Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3/*
4 * Common eBPF ELF object loading operations.
5 *
6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8 * Copyright (C) 2015 Huawei Inc.
9 * Copyright (C) 2017 Nicira, Inc.
10 * Copyright (C) 2019 Isovalent, Inc.
11 */
12
13#ifndef _GNU_SOURCE
14#define _GNU_SOURCE
15#endif
16#include <stdlib.h>
17#include <stdio.h>
18#include <stdarg.h>
19#include <libgen.h>
20#include <inttypes.h>
21#include <limits.h>
22#include <string.h>
23#include <unistd.h>
24#include <endian.h>
25#include <fcntl.h>
26#include <errno.h>
27#include <ctype.h>
28#include <asm/unistd.h>
29#include <linux/err.h>
30#include <linux/kernel.h>
31#include <linux/bpf.h>
32#include <linux/btf.h>
33#include <linux/filter.h>
34#include <linux/list.h>
35#include <linux/limits.h>
36#include <linux/perf_event.h>
37#include <linux/ring_buffer.h>
38#include <linux/version.h>
39#include <sys/epoll.h>
40#include <sys/ioctl.h>
41#include <sys/mman.h>
42#include <sys/stat.h>
43#include <sys/types.h>
44#include <sys/vfs.h>
45#include <sys/utsname.h>
46#include <sys/resource.h>
47#include <libelf.h>
48#include <gelf.h>
49#include <zlib.h>
50
51#include "libbpf.h"
52#include "bpf.h"
53#include "btf.h"
54#include "str_error.h"
55#include "libbpf_internal.h"
56#include "hashmap.h"
57#include "bpf_gen_internal.h"
58
59#ifndef BPF_FS_MAGIC
60#define BPF_FS_MAGIC 0xcafe4a11
61#endif
62
63#define BPF_INSN_SZ (sizeof(struct bpf_insn))
64
65/* vsprintf() in __base_pr() uses nonliteral format string. It may break
66 * compilation if user enables corresponding warning. Disable it explicitly.
67 */
68#pragma GCC diagnostic ignored "-Wformat-nonliteral"
69
70#define __printf(a, b) __attribute__((format(printf, a, b)))
71
72static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
73static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
74
75static int __base_pr(enum libbpf_print_level level, const char *format,
76 va_list args)
77{
78 if (level == LIBBPF_DEBUG)
79 return 0;
80
81 return vfprintf(stderr, format, args);
82}
83
84static libbpf_print_fn_t __libbpf_pr = __base_pr;
85
86libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
87{
88 libbpf_print_fn_t old_print_fn = __libbpf_pr;
89
90 __libbpf_pr = fn;
91 return old_print_fn;
92}
93
94__printf(2, 3)
95void libbpf_print(enum libbpf_print_level level, const char *format, ...)
96{
97 va_list args;
98
99 if (!__libbpf_pr)
100 return;
101
102 va_start(args, format);
103 __libbpf_pr(level, format, args);
104 va_end(args);
105}
106
107static void pr_perm_msg(int err)
108{
109 struct rlimit limit;
110 char buf[100];
111
112 if (err != -EPERM || geteuid() != 0)
113 return;
114
115 err = getrlimit(RLIMIT_MEMLOCK, &limit);
116 if (err)
117 return;
118
119 if (limit.rlim_cur == RLIM_INFINITY)
120 return;
121
122 if (limit.rlim_cur < 1024)
123 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
124 else if (limit.rlim_cur < 1024*1024)
125 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
126 else
127 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
128
129 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
130 buf);
131}
132
133#define STRERR_BUFSIZE 128
134
135/* Copied from tools/perf/util/util.h */
136#ifndef zfree
137# define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
138#endif
139
140#ifndef zclose
141# define zclose(fd) ({ \
142 int ___err = 0; \
143 if ((fd) >= 0) \
144 ___err = close((fd)); \
145 fd = -1; \
146 ___err; })
147#endif
148
149static inline __u64 ptr_to_u64(const void *ptr)
150{
151 return (__u64) (unsigned long) ptr;
152}
153
154/* this goes away in libbpf 1.0 */
155enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE;
156
157int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
158{
159 libbpf_mode = mode;
160 return 0;
161}
162
163__u32 libbpf_major_version(void)
164{
165 return LIBBPF_MAJOR_VERSION;
166}
167
168__u32 libbpf_minor_version(void)
169{
170 return LIBBPF_MINOR_VERSION;
171}
172
173const char *libbpf_version_string(void)
174{
175#define __S(X) #X
176#define _S(X) __S(X)
177 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
178#undef _S
179#undef __S
180}
181
182enum reloc_type {
183 RELO_LD64,
184 RELO_CALL,
185 RELO_DATA,
186 RELO_EXTERN_VAR,
187 RELO_EXTERN_FUNC,
188 RELO_SUBPROG_ADDR,
189 RELO_CORE,
190};
191
192struct reloc_desc {
193 enum reloc_type type;
194 int insn_idx;
195 union {
196 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
197 struct {
198 int map_idx;
199 int sym_off;
200 };
201 };
202};
203
204/* stored as sec_def->cookie for all libbpf-supported SEC()s */
205enum sec_def_flags {
206 SEC_NONE = 0,
207 /* expected_attach_type is optional, if kernel doesn't support that */
208 SEC_EXP_ATTACH_OPT = 1,
209 /* legacy, only used by libbpf_get_type_names() and
210 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
211 * This used to be associated with cgroup (and few other) BPF programs
212 * that were attachable through BPF_PROG_ATTACH command. Pretty
213 * meaningless nowadays, though.
214 */
215 SEC_ATTACHABLE = 2,
216 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
217 /* attachment target is specified through BTF ID in either kernel or
218 * other BPF program's BTF object */
219 SEC_ATTACH_BTF = 4,
220 /* BPF program type allows sleeping/blocking in kernel */
221 SEC_SLEEPABLE = 8,
222 /* allow non-strict prefix matching */
223 SEC_SLOPPY_PFX = 16,
224 /* BPF program support non-linear XDP buffer */
225 SEC_XDP_FRAGS = 32,
226 /* deprecated sec definitions not supposed to be used */
227 SEC_DEPRECATED = 64,
228};
229
230struct bpf_sec_def {
231 char *sec;
232 enum bpf_prog_type prog_type;
233 enum bpf_attach_type expected_attach_type;
234 long cookie;
235 int handler_id;
236
237 libbpf_prog_setup_fn_t prog_setup_fn;
238 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
239 libbpf_prog_attach_fn_t prog_attach_fn;
240};
241
242/*
243 * bpf_prog should be a better name but it has been used in
244 * linux/filter.h.
245 */
246struct bpf_program {
247 const struct bpf_sec_def *sec_def;
248 char *sec_name;
249 size_t sec_idx;
250 /* this program's instruction offset (in number of instructions)
251 * within its containing ELF section
252 */
253 size_t sec_insn_off;
254 /* number of original instructions in ELF section belonging to this
255 * program, not taking into account subprogram instructions possible
256 * appended later during relocation
257 */
258 size_t sec_insn_cnt;
259 /* Offset (in number of instructions) of the start of instruction
260 * belonging to this BPF program within its containing main BPF
261 * program. For the entry-point (main) BPF program, this is always
262 * zero. For a sub-program, this gets reset before each of main BPF
263 * programs are processed and relocated and is used to determined
264 * whether sub-program was already appended to the main program, and
265 * if yes, at which instruction offset.
266 */
267 size_t sub_insn_off;
268
269 char *name;
270 /* name with / replaced by _; makes recursive pinning
271 * in bpf_object__pin_programs easier
272 */
273 char *pin_name;
274
275 /* instructions that belong to BPF program; insns[0] is located at
276 * sec_insn_off instruction within its ELF section in ELF file, so
277 * when mapping ELF file instruction index to the local instruction,
278 * one needs to subtract sec_insn_off; and vice versa.
279 */
280 struct bpf_insn *insns;
281 /* actual number of instruction in this BPF program's image; for
282 * entry-point BPF programs this includes the size of main program
283 * itself plus all the used sub-programs, appended at the end
284 */
285 size_t insns_cnt;
286
287 struct reloc_desc *reloc_desc;
288 int nr_reloc;
289
290 /* BPF verifier log settings */
291 char *log_buf;
292 size_t log_size;
293 __u32 log_level;
294
295 struct {
296 int nr;
297 int *fds;
298 } instances;
299 bpf_program_prep_t preprocessor;
300
301 struct bpf_object *obj;
302 void *priv;
303 bpf_program_clear_priv_t clear_priv;
304
305 bool load;
306 bool mark_btf_static;
307 enum bpf_prog_type type;
308 enum bpf_attach_type expected_attach_type;
309 int prog_ifindex;
310 __u32 attach_btf_obj_fd;
311 __u32 attach_btf_id;
312 __u32 attach_prog_fd;
313 void *func_info;
314 __u32 func_info_rec_size;
315 __u32 func_info_cnt;
316
317 void *line_info;
318 __u32 line_info_rec_size;
319 __u32 line_info_cnt;
320 __u32 prog_flags;
321};
322
323struct bpf_struct_ops {
324 const char *tname;
325 const struct btf_type *type;
326 struct bpf_program **progs;
327 __u32 *kern_func_off;
328 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
329 void *data;
330 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
331 * btf_vmlinux's format.
332 * struct bpf_struct_ops_tcp_congestion_ops {
333 * [... some other kernel fields ...]
334 * struct tcp_congestion_ops data;
335 * }
336 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
337 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
338 * from "data".
339 */
340 void *kern_vdata;
341 __u32 type_id;
342};
343
344#define DATA_SEC ".data"
345#define BSS_SEC ".bss"
346#define RODATA_SEC ".rodata"
347#define KCONFIG_SEC ".kconfig"
348#define KSYMS_SEC ".ksyms"
349#define STRUCT_OPS_SEC ".struct_ops"
350
351enum libbpf_map_type {
352 LIBBPF_MAP_UNSPEC,
353 LIBBPF_MAP_DATA,
354 LIBBPF_MAP_BSS,
355 LIBBPF_MAP_RODATA,
356 LIBBPF_MAP_KCONFIG,
357};
358
359struct bpf_map {
360 char *name;
361 /* real_name is defined for special internal maps (.rodata*,
362 * .data*, .bss, .kconfig) and preserves their original ELF section
363 * name. This is important to be be able to find corresponding BTF
364 * DATASEC information.
365 */
366 char *real_name;
367 int fd;
368 int sec_idx;
369 size_t sec_offset;
370 int map_ifindex;
371 int inner_map_fd;
372 struct bpf_map_def def;
373 __u32 numa_node;
374 __u32 btf_var_idx;
375 __u32 btf_key_type_id;
376 __u32 btf_value_type_id;
377 __u32 btf_vmlinux_value_type_id;
378 void *priv;
379 bpf_map_clear_priv_t clear_priv;
380 enum libbpf_map_type libbpf_type;
381 void *mmaped;
382 struct bpf_struct_ops *st_ops;
383 struct bpf_map *inner_map;
384 void **init_slots;
385 int init_slots_sz;
386 char *pin_path;
387 bool pinned;
388 bool reused;
389 bool skipped;
390 __u64 map_extra;
391};
392
393enum extern_type {
394 EXT_UNKNOWN,
395 EXT_KCFG,
396 EXT_KSYM,
397};
398
399enum kcfg_type {
400 KCFG_UNKNOWN,
401 KCFG_CHAR,
402 KCFG_BOOL,
403 KCFG_INT,
404 KCFG_TRISTATE,
405 KCFG_CHAR_ARR,
406};
407
408struct extern_desc {
409 enum extern_type type;
410 int sym_idx;
411 int btf_id;
412 int sec_btf_id;
413 const char *name;
414 bool is_set;
415 bool is_weak;
416 union {
417 struct {
418 enum kcfg_type type;
419 int sz;
420 int align;
421 int data_off;
422 bool is_signed;
423 } kcfg;
424 struct {
425 unsigned long long addr;
426
427 /* target btf_id of the corresponding kernel var. */
428 int kernel_btf_obj_fd;
429 int kernel_btf_id;
430
431 /* local btf_id of the ksym extern's type. */
432 __u32 type_id;
433 /* BTF fd index to be patched in for insn->off, this is
434 * 0 for vmlinux BTF, index in obj->fd_array for module
435 * BTF
436 */
437 __s16 btf_fd_idx;
438 } ksym;
439 };
440};
441
442static LIST_HEAD(bpf_objects_list);
443
444struct module_btf {
445 struct btf *btf;
446 char *name;
447 __u32 id;
448 int fd;
449 int fd_array_idx;
450};
451
452enum sec_type {
453 SEC_UNUSED = 0,
454 SEC_RELO,
455 SEC_BSS,
456 SEC_DATA,
457 SEC_RODATA,
458};
459
460struct elf_sec_desc {
461 enum sec_type sec_type;
462 Elf64_Shdr *shdr;
463 Elf_Data *data;
464};
465
466struct elf_state {
467 int fd;
468 const void *obj_buf;
469 size_t obj_buf_sz;
470 Elf *elf;
471 Elf64_Ehdr *ehdr;
472 Elf_Data *symbols;
473 Elf_Data *st_ops_data;
474 size_t shstrndx; /* section index for section name strings */
475 size_t strtabidx;
476 struct elf_sec_desc *secs;
477 int sec_cnt;
478 int maps_shndx;
479 int btf_maps_shndx;
480 __u32 btf_maps_sec_btf_id;
481 int text_shndx;
482 int symbols_shndx;
483 int st_ops_shndx;
484};
485
486struct bpf_object {
487 char name[BPF_OBJ_NAME_LEN];
488 char license[64];
489 __u32 kern_version;
490
491 struct bpf_program *programs;
492 size_t nr_programs;
493 struct bpf_map *maps;
494 size_t nr_maps;
495 size_t maps_cap;
496
497 char *kconfig;
498 struct extern_desc *externs;
499 int nr_extern;
500 int kconfig_map_idx;
501
502 bool loaded;
503 bool has_subcalls;
504 bool has_rodata;
505
506 struct bpf_gen *gen_loader;
507
508 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */
509 struct elf_state efile;
510 /*
511 * All loaded bpf_object are linked in a list, which is
512 * hidden to caller. bpf_objects__<func> handlers deal with
513 * all objects.
514 */
515 struct list_head list;
516
517 struct btf *btf;
518 struct btf_ext *btf_ext;
519
520 /* Parse and load BTF vmlinux if any of the programs in the object need
521 * it at load time.
522 */
523 struct btf *btf_vmlinux;
524 /* Path to the custom BTF to be used for BPF CO-RE relocations as an
525 * override for vmlinux BTF.
526 */
527 char *btf_custom_path;
528 /* vmlinux BTF override for CO-RE relocations */
529 struct btf *btf_vmlinux_override;
530 /* Lazily initialized kernel module BTFs */
531 struct module_btf *btf_modules;
532 bool btf_modules_loaded;
533 size_t btf_module_cnt;
534 size_t btf_module_cap;
535
536 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
537 char *log_buf;
538 size_t log_size;
539 __u32 log_level;
540
541 void *priv;
542 bpf_object_clear_priv_t clear_priv;
543
544 int *fd_array;
545 size_t fd_array_cap;
546 size_t fd_array_cnt;
547
548 char path[];
549};
550
551static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
552static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
553static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
554static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
555static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
556static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
557static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
558static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
559static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
560
561void bpf_program__unload(struct bpf_program *prog)
562{
563 int i;
564
565 if (!prog)
566 return;
567
568 /*
569 * If the object is opened but the program was never loaded,
570 * it is possible that prog->instances.nr == -1.
571 */
572 if (prog->instances.nr > 0) {
573 for (i = 0; i < prog->instances.nr; i++)
574 zclose(prog->instances.fds[i]);
575 } else if (prog->instances.nr != -1) {
576 pr_warn("Internal error: instances.nr is %d\n",
577 prog->instances.nr);
578 }
579
580 prog->instances.nr = -1;
581 zfree(&prog->instances.fds);
582
583 zfree(&prog->func_info);
584 zfree(&prog->line_info);
585}
586
587static void bpf_program__exit(struct bpf_program *prog)
588{
589 if (!prog)
590 return;
591
592 if (prog->clear_priv)
593 prog->clear_priv(prog, prog->priv);
594
595 prog->priv = NULL;
596 prog->clear_priv = NULL;
597
598 bpf_program__unload(prog);
599 zfree(&prog->name);
600 zfree(&prog->sec_name);
601 zfree(&prog->pin_name);
602 zfree(&prog->insns);
603 zfree(&prog->reloc_desc);
604
605 prog->nr_reloc = 0;
606 prog->insns_cnt = 0;
607 prog->sec_idx = -1;
608}
609
610static char *__bpf_program__pin_name(struct bpf_program *prog)
611{
612 char *name, *p;
613
614 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME)
615 name = strdup(prog->name);
616 else
617 name = strdup(prog->sec_name);
618
619 if (!name)
620 return NULL;
621
622 p = name;
623
624 while ((p = strchr(p, '/')))
625 *p = '_';
626
627 return name;
628}
629
630static bool insn_is_subprog_call(const struct bpf_insn *insn)
631{
632 return BPF_CLASS(insn->code) == BPF_JMP &&
633 BPF_OP(insn->code) == BPF_CALL &&
634 BPF_SRC(insn->code) == BPF_K &&
635 insn->src_reg == BPF_PSEUDO_CALL &&
636 insn->dst_reg == 0 &&
637 insn->off == 0;
638}
639
640static bool is_call_insn(const struct bpf_insn *insn)
641{
642 return insn->code == (BPF_JMP | BPF_CALL);
643}
644
645static bool insn_is_pseudo_func(struct bpf_insn *insn)
646{
647 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
648}
649
650static int
651bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
652 const char *name, size_t sec_idx, const char *sec_name,
653 size_t sec_off, void *insn_data, size_t insn_data_sz)
654{
655 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
656 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
657 sec_name, name, sec_off, insn_data_sz);
658 return -EINVAL;
659 }
660
661 memset(prog, 0, sizeof(*prog));
662 prog->obj = obj;
663
664 prog->sec_idx = sec_idx;
665 prog->sec_insn_off = sec_off / BPF_INSN_SZ;
666 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
667 /* insns_cnt can later be increased by appending used subprograms */
668 prog->insns_cnt = prog->sec_insn_cnt;
669
670 prog->type = BPF_PROG_TYPE_UNSPEC;
671 prog->load = true;
672
673 prog->instances.fds = NULL;
674 prog->instances.nr = -1;
675
676 /* inherit object's log_level */
677 prog->log_level = obj->log_level;
678
679 prog->sec_name = strdup(sec_name);
680 if (!prog->sec_name)
681 goto errout;
682
683 prog->name = strdup(name);
684 if (!prog->name)
685 goto errout;
686
687 prog->pin_name = __bpf_program__pin_name(prog);
688 if (!prog->pin_name)
689 goto errout;
690
691 prog->insns = malloc(insn_data_sz);
692 if (!prog->insns)
693 goto errout;
694 memcpy(prog->insns, insn_data, insn_data_sz);
695
696 return 0;
697errout:
698 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
699 bpf_program__exit(prog);
700 return -ENOMEM;
701}
702
703static int
704bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
705 const char *sec_name, int sec_idx)
706{
707 Elf_Data *symbols = obj->efile.symbols;
708 struct bpf_program *prog, *progs;
709 void *data = sec_data->d_buf;
710 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
711 int nr_progs, err, i;
712 const char *name;
713 Elf64_Sym *sym;
714
715 progs = obj->programs;
716 nr_progs = obj->nr_programs;
717 nr_syms = symbols->d_size / sizeof(Elf64_Sym);
718 sec_off = 0;
719
720 for (i = 0; i < nr_syms; i++) {
721 sym = elf_sym_by_idx(obj, i);
722
723 if (sym->st_shndx != sec_idx)
724 continue;
725 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
726 continue;
727
728 prog_sz = sym->st_size;
729 sec_off = sym->st_value;
730
731 name = elf_sym_str(obj, sym->st_name);
732 if (!name) {
733 pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
734 sec_name, sec_off);
735 return -LIBBPF_ERRNO__FORMAT;
736 }
737
738 if (sec_off + prog_sz > sec_sz) {
739 pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
740 sec_name, sec_off);
741 return -LIBBPF_ERRNO__FORMAT;
742 }
743
744 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
745 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
746 return -ENOTSUP;
747 }
748
749 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
750 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
751
752 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
753 if (!progs) {
754 /*
755 * In this case the original obj->programs
756 * is still valid, so don't need special treat for
757 * bpf_close_object().
758 */
759 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
760 sec_name, name);
761 return -ENOMEM;
762 }
763 obj->programs = progs;
764
765 prog = &progs[nr_progs];
766
767 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
768 sec_off, data + sec_off, prog_sz);
769 if (err)
770 return err;
771
772 /* if function is a global/weak symbol, but has restricted
773 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
774 * as static to enable more permissive BPF verification mode
775 * with more outside context available to BPF verifier
776 */
777 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
778 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
779 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
780 prog->mark_btf_static = true;
781
782 nr_progs++;
783 obj->nr_programs = nr_progs;
784 }
785
786 return 0;
787}
788
789__u32 get_kernel_version(void)
790{
791 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release,
792 * but Ubuntu provides /proc/version_signature file, as described at
793 * https://ubuntu.com/kernel, with an example contents below, which we
794 * can use to get a proper LINUX_VERSION_CODE.
795 *
796 * Ubuntu 5.4.0-12.15-generic 5.4.8
797 *
798 * In the above, 5.4.8 is what kernel is actually expecting, while
799 * uname() call will return 5.4.0 in info.release.
800 */
801 const char *ubuntu_kver_file = "/proc/version_signature";
802 __u32 major, minor, patch;
803 struct utsname info;
804
805 if (access(ubuntu_kver_file, R_OK) == 0) {
806 FILE *f;
807
808 f = fopen(ubuntu_kver_file, "r");
809 if (f) {
810 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) {
811 fclose(f);
812 return KERNEL_VERSION(major, minor, patch);
813 }
814 fclose(f);
815 }
816 /* something went wrong, fall back to uname() approach */
817 }
818
819 uname(&info);
820 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
821 return 0;
822 return KERNEL_VERSION(major, minor, patch);
823}
824
825static const struct btf_member *
826find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
827{
828 struct btf_member *m;
829 int i;
830
831 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
832 if (btf_member_bit_offset(t, i) == bit_offset)
833 return m;
834 }
835
836 return NULL;
837}
838
839static const struct btf_member *
840find_member_by_name(const struct btf *btf, const struct btf_type *t,
841 const char *name)
842{
843 struct btf_member *m;
844 int i;
845
846 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
847 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
848 return m;
849 }
850
851 return NULL;
852}
853
854#define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
855static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
856 const char *name, __u32 kind);
857
858static int
859find_struct_ops_kern_types(const struct btf *btf, const char *tname,
860 const struct btf_type **type, __u32 *type_id,
861 const struct btf_type **vtype, __u32 *vtype_id,
862 const struct btf_member **data_member)
863{
864 const struct btf_type *kern_type, *kern_vtype;
865 const struct btf_member *kern_data_member;
866 __s32 kern_vtype_id, kern_type_id;
867 __u32 i;
868
869 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
870 if (kern_type_id < 0) {
871 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
872 tname);
873 return kern_type_id;
874 }
875 kern_type = btf__type_by_id(btf, kern_type_id);
876
877 /* Find the corresponding "map_value" type that will be used
878 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example,
879 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
880 * btf_vmlinux.
881 */
882 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
883 tname, BTF_KIND_STRUCT);
884 if (kern_vtype_id < 0) {
885 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
886 STRUCT_OPS_VALUE_PREFIX, tname);
887 return kern_vtype_id;
888 }
889 kern_vtype = btf__type_by_id(btf, kern_vtype_id);
890
891 /* Find "struct tcp_congestion_ops" from
892 * struct bpf_struct_ops_tcp_congestion_ops {
893 * [ ... ]
894 * struct tcp_congestion_ops data;
895 * }
896 */
897 kern_data_member = btf_members(kern_vtype);
898 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
899 if (kern_data_member->type == kern_type_id)
900 break;
901 }
902 if (i == btf_vlen(kern_vtype)) {
903 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
904 tname, STRUCT_OPS_VALUE_PREFIX, tname);
905 return -EINVAL;
906 }
907
908 *type = kern_type;
909 *type_id = kern_type_id;
910 *vtype = kern_vtype;
911 *vtype_id = kern_vtype_id;
912 *data_member = kern_data_member;
913
914 return 0;
915}
916
917static bool bpf_map__is_struct_ops(const struct bpf_map *map)
918{
919 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
920}
921
922/* Init the map's fields that depend on kern_btf */
923static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
924 const struct btf *btf,
925 const struct btf *kern_btf)
926{
927 const struct btf_member *member, *kern_member, *kern_data_member;
928 const struct btf_type *type, *kern_type, *kern_vtype;
929 __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
930 struct bpf_struct_ops *st_ops;
931 void *data, *kern_data;
932 const char *tname;
933 int err;
934
935 st_ops = map->st_ops;
936 type = st_ops->type;
937 tname = st_ops->tname;
938 err = find_struct_ops_kern_types(kern_btf, tname,
939 &kern_type, &kern_type_id,
940 &kern_vtype, &kern_vtype_id,
941 &kern_data_member);
942 if (err)
943 return err;
944
945 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
946 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
947
948 map->def.value_size = kern_vtype->size;
949 map->btf_vmlinux_value_type_id = kern_vtype_id;
950
951 st_ops->kern_vdata = calloc(1, kern_vtype->size);
952 if (!st_ops->kern_vdata)
953 return -ENOMEM;
954
955 data = st_ops->data;
956 kern_data_off = kern_data_member->offset / 8;
957 kern_data = st_ops->kern_vdata + kern_data_off;
958
959 member = btf_members(type);
960 for (i = 0; i < btf_vlen(type); i++, member++) {
961 const struct btf_type *mtype, *kern_mtype;
962 __u32 mtype_id, kern_mtype_id;
963 void *mdata, *kern_mdata;
964 __s64 msize, kern_msize;
965 __u32 moff, kern_moff;
966 __u32 kern_member_idx;
967 const char *mname;
968
969 mname = btf__name_by_offset(btf, member->name_off);
970 kern_member = find_member_by_name(kern_btf, kern_type, mname);
971 if (!kern_member) {
972 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
973 map->name, mname);
974 return -ENOTSUP;
975 }
976
977 kern_member_idx = kern_member - btf_members(kern_type);
978 if (btf_member_bitfield_size(type, i) ||
979 btf_member_bitfield_size(kern_type, kern_member_idx)) {
980 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
981 map->name, mname);
982 return -ENOTSUP;
983 }
984
985 moff = member->offset / 8;
986 kern_moff = kern_member->offset / 8;
987
988 mdata = data + moff;
989 kern_mdata = kern_data + kern_moff;
990
991 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
992 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
993 &kern_mtype_id);
994 if (BTF_INFO_KIND(mtype->info) !=
995 BTF_INFO_KIND(kern_mtype->info)) {
996 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
997 map->name, mname, BTF_INFO_KIND(mtype->info),
998 BTF_INFO_KIND(kern_mtype->info));
999 return -ENOTSUP;
1000 }
1001
1002 if (btf_is_ptr(mtype)) {
1003 struct bpf_program *prog;
1004
1005 prog = st_ops->progs[i];
1006 if (!prog)
1007 continue;
1008
1009 kern_mtype = skip_mods_and_typedefs(kern_btf,
1010 kern_mtype->type,
1011 &kern_mtype_id);
1012
1013 /* mtype->type must be a func_proto which was
1014 * guaranteed in bpf_object__collect_st_ops_relos(),
1015 * so only check kern_mtype for func_proto here.
1016 */
1017 if (!btf_is_func_proto(kern_mtype)) {
1018 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1019 map->name, mname);
1020 return -ENOTSUP;
1021 }
1022
1023 prog->attach_btf_id = kern_type_id;
1024 prog->expected_attach_type = kern_member_idx;
1025
1026 st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1027
1028 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1029 map->name, mname, prog->name, moff,
1030 kern_moff);
1031
1032 continue;
1033 }
1034
1035 msize = btf__resolve_size(btf, mtype_id);
1036 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1037 if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1038 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1039 map->name, mname, (ssize_t)msize,
1040 (ssize_t)kern_msize);
1041 return -ENOTSUP;
1042 }
1043
1044 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1045 map->name, mname, (unsigned int)msize,
1046 moff, kern_moff);
1047 memcpy(kern_mdata, mdata, msize);
1048 }
1049
1050 return 0;
1051}
1052
1053static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1054{
1055 struct bpf_map *map;
1056 size_t i;
1057 int err;
1058
1059 for (i = 0; i < obj->nr_maps; i++) {
1060 map = &obj->maps[i];
1061
1062 if (!bpf_map__is_struct_ops(map))
1063 continue;
1064
1065 err = bpf_map__init_kern_struct_ops(map, obj->btf,
1066 obj->btf_vmlinux);
1067 if (err)
1068 return err;
1069 }
1070
1071 return 0;
1072}
1073
1074static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
1075{
1076 const struct btf_type *type, *datasec;
1077 const struct btf_var_secinfo *vsi;
1078 struct bpf_struct_ops *st_ops;
1079 const char *tname, *var_name;
1080 __s32 type_id, datasec_id;
1081 const struct btf *btf;
1082 struct bpf_map *map;
1083 __u32 i;
1084
1085 if (obj->efile.st_ops_shndx == -1)
1086 return 0;
1087
1088 btf = obj->btf;
1089 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
1090 BTF_KIND_DATASEC);
1091 if (datasec_id < 0) {
1092 pr_warn("struct_ops init: DATASEC %s not found\n",
1093 STRUCT_OPS_SEC);
1094 return -EINVAL;
1095 }
1096
1097 datasec = btf__type_by_id(btf, datasec_id);
1098 vsi = btf_var_secinfos(datasec);
1099 for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1100 type = btf__type_by_id(obj->btf, vsi->type);
1101 var_name = btf__name_by_offset(obj->btf, type->name_off);
1102
1103 type_id = btf__resolve_type(obj->btf, vsi->type);
1104 if (type_id < 0) {
1105 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1106 vsi->type, STRUCT_OPS_SEC);
1107 return -EINVAL;
1108 }
1109
1110 type = btf__type_by_id(obj->btf, type_id);
1111 tname = btf__name_by_offset(obj->btf, type->name_off);
1112 if (!tname[0]) {
1113 pr_warn("struct_ops init: anonymous type is not supported\n");
1114 return -ENOTSUP;
1115 }
1116 if (!btf_is_struct(type)) {
1117 pr_warn("struct_ops init: %s is not a struct\n", tname);
1118 return -EINVAL;
1119 }
1120
1121 map = bpf_object__add_map(obj);
1122 if (IS_ERR(map))
1123 return PTR_ERR(map);
1124
1125 map->sec_idx = obj->efile.st_ops_shndx;
1126 map->sec_offset = vsi->offset;
1127 map->name = strdup(var_name);
1128 if (!map->name)
1129 return -ENOMEM;
1130
1131 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1132 map->def.key_size = sizeof(int);
1133 map->def.value_size = type->size;
1134 map->def.max_entries = 1;
1135
1136 map->st_ops = calloc(1, sizeof(*map->st_ops));
1137 if (!map->st_ops)
1138 return -ENOMEM;
1139 st_ops = map->st_ops;
1140 st_ops->data = malloc(type->size);
1141 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1142 st_ops->kern_func_off = malloc(btf_vlen(type) *
1143 sizeof(*st_ops->kern_func_off));
1144 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1145 return -ENOMEM;
1146
1147 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1148 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1149 var_name, STRUCT_OPS_SEC);
1150 return -EINVAL;
1151 }
1152
1153 memcpy(st_ops->data,
1154 obj->efile.st_ops_data->d_buf + vsi->offset,
1155 type->size);
1156 st_ops->tname = tname;
1157 st_ops->type = type;
1158 st_ops->type_id = type_id;
1159
1160 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1161 tname, type_id, var_name, vsi->offset);
1162 }
1163
1164 return 0;
1165}
1166
1167static struct bpf_object *bpf_object__new(const char *path,
1168 const void *obj_buf,
1169 size_t obj_buf_sz,
1170 const char *obj_name)
1171{
1172 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST);
1173 struct bpf_object *obj;
1174 char *end;
1175
1176 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1177 if (!obj) {
1178 pr_warn("alloc memory failed for %s\n", path);
1179 return ERR_PTR(-ENOMEM);
1180 }
1181
1182 strcpy(obj->path, path);
1183 if (obj_name) {
1184 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1185 } else {
1186 /* Using basename() GNU version which doesn't modify arg. */
1187 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1188 end = strchr(obj->name, '.');
1189 if (end)
1190 *end = 0;
1191 }
1192
1193 obj->efile.fd = -1;
1194 /*
1195 * Caller of this function should also call
1196 * bpf_object__elf_finish() after data collection to return
1197 * obj_buf to user. If not, we should duplicate the buffer to
1198 * avoid user freeing them before elf finish.
1199 */
1200 obj->efile.obj_buf = obj_buf;
1201 obj->efile.obj_buf_sz = obj_buf_sz;
1202 obj->efile.maps_shndx = -1;
1203 obj->efile.btf_maps_shndx = -1;
1204 obj->efile.st_ops_shndx = -1;
1205 obj->kconfig_map_idx = -1;
1206
1207 obj->kern_version = get_kernel_version();
1208 obj->loaded = false;
1209
1210 INIT_LIST_HEAD(&obj->list);
1211 if (!strict)
1212 list_add(&obj->list, &bpf_objects_list);
1213 return obj;
1214}
1215
1216static void bpf_object__elf_finish(struct bpf_object *obj)
1217{
1218 if (!obj->efile.elf)
1219 return;
1220
1221 if (obj->efile.elf) {
1222 elf_end(obj->efile.elf);
1223 obj->efile.elf = NULL;
1224 }
1225 obj->efile.symbols = NULL;
1226 obj->efile.st_ops_data = NULL;
1227
1228 zfree(&obj->efile.secs);
1229 obj->efile.sec_cnt = 0;
1230 zclose(obj->efile.fd);
1231 obj->efile.obj_buf = NULL;
1232 obj->efile.obj_buf_sz = 0;
1233}
1234
1235static int bpf_object__elf_init(struct bpf_object *obj)
1236{
1237 Elf64_Ehdr *ehdr;
1238 int err = 0;
1239 Elf *elf;
1240
1241 if (obj->efile.elf) {
1242 pr_warn("elf: init internal error\n");
1243 return -LIBBPF_ERRNO__LIBELF;
1244 }
1245
1246 if (obj->efile.obj_buf_sz > 0) {
1247 /*
1248 * obj_buf should have been validated by
1249 * bpf_object__open_buffer().
1250 */
1251 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1252 } else {
1253 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1254 if (obj->efile.fd < 0) {
1255 char errmsg[STRERR_BUFSIZE], *cp;
1256
1257 err = -errno;
1258 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1259 pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1260 return err;
1261 }
1262
1263 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1264 }
1265
1266 if (!elf) {
1267 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1268 err = -LIBBPF_ERRNO__LIBELF;
1269 goto errout;
1270 }
1271
1272 obj->efile.elf = elf;
1273
1274 if (elf_kind(elf) != ELF_K_ELF) {
1275 err = -LIBBPF_ERRNO__FORMAT;
1276 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1277 goto errout;
1278 }
1279
1280 if (gelf_getclass(elf) != ELFCLASS64) {
1281 err = -LIBBPF_ERRNO__FORMAT;
1282 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1283 goto errout;
1284 }
1285
1286 obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1287 if (!obj->efile.ehdr) {
1288 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1289 err = -LIBBPF_ERRNO__FORMAT;
1290 goto errout;
1291 }
1292
1293 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1294 pr_warn("elf: failed to get section names section index for %s: %s\n",
1295 obj->path, elf_errmsg(-1));
1296 err = -LIBBPF_ERRNO__FORMAT;
1297 goto errout;
1298 }
1299
1300 /* Elf is corrupted/truncated, avoid calling elf_strptr. */
1301 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1302 pr_warn("elf: failed to get section names strings from %s: %s\n",
1303 obj->path, elf_errmsg(-1));
1304 err = -LIBBPF_ERRNO__FORMAT;
1305 goto errout;
1306 }
1307
1308 /* Old LLVM set e_machine to EM_NONE */
1309 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1310 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1311 err = -LIBBPF_ERRNO__FORMAT;
1312 goto errout;
1313 }
1314
1315 return 0;
1316errout:
1317 bpf_object__elf_finish(obj);
1318 return err;
1319}
1320
1321static int bpf_object__check_endianness(struct bpf_object *obj)
1322{
1323#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1324 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1325 return 0;
1326#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1327 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1328 return 0;
1329#else
1330# error "Unrecognized __BYTE_ORDER__"
1331#endif
1332 pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1333 return -LIBBPF_ERRNO__ENDIAN;
1334}
1335
1336static int
1337bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1338{
1339 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1340 * go over allowed ELF data section buffer
1341 */
1342 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1343 pr_debug("license of %s is %s\n", obj->path, obj->license);
1344 return 0;
1345}
1346
1347static int
1348bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1349{
1350 __u32 kver;
1351
1352 if (size != sizeof(kver)) {
1353 pr_warn("invalid kver section in %s\n", obj->path);
1354 return -LIBBPF_ERRNO__FORMAT;
1355 }
1356 memcpy(&kver, data, sizeof(kver));
1357 obj->kern_version = kver;
1358 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1359 return 0;
1360}
1361
1362static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1363{
1364 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1365 type == BPF_MAP_TYPE_HASH_OF_MAPS)
1366 return true;
1367 return false;
1368}
1369
1370static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1371{
1372 Elf_Data *data;
1373 Elf_Scn *scn;
1374
1375 if (!name)
1376 return -EINVAL;
1377
1378 scn = elf_sec_by_name(obj, name);
1379 data = elf_sec_data(obj, scn);
1380 if (data) {
1381 *size = data->d_size;
1382 return 0; /* found it */
1383 }
1384
1385 return -ENOENT;
1386}
1387
1388static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off)
1389{
1390 Elf_Data *symbols = obj->efile.symbols;
1391 const char *sname;
1392 size_t si;
1393
1394 if (!name || !off)
1395 return -EINVAL;
1396
1397 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1398 Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1399
1400 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL ||
1401 ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1402 continue;
1403
1404 sname = elf_sym_str(obj, sym->st_name);
1405 if (!sname) {
1406 pr_warn("failed to get sym name string for var %s\n", name);
1407 return -EIO;
1408 }
1409 if (strcmp(name, sname) == 0) {
1410 *off = sym->st_value;
1411 return 0;
1412 }
1413 }
1414
1415 return -ENOENT;
1416}
1417
1418static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1419{
1420 struct bpf_map *new_maps;
1421 size_t new_cap;
1422 int i;
1423
1424 if (obj->nr_maps < obj->maps_cap)
1425 return &obj->maps[obj->nr_maps++];
1426
1427 new_cap = max((size_t)4, obj->maps_cap * 3 / 2);
1428 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps));
1429 if (!new_maps) {
1430 pr_warn("alloc maps for object failed\n");
1431 return ERR_PTR(-ENOMEM);
1432 }
1433
1434 obj->maps_cap = new_cap;
1435 obj->maps = new_maps;
1436
1437 /* zero out new maps */
1438 memset(obj->maps + obj->nr_maps, 0,
1439 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps));
1440 /*
1441 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin)
1442 * when failure (zclose won't close negative fd)).
1443 */
1444 for (i = obj->nr_maps; i < obj->maps_cap; i++) {
1445 obj->maps[i].fd = -1;
1446 obj->maps[i].inner_map_fd = -1;
1447 }
1448
1449 return &obj->maps[obj->nr_maps++];
1450}
1451
1452static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1453{
1454 long page_sz = sysconf(_SC_PAGE_SIZE);
1455 size_t map_sz;
1456
1457 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1458 map_sz = roundup(map_sz, page_sz);
1459 return map_sz;
1460}
1461
1462static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1463{
1464 char map_name[BPF_OBJ_NAME_LEN], *p;
1465 int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1466
1467 /* This is one of the more confusing parts of libbpf for various
1468 * reasons, some of which are historical. The original idea for naming
1469 * internal names was to include as much of BPF object name prefix as
1470 * possible, so that it can be distinguished from similar internal
1471 * maps of a different BPF object.
1472 * As an example, let's say we have bpf_object named 'my_object_name'
1473 * and internal map corresponding to '.rodata' ELF section. The final
1474 * map name advertised to user and to the kernel will be
1475 * 'my_objec.rodata', taking first 8 characters of object name and
1476 * entire 7 characters of '.rodata'.
1477 * Somewhat confusingly, if internal map ELF section name is shorter
1478 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1479 * for the suffix, even though we only have 4 actual characters, and
1480 * resulting map will be called 'my_objec.bss', not even using all 15
1481 * characters allowed by the kernel. Oh well, at least the truncated
1482 * object name is somewhat consistent in this case. But if the map
1483 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1484 * (8 chars) and thus will be left with only first 7 characters of the
1485 * object name ('my_obje'). Happy guessing, user, that the final map
1486 * name will be "my_obje.kconfig".
1487 * Now, with libbpf starting to support arbitrarily named .rodata.*
1488 * and .data.* data sections, it's possible that ELF section name is
1489 * longer than allowed 15 chars, so we now need to be careful to take
1490 * only up to 15 first characters of ELF name, taking no BPF object
1491 * name characters at all. So '.rodata.abracadabra' will result in
1492 * '.rodata.abracad' kernel and user-visible name.
1493 * We need to keep this convoluted logic intact for .data, .bss and
1494 * .rodata maps, but for new custom .data.custom and .rodata.custom
1495 * maps we use their ELF names as is, not prepending bpf_object name
1496 * in front. We still need to truncate them to 15 characters for the
1497 * kernel. Full name can be recovered for such maps by using DATASEC
1498 * BTF type associated with such map's value type, though.
1499 */
1500 if (sfx_len >= BPF_OBJ_NAME_LEN)
1501 sfx_len = BPF_OBJ_NAME_LEN - 1;
1502
1503 /* if there are two or more dots in map name, it's a custom dot map */
1504 if (strchr(real_name + 1, '.') != NULL)
1505 pfx_len = 0;
1506 else
1507 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1508
1509 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1510 sfx_len, real_name);
1511
1512 /* sanitise map name to characters allowed by kernel */
1513 for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1514 if (!isalnum(*p) && *p != '_' && *p != '.')
1515 *p = '_';
1516
1517 return strdup(map_name);
1518}
1519
1520static int
1521bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map);
1522
1523static int
1524bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1525 const char *real_name, int sec_idx, void *data, size_t data_sz)
1526{
1527 struct bpf_map_def *def;
1528 struct bpf_map *map;
1529 int err;
1530
1531 map = bpf_object__add_map(obj);
1532 if (IS_ERR(map))
1533 return PTR_ERR(map);
1534
1535 map->libbpf_type = type;
1536 map->sec_idx = sec_idx;
1537 map->sec_offset = 0;
1538 map->real_name = strdup(real_name);
1539 map->name = internal_map_name(obj, real_name);
1540 if (!map->real_name || !map->name) {
1541 zfree(&map->real_name);
1542 zfree(&map->name);
1543 return -ENOMEM;
1544 }
1545
1546 def = &map->def;
1547 def->type = BPF_MAP_TYPE_ARRAY;
1548 def->key_size = sizeof(int);
1549 def->value_size = data_sz;
1550 def->max_entries = 1;
1551 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1552 ? BPF_F_RDONLY_PROG : 0;
1553 def->map_flags |= BPF_F_MMAPABLE;
1554
1555 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1556 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1557
1558 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1559 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1560 if (map->mmaped == MAP_FAILED) {
1561 err = -errno;
1562 map->mmaped = NULL;
1563 pr_warn("failed to alloc map '%s' content buffer: %d\n",
1564 map->name, err);
1565 zfree(&map->real_name);
1566 zfree(&map->name);
1567 return err;
1568 }
1569
1570 /* failures are fine because of maps like .rodata.str1.1 */
1571 (void) bpf_map_find_btf_info(obj, map);
1572
1573 if (data)
1574 memcpy(map->mmaped, data, data_sz);
1575
1576 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1577 return 0;
1578}
1579
1580static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1581{
1582 struct elf_sec_desc *sec_desc;
1583 const char *sec_name;
1584 int err = 0, sec_idx;
1585
1586 /*
1587 * Populate obj->maps with libbpf internal maps.
1588 */
1589 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1590 sec_desc = &obj->efile.secs[sec_idx];
1591
1592 switch (sec_desc->sec_type) {
1593 case SEC_DATA:
1594 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1595 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1596 sec_name, sec_idx,
1597 sec_desc->data->d_buf,
1598 sec_desc->data->d_size);
1599 break;
1600 case SEC_RODATA:
1601 obj->has_rodata = true;
1602 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1603 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1604 sec_name, sec_idx,
1605 sec_desc->data->d_buf,
1606 sec_desc->data->d_size);
1607 break;
1608 case SEC_BSS:
1609 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1610 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1611 sec_name, sec_idx,
1612 NULL,
1613 sec_desc->data->d_size);
1614 break;
1615 default:
1616 /* skip */
1617 break;
1618 }
1619 if (err)
1620 return err;
1621 }
1622 return 0;
1623}
1624
1625
1626static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1627 const void *name)
1628{
1629 int i;
1630
1631 for (i = 0; i < obj->nr_extern; i++) {
1632 if (strcmp(obj->externs[i].name, name) == 0)
1633 return &obj->externs[i];
1634 }
1635 return NULL;
1636}
1637
1638static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1639 char value)
1640{
1641 switch (ext->kcfg.type) {
1642 case KCFG_BOOL:
1643 if (value == 'm') {
1644 pr_warn("extern (kcfg) %s=%c should be tristate or char\n",
1645 ext->name, value);
1646 return -EINVAL;
1647 }
1648 *(bool *)ext_val = value == 'y' ? true : false;
1649 break;
1650 case KCFG_TRISTATE:
1651 if (value == 'y')
1652 *(enum libbpf_tristate *)ext_val = TRI_YES;
1653 else if (value == 'm')
1654 *(enum libbpf_tristate *)ext_val = TRI_MODULE;
1655 else /* value == 'n' */
1656 *(enum libbpf_tristate *)ext_val = TRI_NO;
1657 break;
1658 case KCFG_CHAR:
1659 *(char *)ext_val = value;
1660 break;
1661 case KCFG_UNKNOWN:
1662 case KCFG_INT:
1663 case KCFG_CHAR_ARR:
1664 default:
1665 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n",
1666 ext->name, value);
1667 return -EINVAL;
1668 }
1669 ext->is_set = true;
1670 return 0;
1671}
1672
1673static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1674 const char *value)
1675{
1676 size_t len;
1677
1678 if (ext->kcfg.type != KCFG_CHAR_ARR) {
1679 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value);
1680 return -EINVAL;
1681 }
1682
1683 len = strlen(value);
1684 if (value[len - 1] != '"') {
1685 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1686 ext->name, value);
1687 return -EINVAL;
1688 }
1689
1690 /* strip quotes */
1691 len -= 2;
1692 if (len >= ext->kcfg.sz) {
1693 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n",
1694 ext->name, value, len, ext->kcfg.sz - 1);
1695 len = ext->kcfg.sz - 1;
1696 }
1697 memcpy(ext_val, value + 1, len);
1698 ext_val[len] = '\0';
1699 ext->is_set = true;
1700 return 0;
1701}
1702
1703static int parse_u64(const char *value, __u64 *res)
1704{
1705 char *value_end;
1706 int err;
1707
1708 errno = 0;
1709 *res = strtoull(value, &value_end, 0);
1710 if (errno) {
1711 err = -errno;
1712 pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1713 return err;
1714 }
1715 if (*value_end) {
1716 pr_warn("failed to parse '%s' as integer completely\n", value);
1717 return -EINVAL;
1718 }
1719 return 0;
1720}
1721
1722static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1723{
1724 int bit_sz = ext->kcfg.sz * 8;
1725
1726 if (ext->kcfg.sz == 8)
1727 return true;
1728
1729 /* Validate that value stored in u64 fits in integer of `ext->sz`
1730 * bytes size without any loss of information. If the target integer
1731 * is signed, we rely on the following limits of integer type of
1732 * Y bits and subsequent transformation:
1733 *
1734 * -2^(Y-1) <= X <= 2^(Y-1) - 1
1735 * 0 <= X + 2^(Y-1) <= 2^Y - 1
1736 * 0 <= X + 2^(Y-1) < 2^Y
1737 *
1738 * For unsigned target integer, check that all the (64 - Y) bits are
1739 * zero.
1740 */
1741 if (ext->kcfg.is_signed)
1742 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1743 else
1744 return (v >> bit_sz) == 0;
1745}
1746
1747static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1748 __u64 value)
1749{
1750 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1751 pr_warn("extern (kcfg) %s=%llu should be integer\n",
1752 ext->name, (unsigned long long)value);
1753 return -EINVAL;
1754 }
1755 if (!is_kcfg_value_in_range(ext, value)) {
1756 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n",
1757 ext->name, (unsigned long long)value, ext->kcfg.sz);
1758 return -ERANGE;
1759 }
1760 switch (ext->kcfg.sz) {
1761 case 1: *(__u8 *)ext_val = value; break;
1762 case 2: *(__u16 *)ext_val = value; break;
1763 case 4: *(__u32 *)ext_val = value; break;
1764 case 8: *(__u64 *)ext_val = value; break;
1765 default:
1766 return -EINVAL;
1767 }
1768 ext->is_set = true;
1769 return 0;
1770}
1771
1772static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1773 char *buf, void *data)
1774{
1775 struct extern_desc *ext;
1776 char *sep, *value;
1777 int len, err = 0;
1778 void *ext_val;
1779 __u64 num;
1780
1781 if (!str_has_pfx(buf, "CONFIG_"))
1782 return 0;
1783
1784 sep = strchr(buf, '=');
1785 if (!sep) {
1786 pr_warn("failed to parse '%s': no separator\n", buf);
1787 return -EINVAL;
1788 }
1789
1790 /* Trim ending '\n' */
1791 len = strlen(buf);
1792 if (buf[len - 1] == '\n')
1793 buf[len - 1] = '\0';
1794 /* Split on '=' and ensure that a value is present. */
1795 *sep = '\0';
1796 if (!sep[1]) {
1797 *sep = '=';
1798 pr_warn("failed to parse '%s': no value\n", buf);
1799 return -EINVAL;
1800 }
1801
1802 ext = find_extern_by_name(obj, buf);
1803 if (!ext || ext->is_set)
1804 return 0;
1805
1806 ext_val = data + ext->kcfg.data_off;
1807 value = sep + 1;
1808
1809 switch (*value) {
1810 case 'y': case 'n': case 'm':
1811 err = set_kcfg_value_tri(ext, ext_val, *value);
1812 break;
1813 case '"':
1814 err = set_kcfg_value_str(ext, ext_val, value);
1815 break;
1816 default:
1817 /* assume integer */
1818 err = parse_u64(value, &num);
1819 if (err) {
1820 pr_warn("extern (kcfg) %s=%s should be integer\n",
1821 ext->name, value);
1822 return err;
1823 }
1824 err = set_kcfg_value_num(ext, ext_val, num);
1825 break;
1826 }
1827 if (err)
1828 return err;
1829 pr_debug("extern (kcfg) %s=%s\n", ext->name, value);
1830 return 0;
1831}
1832
1833static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1834{
1835 char buf[PATH_MAX];
1836 struct utsname uts;
1837 int len, err = 0;
1838 gzFile file;
1839
1840 uname(&uts);
1841 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1842 if (len < 0)
1843 return -EINVAL;
1844 else if (len >= PATH_MAX)
1845 return -ENAMETOOLONG;
1846
1847 /* gzopen also accepts uncompressed files. */
1848 file = gzopen(buf, "r");
1849 if (!file)
1850 file = gzopen("/proc/config.gz", "r");
1851
1852 if (!file) {
1853 pr_warn("failed to open system Kconfig\n");
1854 return -ENOENT;
1855 }
1856
1857 while (gzgets(file, buf, sizeof(buf))) {
1858 err = bpf_object__process_kconfig_line(obj, buf, data);
1859 if (err) {
1860 pr_warn("error parsing system Kconfig line '%s': %d\n",
1861 buf, err);
1862 goto out;
1863 }
1864 }
1865
1866out:
1867 gzclose(file);
1868 return err;
1869}
1870
1871static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1872 const char *config, void *data)
1873{
1874 char buf[PATH_MAX];
1875 int err = 0;
1876 FILE *file;
1877
1878 file = fmemopen((void *)config, strlen(config), "r");
1879 if (!file) {
1880 err = -errno;
1881 pr_warn("failed to open in-memory Kconfig: %d\n", err);
1882 return err;
1883 }
1884
1885 while (fgets(buf, sizeof(buf), file)) {
1886 err = bpf_object__process_kconfig_line(obj, buf, data);
1887 if (err) {
1888 pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1889 buf, err);
1890 break;
1891 }
1892 }
1893
1894 fclose(file);
1895 return err;
1896}
1897
1898static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1899{
1900 struct extern_desc *last_ext = NULL, *ext;
1901 size_t map_sz;
1902 int i, err;
1903
1904 for (i = 0; i < obj->nr_extern; i++) {
1905 ext = &obj->externs[i];
1906 if (ext->type == EXT_KCFG)
1907 last_ext = ext;
1908 }
1909
1910 if (!last_ext)
1911 return 0;
1912
1913 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1914 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1915 ".kconfig", obj->efile.symbols_shndx,
1916 NULL, map_sz);
1917 if (err)
1918 return err;
1919
1920 obj->kconfig_map_idx = obj->nr_maps - 1;
1921
1922 return 0;
1923}
1924
1925static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict)
1926{
1927 Elf_Data *symbols = obj->efile.symbols;
1928 int i, map_def_sz = 0, nr_maps = 0, nr_syms;
1929 Elf_Data *data = NULL;
1930 Elf_Scn *scn;
1931
1932 if (obj->efile.maps_shndx < 0)
1933 return 0;
1934
1935 if (libbpf_mode & LIBBPF_STRICT_MAP_DEFINITIONS) {
1936 pr_warn("legacy map definitions in SEC(\"maps\") are not supported\n");
1937 return -EOPNOTSUPP;
1938 }
1939
1940 if (!symbols)
1941 return -EINVAL;
1942
1943 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx);
1944 data = elf_sec_data(obj, scn);
1945 if (!scn || !data) {
1946 pr_warn("elf: failed to get legacy map definitions for %s\n",
1947 obj->path);
1948 return -EINVAL;
1949 }
1950
1951 /*
1952 * Count number of maps. Each map has a name.
1953 * Array of maps is not supported: only the first element is
1954 * considered.
1955 *
1956 * TODO: Detect array of map and report error.
1957 */
1958 nr_syms = symbols->d_size / sizeof(Elf64_Sym);
1959 for (i = 0; i < nr_syms; i++) {
1960 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
1961
1962 if (sym->st_shndx != obj->efile.maps_shndx)
1963 continue;
1964 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION)
1965 continue;
1966 nr_maps++;
1967 }
1968 /* Assume equally sized map definitions */
1969 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n",
1970 nr_maps, data->d_size, obj->path);
1971
1972 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) {
1973 pr_warn("elf: unable to determine legacy map definition size in %s\n",
1974 obj->path);
1975 return -EINVAL;
1976 }
1977 map_def_sz = data->d_size / nr_maps;
1978
1979 /* Fill obj->maps using data in "maps" section. */
1980 for (i = 0; i < nr_syms; i++) {
1981 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
1982 const char *map_name;
1983 struct bpf_map_def *def;
1984 struct bpf_map *map;
1985
1986 if (sym->st_shndx != obj->efile.maps_shndx)
1987 continue;
1988 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION)
1989 continue;
1990
1991 map = bpf_object__add_map(obj);
1992 if (IS_ERR(map))
1993 return PTR_ERR(map);
1994
1995 map_name = elf_sym_str(obj, sym->st_name);
1996 if (!map_name) {
1997 pr_warn("failed to get map #%d name sym string for obj %s\n",
1998 i, obj->path);
1999 return -LIBBPF_ERRNO__FORMAT;
2000 }
2001
2002 pr_warn("map '%s' (legacy): legacy map definitions are deprecated, use BTF-defined maps instead\n", map_name);
2003
2004 if (ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
2005 pr_warn("map '%s' (legacy): static maps are not supported\n", map_name);
2006 return -ENOTSUP;
2007 }
2008
2009 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2010 map->sec_idx = sym->st_shndx;
2011 map->sec_offset = sym->st_value;
2012 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n",
2013 map_name, map->sec_idx, map->sec_offset);
2014 if (sym->st_value + map_def_sz > data->d_size) {
2015 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n",
2016 obj->path, map_name);
2017 return -EINVAL;
2018 }
2019
2020 map->name = strdup(map_name);
2021 if (!map->name) {
2022 pr_warn("map '%s': failed to alloc map name\n", map_name);
2023 return -ENOMEM;
2024 }
2025 pr_debug("map %d is \"%s\"\n", i, map->name);
2026 def = (struct bpf_map_def *)(data->d_buf + sym->st_value);
2027 /*
2028 * If the definition of the map in the object file fits in
2029 * bpf_map_def, copy it. Any extra fields in our version
2030 * of bpf_map_def will default to zero as a result of the
2031 * calloc above.
2032 */
2033 if (map_def_sz <= sizeof(struct bpf_map_def)) {
2034 memcpy(&map->def, def, map_def_sz);
2035 } else {
2036 /*
2037 * Here the map structure being read is bigger than what
2038 * we expect, truncate if the excess bits are all zero.
2039 * If they are not zero, reject this map as
2040 * incompatible.
2041 */
2042 char *b;
2043
2044 for (b = ((char *)def) + sizeof(struct bpf_map_def);
2045 b < ((char *)def) + map_def_sz; b++) {
2046 if (*b != 0) {
2047 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n",
2048 obj->path, map_name);
2049 if (strict)
2050 return -EINVAL;
2051 }
2052 }
2053 memcpy(&map->def, def, sizeof(struct bpf_map_def));
2054 }
2055
2056 /* btf info may not exist but fill it in if it does exist */
2057 (void) bpf_map_find_btf_info(obj, map);
2058 }
2059 return 0;
2060}
2061
2062const struct btf_type *
2063skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2064{
2065 const struct btf_type *t = btf__type_by_id(btf, id);
2066
2067 if (res_id)
2068 *res_id = id;
2069
2070 while (btf_is_mod(t) || btf_is_typedef(t)) {
2071 if (res_id)
2072 *res_id = t->type;
2073 t = btf__type_by_id(btf, t->type);
2074 }
2075
2076 return t;
2077}
2078
2079static const struct btf_type *
2080resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2081{
2082 const struct btf_type *t;
2083
2084 t = skip_mods_and_typedefs(btf, id, NULL);
2085 if (!btf_is_ptr(t))
2086 return NULL;
2087
2088 t = skip_mods_and_typedefs(btf, t->type, res_id);
2089
2090 return btf_is_func_proto(t) ? t : NULL;
2091}
2092
2093static const char *__btf_kind_str(__u16 kind)
2094{
2095 switch (kind) {
2096 case BTF_KIND_UNKN: return "void";
2097 case BTF_KIND_INT: return "int";
2098 case BTF_KIND_PTR: return "ptr";
2099 case BTF_KIND_ARRAY: return "array";
2100 case BTF_KIND_STRUCT: return "struct";
2101 case BTF_KIND_UNION: return "union";
2102 case BTF_KIND_ENUM: return "enum";
2103 case BTF_KIND_FWD: return "fwd";
2104 case BTF_KIND_TYPEDEF: return "typedef";
2105 case BTF_KIND_VOLATILE: return "volatile";
2106 case BTF_KIND_CONST: return "const";
2107 case BTF_KIND_RESTRICT: return "restrict";
2108 case BTF_KIND_FUNC: return "func";
2109 case BTF_KIND_FUNC_PROTO: return "func_proto";
2110 case BTF_KIND_VAR: return "var";
2111 case BTF_KIND_DATASEC: return "datasec";
2112 case BTF_KIND_FLOAT: return "float";
2113 case BTF_KIND_DECL_TAG: return "decl_tag";
2114 case BTF_KIND_TYPE_TAG: return "type_tag";
2115 default: return "unknown";
2116 }
2117}
2118
2119const char *btf_kind_str(const struct btf_type *t)
2120{
2121 return __btf_kind_str(btf_kind(t));
2122}
2123
2124/*
2125 * Fetch integer attribute of BTF map definition. Such attributes are
2126 * represented using a pointer to an array, in which dimensionality of array
2127 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2128 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2129 * type definition, while using only sizeof(void *) space in ELF data section.
2130 */
2131static bool get_map_field_int(const char *map_name, const struct btf *btf,
2132 const struct btf_member *m, __u32 *res)
2133{
2134 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2135 const char *name = btf__name_by_offset(btf, m->name_off);
2136 const struct btf_array *arr_info;
2137 const struct btf_type *arr_t;
2138
2139 if (!btf_is_ptr(t)) {
2140 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2141 map_name, name, btf_kind_str(t));
2142 return false;
2143 }
2144
2145 arr_t = btf__type_by_id(btf, t->type);
2146 if (!arr_t) {
2147 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2148 map_name, name, t->type);
2149 return false;
2150 }
2151 if (!btf_is_array(arr_t)) {
2152 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2153 map_name, name, btf_kind_str(arr_t));
2154 return false;
2155 }
2156 arr_info = btf_array(arr_t);
2157 *res = arr_info->nelems;
2158 return true;
2159}
2160
2161static int build_map_pin_path(struct bpf_map *map, const char *path)
2162{
2163 char buf[PATH_MAX];
2164 int len;
2165
2166 if (!path)
2167 path = "/sys/fs/bpf";
2168
2169 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map));
2170 if (len < 0)
2171 return -EINVAL;
2172 else if (len >= PATH_MAX)
2173 return -ENAMETOOLONG;
2174
2175 return bpf_map__set_pin_path(map, buf);
2176}
2177
2178int parse_btf_map_def(const char *map_name, struct btf *btf,
2179 const struct btf_type *def_t, bool strict,
2180 struct btf_map_def *map_def, struct btf_map_def *inner_def)
2181{
2182 const struct btf_type *t;
2183 const struct btf_member *m;
2184 bool is_inner = inner_def == NULL;
2185 int vlen, i;
2186
2187 vlen = btf_vlen(def_t);
2188 m = btf_members(def_t);
2189 for (i = 0; i < vlen; i++, m++) {
2190 const char *name = btf__name_by_offset(btf, m->name_off);
2191
2192 if (!name) {
2193 pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2194 return -EINVAL;
2195 }
2196 if (strcmp(name, "type") == 0) {
2197 if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2198 return -EINVAL;
2199 map_def->parts |= MAP_DEF_MAP_TYPE;
2200 } else if (strcmp(name, "max_entries") == 0) {
2201 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2202 return -EINVAL;
2203 map_def->parts |= MAP_DEF_MAX_ENTRIES;
2204 } else if (strcmp(name, "map_flags") == 0) {
2205 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2206 return -EINVAL;
2207 map_def->parts |= MAP_DEF_MAP_FLAGS;
2208 } else if (strcmp(name, "numa_node") == 0) {
2209 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2210 return -EINVAL;
2211 map_def->parts |= MAP_DEF_NUMA_NODE;
2212 } else if (strcmp(name, "key_size") == 0) {
2213 __u32 sz;
2214
2215 if (!get_map_field_int(map_name, btf, m, &sz))
2216 return -EINVAL;
2217 if (map_def->key_size && map_def->key_size != sz) {
2218 pr_warn("map '%s': conflicting key size %u != %u.\n",
2219 map_name, map_def->key_size, sz);
2220 return -EINVAL;
2221 }
2222 map_def->key_size = sz;
2223 map_def->parts |= MAP_DEF_KEY_SIZE;
2224 } else if (strcmp(name, "key") == 0) {
2225 __s64 sz;
2226
2227 t = btf__type_by_id(btf, m->type);
2228 if (!t) {
2229 pr_warn("map '%s': key type [%d] not found.\n",
2230 map_name, m->type);
2231 return -EINVAL;
2232 }
2233 if (!btf_is_ptr(t)) {
2234 pr_warn("map '%s': key spec is not PTR: %s.\n",
2235 map_name, btf_kind_str(t));
2236 return -EINVAL;
2237 }
2238 sz = btf__resolve_size(btf, t->type);
2239 if (sz < 0) {
2240 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2241 map_name, t->type, (ssize_t)sz);
2242 return sz;
2243 }
2244 if (map_def->key_size && map_def->key_size != sz) {
2245 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2246 map_name, map_def->key_size, (ssize_t)sz);
2247 return -EINVAL;
2248 }
2249 map_def->key_size = sz;
2250 map_def->key_type_id = t->type;
2251 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2252 } else if (strcmp(name, "value_size") == 0) {
2253 __u32 sz;
2254
2255 if (!get_map_field_int(map_name, btf, m, &sz))
2256 return -EINVAL;
2257 if (map_def->value_size && map_def->value_size != sz) {
2258 pr_warn("map '%s': conflicting value size %u != %u.\n",
2259 map_name, map_def->value_size, sz);
2260 return -EINVAL;
2261 }
2262 map_def->value_size = sz;
2263 map_def->parts |= MAP_DEF_VALUE_SIZE;
2264 } else if (strcmp(name, "value") == 0) {
2265 __s64 sz;
2266
2267 t = btf__type_by_id(btf, m->type);
2268 if (!t) {
2269 pr_warn("map '%s': value type [%d] not found.\n",
2270 map_name, m->type);
2271 return -EINVAL;
2272 }
2273 if (!btf_is_ptr(t)) {
2274 pr_warn("map '%s': value spec is not PTR: %s.\n",
2275 map_name, btf_kind_str(t));
2276 return -EINVAL;
2277 }
2278 sz = btf__resolve_size(btf, t->type);
2279 if (sz < 0) {
2280 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2281 map_name, t->type, (ssize_t)sz);
2282 return sz;
2283 }
2284 if (map_def->value_size && map_def->value_size != sz) {
2285 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2286 map_name, map_def->value_size, (ssize_t)sz);
2287 return -EINVAL;
2288 }
2289 map_def->value_size = sz;
2290 map_def->value_type_id = t->type;
2291 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2292 }
2293 else if (strcmp(name, "values") == 0) {
2294 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2295 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2296 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2297 char inner_map_name[128];
2298 int err;
2299
2300 if (is_inner) {
2301 pr_warn("map '%s': multi-level inner maps not supported.\n",
2302 map_name);
2303 return -ENOTSUP;
2304 }
2305 if (i != vlen - 1) {
2306 pr_warn("map '%s': '%s' member should be last.\n",
2307 map_name, name);
2308 return -EINVAL;
2309 }
2310 if (!is_map_in_map && !is_prog_array) {
2311 pr_warn("map '%s': should be map-in-map or prog-array.\n",
2312 map_name);
2313 return -ENOTSUP;
2314 }
2315 if (map_def->value_size && map_def->value_size != 4) {
2316 pr_warn("map '%s': conflicting value size %u != 4.\n",
2317 map_name, map_def->value_size);
2318 return -EINVAL;
2319 }
2320 map_def->value_size = 4;
2321 t = btf__type_by_id(btf, m->type);
2322 if (!t) {
2323 pr_warn("map '%s': %s type [%d] not found.\n",
2324 map_name, desc, m->type);
2325 return -EINVAL;
2326 }
2327 if (!btf_is_array(t) || btf_array(t)->nelems) {
2328 pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2329 map_name, desc);
2330 return -EINVAL;
2331 }
2332 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2333 if (!btf_is_ptr(t)) {
2334 pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2335 map_name, desc, btf_kind_str(t));
2336 return -EINVAL;
2337 }
2338 t = skip_mods_and_typedefs(btf, t->type, NULL);
2339 if (is_prog_array) {
2340 if (!btf_is_func_proto(t)) {
2341 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2342 map_name, btf_kind_str(t));
2343 return -EINVAL;
2344 }
2345 continue;
2346 }
2347 if (!btf_is_struct(t)) {
2348 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2349 map_name, btf_kind_str(t));
2350 return -EINVAL;
2351 }
2352
2353 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2354 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2355 if (err)
2356 return err;
2357
2358 map_def->parts |= MAP_DEF_INNER_MAP;
2359 } else if (strcmp(name, "pinning") == 0) {
2360 __u32 val;
2361
2362 if (is_inner) {
2363 pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2364 return -EINVAL;
2365 }
2366 if (!get_map_field_int(map_name, btf, m, &val))
2367 return -EINVAL;
2368 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2369 pr_warn("map '%s': invalid pinning value %u.\n",
2370 map_name, val);
2371 return -EINVAL;
2372 }
2373 map_def->pinning = val;
2374 map_def->parts |= MAP_DEF_PINNING;
2375 } else if (strcmp(name, "map_extra") == 0) {
2376 __u32 map_extra;
2377
2378 if (!get_map_field_int(map_name, btf, m, &map_extra))
2379 return -EINVAL;
2380 map_def->map_extra = map_extra;
2381 map_def->parts |= MAP_DEF_MAP_EXTRA;
2382 } else {
2383 if (strict) {
2384 pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2385 return -ENOTSUP;
2386 }
2387 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2388 }
2389 }
2390
2391 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2392 pr_warn("map '%s': map type isn't specified.\n", map_name);
2393 return -EINVAL;
2394 }
2395
2396 return 0;
2397}
2398
2399static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2400{
2401 map->def.type = def->map_type;
2402 map->def.key_size = def->key_size;
2403 map->def.value_size = def->value_size;
2404 map->def.max_entries = def->max_entries;
2405 map->def.map_flags = def->map_flags;
2406 map->map_extra = def->map_extra;
2407
2408 map->numa_node = def->numa_node;
2409 map->btf_key_type_id = def->key_type_id;
2410 map->btf_value_type_id = def->value_type_id;
2411
2412 if (def->parts & MAP_DEF_MAP_TYPE)
2413 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2414
2415 if (def->parts & MAP_DEF_KEY_TYPE)
2416 pr_debug("map '%s': found key [%u], sz = %u.\n",
2417 map->name, def->key_type_id, def->key_size);
2418 else if (def->parts & MAP_DEF_KEY_SIZE)
2419 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2420
2421 if (def->parts & MAP_DEF_VALUE_TYPE)
2422 pr_debug("map '%s': found value [%u], sz = %u.\n",
2423 map->name, def->value_type_id, def->value_size);
2424 else if (def->parts & MAP_DEF_VALUE_SIZE)
2425 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2426
2427 if (def->parts & MAP_DEF_MAX_ENTRIES)
2428 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2429 if (def->parts & MAP_DEF_MAP_FLAGS)
2430 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2431 if (def->parts & MAP_DEF_MAP_EXTRA)
2432 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2433 (unsigned long long)def->map_extra);
2434 if (def->parts & MAP_DEF_PINNING)
2435 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2436 if (def->parts & MAP_DEF_NUMA_NODE)
2437 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2438
2439 if (def->parts & MAP_DEF_INNER_MAP)
2440 pr_debug("map '%s': found inner map definition.\n", map->name);
2441}
2442
2443static const char *btf_var_linkage_str(__u32 linkage)
2444{
2445 switch (linkage) {
2446 case BTF_VAR_STATIC: return "static";
2447 case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2448 case BTF_VAR_GLOBAL_EXTERN: return "extern";
2449 default: return "unknown";
2450 }
2451}
2452
2453static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2454 const struct btf_type *sec,
2455 int var_idx, int sec_idx,
2456 const Elf_Data *data, bool strict,
2457 const char *pin_root_path)
2458{
2459 struct btf_map_def map_def = {}, inner_def = {};
2460 const struct btf_type *var, *def;
2461 const struct btf_var_secinfo *vi;
2462 const struct btf_var *var_extra;
2463 const char *map_name;
2464 struct bpf_map *map;
2465 int err;
2466
2467 vi = btf_var_secinfos(sec) + var_idx;
2468 var = btf__type_by_id(obj->btf, vi->type);
2469 var_extra = btf_var(var);
2470 map_name = btf__name_by_offset(obj->btf, var->name_off);
2471
2472 if (map_name == NULL || map_name[0] == '\0') {
2473 pr_warn("map #%d: empty name.\n", var_idx);
2474 return -EINVAL;
2475 }
2476 if ((__u64)vi->offset + vi->size > data->d_size) {
2477 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2478 return -EINVAL;
2479 }
2480 if (!btf_is_var(var)) {
2481 pr_warn("map '%s': unexpected var kind %s.\n",
2482 map_name, btf_kind_str(var));
2483 return -EINVAL;
2484 }
2485 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2486 pr_warn("map '%s': unsupported map linkage %s.\n",
2487 map_name, btf_var_linkage_str(var_extra->linkage));
2488 return -EOPNOTSUPP;
2489 }
2490
2491 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2492 if (!btf_is_struct(def)) {
2493 pr_warn("map '%s': unexpected def kind %s.\n",
2494 map_name, btf_kind_str(var));
2495 return -EINVAL;
2496 }
2497 if (def->size > vi->size) {
2498 pr_warn("map '%s': invalid def size.\n", map_name);
2499 return -EINVAL;
2500 }
2501
2502 map = bpf_object__add_map(obj);
2503 if (IS_ERR(map))
2504 return PTR_ERR(map);
2505 map->name = strdup(map_name);
2506 if (!map->name) {
2507 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2508 return -ENOMEM;
2509 }
2510 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2511 map->def.type = BPF_MAP_TYPE_UNSPEC;
2512 map->sec_idx = sec_idx;
2513 map->sec_offset = vi->offset;
2514 map->btf_var_idx = var_idx;
2515 pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2516 map_name, map->sec_idx, map->sec_offset);
2517
2518 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2519 if (err)
2520 return err;
2521
2522 fill_map_from_def(map, &map_def);
2523
2524 if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2525 err = build_map_pin_path(map, pin_root_path);
2526 if (err) {
2527 pr_warn("map '%s': couldn't build pin path.\n", map->name);
2528 return err;
2529 }
2530 }
2531
2532 if (map_def.parts & MAP_DEF_INNER_MAP) {
2533 map->inner_map = calloc(1, sizeof(*map->inner_map));
2534 if (!map->inner_map)
2535 return -ENOMEM;
2536 map->inner_map->fd = -1;
2537 map->inner_map->sec_idx = sec_idx;
2538 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2539 if (!map->inner_map->name)
2540 return -ENOMEM;
2541 sprintf(map->inner_map->name, "%s.inner", map_name);
2542
2543 fill_map_from_def(map->inner_map, &inner_def);
2544 }
2545
2546 err = bpf_map_find_btf_info(obj, map);
2547 if (err)
2548 return err;
2549
2550 return 0;
2551}
2552
2553static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2554 const char *pin_root_path)
2555{
2556 const struct btf_type *sec = NULL;
2557 int nr_types, i, vlen, err;
2558 const struct btf_type *t;
2559 const char *name;
2560 Elf_Data *data;
2561 Elf_Scn *scn;
2562
2563 if (obj->efile.btf_maps_shndx < 0)
2564 return 0;
2565
2566 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2567 data = elf_sec_data(obj, scn);
2568 if (!scn || !data) {
2569 pr_warn("elf: failed to get %s map definitions for %s\n",
2570 MAPS_ELF_SEC, obj->path);
2571 return -EINVAL;
2572 }
2573
2574 nr_types = btf__type_cnt(obj->btf);
2575 for (i = 1; i < nr_types; i++) {
2576 t = btf__type_by_id(obj->btf, i);
2577 if (!btf_is_datasec(t))
2578 continue;
2579 name = btf__name_by_offset(obj->btf, t->name_off);
2580 if (strcmp(name, MAPS_ELF_SEC) == 0) {
2581 sec = t;
2582 obj->efile.btf_maps_sec_btf_id = i;
2583 break;
2584 }
2585 }
2586
2587 if (!sec) {
2588 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2589 return -ENOENT;
2590 }
2591
2592 vlen = btf_vlen(sec);
2593 for (i = 0; i < vlen; i++) {
2594 err = bpf_object__init_user_btf_map(obj, sec, i,
2595 obj->efile.btf_maps_shndx,
2596 data, strict,
2597 pin_root_path);
2598 if (err)
2599 return err;
2600 }
2601
2602 return 0;
2603}
2604
2605static int bpf_object__init_maps(struct bpf_object *obj,
2606 const struct bpf_object_open_opts *opts)
2607{
2608 const char *pin_root_path;
2609 bool strict;
2610 int err;
2611
2612 strict = !OPTS_GET(opts, relaxed_maps, false);
2613 pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2614
2615 err = bpf_object__init_user_maps(obj, strict);
2616 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2617 err = err ?: bpf_object__init_global_data_maps(obj);
2618 err = err ?: bpf_object__init_kconfig_map(obj);
2619 err = err ?: bpf_object__init_struct_ops_maps(obj);
2620
2621 return err;
2622}
2623
2624static bool section_have_execinstr(struct bpf_object *obj, int idx)
2625{
2626 Elf64_Shdr *sh;
2627
2628 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2629 if (!sh)
2630 return false;
2631
2632 return sh->sh_flags & SHF_EXECINSTR;
2633}
2634
2635static bool btf_needs_sanitization(struct bpf_object *obj)
2636{
2637 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2638 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2639 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2640 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2641 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2642 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2643
2644 return !has_func || !has_datasec || !has_func_global || !has_float ||
2645 !has_decl_tag || !has_type_tag;
2646}
2647
2648static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2649{
2650 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2651 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2652 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2653 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2654 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2655 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2656 struct btf_type *t;
2657 int i, j, vlen;
2658
2659 for (i = 1; i < btf__type_cnt(btf); i++) {
2660 t = (struct btf_type *)btf__type_by_id(btf, i);
2661
2662 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2663 /* replace VAR/DECL_TAG with INT */
2664 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2665 /*
2666 * using size = 1 is the safest choice, 4 will be too
2667 * big and cause kernel BTF validation failure if
2668 * original variable took less than 4 bytes
2669 */
2670 t->size = 1;
2671 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2672 } else if (!has_datasec && btf_is_datasec(t)) {
2673 /* replace DATASEC with STRUCT */
2674 const struct btf_var_secinfo *v = btf_var_secinfos(t);
2675 struct btf_member *m = btf_members(t);
2676 struct btf_type *vt;
2677 char *name;
2678
2679 name = (char *)btf__name_by_offset(btf, t->name_off);
2680 while (*name) {
2681 if (*name == '.')
2682 *name = '_';
2683 name++;
2684 }
2685
2686 vlen = btf_vlen(t);
2687 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2688 for (j = 0; j < vlen; j++, v++, m++) {
2689 /* order of field assignments is important */
2690 m->offset = v->offset * 8;
2691 m->type = v->type;
2692 /* preserve variable name as member name */
2693 vt = (void *)btf__type_by_id(btf, v->type);
2694 m->name_off = vt->name_off;
2695 }
2696 } else if (!has_func && btf_is_func_proto(t)) {
2697 /* replace FUNC_PROTO with ENUM */
2698 vlen = btf_vlen(t);
2699 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2700 t->size = sizeof(__u32); /* kernel enforced */
2701 } else if (!has_func && btf_is_func(t)) {
2702 /* replace FUNC with TYPEDEF */
2703 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2704 } else if (!has_func_global && btf_is_func(t)) {
2705 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2706 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2707 } else if (!has_float && btf_is_float(t)) {
2708 /* replace FLOAT with an equally-sized empty STRUCT;
2709 * since C compilers do not accept e.g. "float" as a
2710 * valid struct name, make it anonymous
2711 */
2712 t->name_off = 0;
2713 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2714 } else if (!has_type_tag && btf_is_type_tag(t)) {
2715 /* replace TYPE_TAG with a CONST */
2716 t->name_off = 0;
2717 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2718 }
2719 }
2720}
2721
2722static bool libbpf_needs_btf(const struct bpf_object *obj)
2723{
2724 return obj->efile.btf_maps_shndx >= 0 ||
2725 obj->efile.st_ops_shndx >= 0 ||
2726 obj->nr_extern > 0;
2727}
2728
2729static bool kernel_needs_btf(const struct bpf_object *obj)
2730{
2731 return obj->efile.st_ops_shndx >= 0;
2732}
2733
2734static int bpf_object__init_btf(struct bpf_object *obj,
2735 Elf_Data *btf_data,
2736 Elf_Data *btf_ext_data)
2737{
2738 int err = -ENOENT;
2739
2740 if (btf_data) {
2741 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2742 err = libbpf_get_error(obj->btf);
2743 if (err) {
2744 obj->btf = NULL;
2745 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2746 goto out;
2747 }
2748 /* enforce 8-byte pointers for BPF-targeted BTFs */
2749 btf__set_pointer_size(obj->btf, 8);
2750 }
2751 if (btf_ext_data) {
2752 if (!obj->btf) {
2753 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2754 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2755 goto out;
2756 }
2757 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2758 err = libbpf_get_error(obj->btf_ext);
2759 if (err) {
2760 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2761 BTF_EXT_ELF_SEC, err);
2762 obj->btf_ext = NULL;
2763 goto out;
2764 }
2765 }
2766out:
2767 if (err && libbpf_needs_btf(obj)) {
2768 pr_warn("BTF is required, but is missing or corrupted.\n");
2769 return err;
2770 }
2771 return 0;
2772}
2773
2774static int compare_vsi_off(const void *_a, const void *_b)
2775{
2776 const struct btf_var_secinfo *a = _a;
2777 const struct btf_var_secinfo *b = _b;
2778
2779 return a->offset - b->offset;
2780}
2781
2782static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2783 struct btf_type *t)
2784{
2785 __u32 size = 0, off = 0, i, vars = btf_vlen(t);
2786 const char *name = btf__name_by_offset(btf, t->name_off);
2787 const struct btf_type *t_var;
2788 struct btf_var_secinfo *vsi;
2789 const struct btf_var *var;
2790 int ret;
2791
2792 if (!name) {
2793 pr_debug("No name found in string section for DATASEC kind.\n");
2794 return -ENOENT;
2795 }
2796
2797 /* .extern datasec size and var offsets were set correctly during
2798 * extern collection step, so just skip straight to sorting variables
2799 */
2800 if (t->size)
2801 goto sort_vars;
2802
2803 ret = find_elf_sec_sz(obj, name, &size);
2804 if (ret || !size) {
2805 pr_debug("Invalid size for section %s: %u bytes\n", name, size);
2806 return -ENOENT;
2807 }
2808
2809 t->size = size;
2810
2811 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2812 t_var = btf__type_by_id(btf, vsi->type);
2813 if (!t_var || !btf_is_var(t_var)) {
2814 pr_debug("Non-VAR type seen in section %s\n", name);
2815 return -EINVAL;
2816 }
2817
2818 var = btf_var(t_var);
2819 if (var->linkage == BTF_VAR_STATIC)
2820 continue;
2821
2822 name = btf__name_by_offset(btf, t_var->name_off);
2823 if (!name) {
2824 pr_debug("No name found in string section for VAR kind\n");
2825 return -ENOENT;
2826 }
2827
2828 ret = find_elf_var_offset(obj, name, &off);
2829 if (ret) {
2830 pr_debug("No offset found in symbol table for VAR %s\n",
2831 name);
2832 return -ENOENT;
2833 }
2834
2835 vsi->offset = off;
2836 }
2837
2838sort_vars:
2839 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
2840 return 0;
2841}
2842
2843static int btf_finalize_data(struct bpf_object *obj, struct btf *btf)
2844{
2845 int err = 0;
2846 __u32 i, n = btf__type_cnt(btf);
2847
2848 for (i = 1; i < n; i++) {
2849 struct btf_type *t = btf_type_by_id(btf, i);
2850
2851 /* Loader needs to fix up some of the things compiler
2852 * couldn't get its hands on while emitting BTF. This
2853 * is section size and global variable offset. We use
2854 * the info from the ELF itself for this purpose.
2855 */
2856 if (btf_is_datasec(t)) {
2857 err = btf_fixup_datasec(obj, btf, t);
2858 if (err)
2859 break;
2860 }
2861 }
2862
2863 return libbpf_err(err);
2864}
2865
2866int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
2867{
2868 return btf_finalize_data(obj, btf);
2869}
2870
2871static int bpf_object__finalize_btf(struct bpf_object *obj)
2872{
2873 int err;
2874
2875 if (!obj->btf)
2876 return 0;
2877
2878 err = btf_finalize_data(obj, obj->btf);
2879 if (err) {
2880 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2881 return err;
2882 }
2883
2884 return 0;
2885}
2886
2887static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
2888{
2889 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2890 prog->type == BPF_PROG_TYPE_LSM)
2891 return true;
2892
2893 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2894 * also need vmlinux BTF
2895 */
2896 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2897 return true;
2898
2899 return false;
2900}
2901
2902static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
2903{
2904 struct bpf_program *prog;
2905 int i;
2906
2907 /* CO-RE relocations need kernel BTF, only when btf_custom_path
2908 * is not specified
2909 */
2910 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
2911 return true;
2912
2913 /* Support for typed ksyms needs kernel BTF */
2914 for (i = 0; i < obj->nr_extern; i++) {
2915 const struct extern_desc *ext;
2916
2917 ext = &obj->externs[i];
2918 if (ext->type == EXT_KSYM && ext->ksym.type_id)
2919 return true;
2920 }
2921
2922 bpf_object__for_each_program(prog, obj) {
2923 if (!prog->load)
2924 continue;
2925 if (prog_needs_vmlinux_btf(prog))
2926 return true;
2927 }
2928
2929 return false;
2930}
2931
2932static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
2933{
2934 int err;
2935
2936 /* btf_vmlinux could be loaded earlier */
2937 if (obj->btf_vmlinux || obj->gen_loader)
2938 return 0;
2939
2940 if (!force && !obj_needs_vmlinux_btf(obj))
2941 return 0;
2942
2943 obj->btf_vmlinux = btf__load_vmlinux_btf();
2944 err = libbpf_get_error(obj->btf_vmlinux);
2945 if (err) {
2946 pr_warn("Error loading vmlinux BTF: %d\n", err);
2947 obj->btf_vmlinux = NULL;
2948 return err;
2949 }
2950 return 0;
2951}
2952
2953static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
2954{
2955 struct btf *kern_btf = obj->btf;
2956 bool btf_mandatory, sanitize;
2957 int i, err = 0;
2958
2959 if (!obj->btf)
2960 return 0;
2961
2962 if (!kernel_supports(obj, FEAT_BTF)) {
2963 if (kernel_needs_btf(obj)) {
2964 err = -EOPNOTSUPP;
2965 goto report;
2966 }
2967 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
2968 return 0;
2969 }
2970
2971 /* Even though some subprogs are global/weak, user might prefer more
2972 * permissive BPF verification process that BPF verifier performs for
2973 * static functions, taking into account more context from the caller
2974 * functions. In such case, they need to mark such subprogs with
2975 * __attribute__((visibility("hidden"))) and libbpf will adjust
2976 * corresponding FUNC BTF type to be marked as static and trigger more
2977 * involved BPF verification process.
2978 */
2979 for (i = 0; i < obj->nr_programs; i++) {
2980 struct bpf_program *prog = &obj->programs[i];
2981 struct btf_type *t;
2982 const char *name;
2983 int j, n;
2984
2985 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
2986 continue;
2987
2988 n = btf__type_cnt(obj->btf);
2989 for (j = 1; j < n; j++) {
2990 t = btf_type_by_id(obj->btf, j);
2991 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
2992 continue;
2993
2994 name = btf__str_by_offset(obj->btf, t->name_off);
2995 if (strcmp(name, prog->name) != 0)
2996 continue;
2997
2998 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
2999 break;
3000 }
3001 }
3002
3003 sanitize = btf_needs_sanitization(obj);
3004 if (sanitize) {
3005 const void *raw_data;
3006 __u32 sz;
3007
3008 /* clone BTF to sanitize a copy and leave the original intact */
3009 raw_data = btf__raw_data(obj->btf, &sz);
3010 kern_btf = btf__new(raw_data, sz);
3011 err = libbpf_get_error(kern_btf);
3012 if (err)
3013 return err;
3014
3015 /* enforce 8-byte pointers for BPF-targeted BTFs */
3016 btf__set_pointer_size(obj->btf, 8);
3017 bpf_object__sanitize_btf(obj, kern_btf);
3018 }
3019
3020 if (obj->gen_loader) {
3021 __u32 raw_size = 0;
3022 const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3023
3024 if (!raw_data)
3025 return -ENOMEM;
3026 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3027 /* Pretend to have valid FD to pass various fd >= 0 checks.
3028 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3029 */
3030 btf__set_fd(kern_btf, 0);
3031 } else {
3032 /* currently BPF_BTF_LOAD only supports log_level 1 */
3033 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3034 obj->log_level ? 1 : 0);
3035 }
3036 if (sanitize) {
3037 if (!err) {
3038 /* move fd to libbpf's BTF */
3039 btf__set_fd(obj->btf, btf__fd(kern_btf));
3040 btf__set_fd(kern_btf, -1);
3041 }
3042 btf__free(kern_btf);
3043 }
3044report:
3045 if (err) {
3046 btf_mandatory = kernel_needs_btf(obj);
3047 pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3048 btf_mandatory ? "BTF is mandatory, can't proceed."
3049 : "BTF is optional, ignoring.");
3050 if (!btf_mandatory)
3051 err = 0;
3052 }
3053 return err;
3054}
3055
3056static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3057{
3058 const char *name;
3059
3060 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3061 if (!name) {
3062 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3063 off, obj->path, elf_errmsg(-1));
3064 return NULL;
3065 }
3066
3067 return name;
3068}
3069
3070static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3071{
3072 const char *name;
3073
3074 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3075 if (!name) {
3076 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3077 off, obj->path, elf_errmsg(-1));
3078 return NULL;
3079 }
3080
3081 return name;
3082}
3083
3084static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3085{
3086 Elf_Scn *scn;
3087
3088 scn = elf_getscn(obj->efile.elf, idx);
3089 if (!scn) {
3090 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3091 idx, obj->path, elf_errmsg(-1));
3092 return NULL;
3093 }
3094 return scn;
3095}
3096
3097static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3098{
3099 Elf_Scn *scn = NULL;
3100 Elf *elf = obj->efile.elf;
3101 const char *sec_name;
3102
3103 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3104 sec_name = elf_sec_name(obj, scn);
3105 if (!sec_name)
3106 return NULL;
3107
3108 if (strcmp(sec_name, name) != 0)
3109 continue;
3110
3111 return scn;
3112 }
3113 return NULL;
3114}
3115
3116static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3117{
3118 Elf64_Shdr *shdr;
3119
3120 if (!scn)
3121 return NULL;
3122
3123 shdr = elf64_getshdr(scn);
3124 if (!shdr) {
3125 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3126 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3127 return NULL;
3128 }
3129
3130 return shdr;
3131}
3132
3133static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3134{
3135 const char *name;
3136 Elf64_Shdr *sh;
3137
3138 if (!scn)
3139 return NULL;
3140
3141 sh = elf_sec_hdr(obj, scn);
3142 if (!sh)
3143 return NULL;
3144
3145 name = elf_sec_str(obj, sh->sh_name);
3146 if (!name) {
3147 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3148 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3149 return NULL;
3150 }
3151
3152 return name;
3153}
3154
3155static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3156{
3157 Elf_Data *data;
3158
3159 if (!scn)
3160 return NULL;
3161
3162 data = elf_getdata(scn, 0);
3163 if (!data) {
3164 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3165 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3166 obj->path, elf_errmsg(-1));
3167 return NULL;
3168 }
3169
3170 return data;
3171}
3172
3173static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3174{
3175 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3176 return NULL;
3177
3178 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3179}
3180
3181static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3182{
3183 if (idx >= data->d_size / sizeof(Elf64_Rel))
3184 return NULL;
3185
3186 return (Elf64_Rel *)data->d_buf + idx;
3187}
3188
3189static bool is_sec_name_dwarf(const char *name)
3190{
3191 /* approximation, but the actual list is too long */
3192 return str_has_pfx(name, ".debug_");
3193}
3194
3195static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3196{
3197 /* no special handling of .strtab */
3198 if (hdr->sh_type == SHT_STRTAB)
3199 return true;
3200
3201 /* ignore .llvm_addrsig section as well */
3202 if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3203 return true;
3204
3205 /* no subprograms will lead to an empty .text section, ignore it */
3206 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3207 strcmp(name, ".text") == 0)
3208 return true;
3209
3210 /* DWARF sections */
3211 if (is_sec_name_dwarf(name))
3212 return true;
3213
3214 if (str_has_pfx(name, ".rel")) {
3215 name += sizeof(".rel") - 1;
3216 /* DWARF section relocations */
3217 if (is_sec_name_dwarf(name))
3218 return true;
3219
3220 /* .BTF and .BTF.ext don't need relocations */
3221 if (strcmp(name, BTF_ELF_SEC) == 0 ||
3222 strcmp(name, BTF_EXT_ELF_SEC) == 0)
3223 return true;
3224 }
3225
3226 return false;
3227}
3228
3229static int cmp_progs(const void *_a, const void *_b)
3230{
3231 const struct bpf_program *a = _a;
3232 const struct bpf_program *b = _b;
3233
3234 if (a->sec_idx != b->sec_idx)
3235 return a->sec_idx < b->sec_idx ? -1 : 1;
3236
3237 /* sec_insn_off can't be the same within the section */
3238 return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3239}
3240
3241static int bpf_object__elf_collect(struct bpf_object *obj)
3242{
3243 struct elf_sec_desc *sec_desc;
3244 Elf *elf = obj->efile.elf;
3245 Elf_Data *btf_ext_data = NULL;
3246 Elf_Data *btf_data = NULL;
3247 int idx = 0, err = 0;
3248 const char *name;
3249 Elf_Data *data;
3250 Elf_Scn *scn;
3251 Elf64_Shdr *sh;
3252
3253 /* ELF section indices are 0-based, but sec #0 is special "invalid"
3254 * section. e_shnum does include sec #0, so e_shnum is the necessary
3255 * size of an array to keep all the sections.
3256 */
3257 obj->efile.sec_cnt = obj->efile.ehdr->e_shnum;
3258 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3259 if (!obj->efile.secs)
3260 return -ENOMEM;
3261
3262 /* a bunch of ELF parsing functionality depends on processing symbols,
3263 * so do the first pass and find the symbol table
3264 */
3265 scn = NULL;
3266 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3267 sh = elf_sec_hdr(obj, scn);
3268 if (!sh)
3269 return -LIBBPF_ERRNO__FORMAT;
3270
3271 if (sh->sh_type == SHT_SYMTAB) {
3272 if (obj->efile.symbols) {
3273 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3274 return -LIBBPF_ERRNO__FORMAT;
3275 }
3276
3277 data = elf_sec_data(obj, scn);
3278 if (!data)
3279 return -LIBBPF_ERRNO__FORMAT;
3280
3281 idx = elf_ndxscn(scn);
3282
3283 obj->efile.symbols = data;
3284 obj->efile.symbols_shndx = idx;
3285 obj->efile.strtabidx = sh->sh_link;
3286 }
3287 }
3288
3289 if (!obj->efile.symbols) {
3290 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3291 obj->path);
3292 return -ENOENT;
3293 }
3294
3295 scn = NULL;
3296 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3297 idx = elf_ndxscn(scn);
3298 sec_desc = &obj->efile.secs[idx];
3299
3300 sh = elf_sec_hdr(obj, scn);
3301 if (!sh)
3302 return -LIBBPF_ERRNO__FORMAT;
3303
3304 name = elf_sec_str(obj, sh->sh_name);
3305 if (!name)
3306 return -LIBBPF_ERRNO__FORMAT;
3307
3308 if (ignore_elf_section(sh, name))
3309 continue;
3310
3311 data = elf_sec_data(obj, scn);
3312 if (!data)
3313 return -LIBBPF_ERRNO__FORMAT;
3314
3315 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3316 idx, name, (unsigned long)data->d_size,
3317 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3318 (int)sh->sh_type);
3319
3320 if (strcmp(name, "license") == 0) {
3321 err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3322 if (err)
3323 return err;
3324 } else if (strcmp(name, "version") == 0) {
3325 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3326 if (err)
3327 return err;
3328 } else if (strcmp(name, "maps") == 0) {
3329 obj->efile.maps_shndx = idx;
3330 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3331 obj->efile.btf_maps_shndx = idx;
3332 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3333 if (sh->sh_type != SHT_PROGBITS)
3334 return -LIBBPF_ERRNO__FORMAT;
3335 btf_data = data;
3336 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3337 if (sh->sh_type != SHT_PROGBITS)
3338 return -LIBBPF_ERRNO__FORMAT;
3339 btf_ext_data = data;
3340 } else if (sh->sh_type == SHT_SYMTAB) {
3341 /* already processed during the first pass above */
3342 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3343 if (sh->sh_flags & SHF_EXECINSTR) {
3344 if (strcmp(name, ".text") == 0)
3345 obj->efile.text_shndx = idx;
3346 err = bpf_object__add_programs(obj, data, name, idx);
3347 if (err)
3348 return err;
3349 } else if (strcmp(name, DATA_SEC) == 0 ||
3350 str_has_pfx(name, DATA_SEC ".")) {
3351 sec_desc->sec_type = SEC_DATA;
3352 sec_desc->shdr = sh;
3353 sec_desc->data = data;
3354 } else if (strcmp(name, RODATA_SEC) == 0 ||
3355 str_has_pfx(name, RODATA_SEC ".")) {
3356 sec_desc->sec_type = SEC_RODATA;
3357 sec_desc->shdr = sh;
3358 sec_desc->data = data;
3359 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3360 obj->efile.st_ops_data = data;
3361 obj->efile.st_ops_shndx = idx;
3362 } else {
3363 pr_info("elf: skipping unrecognized data section(%d) %s\n",
3364 idx, name);
3365 }
3366 } else if (sh->sh_type == SHT_REL) {
3367 int targ_sec_idx = sh->sh_info; /* points to other section */
3368
3369 if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3370 targ_sec_idx >= obj->efile.sec_cnt)
3371 return -LIBBPF_ERRNO__FORMAT;
3372
3373 /* Only do relo for section with exec instructions */
3374 if (!section_have_execinstr(obj, targ_sec_idx) &&
3375 strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3376 strcmp(name, ".rel" MAPS_ELF_SEC)) {
3377 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3378 idx, name, targ_sec_idx,
3379 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3380 continue;
3381 }
3382
3383 sec_desc->sec_type = SEC_RELO;
3384 sec_desc->shdr = sh;
3385 sec_desc->data = data;
3386 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
3387 sec_desc->sec_type = SEC_BSS;
3388 sec_desc->shdr = sh;
3389 sec_desc->data = data;
3390 } else {
3391 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3392 (size_t)sh->sh_size);
3393 }
3394 }
3395
3396 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3397 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3398 return -LIBBPF_ERRNO__FORMAT;
3399 }
3400
3401 /* sort BPF programs by section name and in-section instruction offset
3402 * for faster search */
3403 if (obj->nr_programs)
3404 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3405
3406 return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3407}
3408
3409static bool sym_is_extern(const Elf64_Sym *sym)
3410{
3411 int bind = ELF64_ST_BIND(sym->st_info);
3412 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3413 return sym->st_shndx == SHN_UNDEF &&
3414 (bind == STB_GLOBAL || bind == STB_WEAK) &&
3415 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3416}
3417
3418static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3419{
3420 int bind = ELF64_ST_BIND(sym->st_info);
3421 int type = ELF64_ST_TYPE(sym->st_info);
3422
3423 /* in .text section */
3424 if (sym->st_shndx != text_shndx)
3425 return false;
3426
3427 /* local function */
3428 if (bind == STB_LOCAL && type == STT_SECTION)
3429 return true;
3430
3431 /* global function */
3432 return bind == STB_GLOBAL && type == STT_FUNC;
3433}
3434
3435static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3436{
3437 const struct btf_type *t;
3438 const char *tname;
3439 int i, n;
3440
3441 if (!btf)
3442 return -ESRCH;
3443
3444 n = btf__type_cnt(btf);
3445 for (i = 1; i < n; i++) {
3446 t = btf__type_by_id(btf, i);
3447
3448 if (!btf_is_var(t) && !btf_is_func(t))
3449 continue;
3450
3451 tname = btf__name_by_offset(btf, t->name_off);
3452 if (strcmp(tname, ext_name))
3453 continue;
3454
3455 if (btf_is_var(t) &&
3456 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3457 return -EINVAL;
3458
3459 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3460 return -EINVAL;
3461
3462 return i;
3463 }
3464
3465 return -ENOENT;
3466}
3467
3468static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3469 const struct btf_var_secinfo *vs;
3470 const struct btf_type *t;
3471 int i, j, n;
3472
3473 if (!btf)
3474 return -ESRCH;
3475
3476 n = btf__type_cnt(btf);
3477 for (i = 1; i < n; i++) {
3478 t = btf__type_by_id(btf, i);
3479
3480 if (!btf_is_datasec(t))
3481 continue;
3482
3483 vs = btf_var_secinfos(t);
3484 for (j = 0; j < btf_vlen(t); j++, vs++) {
3485 if (vs->type == ext_btf_id)
3486 return i;
3487 }
3488 }
3489
3490 return -ENOENT;
3491}
3492
3493static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3494 bool *is_signed)
3495{
3496 const struct btf_type *t;
3497 const char *name;
3498
3499 t = skip_mods_and_typedefs(btf, id, NULL);
3500 name = btf__name_by_offset(btf, t->name_off);
3501
3502 if (is_signed)
3503 *is_signed = false;
3504 switch (btf_kind(t)) {
3505 case BTF_KIND_INT: {
3506 int enc = btf_int_encoding(t);
3507
3508 if (enc & BTF_INT_BOOL)
3509 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3510 if (is_signed)
3511 *is_signed = enc & BTF_INT_SIGNED;
3512 if (t->size == 1)
3513 return KCFG_CHAR;
3514 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3515 return KCFG_UNKNOWN;
3516 return KCFG_INT;
3517 }
3518 case BTF_KIND_ENUM:
3519 if (t->size != 4)
3520 return KCFG_UNKNOWN;
3521 if (strcmp(name, "libbpf_tristate"))
3522 return KCFG_UNKNOWN;
3523 return KCFG_TRISTATE;
3524 case BTF_KIND_ARRAY:
3525 if (btf_array(t)->nelems == 0)
3526 return KCFG_UNKNOWN;
3527 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3528 return KCFG_UNKNOWN;
3529 return KCFG_CHAR_ARR;
3530 default:
3531 return KCFG_UNKNOWN;
3532 }
3533}
3534
3535static int cmp_externs(const void *_a, const void *_b)
3536{
3537 const struct extern_desc *a = _a;
3538 const struct extern_desc *b = _b;
3539
3540 if (a->type != b->type)
3541 return a->type < b->type ? -1 : 1;
3542
3543 if (a->type == EXT_KCFG) {
3544 /* descending order by alignment requirements */
3545 if (a->kcfg.align != b->kcfg.align)
3546 return a->kcfg.align > b->kcfg.align ? -1 : 1;
3547 /* ascending order by size, within same alignment class */
3548 if (a->kcfg.sz != b->kcfg.sz)
3549 return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3550 }
3551
3552 /* resolve ties by name */
3553 return strcmp(a->name, b->name);
3554}
3555
3556static int find_int_btf_id(const struct btf *btf)
3557{
3558 const struct btf_type *t;
3559 int i, n;
3560
3561 n = btf__type_cnt(btf);
3562 for (i = 1; i < n; i++) {
3563 t = btf__type_by_id(btf, i);
3564
3565 if (btf_is_int(t) && btf_int_bits(t) == 32)
3566 return i;
3567 }
3568
3569 return 0;
3570}
3571
3572static int add_dummy_ksym_var(struct btf *btf)
3573{
3574 int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3575 const struct btf_var_secinfo *vs;
3576 const struct btf_type *sec;
3577
3578 if (!btf)
3579 return 0;
3580
3581 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3582 BTF_KIND_DATASEC);
3583 if (sec_btf_id < 0)
3584 return 0;
3585
3586 sec = btf__type_by_id(btf, sec_btf_id);
3587 vs = btf_var_secinfos(sec);
3588 for (i = 0; i < btf_vlen(sec); i++, vs++) {
3589 const struct btf_type *vt;
3590
3591 vt = btf__type_by_id(btf, vs->type);
3592 if (btf_is_func(vt))
3593 break;
3594 }
3595
3596 /* No func in ksyms sec. No need to add dummy var. */
3597 if (i == btf_vlen(sec))
3598 return 0;
3599
3600 int_btf_id = find_int_btf_id(btf);
3601 dummy_var_btf_id = btf__add_var(btf,
3602 "dummy_ksym",
3603 BTF_VAR_GLOBAL_ALLOCATED,
3604 int_btf_id);
3605 if (dummy_var_btf_id < 0)
3606 pr_warn("cannot create a dummy_ksym var\n");
3607
3608 return dummy_var_btf_id;
3609}
3610
3611static int bpf_object__collect_externs(struct bpf_object *obj)
3612{
3613 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3614 const struct btf_type *t;
3615 struct extern_desc *ext;
3616 int i, n, off, dummy_var_btf_id;
3617 const char *ext_name, *sec_name;
3618 Elf_Scn *scn;
3619 Elf64_Shdr *sh;
3620
3621 if (!obj->efile.symbols)
3622 return 0;
3623
3624 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3625 sh = elf_sec_hdr(obj, scn);
3626 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3627 return -LIBBPF_ERRNO__FORMAT;
3628
3629 dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3630 if (dummy_var_btf_id < 0)
3631 return dummy_var_btf_id;
3632
3633 n = sh->sh_size / sh->sh_entsize;
3634 pr_debug("looking for externs among %d symbols...\n", n);
3635
3636 for (i = 0; i < n; i++) {
3637 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3638
3639 if (!sym)
3640 return -LIBBPF_ERRNO__FORMAT;
3641 if (!sym_is_extern(sym))
3642 continue;
3643 ext_name = elf_sym_str(obj, sym->st_name);
3644 if (!ext_name || !ext_name[0])
3645 continue;
3646
3647 ext = obj->externs;
3648 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3649 if (!ext)
3650 return -ENOMEM;
3651 obj->externs = ext;
3652 ext = &ext[obj->nr_extern];
3653 memset(ext, 0, sizeof(*ext));
3654 obj->nr_extern++;
3655
3656 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3657 if (ext->btf_id <= 0) {
3658 pr_warn("failed to find BTF for extern '%s': %d\n",
3659 ext_name, ext->btf_id);
3660 return ext->btf_id;
3661 }
3662 t = btf__type_by_id(obj->btf, ext->btf_id);
3663 ext->name = btf__name_by_offset(obj->btf, t->name_off);
3664 ext->sym_idx = i;
3665 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3666
3667 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3668 if (ext->sec_btf_id <= 0) {
3669 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3670 ext_name, ext->btf_id, ext->sec_btf_id);
3671 return ext->sec_btf_id;
3672 }
3673 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3674 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3675
3676 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3677 if (btf_is_func(t)) {
3678 pr_warn("extern function %s is unsupported under %s section\n",
3679 ext->name, KCONFIG_SEC);
3680 return -ENOTSUP;
3681 }
3682 kcfg_sec = sec;
3683 ext->type = EXT_KCFG;
3684 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3685 if (ext->kcfg.sz <= 0) {
3686 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3687 ext_name, ext->kcfg.sz);
3688 return ext->kcfg.sz;
3689 }
3690 ext->kcfg.align = btf__align_of(obj->btf, t->type);
3691 if (ext->kcfg.align <= 0) {
3692 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3693 ext_name, ext->kcfg.align);
3694 return -EINVAL;
3695 }
3696 ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3697 &ext->kcfg.is_signed);
3698 if (ext->kcfg.type == KCFG_UNKNOWN) {
3699 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name);
3700 return -ENOTSUP;
3701 }
3702 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3703 ksym_sec = sec;
3704 ext->type = EXT_KSYM;
3705 skip_mods_and_typedefs(obj->btf, t->type,
3706 &ext->ksym.type_id);
3707 } else {
3708 pr_warn("unrecognized extern section '%s'\n", sec_name);
3709 return -ENOTSUP;
3710 }
3711 }
3712 pr_debug("collected %d externs total\n", obj->nr_extern);
3713
3714 if (!obj->nr_extern)
3715 return 0;
3716
3717 /* sort externs by type, for kcfg ones also by (align, size, name) */
3718 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3719
3720 /* for .ksyms section, we need to turn all externs into allocated
3721 * variables in BTF to pass kernel verification; we do this by
3722 * pretending that each extern is a 8-byte variable
3723 */
3724 if (ksym_sec) {
3725 /* find existing 4-byte integer type in BTF to use for fake
3726 * extern variables in DATASEC
3727 */
3728 int int_btf_id = find_int_btf_id(obj->btf);
3729 /* For extern function, a dummy_var added earlier
3730 * will be used to replace the vs->type and
3731 * its name string will be used to refill
3732 * the missing param's name.
3733 */
3734 const struct btf_type *dummy_var;
3735
3736 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3737 for (i = 0; i < obj->nr_extern; i++) {
3738 ext = &obj->externs[i];
3739 if (ext->type != EXT_KSYM)
3740 continue;
3741 pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3742 i, ext->sym_idx, ext->name);
3743 }
3744
3745 sec = ksym_sec;
3746 n = btf_vlen(sec);
3747 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3748 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3749 struct btf_type *vt;
3750
3751 vt = (void *)btf__type_by_id(obj->btf, vs->type);
3752 ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3753 ext = find_extern_by_name(obj, ext_name);
3754 if (!ext) {
3755 pr_warn("failed to find extern definition for BTF %s '%s'\n",
3756 btf_kind_str(vt), ext_name);
3757 return -ESRCH;
3758 }
3759 if (btf_is_func(vt)) {
3760 const struct btf_type *func_proto;
3761 struct btf_param *param;
3762 int j;
3763
3764 func_proto = btf__type_by_id(obj->btf,
3765 vt->type);
3766 param = btf_params(func_proto);
3767 /* Reuse the dummy_var string if the
3768 * func proto does not have param name.
3769 */
3770 for (j = 0; j < btf_vlen(func_proto); j++)
3771 if (param[j].type && !param[j].name_off)
3772 param[j].name_off =
3773 dummy_var->name_off;
3774 vs->type = dummy_var_btf_id;
3775 vt->info &= ~0xffff;
3776 vt->info |= BTF_FUNC_GLOBAL;
3777 } else {
3778 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3779 vt->type = int_btf_id;
3780 }
3781 vs->offset = off;
3782 vs->size = sizeof(int);
3783 }
3784 sec->size = off;
3785 }
3786
3787 if (kcfg_sec) {
3788 sec = kcfg_sec;
3789 /* for kcfg externs calculate their offsets within a .kconfig map */
3790 off = 0;
3791 for (i = 0; i < obj->nr_extern; i++) {
3792 ext = &obj->externs[i];
3793 if (ext->type != EXT_KCFG)
3794 continue;
3795
3796 ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3797 off = ext->kcfg.data_off + ext->kcfg.sz;
3798 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3799 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3800 }
3801 sec->size = off;
3802 n = btf_vlen(sec);
3803 for (i = 0; i < n; i++) {
3804 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3805
3806 t = btf__type_by_id(obj->btf, vs->type);
3807 ext_name = btf__name_by_offset(obj->btf, t->name_off);
3808 ext = find_extern_by_name(obj, ext_name);
3809 if (!ext) {
3810 pr_warn("failed to find extern definition for BTF var '%s'\n",
3811 ext_name);
3812 return -ESRCH;
3813 }
3814 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3815 vs->offset = ext->kcfg.data_off;
3816 }
3817 }
3818 return 0;
3819}
3820
3821struct bpf_program *
3822bpf_object__find_program_by_title(const struct bpf_object *obj,
3823 const char *title)
3824{
3825 struct bpf_program *pos;
3826
3827 bpf_object__for_each_program(pos, obj) {
3828 if (pos->sec_name && !strcmp(pos->sec_name, title))
3829 return pos;
3830 }
3831 return errno = ENOENT, NULL;
3832}
3833
3834static bool prog_is_subprog(const struct bpf_object *obj,
3835 const struct bpf_program *prog)
3836{
3837 /* For legacy reasons, libbpf supports an entry-point BPF programs
3838 * without SEC() attribute, i.e., those in the .text section. But if
3839 * there are 2 or more such programs in the .text section, they all
3840 * must be subprograms called from entry-point BPF programs in
3841 * designated SEC()'tions, otherwise there is no way to distinguish
3842 * which of those programs should be loaded vs which are a subprogram.
3843 * Similarly, if there is a function/program in .text and at least one
3844 * other BPF program with custom SEC() attribute, then we just assume
3845 * .text programs are subprograms (even if they are not called from
3846 * other programs), because libbpf never explicitly supported mixing
3847 * SEC()-designated BPF programs and .text entry-point BPF programs.
3848 *
3849 * In libbpf 1.0 strict mode, we always consider .text
3850 * programs to be subprograms.
3851 */
3852
3853 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME)
3854 return prog->sec_idx == obj->efile.text_shndx;
3855
3856 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3857}
3858
3859struct bpf_program *
3860bpf_object__find_program_by_name(const struct bpf_object *obj,
3861 const char *name)
3862{
3863 struct bpf_program *prog;
3864
3865 bpf_object__for_each_program(prog, obj) {
3866 if (prog_is_subprog(obj, prog))
3867 continue;
3868 if (!strcmp(prog->name, name))
3869 return prog;
3870 }
3871 return errno = ENOENT, NULL;
3872}
3873
3874static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3875 int shndx)
3876{
3877 switch (obj->efile.secs[shndx].sec_type) {
3878 case SEC_BSS:
3879 case SEC_DATA:
3880 case SEC_RODATA:
3881 return true;
3882 default:
3883 return false;
3884 }
3885}
3886
3887static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3888 int shndx)
3889{
3890 return shndx == obj->efile.maps_shndx ||
3891 shndx == obj->efile.btf_maps_shndx;
3892}
3893
3894static enum libbpf_map_type
3895bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3896{
3897 if (shndx == obj->efile.symbols_shndx)
3898 return LIBBPF_MAP_KCONFIG;
3899
3900 switch (obj->efile.secs[shndx].sec_type) {
3901 case SEC_BSS:
3902 return LIBBPF_MAP_BSS;
3903 case SEC_DATA:
3904 return LIBBPF_MAP_DATA;
3905 case SEC_RODATA:
3906 return LIBBPF_MAP_RODATA;
3907 default:
3908 return LIBBPF_MAP_UNSPEC;
3909 }
3910}
3911
3912static int bpf_program__record_reloc(struct bpf_program *prog,
3913 struct reloc_desc *reloc_desc,
3914 __u32 insn_idx, const char *sym_name,
3915 const Elf64_Sym *sym, const Elf64_Rel *rel)
3916{
3917 struct bpf_insn *insn = &prog->insns[insn_idx];
3918 size_t map_idx, nr_maps = prog->obj->nr_maps;
3919 struct bpf_object *obj = prog->obj;
3920 __u32 shdr_idx = sym->st_shndx;
3921 enum libbpf_map_type type;
3922 const char *sym_sec_name;
3923 struct bpf_map *map;
3924
3925 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
3926 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3927 prog->name, sym_name, insn_idx, insn->code);
3928 return -LIBBPF_ERRNO__RELOC;
3929 }
3930
3931 if (sym_is_extern(sym)) {
3932 int sym_idx = ELF64_R_SYM(rel->r_info);
3933 int i, n = obj->nr_extern;
3934 struct extern_desc *ext;
3935
3936 for (i = 0; i < n; i++) {
3937 ext = &obj->externs[i];
3938 if (ext->sym_idx == sym_idx)
3939 break;
3940 }
3941 if (i >= n) {
3942 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3943 prog->name, sym_name, sym_idx);
3944 return -LIBBPF_ERRNO__RELOC;
3945 }
3946 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3947 prog->name, i, ext->name, ext->sym_idx, insn_idx);
3948 if (insn->code == (BPF_JMP | BPF_CALL))
3949 reloc_desc->type = RELO_EXTERN_FUNC;
3950 else
3951 reloc_desc->type = RELO_EXTERN_VAR;
3952 reloc_desc->insn_idx = insn_idx;
3953 reloc_desc->sym_off = i; /* sym_off stores extern index */
3954 return 0;
3955 }
3956
3957 /* sub-program call relocation */
3958 if (is_call_insn(insn)) {
3959 if (insn->src_reg != BPF_PSEUDO_CALL) {
3960 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
3961 return -LIBBPF_ERRNO__RELOC;
3962 }
3963 /* text_shndx can be 0, if no default "main" program exists */
3964 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
3965 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3966 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
3967 prog->name, sym_name, sym_sec_name);
3968 return -LIBBPF_ERRNO__RELOC;
3969 }
3970 if (sym->st_value % BPF_INSN_SZ) {
3971 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
3972 prog->name, sym_name, (size_t)sym->st_value);
3973 return -LIBBPF_ERRNO__RELOC;
3974 }
3975 reloc_desc->type = RELO_CALL;
3976 reloc_desc->insn_idx = insn_idx;
3977 reloc_desc->sym_off = sym->st_value;
3978 return 0;
3979 }
3980
3981 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
3982 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
3983 prog->name, sym_name, shdr_idx);
3984 return -LIBBPF_ERRNO__RELOC;
3985 }
3986
3987 /* loading subprog addresses */
3988 if (sym_is_subprog(sym, obj->efile.text_shndx)) {
3989 /* global_func: sym->st_value = offset in the section, insn->imm = 0.
3990 * local_func: sym->st_value = 0, insn->imm = offset in the section.
3991 */
3992 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
3993 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
3994 prog->name, sym_name, (size_t)sym->st_value, insn->imm);
3995 return -LIBBPF_ERRNO__RELOC;
3996 }
3997
3998 reloc_desc->type = RELO_SUBPROG_ADDR;
3999 reloc_desc->insn_idx = insn_idx;
4000 reloc_desc->sym_off = sym->st_value;
4001 return 0;
4002 }
4003
4004 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4005 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4006
4007 /* generic map reference relocation */
4008 if (type == LIBBPF_MAP_UNSPEC) {
4009 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4010 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4011 prog->name, sym_name, sym_sec_name);
4012 return -LIBBPF_ERRNO__RELOC;
4013 }
4014 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4015 map = &obj->maps[map_idx];
4016 if (map->libbpf_type != type ||
4017 map->sec_idx != sym->st_shndx ||
4018 map->sec_offset != sym->st_value)
4019 continue;
4020 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4021 prog->name, map_idx, map->name, map->sec_idx,
4022 map->sec_offset, insn_idx);
4023 break;
4024 }
4025 if (map_idx >= nr_maps) {
4026 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4027 prog->name, sym_sec_name, (size_t)sym->st_value);
4028 return -LIBBPF_ERRNO__RELOC;
4029 }
4030 reloc_desc->type = RELO_LD64;
4031 reloc_desc->insn_idx = insn_idx;
4032 reloc_desc->map_idx = map_idx;
4033 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4034 return 0;
4035 }
4036
4037 /* global data map relocation */
4038 if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4039 pr_warn("prog '%s': bad data relo against section '%s'\n",
4040 prog->name, sym_sec_name);
4041 return -LIBBPF_ERRNO__RELOC;
4042 }
4043 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4044 map = &obj->maps[map_idx];
4045 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4046 continue;
4047 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4048 prog->name, map_idx, map->name, map->sec_idx,
4049 map->sec_offset, insn_idx);
4050 break;
4051 }
4052 if (map_idx >= nr_maps) {
4053 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4054 prog->name, sym_sec_name);
4055 return -LIBBPF_ERRNO__RELOC;
4056 }
4057
4058 reloc_desc->type = RELO_DATA;
4059 reloc_desc->insn_idx = insn_idx;
4060 reloc_desc->map_idx = map_idx;
4061 reloc_desc->sym_off = sym->st_value;
4062 return 0;
4063}
4064
4065static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4066{
4067 return insn_idx >= prog->sec_insn_off &&
4068 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4069}
4070
4071static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4072 size_t sec_idx, size_t insn_idx)
4073{
4074 int l = 0, r = obj->nr_programs - 1, m;
4075 struct bpf_program *prog;
4076
4077 while (l < r) {
4078 m = l + (r - l + 1) / 2;
4079 prog = &obj->programs[m];
4080
4081 if (prog->sec_idx < sec_idx ||
4082 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4083 l = m;
4084 else
4085 r = m - 1;
4086 }
4087 /* matching program could be at index l, but it still might be the
4088 * wrong one, so we need to double check conditions for the last time
4089 */
4090 prog = &obj->programs[l];
4091 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4092 return prog;
4093 return NULL;
4094}
4095
4096static int
4097bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4098{
4099 const char *relo_sec_name, *sec_name;
4100 size_t sec_idx = shdr->sh_info, sym_idx;
4101 struct bpf_program *prog;
4102 struct reloc_desc *relos;
4103 int err, i, nrels;
4104 const char *sym_name;
4105 __u32 insn_idx;
4106 Elf_Scn *scn;
4107 Elf_Data *scn_data;
4108 Elf64_Sym *sym;
4109 Elf64_Rel *rel;
4110
4111 if (sec_idx >= obj->efile.sec_cnt)
4112 return -EINVAL;
4113
4114 scn = elf_sec_by_idx(obj, sec_idx);
4115 scn_data = elf_sec_data(obj, scn);
4116
4117 relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4118 sec_name = elf_sec_name(obj, scn);
4119 if (!relo_sec_name || !sec_name)
4120 return -EINVAL;
4121
4122 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4123 relo_sec_name, sec_idx, sec_name);
4124 nrels = shdr->sh_size / shdr->sh_entsize;
4125
4126 for (i = 0; i < nrels; i++) {
4127 rel = elf_rel_by_idx(data, i);
4128 if (!rel) {
4129 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4130 return -LIBBPF_ERRNO__FORMAT;
4131 }
4132
4133 sym_idx = ELF64_R_SYM(rel->r_info);
4134 sym = elf_sym_by_idx(obj, sym_idx);
4135 if (!sym) {
4136 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4137 relo_sec_name, sym_idx, i);
4138 return -LIBBPF_ERRNO__FORMAT;
4139 }
4140
4141 if (sym->st_shndx >= obj->efile.sec_cnt) {
4142 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4143 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4144 return -LIBBPF_ERRNO__FORMAT;
4145 }
4146
4147 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4148 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4149 relo_sec_name, (size_t)rel->r_offset, i);
4150 return -LIBBPF_ERRNO__FORMAT;
4151 }
4152
4153 insn_idx = rel->r_offset / BPF_INSN_SZ;
4154 /* relocations against static functions are recorded as
4155 * relocations against the section that contains a function;
4156 * in such case, symbol will be STT_SECTION and sym.st_name
4157 * will point to empty string (0), so fetch section name
4158 * instead
4159 */
4160 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4161 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4162 else
4163 sym_name = elf_sym_str(obj, sym->st_name);
4164 sym_name = sym_name ?: "<?";
4165
4166 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4167 relo_sec_name, i, insn_idx, sym_name);
4168
4169 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4170 if (!prog) {
4171 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4172 relo_sec_name, i, sec_name, insn_idx);
4173 continue;
4174 }
4175
4176 relos = libbpf_reallocarray(prog->reloc_desc,
4177 prog->nr_reloc + 1, sizeof(*relos));
4178 if (!relos)
4179 return -ENOMEM;
4180 prog->reloc_desc = relos;
4181
4182 /* adjust insn_idx to local BPF program frame of reference */
4183 insn_idx -= prog->sec_insn_off;
4184 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4185 insn_idx, sym_name, sym, rel);
4186 if (err)
4187 return err;
4188
4189 prog->nr_reloc++;
4190 }
4191 return 0;
4192}
4193
4194static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
4195{
4196 struct bpf_map_def *def = &map->def;
4197 __u32 key_type_id = 0, value_type_id = 0;
4198 int ret;
4199
4200 if (!obj->btf)
4201 return -ENOENT;
4202
4203 /* if it's BTF-defined map, we don't need to search for type IDs.
4204 * For struct_ops map, it does not need btf_key_type_id and
4205 * btf_value_type_id.
4206 */
4207 if (map->sec_idx == obj->efile.btf_maps_shndx ||
4208 bpf_map__is_struct_ops(map))
4209 return 0;
4210
4211 if (!bpf_map__is_internal(map)) {
4212 pr_warn("Use of BPF_ANNOTATE_KV_PAIR is deprecated, use BTF-defined maps in .maps section instead\n");
4213#pragma GCC diagnostic push
4214#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
4215 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size,
4216 def->value_size, &key_type_id,
4217 &value_type_id);
4218#pragma GCC diagnostic pop
4219 } else {
4220 /*
4221 * LLVM annotates global data differently in BTF, that is,
4222 * only as '.data', '.bss' or '.rodata'.
4223 */
4224 ret = btf__find_by_name(obj->btf, map->real_name);
4225 }
4226 if (ret < 0)
4227 return ret;
4228
4229 map->btf_key_type_id = key_type_id;
4230 map->btf_value_type_id = bpf_map__is_internal(map) ?
4231 ret : value_type_id;
4232 return 0;
4233}
4234
4235static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4236{
4237 char file[PATH_MAX], buff[4096];
4238 FILE *fp;
4239 __u32 val;
4240 int err;
4241
4242 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4243 memset(info, 0, sizeof(*info));
4244
4245 fp = fopen(file, "r");
4246 if (!fp) {
4247 err = -errno;
4248 pr_warn("failed to open %s: %d. No procfs support?\n", file,
4249 err);
4250 return err;
4251 }
4252
4253 while (fgets(buff, sizeof(buff), fp)) {
4254 if (sscanf(buff, "map_type:\t%u", &val) == 1)
4255 info->type = val;
4256 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4257 info->key_size = val;
4258 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4259 info->value_size = val;
4260 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4261 info->max_entries = val;
4262 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4263 info->map_flags = val;
4264 }
4265
4266 fclose(fp);
4267
4268 return 0;
4269}
4270
4271int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4272{
4273 struct bpf_map_info info = {};
4274 __u32 len = sizeof(info);
4275 int new_fd, err;
4276 char *new_name;
4277
4278 err = bpf_obj_get_info_by_fd(fd, &info, &len);
4279 if (err && errno == EINVAL)
4280 err = bpf_get_map_info_from_fdinfo(fd, &info);
4281 if (err)
4282 return libbpf_err(err);
4283
4284 new_name = strdup(info.name);
4285 if (!new_name)
4286 return libbpf_err(-errno);
4287
4288 new_fd = open("/", O_RDONLY | O_CLOEXEC);
4289 if (new_fd < 0) {
4290 err = -errno;
4291 goto err_free_new_name;
4292 }
4293
4294 new_fd = dup3(fd, new_fd, O_CLOEXEC);
4295 if (new_fd < 0) {
4296 err = -errno;
4297 goto err_close_new_fd;
4298 }
4299
4300 err = zclose(map->fd);
4301 if (err) {
4302 err = -errno;
4303 goto err_close_new_fd;
4304 }
4305 free(map->name);
4306
4307 map->fd = new_fd;
4308 map->name = new_name;
4309 map->def.type = info.type;
4310 map->def.key_size = info.key_size;
4311 map->def.value_size = info.value_size;
4312 map->def.max_entries = info.max_entries;
4313 map->def.map_flags = info.map_flags;
4314 map->btf_key_type_id = info.btf_key_type_id;
4315 map->btf_value_type_id = info.btf_value_type_id;
4316 map->reused = true;
4317 map->map_extra = info.map_extra;
4318
4319 return 0;
4320
4321err_close_new_fd:
4322 close(new_fd);
4323err_free_new_name:
4324 free(new_name);
4325 return libbpf_err(err);
4326}
4327
4328__u32 bpf_map__max_entries(const struct bpf_map *map)
4329{
4330 return map->def.max_entries;
4331}
4332
4333struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4334{
4335 if (!bpf_map_type__is_map_in_map(map->def.type))
4336 return errno = EINVAL, NULL;
4337
4338 return map->inner_map;
4339}
4340
4341int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4342{
4343 if (map->fd >= 0)
4344 return libbpf_err(-EBUSY);
4345 map->def.max_entries = max_entries;
4346 return 0;
4347}
4348
4349int bpf_map__resize(struct bpf_map *map, __u32 max_entries)
4350{
4351 if (!map || !max_entries)
4352 return libbpf_err(-EINVAL);
4353
4354 return bpf_map__set_max_entries(map, max_entries);
4355}
4356
4357static int
4358bpf_object__probe_loading(struct bpf_object *obj)
4359{
4360 char *cp, errmsg[STRERR_BUFSIZE];
4361 struct bpf_insn insns[] = {
4362 BPF_MOV64_IMM(BPF_REG_0, 0),
4363 BPF_EXIT_INSN(),
4364 };
4365 int ret, insn_cnt = ARRAY_SIZE(insns);
4366
4367 if (obj->gen_loader)
4368 return 0;
4369
4370 ret = bump_rlimit_memlock();
4371 if (ret)
4372 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4373
4374 /* make sure basic loading works */
4375 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4376 if (ret < 0)
4377 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4378 if (ret < 0) {
4379 ret = errno;
4380 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4381 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4382 "program. Make sure your kernel supports BPF "
4383 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4384 "set to big enough value.\n", __func__, cp, ret);
4385 return -ret;
4386 }
4387 close(ret);
4388
4389 return 0;
4390}
4391
4392static int probe_fd(int fd)
4393{
4394 if (fd >= 0)
4395 close(fd);
4396 return fd >= 0;
4397}
4398
4399static int probe_kern_prog_name(void)
4400{
4401 struct bpf_insn insns[] = {
4402 BPF_MOV64_IMM(BPF_REG_0, 0),
4403 BPF_EXIT_INSN(),
4404 };
4405 int ret, insn_cnt = ARRAY_SIZE(insns);
4406
4407 /* make sure loading with name works */
4408 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, "test", "GPL", insns, insn_cnt, NULL);
4409 return probe_fd(ret);
4410}
4411
4412static int probe_kern_global_data(void)
4413{
4414 char *cp, errmsg[STRERR_BUFSIZE];
4415 struct bpf_insn insns[] = {
4416 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4417 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4418 BPF_MOV64_IMM(BPF_REG_0, 0),
4419 BPF_EXIT_INSN(),
4420 };
4421 int ret, map, insn_cnt = ARRAY_SIZE(insns);
4422
4423 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL);
4424 if (map < 0) {
4425 ret = -errno;
4426 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4427 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4428 __func__, cp, -ret);
4429 return ret;
4430 }
4431
4432 insns[0].imm = map;
4433
4434 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4435 close(map);
4436 return probe_fd(ret);
4437}
4438
4439static int probe_kern_btf(void)
4440{
4441 static const char strs[] = "\0int";
4442 __u32 types[] = {
4443 /* int */
4444 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4445 };
4446
4447 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4448 strs, sizeof(strs)));
4449}
4450
4451static int probe_kern_btf_func(void)
4452{
4453 static const char strs[] = "\0int\0x\0a";
4454 /* void x(int a) {} */
4455 __u32 types[] = {
4456 /* int */
4457 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4458 /* FUNC_PROTO */ /* [2] */
4459 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4460 BTF_PARAM_ENC(7, 1),
4461 /* FUNC x */ /* [3] */
4462 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4463 };
4464
4465 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4466 strs, sizeof(strs)));
4467}
4468
4469static int probe_kern_btf_func_global(void)
4470{
4471 static const char strs[] = "\0int\0x\0a";
4472 /* static void x(int a) {} */
4473 __u32 types[] = {
4474 /* int */
4475 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4476 /* FUNC_PROTO */ /* [2] */
4477 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4478 BTF_PARAM_ENC(7, 1),
4479 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */
4480 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4481 };
4482
4483 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4484 strs, sizeof(strs)));
4485}
4486
4487static int probe_kern_btf_datasec(void)
4488{
4489 static const char strs[] = "\0x\0.data";
4490 /* static int a; */
4491 __u32 types[] = {
4492 /* int */
4493 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4494 /* VAR x */ /* [2] */
4495 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4496 BTF_VAR_STATIC,
4497 /* DATASEC val */ /* [3] */
4498 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4499 BTF_VAR_SECINFO_ENC(2, 0, 4),
4500 };
4501
4502 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4503 strs, sizeof(strs)));
4504}
4505
4506static int probe_kern_btf_float(void)
4507{
4508 static const char strs[] = "\0float";
4509 __u32 types[] = {
4510 /* float */
4511 BTF_TYPE_FLOAT_ENC(1, 4),
4512 };
4513
4514 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4515 strs, sizeof(strs)));
4516}
4517
4518static int probe_kern_btf_decl_tag(void)
4519{
4520 static const char strs[] = "\0tag";
4521 __u32 types[] = {
4522 /* int */
4523 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4524 /* VAR x */ /* [2] */
4525 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4526 BTF_VAR_STATIC,
4527 /* attr */
4528 BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4529 };
4530
4531 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4532 strs, sizeof(strs)));
4533}
4534
4535static int probe_kern_btf_type_tag(void)
4536{
4537 static const char strs[] = "\0tag";
4538 __u32 types[] = {
4539 /* int */
4540 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4541 /* attr */
4542 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */
4543 /* ptr */
4544 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */
4545 };
4546
4547 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4548 strs, sizeof(strs)));
4549}
4550
4551static int probe_kern_array_mmap(void)
4552{
4553 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4554 int fd;
4555
4556 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), sizeof(int), 1, &opts);
4557 return probe_fd(fd);
4558}
4559
4560static int probe_kern_exp_attach_type(void)
4561{
4562 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4563 struct bpf_insn insns[] = {
4564 BPF_MOV64_IMM(BPF_REG_0, 0),
4565 BPF_EXIT_INSN(),
4566 };
4567 int fd, insn_cnt = ARRAY_SIZE(insns);
4568
4569 /* use any valid combination of program type and (optional)
4570 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4571 * to see if kernel supports expected_attach_type field for
4572 * BPF_PROG_LOAD command
4573 */
4574 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4575 return probe_fd(fd);
4576}
4577
4578static int probe_kern_probe_read_kernel(void)
4579{
4580 struct bpf_insn insns[] = {
4581 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */
4582 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */
4583 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */
4584 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */
4585 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4586 BPF_EXIT_INSN(),
4587 };
4588 int fd, insn_cnt = ARRAY_SIZE(insns);
4589
4590 fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4591 return probe_fd(fd);
4592}
4593
4594static int probe_prog_bind_map(void)
4595{
4596 char *cp, errmsg[STRERR_BUFSIZE];
4597 struct bpf_insn insns[] = {
4598 BPF_MOV64_IMM(BPF_REG_0, 0),
4599 BPF_EXIT_INSN(),
4600 };
4601 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4602
4603 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL);
4604 if (map < 0) {
4605 ret = -errno;
4606 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4607 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4608 __func__, cp, -ret);
4609 return ret;
4610 }
4611
4612 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4613 if (prog < 0) {
4614 close(map);
4615 return 0;
4616 }
4617
4618 ret = bpf_prog_bind_map(prog, map, NULL);
4619
4620 close(map);
4621 close(prog);
4622
4623 return ret >= 0;
4624}
4625
4626static int probe_module_btf(void)
4627{
4628 static const char strs[] = "\0int";
4629 __u32 types[] = {
4630 /* int */
4631 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4632 };
4633 struct bpf_btf_info info;
4634 __u32 len = sizeof(info);
4635 char name[16];
4636 int fd, err;
4637
4638 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4639 if (fd < 0)
4640 return 0; /* BTF not supported at all */
4641
4642 memset(&info, 0, sizeof(info));
4643 info.name = ptr_to_u64(name);
4644 info.name_len = sizeof(name);
4645
4646 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4647 * kernel's module BTF support coincides with support for
4648 * name/name_len fields in struct bpf_btf_info.
4649 */
4650 err = bpf_obj_get_info_by_fd(fd, &info, &len);
4651 close(fd);
4652 return !err;
4653}
4654
4655static int probe_perf_link(void)
4656{
4657 struct bpf_insn insns[] = {
4658 BPF_MOV64_IMM(BPF_REG_0, 0),
4659 BPF_EXIT_INSN(),
4660 };
4661 int prog_fd, link_fd, err;
4662
4663 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4664 insns, ARRAY_SIZE(insns), NULL);
4665 if (prog_fd < 0)
4666 return -errno;
4667
4668 /* use invalid perf_event FD to get EBADF, if link is supported;
4669 * otherwise EINVAL should be returned
4670 */
4671 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4672 err = -errno; /* close() can clobber errno */
4673
4674 if (link_fd >= 0)
4675 close(link_fd);
4676 close(prog_fd);
4677
4678 return link_fd < 0 && err == -EBADF;
4679}
4680
4681enum kern_feature_result {
4682 FEAT_UNKNOWN = 0,
4683 FEAT_SUPPORTED = 1,
4684 FEAT_MISSING = 2,
4685};
4686
4687typedef int (*feature_probe_fn)(void);
4688
4689static struct kern_feature_desc {
4690 const char *desc;
4691 feature_probe_fn probe;
4692 enum kern_feature_result res;
4693} feature_probes[__FEAT_CNT] = {
4694 [FEAT_PROG_NAME] = {
4695 "BPF program name", probe_kern_prog_name,
4696 },
4697 [FEAT_GLOBAL_DATA] = {
4698 "global variables", probe_kern_global_data,
4699 },
4700 [FEAT_BTF] = {
4701 "minimal BTF", probe_kern_btf,
4702 },
4703 [FEAT_BTF_FUNC] = {
4704 "BTF functions", probe_kern_btf_func,
4705 },
4706 [FEAT_BTF_GLOBAL_FUNC] = {
4707 "BTF global function", probe_kern_btf_func_global,
4708 },
4709 [FEAT_BTF_DATASEC] = {
4710 "BTF data section and variable", probe_kern_btf_datasec,
4711 },
4712 [FEAT_ARRAY_MMAP] = {
4713 "ARRAY map mmap()", probe_kern_array_mmap,
4714 },
4715 [FEAT_EXP_ATTACH_TYPE] = {
4716 "BPF_PROG_LOAD expected_attach_type attribute",
4717 probe_kern_exp_attach_type,
4718 },
4719 [FEAT_PROBE_READ_KERN] = {
4720 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4721 },
4722 [FEAT_PROG_BIND_MAP] = {
4723 "BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4724 },
4725 [FEAT_MODULE_BTF] = {
4726 "module BTF support", probe_module_btf,
4727 },
4728 [FEAT_BTF_FLOAT] = {
4729 "BTF_KIND_FLOAT support", probe_kern_btf_float,
4730 },
4731 [FEAT_PERF_LINK] = {
4732 "BPF perf link support", probe_perf_link,
4733 },
4734 [FEAT_BTF_DECL_TAG] = {
4735 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4736 },
4737 [FEAT_BTF_TYPE_TAG] = {
4738 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4739 },
4740 [FEAT_MEMCG_ACCOUNT] = {
4741 "memcg-based memory accounting", probe_memcg_account,
4742 },
4743};
4744
4745bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4746{
4747 struct kern_feature_desc *feat = &feature_probes[feat_id];
4748 int ret;
4749
4750 if (obj && obj->gen_loader)
4751 /* To generate loader program assume the latest kernel
4752 * to avoid doing extra prog_load, map_create syscalls.
4753 */
4754 return true;
4755
4756 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4757 ret = feat->probe();
4758 if (ret > 0) {
4759 WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4760 } else if (ret == 0) {
4761 WRITE_ONCE(feat->res, FEAT_MISSING);
4762 } else {
4763 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4764 WRITE_ONCE(feat->res, FEAT_MISSING);
4765 }
4766 }
4767
4768 return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4769}
4770
4771static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4772{
4773 struct bpf_map_info map_info = {};
4774 char msg[STRERR_BUFSIZE];
4775 __u32 map_info_len;
4776 int err;
4777
4778 map_info_len = sizeof(map_info);
4779
4780 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len);
4781 if (err && errno == EINVAL)
4782 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4783 if (err) {
4784 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4785 libbpf_strerror_r(errno, msg, sizeof(msg)));
4786 return false;
4787 }
4788
4789 return (map_info.type == map->def.type &&
4790 map_info.key_size == map->def.key_size &&
4791 map_info.value_size == map->def.value_size &&
4792 map_info.max_entries == map->def.max_entries &&
4793 map_info.map_flags == map->def.map_flags &&
4794 map_info.map_extra == map->map_extra);
4795}
4796
4797static int
4798bpf_object__reuse_map(struct bpf_map *map)
4799{
4800 char *cp, errmsg[STRERR_BUFSIZE];
4801 int err, pin_fd;
4802
4803 pin_fd = bpf_obj_get(map->pin_path);
4804 if (pin_fd < 0) {
4805 err = -errno;
4806 if (err == -ENOENT) {
4807 pr_debug("found no pinned map to reuse at '%s'\n",
4808 map->pin_path);
4809 return 0;
4810 }
4811
4812 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4813 pr_warn("couldn't retrieve pinned map '%s': %s\n",
4814 map->pin_path, cp);
4815 return err;
4816 }
4817
4818 if (!map_is_reuse_compat(map, pin_fd)) {
4819 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4820 map->pin_path);
4821 close(pin_fd);
4822 return -EINVAL;
4823 }
4824
4825 err = bpf_map__reuse_fd(map, pin_fd);
4826 close(pin_fd);
4827 if (err) {
4828 return err;
4829 }
4830 map->pinned = true;
4831 pr_debug("reused pinned map at '%s'\n", map->pin_path);
4832
4833 return 0;
4834}
4835
4836static int
4837bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4838{
4839 enum libbpf_map_type map_type = map->libbpf_type;
4840 char *cp, errmsg[STRERR_BUFSIZE];
4841 int err, zero = 0;
4842
4843 if (obj->gen_loader) {
4844 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
4845 map->mmaped, map->def.value_size);
4846 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
4847 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
4848 return 0;
4849 }
4850 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4851 if (err) {
4852 err = -errno;
4853 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4854 pr_warn("Error setting initial map(%s) contents: %s\n",
4855 map->name, cp);
4856 return err;
4857 }
4858
4859 /* Freeze .rodata and .kconfig map as read-only from syscall side. */
4860 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4861 err = bpf_map_freeze(map->fd);
4862 if (err) {
4863 err = -errno;
4864 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4865 pr_warn("Error freezing map(%s) as read-only: %s\n",
4866 map->name, cp);
4867 return err;
4868 }
4869 }
4870 return 0;
4871}
4872
4873static void bpf_map__destroy(struct bpf_map *map);
4874
4875static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
4876{
4877 LIBBPF_OPTS(bpf_map_create_opts, create_attr);
4878 struct bpf_map_def *def = &map->def;
4879 const char *map_name = NULL;
4880 int err = 0;
4881
4882 if (kernel_supports(obj, FEAT_PROG_NAME))
4883 map_name = map->name;
4884 create_attr.map_ifindex = map->map_ifindex;
4885 create_attr.map_flags = def->map_flags;
4886 create_attr.numa_node = map->numa_node;
4887 create_attr.map_extra = map->map_extra;
4888
4889 if (bpf_map__is_struct_ops(map))
4890 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
4891
4892 if (obj->btf && btf__fd(obj->btf) >= 0) {
4893 create_attr.btf_fd = btf__fd(obj->btf);
4894 create_attr.btf_key_type_id = map->btf_key_type_id;
4895 create_attr.btf_value_type_id = map->btf_value_type_id;
4896 }
4897
4898 if (bpf_map_type__is_map_in_map(def->type)) {
4899 if (map->inner_map) {
4900 err = bpf_object__create_map(obj, map->inner_map, true);
4901 if (err) {
4902 pr_warn("map '%s': failed to create inner map: %d\n",
4903 map->name, err);
4904 return err;
4905 }
4906 map->inner_map_fd = bpf_map__fd(map->inner_map);
4907 }
4908 if (map->inner_map_fd >= 0)
4909 create_attr.inner_map_fd = map->inner_map_fd;
4910 }
4911
4912 switch (def->type) {
4913 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4914 case BPF_MAP_TYPE_CGROUP_ARRAY:
4915 case BPF_MAP_TYPE_STACK_TRACE:
4916 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4917 case BPF_MAP_TYPE_HASH_OF_MAPS:
4918 case BPF_MAP_TYPE_DEVMAP:
4919 case BPF_MAP_TYPE_DEVMAP_HASH:
4920 case BPF_MAP_TYPE_CPUMAP:
4921 case BPF_MAP_TYPE_XSKMAP:
4922 case BPF_MAP_TYPE_SOCKMAP:
4923 case BPF_MAP_TYPE_SOCKHASH:
4924 case BPF_MAP_TYPE_QUEUE:
4925 case BPF_MAP_TYPE_STACK:
4926 case BPF_MAP_TYPE_RINGBUF:
4927 create_attr.btf_fd = 0;
4928 create_attr.btf_key_type_id = 0;
4929 create_attr.btf_value_type_id = 0;
4930 map->btf_key_type_id = 0;
4931 map->btf_value_type_id = 0;
4932 default:
4933 break;
4934 }
4935
4936 if (obj->gen_loader) {
4937 bpf_gen__map_create(obj->gen_loader, def->type, map_name,
4938 def->key_size, def->value_size, def->max_entries,
4939 &create_attr, is_inner ? -1 : map - obj->maps);
4940 /* Pretend to have valid FD to pass various fd >= 0 checks.
4941 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
4942 */
4943 map->fd = 0;
4944 } else {
4945 map->fd = bpf_map_create(def->type, map_name,
4946 def->key_size, def->value_size,
4947 def->max_entries, &create_attr);
4948 }
4949 if (map->fd < 0 && (create_attr.btf_key_type_id ||
4950 create_attr.btf_value_type_id)) {
4951 char *cp, errmsg[STRERR_BUFSIZE];
4952
4953 err = -errno;
4954 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4955 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
4956 map->name, cp, err);
4957 create_attr.btf_fd = 0;
4958 create_attr.btf_key_type_id = 0;
4959 create_attr.btf_value_type_id = 0;
4960 map->btf_key_type_id = 0;
4961 map->btf_value_type_id = 0;
4962 map->fd = bpf_map_create(def->type, map_name,
4963 def->key_size, def->value_size,
4964 def->max_entries, &create_attr);
4965 }
4966
4967 err = map->fd < 0 ? -errno : 0;
4968
4969 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
4970 if (obj->gen_loader)
4971 map->inner_map->fd = -1;
4972 bpf_map__destroy(map->inner_map);
4973 zfree(&map->inner_map);
4974 }
4975
4976 return err;
4977}
4978
4979static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
4980{
4981 const struct bpf_map *targ_map;
4982 unsigned int i;
4983 int fd, err = 0;
4984
4985 for (i = 0; i < map->init_slots_sz; i++) {
4986 if (!map->init_slots[i])
4987 continue;
4988
4989 targ_map = map->init_slots[i];
4990 fd = bpf_map__fd(targ_map);
4991
4992 if (obj->gen_loader) {
4993 bpf_gen__populate_outer_map(obj->gen_loader,
4994 map - obj->maps, i,
4995 targ_map - obj->maps);
4996 } else {
4997 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
4998 }
4999 if (err) {
5000 err = -errno;
5001 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5002 map->name, i, targ_map->name, fd, err);
5003 return err;
5004 }
5005 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5006 map->name, i, targ_map->name, fd);
5007 }
5008
5009 zfree(&map->init_slots);
5010 map->init_slots_sz = 0;
5011
5012 return 0;
5013}
5014
5015static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5016{
5017 const struct bpf_program *targ_prog;
5018 unsigned int i;
5019 int fd, err;
5020
5021 if (obj->gen_loader)
5022 return -ENOTSUP;
5023
5024 for (i = 0; i < map->init_slots_sz; i++) {
5025 if (!map->init_slots[i])
5026 continue;
5027
5028 targ_prog = map->init_slots[i];
5029 fd = bpf_program__fd(targ_prog);
5030
5031 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5032 if (err) {
5033 err = -errno;
5034 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5035 map->name, i, targ_prog->name, fd, err);
5036 return err;
5037 }
5038 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5039 map->name, i, targ_prog->name, fd);
5040 }
5041
5042 zfree(&map->init_slots);
5043 map->init_slots_sz = 0;
5044
5045 return 0;
5046}
5047
5048static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5049{
5050 struct bpf_map *map;
5051 int i, err;
5052
5053 for (i = 0; i < obj->nr_maps; i++) {
5054 map = &obj->maps[i];
5055
5056 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5057 continue;
5058
5059 err = init_prog_array_slots(obj, map);
5060 if (err < 0) {
5061 zclose(map->fd);
5062 return err;
5063 }
5064 }
5065 return 0;
5066}
5067
5068static int map_set_def_max_entries(struct bpf_map *map)
5069{
5070 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5071 int nr_cpus;
5072
5073 nr_cpus = libbpf_num_possible_cpus();
5074 if (nr_cpus < 0) {
5075 pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5076 map->name, nr_cpus);
5077 return nr_cpus;
5078 }
5079 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5080 map->def.max_entries = nr_cpus;
5081 }
5082
5083 return 0;
5084}
5085
5086static int
5087bpf_object__create_maps(struct bpf_object *obj)
5088{
5089 struct bpf_map *map;
5090 char *cp, errmsg[STRERR_BUFSIZE];
5091 unsigned int i, j;
5092 int err;
5093 bool retried;
5094
5095 for (i = 0; i < obj->nr_maps; i++) {
5096 map = &obj->maps[i];
5097
5098 /* To support old kernels, we skip creating global data maps
5099 * (.rodata, .data, .kconfig, etc); later on, during program
5100 * loading, if we detect that at least one of the to-be-loaded
5101 * programs is referencing any global data map, we'll error
5102 * out with program name and relocation index logged.
5103 * This approach allows to accommodate Clang emitting
5104 * unnecessary .rodata.str1.1 sections for string literals,
5105 * but also it allows to have CO-RE applications that use
5106 * global variables in some of BPF programs, but not others.
5107 * If those global variable-using programs are not loaded at
5108 * runtime due to bpf_program__set_autoload(prog, false),
5109 * bpf_object loading will succeed just fine even on old
5110 * kernels.
5111 */
5112 if (bpf_map__is_internal(map) &&
5113 !kernel_supports(obj, FEAT_GLOBAL_DATA)) {
5114 map->skipped = true;
5115 continue;
5116 }
5117
5118 err = map_set_def_max_entries(map);
5119 if (err)
5120 goto err_out;
5121
5122 retried = false;
5123retry:
5124 if (map->pin_path) {
5125 err = bpf_object__reuse_map(map);
5126 if (err) {
5127 pr_warn("map '%s': error reusing pinned map\n",
5128 map->name);
5129 goto err_out;
5130 }
5131 if (retried && map->fd < 0) {
5132 pr_warn("map '%s': cannot find pinned map\n",
5133 map->name);
5134 err = -ENOENT;
5135 goto err_out;
5136 }
5137 }
5138
5139 if (map->fd >= 0) {
5140 pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5141 map->name, map->fd);
5142 } else {
5143 err = bpf_object__create_map(obj, map, false);
5144 if (err)
5145 goto err_out;
5146
5147 pr_debug("map '%s': created successfully, fd=%d\n",
5148 map->name, map->fd);
5149
5150 if (bpf_map__is_internal(map)) {
5151 err = bpf_object__populate_internal_map(obj, map);
5152 if (err < 0) {
5153 zclose(map->fd);
5154 goto err_out;
5155 }
5156 }
5157
5158 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5159 err = init_map_in_map_slots(obj, map);
5160 if (err < 0) {
5161 zclose(map->fd);
5162 goto err_out;
5163 }
5164 }
5165 }
5166
5167 if (map->pin_path && !map->pinned) {
5168 err = bpf_map__pin(map, NULL);
5169 if (err) {
5170 zclose(map->fd);
5171 if (!retried && err == -EEXIST) {
5172 retried = true;
5173 goto retry;
5174 }
5175 pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5176 map->name, map->pin_path, err);
5177 goto err_out;
5178 }
5179 }
5180 }
5181
5182 return 0;
5183
5184err_out:
5185 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5186 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5187 pr_perm_msg(err);
5188 for (j = 0; j < i; j++)
5189 zclose(obj->maps[j].fd);
5190 return err;
5191}
5192
5193static bool bpf_core_is_flavor_sep(const char *s)
5194{
5195 /* check X___Y name pattern, where X and Y are not underscores */
5196 return s[0] != '_' && /* X */
5197 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
5198 s[4] != '_'; /* Y */
5199}
5200
5201/* Given 'some_struct_name___with_flavor' return the length of a name prefix
5202 * before last triple underscore. Struct name part after last triple
5203 * underscore is ignored by BPF CO-RE relocation during relocation matching.
5204 */
5205size_t bpf_core_essential_name_len(const char *name)
5206{
5207 size_t n = strlen(name);
5208 int i;
5209
5210 for (i = n - 5; i >= 0; i--) {
5211 if (bpf_core_is_flavor_sep(name + i))
5212 return i + 1;
5213 }
5214 return n;
5215}
5216
5217void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5218{
5219 if (!cands)
5220 return;
5221
5222 free(cands->cands);
5223 free(cands);
5224}
5225
5226int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5227 size_t local_essent_len,
5228 const struct btf *targ_btf,
5229 const char *targ_btf_name,
5230 int targ_start_id,
5231 struct bpf_core_cand_list *cands)
5232{
5233 struct bpf_core_cand *new_cands, *cand;
5234 const struct btf_type *t, *local_t;
5235 const char *targ_name, *local_name;
5236 size_t targ_essent_len;
5237 int n, i;
5238
5239 local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5240 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5241
5242 n = btf__type_cnt(targ_btf);
5243 for (i = targ_start_id; i < n; i++) {
5244 t = btf__type_by_id(targ_btf, i);
5245 if (btf_kind(t) != btf_kind(local_t))
5246 continue;
5247
5248 targ_name = btf__name_by_offset(targ_btf, t->name_off);
5249 if (str_is_empty(targ_name))
5250 continue;
5251
5252 targ_essent_len = bpf_core_essential_name_len(targ_name);
5253 if (targ_essent_len != local_essent_len)
5254 continue;
5255
5256 if (strncmp(local_name, targ_name, local_essent_len) != 0)
5257 continue;
5258
5259 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5260 local_cand->id, btf_kind_str(local_t),
5261 local_name, i, btf_kind_str(t), targ_name,
5262 targ_btf_name);
5263 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5264 sizeof(*cands->cands));
5265 if (!new_cands)
5266 return -ENOMEM;
5267
5268 cand = &new_cands[cands->len];
5269 cand->btf = targ_btf;
5270 cand->id = i;
5271
5272 cands->cands = new_cands;
5273 cands->len++;
5274 }
5275 return 0;
5276}
5277
5278static int load_module_btfs(struct bpf_object *obj)
5279{
5280 struct bpf_btf_info info;
5281 struct module_btf *mod_btf;
5282 struct btf *btf;
5283 char name[64];
5284 __u32 id = 0, len;
5285 int err, fd;
5286
5287 if (obj->btf_modules_loaded)
5288 return 0;
5289
5290 if (obj->gen_loader)
5291 return 0;
5292
5293 /* don't do this again, even if we find no module BTFs */
5294 obj->btf_modules_loaded = true;
5295
5296 /* kernel too old to support module BTFs */
5297 if (!kernel_supports(obj, FEAT_MODULE_BTF))
5298 return 0;
5299
5300 while (true) {
5301 err = bpf_btf_get_next_id(id, &id);
5302 if (err && errno == ENOENT)
5303 return 0;
5304 if (err) {
5305 err = -errno;
5306 pr_warn("failed to iterate BTF objects: %d\n", err);
5307 return err;
5308 }
5309
5310 fd = bpf_btf_get_fd_by_id(id);
5311 if (fd < 0) {
5312 if (errno == ENOENT)
5313 continue; /* expected race: BTF was unloaded */
5314 err = -errno;
5315 pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5316 return err;
5317 }
5318
5319 len = sizeof(info);
5320 memset(&info, 0, sizeof(info));
5321 info.name = ptr_to_u64(name);
5322 info.name_len = sizeof(name);
5323
5324 err = bpf_obj_get_info_by_fd(fd, &info, &len);
5325 if (err) {
5326 err = -errno;
5327 pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5328 goto err_out;
5329 }
5330
5331 /* ignore non-module BTFs */
5332 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5333 close(fd);
5334 continue;
5335 }
5336
5337 btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5338 err = libbpf_get_error(btf);
5339 if (err) {
5340 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5341 name, id, err);
5342 goto err_out;
5343 }
5344
5345 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5346 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5347 if (err)
5348 goto err_out;
5349
5350 mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5351
5352 mod_btf->btf = btf;
5353 mod_btf->id = id;
5354 mod_btf->fd = fd;
5355 mod_btf->name = strdup(name);
5356 if (!mod_btf->name) {
5357 err = -ENOMEM;
5358 goto err_out;
5359 }
5360 continue;
5361
5362err_out:
5363 close(fd);
5364 return err;
5365 }
5366
5367 return 0;
5368}
5369
5370static struct bpf_core_cand_list *
5371bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5372{
5373 struct bpf_core_cand local_cand = {};
5374 struct bpf_core_cand_list *cands;
5375 const struct btf *main_btf;
5376 const struct btf_type *local_t;
5377 const char *local_name;
5378 size_t local_essent_len;
5379 int err, i;
5380
5381 local_cand.btf = local_btf;
5382 local_cand.id = local_type_id;
5383 local_t = btf__type_by_id(local_btf, local_type_id);
5384 if (!local_t)
5385 return ERR_PTR(-EINVAL);
5386
5387 local_name = btf__name_by_offset(local_btf, local_t->name_off);
5388 if (str_is_empty(local_name))
5389 return ERR_PTR(-EINVAL);
5390 local_essent_len = bpf_core_essential_name_len(local_name);
5391
5392 cands = calloc(1, sizeof(*cands));
5393 if (!cands)
5394 return ERR_PTR(-ENOMEM);
5395
5396 /* Attempt to find target candidates in vmlinux BTF first */
5397 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5398 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5399 if (err)
5400 goto err_out;
5401
5402 /* if vmlinux BTF has any candidate, don't got for module BTFs */
5403 if (cands->len)
5404 return cands;
5405
5406 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5407 if (obj->btf_vmlinux_override)
5408 return cands;
5409
5410 /* now look through module BTFs, trying to still find candidates */
5411 err = load_module_btfs(obj);
5412 if (err)
5413 goto err_out;
5414
5415 for (i = 0; i < obj->btf_module_cnt; i++) {
5416 err = bpf_core_add_cands(&local_cand, local_essent_len,
5417 obj->btf_modules[i].btf,
5418 obj->btf_modules[i].name,
5419 btf__type_cnt(obj->btf_vmlinux),
5420 cands);
5421 if (err)
5422 goto err_out;
5423 }
5424
5425 return cands;
5426err_out:
5427 bpf_core_free_cands(cands);
5428 return ERR_PTR(err);
5429}
5430
5431/* Check local and target types for compatibility. This check is used for
5432 * type-based CO-RE relocations and follow slightly different rules than
5433 * field-based relocations. This function assumes that root types were already
5434 * checked for name match. Beyond that initial root-level name check, names
5435 * are completely ignored. Compatibility rules are as follows:
5436 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5437 * kind should match for local and target types (i.e., STRUCT is not
5438 * compatible with UNION);
5439 * - for ENUMs, the size is ignored;
5440 * - for INT, size and signedness are ignored;
5441 * - for ARRAY, dimensionality is ignored, element types are checked for
5442 * compatibility recursively;
5443 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
5444 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5445 * - FUNC_PROTOs are compatible if they have compatible signature: same
5446 * number of input args and compatible return and argument types.
5447 * These rules are not set in stone and probably will be adjusted as we get
5448 * more experience with using BPF CO-RE relocations.
5449 */
5450int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5451 const struct btf *targ_btf, __u32 targ_id)
5452{
5453 const struct btf_type *local_type, *targ_type;
5454 int depth = 32; /* max recursion depth */
5455
5456 /* caller made sure that names match (ignoring flavor suffix) */
5457 local_type = btf__type_by_id(local_btf, local_id);
5458 targ_type = btf__type_by_id(targ_btf, targ_id);
5459 if (btf_kind(local_type) != btf_kind(targ_type))
5460 return 0;
5461
5462recur:
5463 depth--;
5464 if (depth < 0)
5465 return -EINVAL;
5466
5467 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
5468 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
5469 if (!local_type || !targ_type)
5470 return -EINVAL;
5471
5472 if (btf_kind(local_type) != btf_kind(targ_type))
5473 return 0;
5474
5475 switch (btf_kind(local_type)) {
5476 case BTF_KIND_UNKN:
5477 case BTF_KIND_STRUCT:
5478 case BTF_KIND_UNION:
5479 case BTF_KIND_ENUM:
5480 case BTF_KIND_FWD:
5481 return 1;
5482 case BTF_KIND_INT:
5483 /* just reject deprecated bitfield-like integers; all other
5484 * integers are by default compatible between each other
5485 */
5486 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
5487 case BTF_KIND_PTR:
5488 local_id = local_type->type;
5489 targ_id = targ_type->type;
5490 goto recur;
5491 case BTF_KIND_ARRAY:
5492 local_id = btf_array(local_type)->type;
5493 targ_id = btf_array(targ_type)->type;
5494 goto recur;
5495 case BTF_KIND_FUNC_PROTO: {
5496 struct btf_param *local_p = btf_params(local_type);
5497 struct btf_param *targ_p = btf_params(targ_type);
5498 __u16 local_vlen = btf_vlen(local_type);
5499 __u16 targ_vlen = btf_vlen(targ_type);
5500 int i, err;
5501
5502 if (local_vlen != targ_vlen)
5503 return 0;
5504
5505 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
5506 skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
5507 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
5508 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id);
5509 if (err <= 0)
5510 return err;
5511 }
5512
5513 /* tail recurse for return type check */
5514 skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
5515 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
5516 goto recur;
5517 }
5518 default:
5519 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
5520 btf_kind_str(local_type), local_id, targ_id);
5521 return 0;
5522 }
5523}
5524
5525static size_t bpf_core_hash_fn(const void *key, void *ctx)
5526{
5527 return (size_t)key;
5528}
5529
5530static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
5531{
5532 return k1 == k2;
5533}
5534
5535static void *u32_as_hash_key(__u32 x)
5536{
5537 return (void *)(uintptr_t)x;
5538}
5539
5540static int record_relo_core(struct bpf_program *prog,
5541 const struct bpf_core_relo *core_relo, int insn_idx)
5542{
5543 struct reloc_desc *relos, *relo;
5544
5545 relos = libbpf_reallocarray(prog->reloc_desc,
5546 prog->nr_reloc + 1, sizeof(*relos));
5547 if (!relos)
5548 return -ENOMEM;
5549 relo = &relos[prog->nr_reloc];
5550 relo->type = RELO_CORE;
5551 relo->insn_idx = insn_idx;
5552 relo->core_relo = core_relo;
5553 prog->reloc_desc = relos;
5554 prog->nr_reloc++;
5555 return 0;
5556}
5557
5558static int bpf_core_resolve_relo(struct bpf_program *prog,
5559 const struct bpf_core_relo *relo,
5560 int relo_idx,
5561 const struct btf *local_btf,
5562 struct hashmap *cand_cache,
5563 struct bpf_core_relo_res *targ_res)
5564{
5565 struct bpf_core_spec specs_scratch[3] = {};
5566 const void *type_key = u32_as_hash_key(relo->type_id);
5567 struct bpf_core_cand_list *cands = NULL;
5568 const char *prog_name = prog->name;
5569 const struct btf_type *local_type;
5570 const char *local_name;
5571 __u32 local_id = relo->type_id;
5572 int err;
5573
5574 local_type = btf__type_by_id(local_btf, local_id);
5575 if (!local_type)
5576 return -EINVAL;
5577
5578 local_name = btf__name_by_offset(local_btf, local_type->name_off);
5579 if (!local_name)
5580 return -EINVAL;
5581
5582 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5583 !hashmap__find(cand_cache, type_key, (void **)&cands)) {
5584 cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5585 if (IS_ERR(cands)) {
5586 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5587 prog_name, relo_idx, local_id, btf_kind_str(local_type),
5588 local_name, PTR_ERR(cands));
5589 return PTR_ERR(cands);
5590 }
5591 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL);
5592 if (err) {
5593 bpf_core_free_cands(cands);
5594 return err;
5595 }
5596 }
5597
5598 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5599 targ_res);
5600}
5601
5602static int
5603bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5604{
5605 const struct btf_ext_info_sec *sec;
5606 struct bpf_core_relo_res targ_res;
5607 const struct bpf_core_relo *rec;
5608 const struct btf_ext_info *seg;
5609 struct hashmap_entry *entry;
5610 struct hashmap *cand_cache = NULL;
5611 struct bpf_program *prog;
5612 struct bpf_insn *insn;
5613 const char *sec_name;
5614 int i, err = 0, insn_idx, sec_idx;
5615
5616 if (obj->btf_ext->core_relo_info.len == 0)
5617 return 0;
5618
5619 if (targ_btf_path) {
5620 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5621 err = libbpf_get_error(obj->btf_vmlinux_override);
5622 if (err) {
5623 pr_warn("failed to parse target BTF: %d\n", err);
5624 return err;
5625 }
5626 }
5627
5628 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5629 if (IS_ERR(cand_cache)) {
5630 err = PTR_ERR(cand_cache);
5631 goto out;
5632 }
5633
5634 seg = &obj->btf_ext->core_relo_info;
5635 for_each_btf_ext_sec(seg, sec) {
5636 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5637 if (str_is_empty(sec_name)) {
5638 err = -EINVAL;
5639 goto out;
5640 }
5641 /* bpf_object's ELF is gone by now so it's not easy to find
5642 * section index by section name, but we can find *any*
5643 * bpf_program within desired section name and use it's
5644 * prog->sec_idx to do a proper search by section index and
5645 * instruction offset
5646 */
5647 prog = NULL;
5648 for (i = 0; i < obj->nr_programs; i++) {
5649 prog = &obj->programs[i];
5650 if (strcmp(prog->sec_name, sec_name) == 0)
5651 break;
5652 }
5653 if (!prog) {
5654 pr_warn("sec '%s': failed to find a BPF program\n", sec_name);
5655 return -ENOENT;
5656 }
5657 sec_idx = prog->sec_idx;
5658
5659 pr_debug("sec '%s': found %d CO-RE relocations\n",
5660 sec_name, sec->num_info);
5661
5662 for_each_btf_ext_rec(seg, sec, i, rec) {
5663 if (rec->insn_off % BPF_INSN_SZ)
5664 return -EINVAL;
5665 insn_idx = rec->insn_off / BPF_INSN_SZ;
5666 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5667 if (!prog) {
5668 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n",
5669 sec_name, insn_idx, i);
5670 err = -EINVAL;
5671 goto out;
5672 }
5673 /* no need to apply CO-RE relocation if the program is
5674 * not going to be loaded
5675 */
5676 if (!prog->load)
5677 continue;
5678
5679 /* adjust insn_idx from section frame of reference to the local
5680 * program's frame of reference; (sub-)program code is not yet
5681 * relocated, so it's enough to just subtract in-section offset
5682 */
5683 insn_idx = insn_idx - prog->sec_insn_off;
5684 if (insn_idx >= prog->insns_cnt)
5685 return -EINVAL;
5686 insn = &prog->insns[insn_idx];
5687
5688 if (prog->obj->gen_loader) {
5689 err = record_relo_core(prog, rec, insn_idx);
5690 if (err) {
5691 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5692 prog->name, i, err);
5693 goto out;
5694 }
5695 continue;
5696 }
5697
5698 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5699 if (err) {
5700 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5701 prog->name, i, err);
5702 goto out;
5703 }
5704
5705 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5706 if (err) {
5707 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5708 prog->name, i, insn_idx, err);
5709 goto out;
5710 }
5711 }
5712 }
5713
5714out:
5715 /* obj->btf_vmlinux and module BTFs are freed after object load */
5716 btf__free(obj->btf_vmlinux_override);
5717 obj->btf_vmlinux_override = NULL;
5718
5719 if (!IS_ERR_OR_NULL(cand_cache)) {
5720 hashmap__for_each_entry(cand_cache, entry, i) {
5721 bpf_core_free_cands(entry->value);
5722 }
5723 hashmap__free(cand_cache);
5724 }
5725 return err;
5726}
5727
5728/* Relocate data references within program code:
5729 * - map references;
5730 * - global variable references;
5731 * - extern references.
5732 */
5733static int
5734bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5735{
5736 int i;
5737
5738 for (i = 0; i < prog->nr_reloc; i++) {
5739 struct reloc_desc *relo = &prog->reloc_desc[i];
5740 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5741 struct extern_desc *ext;
5742
5743 switch (relo->type) {
5744 case RELO_LD64:
5745 if (obj->gen_loader) {
5746 insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5747 insn[0].imm = relo->map_idx;
5748 } else {
5749 insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5750 insn[0].imm = obj->maps[relo->map_idx].fd;
5751 }
5752 break;
5753 case RELO_DATA:
5754 insn[1].imm = insn[0].imm + relo->sym_off;
5755 if (obj->gen_loader) {
5756 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5757 insn[0].imm = relo->map_idx;
5758 } else {
5759 const struct bpf_map *map = &obj->maps[relo->map_idx];
5760
5761 if (map->skipped) {
5762 pr_warn("prog '%s': relo #%d: kernel doesn't support global data\n",
5763 prog->name, i);
5764 return -ENOTSUP;
5765 }
5766 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5767 insn[0].imm = obj->maps[relo->map_idx].fd;
5768 }
5769 break;
5770 case RELO_EXTERN_VAR:
5771 ext = &obj->externs[relo->sym_off];
5772 if (ext->type == EXT_KCFG) {
5773 if (obj->gen_loader) {
5774 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5775 insn[0].imm = obj->kconfig_map_idx;
5776 } else {
5777 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5778 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5779 }
5780 insn[1].imm = ext->kcfg.data_off;
5781 } else /* EXT_KSYM */ {
5782 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
5783 insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5784 insn[0].imm = ext->ksym.kernel_btf_id;
5785 insn[1].imm = ext->ksym.kernel_btf_obj_fd;
5786 } else { /* typeless ksyms or unresolved typed ksyms */
5787 insn[0].imm = (__u32)ext->ksym.addr;
5788 insn[1].imm = ext->ksym.addr >> 32;
5789 }
5790 }
5791 break;
5792 case RELO_EXTERN_FUNC:
5793 ext = &obj->externs[relo->sym_off];
5794 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
5795 if (ext->is_set) {
5796 insn[0].imm = ext->ksym.kernel_btf_id;
5797 insn[0].off = ext->ksym.btf_fd_idx;
5798 } else { /* unresolved weak kfunc */
5799 insn[0].imm = 0;
5800 insn[0].off = 0;
5801 }
5802 break;
5803 case RELO_SUBPROG_ADDR:
5804 if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
5805 pr_warn("prog '%s': relo #%d: bad insn\n",
5806 prog->name, i);
5807 return -EINVAL;
5808 }
5809 /* handled already */
5810 break;
5811 case RELO_CALL:
5812 /* handled already */
5813 break;
5814 case RELO_CORE:
5815 /* will be handled by bpf_program_record_relos() */
5816 break;
5817 default:
5818 pr_warn("prog '%s': relo #%d: bad relo type %d\n",
5819 prog->name, i, relo->type);
5820 return -EINVAL;
5821 }
5822 }
5823
5824 return 0;
5825}
5826
5827static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
5828 const struct bpf_program *prog,
5829 const struct btf_ext_info *ext_info,
5830 void **prog_info, __u32 *prog_rec_cnt,
5831 __u32 *prog_rec_sz)
5832{
5833 void *copy_start = NULL, *copy_end = NULL;
5834 void *rec, *rec_end, *new_prog_info;
5835 const struct btf_ext_info_sec *sec;
5836 size_t old_sz, new_sz;
5837 const char *sec_name;
5838 int i, off_adj;
5839
5840 for_each_btf_ext_sec(ext_info, sec) {
5841 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5842 if (!sec_name)
5843 return -EINVAL;
5844 if (strcmp(sec_name, prog->sec_name) != 0)
5845 continue;
5846
5847 for_each_btf_ext_rec(ext_info, sec, i, rec) {
5848 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
5849
5850 if (insn_off < prog->sec_insn_off)
5851 continue;
5852 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
5853 break;
5854
5855 if (!copy_start)
5856 copy_start = rec;
5857 copy_end = rec + ext_info->rec_size;
5858 }
5859
5860 if (!copy_start)
5861 return -ENOENT;
5862
5863 /* append func/line info of a given (sub-)program to the main
5864 * program func/line info
5865 */
5866 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
5867 new_sz = old_sz + (copy_end - copy_start);
5868 new_prog_info = realloc(*prog_info, new_sz);
5869 if (!new_prog_info)
5870 return -ENOMEM;
5871 *prog_info = new_prog_info;
5872 *prog_rec_cnt = new_sz / ext_info->rec_size;
5873 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
5874
5875 /* Kernel instruction offsets are in units of 8-byte
5876 * instructions, while .BTF.ext instruction offsets generated
5877 * by Clang are in units of bytes. So convert Clang offsets
5878 * into kernel offsets and adjust offset according to program
5879 * relocated position.
5880 */
5881 off_adj = prog->sub_insn_off - prog->sec_insn_off;
5882 rec = new_prog_info + old_sz;
5883 rec_end = new_prog_info + new_sz;
5884 for (; rec < rec_end; rec += ext_info->rec_size) {
5885 __u32 *insn_off = rec;
5886
5887 *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
5888 }
5889 *prog_rec_sz = ext_info->rec_size;
5890 return 0;
5891 }
5892
5893 return -ENOENT;
5894}
5895
5896static int
5897reloc_prog_func_and_line_info(const struct bpf_object *obj,
5898 struct bpf_program *main_prog,
5899 const struct bpf_program *prog)
5900{
5901 int err;
5902
5903 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
5904 * supprot func/line info
5905 */
5906 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
5907 return 0;
5908
5909 /* only attempt func info relocation if main program's func_info
5910 * relocation was successful
5911 */
5912 if (main_prog != prog && !main_prog->func_info)
5913 goto line_info;
5914
5915 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
5916 &main_prog->func_info,
5917 &main_prog->func_info_cnt,
5918 &main_prog->func_info_rec_size);
5919 if (err) {
5920 if (err != -ENOENT) {
5921 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
5922 prog->name, err);
5923 return err;
5924 }
5925 if (main_prog->func_info) {
5926 /*
5927 * Some info has already been found but has problem
5928 * in the last btf_ext reloc. Must have to error out.
5929 */
5930 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
5931 return err;
5932 }
5933 /* Have problem loading the very first info. Ignore the rest. */
5934 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
5935 prog->name);
5936 }
5937
5938line_info:
5939 /* don't relocate line info if main program's relocation failed */
5940 if (main_prog != prog && !main_prog->line_info)
5941 return 0;
5942
5943 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
5944 &main_prog->line_info,
5945 &main_prog->line_info_cnt,
5946 &main_prog->line_info_rec_size);
5947 if (err) {
5948 if (err != -ENOENT) {
5949 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
5950 prog->name, err);
5951 return err;
5952 }
5953 if (main_prog->line_info) {
5954 /*
5955 * Some info has already been found but has problem
5956 * in the last btf_ext reloc. Must have to error out.
5957 */
5958 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
5959 return err;
5960 }
5961 /* Have problem loading the very first info. Ignore the rest. */
5962 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
5963 prog->name);
5964 }
5965 return 0;
5966}
5967
5968static int cmp_relo_by_insn_idx(const void *key, const void *elem)
5969{
5970 size_t insn_idx = *(const size_t *)key;
5971 const struct reloc_desc *relo = elem;
5972
5973 if (insn_idx == relo->insn_idx)
5974 return 0;
5975 return insn_idx < relo->insn_idx ? -1 : 1;
5976}
5977
5978static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
5979{
5980 if (!prog->nr_reloc)
5981 return NULL;
5982 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
5983 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
5984}
5985
5986static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
5987{
5988 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
5989 struct reloc_desc *relos;
5990 int i;
5991
5992 if (main_prog == subprog)
5993 return 0;
5994 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
5995 if (!relos)
5996 return -ENOMEM;
5997 if (subprog->nr_reloc)
5998 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
5999 sizeof(*relos) * subprog->nr_reloc);
6000
6001 for (i = main_prog->nr_reloc; i < new_cnt; i++)
6002 relos[i].insn_idx += subprog->sub_insn_off;
6003 /* After insn_idx adjustment the 'relos' array is still sorted
6004 * by insn_idx and doesn't break bsearch.
6005 */
6006 main_prog->reloc_desc = relos;
6007 main_prog->nr_reloc = new_cnt;
6008 return 0;
6009}
6010
6011static int
6012bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6013 struct bpf_program *prog)
6014{
6015 size_t sub_insn_idx, insn_idx, new_cnt;
6016 struct bpf_program *subprog;
6017 struct bpf_insn *insns, *insn;
6018 struct reloc_desc *relo;
6019 int err;
6020
6021 err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6022 if (err)
6023 return err;
6024
6025 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6026 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6027 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6028 continue;
6029
6030 relo = find_prog_insn_relo(prog, insn_idx);
6031 if (relo && relo->type == RELO_EXTERN_FUNC)
6032 /* kfunc relocations will be handled later
6033 * in bpf_object__relocate_data()
6034 */
6035 continue;
6036 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6037 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6038 prog->name, insn_idx, relo->type);
6039 return -LIBBPF_ERRNO__RELOC;
6040 }
6041 if (relo) {
6042 /* sub-program instruction index is a combination of
6043 * an offset of a symbol pointed to by relocation and
6044 * call instruction's imm field; for global functions,
6045 * call always has imm = -1, but for static functions
6046 * relocation is against STT_SECTION and insn->imm
6047 * points to a start of a static function
6048 *
6049 * for subprog addr relocation, the relo->sym_off + insn->imm is
6050 * the byte offset in the corresponding section.
6051 */
6052 if (relo->type == RELO_CALL)
6053 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6054 else
6055 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6056 } else if (insn_is_pseudo_func(insn)) {
6057 /*
6058 * RELO_SUBPROG_ADDR relo is always emitted even if both
6059 * functions are in the same section, so it shouldn't reach here.
6060 */
6061 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6062 prog->name, insn_idx);
6063 return -LIBBPF_ERRNO__RELOC;
6064 } else {
6065 /* if subprogram call is to a static function within
6066 * the same ELF section, there won't be any relocation
6067 * emitted, but it also means there is no additional
6068 * offset necessary, insns->imm is relative to
6069 * instruction's original position within the section
6070 */
6071 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6072 }
6073
6074 /* we enforce that sub-programs should be in .text section */
6075 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6076 if (!subprog) {
6077 pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6078 prog->name);
6079 return -LIBBPF_ERRNO__RELOC;
6080 }
6081
6082 /* if it's the first call instruction calling into this
6083 * subprogram (meaning this subprog hasn't been processed
6084 * yet) within the context of current main program:
6085 * - append it at the end of main program's instructions blog;
6086 * - process is recursively, while current program is put on hold;
6087 * - if that subprogram calls some other not yet processes
6088 * subprogram, same thing will happen recursively until
6089 * there are no more unprocesses subprograms left to append
6090 * and relocate.
6091 */
6092 if (subprog->sub_insn_off == 0) {
6093 subprog->sub_insn_off = main_prog->insns_cnt;
6094
6095 new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6096 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6097 if (!insns) {
6098 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6099 return -ENOMEM;
6100 }
6101 main_prog->insns = insns;
6102 main_prog->insns_cnt = new_cnt;
6103
6104 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6105 subprog->insns_cnt * sizeof(*insns));
6106
6107 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6108 main_prog->name, subprog->insns_cnt, subprog->name);
6109
6110 /* The subprog insns are now appended. Append its relos too. */
6111 err = append_subprog_relos(main_prog, subprog);
6112 if (err)
6113 return err;
6114 err = bpf_object__reloc_code(obj, main_prog, subprog);
6115 if (err)
6116 return err;
6117 }
6118
6119 /* main_prog->insns memory could have been re-allocated, so
6120 * calculate pointer again
6121 */
6122 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6123 /* calculate correct instruction position within current main
6124 * prog; each main prog can have a different set of
6125 * subprograms appended (potentially in different order as
6126 * well), so position of any subprog can be different for
6127 * different main programs */
6128 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6129
6130 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6131 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6132 }
6133
6134 return 0;
6135}
6136
6137/*
6138 * Relocate sub-program calls.
6139 *
6140 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6141 * main prog) is processed separately. For each subprog (non-entry functions,
6142 * that can be called from either entry progs or other subprogs) gets their
6143 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6144 * hasn't been yet appended and relocated within current main prog. Once its
6145 * relocated, sub_insn_off will point at the position within current main prog
6146 * where given subprog was appended. This will further be used to relocate all
6147 * the call instructions jumping into this subprog.
6148 *
6149 * We start with main program and process all call instructions. If the call
6150 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6151 * is zero), subprog instructions are appended at the end of main program's
6152 * instruction array. Then main program is "put on hold" while we recursively
6153 * process newly appended subprogram. If that subprogram calls into another
6154 * subprogram that hasn't been appended, new subprogram is appended again to
6155 * the *main* prog's instructions (subprog's instructions are always left
6156 * untouched, as they need to be in unmodified state for subsequent main progs
6157 * and subprog instructions are always sent only as part of a main prog) and
6158 * the process continues recursively. Once all the subprogs called from a main
6159 * prog or any of its subprogs are appended (and relocated), all their
6160 * positions within finalized instructions array are known, so it's easy to
6161 * rewrite call instructions with correct relative offsets, corresponding to
6162 * desired target subprog.
6163 *
6164 * Its important to realize that some subprogs might not be called from some
6165 * main prog and any of its called/used subprogs. Those will keep their
6166 * subprog->sub_insn_off as zero at all times and won't be appended to current
6167 * main prog and won't be relocated within the context of current main prog.
6168 * They might still be used from other main progs later.
6169 *
6170 * Visually this process can be shown as below. Suppose we have two main
6171 * programs mainA and mainB and BPF object contains three subprogs: subA,
6172 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6173 * subC both call subB:
6174 *
6175 * +--------+ +-------+
6176 * | v v |
6177 * +--+---+ +--+-+-+ +---+--+
6178 * | subA | | subB | | subC |
6179 * +--+---+ +------+ +---+--+
6180 * ^ ^
6181 * | |
6182 * +---+-------+ +------+----+
6183 * | mainA | | mainB |
6184 * +-----------+ +-----------+
6185 *
6186 * We'll start relocating mainA, will find subA, append it and start
6187 * processing sub A recursively:
6188 *
6189 * +-----------+------+
6190 * | mainA | subA |
6191 * +-----------+------+
6192 *
6193 * At this point we notice that subB is used from subA, so we append it and
6194 * relocate (there are no further subcalls from subB):
6195 *
6196 * +-----------+------+------+
6197 * | mainA | subA | subB |
6198 * +-----------+------+------+
6199 *
6200 * At this point, we relocate subA calls, then go one level up and finish with
6201 * relocatin mainA calls. mainA is done.
6202 *
6203 * For mainB process is similar but results in different order. We start with
6204 * mainB and skip subA and subB, as mainB never calls them (at least
6205 * directly), but we see subC is needed, so we append and start processing it:
6206 *
6207 * +-----------+------+
6208 * | mainB | subC |
6209 * +-----------+------+
6210 * Now we see subC needs subB, so we go back to it, append and relocate it:
6211 *
6212 * +-----------+------+------+
6213 * | mainB | subC | subB |
6214 * +-----------+------+------+
6215 *
6216 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6217 */
6218static int
6219bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6220{
6221 struct bpf_program *subprog;
6222 int i, err;
6223
6224 /* mark all subprogs as not relocated (yet) within the context of
6225 * current main program
6226 */
6227 for (i = 0; i < obj->nr_programs; i++) {
6228 subprog = &obj->programs[i];
6229 if (!prog_is_subprog(obj, subprog))
6230 continue;
6231
6232 subprog->sub_insn_off = 0;
6233 }
6234
6235 err = bpf_object__reloc_code(obj, prog, prog);
6236 if (err)
6237 return err;
6238
6239
6240 return 0;
6241}
6242
6243static void
6244bpf_object__free_relocs(struct bpf_object *obj)
6245{
6246 struct bpf_program *prog;
6247 int i;
6248
6249 /* free up relocation descriptors */
6250 for (i = 0; i < obj->nr_programs; i++) {
6251 prog = &obj->programs[i];
6252 zfree(&prog->reloc_desc);
6253 prog->nr_reloc = 0;
6254 }
6255}
6256
6257static int cmp_relocs(const void *_a, const void *_b)
6258{
6259 const struct reloc_desc *a = _a;
6260 const struct reloc_desc *b = _b;
6261
6262 if (a->insn_idx != b->insn_idx)
6263 return a->insn_idx < b->insn_idx ? -1 : 1;
6264
6265 /* no two relocations should have the same insn_idx, but ... */
6266 if (a->type != b->type)
6267 return a->type < b->type ? -1 : 1;
6268
6269 return 0;
6270}
6271
6272static void bpf_object__sort_relos(struct bpf_object *obj)
6273{
6274 int i;
6275
6276 for (i = 0; i < obj->nr_programs; i++) {
6277 struct bpf_program *p = &obj->programs[i];
6278
6279 if (!p->nr_reloc)
6280 continue;
6281
6282 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6283 }
6284}
6285
6286static int
6287bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6288{
6289 struct bpf_program *prog;
6290 size_t i, j;
6291 int err;
6292
6293 if (obj->btf_ext) {
6294 err = bpf_object__relocate_core(obj, targ_btf_path);
6295 if (err) {
6296 pr_warn("failed to perform CO-RE relocations: %d\n",
6297 err);
6298 return err;
6299 }
6300 if (obj->gen_loader)
6301 bpf_object__sort_relos(obj);
6302 }
6303
6304 /* Before relocating calls pre-process relocations and mark
6305 * few ld_imm64 instructions that points to subprogs.
6306 * Otherwise bpf_object__reloc_code() later would have to consider
6307 * all ld_imm64 insns as relocation candidates. That would
6308 * reduce relocation speed, since amount of find_prog_insn_relo()
6309 * would increase and most of them will fail to find a relo.
6310 */
6311 for (i = 0; i < obj->nr_programs; i++) {
6312 prog = &obj->programs[i];
6313 for (j = 0; j < prog->nr_reloc; j++) {
6314 struct reloc_desc *relo = &prog->reloc_desc[j];
6315 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6316
6317 /* mark the insn, so it's recognized by insn_is_pseudo_func() */
6318 if (relo->type == RELO_SUBPROG_ADDR)
6319 insn[0].src_reg = BPF_PSEUDO_FUNC;
6320 }
6321 }
6322
6323 /* relocate subprogram calls and append used subprograms to main
6324 * programs; each copy of subprogram code needs to be relocated
6325 * differently for each main program, because its code location might
6326 * have changed.
6327 * Append subprog relos to main programs to allow data relos to be
6328 * processed after text is completely relocated.
6329 */
6330 for (i = 0; i < obj->nr_programs; i++) {
6331 prog = &obj->programs[i];
6332 /* sub-program's sub-calls are relocated within the context of
6333 * its main program only
6334 */
6335 if (prog_is_subprog(obj, prog))
6336 continue;
6337 if (!prog->load)
6338 continue;
6339
6340 err = bpf_object__relocate_calls(obj, prog);
6341 if (err) {
6342 pr_warn("prog '%s': failed to relocate calls: %d\n",
6343 prog->name, err);
6344 return err;
6345 }
6346 }
6347 /* Process data relos for main programs */
6348 for (i = 0; i < obj->nr_programs; i++) {
6349 prog = &obj->programs[i];
6350 if (prog_is_subprog(obj, prog))
6351 continue;
6352 if (!prog->load)
6353 continue;
6354 err = bpf_object__relocate_data(obj, prog);
6355 if (err) {
6356 pr_warn("prog '%s': failed to relocate data references: %d\n",
6357 prog->name, err);
6358 return err;
6359 }
6360 }
6361 if (!obj->gen_loader)
6362 bpf_object__free_relocs(obj);
6363 return 0;
6364}
6365
6366static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6367 Elf64_Shdr *shdr, Elf_Data *data);
6368
6369static int bpf_object__collect_map_relos(struct bpf_object *obj,
6370 Elf64_Shdr *shdr, Elf_Data *data)
6371{
6372 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6373 int i, j, nrels, new_sz;
6374 const struct btf_var_secinfo *vi = NULL;
6375 const struct btf_type *sec, *var, *def;
6376 struct bpf_map *map = NULL, *targ_map = NULL;
6377 struct bpf_program *targ_prog = NULL;
6378 bool is_prog_array, is_map_in_map;
6379 const struct btf_member *member;
6380 const char *name, *mname, *type;
6381 unsigned int moff;
6382 Elf64_Sym *sym;
6383 Elf64_Rel *rel;
6384 void *tmp;
6385
6386 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6387 return -EINVAL;
6388 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6389 if (!sec)
6390 return -EINVAL;
6391
6392 nrels = shdr->sh_size / shdr->sh_entsize;
6393 for (i = 0; i < nrels; i++) {
6394 rel = elf_rel_by_idx(data, i);
6395 if (!rel) {
6396 pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6397 return -LIBBPF_ERRNO__FORMAT;
6398 }
6399
6400 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6401 if (!sym) {
6402 pr_warn(".maps relo #%d: symbol %zx not found\n",
6403 i, (size_t)ELF64_R_SYM(rel->r_info));
6404 return -LIBBPF_ERRNO__FORMAT;
6405 }
6406 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6407
6408 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6409 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6410 (size_t)rel->r_offset, sym->st_name, name);
6411
6412 for (j = 0; j < obj->nr_maps; j++) {
6413 map = &obj->maps[j];
6414 if (map->sec_idx != obj->efile.btf_maps_shndx)
6415 continue;
6416
6417 vi = btf_var_secinfos(sec) + map->btf_var_idx;
6418 if (vi->offset <= rel->r_offset &&
6419 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6420 break;
6421 }
6422 if (j == obj->nr_maps) {
6423 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6424 i, name, (size_t)rel->r_offset);
6425 return -EINVAL;
6426 }
6427
6428 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6429 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6430 type = is_map_in_map ? "map" : "prog";
6431 if (is_map_in_map) {
6432 if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6433 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6434 i, name);
6435 return -LIBBPF_ERRNO__RELOC;
6436 }
6437 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6438 map->def.key_size != sizeof(int)) {
6439 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6440 i, map->name, sizeof(int));
6441 return -EINVAL;
6442 }
6443 targ_map = bpf_object__find_map_by_name(obj, name);
6444 if (!targ_map) {
6445 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6446 i, name);
6447 return -ESRCH;
6448 }
6449 } else if (is_prog_array) {
6450 targ_prog = bpf_object__find_program_by_name(obj, name);
6451 if (!targ_prog) {
6452 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6453 i, name);
6454 return -ESRCH;
6455 }
6456 if (targ_prog->sec_idx != sym->st_shndx ||
6457 targ_prog->sec_insn_off * 8 != sym->st_value ||
6458 prog_is_subprog(obj, targ_prog)) {
6459 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6460 i, name);
6461 return -LIBBPF_ERRNO__RELOC;
6462 }
6463 } else {
6464 return -EINVAL;
6465 }
6466
6467 var = btf__type_by_id(obj->btf, vi->type);
6468 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6469 if (btf_vlen(def) == 0)
6470 return -EINVAL;
6471 member = btf_members(def) + btf_vlen(def) - 1;
6472 mname = btf__name_by_offset(obj->btf, member->name_off);
6473 if (strcmp(mname, "values"))
6474 return -EINVAL;
6475
6476 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6477 if (rel->r_offset - vi->offset < moff)
6478 return -EINVAL;
6479
6480 moff = rel->r_offset - vi->offset - moff;
6481 /* here we use BPF pointer size, which is always 64 bit, as we
6482 * are parsing ELF that was built for BPF target
6483 */
6484 if (moff % bpf_ptr_sz)
6485 return -EINVAL;
6486 moff /= bpf_ptr_sz;
6487 if (moff >= map->init_slots_sz) {
6488 new_sz = moff + 1;
6489 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6490 if (!tmp)
6491 return -ENOMEM;
6492 map->init_slots = tmp;
6493 memset(map->init_slots + map->init_slots_sz, 0,
6494 (new_sz - map->init_slots_sz) * host_ptr_sz);
6495 map->init_slots_sz = new_sz;
6496 }
6497 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6498
6499 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6500 i, map->name, moff, type, name);
6501 }
6502
6503 return 0;
6504}
6505
6506static int bpf_object__collect_relos(struct bpf_object *obj)
6507{
6508 int i, err;
6509
6510 for (i = 0; i < obj->efile.sec_cnt; i++) {
6511 struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6512 Elf64_Shdr *shdr;
6513 Elf_Data *data;
6514 int idx;
6515
6516 if (sec_desc->sec_type != SEC_RELO)
6517 continue;
6518
6519 shdr = sec_desc->shdr;
6520 data = sec_desc->data;
6521 idx = shdr->sh_info;
6522
6523 if (shdr->sh_type != SHT_REL) {
6524 pr_warn("internal error at %d\n", __LINE__);
6525 return -LIBBPF_ERRNO__INTERNAL;
6526 }
6527
6528 if (idx == obj->efile.st_ops_shndx)
6529 err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6530 else if (idx == obj->efile.btf_maps_shndx)
6531 err = bpf_object__collect_map_relos(obj, shdr, data);
6532 else
6533 err = bpf_object__collect_prog_relos(obj, shdr, data);
6534 if (err)
6535 return err;
6536 }
6537
6538 bpf_object__sort_relos(obj);
6539 return 0;
6540}
6541
6542static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6543{
6544 if (BPF_CLASS(insn->code) == BPF_JMP &&
6545 BPF_OP(insn->code) == BPF_CALL &&
6546 BPF_SRC(insn->code) == BPF_K &&
6547 insn->src_reg == 0 &&
6548 insn->dst_reg == 0) {
6549 *func_id = insn->imm;
6550 return true;
6551 }
6552 return false;
6553}
6554
6555static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6556{
6557 struct bpf_insn *insn = prog->insns;
6558 enum bpf_func_id func_id;
6559 int i;
6560
6561 if (obj->gen_loader)
6562 return 0;
6563
6564 for (i = 0; i < prog->insns_cnt; i++, insn++) {
6565 if (!insn_is_helper_call(insn, &func_id))
6566 continue;
6567
6568 /* on kernels that don't yet support
6569 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6570 * to bpf_probe_read() which works well for old kernels
6571 */
6572 switch (func_id) {
6573 case BPF_FUNC_probe_read_kernel:
6574 case BPF_FUNC_probe_read_user:
6575 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6576 insn->imm = BPF_FUNC_probe_read;
6577 break;
6578 case BPF_FUNC_probe_read_kernel_str:
6579 case BPF_FUNC_probe_read_user_str:
6580 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6581 insn->imm = BPF_FUNC_probe_read_str;
6582 break;
6583 default:
6584 break;
6585 }
6586 }
6587 return 0;
6588}
6589
6590static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6591 int *btf_obj_fd, int *btf_type_id);
6592
6593/* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
6594static int libbpf_prepare_prog_load(struct bpf_program *prog,
6595 struct bpf_prog_load_opts *opts, long cookie)
6596{
6597 enum sec_def_flags def = cookie;
6598
6599 /* old kernels might not support specifying expected_attach_type */
6600 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6601 opts->expected_attach_type = 0;
6602
6603 if (def & SEC_SLEEPABLE)
6604 opts->prog_flags |= BPF_F_SLEEPABLE;
6605
6606 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6607 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6608
6609 if (def & SEC_DEPRECATED)
6610 pr_warn("SEC(\"%s\") is deprecated, please see https://github.com/libbpf/libbpf/wiki/Libbpf-1.0-migration-guide#bpf-program-sec-annotation-deprecations for details\n",
6611 prog->sec_name);
6612
6613 if ((prog->type == BPF_PROG_TYPE_TRACING ||
6614 prog->type == BPF_PROG_TYPE_LSM ||
6615 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) {
6616 int btf_obj_fd = 0, btf_type_id = 0, err;
6617 const char *attach_name;
6618
6619 attach_name = strchr(prog->sec_name, '/') + 1;
6620 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6621 if (err)
6622 return err;
6623
6624 /* cache resolved BTF FD and BTF type ID in the prog */
6625 prog->attach_btf_obj_fd = btf_obj_fd;
6626 prog->attach_btf_id = btf_type_id;
6627
6628 /* but by now libbpf common logic is not utilizing
6629 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6630 * this callback is called after opts were populated by
6631 * libbpf, so this callback has to update opts explicitly here
6632 */
6633 opts->attach_btf_obj_fd = btf_obj_fd;
6634 opts->attach_btf_id = btf_type_id;
6635 }
6636 return 0;
6637}
6638
6639static int bpf_object_load_prog_instance(struct bpf_object *obj, struct bpf_program *prog,
6640 struct bpf_insn *insns, int insns_cnt,
6641 const char *license, __u32 kern_version,
6642 int *prog_fd)
6643{
6644 LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6645 const char *prog_name = NULL;
6646 char *cp, errmsg[STRERR_BUFSIZE];
6647 size_t log_buf_size = 0;
6648 char *log_buf = NULL, *tmp;
6649 int btf_fd, ret, err;
6650 bool own_log_buf = true;
6651 __u32 log_level = prog->log_level;
6652
6653 if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6654 /*
6655 * The program type must be set. Most likely we couldn't find a proper
6656 * section definition at load time, and thus we didn't infer the type.
6657 */
6658 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6659 prog->name, prog->sec_name);
6660 return -EINVAL;
6661 }
6662
6663 if (!insns || !insns_cnt)
6664 return -EINVAL;
6665
6666 load_attr.expected_attach_type = prog->expected_attach_type;
6667 if (kernel_supports(obj, FEAT_PROG_NAME))
6668 prog_name = prog->name;
6669 load_attr.attach_prog_fd = prog->attach_prog_fd;
6670 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6671 load_attr.attach_btf_id = prog->attach_btf_id;
6672 load_attr.kern_version = kern_version;
6673 load_attr.prog_ifindex = prog->prog_ifindex;
6674
6675 /* specify func_info/line_info only if kernel supports them */
6676 btf_fd = bpf_object__btf_fd(obj);
6677 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6678 load_attr.prog_btf_fd = btf_fd;
6679 load_attr.func_info = prog->func_info;
6680 load_attr.func_info_rec_size = prog->func_info_rec_size;
6681 load_attr.func_info_cnt = prog->func_info_cnt;
6682 load_attr.line_info = prog->line_info;
6683 load_attr.line_info_rec_size = prog->line_info_rec_size;
6684 load_attr.line_info_cnt = prog->line_info_cnt;
6685 }
6686 load_attr.log_level = log_level;
6687 load_attr.prog_flags = prog->prog_flags;
6688 load_attr.fd_array = obj->fd_array;
6689
6690 /* adjust load_attr if sec_def provides custom preload callback */
6691 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6692 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6693 if (err < 0) {
6694 pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6695 prog->name, err);
6696 return err;
6697 }
6698 }
6699
6700 if (obj->gen_loader) {
6701 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6702 license, insns, insns_cnt, &load_attr,
6703 prog - obj->programs);
6704 *prog_fd = -1;
6705 return 0;
6706 }
6707
6708retry_load:
6709 /* if log_level is zero, we don't request logs initiallly even if
6710 * custom log_buf is specified; if the program load fails, then we'll
6711 * bump log_level to 1 and use either custom log_buf or we'll allocate
6712 * our own and retry the load to get details on what failed
6713 */
6714 if (log_level) {
6715 if (prog->log_buf) {
6716 log_buf = prog->log_buf;
6717 log_buf_size = prog->log_size;
6718 own_log_buf = false;
6719 } else if (obj->log_buf) {
6720 log_buf = obj->log_buf;
6721 log_buf_size = obj->log_size;
6722 own_log_buf = false;
6723 } else {
6724 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6725 tmp = realloc(log_buf, log_buf_size);
6726 if (!tmp) {
6727 ret = -ENOMEM;
6728 goto out;
6729 }
6730 log_buf = tmp;
6731 log_buf[0] = '\0';
6732 own_log_buf = true;
6733 }
6734 }
6735
6736 load_attr.log_buf = log_buf;
6737 load_attr.log_size = log_buf_size;
6738 load_attr.log_level = log_level;
6739
6740 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6741 if (ret >= 0) {
6742 if (log_level && own_log_buf) {
6743 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6744 prog->name, log_buf);
6745 }
6746
6747 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6748 struct bpf_map *map;
6749 int i;
6750
6751 for (i = 0; i < obj->nr_maps; i++) {
6752 map = &prog->obj->maps[i];
6753 if (map->libbpf_type != LIBBPF_MAP_RODATA)
6754 continue;
6755
6756 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
6757 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6758 pr_warn("prog '%s': failed to bind map '%s': %s\n",
6759 prog->name, map->real_name, cp);
6760 /* Don't fail hard if can't bind rodata. */
6761 }
6762 }
6763 }
6764
6765 *prog_fd = ret;
6766 ret = 0;
6767 goto out;
6768 }
6769
6770 if (log_level == 0) {
6771 log_level = 1;
6772 goto retry_load;
6773 }
6774 /* On ENOSPC, increase log buffer size and retry, unless custom
6775 * log_buf is specified.
6776 * Be careful to not overflow u32, though. Kernel's log buf size limit
6777 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
6778 * multiply by 2 unless we are sure we'll fit within 32 bits.
6779 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
6780 */
6781 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
6782 goto retry_load;
6783
6784 ret = -errno;
6785 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6786 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
6787 pr_perm_msg(ret);
6788
6789 if (own_log_buf && log_buf && log_buf[0] != '\0') {
6790 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6791 prog->name, log_buf);
6792 }
6793 if (insns_cnt >= BPF_MAXINSNS) {
6794 pr_warn("prog '%s': program too large (%d insns), at most %d insns\n",
6795 prog->name, insns_cnt, BPF_MAXINSNS);
6796 }
6797
6798out:
6799 if (own_log_buf)
6800 free(log_buf);
6801 return ret;
6802}
6803
6804static int bpf_program_record_relos(struct bpf_program *prog)
6805{
6806 struct bpf_object *obj = prog->obj;
6807 int i;
6808
6809 for (i = 0; i < prog->nr_reloc; i++) {
6810 struct reloc_desc *relo = &prog->reloc_desc[i];
6811 struct extern_desc *ext = &obj->externs[relo->sym_off];
6812
6813 switch (relo->type) {
6814 case RELO_EXTERN_VAR:
6815 if (ext->type != EXT_KSYM)
6816 continue;
6817 bpf_gen__record_extern(obj->gen_loader, ext->name,
6818 ext->is_weak, !ext->ksym.type_id,
6819 BTF_KIND_VAR, relo->insn_idx);
6820 break;
6821 case RELO_EXTERN_FUNC:
6822 bpf_gen__record_extern(obj->gen_loader, ext->name,
6823 ext->is_weak, false, BTF_KIND_FUNC,
6824 relo->insn_idx);
6825 break;
6826 case RELO_CORE: {
6827 struct bpf_core_relo cr = {
6828 .insn_off = relo->insn_idx * 8,
6829 .type_id = relo->core_relo->type_id,
6830 .access_str_off = relo->core_relo->access_str_off,
6831 .kind = relo->core_relo->kind,
6832 };
6833
6834 bpf_gen__record_relo_core(obj->gen_loader, &cr);
6835 break;
6836 }
6837 default:
6838 continue;
6839 }
6840 }
6841 return 0;
6842}
6843
6844static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
6845 const char *license, __u32 kern_ver)
6846{
6847 int err = 0, fd, i;
6848
6849 if (obj->loaded) {
6850 pr_warn("prog '%s': can't load after object was loaded\n", prog->name);
6851 return libbpf_err(-EINVAL);
6852 }
6853
6854 if (prog->instances.nr < 0 || !prog->instances.fds) {
6855 if (prog->preprocessor) {
6856 pr_warn("Internal error: can't load program '%s'\n",
6857 prog->name);
6858 return libbpf_err(-LIBBPF_ERRNO__INTERNAL);
6859 }
6860
6861 prog->instances.fds = malloc(sizeof(int));
6862 if (!prog->instances.fds) {
6863 pr_warn("Not enough memory for BPF fds\n");
6864 return libbpf_err(-ENOMEM);
6865 }
6866 prog->instances.nr = 1;
6867 prog->instances.fds[0] = -1;
6868 }
6869
6870 if (!prog->preprocessor) {
6871 if (prog->instances.nr != 1) {
6872 pr_warn("prog '%s': inconsistent nr(%d) != 1\n",
6873 prog->name, prog->instances.nr);
6874 }
6875 if (obj->gen_loader)
6876 bpf_program_record_relos(prog);
6877 err = bpf_object_load_prog_instance(obj, prog,
6878 prog->insns, prog->insns_cnt,
6879 license, kern_ver, &fd);
6880 if (!err)
6881 prog->instances.fds[0] = fd;
6882 goto out;
6883 }
6884
6885 for (i = 0; i < prog->instances.nr; i++) {
6886 struct bpf_prog_prep_result result;
6887 bpf_program_prep_t preprocessor = prog->preprocessor;
6888
6889 memset(&result, 0, sizeof(result));
6890 err = preprocessor(prog, i, prog->insns,
6891 prog->insns_cnt, &result);
6892 if (err) {
6893 pr_warn("Preprocessing the %dth instance of program '%s' failed\n",
6894 i, prog->name);
6895 goto out;
6896 }
6897
6898 if (!result.new_insn_ptr || !result.new_insn_cnt) {
6899 pr_debug("Skip loading the %dth instance of program '%s'\n",
6900 i, prog->name);
6901 prog->instances.fds[i] = -1;
6902 if (result.pfd)
6903 *result.pfd = -1;
6904 continue;
6905 }
6906
6907 err = bpf_object_load_prog_instance(obj, prog,
6908 result.new_insn_ptr, result.new_insn_cnt,
6909 license, kern_ver, &fd);
6910 if (err) {
6911 pr_warn("Loading the %dth instance of program '%s' failed\n",
6912 i, prog->name);
6913 goto out;
6914 }
6915
6916 if (result.pfd)
6917 *result.pfd = fd;
6918 prog->instances.fds[i] = fd;
6919 }
6920out:
6921 if (err)
6922 pr_warn("failed to load program '%s'\n", prog->name);
6923 return libbpf_err(err);
6924}
6925
6926int bpf_program__load(struct bpf_program *prog, const char *license, __u32 kern_ver)
6927{
6928 return bpf_object_load_prog(prog->obj, prog, license, kern_ver);
6929}
6930
6931static int
6932bpf_object__load_progs(struct bpf_object *obj, int log_level)
6933{
6934 struct bpf_program *prog;
6935 size_t i;
6936 int err;
6937
6938 for (i = 0; i < obj->nr_programs; i++) {
6939 prog = &obj->programs[i];
6940 err = bpf_object__sanitize_prog(obj, prog);
6941 if (err)
6942 return err;
6943 }
6944
6945 for (i = 0; i < obj->nr_programs; i++) {
6946 prog = &obj->programs[i];
6947 if (prog_is_subprog(obj, prog))
6948 continue;
6949 if (!prog->load) {
6950 pr_debug("prog '%s': skipped loading\n", prog->name);
6951 continue;
6952 }
6953 prog->log_level |= log_level;
6954 err = bpf_object_load_prog(obj, prog, obj->license, obj->kern_version);
6955 if (err)
6956 return err;
6957 }
6958 if (obj->gen_loader)
6959 bpf_object__free_relocs(obj);
6960 return 0;
6961}
6962
6963static const struct bpf_sec_def *find_sec_def(const char *sec_name);
6964
6965static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
6966{
6967 struct bpf_program *prog;
6968 int err;
6969
6970 bpf_object__for_each_program(prog, obj) {
6971 prog->sec_def = find_sec_def(prog->sec_name);
6972 if (!prog->sec_def) {
6973 /* couldn't guess, but user might manually specify */
6974 pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
6975 prog->name, prog->sec_name);
6976 continue;
6977 }
6978
6979 bpf_program__set_type(prog, prog->sec_def->prog_type);
6980 bpf_program__set_expected_attach_type(prog, prog->sec_def->expected_attach_type);
6981
6982#pragma GCC diagnostic push
6983#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
6984 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING ||
6985 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT)
6986 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0);
6987#pragma GCC diagnostic pop
6988
6989 /* sec_def can have custom callback which should be called
6990 * after bpf_program is initialized to adjust its properties
6991 */
6992 if (prog->sec_def->prog_setup_fn) {
6993 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
6994 if (err < 0) {
6995 pr_warn("prog '%s': failed to initialize: %d\n",
6996 prog->name, err);
6997 return err;
6998 }
6999 }
7000 }
7001
7002 return 0;
7003}
7004
7005static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7006 const struct bpf_object_open_opts *opts)
7007{
7008 const char *obj_name, *kconfig, *btf_tmp_path;
7009 struct bpf_object *obj;
7010 char tmp_name[64];
7011 int err;
7012 char *log_buf;
7013 size_t log_size;
7014 __u32 log_level;
7015
7016 if (elf_version(EV_CURRENT) == EV_NONE) {
7017 pr_warn("failed to init libelf for %s\n",
7018 path ? : "(mem buf)");
7019 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7020 }
7021
7022 if (!OPTS_VALID(opts, bpf_object_open_opts))
7023 return ERR_PTR(-EINVAL);
7024
7025 obj_name = OPTS_GET(opts, object_name, NULL);
7026 if (obj_buf) {
7027 if (!obj_name) {
7028 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7029 (unsigned long)obj_buf,
7030 (unsigned long)obj_buf_sz);
7031 obj_name = tmp_name;
7032 }
7033 path = obj_name;
7034 pr_debug("loading object '%s' from buffer\n", obj_name);
7035 }
7036
7037 log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7038 log_size = OPTS_GET(opts, kernel_log_size, 0);
7039 log_level = OPTS_GET(opts, kernel_log_level, 0);
7040 if (log_size > UINT_MAX)
7041 return ERR_PTR(-EINVAL);
7042 if (log_size && !log_buf)
7043 return ERR_PTR(-EINVAL);
7044
7045 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7046 if (IS_ERR(obj))
7047 return obj;
7048
7049 obj->log_buf = log_buf;
7050 obj->log_size = log_size;
7051 obj->log_level = log_level;
7052
7053 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7054 if (btf_tmp_path) {
7055 if (strlen(btf_tmp_path) >= PATH_MAX) {
7056 err = -ENAMETOOLONG;
7057 goto out;
7058 }
7059 obj->btf_custom_path = strdup(btf_tmp_path);
7060 if (!obj->btf_custom_path) {
7061 err = -ENOMEM;
7062 goto out;
7063 }
7064 }
7065
7066 kconfig = OPTS_GET(opts, kconfig, NULL);
7067 if (kconfig) {
7068 obj->kconfig = strdup(kconfig);
7069 if (!obj->kconfig) {
7070 err = -ENOMEM;
7071 goto out;
7072 }
7073 }
7074
7075 err = bpf_object__elf_init(obj);
7076 err = err ? : bpf_object__check_endianness(obj);
7077 err = err ? : bpf_object__elf_collect(obj);
7078 err = err ? : bpf_object__collect_externs(obj);
7079 err = err ? : bpf_object__finalize_btf(obj);
7080 err = err ? : bpf_object__init_maps(obj, opts);
7081 err = err ? : bpf_object_init_progs(obj, opts);
7082 err = err ? : bpf_object__collect_relos(obj);
7083 if (err)
7084 goto out;
7085
7086 bpf_object__elf_finish(obj);
7087
7088 return obj;
7089out:
7090 bpf_object__close(obj);
7091 return ERR_PTR(err);
7092}
7093
7094static struct bpf_object *
7095__bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags)
7096{
7097 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7098 .relaxed_maps = flags & MAPS_RELAX_COMPAT,
7099 );
7100
7101 /* param validation */
7102 if (!attr->file)
7103 return NULL;
7104
7105 pr_debug("loading %s\n", attr->file);
7106 return bpf_object_open(attr->file, NULL, 0, &opts);
7107}
7108
7109struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr)
7110{
7111 return libbpf_ptr(__bpf_object__open_xattr(attr, 0));
7112}
7113
7114struct bpf_object *bpf_object__open(const char *path)
7115{
7116 struct bpf_object_open_attr attr = {
7117 .file = path,
7118 .prog_type = BPF_PROG_TYPE_UNSPEC,
7119 };
7120
7121 return libbpf_ptr(__bpf_object__open_xattr(&attr, 0));
7122}
7123
7124struct bpf_object *
7125bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7126{
7127 if (!path)
7128 return libbpf_err_ptr(-EINVAL);
7129
7130 pr_debug("loading %s\n", path);
7131
7132 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7133}
7134
7135struct bpf_object *
7136bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7137 const struct bpf_object_open_opts *opts)
7138{
7139 if (!obj_buf || obj_buf_sz == 0)
7140 return libbpf_err_ptr(-EINVAL);
7141
7142 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7143}
7144
7145struct bpf_object *
7146bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz,
7147 const char *name)
7148{
7149 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7150 .object_name = name,
7151 /* wrong default, but backwards-compatible */
7152 .relaxed_maps = true,
7153 );
7154
7155 /* returning NULL is wrong, but backwards-compatible */
7156 if (!obj_buf || obj_buf_sz == 0)
7157 return errno = EINVAL, NULL;
7158
7159 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, &opts));
7160}
7161
7162static int bpf_object_unload(struct bpf_object *obj)
7163{
7164 size_t i;
7165
7166 if (!obj)
7167 return libbpf_err(-EINVAL);
7168
7169 for (i = 0; i < obj->nr_maps; i++) {
7170 zclose(obj->maps[i].fd);
7171 if (obj->maps[i].st_ops)
7172 zfree(&obj->maps[i].st_ops->kern_vdata);
7173 }
7174
7175 for (i = 0; i < obj->nr_programs; i++)
7176 bpf_program__unload(&obj->programs[i]);
7177
7178 return 0;
7179}
7180
7181int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload")));
7182
7183static int bpf_object__sanitize_maps(struct bpf_object *obj)
7184{
7185 struct bpf_map *m;
7186
7187 bpf_object__for_each_map(m, obj) {
7188 if (!bpf_map__is_internal(m))
7189 continue;
7190 if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7191 m->def.map_flags ^= BPF_F_MMAPABLE;
7192 }
7193
7194 return 0;
7195}
7196
7197int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7198{
7199 char sym_type, sym_name[500];
7200 unsigned long long sym_addr;
7201 int ret, err = 0;
7202 FILE *f;
7203
7204 f = fopen("/proc/kallsyms", "r");
7205 if (!f) {
7206 err = -errno;
7207 pr_warn("failed to open /proc/kallsyms: %d\n", err);
7208 return err;
7209 }
7210
7211 while (true) {
7212 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7213 &sym_addr, &sym_type, sym_name);
7214 if (ret == EOF && feof(f))
7215 break;
7216 if (ret != 3) {
7217 pr_warn("failed to read kallsyms entry: %d\n", ret);
7218 err = -EINVAL;
7219 break;
7220 }
7221
7222 err = cb(sym_addr, sym_type, sym_name, ctx);
7223 if (err)
7224 break;
7225 }
7226
7227 fclose(f);
7228 return err;
7229}
7230
7231static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7232 const char *sym_name, void *ctx)
7233{
7234 struct bpf_object *obj = ctx;
7235 const struct btf_type *t;
7236 struct extern_desc *ext;
7237
7238 ext = find_extern_by_name(obj, sym_name);
7239 if (!ext || ext->type != EXT_KSYM)
7240 return 0;
7241
7242 t = btf__type_by_id(obj->btf, ext->btf_id);
7243 if (!btf_is_var(t))
7244 return 0;
7245
7246 if (ext->is_set && ext->ksym.addr != sym_addr) {
7247 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n",
7248 sym_name, ext->ksym.addr, sym_addr);
7249 return -EINVAL;
7250 }
7251 if (!ext->is_set) {
7252 ext->is_set = true;
7253 ext->ksym.addr = sym_addr;
7254 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr);
7255 }
7256 return 0;
7257}
7258
7259static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7260{
7261 return libbpf_kallsyms_parse(kallsyms_cb, obj);
7262}
7263
7264static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7265 __u16 kind, struct btf **res_btf,
7266 struct module_btf **res_mod_btf)
7267{
7268 struct module_btf *mod_btf;
7269 struct btf *btf;
7270 int i, id, err;
7271
7272 btf = obj->btf_vmlinux;
7273 mod_btf = NULL;
7274 id = btf__find_by_name_kind(btf, ksym_name, kind);
7275
7276 if (id == -ENOENT) {
7277 err = load_module_btfs(obj);
7278 if (err)
7279 return err;
7280
7281 for (i = 0; i < obj->btf_module_cnt; i++) {
7282 /* we assume module_btf's BTF FD is always >0 */
7283 mod_btf = &obj->btf_modules[i];
7284 btf = mod_btf->btf;
7285 id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7286 if (id != -ENOENT)
7287 break;
7288 }
7289 }
7290 if (id <= 0)
7291 return -ESRCH;
7292
7293 *res_btf = btf;
7294 *res_mod_btf = mod_btf;
7295 return id;
7296}
7297
7298static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7299 struct extern_desc *ext)
7300{
7301 const struct btf_type *targ_var, *targ_type;
7302 __u32 targ_type_id, local_type_id;
7303 struct module_btf *mod_btf = NULL;
7304 const char *targ_var_name;
7305 struct btf *btf = NULL;
7306 int id, err;
7307
7308 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7309 if (id < 0) {
7310 if (id == -ESRCH && ext->is_weak)
7311 return 0;
7312 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7313 ext->name);
7314 return id;
7315 }
7316
7317 /* find local type_id */
7318 local_type_id = ext->ksym.type_id;
7319
7320 /* find target type_id */
7321 targ_var = btf__type_by_id(btf, id);
7322 targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7323 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7324
7325 err = bpf_core_types_are_compat(obj->btf, local_type_id,
7326 btf, targ_type_id);
7327 if (err <= 0) {
7328 const struct btf_type *local_type;
7329 const char *targ_name, *local_name;
7330
7331 local_type = btf__type_by_id(obj->btf, local_type_id);
7332 local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7333 targ_name = btf__name_by_offset(btf, targ_type->name_off);
7334
7335 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7336 ext->name, local_type_id,
7337 btf_kind_str(local_type), local_name, targ_type_id,
7338 btf_kind_str(targ_type), targ_name);
7339 return -EINVAL;
7340 }
7341
7342 ext->is_set = true;
7343 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7344 ext->ksym.kernel_btf_id = id;
7345 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7346 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7347
7348 return 0;
7349}
7350
7351static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7352 struct extern_desc *ext)
7353{
7354 int local_func_proto_id, kfunc_proto_id, kfunc_id;
7355 struct module_btf *mod_btf = NULL;
7356 const struct btf_type *kern_func;
7357 struct btf *kern_btf = NULL;
7358 int ret;
7359
7360 local_func_proto_id = ext->ksym.type_id;
7361
7362 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf);
7363 if (kfunc_id < 0) {
7364 if (kfunc_id == -ESRCH && ext->is_weak)
7365 return 0;
7366 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7367 ext->name);
7368 return kfunc_id;
7369 }
7370
7371 kern_func = btf__type_by_id(kern_btf, kfunc_id);
7372 kfunc_proto_id = kern_func->type;
7373
7374 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7375 kern_btf, kfunc_proto_id);
7376 if (ret <= 0) {
7377 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n",
7378 ext->name, local_func_proto_id, kfunc_proto_id);
7379 return -EINVAL;
7380 }
7381
7382 /* set index for module BTF fd in fd_array, if unset */
7383 if (mod_btf && !mod_btf->fd_array_idx) {
7384 /* insn->off is s16 */
7385 if (obj->fd_array_cnt == INT16_MAX) {
7386 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7387 ext->name, mod_btf->fd_array_idx);
7388 return -E2BIG;
7389 }
7390 /* Cannot use index 0 for module BTF fd */
7391 if (!obj->fd_array_cnt)
7392 obj->fd_array_cnt = 1;
7393
7394 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7395 obj->fd_array_cnt + 1);
7396 if (ret)
7397 return ret;
7398 mod_btf->fd_array_idx = obj->fd_array_cnt;
7399 /* we assume module BTF FD is always >0 */
7400 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7401 }
7402
7403 ext->is_set = true;
7404 ext->ksym.kernel_btf_id = kfunc_id;
7405 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7406 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n",
7407 ext->name, kfunc_id);
7408
7409 return 0;
7410}
7411
7412static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7413{
7414 const struct btf_type *t;
7415 struct extern_desc *ext;
7416 int i, err;
7417
7418 for (i = 0; i < obj->nr_extern; i++) {
7419 ext = &obj->externs[i];
7420 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7421 continue;
7422
7423 if (obj->gen_loader) {
7424 ext->is_set = true;
7425 ext->ksym.kernel_btf_obj_fd = 0;
7426 ext->ksym.kernel_btf_id = 0;
7427 continue;
7428 }
7429 t = btf__type_by_id(obj->btf, ext->btf_id);
7430 if (btf_is_var(t))
7431 err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7432 else
7433 err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7434 if (err)
7435 return err;
7436 }
7437 return 0;
7438}
7439
7440static int bpf_object__resolve_externs(struct bpf_object *obj,
7441 const char *extra_kconfig)
7442{
7443 bool need_config = false, need_kallsyms = false;
7444 bool need_vmlinux_btf = false;
7445 struct extern_desc *ext;
7446 void *kcfg_data = NULL;
7447 int err, i;
7448
7449 if (obj->nr_extern == 0)
7450 return 0;
7451
7452 if (obj->kconfig_map_idx >= 0)
7453 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7454
7455 for (i = 0; i < obj->nr_extern; i++) {
7456 ext = &obj->externs[i];
7457
7458 if (ext->type == EXT_KCFG &&
7459 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7460 void *ext_val = kcfg_data + ext->kcfg.data_off;
7461 __u32 kver = get_kernel_version();
7462
7463 if (!kver) {
7464 pr_warn("failed to get kernel version\n");
7465 return -EINVAL;
7466 }
7467 err = set_kcfg_value_num(ext, ext_val, kver);
7468 if (err)
7469 return err;
7470 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver);
7471 } else if (ext->type == EXT_KCFG && str_has_pfx(ext->name, "CONFIG_")) {
7472 need_config = true;
7473 } else if (ext->type == EXT_KSYM) {
7474 if (ext->ksym.type_id)
7475 need_vmlinux_btf = true;
7476 else
7477 need_kallsyms = true;
7478 } else {
7479 pr_warn("unrecognized extern '%s'\n", ext->name);
7480 return -EINVAL;
7481 }
7482 }
7483 if (need_config && extra_kconfig) {
7484 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7485 if (err)
7486 return -EINVAL;
7487 need_config = false;
7488 for (i = 0; i < obj->nr_extern; i++) {
7489 ext = &obj->externs[i];
7490 if (ext->type == EXT_KCFG && !ext->is_set) {
7491 need_config = true;
7492 break;
7493 }
7494 }
7495 }
7496 if (need_config) {
7497 err = bpf_object__read_kconfig_file(obj, kcfg_data);
7498 if (err)
7499 return -EINVAL;
7500 }
7501 if (need_kallsyms) {
7502 err = bpf_object__read_kallsyms_file(obj);
7503 if (err)
7504 return -EINVAL;
7505 }
7506 if (need_vmlinux_btf) {
7507 err = bpf_object__resolve_ksyms_btf_id(obj);
7508 if (err)
7509 return -EINVAL;
7510 }
7511 for (i = 0; i < obj->nr_extern; i++) {
7512 ext = &obj->externs[i];
7513
7514 if (!ext->is_set && !ext->is_weak) {
7515 pr_warn("extern %s (strong) not resolved\n", ext->name);
7516 return -ESRCH;
7517 } else if (!ext->is_set) {
7518 pr_debug("extern %s (weak) not resolved, defaulting to zero\n",
7519 ext->name);
7520 }
7521 }
7522
7523 return 0;
7524}
7525
7526static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7527{
7528 int err, i;
7529
7530 if (!obj)
7531 return libbpf_err(-EINVAL);
7532
7533 if (obj->loaded) {
7534 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7535 return libbpf_err(-EINVAL);
7536 }
7537
7538 if (obj->gen_loader)
7539 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7540
7541 err = bpf_object__probe_loading(obj);
7542 err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7543 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7544 err = err ? : bpf_object__sanitize_and_load_btf(obj);
7545 err = err ? : bpf_object__sanitize_maps(obj);
7546 err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7547 err = err ? : bpf_object__create_maps(obj);
7548 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7549 err = err ? : bpf_object__load_progs(obj, extra_log_level);
7550 err = err ? : bpf_object_init_prog_arrays(obj);
7551
7552 if (obj->gen_loader) {
7553 /* reset FDs */
7554 if (obj->btf)
7555 btf__set_fd(obj->btf, -1);
7556 for (i = 0; i < obj->nr_maps; i++)
7557 obj->maps[i].fd = -1;
7558 if (!err)
7559 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7560 }
7561
7562 /* clean up fd_array */
7563 zfree(&obj->fd_array);
7564
7565 /* clean up module BTFs */
7566 for (i = 0; i < obj->btf_module_cnt; i++) {
7567 close(obj->btf_modules[i].fd);
7568 btf__free(obj->btf_modules[i].btf);
7569 free(obj->btf_modules[i].name);
7570 }
7571 free(obj->btf_modules);
7572
7573 /* clean up vmlinux BTF */
7574 btf__free(obj->btf_vmlinux);
7575 obj->btf_vmlinux = NULL;
7576
7577 obj->loaded = true; /* doesn't matter if successfully or not */
7578
7579 if (err)
7580 goto out;
7581
7582 return 0;
7583out:
7584 /* unpin any maps that were auto-pinned during load */
7585 for (i = 0; i < obj->nr_maps; i++)
7586 if (obj->maps[i].pinned && !obj->maps[i].reused)
7587 bpf_map__unpin(&obj->maps[i], NULL);
7588
7589 bpf_object_unload(obj);
7590 pr_warn("failed to load object '%s'\n", obj->path);
7591 return libbpf_err(err);
7592}
7593
7594int bpf_object__load_xattr(struct bpf_object_load_attr *attr)
7595{
7596 return bpf_object_load(attr->obj, attr->log_level, attr->target_btf_path);
7597}
7598
7599int bpf_object__load(struct bpf_object *obj)
7600{
7601 return bpf_object_load(obj, 0, NULL);
7602}
7603
7604static int make_parent_dir(const char *path)
7605{
7606 char *cp, errmsg[STRERR_BUFSIZE];
7607 char *dname, *dir;
7608 int err = 0;
7609
7610 dname = strdup(path);
7611 if (dname == NULL)
7612 return -ENOMEM;
7613
7614 dir = dirname(dname);
7615 if (mkdir(dir, 0700) && errno != EEXIST)
7616 err = -errno;
7617
7618 free(dname);
7619 if (err) {
7620 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7621 pr_warn("failed to mkdir %s: %s\n", path, cp);
7622 }
7623 return err;
7624}
7625
7626static int check_path(const char *path)
7627{
7628 char *cp, errmsg[STRERR_BUFSIZE];
7629 struct statfs st_fs;
7630 char *dname, *dir;
7631 int err = 0;
7632
7633 if (path == NULL)
7634 return -EINVAL;
7635
7636 dname = strdup(path);
7637 if (dname == NULL)
7638 return -ENOMEM;
7639
7640 dir = dirname(dname);
7641 if (statfs(dir, &st_fs)) {
7642 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7643 pr_warn("failed to statfs %s: %s\n", dir, cp);
7644 err = -errno;
7645 }
7646 free(dname);
7647
7648 if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7649 pr_warn("specified path %s is not on BPF FS\n", path);
7650 err = -EINVAL;
7651 }
7652
7653 return err;
7654}
7655
7656static int bpf_program_pin_instance(struct bpf_program *prog, const char *path, int instance)
7657{
7658 char *cp, errmsg[STRERR_BUFSIZE];
7659 int err;
7660
7661 err = make_parent_dir(path);
7662 if (err)
7663 return libbpf_err(err);
7664
7665 err = check_path(path);
7666 if (err)
7667 return libbpf_err(err);
7668
7669 if (prog == NULL) {
7670 pr_warn("invalid program pointer\n");
7671 return libbpf_err(-EINVAL);
7672 }
7673
7674 if (instance < 0 || instance >= prog->instances.nr) {
7675 pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7676 instance, prog->name, prog->instances.nr);
7677 return libbpf_err(-EINVAL);
7678 }
7679
7680 if (bpf_obj_pin(prog->instances.fds[instance], path)) {
7681 err = -errno;
7682 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7683 pr_warn("failed to pin program: %s\n", cp);
7684 return libbpf_err(err);
7685 }
7686 pr_debug("pinned program '%s'\n", path);
7687
7688 return 0;
7689}
7690
7691static int bpf_program_unpin_instance(struct bpf_program *prog, const char *path, int instance)
7692{
7693 int err;
7694
7695 err = check_path(path);
7696 if (err)
7697 return libbpf_err(err);
7698
7699 if (prog == NULL) {
7700 pr_warn("invalid program pointer\n");
7701 return libbpf_err(-EINVAL);
7702 }
7703
7704 if (instance < 0 || instance >= prog->instances.nr) {
7705 pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7706 instance, prog->name, prog->instances.nr);
7707 return libbpf_err(-EINVAL);
7708 }
7709
7710 err = unlink(path);
7711 if (err != 0)
7712 return libbpf_err(-errno);
7713
7714 pr_debug("unpinned program '%s'\n", path);
7715
7716 return 0;
7717}
7718
7719__attribute__((alias("bpf_program_pin_instance")))
7720int bpf_object__pin_instance(struct bpf_program *prog, const char *path, int instance);
7721
7722__attribute__((alias("bpf_program_unpin_instance")))
7723int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, int instance);
7724
7725int bpf_program__pin(struct bpf_program *prog, const char *path)
7726{
7727 int i, err;
7728
7729 err = make_parent_dir(path);
7730 if (err)
7731 return libbpf_err(err);
7732
7733 err = check_path(path);
7734 if (err)
7735 return libbpf_err(err);
7736
7737 if (prog == NULL) {
7738 pr_warn("invalid program pointer\n");
7739 return libbpf_err(-EINVAL);
7740 }
7741
7742 if (prog->instances.nr <= 0) {
7743 pr_warn("no instances of prog %s to pin\n", prog->name);
7744 return libbpf_err(-EINVAL);
7745 }
7746
7747 if (prog->instances.nr == 1) {
7748 /* don't create subdirs when pinning single instance */
7749 return bpf_program_pin_instance(prog, path, 0);
7750 }
7751
7752 for (i = 0; i < prog->instances.nr; i++) {
7753 char buf[PATH_MAX];
7754 int len;
7755
7756 len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7757 if (len < 0) {
7758 err = -EINVAL;
7759 goto err_unpin;
7760 } else if (len >= PATH_MAX) {
7761 err = -ENAMETOOLONG;
7762 goto err_unpin;
7763 }
7764
7765 err = bpf_program_pin_instance(prog, buf, i);
7766 if (err)
7767 goto err_unpin;
7768 }
7769
7770 return 0;
7771
7772err_unpin:
7773 for (i = i - 1; i >= 0; i--) {
7774 char buf[PATH_MAX];
7775 int len;
7776
7777 len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7778 if (len < 0)
7779 continue;
7780 else if (len >= PATH_MAX)
7781 continue;
7782
7783 bpf_program_unpin_instance(prog, buf, i);
7784 }
7785
7786 rmdir(path);
7787
7788 return libbpf_err(err);
7789}
7790
7791int bpf_program__unpin(struct bpf_program *prog, const char *path)
7792{
7793 int i, err;
7794
7795 err = check_path(path);
7796 if (err)
7797 return libbpf_err(err);
7798
7799 if (prog == NULL) {
7800 pr_warn("invalid program pointer\n");
7801 return libbpf_err(-EINVAL);
7802 }
7803
7804 if (prog->instances.nr <= 0) {
7805 pr_warn("no instances of prog %s to pin\n", prog->name);
7806 return libbpf_err(-EINVAL);
7807 }
7808
7809 if (prog->instances.nr == 1) {
7810 /* don't create subdirs when pinning single instance */
7811 return bpf_program_unpin_instance(prog, path, 0);
7812 }
7813
7814 for (i = 0; i < prog->instances.nr; i++) {
7815 char buf[PATH_MAX];
7816 int len;
7817
7818 len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7819 if (len < 0)
7820 return libbpf_err(-EINVAL);
7821 else if (len >= PATH_MAX)
7822 return libbpf_err(-ENAMETOOLONG);
7823
7824 err = bpf_program_unpin_instance(prog, buf, i);
7825 if (err)
7826 return err;
7827 }
7828
7829 err = rmdir(path);
7830 if (err)
7831 return libbpf_err(-errno);
7832
7833 return 0;
7834}
7835
7836int bpf_map__pin(struct bpf_map *map, const char *path)
7837{
7838 char *cp, errmsg[STRERR_BUFSIZE];
7839 int err;
7840
7841 if (map == NULL) {
7842 pr_warn("invalid map pointer\n");
7843 return libbpf_err(-EINVAL);
7844 }
7845
7846 if (map->pin_path) {
7847 if (path && strcmp(path, map->pin_path)) {
7848 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7849 bpf_map__name(map), map->pin_path, path);
7850 return libbpf_err(-EINVAL);
7851 } else if (map->pinned) {
7852 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7853 bpf_map__name(map), map->pin_path);
7854 return 0;
7855 }
7856 } else {
7857 if (!path) {
7858 pr_warn("missing a path to pin map '%s' at\n",
7859 bpf_map__name(map));
7860 return libbpf_err(-EINVAL);
7861 } else if (map->pinned) {
7862 pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7863 return libbpf_err(-EEXIST);
7864 }
7865
7866 map->pin_path = strdup(path);
7867 if (!map->pin_path) {
7868 err = -errno;
7869 goto out_err;
7870 }
7871 }
7872
7873 err = make_parent_dir(map->pin_path);
7874 if (err)
7875 return libbpf_err(err);
7876
7877 err = check_path(map->pin_path);
7878 if (err)
7879 return libbpf_err(err);
7880
7881 if (bpf_obj_pin(map->fd, map->pin_path)) {
7882 err = -errno;
7883 goto out_err;
7884 }
7885
7886 map->pinned = true;
7887 pr_debug("pinned map '%s'\n", map->pin_path);
7888
7889 return 0;
7890
7891out_err:
7892 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7893 pr_warn("failed to pin map: %s\n", cp);
7894 return libbpf_err(err);
7895}
7896
7897int bpf_map__unpin(struct bpf_map *map, const char *path)
7898{
7899 int err;
7900
7901 if (map == NULL) {
7902 pr_warn("invalid map pointer\n");
7903 return libbpf_err(-EINVAL);
7904 }
7905
7906 if (map->pin_path) {
7907 if (path && strcmp(path, map->pin_path)) {
7908 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7909 bpf_map__name(map), map->pin_path, path);
7910 return libbpf_err(-EINVAL);
7911 }
7912 path = map->pin_path;
7913 } else if (!path) {
7914 pr_warn("no path to unpin map '%s' from\n",
7915 bpf_map__name(map));
7916 return libbpf_err(-EINVAL);
7917 }
7918
7919 err = check_path(path);
7920 if (err)
7921 return libbpf_err(err);
7922
7923 err = unlink(path);
7924 if (err != 0)
7925 return libbpf_err(-errno);
7926
7927 map->pinned = false;
7928 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7929
7930 return 0;
7931}
7932
7933int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7934{
7935 char *new = NULL;
7936
7937 if (path) {
7938 new = strdup(path);
7939 if (!new)
7940 return libbpf_err(-errno);
7941 }
7942
7943 free(map->pin_path);
7944 map->pin_path = new;
7945 return 0;
7946}
7947
7948__alias(bpf_map__pin_path)
7949const char *bpf_map__get_pin_path(const struct bpf_map *map);
7950
7951const char *bpf_map__pin_path(const struct bpf_map *map)
7952{
7953 return map->pin_path;
7954}
7955
7956bool bpf_map__is_pinned(const struct bpf_map *map)
7957{
7958 return map->pinned;
7959}
7960
7961static void sanitize_pin_path(char *s)
7962{
7963 /* bpffs disallows periods in path names */
7964 while (*s) {
7965 if (*s == '.')
7966 *s = '_';
7967 s++;
7968 }
7969}
7970
7971int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
7972{
7973 struct bpf_map *map;
7974 int err;
7975
7976 if (!obj)
7977 return libbpf_err(-ENOENT);
7978
7979 if (!obj->loaded) {
7980 pr_warn("object not yet loaded; load it first\n");
7981 return libbpf_err(-ENOENT);
7982 }
7983
7984 bpf_object__for_each_map(map, obj) {
7985 char *pin_path = NULL;
7986 char buf[PATH_MAX];
7987
7988 if (map->skipped)
7989 continue;
7990
7991 if (path) {
7992 int len;
7993
7994 len = snprintf(buf, PATH_MAX, "%s/%s", path,
7995 bpf_map__name(map));
7996 if (len < 0) {
7997 err = -EINVAL;
7998 goto err_unpin_maps;
7999 } else if (len >= PATH_MAX) {
8000 err = -ENAMETOOLONG;
8001 goto err_unpin_maps;
8002 }
8003 sanitize_pin_path(buf);
8004 pin_path = buf;
8005 } else if (!map->pin_path) {
8006 continue;
8007 }
8008
8009 err = bpf_map__pin(map, pin_path);
8010 if (err)
8011 goto err_unpin_maps;
8012 }
8013
8014 return 0;
8015
8016err_unpin_maps:
8017 while ((map = bpf_object__prev_map(obj, map))) {
8018 if (!map->pin_path)
8019 continue;
8020
8021 bpf_map__unpin(map, NULL);
8022 }
8023
8024 return libbpf_err(err);
8025}
8026
8027int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8028{
8029 struct bpf_map *map;
8030 int err;
8031
8032 if (!obj)
8033 return libbpf_err(-ENOENT);
8034
8035 bpf_object__for_each_map(map, obj) {
8036 char *pin_path = NULL;
8037 char buf[PATH_MAX];
8038
8039 if (path) {
8040 int len;
8041
8042 len = snprintf(buf, PATH_MAX, "%s/%s", path,
8043 bpf_map__name(map));
8044 if (len < 0)
8045 return libbpf_err(-EINVAL);
8046 else if (len >= PATH_MAX)
8047 return libbpf_err(-ENAMETOOLONG);
8048 sanitize_pin_path(buf);
8049 pin_path = buf;
8050 } else if (!map->pin_path) {
8051 continue;
8052 }
8053
8054 err = bpf_map__unpin(map, pin_path);
8055 if (err)
8056 return libbpf_err(err);
8057 }
8058
8059 return 0;
8060}
8061
8062int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8063{
8064 struct bpf_program *prog;
8065 int err;
8066
8067 if (!obj)
8068 return libbpf_err(-ENOENT);
8069
8070 if (!obj->loaded) {
8071 pr_warn("object not yet loaded; load it first\n");
8072 return libbpf_err(-ENOENT);
8073 }
8074
8075 bpf_object__for_each_program(prog, obj) {
8076 char buf[PATH_MAX];
8077 int len;
8078
8079 len = snprintf(buf, PATH_MAX, "%s/%s", path,
8080 prog->pin_name);
8081 if (len < 0) {
8082 err = -EINVAL;
8083 goto err_unpin_programs;
8084 } else if (len >= PATH_MAX) {
8085 err = -ENAMETOOLONG;
8086 goto err_unpin_programs;
8087 }
8088
8089 err = bpf_program__pin(prog, buf);
8090 if (err)
8091 goto err_unpin_programs;
8092 }
8093
8094 return 0;
8095
8096err_unpin_programs:
8097 while ((prog = bpf_object__prev_program(obj, prog))) {
8098 char buf[PATH_MAX];
8099 int len;
8100
8101 len = snprintf(buf, PATH_MAX, "%s/%s", path,
8102 prog->pin_name);
8103 if (len < 0)
8104 continue;
8105 else if (len >= PATH_MAX)
8106 continue;
8107
8108 bpf_program__unpin(prog, buf);
8109 }
8110
8111 return libbpf_err(err);
8112}
8113
8114int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8115{
8116 struct bpf_program *prog;
8117 int err;
8118
8119 if (!obj)
8120 return libbpf_err(-ENOENT);
8121
8122 bpf_object__for_each_program(prog, obj) {
8123 char buf[PATH_MAX];
8124 int len;
8125
8126 len = snprintf(buf, PATH_MAX, "%s/%s", path,
8127 prog->pin_name);
8128 if (len < 0)
8129 return libbpf_err(-EINVAL);
8130 else if (len >= PATH_MAX)
8131 return libbpf_err(-ENAMETOOLONG);
8132
8133 err = bpf_program__unpin(prog, buf);
8134 if (err)
8135 return libbpf_err(err);
8136 }
8137
8138 return 0;
8139}
8140
8141int bpf_object__pin(struct bpf_object *obj, const char *path)
8142{
8143 int err;
8144
8145 err = bpf_object__pin_maps(obj, path);
8146 if (err)
8147 return libbpf_err(err);
8148
8149 err = bpf_object__pin_programs(obj, path);
8150 if (err) {
8151 bpf_object__unpin_maps(obj, path);
8152 return libbpf_err(err);
8153 }
8154
8155 return 0;
8156}
8157
8158static void bpf_map__destroy(struct bpf_map *map)
8159{
8160 if (map->clear_priv)
8161 map->clear_priv(map, map->priv);
8162 map->priv = NULL;
8163 map->clear_priv = NULL;
8164
8165 if (map->inner_map) {
8166 bpf_map__destroy(map->inner_map);
8167 zfree(&map->inner_map);
8168 }
8169
8170 zfree(&map->init_slots);
8171 map->init_slots_sz = 0;
8172
8173 if (map->mmaped) {
8174 munmap(map->mmaped, bpf_map_mmap_sz(map));
8175 map->mmaped = NULL;
8176 }
8177
8178 if (map->st_ops) {
8179 zfree(&map->st_ops->data);
8180 zfree(&map->st_ops->progs);
8181 zfree(&map->st_ops->kern_func_off);
8182 zfree(&map->st_ops);
8183 }
8184
8185 zfree(&map->name);
8186 zfree(&map->real_name);
8187 zfree(&map->pin_path);
8188
8189 if (map->fd >= 0)
8190 zclose(map->fd);
8191}
8192
8193void bpf_object__close(struct bpf_object *obj)
8194{
8195 size_t i;
8196
8197 if (IS_ERR_OR_NULL(obj))
8198 return;
8199
8200 if (obj->clear_priv)
8201 obj->clear_priv(obj, obj->priv);
8202
8203 bpf_gen__free(obj->gen_loader);
8204 bpf_object__elf_finish(obj);
8205 bpf_object_unload(obj);
8206 btf__free(obj->btf);
8207 btf_ext__free(obj->btf_ext);
8208
8209 for (i = 0; i < obj->nr_maps; i++)
8210 bpf_map__destroy(&obj->maps[i]);
8211
8212 zfree(&obj->btf_custom_path);
8213 zfree(&obj->kconfig);
8214 zfree(&obj->externs);
8215 obj->nr_extern = 0;
8216
8217 zfree(&obj->maps);
8218 obj->nr_maps = 0;
8219
8220 if (obj->programs && obj->nr_programs) {
8221 for (i = 0; i < obj->nr_programs; i++)
8222 bpf_program__exit(&obj->programs[i]);
8223 }
8224 zfree(&obj->programs);
8225
8226 list_del(&obj->list);
8227 free(obj);
8228}
8229
8230struct bpf_object *
8231bpf_object__next(struct bpf_object *prev)
8232{
8233 struct bpf_object *next;
8234 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST);
8235
8236 if (strict)
8237 return NULL;
8238
8239 if (!prev)
8240 next = list_first_entry(&bpf_objects_list,
8241 struct bpf_object,
8242 list);
8243 else
8244 next = list_next_entry(prev, list);
8245
8246 /* Empty list is noticed here so don't need checking on entry. */
8247 if (&next->list == &bpf_objects_list)
8248 return NULL;
8249
8250 return next;
8251}
8252
8253const char *bpf_object__name(const struct bpf_object *obj)
8254{
8255 return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8256}
8257
8258unsigned int bpf_object__kversion(const struct bpf_object *obj)
8259{
8260 return obj ? obj->kern_version : 0;
8261}
8262
8263struct btf *bpf_object__btf(const struct bpf_object *obj)
8264{
8265 return obj ? obj->btf : NULL;
8266}
8267
8268int bpf_object__btf_fd(const struct bpf_object *obj)
8269{
8270 return obj->btf ? btf__fd(obj->btf) : -1;
8271}
8272
8273int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8274{
8275 if (obj->loaded)
8276 return libbpf_err(-EINVAL);
8277
8278 obj->kern_version = kern_version;
8279
8280 return 0;
8281}
8282
8283int bpf_object__set_priv(struct bpf_object *obj, void *priv,
8284 bpf_object_clear_priv_t clear_priv)
8285{
8286 if (obj->priv && obj->clear_priv)
8287 obj->clear_priv(obj, obj->priv);
8288
8289 obj->priv = priv;
8290 obj->clear_priv = clear_priv;
8291 return 0;
8292}
8293
8294void *bpf_object__priv(const struct bpf_object *obj)
8295{
8296 return obj ? obj->priv : libbpf_err_ptr(-EINVAL);
8297}
8298
8299int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8300{
8301 struct bpf_gen *gen;
8302
8303 if (!opts)
8304 return -EFAULT;
8305 if (!OPTS_VALID(opts, gen_loader_opts))
8306 return -EINVAL;
8307 gen = calloc(sizeof(*gen), 1);
8308 if (!gen)
8309 return -ENOMEM;
8310 gen->opts = opts;
8311 obj->gen_loader = gen;
8312 return 0;
8313}
8314
8315static struct bpf_program *
8316__bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8317 bool forward)
8318{
8319 size_t nr_programs = obj->nr_programs;
8320 ssize_t idx;
8321
8322 if (!nr_programs)
8323 return NULL;
8324
8325 if (!p)
8326 /* Iter from the beginning */
8327 return forward ? &obj->programs[0] :
8328 &obj->programs[nr_programs - 1];
8329
8330 if (p->obj != obj) {
8331 pr_warn("error: program handler doesn't match object\n");
8332 return errno = EINVAL, NULL;
8333 }
8334
8335 idx = (p - obj->programs) + (forward ? 1 : -1);
8336 if (idx >= obj->nr_programs || idx < 0)
8337 return NULL;
8338 return &obj->programs[idx];
8339}
8340
8341struct bpf_program *
8342bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj)
8343{
8344 return bpf_object__next_program(obj, prev);
8345}
8346
8347struct bpf_program *
8348bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8349{
8350 struct bpf_program *prog = prev;
8351
8352 do {
8353 prog = __bpf_program__iter(prog, obj, true);
8354 } while (prog && prog_is_subprog(obj, prog));
8355
8356 return prog;
8357}
8358
8359struct bpf_program *
8360bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj)
8361{
8362 return bpf_object__prev_program(obj, next);
8363}
8364
8365struct bpf_program *
8366bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8367{
8368 struct bpf_program *prog = next;
8369
8370 do {
8371 prog = __bpf_program__iter(prog, obj, false);
8372 } while (prog && prog_is_subprog(obj, prog));
8373
8374 return prog;
8375}
8376
8377int bpf_program__set_priv(struct bpf_program *prog, void *priv,
8378 bpf_program_clear_priv_t clear_priv)
8379{
8380 if (prog->priv && prog->clear_priv)
8381 prog->clear_priv(prog, prog->priv);
8382
8383 prog->priv = priv;
8384 prog->clear_priv = clear_priv;
8385 return 0;
8386}
8387
8388void *bpf_program__priv(const struct bpf_program *prog)
8389{
8390 return prog ? prog->priv : libbpf_err_ptr(-EINVAL);
8391}
8392
8393void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8394{
8395 prog->prog_ifindex = ifindex;
8396}
8397
8398const char *bpf_program__name(const struct bpf_program *prog)
8399{
8400 return prog->name;
8401}
8402
8403const char *bpf_program__section_name(const struct bpf_program *prog)
8404{
8405 return prog->sec_name;
8406}
8407
8408const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy)
8409{
8410 const char *title;
8411
8412 title = prog->sec_name;
8413 if (needs_copy) {
8414 title = strdup(title);
8415 if (!title) {
8416 pr_warn("failed to strdup program title\n");
8417 return libbpf_err_ptr(-ENOMEM);
8418 }
8419 }
8420
8421 return title;
8422}
8423
8424bool bpf_program__autoload(const struct bpf_program *prog)
8425{
8426 return prog->load;
8427}
8428
8429int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8430{
8431 if (prog->obj->loaded)
8432 return libbpf_err(-EINVAL);
8433
8434 prog->load = autoload;
8435 return 0;
8436}
8437
8438static int bpf_program_nth_fd(const struct bpf_program *prog, int n);
8439
8440int bpf_program__fd(const struct bpf_program *prog)
8441{
8442 return bpf_program_nth_fd(prog, 0);
8443}
8444
8445size_t bpf_program__size(const struct bpf_program *prog)
8446{
8447 return prog->insns_cnt * BPF_INSN_SZ;
8448}
8449
8450const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8451{
8452 return prog->insns;
8453}
8454
8455size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8456{
8457 return prog->insns_cnt;
8458}
8459
8460int bpf_program__set_prep(struct bpf_program *prog, int nr_instances,
8461 bpf_program_prep_t prep)
8462{
8463 int *instances_fds;
8464
8465 if (nr_instances <= 0 || !prep)
8466 return libbpf_err(-EINVAL);
8467
8468 if (prog->instances.nr > 0 || prog->instances.fds) {
8469 pr_warn("Can't set pre-processor after loading\n");
8470 return libbpf_err(-EINVAL);
8471 }
8472
8473 instances_fds = malloc(sizeof(int) * nr_instances);
8474 if (!instances_fds) {
8475 pr_warn("alloc memory failed for fds\n");
8476 return libbpf_err(-ENOMEM);
8477 }
8478
8479 /* fill all fd with -1 */
8480 memset(instances_fds, -1, sizeof(int) * nr_instances);
8481
8482 prog->instances.nr = nr_instances;
8483 prog->instances.fds = instances_fds;
8484 prog->preprocessor = prep;
8485 return 0;
8486}
8487
8488__attribute__((alias("bpf_program_nth_fd")))
8489int bpf_program__nth_fd(const struct bpf_program *prog, int n);
8490
8491static int bpf_program_nth_fd(const struct bpf_program *prog, int n)
8492{
8493 int fd;
8494
8495 if (!prog)
8496 return libbpf_err(-EINVAL);
8497
8498 if (n >= prog->instances.nr || n < 0) {
8499 pr_warn("Can't get the %dth fd from program %s: only %d instances\n",
8500 n, prog->name, prog->instances.nr);
8501 return libbpf_err(-EINVAL);
8502 }
8503
8504 fd = prog->instances.fds[n];
8505 if (fd < 0) {
8506 pr_warn("%dth instance of program '%s' is invalid\n",
8507 n, prog->name);
8508 return libbpf_err(-ENOENT);
8509 }
8510
8511 return fd;
8512}
8513
8514__alias(bpf_program__type)
8515enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8516
8517enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8518{
8519 return prog->type;
8520}
8521
8522void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8523{
8524 prog->type = type;
8525}
8526
8527static bool bpf_program__is_type(const struct bpf_program *prog,
8528 enum bpf_prog_type type)
8529{
8530 return prog ? (prog->type == type) : false;
8531}
8532
8533#define BPF_PROG_TYPE_FNS(NAME, TYPE) \
8534int bpf_program__set_##NAME(struct bpf_program *prog) \
8535{ \
8536 if (!prog) \
8537 return libbpf_err(-EINVAL); \
8538 bpf_program__set_type(prog, TYPE); \
8539 return 0; \
8540} \
8541 \
8542bool bpf_program__is_##NAME(const struct bpf_program *prog) \
8543{ \
8544 return bpf_program__is_type(prog, TYPE); \
8545} \
8546
8547BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER);
8548BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM);
8549BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE);
8550BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS);
8551BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT);
8552BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT);
8553BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT);
8554BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP);
8555BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT);
8556BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING);
8557BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS);
8558BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT);
8559BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP);
8560
8561__alias(bpf_program__expected_attach_type)
8562enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8563
8564enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8565{
8566 return prog->expected_attach_type;
8567}
8568
8569void bpf_program__set_expected_attach_type(struct bpf_program *prog,
8570 enum bpf_attach_type type)
8571{
8572 prog->expected_attach_type = type;
8573}
8574
8575__u32 bpf_program__flags(const struct bpf_program *prog)
8576{
8577 return prog->prog_flags;
8578}
8579
8580int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8581{
8582 if (prog->obj->loaded)
8583 return libbpf_err(-EBUSY);
8584
8585 prog->prog_flags = flags;
8586 return 0;
8587}
8588
8589__u32 bpf_program__log_level(const struct bpf_program *prog)
8590{
8591 return prog->log_level;
8592}
8593
8594int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8595{
8596 if (prog->obj->loaded)
8597 return libbpf_err(-EBUSY);
8598
8599 prog->log_level = log_level;
8600 return 0;
8601}
8602
8603const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8604{
8605 *log_size = prog->log_size;
8606 return prog->log_buf;
8607}
8608
8609int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8610{
8611 if (log_size && !log_buf)
8612 return -EINVAL;
8613 if (prog->log_size > UINT_MAX)
8614 return -EINVAL;
8615 if (prog->obj->loaded)
8616 return -EBUSY;
8617
8618 prog->log_buf = log_buf;
8619 prog->log_size = log_size;
8620 return 0;
8621}
8622
8623#define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \
8624 .sec = (char *)sec_pfx, \
8625 .prog_type = BPF_PROG_TYPE_##ptype, \
8626 .expected_attach_type = atype, \
8627 .cookie = (long)(flags), \
8628 .prog_prepare_load_fn = libbpf_prepare_prog_load, \
8629 __VA_ARGS__ \
8630}
8631
8632static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8633static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8634static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8635static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8636static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8637static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8638static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8639
8640static const struct bpf_sec_def section_defs[] = {
8641 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE | SEC_SLOPPY_PFX),
8642 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8643 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8644 SEC_DEF("kprobe/", KPROBE, 0, SEC_NONE, attach_kprobe),
8645 SEC_DEF("uprobe/", KPROBE, 0, SEC_NONE),
8646 SEC_DEF("kretprobe/", KPROBE, 0, SEC_NONE, attach_kprobe),
8647 SEC_DEF("uretprobe/", KPROBE, 0, SEC_NONE),
8648 SEC_DEF("kprobe.multi/", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8649 SEC_DEF("kretprobe.multi/", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8650 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE),
8651 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE | SEC_SLOPPY_PFX | SEC_DEPRECATED),
8652 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE | SEC_SLOPPY_PFX),
8653 SEC_DEF("tracepoint/", TRACEPOINT, 0, SEC_NONE, attach_tp),
8654 SEC_DEF("tp/", TRACEPOINT, 0, SEC_NONE, attach_tp),
8655 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8656 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8657 SEC_DEF("raw_tracepoint.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8658 SEC_DEF("raw_tp.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8659 SEC_DEF("tp_btf/", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8660 SEC_DEF("fentry/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8661 SEC_DEF("fmod_ret/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8662 SEC_DEF("fexit/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8663 SEC_DEF("fentry.s/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8664 SEC_DEF("fmod_ret.s/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8665 SEC_DEF("fexit.s/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8666 SEC_DEF("freplace/", EXT, 0, SEC_ATTACH_BTF, attach_trace),
8667 SEC_DEF("lsm/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8668 SEC_DEF("lsm.s/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8669 SEC_DEF("iter/", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8670 SEC_DEF("iter.s/", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8671 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE),
8672 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8673 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8674 SEC_DEF("xdp_devmap/", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE | SEC_DEPRECATED),
8675 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8676 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8677 SEC_DEF("xdp_cpumap/", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE | SEC_DEPRECATED),
8678 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS),
8679 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8680 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE | SEC_SLOPPY_PFX),
8681 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE | SEC_SLOPPY_PFX),
8682 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE | SEC_SLOPPY_PFX),
8683 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE | SEC_SLOPPY_PFX),
8684 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE | SEC_SLOPPY_PFX),
8685 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8686 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8687 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX),
8688 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8689 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8690 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8691 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8692 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8693 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8694 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8695 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8696 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8697 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX),
8698 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8699 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8700 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX),
8701 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8702 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8703 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8704 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8705 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8706 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8707 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8708 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8709 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8710 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8711 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8712 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8713 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8714 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8715 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8716 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE),
8717 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE | SEC_SLOPPY_PFX),
8718};
8719
8720static size_t custom_sec_def_cnt;
8721static struct bpf_sec_def *custom_sec_defs;
8722static struct bpf_sec_def custom_fallback_def;
8723static bool has_custom_fallback_def;
8724
8725static int last_custom_sec_def_handler_id;
8726
8727int libbpf_register_prog_handler(const char *sec,
8728 enum bpf_prog_type prog_type,
8729 enum bpf_attach_type exp_attach_type,
8730 const struct libbpf_prog_handler_opts *opts)
8731{
8732 struct bpf_sec_def *sec_def;
8733
8734 if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
8735 return libbpf_err(-EINVAL);
8736
8737 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
8738 return libbpf_err(-E2BIG);
8739
8740 if (sec) {
8741 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
8742 sizeof(*sec_def));
8743 if (!sec_def)
8744 return libbpf_err(-ENOMEM);
8745
8746 custom_sec_defs = sec_def;
8747 sec_def = &custom_sec_defs[custom_sec_def_cnt];
8748 } else {
8749 if (has_custom_fallback_def)
8750 return libbpf_err(-EBUSY);
8751
8752 sec_def = &custom_fallback_def;
8753 }
8754
8755 sec_def->sec = sec ? strdup(sec) : NULL;
8756 if (sec && !sec_def->sec)
8757 return libbpf_err(-ENOMEM);
8758
8759 sec_def->prog_type = prog_type;
8760 sec_def->expected_attach_type = exp_attach_type;
8761 sec_def->cookie = OPTS_GET(opts, cookie, 0);
8762
8763 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
8764 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
8765 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
8766
8767 sec_def->handler_id = ++last_custom_sec_def_handler_id;
8768
8769 if (sec)
8770 custom_sec_def_cnt++;
8771 else
8772 has_custom_fallback_def = true;
8773
8774 return sec_def->handler_id;
8775}
8776
8777int libbpf_unregister_prog_handler(int handler_id)
8778{
8779 struct bpf_sec_def *sec_defs;
8780 int i;
8781
8782 if (handler_id <= 0)
8783 return libbpf_err(-EINVAL);
8784
8785 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
8786 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
8787 has_custom_fallback_def = false;
8788 return 0;
8789 }
8790
8791 for (i = 0; i < custom_sec_def_cnt; i++) {
8792 if (custom_sec_defs[i].handler_id == handler_id)
8793 break;
8794 }
8795
8796 if (i == custom_sec_def_cnt)
8797 return libbpf_err(-ENOENT);
8798
8799 free(custom_sec_defs[i].sec);
8800 for (i = i + 1; i < custom_sec_def_cnt; i++)
8801 custom_sec_defs[i - 1] = custom_sec_defs[i];
8802 custom_sec_def_cnt--;
8803
8804 /* try to shrink the array, but it's ok if we couldn't */
8805 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
8806 if (sec_defs)
8807 custom_sec_defs = sec_defs;
8808
8809 return 0;
8810}
8811
8812static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name,
8813 bool allow_sloppy)
8814{
8815 size_t len = strlen(sec_def->sec);
8816
8817 /* "type/" always has to have proper SEC("type/extras") form */
8818 if (sec_def->sec[len - 1] == '/') {
8819 if (str_has_pfx(sec_name, sec_def->sec))
8820 return true;
8821 return false;
8822 }
8823
8824 /* "type+" means it can be either exact SEC("type") or
8825 * well-formed SEC("type/extras") with proper '/' separator
8826 */
8827 if (sec_def->sec[len - 1] == '+') {
8828 len--;
8829 /* not even a prefix */
8830 if (strncmp(sec_name, sec_def->sec, len) != 0)
8831 return false;
8832 /* exact match or has '/' separator */
8833 if (sec_name[len] == '\0' || sec_name[len] == '/')
8834 return true;
8835 return false;
8836 }
8837
8838 /* SEC_SLOPPY_PFX definitions are allowed to be just prefix
8839 * matches, unless strict section name mode
8840 * (LIBBPF_STRICT_SEC_NAME) is enabled, in which case the
8841 * match has to be exact.
8842 */
8843 if (allow_sloppy && str_has_pfx(sec_name, sec_def->sec))
8844 return true;
8845
8846 /* Definitions not marked SEC_SLOPPY_PFX (e.g.,
8847 * SEC("syscall")) are exact matches in both modes.
8848 */
8849 return strcmp(sec_name, sec_def->sec) == 0;
8850}
8851
8852static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8853{
8854 const struct bpf_sec_def *sec_def;
8855 int i, n;
8856 bool strict = libbpf_mode & LIBBPF_STRICT_SEC_NAME, allow_sloppy;
8857
8858 n = custom_sec_def_cnt;
8859 for (i = 0; i < n; i++) {
8860 sec_def = &custom_sec_defs[i];
8861 if (sec_def_matches(sec_def, sec_name, false))
8862 return sec_def;
8863 }
8864
8865 n = ARRAY_SIZE(section_defs);
8866 for (i = 0; i < n; i++) {
8867 sec_def = §ion_defs[i];
8868 allow_sloppy = (sec_def->cookie & SEC_SLOPPY_PFX) && !strict;
8869 if (sec_def_matches(sec_def, sec_name, allow_sloppy))
8870 return sec_def;
8871 }
8872
8873 if (has_custom_fallback_def)
8874 return &custom_fallback_def;
8875
8876 return NULL;
8877}
8878
8879#define MAX_TYPE_NAME_SIZE 32
8880
8881static char *libbpf_get_type_names(bool attach_type)
8882{
8883 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8884 char *buf;
8885
8886 buf = malloc(len);
8887 if (!buf)
8888 return NULL;
8889
8890 buf[0] = '\0';
8891 /* Forge string buf with all available names */
8892 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8893 const struct bpf_sec_def *sec_def = §ion_defs[i];
8894
8895 if (attach_type) {
8896 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
8897 continue;
8898
8899 if (!(sec_def->cookie & SEC_ATTACHABLE))
8900 continue;
8901 }
8902
8903 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8904 free(buf);
8905 return NULL;
8906 }
8907 strcat(buf, " ");
8908 strcat(buf, section_defs[i].sec);
8909 }
8910
8911 return buf;
8912}
8913
8914int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8915 enum bpf_attach_type *expected_attach_type)
8916{
8917 const struct bpf_sec_def *sec_def;
8918 char *type_names;
8919
8920 if (!name)
8921 return libbpf_err(-EINVAL);
8922
8923 sec_def = find_sec_def(name);
8924 if (sec_def) {
8925 *prog_type = sec_def->prog_type;
8926 *expected_attach_type = sec_def->expected_attach_type;
8927 return 0;
8928 }
8929
8930 pr_debug("failed to guess program type from ELF section '%s'\n", name);
8931 type_names = libbpf_get_type_names(false);
8932 if (type_names != NULL) {
8933 pr_debug("supported section(type) names are:%s\n", type_names);
8934 free(type_names);
8935 }
8936
8937 return libbpf_err(-ESRCH);
8938}
8939
8940static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8941 size_t offset)
8942{
8943 struct bpf_map *map;
8944 size_t i;
8945
8946 for (i = 0; i < obj->nr_maps; i++) {
8947 map = &obj->maps[i];
8948 if (!bpf_map__is_struct_ops(map))
8949 continue;
8950 if (map->sec_offset <= offset &&
8951 offset - map->sec_offset < map->def.value_size)
8952 return map;
8953 }
8954
8955 return NULL;
8956}
8957
8958/* Collect the reloc from ELF and populate the st_ops->progs[] */
8959static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8960 Elf64_Shdr *shdr, Elf_Data *data)
8961{
8962 const struct btf_member *member;
8963 struct bpf_struct_ops *st_ops;
8964 struct bpf_program *prog;
8965 unsigned int shdr_idx;
8966 const struct btf *btf;
8967 struct bpf_map *map;
8968 unsigned int moff, insn_idx;
8969 const char *name;
8970 __u32 member_idx;
8971 Elf64_Sym *sym;
8972 Elf64_Rel *rel;
8973 int i, nrels;
8974
8975 btf = obj->btf;
8976 nrels = shdr->sh_size / shdr->sh_entsize;
8977 for (i = 0; i < nrels; i++) {
8978 rel = elf_rel_by_idx(data, i);
8979 if (!rel) {
8980 pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8981 return -LIBBPF_ERRNO__FORMAT;
8982 }
8983
8984 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
8985 if (!sym) {
8986 pr_warn("struct_ops reloc: symbol %zx not found\n",
8987 (size_t)ELF64_R_SYM(rel->r_info));
8988 return -LIBBPF_ERRNO__FORMAT;
8989 }
8990
8991 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
8992 map = find_struct_ops_map_by_offset(obj, rel->r_offset);
8993 if (!map) {
8994 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
8995 (size_t)rel->r_offset);
8996 return -EINVAL;
8997 }
8998
8999 moff = rel->r_offset - map->sec_offset;
9000 shdr_idx = sym->st_shndx;
9001 st_ops = map->st_ops;
9002 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9003 map->name,
9004 (long long)(rel->r_info >> 32),
9005 (long long)sym->st_value,
9006 shdr_idx, (size_t)rel->r_offset,
9007 map->sec_offset, sym->st_name, name);
9008
9009 if (shdr_idx >= SHN_LORESERVE) {
9010 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9011 map->name, (size_t)rel->r_offset, shdr_idx);
9012 return -LIBBPF_ERRNO__RELOC;
9013 }
9014 if (sym->st_value % BPF_INSN_SZ) {
9015 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9016 map->name, (unsigned long long)sym->st_value);
9017 return -LIBBPF_ERRNO__FORMAT;
9018 }
9019 insn_idx = sym->st_value / BPF_INSN_SZ;
9020
9021 member = find_member_by_offset(st_ops->type, moff * 8);
9022 if (!member) {
9023 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9024 map->name, moff);
9025 return -EINVAL;
9026 }
9027 member_idx = member - btf_members(st_ops->type);
9028 name = btf__name_by_offset(btf, member->name_off);
9029
9030 if (!resolve_func_ptr(btf, member->type, NULL)) {
9031 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9032 map->name, name);
9033 return -EINVAL;
9034 }
9035
9036 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9037 if (!prog) {
9038 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9039 map->name, shdr_idx, name);
9040 return -EINVAL;
9041 }
9042
9043 /* prevent the use of BPF prog with invalid type */
9044 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9045 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9046 map->name, prog->name);
9047 return -EINVAL;
9048 }
9049
9050 /* if we haven't yet processed this BPF program, record proper
9051 * attach_btf_id and member_idx
9052 */
9053 if (!prog->attach_btf_id) {
9054 prog->attach_btf_id = st_ops->type_id;
9055 prog->expected_attach_type = member_idx;
9056 }
9057
9058 /* struct_ops BPF prog can be re-used between multiple
9059 * .struct_ops as long as it's the same struct_ops struct
9060 * definition and the same function pointer field
9061 */
9062 if (prog->attach_btf_id != st_ops->type_id ||
9063 prog->expected_attach_type != member_idx) {
9064 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9065 map->name, prog->name, prog->sec_name, prog->type,
9066 prog->attach_btf_id, prog->expected_attach_type, name);
9067 return -EINVAL;
9068 }
9069
9070 st_ops->progs[member_idx] = prog;
9071 }
9072
9073 return 0;
9074}
9075
9076#define BTF_TRACE_PREFIX "btf_trace_"
9077#define BTF_LSM_PREFIX "bpf_lsm_"
9078#define BTF_ITER_PREFIX "bpf_iter_"
9079#define BTF_MAX_NAME_SIZE 128
9080
9081void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9082 const char **prefix, int *kind)
9083{
9084 switch (attach_type) {
9085 case BPF_TRACE_RAW_TP:
9086 *prefix = BTF_TRACE_PREFIX;
9087 *kind = BTF_KIND_TYPEDEF;
9088 break;
9089 case BPF_LSM_MAC:
9090 *prefix = BTF_LSM_PREFIX;
9091 *kind = BTF_KIND_FUNC;
9092 break;
9093 case BPF_TRACE_ITER:
9094 *prefix = BTF_ITER_PREFIX;
9095 *kind = BTF_KIND_FUNC;
9096 break;
9097 default:
9098 *prefix = "";
9099 *kind = BTF_KIND_FUNC;
9100 }
9101}
9102
9103static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9104 const char *name, __u32 kind)
9105{
9106 char btf_type_name[BTF_MAX_NAME_SIZE];
9107 int ret;
9108
9109 ret = snprintf(btf_type_name, sizeof(btf_type_name),
9110 "%s%s", prefix, name);
9111 /* snprintf returns the number of characters written excluding the
9112 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9113 * indicates truncation.
9114 */
9115 if (ret < 0 || ret >= sizeof(btf_type_name))
9116 return -ENAMETOOLONG;
9117 return btf__find_by_name_kind(btf, btf_type_name, kind);
9118}
9119
9120static inline int find_attach_btf_id(struct btf *btf, const char *name,
9121 enum bpf_attach_type attach_type)
9122{
9123 const char *prefix;
9124 int kind;
9125
9126 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9127 return find_btf_by_prefix_kind(btf, prefix, name, kind);
9128}
9129
9130int libbpf_find_vmlinux_btf_id(const char *name,
9131 enum bpf_attach_type attach_type)
9132{
9133 struct btf *btf;
9134 int err;
9135
9136 btf = btf__load_vmlinux_btf();
9137 err = libbpf_get_error(btf);
9138 if (err) {
9139 pr_warn("vmlinux BTF is not found\n");
9140 return libbpf_err(err);
9141 }
9142
9143 err = find_attach_btf_id(btf, name, attach_type);
9144 if (err <= 0)
9145 pr_warn("%s is not found in vmlinux BTF\n", name);
9146
9147 btf__free(btf);
9148 return libbpf_err(err);
9149}
9150
9151static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9152{
9153 struct bpf_prog_info info = {};
9154 __u32 info_len = sizeof(info);
9155 struct btf *btf;
9156 int err;
9157
9158 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len);
9159 if (err) {
9160 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n",
9161 attach_prog_fd, err);
9162 return err;
9163 }
9164
9165 err = -EINVAL;
9166 if (!info.btf_id) {
9167 pr_warn("The target program doesn't have BTF\n");
9168 goto out;
9169 }
9170 btf = btf__load_from_kernel_by_id(info.btf_id);
9171 err = libbpf_get_error(btf);
9172 if (err) {
9173 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9174 goto out;
9175 }
9176 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9177 btf__free(btf);
9178 if (err <= 0) {
9179 pr_warn("%s is not found in prog's BTF\n", name);
9180 goto out;
9181 }
9182out:
9183 return err;
9184}
9185
9186static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9187 enum bpf_attach_type attach_type,
9188 int *btf_obj_fd, int *btf_type_id)
9189{
9190 int ret, i;
9191
9192 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9193 if (ret > 0) {
9194 *btf_obj_fd = 0; /* vmlinux BTF */
9195 *btf_type_id = ret;
9196 return 0;
9197 }
9198 if (ret != -ENOENT)
9199 return ret;
9200
9201 ret = load_module_btfs(obj);
9202 if (ret)
9203 return ret;
9204
9205 for (i = 0; i < obj->btf_module_cnt; i++) {
9206 const struct module_btf *mod = &obj->btf_modules[i];
9207
9208 ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9209 if (ret > 0) {
9210 *btf_obj_fd = mod->fd;
9211 *btf_type_id = ret;
9212 return 0;
9213 }
9214 if (ret == -ENOENT)
9215 continue;
9216
9217 return ret;
9218 }
9219
9220 return -ESRCH;
9221}
9222
9223static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9224 int *btf_obj_fd, int *btf_type_id)
9225{
9226 enum bpf_attach_type attach_type = prog->expected_attach_type;
9227 __u32 attach_prog_fd = prog->attach_prog_fd;
9228 int err = 0;
9229
9230 /* BPF program's BTF ID */
9231 if (attach_prog_fd) {
9232 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9233 if (err < 0) {
9234 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9235 attach_prog_fd, attach_name, err);
9236 return err;
9237 }
9238 *btf_obj_fd = 0;
9239 *btf_type_id = err;
9240 return 0;
9241 }
9242
9243 /* kernel/module BTF ID */
9244 if (prog->obj->gen_loader) {
9245 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9246 *btf_obj_fd = 0;
9247 *btf_type_id = 1;
9248 } else {
9249 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9250 }
9251 if (err) {
9252 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err);
9253 return err;
9254 }
9255 return 0;
9256}
9257
9258int libbpf_attach_type_by_name(const char *name,
9259 enum bpf_attach_type *attach_type)
9260{
9261 char *type_names;
9262 const struct bpf_sec_def *sec_def;
9263
9264 if (!name)
9265 return libbpf_err(-EINVAL);
9266
9267 sec_def = find_sec_def(name);
9268 if (!sec_def) {
9269 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9270 type_names = libbpf_get_type_names(true);
9271 if (type_names != NULL) {
9272 pr_debug("attachable section(type) names are:%s\n", type_names);
9273 free(type_names);
9274 }
9275
9276 return libbpf_err(-EINVAL);
9277 }
9278
9279 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9280 return libbpf_err(-EINVAL);
9281 if (!(sec_def->cookie & SEC_ATTACHABLE))
9282 return libbpf_err(-EINVAL);
9283
9284 *attach_type = sec_def->expected_attach_type;
9285 return 0;
9286}
9287
9288int bpf_map__fd(const struct bpf_map *map)
9289{
9290 return map ? map->fd : libbpf_err(-EINVAL);
9291}
9292
9293const struct bpf_map_def *bpf_map__def(const struct bpf_map *map)
9294{
9295 return map ? &map->def : libbpf_err_ptr(-EINVAL);
9296}
9297
9298static bool map_uses_real_name(const struct bpf_map *map)
9299{
9300 /* Since libbpf started to support custom .data.* and .rodata.* maps,
9301 * their user-visible name differs from kernel-visible name. Users see
9302 * such map's corresponding ELF section name as a map name.
9303 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9304 * maps to know which name has to be returned to the user.
9305 */
9306 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9307 return true;
9308 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9309 return true;
9310 return false;
9311}
9312
9313const char *bpf_map__name(const struct bpf_map *map)
9314{
9315 if (!map)
9316 return NULL;
9317
9318 if (map_uses_real_name(map))
9319 return map->real_name;
9320
9321 return map->name;
9322}
9323
9324enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9325{
9326 return map->def.type;
9327}
9328
9329int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9330{
9331 if (map->fd >= 0)
9332 return libbpf_err(-EBUSY);
9333 map->def.type = type;
9334 return 0;
9335}
9336
9337__u32 bpf_map__map_flags(const struct bpf_map *map)
9338{
9339 return map->def.map_flags;
9340}
9341
9342int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9343{
9344 if (map->fd >= 0)
9345 return libbpf_err(-EBUSY);
9346 map->def.map_flags = flags;
9347 return 0;
9348}
9349
9350__u64 bpf_map__map_extra(const struct bpf_map *map)
9351{
9352 return map->map_extra;
9353}
9354
9355int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9356{
9357 if (map->fd >= 0)
9358 return libbpf_err(-EBUSY);
9359 map->map_extra = map_extra;
9360 return 0;
9361}
9362
9363__u32 bpf_map__numa_node(const struct bpf_map *map)
9364{
9365 return map->numa_node;
9366}
9367
9368int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9369{
9370 if (map->fd >= 0)
9371 return libbpf_err(-EBUSY);
9372 map->numa_node = numa_node;
9373 return 0;
9374}
9375
9376__u32 bpf_map__key_size(const struct bpf_map *map)
9377{
9378 return map->def.key_size;
9379}
9380
9381int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9382{
9383 if (map->fd >= 0)
9384 return libbpf_err(-EBUSY);
9385 map->def.key_size = size;
9386 return 0;
9387}
9388
9389__u32 bpf_map__value_size(const struct bpf_map *map)
9390{
9391 return map->def.value_size;
9392}
9393
9394int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9395{
9396 if (map->fd >= 0)
9397 return libbpf_err(-EBUSY);
9398 map->def.value_size = size;
9399 return 0;
9400}
9401
9402__u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9403{
9404 return map ? map->btf_key_type_id : 0;
9405}
9406
9407__u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9408{
9409 return map ? map->btf_value_type_id : 0;
9410}
9411
9412int bpf_map__set_priv(struct bpf_map *map, void *priv,
9413 bpf_map_clear_priv_t clear_priv)
9414{
9415 if (!map)
9416 return libbpf_err(-EINVAL);
9417
9418 if (map->priv) {
9419 if (map->clear_priv)
9420 map->clear_priv(map, map->priv);
9421 }
9422
9423 map->priv = priv;
9424 map->clear_priv = clear_priv;
9425 return 0;
9426}
9427
9428void *bpf_map__priv(const struct bpf_map *map)
9429{
9430 return map ? map->priv : libbpf_err_ptr(-EINVAL);
9431}
9432
9433int bpf_map__set_initial_value(struct bpf_map *map,
9434 const void *data, size_t size)
9435{
9436 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9437 size != map->def.value_size || map->fd >= 0)
9438 return libbpf_err(-EINVAL);
9439
9440 memcpy(map->mmaped, data, size);
9441 return 0;
9442}
9443
9444const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9445{
9446 if (!map->mmaped)
9447 return NULL;
9448 *psize = map->def.value_size;
9449 return map->mmaped;
9450}
9451
9452bool bpf_map__is_offload_neutral(const struct bpf_map *map)
9453{
9454 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
9455}
9456
9457bool bpf_map__is_internal(const struct bpf_map *map)
9458{
9459 return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9460}
9461
9462__u32 bpf_map__ifindex(const struct bpf_map *map)
9463{
9464 return map->map_ifindex;
9465}
9466
9467int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9468{
9469 if (map->fd >= 0)
9470 return libbpf_err(-EBUSY);
9471 map->map_ifindex = ifindex;
9472 return 0;
9473}
9474
9475int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9476{
9477 if (!bpf_map_type__is_map_in_map(map->def.type)) {
9478 pr_warn("error: unsupported map type\n");
9479 return libbpf_err(-EINVAL);
9480 }
9481 if (map->inner_map_fd != -1) {
9482 pr_warn("error: inner_map_fd already specified\n");
9483 return libbpf_err(-EINVAL);
9484 }
9485 if (map->inner_map) {
9486 bpf_map__destroy(map->inner_map);
9487 zfree(&map->inner_map);
9488 }
9489 map->inner_map_fd = fd;
9490 return 0;
9491}
9492
9493static struct bpf_map *
9494__bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9495{
9496 ssize_t idx;
9497 struct bpf_map *s, *e;
9498
9499 if (!obj || !obj->maps)
9500 return errno = EINVAL, NULL;
9501
9502 s = obj->maps;
9503 e = obj->maps + obj->nr_maps;
9504
9505 if ((m < s) || (m >= e)) {
9506 pr_warn("error in %s: map handler doesn't belong to object\n",
9507 __func__);
9508 return errno = EINVAL, NULL;
9509 }
9510
9511 idx = (m - obj->maps) + i;
9512 if (idx >= obj->nr_maps || idx < 0)
9513 return NULL;
9514 return &obj->maps[idx];
9515}
9516
9517struct bpf_map *
9518bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj)
9519{
9520 return bpf_object__next_map(obj, prev);
9521}
9522
9523struct bpf_map *
9524bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9525{
9526 if (prev == NULL)
9527 return obj->maps;
9528
9529 return __bpf_map__iter(prev, obj, 1);
9530}
9531
9532struct bpf_map *
9533bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj)
9534{
9535 return bpf_object__prev_map(obj, next);
9536}
9537
9538struct bpf_map *
9539bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9540{
9541 if (next == NULL) {
9542 if (!obj->nr_maps)
9543 return NULL;
9544 return obj->maps + obj->nr_maps - 1;
9545 }
9546
9547 return __bpf_map__iter(next, obj, -1);
9548}
9549
9550struct bpf_map *
9551bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9552{
9553 struct bpf_map *pos;
9554
9555 bpf_object__for_each_map(pos, obj) {
9556 /* if it's a special internal map name (which always starts
9557 * with dot) then check if that special name matches the
9558 * real map name (ELF section name)
9559 */
9560 if (name[0] == '.') {
9561 if (pos->real_name && strcmp(pos->real_name, name) == 0)
9562 return pos;
9563 continue;
9564 }
9565 /* otherwise map name has to be an exact match */
9566 if (map_uses_real_name(pos)) {
9567 if (strcmp(pos->real_name, name) == 0)
9568 return pos;
9569 continue;
9570 }
9571 if (strcmp(pos->name, name) == 0)
9572 return pos;
9573 }
9574 return errno = ENOENT, NULL;
9575}
9576
9577int
9578bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9579{
9580 return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9581}
9582
9583struct bpf_map *
9584bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset)
9585{
9586 return libbpf_err_ptr(-ENOTSUP);
9587}
9588
9589long libbpf_get_error(const void *ptr)
9590{
9591 if (!IS_ERR_OR_NULL(ptr))
9592 return 0;
9593
9594 if (IS_ERR(ptr))
9595 errno = -PTR_ERR(ptr);
9596
9597 /* If ptr == NULL, then errno should be already set by the failing
9598 * API, because libbpf never returns NULL on success and it now always
9599 * sets errno on error. So no extra errno handling for ptr == NULL
9600 * case.
9601 */
9602 return -errno;
9603}
9604
9605__attribute__((alias("bpf_prog_load_xattr2")))
9606int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr,
9607 struct bpf_object **pobj, int *prog_fd);
9608
9609static int bpf_prog_load_xattr2(const struct bpf_prog_load_attr *attr,
9610 struct bpf_object **pobj, int *prog_fd)
9611{
9612 struct bpf_object_open_attr open_attr = {};
9613 struct bpf_program *prog, *first_prog = NULL;
9614 struct bpf_object *obj;
9615 struct bpf_map *map;
9616 int err;
9617
9618 if (!attr)
9619 return libbpf_err(-EINVAL);
9620 if (!attr->file)
9621 return libbpf_err(-EINVAL);
9622
9623 open_attr.file = attr->file;
9624 open_attr.prog_type = attr->prog_type;
9625
9626 obj = __bpf_object__open_xattr(&open_attr, 0);
9627 err = libbpf_get_error(obj);
9628 if (err)
9629 return libbpf_err(-ENOENT);
9630
9631 bpf_object__for_each_program(prog, obj) {
9632 enum bpf_attach_type attach_type = attr->expected_attach_type;
9633 /*
9634 * to preserve backwards compatibility, bpf_prog_load treats
9635 * attr->prog_type, if specified, as an override to whatever
9636 * bpf_object__open guessed
9637 */
9638 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) {
9639 bpf_program__set_type(prog, attr->prog_type);
9640 bpf_program__set_expected_attach_type(prog,
9641 attach_type);
9642 }
9643 if (bpf_program__type(prog) == BPF_PROG_TYPE_UNSPEC) {
9644 /*
9645 * we haven't guessed from section name and user
9646 * didn't provide a fallback type, too bad...
9647 */
9648 bpf_object__close(obj);
9649 return libbpf_err(-EINVAL);
9650 }
9651
9652 prog->prog_ifindex = attr->ifindex;
9653 prog->log_level = attr->log_level;
9654 prog->prog_flags |= attr->prog_flags;
9655 if (!first_prog)
9656 first_prog = prog;
9657 }
9658
9659 bpf_object__for_each_map(map, obj) {
9660 if (map->def.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
9661 map->map_ifindex = attr->ifindex;
9662 }
9663
9664 if (!first_prog) {
9665 pr_warn("object file doesn't contain bpf program\n");
9666 bpf_object__close(obj);
9667 return libbpf_err(-ENOENT);
9668 }
9669
9670 err = bpf_object__load(obj);
9671 if (err) {
9672 bpf_object__close(obj);
9673 return libbpf_err(err);
9674 }
9675
9676 *pobj = obj;
9677 *prog_fd = bpf_program__fd(first_prog);
9678 return 0;
9679}
9680
9681COMPAT_VERSION(bpf_prog_load_deprecated, bpf_prog_load, LIBBPF_0.0.1)
9682int bpf_prog_load_deprecated(const char *file, enum bpf_prog_type type,
9683 struct bpf_object **pobj, int *prog_fd)
9684{
9685 struct bpf_prog_load_attr attr;
9686
9687 memset(&attr, 0, sizeof(struct bpf_prog_load_attr));
9688 attr.file = file;
9689 attr.prog_type = type;
9690 attr.expected_attach_type = 0;
9691
9692 return bpf_prog_load_xattr2(&attr, pobj, prog_fd);
9693}
9694
9695struct bpf_link {
9696 int (*detach)(struct bpf_link *link);
9697 void (*dealloc)(struct bpf_link *link);
9698 char *pin_path; /* NULL, if not pinned */
9699 int fd; /* hook FD, -1 if not applicable */
9700 bool disconnected;
9701};
9702
9703/* Replace link's underlying BPF program with the new one */
9704int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9705{
9706 int ret;
9707
9708 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9709 return libbpf_err_errno(ret);
9710}
9711
9712/* Release "ownership" of underlying BPF resource (typically, BPF program
9713 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9714 * link, when destructed through bpf_link__destroy() call won't attempt to
9715 * detach/unregisted that BPF resource. This is useful in situations where,
9716 * say, attached BPF program has to outlive userspace program that attached it
9717 * in the system. Depending on type of BPF program, though, there might be
9718 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9719 * exit of userspace program doesn't trigger automatic detachment and clean up
9720 * inside the kernel.
9721 */
9722void bpf_link__disconnect(struct bpf_link *link)
9723{
9724 link->disconnected = true;
9725}
9726
9727int bpf_link__destroy(struct bpf_link *link)
9728{
9729 int err = 0;
9730
9731 if (IS_ERR_OR_NULL(link))
9732 return 0;
9733
9734 if (!link->disconnected && link->detach)
9735 err = link->detach(link);
9736 if (link->pin_path)
9737 free(link->pin_path);
9738 if (link->dealloc)
9739 link->dealloc(link);
9740 else
9741 free(link);
9742
9743 return libbpf_err(err);
9744}
9745
9746int bpf_link__fd(const struct bpf_link *link)
9747{
9748 return link->fd;
9749}
9750
9751const char *bpf_link__pin_path(const struct bpf_link *link)
9752{
9753 return link->pin_path;
9754}
9755
9756static int bpf_link__detach_fd(struct bpf_link *link)
9757{
9758 return libbpf_err_errno(close(link->fd));
9759}
9760
9761struct bpf_link *bpf_link__open(const char *path)
9762{
9763 struct bpf_link *link;
9764 int fd;
9765
9766 fd = bpf_obj_get(path);
9767 if (fd < 0) {
9768 fd = -errno;
9769 pr_warn("failed to open link at %s: %d\n", path, fd);
9770 return libbpf_err_ptr(fd);
9771 }
9772
9773 link = calloc(1, sizeof(*link));
9774 if (!link) {
9775 close(fd);
9776 return libbpf_err_ptr(-ENOMEM);
9777 }
9778 link->detach = &bpf_link__detach_fd;
9779 link->fd = fd;
9780
9781 link->pin_path = strdup(path);
9782 if (!link->pin_path) {
9783 bpf_link__destroy(link);
9784 return libbpf_err_ptr(-ENOMEM);
9785 }
9786
9787 return link;
9788}
9789
9790int bpf_link__detach(struct bpf_link *link)
9791{
9792 return bpf_link_detach(link->fd) ? -errno : 0;
9793}
9794
9795int bpf_link__pin(struct bpf_link *link, const char *path)
9796{
9797 int err;
9798
9799 if (link->pin_path)
9800 return libbpf_err(-EBUSY);
9801 err = make_parent_dir(path);
9802 if (err)
9803 return libbpf_err(err);
9804 err = check_path(path);
9805 if (err)
9806 return libbpf_err(err);
9807
9808 link->pin_path = strdup(path);
9809 if (!link->pin_path)
9810 return libbpf_err(-ENOMEM);
9811
9812 if (bpf_obj_pin(link->fd, link->pin_path)) {
9813 err = -errno;
9814 zfree(&link->pin_path);
9815 return libbpf_err(err);
9816 }
9817
9818 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9819 return 0;
9820}
9821
9822int bpf_link__unpin(struct bpf_link *link)
9823{
9824 int err;
9825
9826 if (!link->pin_path)
9827 return libbpf_err(-EINVAL);
9828
9829 err = unlink(link->pin_path);
9830 if (err != 0)
9831 return -errno;
9832
9833 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9834 zfree(&link->pin_path);
9835 return 0;
9836}
9837
9838struct bpf_link_perf {
9839 struct bpf_link link;
9840 int perf_event_fd;
9841 /* legacy kprobe support: keep track of probe identifier and type */
9842 char *legacy_probe_name;
9843 bool legacy_is_kprobe;
9844 bool legacy_is_retprobe;
9845};
9846
9847static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
9848static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
9849
9850static int bpf_link_perf_detach(struct bpf_link *link)
9851{
9852 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9853 int err = 0;
9854
9855 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
9856 err = -errno;
9857
9858 if (perf_link->perf_event_fd != link->fd)
9859 close(perf_link->perf_event_fd);
9860 close(link->fd);
9861
9862 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */
9863 if (perf_link->legacy_probe_name) {
9864 if (perf_link->legacy_is_kprobe) {
9865 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
9866 perf_link->legacy_is_retprobe);
9867 } else {
9868 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
9869 perf_link->legacy_is_retprobe);
9870 }
9871 }
9872
9873 return err;
9874}
9875
9876static void bpf_link_perf_dealloc(struct bpf_link *link)
9877{
9878 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9879
9880 free(perf_link->legacy_probe_name);
9881 free(perf_link);
9882}
9883
9884struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
9885 const struct bpf_perf_event_opts *opts)
9886{
9887 char errmsg[STRERR_BUFSIZE];
9888 struct bpf_link_perf *link;
9889 int prog_fd, link_fd = -1, err;
9890
9891 if (!OPTS_VALID(opts, bpf_perf_event_opts))
9892 return libbpf_err_ptr(-EINVAL);
9893
9894 if (pfd < 0) {
9895 pr_warn("prog '%s': invalid perf event FD %d\n",
9896 prog->name, pfd);
9897 return libbpf_err_ptr(-EINVAL);
9898 }
9899 prog_fd = bpf_program__fd(prog);
9900 if (prog_fd < 0) {
9901 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9902 prog->name);
9903 return libbpf_err_ptr(-EINVAL);
9904 }
9905
9906 link = calloc(1, sizeof(*link));
9907 if (!link)
9908 return libbpf_err_ptr(-ENOMEM);
9909 link->link.detach = &bpf_link_perf_detach;
9910 link->link.dealloc = &bpf_link_perf_dealloc;
9911 link->perf_event_fd = pfd;
9912
9913 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) {
9914 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
9915 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
9916
9917 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
9918 if (link_fd < 0) {
9919 err = -errno;
9920 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
9921 prog->name, pfd,
9922 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9923 goto err_out;
9924 }
9925 link->link.fd = link_fd;
9926 } else {
9927 if (OPTS_GET(opts, bpf_cookie, 0)) {
9928 pr_warn("prog '%s': user context value is not supported\n", prog->name);
9929 err = -EOPNOTSUPP;
9930 goto err_out;
9931 }
9932
9933 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9934 err = -errno;
9935 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
9936 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9937 if (err == -EPROTO)
9938 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9939 prog->name, pfd);
9940 goto err_out;
9941 }
9942 link->link.fd = pfd;
9943 }
9944 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9945 err = -errno;
9946 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
9947 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9948 goto err_out;
9949 }
9950
9951 return &link->link;
9952err_out:
9953 if (link_fd >= 0)
9954 close(link_fd);
9955 free(link);
9956 return libbpf_err_ptr(err);
9957}
9958
9959struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
9960{
9961 return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
9962}
9963
9964/*
9965 * this function is expected to parse integer in the range of [0, 2^31-1] from
9966 * given file using scanf format string fmt. If actual parsed value is
9967 * negative, the result might be indistinguishable from error
9968 */
9969static int parse_uint_from_file(const char *file, const char *fmt)
9970{
9971 char buf[STRERR_BUFSIZE];
9972 int err, ret;
9973 FILE *f;
9974
9975 f = fopen(file, "r");
9976 if (!f) {
9977 err = -errno;
9978 pr_debug("failed to open '%s': %s\n", file,
9979 libbpf_strerror_r(err, buf, sizeof(buf)));
9980 return err;
9981 }
9982 err = fscanf(f, fmt, &ret);
9983 if (err != 1) {
9984 err = err == EOF ? -EIO : -errno;
9985 pr_debug("failed to parse '%s': %s\n", file,
9986 libbpf_strerror_r(err, buf, sizeof(buf)));
9987 fclose(f);
9988 return err;
9989 }
9990 fclose(f);
9991 return ret;
9992}
9993
9994static int determine_kprobe_perf_type(void)
9995{
9996 const char *file = "/sys/bus/event_source/devices/kprobe/type";
9997
9998 return parse_uint_from_file(file, "%d\n");
9999}
10000
10001static int determine_uprobe_perf_type(void)
10002{
10003 const char *file = "/sys/bus/event_source/devices/uprobe/type";
10004
10005 return parse_uint_from_file(file, "%d\n");
10006}
10007
10008static int determine_kprobe_retprobe_bit(void)
10009{
10010 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10011
10012 return parse_uint_from_file(file, "config:%d\n");
10013}
10014
10015static int determine_uprobe_retprobe_bit(void)
10016{
10017 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10018
10019 return parse_uint_from_file(file, "config:%d\n");
10020}
10021
10022#define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10023#define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10024
10025static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10026 uint64_t offset, int pid, size_t ref_ctr_off)
10027{
10028 struct perf_event_attr attr = {};
10029 char errmsg[STRERR_BUFSIZE];
10030 int type, pfd, err;
10031
10032 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10033 return -EINVAL;
10034
10035 type = uprobe ? determine_uprobe_perf_type()
10036 : determine_kprobe_perf_type();
10037 if (type < 0) {
10038 pr_warn("failed to determine %s perf type: %s\n",
10039 uprobe ? "uprobe" : "kprobe",
10040 libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10041 return type;
10042 }
10043 if (retprobe) {
10044 int bit = uprobe ? determine_uprobe_retprobe_bit()
10045 : determine_kprobe_retprobe_bit();
10046
10047 if (bit < 0) {
10048 pr_warn("failed to determine %s retprobe bit: %s\n",
10049 uprobe ? "uprobe" : "kprobe",
10050 libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10051 return bit;
10052 }
10053 attr.config |= 1 << bit;
10054 }
10055 attr.size = sizeof(attr);
10056 attr.type = type;
10057 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10058 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10059 attr.config2 = offset; /* kprobe_addr or probe_offset */
10060
10061 /* pid filter is meaningful only for uprobes */
10062 pfd = syscall(__NR_perf_event_open, &attr,
10063 pid < 0 ? -1 : pid /* pid */,
10064 pid == -1 ? 0 : -1 /* cpu */,
10065 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10066 if (pfd < 0) {
10067 err = -errno;
10068 pr_warn("%s perf_event_open() failed: %s\n",
10069 uprobe ? "uprobe" : "kprobe",
10070 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10071 return err;
10072 }
10073 return pfd;
10074}
10075
10076static int append_to_file(const char *file, const char *fmt, ...)
10077{
10078 int fd, n, err = 0;
10079 va_list ap;
10080
10081 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10082 if (fd < 0)
10083 return -errno;
10084
10085 va_start(ap, fmt);
10086 n = vdprintf(fd, fmt, ap);
10087 va_end(ap);
10088
10089 if (n < 0)
10090 err = -errno;
10091
10092 close(fd);
10093 return err;
10094}
10095
10096static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10097 const char *kfunc_name, size_t offset)
10098{
10099 static int index = 0;
10100
10101 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10102 __sync_fetch_and_add(&index, 1));
10103}
10104
10105static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10106 const char *kfunc_name, size_t offset)
10107{
10108 const char *file = "/sys/kernel/debug/tracing/kprobe_events";
10109
10110 return append_to_file(file, "%c:%s/%s %s+0x%zx",
10111 retprobe ? 'r' : 'p',
10112 retprobe ? "kretprobes" : "kprobes",
10113 probe_name, kfunc_name, offset);
10114}
10115
10116static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10117{
10118 const char *file = "/sys/kernel/debug/tracing/kprobe_events";
10119
10120 return append_to_file(file, "-:%s/%s", retprobe ? "kretprobes" : "kprobes", probe_name);
10121}
10122
10123static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10124{
10125 char file[256];
10126
10127 snprintf(file, sizeof(file),
10128 "/sys/kernel/debug/tracing/events/%s/%s/id",
10129 retprobe ? "kretprobes" : "kprobes", probe_name);
10130
10131 return parse_uint_from_file(file, "%d\n");
10132}
10133
10134static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10135 const char *kfunc_name, size_t offset, int pid)
10136{
10137 struct perf_event_attr attr = {};
10138 char errmsg[STRERR_BUFSIZE];
10139 int type, pfd, err;
10140
10141 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10142 if (err < 0) {
10143 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10144 kfunc_name, offset,
10145 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10146 return err;
10147 }
10148 type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10149 if (type < 0) {
10150 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10151 kfunc_name, offset,
10152 libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10153 return type;
10154 }
10155 attr.size = sizeof(attr);
10156 attr.config = type;
10157 attr.type = PERF_TYPE_TRACEPOINT;
10158
10159 pfd = syscall(__NR_perf_event_open, &attr,
10160 pid < 0 ? -1 : pid, /* pid */
10161 pid == -1 ? 0 : -1, /* cpu */
10162 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10163 if (pfd < 0) {
10164 err = -errno;
10165 pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10166 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10167 return err;
10168 }
10169 return pfd;
10170}
10171
10172struct bpf_link *
10173bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10174 const char *func_name,
10175 const struct bpf_kprobe_opts *opts)
10176{
10177 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10178 char errmsg[STRERR_BUFSIZE];
10179 char *legacy_probe = NULL;
10180 struct bpf_link *link;
10181 size_t offset;
10182 bool retprobe, legacy;
10183 int pfd, err;
10184
10185 if (!OPTS_VALID(opts, bpf_kprobe_opts))
10186 return libbpf_err_ptr(-EINVAL);
10187
10188 retprobe = OPTS_GET(opts, retprobe, false);
10189 offset = OPTS_GET(opts, offset, 0);
10190 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10191
10192 legacy = determine_kprobe_perf_type() < 0;
10193 if (!legacy) {
10194 pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10195 func_name, offset,
10196 -1 /* pid */, 0 /* ref_ctr_off */);
10197 } else {
10198 char probe_name[256];
10199
10200 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10201 func_name, offset);
10202
10203 legacy_probe = strdup(probe_name);
10204 if (!legacy_probe)
10205 return libbpf_err_ptr(-ENOMEM);
10206
10207 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10208 offset, -1 /* pid */);
10209 }
10210 if (pfd < 0) {
10211 err = -errno;
10212 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10213 prog->name, retprobe ? "kretprobe" : "kprobe",
10214 func_name, offset,
10215 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10216 goto err_out;
10217 }
10218 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10219 err = libbpf_get_error(link);
10220 if (err) {
10221 close(pfd);
10222 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10223 prog->name, retprobe ? "kretprobe" : "kprobe",
10224 func_name, offset,
10225 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10226 goto err_out;
10227 }
10228 if (legacy) {
10229 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10230
10231 perf_link->legacy_probe_name = legacy_probe;
10232 perf_link->legacy_is_kprobe = true;
10233 perf_link->legacy_is_retprobe = retprobe;
10234 }
10235
10236 return link;
10237err_out:
10238 free(legacy_probe);
10239 return libbpf_err_ptr(err);
10240}
10241
10242struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10243 bool retprobe,
10244 const char *func_name)
10245{
10246 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10247 .retprobe = retprobe,
10248 );
10249
10250 return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10251}
10252
10253/* Adapted from perf/util/string.c */
10254static bool glob_match(const char *str, const char *pat)
10255{
10256 while (*str && *pat && *pat != '*') {
10257 if (*pat == '?') { /* Matches any single character */
10258 str++;
10259 pat++;
10260 continue;
10261 }
10262 if (*str != *pat)
10263 return false;
10264 str++;
10265 pat++;
10266 }
10267 /* Check wild card */
10268 if (*pat == '*') {
10269 while (*pat == '*')
10270 pat++;
10271 if (!*pat) /* Tail wild card matches all */
10272 return true;
10273 while (*str)
10274 if (glob_match(str++, pat))
10275 return true;
10276 }
10277 return !*str && !*pat;
10278}
10279
10280struct kprobe_multi_resolve {
10281 const char *pattern;
10282 unsigned long *addrs;
10283 size_t cap;
10284 size_t cnt;
10285};
10286
10287static int
10288resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type,
10289 const char *sym_name, void *ctx)
10290{
10291 struct kprobe_multi_resolve *res = ctx;
10292 int err;
10293
10294 if (!glob_match(sym_name, res->pattern))
10295 return 0;
10296
10297 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long),
10298 res->cnt + 1);
10299 if (err)
10300 return err;
10301
10302 res->addrs[res->cnt++] = (unsigned long) sym_addr;
10303 return 0;
10304}
10305
10306struct bpf_link *
10307bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10308 const char *pattern,
10309 const struct bpf_kprobe_multi_opts *opts)
10310{
10311 LIBBPF_OPTS(bpf_link_create_opts, lopts);
10312 struct kprobe_multi_resolve res = {
10313 .pattern = pattern,
10314 };
10315 struct bpf_link *link = NULL;
10316 char errmsg[STRERR_BUFSIZE];
10317 const unsigned long *addrs;
10318 int err, link_fd, prog_fd;
10319 const __u64 *cookies;
10320 const char **syms;
10321 bool retprobe;
10322 size_t cnt;
10323
10324 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10325 return libbpf_err_ptr(-EINVAL);
10326
10327 syms = OPTS_GET(opts, syms, false);
10328 addrs = OPTS_GET(opts, addrs, false);
10329 cnt = OPTS_GET(opts, cnt, false);
10330 cookies = OPTS_GET(opts, cookies, false);
10331
10332 if (!pattern && !addrs && !syms)
10333 return libbpf_err_ptr(-EINVAL);
10334 if (pattern && (addrs || syms || cookies || cnt))
10335 return libbpf_err_ptr(-EINVAL);
10336 if (!pattern && !cnt)
10337 return libbpf_err_ptr(-EINVAL);
10338 if (addrs && syms)
10339 return libbpf_err_ptr(-EINVAL);
10340
10341 if (pattern) {
10342 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res);
10343 if (err)
10344 goto error;
10345 if (!res.cnt) {
10346 err = -ENOENT;
10347 goto error;
10348 }
10349 addrs = res.addrs;
10350 cnt = res.cnt;
10351 }
10352
10353 retprobe = OPTS_GET(opts, retprobe, false);
10354
10355 lopts.kprobe_multi.syms = syms;
10356 lopts.kprobe_multi.addrs = addrs;
10357 lopts.kprobe_multi.cookies = cookies;
10358 lopts.kprobe_multi.cnt = cnt;
10359 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10360
10361 link = calloc(1, sizeof(*link));
10362 if (!link) {
10363 err = -ENOMEM;
10364 goto error;
10365 }
10366 link->detach = &bpf_link__detach_fd;
10367
10368 prog_fd = bpf_program__fd(prog);
10369 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10370 if (link_fd < 0) {
10371 err = -errno;
10372 pr_warn("prog '%s': failed to attach: %s\n",
10373 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10374 goto error;
10375 }
10376 link->fd = link_fd;
10377 free(res.addrs);
10378 return link;
10379
10380error:
10381 free(link);
10382 free(res.addrs);
10383 return libbpf_err_ptr(err);
10384}
10385
10386static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10387{
10388 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10389 unsigned long offset = 0;
10390 const char *func_name;
10391 char *func;
10392 int n;
10393
10394 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10395 if (opts.retprobe)
10396 func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10397 else
10398 func_name = prog->sec_name + sizeof("kprobe/") - 1;
10399
10400 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10401 if (n < 1) {
10402 pr_warn("kprobe name is invalid: %s\n", func_name);
10403 return -EINVAL;
10404 }
10405 if (opts.retprobe && offset != 0) {
10406 free(func);
10407 pr_warn("kretprobes do not support offset specification\n");
10408 return -EINVAL;
10409 }
10410
10411 opts.offset = offset;
10412 *link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10413 free(func);
10414 return libbpf_get_error(*link);
10415}
10416
10417static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10418{
10419 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10420 const char *spec;
10421 char *pattern;
10422 int n;
10423
10424 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10425 if (opts.retprobe)
10426 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10427 else
10428 spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10429
10430 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10431 if (n < 1) {
10432 pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
10433 return -EINVAL;
10434 }
10435
10436 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
10437 free(pattern);
10438 return libbpf_get_error(*link);
10439}
10440
10441static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
10442 const char *binary_path, uint64_t offset)
10443{
10444 int i;
10445
10446 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
10447
10448 /* sanitize binary_path in the probe name */
10449 for (i = 0; buf[i]; i++) {
10450 if (!isalnum(buf[i]))
10451 buf[i] = '_';
10452 }
10453}
10454
10455static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
10456 const char *binary_path, size_t offset)
10457{
10458 const char *file = "/sys/kernel/debug/tracing/uprobe_events";
10459
10460 return append_to_file(file, "%c:%s/%s %s:0x%zx",
10461 retprobe ? 'r' : 'p',
10462 retprobe ? "uretprobes" : "uprobes",
10463 probe_name, binary_path, offset);
10464}
10465
10466static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
10467{
10468 const char *file = "/sys/kernel/debug/tracing/uprobe_events";
10469
10470 return append_to_file(file, "-:%s/%s", retprobe ? "uretprobes" : "uprobes", probe_name);
10471}
10472
10473static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10474{
10475 char file[512];
10476
10477 snprintf(file, sizeof(file),
10478 "/sys/kernel/debug/tracing/events/%s/%s/id",
10479 retprobe ? "uretprobes" : "uprobes", probe_name);
10480
10481 return parse_uint_from_file(file, "%d\n");
10482}
10483
10484static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
10485 const char *binary_path, size_t offset, int pid)
10486{
10487 struct perf_event_attr attr;
10488 int type, pfd, err;
10489
10490 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
10491 if (err < 0) {
10492 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
10493 binary_path, (size_t)offset, err);
10494 return err;
10495 }
10496 type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
10497 if (type < 0) {
10498 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
10499 binary_path, offset, err);
10500 return type;
10501 }
10502
10503 memset(&attr, 0, sizeof(attr));
10504 attr.size = sizeof(attr);
10505 attr.config = type;
10506 attr.type = PERF_TYPE_TRACEPOINT;
10507
10508 pfd = syscall(__NR_perf_event_open, &attr,
10509 pid < 0 ? -1 : pid, /* pid */
10510 pid == -1 ? 0 : -1, /* cpu */
10511 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10512 if (pfd < 0) {
10513 err = -errno;
10514 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
10515 return err;
10516 }
10517 return pfd;
10518}
10519
10520LIBBPF_API struct bpf_link *
10521bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
10522 const char *binary_path, size_t func_offset,
10523 const struct bpf_uprobe_opts *opts)
10524{
10525 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10526 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
10527 struct bpf_link *link;
10528 size_t ref_ctr_off;
10529 int pfd, err;
10530 bool retprobe, legacy;
10531
10532 if (!OPTS_VALID(opts, bpf_uprobe_opts))
10533 return libbpf_err_ptr(-EINVAL);
10534
10535 retprobe = OPTS_GET(opts, retprobe, false);
10536 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
10537 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10538
10539 legacy = determine_uprobe_perf_type() < 0;
10540 if (!legacy) {
10541 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
10542 func_offset, pid, ref_ctr_off);
10543 } else {
10544 char probe_name[512];
10545
10546 if (ref_ctr_off)
10547 return libbpf_err_ptr(-EINVAL);
10548
10549 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
10550 binary_path, func_offset);
10551
10552 legacy_probe = strdup(probe_name);
10553 if (!legacy_probe)
10554 return libbpf_err_ptr(-ENOMEM);
10555
10556 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
10557 binary_path, func_offset, pid);
10558 }
10559 if (pfd < 0) {
10560 err = -errno;
10561 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
10562 prog->name, retprobe ? "uretprobe" : "uprobe",
10563 binary_path, func_offset,
10564 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10565 goto err_out;
10566 }
10567
10568 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10569 err = libbpf_get_error(link);
10570 if (err) {
10571 close(pfd);
10572 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
10573 prog->name, retprobe ? "uretprobe" : "uprobe",
10574 binary_path, func_offset,
10575 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10576 goto err_out;
10577 }
10578 if (legacy) {
10579 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10580
10581 perf_link->legacy_probe_name = legacy_probe;
10582 perf_link->legacy_is_kprobe = false;
10583 perf_link->legacy_is_retprobe = retprobe;
10584 }
10585 return link;
10586err_out:
10587 free(legacy_probe);
10588 return libbpf_err_ptr(err);
10589
10590}
10591
10592struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
10593 bool retprobe, pid_t pid,
10594 const char *binary_path,
10595 size_t func_offset)
10596{
10597 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
10598
10599 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
10600}
10601
10602static int determine_tracepoint_id(const char *tp_category,
10603 const char *tp_name)
10604{
10605 char file[PATH_MAX];
10606 int ret;
10607
10608 ret = snprintf(file, sizeof(file),
10609 "/sys/kernel/debug/tracing/events/%s/%s/id",
10610 tp_category, tp_name);
10611 if (ret < 0)
10612 return -errno;
10613 if (ret >= sizeof(file)) {
10614 pr_debug("tracepoint %s/%s path is too long\n",
10615 tp_category, tp_name);
10616 return -E2BIG;
10617 }
10618 return parse_uint_from_file(file, "%d\n");
10619}
10620
10621static int perf_event_open_tracepoint(const char *tp_category,
10622 const char *tp_name)
10623{
10624 struct perf_event_attr attr = {};
10625 char errmsg[STRERR_BUFSIZE];
10626 int tp_id, pfd, err;
10627
10628 tp_id = determine_tracepoint_id(tp_category, tp_name);
10629 if (tp_id < 0) {
10630 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
10631 tp_category, tp_name,
10632 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
10633 return tp_id;
10634 }
10635
10636 attr.type = PERF_TYPE_TRACEPOINT;
10637 attr.size = sizeof(attr);
10638 attr.config = tp_id;
10639
10640 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
10641 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10642 if (pfd < 0) {
10643 err = -errno;
10644 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
10645 tp_category, tp_name,
10646 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10647 return err;
10648 }
10649 return pfd;
10650}
10651
10652struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
10653 const char *tp_category,
10654 const char *tp_name,
10655 const struct bpf_tracepoint_opts *opts)
10656{
10657 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10658 char errmsg[STRERR_BUFSIZE];
10659 struct bpf_link *link;
10660 int pfd, err;
10661
10662 if (!OPTS_VALID(opts, bpf_tracepoint_opts))
10663 return libbpf_err_ptr(-EINVAL);
10664
10665 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10666
10667 pfd = perf_event_open_tracepoint(tp_category, tp_name);
10668 if (pfd < 0) {
10669 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
10670 prog->name, tp_category, tp_name,
10671 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10672 return libbpf_err_ptr(pfd);
10673 }
10674 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10675 err = libbpf_get_error(link);
10676 if (err) {
10677 close(pfd);
10678 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
10679 prog->name, tp_category, tp_name,
10680 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10681 return libbpf_err_ptr(err);
10682 }
10683 return link;
10684}
10685
10686struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
10687 const char *tp_category,
10688 const char *tp_name)
10689{
10690 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
10691}
10692
10693static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10694{
10695 char *sec_name, *tp_cat, *tp_name;
10696
10697 sec_name = strdup(prog->sec_name);
10698 if (!sec_name)
10699 return -ENOMEM;
10700
10701 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
10702 if (str_has_pfx(prog->sec_name, "tp/"))
10703 tp_cat = sec_name + sizeof("tp/") - 1;
10704 else
10705 tp_cat = sec_name + sizeof("tracepoint/") - 1;
10706 tp_name = strchr(tp_cat, '/');
10707 if (!tp_name) {
10708 free(sec_name);
10709 return -EINVAL;
10710 }
10711 *tp_name = '\0';
10712 tp_name++;
10713
10714 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
10715 free(sec_name);
10716 return libbpf_get_error(*link);
10717}
10718
10719struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
10720 const char *tp_name)
10721{
10722 char errmsg[STRERR_BUFSIZE];
10723 struct bpf_link *link;
10724 int prog_fd, pfd;
10725
10726 prog_fd = bpf_program__fd(prog);
10727 if (prog_fd < 0) {
10728 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10729 return libbpf_err_ptr(-EINVAL);
10730 }
10731
10732 link = calloc(1, sizeof(*link));
10733 if (!link)
10734 return libbpf_err_ptr(-ENOMEM);
10735 link->detach = &bpf_link__detach_fd;
10736
10737 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
10738 if (pfd < 0) {
10739 pfd = -errno;
10740 free(link);
10741 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
10742 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10743 return libbpf_err_ptr(pfd);
10744 }
10745 link->fd = pfd;
10746 return link;
10747}
10748
10749static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10750{
10751 static const char *const prefixes[] = {
10752 "raw_tp/",
10753 "raw_tracepoint/",
10754 "raw_tp.w/",
10755 "raw_tracepoint.w/",
10756 };
10757 size_t i;
10758 const char *tp_name = NULL;
10759
10760 for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
10761 if (str_has_pfx(prog->sec_name, prefixes[i])) {
10762 tp_name = prog->sec_name + strlen(prefixes[i]);
10763 break;
10764 }
10765 }
10766 if (!tp_name) {
10767 pr_warn("prog '%s': invalid section name '%s'\n",
10768 prog->name, prog->sec_name);
10769 return -EINVAL;
10770 }
10771
10772 *link = bpf_program__attach_raw_tracepoint(prog, tp_name);
10773 return libbpf_get_error(link);
10774}
10775
10776/* Common logic for all BPF program types that attach to a btf_id */
10777static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog)
10778{
10779 char errmsg[STRERR_BUFSIZE];
10780 struct bpf_link *link;
10781 int prog_fd, pfd;
10782
10783 prog_fd = bpf_program__fd(prog);
10784 if (prog_fd < 0) {
10785 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10786 return libbpf_err_ptr(-EINVAL);
10787 }
10788
10789 link = calloc(1, sizeof(*link));
10790 if (!link)
10791 return libbpf_err_ptr(-ENOMEM);
10792 link->detach = &bpf_link__detach_fd;
10793
10794 pfd = bpf_raw_tracepoint_open(NULL, prog_fd);
10795 if (pfd < 0) {
10796 pfd = -errno;
10797 free(link);
10798 pr_warn("prog '%s': failed to attach: %s\n",
10799 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10800 return libbpf_err_ptr(pfd);
10801 }
10802 link->fd = pfd;
10803 return (struct bpf_link *)link;
10804}
10805
10806struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
10807{
10808 return bpf_program__attach_btf_id(prog);
10809}
10810
10811struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
10812{
10813 return bpf_program__attach_btf_id(prog);
10814}
10815
10816static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10817{
10818 *link = bpf_program__attach_trace(prog);
10819 return libbpf_get_error(*link);
10820}
10821
10822static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10823{
10824 *link = bpf_program__attach_lsm(prog);
10825 return libbpf_get_error(*link);
10826}
10827
10828static struct bpf_link *
10829bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id,
10830 const char *target_name)
10831{
10832 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
10833 .target_btf_id = btf_id);
10834 enum bpf_attach_type attach_type;
10835 char errmsg[STRERR_BUFSIZE];
10836 struct bpf_link *link;
10837 int prog_fd, link_fd;
10838
10839 prog_fd = bpf_program__fd(prog);
10840 if (prog_fd < 0) {
10841 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10842 return libbpf_err_ptr(-EINVAL);
10843 }
10844
10845 link = calloc(1, sizeof(*link));
10846 if (!link)
10847 return libbpf_err_ptr(-ENOMEM);
10848 link->detach = &bpf_link__detach_fd;
10849
10850 attach_type = bpf_program__expected_attach_type(prog);
10851 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
10852 if (link_fd < 0) {
10853 link_fd = -errno;
10854 free(link);
10855 pr_warn("prog '%s': failed to attach to %s: %s\n",
10856 prog->name, target_name,
10857 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
10858 return libbpf_err_ptr(link_fd);
10859 }
10860 link->fd = link_fd;
10861 return link;
10862}
10863
10864struct bpf_link *
10865bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
10866{
10867 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
10868}
10869
10870struct bpf_link *
10871bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
10872{
10873 return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
10874}
10875
10876struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
10877{
10878 /* target_fd/target_ifindex use the same field in LINK_CREATE */
10879 return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
10880}
10881
10882struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
10883 int target_fd,
10884 const char *attach_func_name)
10885{
10886 int btf_id;
10887
10888 if (!!target_fd != !!attach_func_name) {
10889 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
10890 prog->name);
10891 return libbpf_err_ptr(-EINVAL);
10892 }
10893
10894 if (prog->type != BPF_PROG_TYPE_EXT) {
10895 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
10896 prog->name);
10897 return libbpf_err_ptr(-EINVAL);
10898 }
10899
10900 if (target_fd) {
10901 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
10902 if (btf_id < 0)
10903 return libbpf_err_ptr(btf_id);
10904
10905 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
10906 } else {
10907 /* no target, so use raw_tracepoint_open for compatibility
10908 * with old kernels
10909 */
10910 return bpf_program__attach_trace(prog);
10911 }
10912}
10913
10914struct bpf_link *
10915bpf_program__attach_iter(const struct bpf_program *prog,
10916 const struct bpf_iter_attach_opts *opts)
10917{
10918 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
10919 char errmsg[STRERR_BUFSIZE];
10920 struct bpf_link *link;
10921 int prog_fd, link_fd;
10922 __u32 target_fd = 0;
10923
10924 if (!OPTS_VALID(opts, bpf_iter_attach_opts))
10925 return libbpf_err_ptr(-EINVAL);
10926
10927 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
10928 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
10929
10930 prog_fd = bpf_program__fd(prog);
10931 if (prog_fd < 0) {
10932 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10933 return libbpf_err_ptr(-EINVAL);
10934 }
10935
10936 link = calloc(1, sizeof(*link));
10937 if (!link)
10938 return libbpf_err_ptr(-ENOMEM);
10939 link->detach = &bpf_link__detach_fd;
10940
10941 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
10942 &link_create_opts);
10943 if (link_fd < 0) {
10944 link_fd = -errno;
10945 free(link);
10946 pr_warn("prog '%s': failed to attach to iterator: %s\n",
10947 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
10948 return libbpf_err_ptr(link_fd);
10949 }
10950 link->fd = link_fd;
10951 return link;
10952}
10953
10954static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10955{
10956 *link = bpf_program__attach_iter(prog, NULL);
10957 return libbpf_get_error(*link);
10958}
10959
10960struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
10961{
10962 struct bpf_link *link = NULL;
10963 int err;
10964
10965 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
10966 return libbpf_err_ptr(-EOPNOTSUPP);
10967
10968 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
10969 if (err)
10970 return libbpf_err_ptr(err);
10971
10972 /* When calling bpf_program__attach() explicitly, auto-attach support
10973 * is expected to work, so NULL returned link is considered an error.
10974 * This is different for skeleton's attach, see comment in
10975 * bpf_object__attach_skeleton().
10976 */
10977 if (!link)
10978 return libbpf_err_ptr(-EOPNOTSUPP);
10979
10980 return link;
10981}
10982
10983static int bpf_link__detach_struct_ops(struct bpf_link *link)
10984{
10985 __u32 zero = 0;
10986
10987 if (bpf_map_delete_elem(link->fd, &zero))
10988 return -errno;
10989
10990 return 0;
10991}
10992
10993struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
10994{
10995 struct bpf_struct_ops *st_ops;
10996 struct bpf_link *link;
10997 __u32 i, zero = 0;
10998 int err;
10999
11000 if (!bpf_map__is_struct_ops(map) || map->fd == -1)
11001 return libbpf_err_ptr(-EINVAL);
11002
11003 link = calloc(1, sizeof(*link));
11004 if (!link)
11005 return libbpf_err_ptr(-EINVAL);
11006
11007 st_ops = map->st_ops;
11008 for (i = 0; i < btf_vlen(st_ops->type); i++) {
11009 struct bpf_program *prog = st_ops->progs[i];
11010 void *kern_data;
11011 int prog_fd;
11012
11013 if (!prog)
11014 continue;
11015
11016 prog_fd = bpf_program__fd(prog);
11017 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
11018 *(unsigned long *)kern_data = prog_fd;
11019 }
11020
11021 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
11022 if (err) {
11023 err = -errno;
11024 free(link);
11025 return libbpf_err_ptr(err);
11026 }
11027
11028 link->detach = bpf_link__detach_struct_ops;
11029 link->fd = map->fd;
11030
11031 return link;
11032}
11033
11034static enum bpf_perf_event_ret
11035perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
11036 void **copy_mem, size_t *copy_size,
11037 bpf_perf_event_print_t fn, void *private_data)
11038{
11039 struct perf_event_mmap_page *header = mmap_mem;
11040 __u64 data_head = ring_buffer_read_head(header);
11041 __u64 data_tail = header->data_tail;
11042 void *base = ((__u8 *)header) + page_size;
11043 int ret = LIBBPF_PERF_EVENT_CONT;
11044 struct perf_event_header *ehdr;
11045 size_t ehdr_size;
11046
11047 while (data_head != data_tail) {
11048 ehdr = base + (data_tail & (mmap_size - 1));
11049 ehdr_size = ehdr->size;
11050
11051 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
11052 void *copy_start = ehdr;
11053 size_t len_first = base + mmap_size - copy_start;
11054 size_t len_secnd = ehdr_size - len_first;
11055
11056 if (*copy_size < ehdr_size) {
11057 free(*copy_mem);
11058 *copy_mem = malloc(ehdr_size);
11059 if (!*copy_mem) {
11060 *copy_size = 0;
11061 ret = LIBBPF_PERF_EVENT_ERROR;
11062 break;
11063 }
11064 *copy_size = ehdr_size;
11065 }
11066
11067 memcpy(*copy_mem, copy_start, len_first);
11068 memcpy(*copy_mem + len_first, base, len_secnd);
11069 ehdr = *copy_mem;
11070 }
11071
11072 ret = fn(ehdr, private_data);
11073 data_tail += ehdr_size;
11074 if (ret != LIBBPF_PERF_EVENT_CONT)
11075 break;
11076 }
11077
11078 ring_buffer_write_tail(header, data_tail);
11079 return libbpf_err(ret);
11080}
11081
11082__attribute__((alias("perf_event_read_simple")))
11083enum bpf_perf_event_ret
11084bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
11085 void **copy_mem, size_t *copy_size,
11086 bpf_perf_event_print_t fn, void *private_data);
11087
11088struct perf_buffer;
11089
11090struct perf_buffer_params {
11091 struct perf_event_attr *attr;
11092 /* if event_cb is specified, it takes precendence */
11093 perf_buffer_event_fn event_cb;
11094 /* sample_cb and lost_cb are higher-level common-case callbacks */
11095 perf_buffer_sample_fn sample_cb;
11096 perf_buffer_lost_fn lost_cb;
11097 void *ctx;
11098 int cpu_cnt;
11099 int *cpus;
11100 int *map_keys;
11101};
11102
11103struct perf_cpu_buf {
11104 struct perf_buffer *pb;
11105 void *base; /* mmap()'ed memory */
11106 void *buf; /* for reconstructing segmented data */
11107 size_t buf_size;
11108 int fd;
11109 int cpu;
11110 int map_key;
11111};
11112
11113struct perf_buffer {
11114 perf_buffer_event_fn event_cb;
11115 perf_buffer_sample_fn sample_cb;
11116 perf_buffer_lost_fn lost_cb;
11117 void *ctx; /* passed into callbacks */
11118
11119 size_t page_size;
11120 size_t mmap_size;
11121 struct perf_cpu_buf **cpu_bufs;
11122 struct epoll_event *events;
11123 int cpu_cnt; /* number of allocated CPU buffers */
11124 int epoll_fd; /* perf event FD */
11125 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
11126};
11127
11128static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
11129 struct perf_cpu_buf *cpu_buf)
11130{
11131 if (!cpu_buf)
11132 return;
11133 if (cpu_buf->base &&
11134 munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
11135 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
11136 if (cpu_buf->fd >= 0) {
11137 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
11138 close(cpu_buf->fd);
11139 }
11140 free(cpu_buf->buf);
11141 free(cpu_buf);
11142}
11143
11144void perf_buffer__free(struct perf_buffer *pb)
11145{
11146 int i;
11147
11148 if (IS_ERR_OR_NULL(pb))
11149 return;
11150 if (pb->cpu_bufs) {
11151 for (i = 0; i < pb->cpu_cnt; i++) {
11152 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11153
11154 if (!cpu_buf)
11155 continue;
11156
11157 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
11158 perf_buffer__free_cpu_buf(pb, cpu_buf);
11159 }
11160 free(pb->cpu_bufs);
11161 }
11162 if (pb->epoll_fd >= 0)
11163 close(pb->epoll_fd);
11164 free(pb->events);
11165 free(pb);
11166}
11167
11168static struct perf_cpu_buf *
11169perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
11170 int cpu, int map_key)
11171{
11172 struct perf_cpu_buf *cpu_buf;
11173 char msg[STRERR_BUFSIZE];
11174 int err;
11175
11176 cpu_buf = calloc(1, sizeof(*cpu_buf));
11177 if (!cpu_buf)
11178 return ERR_PTR(-ENOMEM);
11179
11180 cpu_buf->pb = pb;
11181 cpu_buf->cpu = cpu;
11182 cpu_buf->map_key = map_key;
11183
11184 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
11185 -1, PERF_FLAG_FD_CLOEXEC);
11186 if (cpu_buf->fd < 0) {
11187 err = -errno;
11188 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
11189 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11190 goto error;
11191 }
11192
11193 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
11194 PROT_READ | PROT_WRITE, MAP_SHARED,
11195 cpu_buf->fd, 0);
11196 if (cpu_buf->base == MAP_FAILED) {
11197 cpu_buf->base = NULL;
11198 err = -errno;
11199 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
11200 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11201 goto error;
11202 }
11203
11204 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
11205 err = -errno;
11206 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
11207 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11208 goto error;
11209 }
11210
11211 return cpu_buf;
11212
11213error:
11214 perf_buffer__free_cpu_buf(pb, cpu_buf);
11215 return (struct perf_cpu_buf *)ERR_PTR(err);
11216}
11217
11218static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11219 struct perf_buffer_params *p);
11220
11221DEFAULT_VERSION(perf_buffer__new_v0_6_0, perf_buffer__new, LIBBPF_0.6.0)
11222struct perf_buffer *perf_buffer__new_v0_6_0(int map_fd, size_t page_cnt,
11223 perf_buffer_sample_fn sample_cb,
11224 perf_buffer_lost_fn lost_cb,
11225 void *ctx,
11226 const struct perf_buffer_opts *opts)
11227{
11228 struct perf_buffer_params p = {};
11229 struct perf_event_attr attr = {};
11230
11231 if (!OPTS_VALID(opts, perf_buffer_opts))
11232 return libbpf_err_ptr(-EINVAL);
11233
11234 attr.config = PERF_COUNT_SW_BPF_OUTPUT;
11235 attr.type = PERF_TYPE_SOFTWARE;
11236 attr.sample_type = PERF_SAMPLE_RAW;
11237 attr.sample_period = 1;
11238 attr.wakeup_events = 1;
11239
11240 p.attr = &attr;
11241 p.sample_cb = sample_cb;
11242 p.lost_cb = lost_cb;
11243 p.ctx = ctx;
11244
11245 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11246}
11247
11248COMPAT_VERSION(perf_buffer__new_deprecated, perf_buffer__new, LIBBPF_0.0.4)
11249struct perf_buffer *perf_buffer__new_deprecated(int map_fd, size_t page_cnt,
11250 const struct perf_buffer_opts *opts)
11251{
11252 return perf_buffer__new_v0_6_0(map_fd, page_cnt,
11253 opts ? opts->sample_cb : NULL,
11254 opts ? opts->lost_cb : NULL,
11255 opts ? opts->ctx : NULL,
11256 NULL);
11257}
11258
11259DEFAULT_VERSION(perf_buffer__new_raw_v0_6_0, perf_buffer__new_raw, LIBBPF_0.6.0)
11260struct perf_buffer *perf_buffer__new_raw_v0_6_0(int map_fd, size_t page_cnt,
11261 struct perf_event_attr *attr,
11262 perf_buffer_event_fn event_cb, void *ctx,
11263 const struct perf_buffer_raw_opts *opts)
11264{
11265 struct perf_buffer_params p = {};
11266
11267 if (!attr)
11268 return libbpf_err_ptr(-EINVAL);
11269
11270 if (!OPTS_VALID(opts, perf_buffer_raw_opts))
11271 return libbpf_err_ptr(-EINVAL);
11272
11273 p.attr = attr;
11274 p.event_cb = event_cb;
11275 p.ctx = ctx;
11276 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
11277 p.cpus = OPTS_GET(opts, cpus, NULL);
11278 p.map_keys = OPTS_GET(opts, map_keys, NULL);
11279
11280 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
11281}
11282
11283COMPAT_VERSION(perf_buffer__new_raw_deprecated, perf_buffer__new_raw, LIBBPF_0.0.4)
11284struct perf_buffer *perf_buffer__new_raw_deprecated(int map_fd, size_t page_cnt,
11285 const struct perf_buffer_raw_opts *opts)
11286{
11287 LIBBPF_OPTS(perf_buffer_raw_opts, inner_opts,
11288 .cpu_cnt = opts->cpu_cnt,
11289 .cpus = opts->cpus,
11290 .map_keys = opts->map_keys,
11291 );
11292
11293 return perf_buffer__new_raw_v0_6_0(map_fd, page_cnt, opts->attr,
11294 opts->event_cb, opts->ctx, &inner_opts);
11295}
11296
11297static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
11298 struct perf_buffer_params *p)
11299{
11300 const char *online_cpus_file = "/sys/devices/system/cpu/online";
11301 struct bpf_map_info map;
11302 char msg[STRERR_BUFSIZE];
11303 struct perf_buffer *pb;
11304 bool *online = NULL;
11305 __u32 map_info_len;
11306 int err, i, j, n;
11307
11308 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
11309 pr_warn("page count should be power of two, but is %zu\n",
11310 page_cnt);
11311 return ERR_PTR(-EINVAL);
11312 }
11313
11314 /* best-effort sanity checks */
11315 memset(&map, 0, sizeof(map));
11316 map_info_len = sizeof(map);
11317 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
11318 if (err) {
11319 err = -errno;
11320 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
11321 * -EBADFD, -EFAULT, or -E2BIG on real error
11322 */
11323 if (err != -EINVAL) {
11324 pr_warn("failed to get map info for map FD %d: %s\n",
11325 map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
11326 return ERR_PTR(err);
11327 }
11328 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
11329 map_fd);
11330 } else {
11331 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
11332 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
11333 map.name);
11334 return ERR_PTR(-EINVAL);
11335 }
11336 }
11337
11338 pb = calloc(1, sizeof(*pb));
11339 if (!pb)
11340 return ERR_PTR(-ENOMEM);
11341
11342 pb->event_cb = p->event_cb;
11343 pb->sample_cb = p->sample_cb;
11344 pb->lost_cb = p->lost_cb;
11345 pb->ctx = p->ctx;
11346
11347 pb->page_size = getpagesize();
11348 pb->mmap_size = pb->page_size * page_cnt;
11349 pb->map_fd = map_fd;
11350
11351 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
11352 if (pb->epoll_fd < 0) {
11353 err = -errno;
11354 pr_warn("failed to create epoll instance: %s\n",
11355 libbpf_strerror_r(err, msg, sizeof(msg)));
11356 goto error;
11357 }
11358
11359 if (p->cpu_cnt > 0) {
11360 pb->cpu_cnt = p->cpu_cnt;
11361 } else {
11362 pb->cpu_cnt = libbpf_num_possible_cpus();
11363 if (pb->cpu_cnt < 0) {
11364 err = pb->cpu_cnt;
11365 goto error;
11366 }
11367 if (map.max_entries && map.max_entries < pb->cpu_cnt)
11368 pb->cpu_cnt = map.max_entries;
11369 }
11370
11371 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
11372 if (!pb->events) {
11373 err = -ENOMEM;
11374 pr_warn("failed to allocate events: out of memory\n");
11375 goto error;
11376 }
11377 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
11378 if (!pb->cpu_bufs) {
11379 err = -ENOMEM;
11380 pr_warn("failed to allocate buffers: out of memory\n");
11381 goto error;
11382 }
11383
11384 err = parse_cpu_mask_file(online_cpus_file, &online, &n);
11385 if (err) {
11386 pr_warn("failed to get online CPU mask: %d\n", err);
11387 goto error;
11388 }
11389
11390 for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
11391 struct perf_cpu_buf *cpu_buf;
11392 int cpu, map_key;
11393
11394 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
11395 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
11396
11397 /* in case user didn't explicitly requested particular CPUs to
11398 * be attached to, skip offline/not present CPUs
11399 */
11400 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
11401 continue;
11402
11403 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
11404 if (IS_ERR(cpu_buf)) {
11405 err = PTR_ERR(cpu_buf);
11406 goto error;
11407 }
11408
11409 pb->cpu_bufs[j] = cpu_buf;
11410
11411 err = bpf_map_update_elem(pb->map_fd, &map_key,
11412 &cpu_buf->fd, 0);
11413 if (err) {
11414 err = -errno;
11415 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
11416 cpu, map_key, cpu_buf->fd,
11417 libbpf_strerror_r(err, msg, sizeof(msg)));
11418 goto error;
11419 }
11420
11421 pb->events[j].events = EPOLLIN;
11422 pb->events[j].data.ptr = cpu_buf;
11423 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
11424 &pb->events[j]) < 0) {
11425 err = -errno;
11426 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
11427 cpu, cpu_buf->fd,
11428 libbpf_strerror_r(err, msg, sizeof(msg)));
11429 goto error;
11430 }
11431 j++;
11432 }
11433 pb->cpu_cnt = j;
11434 free(online);
11435
11436 return pb;
11437
11438error:
11439 free(online);
11440 if (pb)
11441 perf_buffer__free(pb);
11442 return ERR_PTR(err);
11443}
11444
11445struct perf_sample_raw {
11446 struct perf_event_header header;
11447 uint32_t size;
11448 char data[];
11449};
11450
11451struct perf_sample_lost {
11452 struct perf_event_header header;
11453 uint64_t id;
11454 uint64_t lost;
11455 uint64_t sample_id;
11456};
11457
11458static enum bpf_perf_event_ret
11459perf_buffer__process_record(struct perf_event_header *e, void *ctx)
11460{
11461 struct perf_cpu_buf *cpu_buf = ctx;
11462 struct perf_buffer *pb = cpu_buf->pb;
11463 void *data = e;
11464
11465 /* user wants full control over parsing perf event */
11466 if (pb->event_cb)
11467 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
11468
11469 switch (e->type) {
11470 case PERF_RECORD_SAMPLE: {
11471 struct perf_sample_raw *s = data;
11472
11473 if (pb->sample_cb)
11474 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
11475 break;
11476 }
11477 case PERF_RECORD_LOST: {
11478 struct perf_sample_lost *s = data;
11479
11480 if (pb->lost_cb)
11481 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
11482 break;
11483 }
11484 default:
11485 pr_warn("unknown perf sample type %d\n", e->type);
11486 return LIBBPF_PERF_EVENT_ERROR;
11487 }
11488 return LIBBPF_PERF_EVENT_CONT;
11489}
11490
11491static int perf_buffer__process_records(struct perf_buffer *pb,
11492 struct perf_cpu_buf *cpu_buf)
11493{
11494 enum bpf_perf_event_ret ret;
11495
11496 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
11497 pb->page_size, &cpu_buf->buf,
11498 &cpu_buf->buf_size,
11499 perf_buffer__process_record, cpu_buf);
11500 if (ret != LIBBPF_PERF_EVENT_CONT)
11501 return ret;
11502 return 0;
11503}
11504
11505int perf_buffer__epoll_fd(const struct perf_buffer *pb)
11506{
11507 return pb->epoll_fd;
11508}
11509
11510int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
11511{
11512 int i, cnt, err;
11513
11514 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
11515 if (cnt < 0)
11516 return -errno;
11517
11518 for (i = 0; i < cnt; i++) {
11519 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
11520
11521 err = perf_buffer__process_records(pb, cpu_buf);
11522 if (err) {
11523 pr_warn("error while processing records: %d\n", err);
11524 return libbpf_err(err);
11525 }
11526 }
11527 return cnt;
11528}
11529
11530/* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
11531 * manager.
11532 */
11533size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
11534{
11535 return pb->cpu_cnt;
11536}
11537
11538/*
11539 * Return perf_event FD of a ring buffer in *buf_idx* slot of
11540 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
11541 * select()/poll()/epoll() Linux syscalls.
11542 */
11543int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
11544{
11545 struct perf_cpu_buf *cpu_buf;
11546
11547 if (buf_idx >= pb->cpu_cnt)
11548 return libbpf_err(-EINVAL);
11549
11550 cpu_buf = pb->cpu_bufs[buf_idx];
11551 if (!cpu_buf)
11552 return libbpf_err(-ENOENT);
11553
11554 return cpu_buf->fd;
11555}
11556
11557/*
11558 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
11559 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
11560 * consume, do nothing and return success.
11561 * Returns:
11562 * - 0 on success;
11563 * - <0 on failure.
11564 */
11565int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
11566{
11567 struct perf_cpu_buf *cpu_buf;
11568
11569 if (buf_idx >= pb->cpu_cnt)
11570 return libbpf_err(-EINVAL);
11571
11572 cpu_buf = pb->cpu_bufs[buf_idx];
11573 if (!cpu_buf)
11574 return libbpf_err(-ENOENT);
11575
11576 return perf_buffer__process_records(pb, cpu_buf);
11577}
11578
11579int perf_buffer__consume(struct perf_buffer *pb)
11580{
11581 int i, err;
11582
11583 for (i = 0; i < pb->cpu_cnt; i++) {
11584 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11585
11586 if (!cpu_buf)
11587 continue;
11588
11589 err = perf_buffer__process_records(pb, cpu_buf);
11590 if (err) {
11591 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
11592 return libbpf_err(err);
11593 }
11594 }
11595 return 0;
11596}
11597
11598struct bpf_prog_info_array_desc {
11599 int array_offset; /* e.g. offset of jited_prog_insns */
11600 int count_offset; /* e.g. offset of jited_prog_len */
11601 int size_offset; /* > 0: offset of rec size,
11602 * < 0: fix size of -size_offset
11603 */
11604};
11605
11606static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = {
11607 [BPF_PROG_INFO_JITED_INSNS] = {
11608 offsetof(struct bpf_prog_info, jited_prog_insns),
11609 offsetof(struct bpf_prog_info, jited_prog_len),
11610 -1,
11611 },
11612 [BPF_PROG_INFO_XLATED_INSNS] = {
11613 offsetof(struct bpf_prog_info, xlated_prog_insns),
11614 offsetof(struct bpf_prog_info, xlated_prog_len),
11615 -1,
11616 },
11617 [BPF_PROG_INFO_MAP_IDS] = {
11618 offsetof(struct bpf_prog_info, map_ids),
11619 offsetof(struct bpf_prog_info, nr_map_ids),
11620 -(int)sizeof(__u32),
11621 },
11622 [BPF_PROG_INFO_JITED_KSYMS] = {
11623 offsetof(struct bpf_prog_info, jited_ksyms),
11624 offsetof(struct bpf_prog_info, nr_jited_ksyms),
11625 -(int)sizeof(__u64),
11626 },
11627 [BPF_PROG_INFO_JITED_FUNC_LENS] = {
11628 offsetof(struct bpf_prog_info, jited_func_lens),
11629 offsetof(struct bpf_prog_info, nr_jited_func_lens),
11630 -(int)sizeof(__u32),
11631 },
11632 [BPF_PROG_INFO_FUNC_INFO] = {
11633 offsetof(struct bpf_prog_info, func_info),
11634 offsetof(struct bpf_prog_info, nr_func_info),
11635 offsetof(struct bpf_prog_info, func_info_rec_size),
11636 },
11637 [BPF_PROG_INFO_LINE_INFO] = {
11638 offsetof(struct bpf_prog_info, line_info),
11639 offsetof(struct bpf_prog_info, nr_line_info),
11640 offsetof(struct bpf_prog_info, line_info_rec_size),
11641 },
11642 [BPF_PROG_INFO_JITED_LINE_INFO] = {
11643 offsetof(struct bpf_prog_info, jited_line_info),
11644 offsetof(struct bpf_prog_info, nr_jited_line_info),
11645 offsetof(struct bpf_prog_info, jited_line_info_rec_size),
11646 },
11647 [BPF_PROG_INFO_PROG_TAGS] = {
11648 offsetof(struct bpf_prog_info, prog_tags),
11649 offsetof(struct bpf_prog_info, nr_prog_tags),
11650 -(int)sizeof(__u8) * BPF_TAG_SIZE,
11651 },
11652
11653};
11654
11655static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info,
11656 int offset)
11657{
11658 __u32 *array = (__u32 *)info;
11659
11660 if (offset >= 0)
11661 return array[offset / sizeof(__u32)];
11662 return -(int)offset;
11663}
11664
11665static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info,
11666 int offset)
11667{
11668 __u64 *array = (__u64 *)info;
11669
11670 if (offset >= 0)
11671 return array[offset / sizeof(__u64)];
11672 return -(int)offset;
11673}
11674
11675static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset,
11676 __u32 val)
11677{
11678 __u32 *array = (__u32 *)info;
11679
11680 if (offset >= 0)
11681 array[offset / sizeof(__u32)] = val;
11682}
11683
11684static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset,
11685 __u64 val)
11686{
11687 __u64 *array = (__u64 *)info;
11688
11689 if (offset >= 0)
11690 array[offset / sizeof(__u64)] = val;
11691}
11692
11693struct bpf_prog_info_linear *
11694bpf_program__get_prog_info_linear(int fd, __u64 arrays)
11695{
11696 struct bpf_prog_info_linear *info_linear;
11697 struct bpf_prog_info info = {};
11698 __u32 info_len = sizeof(info);
11699 __u32 data_len = 0;
11700 int i, err;
11701 void *ptr;
11702
11703 if (arrays >> BPF_PROG_INFO_LAST_ARRAY)
11704 return libbpf_err_ptr(-EINVAL);
11705
11706 /* step 1: get array dimensions */
11707 err = bpf_obj_get_info_by_fd(fd, &info, &info_len);
11708 if (err) {
11709 pr_debug("can't get prog info: %s", strerror(errno));
11710 return libbpf_err_ptr(-EFAULT);
11711 }
11712
11713 /* step 2: calculate total size of all arrays */
11714 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11715 bool include_array = (arrays & (1UL << i)) > 0;
11716 struct bpf_prog_info_array_desc *desc;
11717 __u32 count, size;
11718
11719 desc = bpf_prog_info_array_desc + i;
11720
11721 /* kernel is too old to support this field */
11722 if (info_len < desc->array_offset + sizeof(__u32) ||
11723 info_len < desc->count_offset + sizeof(__u32) ||
11724 (desc->size_offset > 0 && info_len < desc->size_offset))
11725 include_array = false;
11726
11727 if (!include_array) {
11728 arrays &= ~(1UL << i); /* clear the bit */
11729 continue;
11730 }
11731
11732 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
11733 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
11734
11735 data_len += count * size;
11736 }
11737
11738 /* step 3: allocate continuous memory */
11739 data_len = roundup(data_len, sizeof(__u64));
11740 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len);
11741 if (!info_linear)
11742 return libbpf_err_ptr(-ENOMEM);
11743
11744 /* step 4: fill data to info_linear->info */
11745 info_linear->arrays = arrays;
11746 memset(&info_linear->info, 0, sizeof(info));
11747 ptr = info_linear->data;
11748
11749 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11750 struct bpf_prog_info_array_desc *desc;
11751 __u32 count, size;
11752
11753 if ((arrays & (1UL << i)) == 0)
11754 continue;
11755
11756 desc = bpf_prog_info_array_desc + i;
11757 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
11758 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
11759 bpf_prog_info_set_offset_u32(&info_linear->info,
11760 desc->count_offset, count);
11761 bpf_prog_info_set_offset_u32(&info_linear->info,
11762 desc->size_offset, size);
11763 bpf_prog_info_set_offset_u64(&info_linear->info,
11764 desc->array_offset,
11765 ptr_to_u64(ptr));
11766 ptr += count * size;
11767 }
11768
11769 /* step 5: call syscall again to get required arrays */
11770 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len);
11771 if (err) {
11772 pr_debug("can't get prog info: %s", strerror(errno));
11773 free(info_linear);
11774 return libbpf_err_ptr(-EFAULT);
11775 }
11776
11777 /* step 6: verify the data */
11778 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11779 struct bpf_prog_info_array_desc *desc;
11780 __u32 v1, v2;
11781
11782 if ((arrays & (1UL << i)) == 0)
11783 continue;
11784
11785 desc = bpf_prog_info_array_desc + i;
11786 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
11787 v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
11788 desc->count_offset);
11789 if (v1 != v2)
11790 pr_warn("%s: mismatch in element count\n", __func__);
11791
11792 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
11793 v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
11794 desc->size_offset);
11795 if (v1 != v2)
11796 pr_warn("%s: mismatch in rec size\n", __func__);
11797 }
11798
11799 /* step 7: update info_len and data_len */
11800 info_linear->info_len = sizeof(struct bpf_prog_info);
11801 info_linear->data_len = data_len;
11802
11803 return info_linear;
11804}
11805
11806void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear)
11807{
11808 int i;
11809
11810 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11811 struct bpf_prog_info_array_desc *desc;
11812 __u64 addr, offs;
11813
11814 if ((info_linear->arrays & (1UL << i)) == 0)
11815 continue;
11816
11817 desc = bpf_prog_info_array_desc + i;
11818 addr = bpf_prog_info_read_offset_u64(&info_linear->info,
11819 desc->array_offset);
11820 offs = addr - ptr_to_u64(info_linear->data);
11821 bpf_prog_info_set_offset_u64(&info_linear->info,
11822 desc->array_offset, offs);
11823 }
11824}
11825
11826void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear)
11827{
11828 int i;
11829
11830 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11831 struct bpf_prog_info_array_desc *desc;
11832 __u64 addr, offs;
11833
11834 if ((info_linear->arrays & (1UL << i)) == 0)
11835 continue;
11836
11837 desc = bpf_prog_info_array_desc + i;
11838 offs = bpf_prog_info_read_offset_u64(&info_linear->info,
11839 desc->array_offset);
11840 addr = offs + ptr_to_u64(info_linear->data);
11841 bpf_prog_info_set_offset_u64(&info_linear->info,
11842 desc->array_offset, addr);
11843 }
11844}
11845
11846int bpf_program__set_attach_target(struct bpf_program *prog,
11847 int attach_prog_fd,
11848 const char *attach_func_name)
11849{
11850 int btf_obj_fd = 0, btf_id = 0, err;
11851
11852 if (!prog || attach_prog_fd < 0)
11853 return libbpf_err(-EINVAL);
11854
11855 if (prog->obj->loaded)
11856 return libbpf_err(-EINVAL);
11857
11858 if (attach_prog_fd && !attach_func_name) {
11859 /* remember attach_prog_fd and let bpf_program__load() find
11860 * BTF ID during the program load
11861 */
11862 prog->attach_prog_fd = attach_prog_fd;
11863 return 0;
11864 }
11865
11866 if (attach_prog_fd) {
11867 btf_id = libbpf_find_prog_btf_id(attach_func_name,
11868 attach_prog_fd);
11869 if (btf_id < 0)
11870 return libbpf_err(btf_id);
11871 } else {
11872 if (!attach_func_name)
11873 return libbpf_err(-EINVAL);
11874
11875 /* load btf_vmlinux, if not yet */
11876 err = bpf_object__load_vmlinux_btf(prog->obj, true);
11877 if (err)
11878 return libbpf_err(err);
11879 err = find_kernel_btf_id(prog->obj, attach_func_name,
11880 prog->expected_attach_type,
11881 &btf_obj_fd, &btf_id);
11882 if (err)
11883 return libbpf_err(err);
11884 }
11885
11886 prog->attach_btf_id = btf_id;
11887 prog->attach_btf_obj_fd = btf_obj_fd;
11888 prog->attach_prog_fd = attach_prog_fd;
11889 return 0;
11890}
11891
11892int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
11893{
11894 int err = 0, n, len, start, end = -1;
11895 bool *tmp;
11896
11897 *mask = NULL;
11898 *mask_sz = 0;
11899
11900 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
11901 while (*s) {
11902 if (*s == ',' || *s == '\n') {
11903 s++;
11904 continue;
11905 }
11906 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
11907 if (n <= 0 || n > 2) {
11908 pr_warn("Failed to get CPU range %s: %d\n", s, n);
11909 err = -EINVAL;
11910 goto cleanup;
11911 } else if (n == 1) {
11912 end = start;
11913 }
11914 if (start < 0 || start > end) {
11915 pr_warn("Invalid CPU range [%d,%d] in %s\n",
11916 start, end, s);
11917 err = -EINVAL;
11918 goto cleanup;
11919 }
11920 tmp = realloc(*mask, end + 1);
11921 if (!tmp) {
11922 err = -ENOMEM;
11923 goto cleanup;
11924 }
11925 *mask = tmp;
11926 memset(tmp + *mask_sz, 0, start - *mask_sz);
11927 memset(tmp + start, 1, end - start + 1);
11928 *mask_sz = end + 1;
11929 s += len;
11930 }
11931 if (!*mask_sz) {
11932 pr_warn("Empty CPU range\n");
11933 return -EINVAL;
11934 }
11935 return 0;
11936cleanup:
11937 free(*mask);
11938 *mask = NULL;
11939 return err;
11940}
11941
11942int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
11943{
11944 int fd, err = 0, len;
11945 char buf[128];
11946
11947 fd = open(fcpu, O_RDONLY | O_CLOEXEC);
11948 if (fd < 0) {
11949 err = -errno;
11950 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
11951 return err;
11952 }
11953 len = read(fd, buf, sizeof(buf));
11954 close(fd);
11955 if (len <= 0) {
11956 err = len ? -errno : -EINVAL;
11957 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
11958 return err;
11959 }
11960 if (len >= sizeof(buf)) {
11961 pr_warn("CPU mask is too big in file %s\n", fcpu);
11962 return -E2BIG;
11963 }
11964 buf[len] = '\0';
11965
11966 return parse_cpu_mask_str(buf, mask, mask_sz);
11967}
11968
11969int libbpf_num_possible_cpus(void)
11970{
11971 static const char *fcpu = "/sys/devices/system/cpu/possible";
11972 static int cpus;
11973 int err, n, i, tmp_cpus;
11974 bool *mask;
11975
11976 tmp_cpus = READ_ONCE(cpus);
11977 if (tmp_cpus > 0)
11978 return tmp_cpus;
11979
11980 err = parse_cpu_mask_file(fcpu, &mask, &n);
11981 if (err)
11982 return libbpf_err(err);
11983
11984 tmp_cpus = 0;
11985 for (i = 0; i < n; i++) {
11986 if (mask[i])
11987 tmp_cpus++;
11988 }
11989 free(mask);
11990
11991 WRITE_ONCE(cpus, tmp_cpus);
11992 return tmp_cpus;
11993}
11994
11995static int populate_skeleton_maps(const struct bpf_object *obj,
11996 struct bpf_map_skeleton *maps,
11997 size_t map_cnt)
11998{
11999 int i;
12000
12001 for (i = 0; i < map_cnt; i++) {
12002 struct bpf_map **map = maps[i].map;
12003 const char *name = maps[i].name;
12004 void **mmaped = maps[i].mmaped;
12005
12006 *map = bpf_object__find_map_by_name(obj, name);
12007 if (!*map) {
12008 pr_warn("failed to find skeleton map '%s'\n", name);
12009 return -ESRCH;
12010 }
12011
12012 /* externs shouldn't be pre-setup from user code */
12013 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
12014 *mmaped = (*map)->mmaped;
12015 }
12016 return 0;
12017}
12018
12019static int populate_skeleton_progs(const struct bpf_object *obj,
12020 struct bpf_prog_skeleton *progs,
12021 size_t prog_cnt)
12022{
12023 int i;
12024
12025 for (i = 0; i < prog_cnt; i++) {
12026 struct bpf_program **prog = progs[i].prog;
12027 const char *name = progs[i].name;
12028
12029 *prog = bpf_object__find_program_by_name(obj, name);
12030 if (!*prog) {
12031 pr_warn("failed to find skeleton program '%s'\n", name);
12032 return -ESRCH;
12033 }
12034 }
12035 return 0;
12036}
12037
12038int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
12039 const struct bpf_object_open_opts *opts)
12040{
12041 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
12042 .object_name = s->name,
12043 );
12044 struct bpf_object *obj;
12045 int err;
12046
12047 /* Attempt to preserve opts->object_name, unless overriden by user
12048 * explicitly. Overwriting object name for skeletons is discouraged,
12049 * as it breaks global data maps, because they contain object name
12050 * prefix as their own map name prefix. When skeleton is generated,
12051 * bpftool is making an assumption that this name will stay the same.
12052 */
12053 if (opts) {
12054 memcpy(&skel_opts, opts, sizeof(*opts));
12055 if (!opts->object_name)
12056 skel_opts.object_name = s->name;
12057 }
12058
12059 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
12060 err = libbpf_get_error(obj);
12061 if (err) {
12062 pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
12063 s->name, err);
12064 return libbpf_err(err);
12065 }
12066
12067 *s->obj = obj;
12068 err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
12069 if (err) {
12070 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
12071 return libbpf_err(err);
12072 }
12073
12074 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
12075 if (err) {
12076 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
12077 return libbpf_err(err);
12078 }
12079
12080 return 0;
12081}
12082
12083int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
12084{
12085 int err, len, var_idx, i;
12086 const char *var_name;
12087 const struct bpf_map *map;
12088 struct btf *btf;
12089 __u32 map_type_id;
12090 const struct btf_type *map_type, *var_type;
12091 const struct bpf_var_skeleton *var_skel;
12092 struct btf_var_secinfo *var;
12093
12094 if (!s->obj)
12095 return libbpf_err(-EINVAL);
12096
12097 btf = bpf_object__btf(s->obj);
12098 if (!btf) {
12099 pr_warn("subskeletons require BTF at runtime (object %s)\n",
12100 bpf_object__name(s->obj));
12101 return libbpf_err(-errno);
12102 }
12103
12104 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
12105 if (err) {
12106 pr_warn("failed to populate subskeleton maps: %d\n", err);
12107 return libbpf_err(err);
12108 }
12109
12110 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
12111 if (err) {
12112 pr_warn("failed to populate subskeleton maps: %d\n", err);
12113 return libbpf_err(err);
12114 }
12115
12116 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
12117 var_skel = &s->vars[var_idx];
12118 map = *var_skel->map;
12119 map_type_id = bpf_map__btf_value_type_id(map);
12120 map_type = btf__type_by_id(btf, map_type_id);
12121
12122 if (!btf_is_datasec(map_type)) {
12123 pr_warn("type for map '%1$s' is not a datasec: %2$s",
12124 bpf_map__name(map),
12125 __btf_kind_str(btf_kind(map_type)));
12126 return libbpf_err(-EINVAL);
12127 }
12128
12129 len = btf_vlen(map_type);
12130 var = btf_var_secinfos(map_type);
12131 for (i = 0; i < len; i++, var++) {
12132 var_type = btf__type_by_id(btf, var->type);
12133 var_name = btf__name_by_offset(btf, var_type->name_off);
12134 if (strcmp(var_name, var_skel->name) == 0) {
12135 *var_skel->addr = map->mmaped + var->offset;
12136 break;
12137 }
12138 }
12139 }
12140 return 0;
12141}
12142
12143void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
12144{
12145 if (!s)
12146 return;
12147 free(s->maps);
12148 free(s->progs);
12149 free(s->vars);
12150 free(s);
12151}
12152
12153int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
12154{
12155 int i, err;
12156
12157 err = bpf_object__load(*s->obj);
12158 if (err) {
12159 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
12160 return libbpf_err(err);
12161 }
12162
12163 for (i = 0; i < s->map_cnt; i++) {
12164 struct bpf_map *map = *s->maps[i].map;
12165 size_t mmap_sz = bpf_map_mmap_sz(map);
12166 int prot, map_fd = bpf_map__fd(map);
12167 void **mmaped = s->maps[i].mmaped;
12168
12169 if (!mmaped)
12170 continue;
12171
12172 if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
12173 *mmaped = NULL;
12174 continue;
12175 }
12176
12177 if (map->def.map_flags & BPF_F_RDONLY_PROG)
12178 prot = PROT_READ;
12179 else
12180 prot = PROT_READ | PROT_WRITE;
12181
12182 /* Remap anonymous mmap()-ed "map initialization image" as
12183 * a BPF map-backed mmap()-ed memory, but preserving the same
12184 * memory address. This will cause kernel to change process'
12185 * page table to point to a different piece of kernel memory,
12186 * but from userspace point of view memory address (and its
12187 * contents, being identical at this point) will stay the
12188 * same. This mapping will be released by bpf_object__close()
12189 * as per normal clean up procedure, so we don't need to worry
12190 * about it from skeleton's clean up perspective.
12191 */
12192 *mmaped = mmap(map->mmaped, mmap_sz, prot,
12193 MAP_SHARED | MAP_FIXED, map_fd, 0);
12194 if (*mmaped == MAP_FAILED) {
12195 err = -errno;
12196 *mmaped = NULL;
12197 pr_warn("failed to re-mmap() map '%s': %d\n",
12198 bpf_map__name(map), err);
12199 return libbpf_err(err);
12200 }
12201 }
12202
12203 return 0;
12204}
12205
12206int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
12207{
12208 int i, err;
12209
12210 for (i = 0; i < s->prog_cnt; i++) {
12211 struct bpf_program *prog = *s->progs[i].prog;
12212 struct bpf_link **link = s->progs[i].link;
12213
12214 if (!prog->load)
12215 continue;
12216
12217 /* auto-attaching not supported for this program */
12218 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12219 continue;
12220
12221 /* if user already set the link manually, don't attempt auto-attach */
12222 if (*link)
12223 continue;
12224
12225 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
12226 if (err) {
12227 pr_warn("prog '%s': failed to auto-attach: %d\n",
12228 bpf_program__name(prog), err);
12229 return libbpf_err(err);
12230 }
12231
12232 /* It's possible that for some SEC() definitions auto-attach
12233 * is supported in some cases (e.g., if definition completely
12234 * specifies target information), but is not in other cases.
12235 * SEC("uprobe") is one such case. If user specified target
12236 * binary and function name, such BPF program can be
12237 * auto-attached. But if not, it shouldn't trigger skeleton's
12238 * attach to fail. It should just be skipped.
12239 * attach_fn signals such case with returning 0 (no error) and
12240 * setting link to NULL.
12241 */
12242 }
12243
12244 return 0;
12245}
12246
12247void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
12248{
12249 int i;
12250
12251 for (i = 0; i < s->prog_cnt; i++) {
12252 struct bpf_link **link = s->progs[i].link;
12253
12254 bpf_link__destroy(*link);
12255 *link = NULL;
12256 }
12257}
12258
12259void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
12260{
12261 if (!s)
12262 return;
12263
12264 if (s->progs)
12265 bpf_object__detach_skeleton(s);
12266 if (s->obj)
12267 bpf_object__close(*s->obj);
12268 free(s->maps);
12269 free(s->progs);
12270 free(s);
12271}