write && map->format.format_val &&
1871 map->format.format_reg;
1872}
1873EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1874
1875/**
1876 * regmap_get_raw_read_max - Get the maximum size we can read
1877 *
1878 * @map: Map to check.
1879 */
1880size_t regmap_get_raw_read_max(struct regmap *map)
1881{
1882 return map->max_raw_read;
1883}
1884EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1885
1886/**
1887 * regmap_get_raw_write_max - Get the maximum size we can read
1888 *
1889 * @map: Map to check.
1890 */
1891size_t regmap_get_raw_write_max(struct regmap *map)
1892{
1893 return map->max_raw_write;
1894}
1895EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1896
1897static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1898 unsigned int val)
1899{
1900 int ret;
1901 struct regmap_range_node *range;
1902 struct regmap *map = context;
1903
1904 WARN_ON(!map->bus || !map->format.format_write);
1905
1906 range = _regmap_range_lookup(map, reg);
1907 if (range) {
1908 ret = _regmap_select_page(map, ®, range, 1);
1909 if (ret != 0)
1910 return ret;
1911 }
1912
1913 reg += map->reg_base;
1914 reg >>= map->format.reg_downshift;
1915 map->format.format_write(map, reg, val);
1916
1917 trace_regmap_hw_write_start(map, reg, 1);
1918
1919 ret = map->bus->write(map->bus_context, map->work_buf,
1920 map->format.buf_size);
1921
1922 trace_regmap_hw_write_done(map, reg, 1);
1923
1924 return ret;
1925}
1926
1927static int _regmap_bus_reg_write(void *context, unsigned int reg,
1928 unsigned int val)
1929{
1930 struct regmap *map = context;
1931
1932 return map->bus->reg_write(map->bus_context, reg, val);
1933}
1934
1935static int _regmap_bus_raw_write(void *context, unsigned int reg,
1936 unsigned int val)
1937{
1938 struct regmap *map = context;
1939
1940 WARN_ON(!map->bus || !map->format.format_val);
1941
1942 map->format.format_val(map->work_buf + map->format.reg_bytes
1943 + map->format.pad_bytes, val, 0);
1944 return _regmap_raw_write_impl(map, reg,
1945 map->work_buf +
1946 map->format.reg_bytes +
1947 map->format.pad_bytes,
1948 map->format.val_bytes,
1949 false);
1950}
1951
1952static inline void *_regmap_map_get_context(struct regmap *map)
1953{
1954 return (map->bus) ? map : map->bus_context;
1955}
1956
1957int _regmap_write(struct regmap *map, unsigned int reg,
1958 unsigned int val)
1959{
1960 int ret;
1961 void *context = _regmap_map_get_context(map);
1962
1963 if (!regmap_writeable(map, reg))
1964 return -EIO;
1965
1966 if (!map->cache_bypass && !map->defer_caching) {
1967 ret = regcache_write(map, reg, val);
1968 if (ret != 0)
1969 return ret;
1970 if (map->cache_only) {
1971 map->cache_dirty = true;
1972 return 0;
1973 }
1974 }
1975
1976 ret = map->reg_write(context, reg, val);
1977 if (ret == 0) {
1978 if (regmap_should_log(map))
1979 dev_info(map->dev, "%x <= %x\n", reg, val);
1980
1981 trace_regmap_reg_write(map, reg, val);
1982 }
1983
1984 return ret;
1985}
1986
1987/**
1988 * regmap_write() - Write a value to a single register
1989 *
1990 * @map: Register map to write to
1991 * @reg: Register to write to
1992 * @val: Value to be written
1993 *
1994 * A value of zero will be returned on success, a negative errno will
1995 * be returned in error cases.
1996 */
1997int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1998{
1999 int ret;
2000
2001 if (!IS_ALIGNED(reg, map->reg_stride))
2002 return -EINVAL;
2003
2004 map->lock(map->lock_arg);
2005
2006 ret = _regmap_write(map, reg, val);
2007
2008 map->unlock(map->lock_arg);
2009
2010 return ret;
2011}
2012EXPORT_SYMBOL_GPL(regmap_write);
2013
2014/**
2015 * regmap_write_async() - Write a value to a single register asynchronously
2016 *
2017 * @map: Register map to write to
2018 * @reg: Register to write to
2019 * @val: Value to be written
2020 *
2021 * A value of zero will be returned on success, a negative errno will
2022 * be returned in error cases.
2023 */
2024int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2025{
2026 int ret;
2027
2028 if (!IS_ALIGNED(reg, map->reg_stride))
2029 return -EINVAL;
2030
2031 map->lock(map->lock_arg);
2032
2033 map->async = true;
2034
2035 ret = _regmap_write(map, reg, val);
2036
2037 map->async = false;
2038
2039 map->unlock(map->lock_arg);
2040
2041 return ret;
2042}
2043EXPORT_SYMBOL_GPL(regmap_write_async);
2044
2045int _regmap_raw_write(struct regmap *map, unsigned int reg,
2046 const void *val, size_t val_len, bool noinc)
2047{
2048 size_t val_bytes = map->format.val_bytes;
2049 size_t val_count = val_len / val_bytes;
2050 size_t chunk_count, chunk_bytes;
2051 size_t chunk_regs = val_count;
2052 int ret, i;
2053
2054 if (!val_count)
2055 return -EINVAL;
2056
2057 if (map->use_single_write)
2058 chunk_regs = 1;
2059 else if (map->max_raw_write && val_len > map->max_raw_write)
2060 chunk_regs = map->max_raw_write / val_bytes;
2061
2062 chunk_count = val_count / chunk_regs;
2063 chunk_bytes = chunk_regs * val_bytes;
2064
2065 /* Write as many bytes as possible with chunk_size */
2066 for (i = 0; i < chunk_count; i++) {
2067 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2068 if (ret)
2069 return ret;
2070
2071 reg += regmap_get_offset(map, chunk_regs);
2072 val += chunk_bytes;
2073 val_len -= chunk_bytes;
2074 }
2075
2076 /* Write remaining bytes */
2077 if (val_len)
2078 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2079
2080 return ret;
2081}
2082
2083/**
2084 * regmap_raw_write() - Write raw values to one or more registers
2085 *
2086 * @map: Register map to write to
2087 * @reg: Initial register to write to
2088 * @val: Block of data to be written, laid out for direct transmission to the
2089 * device
2090 * @val_len: Length of data pointed to by val.
2091 *
2092 * This function is intended to be used for things like firmware
2093 * download where a large block of data needs to be transferred to the
2094 * device. No formatting will be done on the data provided.
2095 *
2096 * A value of zero will be returned on success, a negative errno will
2097 * be returned in error cases.
2098 */
2099int regmap_raw_write(struct regmap *map, unsigned int reg,
2100 const void *val, size_t val_len)
2101{
2102 int ret;
2103
2104 if (!regmap_can_raw_write(map))
2105 return -EINVAL;
2106 if (val_len % map->format.val_bytes)
2107 return -EINVAL;
2108
2109 map->lock(map->lock_arg);
2110
2111 ret = _regmap_raw_write(map, reg, val, val_len, false);
2112
2113 map->unlock(map->lock_arg);
2114
2115 return ret;
2116}
2117EXPORT_SYMBOL_GPL(regmap_raw_write);
2118
2119/**
2120 * regmap_noinc_write(): Write data from a register without incrementing the
2121 * register number
2122 *
2123 * @map: Register map to write to
2124 * @reg: Register to write to
2125 * @val: Pointer to data buffer
2126 * @val_len: Length of output buffer in bytes.
2127 *
2128 * The regmap API usually assumes that bulk bus write operations will write a
2129 * range of registers. Some devices have certain registers for which a write
2130 * operation can write to an internal FIFO.
2131 *
2132 * The target register must be volatile but registers after it can be
2133 * completely unrelated cacheable registers.
2134 *
2135 * This will attempt multiple writes as required to write val_len bytes.
2136 *
2137 * A value of zero will be returned on success, a negative errno will be
2138 * returned in error cases.
2139 */
2140int regmap_noinc_write(struct regmap *map, unsigned int reg,
2141 const void *val, size_t val_len)
2142{
2143 size_t write_len;
2144 int ret;
2145
2146 if (!map->bus)
2147 return -EINVAL;
2148 if (!map->bus->write)
2149 return -ENOTSUPP;
2150 if (val_len % map->format.val_bytes)
2151 return -EINVAL;
2152 if (!IS_ALIGNED(reg, map->reg_stride))
2153 return -EINVAL;
2154 if (val_len == 0)
2155 return -EINVAL;
2156
2157 map->lock(map->lock_arg);
2158
2159 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2160 ret = -EINVAL;
2161 goto out_unlock;
2162 }
2163
2164 while (val_len) {
2165 if (map->max_raw_write && map->max_raw_write < val_len)
2166 write_len = map->max_raw_write;
2167 else
2168 write_len = val_len;
2169 ret = _regmap_raw_write(map, reg, val, write_len, true);
2170 if (ret)
2171 goto out_unlock;
2172 val = ((u8 *)val) + write_len;
2173 val_len -= write_len;
2174 }
2175
2176out_unlock:
2177 map->unlock(map->lock_arg);
2178 return ret;
2179}
2180EXPORT_SYMBOL_GPL(regmap_noinc_write);
2181
2182/**
2183 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2184 * register field.
2185 *
2186 * @field: Register field to write to
2187 * @mask: Bitmask to change
2188 * @val: Value to be written
2189 * @change: Boolean indicating if a write was done
2190 * @async: Boolean indicating asynchronously
2191 * @force: Boolean indicating use force update
2192 *
2193 * Perform a read/modify/write cycle on the register field with change,
2194 * async, force option.
2195 *
2196 * A value of zero will be returned on success, a negative errno will
2197 * be returned in error cases.
2198 */
2199int regmap_field_update_bits_base(struct regmap_field *field,
2200 unsigned int mask, unsigned int val,
2201 bool *change, bool async, bool force)
2202{
2203 mask = (mask << field->shift) & field->mask;
2204
2205 return regmap_update_bits_base(field->regmap, field->reg,
2206 mask, val << field->shift,
2207 change, async, force);
2208}
2209EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2210
2211/**
2212 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2213 * register field with port ID
2214 *
2215 * @field: Register field to write to
2216 * @id: port ID
2217 * @mask: Bitmask to change
2218 * @val: Value to be written
2219 * @change: Boolean indicating if a write was done
2220 * @async: Boolean indicating asynchronously
2221 * @force: Boolean indicating use force update
2222 *
2223 * A value of zero will be returned on success, a negative errno will
2224 * be returned in error cases.
2225 */
2226int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2227 unsigned int mask, unsigned int val,
2228 bool *change, bool async, bool force)
2229{
2230 if (id >= field->id_size)
2231 return -EINVAL;
2232
2233 mask = (mask << field->shift) & field->mask;
2234
2235 return regmap_update_bits_base(field->regmap,
2236 field->reg + (field->id_offset * id),
2237 mask, val << field->shift,
2238 change, async, force);
2239}
2240EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2241
2242/**
2243 * regmap_bulk_write() - Write multiple registers to the device
2244 *
2245 * @map: Register map to write to
2246 * @reg: First register to be write from
2247 * @val: Block of data to be written, in native register size for device
2248 * @val_count: Number of registers to write
2249 *
2250 * This function is intended to be used for writing a large block of
2251 * data to the device either in single transfer or multiple transfer.
2252 *
2253 * A value of zero will be returned on success, a negative errno will
2254 * be returned in error cases.
2255 */
2256int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2257 size_t val_count)
2258{
2259 int ret = 0, i;
2260 size_t val_bytes = map->format.val_bytes;
2261
2262 if (!IS_ALIGNED(reg, map->reg_stride))
2263 return -EINVAL;
2264
2265 /*
2266 * Some devices don't support bulk write, for them we have a series of
2267 * single write operations.
2268 */
2269 if (!map->bus || !map->format.parse_inplace) {
2270 map->lock(map->lock_arg);
2271 for (i = 0; i < val_count; i++) {
2272 unsigned int ival;
2273
2274 switch (val_bytes) {
2275 case 1:
2276 ival = *(u8 *)(val + (i * val_bytes));
2277 break;
2278 case 2:
2279 ival = *(u16 *)(val + (i * val_bytes));
2280 break;
2281 case 4:
2282 ival = *(u32 *)(val + (i * val_bytes));
2283 break;
2284#ifdef CONFIG_64BIT
2285 case 8:
2286 ival = *(u64 *)(val + (i * val_bytes));
2287 break;
2288#endif
2289 default:
2290 ret = -EINVAL;
2291 goto out;
2292 }
2293
2294 ret = _regmap_write(map,
2295 reg + regmap_get_offset(map, i),
2296 ival);
2297 if (ret != 0)
2298 goto out;
2299 }
2300out:
2301 map->unlock(map->lock_arg);
2302 } else {
2303 void *wval;
2304
2305 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2306 if (!wval)
2307 return -ENOMEM;
2308
2309 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2310 map->format.parse_inplace(wval + i);
2311
2312 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2313
2314 kfree(wval);
2315 }
2316 return ret;
2317}
2318EXPORT_SYMBOL_GPL(regmap_bulk_write);
2319
2320/*
2321 * _regmap_raw_multi_reg_write()
2322 *
2323 * the (register,newvalue) pairs in regs have not been formatted, but
2324 * they are all in the same page and have been changed to being page
2325 * relative. The page register has been written if that was necessary.
2326 */
2327static int _regmap_raw_multi_reg_write(struct regmap *map,
2328 const struct reg_sequence *regs,
2329 size_t num_regs)
2330{
2331 int ret;
2332 void *buf;
2333 int i;
2334 u8 *u8;
2335 size_t val_bytes = map->format.val_bytes;
2336 size_t reg_bytes = map->format.reg_bytes;
2337 size_t pad_bytes = map->format.pad_bytes;
2338 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2339 size_t len = pair_size * num_regs;
2340
2341 if (!len)
2342 return -EINVAL;
2343
2344 buf = kzalloc(len, GFP_KERNEL);
2345 if (!buf)
2346 return -ENOMEM;
2347
2348 /* We have to linearise by hand. */
2349
2350 u8 = buf;
2351
2352 for (i = 0; i < num_regs; i++) {
2353 unsigned int reg = regs[i].reg;
2354 unsigned int val = regs[i].def;
2355 trace_regmap_hw_write_start(map, reg, 1);
2356 reg += map->reg_base;
2357 reg >>= map->format.reg_downshift;
2358 map->format.format_reg(u8, reg, map->reg_shift);
2359 u8 += reg_bytes + pad_bytes;
2360 map->format.format_val(u8, val, 0);
2361 u8 += val_bytes;
2362 }
2363 u8 = buf;
2364 *u8 |= map->write_flag_mask;
2365
2366 ret = map->bus->write(map->bus_context, buf, len);
2367
2368 kfree(buf);
2369
2370 for (i = 0; i < num_regs; i++) {
2371 int reg = regs[i].reg;
2372 trace_regmap_hw_write_done(map, reg, 1);
2373 }
2374 return ret;
2375}
2376
2377static unsigned int _regmap_register_page(struct regmap *map,
2378 unsigned int reg,
2379 struct regmap_range_node *range)
2380{
2381 unsigned int win_page = (reg - range->range_min) / range->window_len;
2382
2383 return win_page;
2384}
2385
2386static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2387 struct reg_sequence *regs,
2388 size_t num_regs)
2389{
2390 int ret;
2391 int i, n;
2392 struct reg_sequence *base;
2393 unsigned int this_page = 0;
2394 unsigned int page_change = 0;
2395 /*
2396 * the set of registers are not neccessarily in order, but
2397 * since the order of write must be preserved this algorithm
2398 * chops the set each time the page changes. This also applies
2399 * if there is a delay required at any point in the sequence.
2400 */
2401 base = regs;
2402 for (i = 0, n = 0; i < num_regs; i++, n++) {
2403 unsigned int reg = regs[i].reg;
2404 struct regmap_range_node *range;
2405
2406 range = _regmap_range_lookup(map, reg);
2407 if (range) {
2408 unsigned int win_page = _regmap_register_page(map, reg,
2409 range);
2410
2411 if (i == 0)
2412 this_page = win_page;
2413 if (win_page != this_page) {
2414 this_page = win_page;
2415 page_change = 1;
2416 }
2417 }
2418
2419 /* If we have both a page change and a delay make sure to
2420 * write the regs and apply the delay before we change the
2421 * page.
2422 */
2423
2424 if (page_change || regs[i].delay_us) {
2425
2426 /* For situations where the first write requires
2427 * a delay we need to make sure we don't call
2428 * raw_multi_reg_write with n=0
2429 * This can't occur with page breaks as we
2430 * never write on the first iteration
2431 */
2432 if (regs[i].delay_us && i == 0)
2433 n = 1;
2434
2435 ret = _regmap_raw_multi_reg_write(map, base, n);
2436 if (ret != 0)
2437 return ret;
2438
2439 if (regs[i].delay_us) {
2440 if (map->can_sleep)
2441 fsleep(regs[i].delay_us);
2442 else
2443 udelay(regs[i].delay_us);
2444 }
2445
2446 base += n;
2447 n = 0;
2448
2449 if (page_change) {
2450 ret = _regmap_select_page(map,
2451 &base[n].reg,
2452 range, 1);
2453 if (ret != 0)
2454 return ret;
2455
2456 page_change = 0;
2457 }
2458
2459 }
2460
2461 }
2462 if (n > 0)
2463 return _regmap_raw_multi_reg_write(map, base, n);
2464 return 0;
2465}
2466
2467static int _regmap_multi_reg_write(struct regmap *map,
2468 const struct reg_sequence *regs,
2469 size_t num_regs)
2470{
2471 int i;
2472 int ret;
2473
2474 if (!map->can_multi_write) {
2475 for (i = 0; i < num_regs; i++) {
2476 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2477 if (ret != 0)
2478 return ret;
2479
2480 if (regs[i].delay_us) {
2481 if (map->can_sleep)
2482 fsleep(regs[i].delay_us);
2483 else
2484 udelay(regs[i].delay_us);
2485 }
2486 }
2487 return 0;
2488 }
2489
2490 if (!map->format.parse_inplace)
2491 return -EINVAL;
2492
2493 if (map->writeable_reg)
2494 for (i = 0; i < num_regs; i++) {
2495 int reg = regs[i].reg;
2496 if (!map->writeable_reg(map->dev, reg))
2497 return -EINVAL;
2498 if (!IS_ALIGNED(reg, map->reg_stride))
2499 return -EINVAL;
2500 }
2501
2502 if (!map->cache_bypass) {
2503 for (i = 0; i < num_regs; i++) {
2504 unsigned int val = regs[i].def;
2505 unsigned int reg = regs[i].reg;
2506 ret = regcache_write(map, reg, val);
2507 if (ret) {
2508 dev_err(map->dev,
2509 "Error in caching of register: %x ret: %d\n",
2510 reg, ret);
2511 return ret;
2512 }
2513 }
2514 if (map->cache_only) {
2515 map->cache_dirty = true;
2516 return 0;
2517 }
2518 }
2519
2520 WARN_ON(!map->bus);
2521
2522 for (i = 0; i < num_regs; i++) {
2523 unsigned int reg = regs[i].reg;
2524 struct regmap_range_node *range;
2525
2526 /* Coalesce all the writes between a page break or a delay
2527 * in a sequence
2528 */
2529 range = _regmap_range_lookup(map, reg);
2530 if (range || regs[i].delay_us) {
2531 size_t len = sizeof(struct reg_sequence)*num_regs;
2532 struct reg_sequence *base = kmemdup(regs, len,
2533 GFP_KERNEL);
2534 if (!base)
2535 return -ENOMEM;
2536 ret = _regmap_range_multi_paged_reg_write(map, base,
2537 num_regs);
2538 kfree(base);
2539
2540 return ret;
2541 }
2542 }
2543 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2544}
2545
2546/**
2547 * regmap_multi_reg_write() - Write multiple registers to the device
2548 *
2549 * @map: Register map to write to
2550 * @regs: Array of structures containing register,value to be written
2551 * @num_regs: Number of registers to write
2552 *
2553 * Write multiple registers to the device where the set of register, value
2554 * pairs are supplied in any order, possibly not all in a single range.
2555 *
2556 * The 'normal' block write mode will send ultimately send data on the
2557 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2558 * addressed. However, this alternative block multi write mode will send
2559 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2560 * must of course support the mode.
2561 *
2562 * A value of zero will be returned on success, a negative errno will be
2563 * returned in error cases.
2564 */
2565int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2566 int num_regs)
2567{
2568 int ret;
2569
2570 map->lock(map->lock_arg);
2571
2572 ret = _regmap_multi_reg_write(map, regs, num_regs);
2573
2574 map->unlock(map->lock_arg);
2575
2576 return ret;
2577}
2578EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2579
2580/**
2581 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2582 * device but not the cache
2583 *
2584 * @map: Register map to write to
2585 * @regs: Array of structures containing register,value to be written
2586 * @num_regs: Number of registers to write
2587 *
2588 * Write multiple registers to the device but not the cache where the set
2589 * of register are supplied in any order.
2590 *
2591 * This function is intended to be used for writing a large block of data
2592 * atomically to the device in single transfer for those I2C client devices
2593 * that implement this alternative block write mode.
2594 *
2595 * A value of zero will be returned on success, a negative errno will
2596 * be returned in error cases.
2597 */
2598int regmap_multi_reg_write_bypassed(struct regmap *map,
2599 const struct reg_sequence *regs,
2600 int num_regs)
2601{
2602 int ret;
2603 bool bypass;
2604
2605 map->lock(map->lock_arg);
2606
2607 bypass = map->cache_bypass;
2608 map->cache_bypass = true;
2609
2610 ret = _regmap_multi_reg_write(map, regs, num_regs);
2611
2612 map->cache_bypass = bypass;
2613
2614 map->unlock(map->lock_arg);
2615
2616 return ret;
2617}
2618EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2619
2620/**
2621 * regmap_raw_write_async() - Write raw values to one or more registers
2622 * asynchronously
2623 *
2624 * @map: Register map to write to
2625 * @reg: Initial register to write to
2626 * @val: Block of data to be written, laid out for direct transmission to the
2627 * device. Must be valid until regmap_async_complete() is called.
2628 * @val_len: Length of data pointed to by val.
2629 *
2630 * This function is intended to be used for things like firmware
2631 * download where a large block of data needs to be transferred to the
2632 * device. No formatting will be done on the data provided.
2633 *
2634 * If supported by the underlying bus the write will be scheduled
2635 * asynchronously, helping maximise I/O speed on higher speed buses
2636 * like SPI. regmap_async_complete() can be called to ensure that all
2637 * asynchrnous writes have been completed.
2638 *
2639 * A value of zero will be returned on success, a negative errno will
2640 * be returned in error cases.
2641 */
2642int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2643 const void *val, size_t val_len)
2644{
2645 int ret;
2646
2647 if (val_len % map->format.val_bytes)
2648 return -EINVAL;
2649 if (!IS_ALIGNED(reg, map->reg_stride))
2650 return -EINVAL;
2651
2652 map->lock(map->lock_arg);
2653
2654 map->async = true;
2655
2656 ret = _regmap_raw_write(map, reg, val, val_len, false);
2657
2658 map->async = false;
2659
2660 map->unlock(map->lock_arg);
2661
2662 return ret;
2663}
2664EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2665
2666static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2667 unsigned int val_len, bool noinc)
2668{
2669 struct regmap_range_node *range;
2670 int ret;
2671
2672 WARN_ON(!map->bus);
2673
2674 if (!map->bus || !map->bus->read)
2675 return -EINVAL;
2676
2677 range = _regmap_range_lookup(map, reg);
2678 if (range) {
2679 ret = _regmap_select_page(map, ®, range,
2680 noinc ? 1 : val_len / map->format.val_bytes);
2681 if (ret != 0)
2682 return ret;
2683 }
2684
2685 reg += map->reg_base;
2686 reg >>= map->format.reg_downshift;
2687 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2688 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2689 map->read_flag_mask);
2690 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2691
2692 ret = map->bus->read(map->bus_context, map->work_buf,
2693 map->format.reg_bytes + map->format.pad_bytes,
2694 val, val_len);
2695
2696 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2697
2698 return ret;
2699}
2700
2701static int _regmap_bus_reg_read(void *context, unsigned int reg,
2702 unsigned int *val)
2703{
2704 struct regmap *map = context;
2705
2706 return map->bus->reg_read(map->bus_context, reg, val);
2707}
2708
2709static int _regmap_bus_read(void *context, unsigned int reg,
2710 unsigned int *val)
2711{
2712 int ret;
2713 struct regmap *map = context;
2714 void *work_val = map->work_buf + map->format.reg_bytes +
2715 map->format.pad_bytes;
2716
2717 if (!map->format.parse_val)
2718 return -EINVAL;
2719
2720 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2721 if (ret == 0)
2722 *val = map->format.parse_val(work_val);
2723
2724 return ret;
2725}
2726
2727static int _regmap_read(struct regmap *map, unsigned int reg,
2728 unsigned int *val)
2729{
2730 int ret;
2731 void *context = _regmap_map_get_context(map);
2732
2733 if (!map->cache_bypass) {
2734 ret = regcache_read(map, reg, val);
2735 if (ret == 0)
2736 return 0;
2737 }
2738
2739 if (map->cache_only)
2740 return -EBUSY;
2741
2742 if (!regmap_readable(map, reg))
2743 return -EIO;
2744
2745 ret = map->reg_read(context, reg, val);
2746 if (ret == 0) {
2747 if (regmap_should_log(map))
2748 dev_info(map->dev, "%x => %x\n", reg, *val);
2749
2750 trace_regmap_reg_read(map, reg, *val);
2751
2752 if (!map->cache_bypass)
2753 regcache_write(map, reg, *val);
2754 }
2755
2756 return ret;
2757}
2758
2759/**
2760 * regmap_read() - Read a value from a single register
2761 *
2762 * @map: Register map to read from
2763 * @reg: Register to be read from
2764 * @val: Pointer to store read value
2765 *
2766 * A value of zero will be returned on success, a negative errno will
2767 * be returned in error cases.
2768 */
2769int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2770{
2771 int ret;
2772
2773 if (!IS_ALIGNED(reg, map->reg_stride))
2774 return -EINVAL;
2775
2776 map->lock(map->lock_arg);
2777
2778 ret = _regmap_read(map, reg, val);
2779
2780 map->unlock(map->lock_arg);
2781
2782 return ret;
2783}
2784EXPORT_SYMBOL_GPL(regmap_read);
2785
2786/**
2787 * regmap_raw_read() - Read raw data from the device
2788 *
2789 * @map: Register map to read from
2790 * @reg: First register to be read from
2791 * @val: Pointer to store read value
2792 * @val_len: Size of data to read
2793 *
2794 * A value of zero will be returned on success, a negative errno will
2795 * be returned in error cases.
2796 */
2797int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2798 size_t val_len)
2799{
2800 size_t val_bytes = map->format.val_bytes;
2801 size_t val_count = val_len / val_bytes;
2802 unsigned int v;
2803 int ret, i;
2804
2805 if (!map->bus)
2806 return -EINVAL;
2807 if (val_len % map->format.val_bytes)
2808 return -EINVAL;
2809 if (!IS_ALIGNED(reg, map->reg_stride))
2810 return -EINVAL;
2811 if (val_count == 0)
2812 return -EINVAL;
2813
2814 map->lock(map->lock_arg);
2815
2816 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2817 map->cache_type == REGCACHE_NONE) {
2818 size_t chunk_count, chunk_bytes;
2819 size_t chunk_regs = val_count;
2820
2821 if (!map->bus->read) {
2822 ret = -ENOTSUPP;
2823 goto out;
2824 }
2825
2826 if (map->use_single_read)
2827 chunk_regs = 1;
2828 else if (map->max_raw_read && val_len > map->max_raw_read)
2829 chunk_regs = map->max_raw_read / val_bytes;
2830
2831 chunk_count = val_count / chunk_regs;
2832 chunk_bytes = chunk_regs * val_bytes;
2833
2834 /* Read bytes that fit into whole chunks */
2835 for (i = 0; i < chunk_count; i++) {
2836 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2837 if (ret != 0)
2838 goto out;
2839
2840 reg += regmap_get_offset(map, chunk_regs);
2841 val += chunk_bytes;
2842 val_len -= chunk_bytes;
2843 }
2844
2845 /* Read remaining bytes */
2846 if (val_len) {
2847 ret = _regmap_raw_read(map, reg, val, val_len, false);
2848 if (ret != 0)
2849 goto out;
2850 }
2851 } else {
2852 /* Otherwise go word by word for the cache; should be low
2853 * cost as we expect to hit the cache.
2854 */
2855 for (i = 0; i < val_count; i++) {
2856 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2857 &v);
2858 if (ret != 0)
2859 goto out;
2860
2861 map->format.format_val(val + (i * val_bytes), v, 0);
2862 }
2863 }
2864
2865 out:
2866 map->unlock(map->lock_arg);
2867
2868 return ret;
2869}
2870EXPORT_SYMBOL_GPL(regmap_raw_read);
2871
2872/**
2873 * regmap_noinc_read(): Read data from a register without incrementing the
2874 * register number
2875 *
2876 * @map: Register map to read from
2877 * @reg: Register to read from
2878 * @val: Pointer to data buffer
2879 * @val_len: Length of output buffer in bytes.
2880 *
2881 * The regmap API usually assumes that bulk bus read operations will read a
2882 * range of registers. Some devices have certain registers for which a read
2883 * operation read will read from an internal FIFO.
2884 *
2885 * The target register must be volatile but registers after it can be
2886 * completely unrelated cacheable registers.
2887 *
2888 * This will attempt multiple reads as required to read val_len bytes.
2889 *
2890 * A value of zero will be returned on success, a negative errno will be
2891 * returned in error cases.
2892 */
2893int regmap_noinc_read(struct regmap *map, unsigned int reg,
2894 void *val, size_t val_len)
2895{
2896 size_t read_len;
2897 int ret;
2898
2899 if (!map->bus)
2900 return -EINVAL;
2901 if (!map->bus->read)
2902 return -ENOTSUPP;
2903 if (val_len % map->format.val_bytes)
2904 return -EINVAL;
2905 if (!IS_ALIGNED(reg, map->reg_stride))
2906 return -EINVAL;
2907 if (val_len == 0)
2908 return -EINVAL;
2909
2910 map->lock(map->lock_arg);
2911
2912 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2913 ret = -EINVAL;
2914 goto out_unlock;
2915 }
2916
2917 while (val_len) {
2918 if (map->max_raw_read && map->max_raw_read < val_len)
2919 read_len = map->max_raw_read;
2920 else
2921 read_len = val_len;
2922 ret = _regmap_raw_read(map, reg, val, read_len, true);
2923 if (ret)
2924 goto out_unlock;
2925 val = ((u8 *)val) + read_len;
2926 val_len -= read_len;
2927 }
2928
2929out_unlock:
2930 map->unlock(map->lock_arg);
2931 return ret;
2932}
2933EXPORT_SYMBOL_GPL(regmap_noinc_read);
2934
2935/**
2936 * regmap_field_read(): Read a value to a single register field
2937 *
2938 * @field: Register field to read from
2939 * @val: Pointer to store read value
2940 *
2941 * A value of zero will be returned on success, a negative errno will
2942 * be returned in error cases.
2943 */
2944int regmap_field_read(struct regmap_field *field, unsigned int *val)
2945{
2946 int ret;
2947 unsigned int reg_val;
2948 ret = regmap_read(field->regmap, field->reg, ®_val);
2949 if (ret != 0)
2950 return ret;
2951
2952 reg_val &= field->mask;
2953 reg_val >>= field->shift;
2954 *val = reg_val;
2955
2956 return ret;
2957}
2958EXPORT_SYMBOL_GPL(regmap_field_read);
2959
2960/**
2961 * regmap_fields_read() - Read a value to a single register field with port ID
2962 *
2963 * @field: Register field to read from
2964 * @id: port ID
2965 * @val: Pointer to store read value
2966 *
2967 * A value of zero will be returned on success, a negative errno will
2968 * be returned in error cases.
2969 */
2970int regmap_fields_read(struct regmap_field *field, unsigned int id,
2971 unsigned int *val)
2972{
2973 int ret;
2974 unsigned int reg_val;
2975
2976 if (id >= field->id_size)
2977 return -EINVAL;
2978
2979 ret = regmap_read(field->regmap,
2980 field->reg + (field->id_offset * id),
2981 ®_val);
2982 if (ret != 0)
2983 return ret;
2984
2985 reg_val &= field->mask;
2986 reg_val >>= field->shift;
2987 *val = reg_val;
2988
2989 return ret;
2990}
2991EXPORT_SYMBOL_GPL(regmap_fields_read);
2992
2993/**
2994 * regmap_bulk_read() - Read multiple registers from the device
2995 *
2996 * @map: Register map to read from
2997 * @reg: First register to be read from
2998 * @val: Pointer to store read value, in native register size for device
2999 * @val_count: Number of registers to read
3000 *
3001 * A value of zero will be returned on success, a negative errno will
3002 * be returned in error cases.
3003 */
3004int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3005 size_t val_count)
3006{
3007 int ret, i;
3008 size_t val_bytes = map->format.val_bytes;
3009 bool vol = regmap_volatile_range(map, reg, val_count);
3010
3011 if (!IS_ALIGNED(reg, map->reg_stride))
3012 return -EINVAL;
3013 if (val_count == 0)
3014 return -EINVAL;
3015
3016 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3017 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3018 if (ret != 0)
3019 return ret;
3020
3021 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3022 map->format.parse_inplace(val + i);
3023 } else {
3024#ifdef CONFIG_64BIT
3025 u64 *u64 = val;
3026#endif
3027 u32 *u32 = val;
3028 u16 *u16 = val;
3029 u8 *u8 = val;
3030
3031 map->lock(map->lock_arg);
3032
3033 for (i = 0; i < val_count; i++) {
3034 unsigned int ival;
3035
3036 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3037 &ival);
3038 if (ret != 0)
3039 goto out;
3040
3041 switch (map->format.val_bytes) {
3042#ifdef CONFIG_64BIT
3043 case 8:
3044 u64[i] = ival;
3045 break;
3046#endif
3047 case 4:
3048 u32[i] = ival;
3049 break;
3050 case 2:
3051 u16[i] = ival;
3052 break;
3053 case 1:
3054 u8[i] = ival;
3055 break;
3056 default:
3057 ret = -EINVAL;
3058 goto out;
3059 }
3060 }
3061
3062out:
3063 map->unlock(map->lock_arg);
3064 }
3065
3066 return ret;
3067}
3068EXPORT_SYMBOL_GPL(regmap_bulk_read);
3069
3070static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3071 unsigned int mask, unsigned int val,
3072 bool *change, bool force_write)
3073{
3074 int ret;
3075 unsigned int tmp, orig;
3076
3077 if (change)
3078 *change = false;
3079
3080 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3081 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3082 if (ret == 0 && change)
3083 *change = true;
3084 } else {
3085 ret = _regmap_read(map, reg, &orig);
3086 if (ret != 0)
3087 return ret;
3088
3089 tmp = orig & ~mask;
3090 tmp |= val & mask;
3091
3092 if (force_write || (tmp != orig)) {
3093 ret = _regmap_write(map, reg, tmp);
3094 if (ret == 0 && change)
3095 *change = true;
3096 }
3097 }
3098
3099 return ret;
3100}
3101
3102/**
3103 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3104 *
3105 * @map: Register map to update
3106 * @reg: Register to update
3107 * @mask: Bitmask to change
3108 * @val: New value for bitmask
3109 * @change: Boolean indicating if a write was done
3110 * @async: Boolean indicating asynchronously
3111 * @force: Boolean indicating use force update
3112 *
3113 * Perform a read/modify/write cycle on a register map with change, async, force
3114 * options.
3115 *
3116 * If async is true:
3117 *
3118 * With most buses the read must be done synchronously so this is most useful
3119 * for devices with a cache which do not need to interact with the hardware to
3120 * determine the current register value.
3121 *
3122 * Returns zero for success, a negative number on error.
3123 */
3124int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3125 unsigned int mask, unsigned int val,
3126 bool *change, bool async, bool force)
3127{
3128 int ret;
3129
3130 map->lock(map->lock_arg);
3131
3132 map->async = async;
3133
3134 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3135
3136 map->async = false;
3137
3138 map->unlock(map->lock_arg);
3139
3140 return ret;
3141}
3142EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3143
3144/**
3145 * regmap_test_bits() - Check if all specified bits are set in a register.
3146 *
3147 * @map: Register map to operate on
3148 * @reg: Register to read from
3149 * @bits: Bits to test
3150 *
3151 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3152 * bits are set and a negative error number if the underlying regmap_read()
3153 * fails.
3154 */
3155int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3156{
3157 unsigned int val, ret;
3158
3159 ret = regmap_read(map, reg, &val);
3160 if (ret)
3161 return ret;
3162
3163 return (val & bits) == bits;
3164}
3165EXPORT_SYMBOL_GPL(regmap_test_bits);
3166
3167void regmap_async_complete_cb(struct regmap_async *async, int ret)
3168{
3169 struct regmap *map = async->map;
3170 bool wake;
3171
3172 trace_regmap_async_io_complete(map);
3173
3174 spin_lock(&map->async_lock);
3175 list_move(&async->list, &map->async_free);
3176 wake = list_empty(&map->async_list);
3177
3178 if (ret != 0)
3179 map->async_ret = ret;
3180
3181 spin_unlock(&map->async_lock);
3182
3183 if (wake)
3184 wake_up(&map->async_waitq);
3185}
3186EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3187
3188static int regmap_async_is_done(struct regmap *map)
3189{
3190 unsigned long flags;
3191 int ret;
3192
3193 spin_lock_irqsave(&map->async_lock, flags);
3194 ret = list_empty(&map->async_list);
3195 spin_unlock_irqrestore(&map->async_lock, flags);
3196
3197 return ret;
3198}
3199
3200/**
3201 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3202 *
3203 * @map: Map to operate on.
3204 *
3205 * Blocks until any pending asynchronous I/O has completed. Returns
3206 * an error code for any failed I/O operations.
3207 */
3208int regmap_async_complete(struct regmap *map)
3209{
3210 unsigned long flags;
3211 int ret;
3212
3213 /* Nothing to do with no async support */
3214 if (!map->bus || !map->bus->async_write)
3215 return 0;
3216
3217 trace_regmap_async_complete_start(map);
3218
3219 wait_event(map->async_waitq, regmap_async_is_done(map));
3220
3221 spin_lock_irqsave(&map->async_lock, flags);
3222 ret = map->async_ret;
3223 map->async_ret = 0;
3224 spin_unlock_irqrestore(&map->async_lock, flags);
3225
3226 trace_regmap_async_complete_done(map);
3227
3228 return ret;
3229}
3230EXPORT_SYMBOL_GPL(regmap_async_complete);
3231
3232/**
3233 * regmap_register_patch - Register and apply register updates to be applied
3234 * on device initialistion
3235 *
3236 * @map: Register map to apply updates to.
3237 * @regs: Values to update.
3238 * @num_regs: Number of entries in regs.
3239 *
3240 * Register a set of register updates to be applied to the device
3241 * whenever the device registers are synchronised with the cache and
3242 * apply them immediately. Typically this is used to apply
3243 * corrections to be applied to the device defaults on startup, such
3244 * as the updates some vendors provide to undocumented registers.
3245 *
3246 * The caller must ensure that this function cannot be called
3247 * concurrently with either itself or regcache_sync().
3248 */
3249int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3250 int num_regs)
3251{
3252 struct reg_sequence *p;
3253 int ret;
3254 bool bypass;
3255
3256 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3257 num_regs))
3258 return 0;
3259
3260 p = krealloc(map->patch,
3261 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3262 GFP_KERNEL);
3263 if (p) {
3264 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3265 map->patch = p;
3266 map->patch_regs += num_regs;
3267 } else {
3268 return -ENOMEM;
3269 }
3270
3271 map->lock(map->lock_arg);
3272
3273 bypass = map->cache_bypass;
3274
3275 map->cache_bypass = true;
3276 map->async = true;
3277
3278 ret = _regmap_multi_reg_write(map, regs, num_regs);
3279
3280 map->async = false;
3281 map->cache_bypass = bypass;
3282
3283 map->unlock(map->lock_arg);
3284
3285 regmap_async_complete(map);
3286
3287 return ret;
3288}
3289EXPORT_SYMBOL_GPL(regmap_register_patch);
3290
3291/**
3292 * regmap_get_val_bytes() - Report the size of a register value
3293 *
3294 * @map: Register map to operate on.
3295 *
3296 * Report the size of a register value, mainly intended to for use by
3297 * generic infrastructure built on top of regmap.
3298 */
3299int regmap_get_val_bytes(struct regmap *map)
3300{
3301 if (map->format.format_write)
3302 return -EINVAL;
3303
3304 return map->format.val_bytes;
3305}
3306EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3307
3308/**
3309 * regmap_get_max_register() - Report the max register value
3310 *
3311 * @map: Register map to operate on.
3312 *
3313 * Report the max register value, mainly intended to for use by
3314 * generic infrastructure built on top of regmap.
3315 */
3316int regmap_get_max_register(struct regmap *map)
3317{
3318 return map->max_register ? map->max_register : -EINVAL;
3319}
3320EXPORT_SYMBOL_GPL(regmap_get_max_register);
3321
3322/**
3323 * regmap_get_reg_stride() - Report the register address stride
3324 *
3325 * @map: Register map to operate on.
3326 *
3327 * Report the register address stride, mainly intended to for use by
3328 * generic infrastructure built on top of regmap.
3329 */
3330int regmap_get_reg_stride(struct regmap *map)
3331{
3332 return map->reg_stride;
3333}
3334EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3335
3336int regmap_parse_val(struct regmap *map, const void *buf,
3337 unsigned int *val)
3338{
3339 if (!map->format.parse_val)
3340 return -EINVAL;
3341
3342 *val = map->format.parse_val(buf);
3343
3344 return 0;
3345}
3346EXPORT_SYMBOL_GPL(regmap_parse_val);
3347
3348static int __init regmap_initcall(void)
3349{
3350 regmap_debugfs_initcall();
3351
3352 return 0;
3353}
3354postcore_initcall(regmap_initcall);