Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
13#include <linux/cgroup.h>
14#include <linux/vm_event_item.h>
15#include <linux/hardirq.h>
16#include <linux/jump_label.h>
17#include <linux/page_counter.h>
18#include <linux/vmpressure.h>
19#include <linux/eventfd.h>
20#include <linux/mm.h>
21#include <linux/vmstat.h>
22#include <linux/writeback.h>
23#include <linux/page-flags.h>
24
25struct mem_cgroup;
26struct obj_cgroup;
27struct page;
28struct mm_struct;
29struct kmem_cache;
30
31/* Cgroup-specific page state, on top of universal node page state */
32enum memcg_stat_item {
33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 MEMCG_SOCK,
35 MEMCG_PERCPU_B,
36 MEMCG_VMALLOC,
37 MEMCG_KMEM,
38 MEMCG_NR_STAT,
39};
40
41enum memcg_memory_event {
42 MEMCG_LOW,
43 MEMCG_HIGH,
44 MEMCG_MAX,
45 MEMCG_OOM,
46 MEMCG_OOM_KILL,
47 MEMCG_OOM_GROUP_KILL,
48 MEMCG_SWAP_HIGH,
49 MEMCG_SWAP_MAX,
50 MEMCG_SWAP_FAIL,
51 MEMCG_NR_MEMORY_EVENTS,
52};
53
54struct mem_cgroup_reclaim_cookie {
55 pg_data_t *pgdat;
56 unsigned int generation;
57};
58
59#ifdef CONFIG_MEMCG
60
61#define MEM_CGROUP_ID_SHIFT 16
62#define MEM_CGROUP_ID_MAX USHRT_MAX
63
64struct mem_cgroup_id {
65 int id;
66 refcount_t ref;
67};
68
69/*
70 * Per memcg event counter is incremented at every pagein/pageout. With THP,
71 * it will be incremented by the number of pages. This counter is used
72 * to trigger some periodic events. This is straightforward and better
73 * than using jiffies etc. to handle periodic memcg event.
74 */
75enum mem_cgroup_events_target {
76 MEM_CGROUP_TARGET_THRESH,
77 MEM_CGROUP_TARGET_SOFTLIMIT,
78 MEM_CGROUP_NTARGETS,
79};
80
81struct memcg_vmstats_percpu {
82 /* Local (CPU and cgroup) page state & events */
83 long state[MEMCG_NR_STAT];
84 unsigned long events[NR_VM_EVENT_ITEMS];
85
86 /* Delta calculation for lockless upward propagation */
87 long state_prev[MEMCG_NR_STAT];
88 unsigned long events_prev[NR_VM_EVENT_ITEMS];
89
90 /* Cgroup1: threshold notifications & softlimit tree updates */
91 unsigned long nr_page_events;
92 unsigned long targets[MEM_CGROUP_NTARGETS];
93};
94
95struct memcg_vmstats {
96 /* Aggregated (CPU and subtree) page state & events */
97 long state[MEMCG_NR_STAT];
98 unsigned long events[NR_VM_EVENT_ITEMS];
99
100 /* Pending child counts during tree propagation */
101 long state_pending[MEMCG_NR_STAT];
102 unsigned long events_pending[NR_VM_EVENT_ITEMS];
103};
104
105struct mem_cgroup_reclaim_iter {
106 struct mem_cgroup *position;
107 /* scan generation, increased every round-trip */
108 unsigned int generation;
109};
110
111/*
112 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
113 * shrinkers, which have elements charged to this memcg.
114 */
115struct shrinker_info {
116 struct rcu_head rcu;
117 atomic_long_t *nr_deferred;
118 unsigned long *map;
119};
120
121struct lruvec_stats_percpu {
122 /* Local (CPU and cgroup) state */
123 long state[NR_VM_NODE_STAT_ITEMS];
124
125 /* Delta calculation for lockless upward propagation */
126 long state_prev[NR_VM_NODE_STAT_ITEMS];
127};
128
129struct lruvec_stats {
130 /* Aggregated (CPU and subtree) state */
131 long state[NR_VM_NODE_STAT_ITEMS];
132
133 /* Pending child counts during tree propagation */
134 long state_pending[NR_VM_NODE_STAT_ITEMS];
135};
136
137/*
138 * per-node information in memory controller.
139 */
140struct mem_cgroup_per_node {
141 struct lruvec lruvec;
142
143 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
144 struct lruvec_stats lruvec_stats;
145
146 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
147
148 struct mem_cgroup_reclaim_iter iter;
149
150 struct shrinker_info __rcu *shrinker_info;
151
152 struct rb_node tree_node; /* RB tree node */
153 unsigned long usage_in_excess;/* Set to the value by which */
154 /* the soft limit is exceeded*/
155 bool on_tree;
156 struct mem_cgroup *memcg; /* Back pointer, we cannot */
157 /* use container_of */
158};
159
160struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 unsigned long threshold;
163};
164
165/* For threshold */
166struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below or equal to usage. */
168 int current_threshold;
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[];
173};
174
175struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
178 /*
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
182 */
183 struct mem_cgroup_threshold_ary *spare;
184};
185
186#if defined(CONFIG_SMP)
187struct memcg_padding {
188 char x[0];
189} ____cacheline_internodealigned_in_smp;
190#define MEMCG_PADDING(name) struct memcg_padding name
191#else
192#define MEMCG_PADDING(name)
193#endif
194
195/*
196 * Remember four most recent foreign writebacks with dirty pages in this
197 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
198 * one in a given round, we're likely to catch it later if it keeps
199 * foreign-dirtying, so a fairly low count should be enough.
200 *
201 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
202 */
203#define MEMCG_CGWB_FRN_CNT 4
204
205struct memcg_cgwb_frn {
206 u64 bdi_id; /* bdi->id of the foreign inode */
207 int memcg_id; /* memcg->css.id of foreign inode */
208 u64 at; /* jiffies_64 at the time of dirtying */
209 struct wb_completion done; /* tracks in-flight foreign writebacks */
210};
211
212/*
213 * Bucket for arbitrarily byte-sized objects charged to a memory
214 * cgroup. The bucket can be reparented in one piece when the cgroup
215 * is destroyed, without having to round up the individual references
216 * of all live memory objects in the wild.
217 */
218struct obj_cgroup {
219 struct percpu_ref refcnt;
220 struct mem_cgroup *memcg;
221 atomic_t nr_charged_bytes;
222 union {
223 struct list_head list; /* protected by objcg_lock */
224 struct rcu_head rcu;
225 };
226};
227
228/*
229 * The memory controller data structure. The memory controller controls both
230 * page cache and RSS per cgroup. We would eventually like to provide
231 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
232 * to help the administrator determine what knobs to tune.
233 */
234struct mem_cgroup {
235 struct cgroup_subsys_state css;
236
237 /* Private memcg ID. Used to ID objects that outlive the cgroup */
238 struct mem_cgroup_id id;
239
240 /* Accounted resources */
241 struct page_counter memory; /* Both v1 & v2 */
242
243 union {
244 struct page_counter swap; /* v2 only */
245 struct page_counter memsw; /* v1 only */
246 };
247
248 /* Legacy consumer-oriented counters */
249 struct page_counter kmem; /* v1 only */
250 struct page_counter tcpmem; /* v1 only */
251
252 /* Range enforcement for interrupt charges */
253 struct work_struct high_work;
254
255 unsigned long soft_limit;
256
257 /* vmpressure notifications */
258 struct vmpressure vmpressure;
259
260 /*
261 * Should the OOM killer kill all belonging tasks, had it kill one?
262 */
263 bool oom_group;
264
265 /* protected by memcg_oom_lock */
266 bool oom_lock;
267 int under_oom;
268
269 int swappiness;
270 /* OOM-Killer disable */
271 int oom_kill_disable;
272
273 /* memory.events and memory.events.local */
274 struct cgroup_file events_file;
275 struct cgroup_file events_local_file;
276
277 /* handle for "memory.swap.events" */
278 struct cgroup_file swap_events_file;
279
280 /* protect arrays of thresholds */
281 struct mutex thresholds_lock;
282
283 /* thresholds for memory usage. RCU-protected */
284 struct mem_cgroup_thresholds thresholds;
285
286 /* thresholds for mem+swap usage. RCU-protected */
287 struct mem_cgroup_thresholds memsw_thresholds;
288
289 /* For oom notifier event fd */
290 struct list_head oom_notify;
291
292 /*
293 * Should we move charges of a task when a task is moved into this
294 * mem_cgroup ? And what type of charges should we move ?
295 */
296 unsigned long move_charge_at_immigrate;
297 /* taken only while moving_account > 0 */
298 spinlock_t move_lock;
299 unsigned long move_lock_flags;
300
301 MEMCG_PADDING(_pad1_);
302
303 /* memory.stat */
304 struct memcg_vmstats vmstats;
305
306 /* memory.events */
307 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
308 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
309
310 unsigned long socket_pressure;
311
312 /* Legacy tcp memory accounting */
313 bool tcpmem_active;
314 int tcpmem_pressure;
315
316#ifdef CONFIG_MEMCG_KMEM
317 int kmemcg_id;
318 struct obj_cgroup __rcu *objcg;
319 /* list of inherited objcgs, protected by objcg_lock */
320 struct list_head objcg_list;
321#endif
322
323 MEMCG_PADDING(_pad2_);
324
325 /*
326 * set > 0 if pages under this cgroup are moving to other cgroup.
327 */
328 atomic_t moving_account;
329 struct task_struct *move_lock_task;
330
331 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
332
333#ifdef CONFIG_CGROUP_WRITEBACK
334 struct list_head cgwb_list;
335 struct wb_domain cgwb_domain;
336 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
337#endif
338
339 /* List of events which userspace want to receive */
340 struct list_head event_list;
341 spinlock_t event_list_lock;
342
343#ifdef CONFIG_TRANSPARENT_HUGEPAGE
344 struct deferred_split deferred_split_queue;
345#endif
346
347 struct mem_cgroup_per_node *nodeinfo[];
348};
349
350/*
351 * size of first charge trial. "32" comes from vmscan.c's magic value.
352 * TODO: maybe necessary to use big numbers in big irons.
353 */
354#define MEMCG_CHARGE_BATCH 32U
355
356extern struct mem_cgroup *root_mem_cgroup;
357
358enum page_memcg_data_flags {
359 /* page->memcg_data is a pointer to an objcgs vector */
360 MEMCG_DATA_OBJCGS = (1UL << 0),
361 /* page has been accounted as a non-slab kernel page */
362 MEMCG_DATA_KMEM = (1UL << 1),
363 /* the next bit after the last actual flag */
364 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
365};
366
367#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
368
369static inline bool folio_memcg_kmem(struct folio *folio);
370
371/*
372 * After the initialization objcg->memcg is always pointing at
373 * a valid memcg, but can be atomically swapped to the parent memcg.
374 *
375 * The caller must ensure that the returned memcg won't be released:
376 * e.g. acquire the rcu_read_lock or css_set_lock.
377 */
378static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
379{
380 return READ_ONCE(objcg->memcg);
381}
382
383/*
384 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
385 * @folio: Pointer to the folio.
386 *
387 * Returns a pointer to the memory cgroup associated with the folio,
388 * or NULL. This function assumes that the folio is known to have a
389 * proper memory cgroup pointer. It's not safe to call this function
390 * against some type of folios, e.g. slab folios or ex-slab folios or
391 * kmem folios.
392 */
393static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
394{
395 unsigned long memcg_data = folio->memcg_data;
396
397 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
398 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
399 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
400
401 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
402}
403
404/*
405 * __folio_objcg - get the object cgroup associated with a kmem folio.
406 * @folio: Pointer to the folio.
407 *
408 * Returns a pointer to the object cgroup associated with the folio,
409 * or NULL. This function assumes that the folio is known to have a
410 * proper object cgroup pointer. It's not safe to call this function
411 * against some type of folios, e.g. slab folios or ex-slab folios or
412 * LRU folios.
413 */
414static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
415{
416 unsigned long memcg_data = folio->memcg_data;
417
418 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
419 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
420 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
421
422 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
423}
424
425/*
426 * folio_memcg - Get the memory cgroup associated with a folio.
427 * @folio: Pointer to the folio.
428 *
429 * Returns a pointer to the memory cgroup associated with the folio,
430 * or NULL. This function assumes that the folio is known to have a
431 * proper memory cgroup pointer. It's not safe to call this function
432 * against some type of folios, e.g. slab folios or ex-slab folios.
433 *
434 * For a non-kmem folio any of the following ensures folio and memcg binding
435 * stability:
436 *
437 * - the folio lock
438 * - LRU isolation
439 * - lock_page_memcg()
440 * - exclusive reference
441 *
442 * For a kmem folio a caller should hold an rcu read lock to protect memcg
443 * associated with a kmem folio from being released.
444 */
445static inline struct mem_cgroup *folio_memcg(struct folio *folio)
446{
447 if (folio_memcg_kmem(folio))
448 return obj_cgroup_memcg(__folio_objcg(folio));
449 return __folio_memcg(folio);
450}
451
452static inline struct mem_cgroup *page_memcg(struct page *page)
453{
454 return folio_memcg(page_folio(page));
455}
456
457/**
458 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
459 * @folio: Pointer to the folio.
460 *
461 * This function assumes that the folio is known to have a
462 * proper memory cgroup pointer. It's not safe to call this function
463 * against some type of folios, e.g. slab folios or ex-slab folios.
464 *
465 * Return: A pointer to the memory cgroup associated with the folio,
466 * or NULL.
467 */
468static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
469{
470 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
471
472 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
473 WARN_ON_ONCE(!rcu_read_lock_held());
474
475 if (memcg_data & MEMCG_DATA_KMEM) {
476 struct obj_cgroup *objcg;
477
478 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
479 return obj_cgroup_memcg(objcg);
480 }
481
482 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
483}
484
485/*
486 * page_memcg_check - get the memory cgroup associated with a page
487 * @page: a pointer to the page struct
488 *
489 * Returns a pointer to the memory cgroup associated with the page,
490 * or NULL. This function unlike page_memcg() can take any page
491 * as an argument. It has to be used in cases when it's not known if a page
492 * has an associated memory cgroup pointer or an object cgroups vector or
493 * an object cgroup.
494 *
495 * For a non-kmem page any of the following ensures page and memcg binding
496 * stability:
497 *
498 * - the page lock
499 * - LRU isolation
500 * - lock_page_memcg()
501 * - exclusive reference
502 *
503 * For a kmem page a caller should hold an rcu read lock to protect memcg
504 * associated with a kmem page from being released.
505 */
506static inline struct mem_cgroup *page_memcg_check(struct page *page)
507{
508 /*
509 * Because page->memcg_data might be changed asynchronously
510 * for slab pages, READ_ONCE() should be used here.
511 */
512 unsigned long memcg_data = READ_ONCE(page->memcg_data);
513
514 if (memcg_data & MEMCG_DATA_OBJCGS)
515 return NULL;
516
517 if (memcg_data & MEMCG_DATA_KMEM) {
518 struct obj_cgroup *objcg;
519
520 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
521 return obj_cgroup_memcg(objcg);
522 }
523
524 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
525}
526
527static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
528{
529 struct mem_cgroup *memcg;
530
531 rcu_read_lock();
532retry:
533 memcg = obj_cgroup_memcg(objcg);
534 if (unlikely(!css_tryget(&memcg->css)))
535 goto retry;
536 rcu_read_unlock();
537
538 return memcg;
539}
540
541#ifdef CONFIG_MEMCG_KMEM
542/*
543 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
544 * @folio: Pointer to the folio.
545 *
546 * Checks if the folio has MemcgKmem flag set. The caller must ensure
547 * that the folio has an associated memory cgroup. It's not safe to call
548 * this function against some types of folios, e.g. slab folios.
549 */
550static inline bool folio_memcg_kmem(struct folio *folio)
551{
552 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
553 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
554 return folio->memcg_data & MEMCG_DATA_KMEM;
555}
556
557
558#else
559static inline bool folio_memcg_kmem(struct folio *folio)
560{
561 return false;
562}
563
564#endif
565
566static inline bool PageMemcgKmem(struct page *page)
567{
568 return folio_memcg_kmem(page_folio(page));
569}
570
571static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
572{
573 return (memcg == root_mem_cgroup);
574}
575
576static inline bool mem_cgroup_disabled(void)
577{
578 return !cgroup_subsys_enabled(memory_cgrp_subsys);
579}
580
581static inline void mem_cgroup_protection(struct mem_cgroup *root,
582 struct mem_cgroup *memcg,
583 unsigned long *min,
584 unsigned long *low)
585{
586 *min = *low = 0;
587
588 if (mem_cgroup_disabled())
589 return;
590
591 /*
592 * There is no reclaim protection applied to a targeted reclaim.
593 * We are special casing this specific case here because
594 * mem_cgroup_protected calculation is not robust enough to keep
595 * the protection invariant for calculated effective values for
596 * parallel reclaimers with different reclaim target. This is
597 * especially a problem for tail memcgs (as they have pages on LRU)
598 * which would want to have effective values 0 for targeted reclaim
599 * but a different value for external reclaim.
600 *
601 * Example
602 * Let's have global and A's reclaim in parallel:
603 * |
604 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
605 * |\
606 * | C (low = 1G, usage = 2.5G)
607 * B (low = 1G, usage = 0.5G)
608 *
609 * For the global reclaim
610 * A.elow = A.low
611 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
612 * C.elow = min(C.usage, C.low)
613 *
614 * With the effective values resetting we have A reclaim
615 * A.elow = 0
616 * B.elow = B.low
617 * C.elow = C.low
618 *
619 * If the global reclaim races with A's reclaim then
620 * B.elow = C.elow = 0 because children_low_usage > A.elow)
621 * is possible and reclaiming B would be violating the protection.
622 *
623 */
624 if (root == memcg)
625 return;
626
627 *min = READ_ONCE(memcg->memory.emin);
628 *low = READ_ONCE(memcg->memory.elow);
629}
630
631void mem_cgroup_calculate_protection(struct mem_cgroup *root,
632 struct mem_cgroup *memcg);
633
634static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
635{
636 /*
637 * The root memcg doesn't account charges, and doesn't support
638 * protection.
639 */
640 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
641
642}
643
644static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
645{
646 if (!mem_cgroup_supports_protection(memcg))
647 return false;
648
649 return READ_ONCE(memcg->memory.elow) >=
650 page_counter_read(&memcg->memory);
651}
652
653static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
654{
655 if (!mem_cgroup_supports_protection(memcg))
656 return false;
657
658 return READ_ONCE(memcg->memory.emin) >=
659 page_counter_read(&memcg->memory);
660}
661
662int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
663
664/**
665 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
666 * @folio: Folio to charge.
667 * @mm: mm context of the allocating task.
668 * @gfp: Reclaim mode.
669 *
670 * Try to charge @folio to the memcg that @mm belongs to, reclaiming
671 * pages according to @gfp if necessary. If @mm is NULL, try to
672 * charge to the active memcg.
673 *
674 * Do not use this for folios allocated for swapin.
675 *
676 * Return: 0 on success. Otherwise, an error code is returned.
677 */
678static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
679 gfp_t gfp)
680{
681 if (mem_cgroup_disabled())
682 return 0;
683 return __mem_cgroup_charge(folio, mm, gfp);
684}
685
686int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
687 gfp_t gfp, swp_entry_t entry);
688void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
689
690void __mem_cgroup_uncharge(struct folio *folio);
691
692/**
693 * mem_cgroup_uncharge - Uncharge a folio.
694 * @folio: Folio to uncharge.
695 *
696 * Uncharge a folio previously charged with mem_cgroup_charge().
697 */
698static inline void mem_cgroup_uncharge(struct folio *folio)
699{
700 if (mem_cgroup_disabled())
701 return;
702 __mem_cgroup_uncharge(folio);
703}
704
705void __mem_cgroup_uncharge_list(struct list_head *page_list);
706static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
707{
708 if (mem_cgroup_disabled())
709 return;
710 __mem_cgroup_uncharge_list(page_list);
711}
712
713void mem_cgroup_migrate(struct folio *old, struct folio *new);
714
715/**
716 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
717 * @memcg: memcg of the wanted lruvec
718 * @pgdat: pglist_data
719 *
720 * Returns the lru list vector holding pages for a given @memcg &
721 * @pgdat combination. This can be the node lruvec, if the memory
722 * controller is disabled.
723 */
724static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
725 struct pglist_data *pgdat)
726{
727 struct mem_cgroup_per_node *mz;
728 struct lruvec *lruvec;
729
730 if (mem_cgroup_disabled()) {
731 lruvec = &pgdat->__lruvec;
732 goto out;
733 }
734
735 if (!memcg)
736 memcg = root_mem_cgroup;
737
738 mz = memcg->nodeinfo[pgdat->node_id];
739 lruvec = &mz->lruvec;
740out:
741 /*
742 * Since a node can be onlined after the mem_cgroup was created,
743 * we have to be prepared to initialize lruvec->pgdat here;
744 * and if offlined then reonlined, we need to reinitialize it.
745 */
746 if (unlikely(lruvec->pgdat != pgdat))
747 lruvec->pgdat = pgdat;
748 return lruvec;
749}
750
751/**
752 * folio_lruvec - return lruvec for isolating/putting an LRU folio
753 * @folio: Pointer to the folio.
754 *
755 * This function relies on folio->mem_cgroup being stable.
756 */
757static inline struct lruvec *folio_lruvec(struct folio *folio)
758{
759 struct mem_cgroup *memcg = folio_memcg(folio);
760
761 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
762 return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
763}
764
765struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
766
767struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
768
769struct lruvec *folio_lruvec_lock(struct folio *folio);
770struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
771struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
772 unsigned long *flags);
773
774#ifdef CONFIG_DEBUG_VM
775void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
776#else
777static inline
778void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
779{
780}
781#endif
782
783static inline
784struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
785 return css ? container_of(css, struct mem_cgroup, css) : NULL;
786}
787
788static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
789{
790 return percpu_ref_tryget(&objcg->refcnt);
791}
792
793static inline void obj_cgroup_get(struct obj_cgroup *objcg)
794{
795 percpu_ref_get(&objcg->refcnt);
796}
797
798static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
799 unsigned long nr)
800{
801 percpu_ref_get_many(&objcg->refcnt, nr);
802}
803
804static inline void obj_cgroup_put(struct obj_cgroup *objcg)
805{
806 percpu_ref_put(&objcg->refcnt);
807}
808
809static inline void mem_cgroup_put(struct mem_cgroup *memcg)
810{
811 if (memcg)
812 css_put(&memcg->css);
813}
814
815#define mem_cgroup_from_counter(counter, member) \
816 container_of(counter, struct mem_cgroup, member)
817
818struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
819 struct mem_cgroup *,
820 struct mem_cgroup_reclaim_cookie *);
821void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
822int mem_cgroup_scan_tasks(struct mem_cgroup *,
823 int (*)(struct task_struct *, void *), void *);
824
825static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
826{
827 if (mem_cgroup_disabled())
828 return 0;
829
830 return memcg->id.id;
831}
832struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
833
834static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
835{
836 return mem_cgroup_from_css(seq_css(m));
837}
838
839static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
840{
841 struct mem_cgroup_per_node *mz;
842
843 if (mem_cgroup_disabled())
844 return NULL;
845
846 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
847 return mz->memcg;
848}
849
850/**
851 * parent_mem_cgroup - find the accounting parent of a memcg
852 * @memcg: memcg whose parent to find
853 *
854 * Returns the parent memcg, or NULL if this is the root or the memory
855 * controller is in legacy no-hierarchy mode.
856 */
857static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
858{
859 return mem_cgroup_from_css(memcg->css.parent);
860}
861
862static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
863 struct mem_cgroup *root)
864{
865 if (root == memcg)
866 return true;
867 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
868}
869
870static inline bool mm_match_cgroup(struct mm_struct *mm,
871 struct mem_cgroup *memcg)
872{
873 struct mem_cgroup *task_memcg;
874 bool match = false;
875
876 rcu_read_lock();
877 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
878 if (task_memcg)
879 match = mem_cgroup_is_descendant(task_memcg, memcg);
880 rcu_read_unlock();
881 return match;
882}
883
884struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
885ino_t page_cgroup_ino(struct page *page);
886
887static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
888{
889 if (mem_cgroup_disabled())
890 return true;
891 return !!(memcg->css.flags & CSS_ONLINE);
892}
893
894void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
895 int zid, int nr_pages);
896
897static inline
898unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
899 enum lru_list lru, int zone_idx)
900{
901 struct mem_cgroup_per_node *mz;
902
903 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
904 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
905}
906
907void mem_cgroup_handle_over_high(void);
908
909unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
910
911unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
912
913void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
914 struct task_struct *p);
915
916void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
917
918static inline void mem_cgroup_enter_user_fault(void)
919{
920 WARN_ON(current->in_user_fault);
921 current->in_user_fault = 1;
922}
923
924static inline void mem_cgroup_exit_user_fault(void)
925{
926 WARN_ON(!current->in_user_fault);
927 current->in_user_fault = 0;
928}
929
930static inline bool task_in_memcg_oom(struct task_struct *p)
931{
932 return p->memcg_in_oom;
933}
934
935bool mem_cgroup_oom_synchronize(bool wait);
936struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
937 struct mem_cgroup *oom_domain);
938void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
939
940#ifdef CONFIG_MEMCG_SWAP
941extern bool cgroup_memory_noswap;
942#endif
943
944void folio_memcg_lock(struct folio *folio);
945void folio_memcg_unlock(struct folio *folio);
946void lock_page_memcg(struct page *page);
947void unlock_page_memcg(struct page *page);
948
949void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
950
951/* idx can be of type enum memcg_stat_item or node_stat_item */
952static inline void mod_memcg_state(struct mem_cgroup *memcg,
953 int idx, int val)
954{
955 unsigned long flags;
956
957 local_irq_save(flags);
958 __mod_memcg_state(memcg, idx, val);
959 local_irq_restore(flags);
960}
961
962static inline void mod_memcg_page_state(struct page *page,
963 int idx, int val)
964{
965 struct mem_cgroup *memcg;
966
967 if (mem_cgroup_disabled())
968 return;
969
970 rcu_read_lock();
971 memcg = page_memcg(page);
972 if (memcg)
973 mod_memcg_state(memcg, idx, val);
974 rcu_read_unlock();
975}
976
977static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
978{
979 return READ_ONCE(memcg->vmstats.state[idx]);
980}
981
982static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
983 enum node_stat_item idx)
984{
985 struct mem_cgroup_per_node *pn;
986
987 if (mem_cgroup_disabled())
988 return node_page_state(lruvec_pgdat(lruvec), idx);
989
990 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
991 return READ_ONCE(pn->lruvec_stats.state[idx]);
992}
993
994static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
995 enum node_stat_item idx)
996{
997 struct mem_cgroup_per_node *pn;
998 long x = 0;
999 int cpu;
1000
1001 if (mem_cgroup_disabled())
1002 return node_page_state(lruvec_pgdat(lruvec), idx);
1003
1004 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1005 for_each_possible_cpu(cpu)
1006 x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
1007#ifdef CONFIG_SMP
1008 if (x < 0)
1009 x = 0;
1010#endif
1011 return x;
1012}
1013
1014void mem_cgroup_flush_stats(void);
1015
1016void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1017 int val);
1018void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1019
1020static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1021 int val)
1022{
1023 unsigned long flags;
1024
1025 local_irq_save(flags);
1026 __mod_lruvec_kmem_state(p, idx, val);
1027 local_irq_restore(flags);
1028}
1029
1030static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1031 enum node_stat_item idx, int val)
1032{
1033 unsigned long flags;
1034
1035 local_irq_save(flags);
1036 __mod_memcg_lruvec_state(lruvec, idx, val);
1037 local_irq_restore(flags);
1038}
1039
1040void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1041 unsigned long count);
1042
1043static inline void count_memcg_events(struct mem_cgroup *memcg,
1044 enum vm_event_item idx,
1045 unsigned long count)
1046{
1047 unsigned long flags;
1048
1049 local_irq_save(flags);
1050 __count_memcg_events(memcg, idx, count);
1051 local_irq_restore(flags);
1052}
1053
1054static inline void count_memcg_page_event(struct page *page,
1055 enum vm_event_item idx)
1056{
1057 struct mem_cgroup *memcg = page_memcg(page);
1058
1059 if (memcg)
1060 count_memcg_events(memcg, idx, 1);
1061}
1062
1063static inline void count_memcg_event_mm(struct mm_struct *mm,
1064 enum vm_event_item idx)
1065{
1066 struct mem_cgroup *memcg;
1067
1068 if (mem_cgroup_disabled())
1069 return;
1070
1071 rcu_read_lock();
1072 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1073 if (likely(memcg))
1074 count_memcg_events(memcg, idx, 1);
1075 rcu_read_unlock();
1076}
1077
1078static inline void memcg_memory_event(struct mem_cgroup *memcg,
1079 enum memcg_memory_event event)
1080{
1081 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1082 event == MEMCG_SWAP_FAIL;
1083
1084 atomic_long_inc(&memcg->memory_events_local[event]);
1085 if (!swap_event)
1086 cgroup_file_notify(&memcg->events_local_file);
1087
1088 do {
1089 atomic_long_inc(&memcg->memory_events[event]);
1090 if (swap_event)
1091 cgroup_file_notify(&memcg->swap_events_file);
1092 else
1093 cgroup_file_notify(&memcg->events_file);
1094
1095 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1096 break;
1097 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1098 break;
1099 } while ((memcg = parent_mem_cgroup(memcg)) &&
1100 !mem_cgroup_is_root(memcg));
1101}
1102
1103static inline void memcg_memory_event_mm(struct mm_struct *mm,
1104 enum memcg_memory_event event)
1105{
1106 struct mem_cgroup *memcg;
1107
1108 if (mem_cgroup_disabled())
1109 return;
1110
1111 rcu_read_lock();
1112 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1113 if (likely(memcg))
1114 memcg_memory_event(memcg, event);
1115 rcu_read_unlock();
1116}
1117
1118void split_page_memcg(struct page *head, unsigned int nr);
1119
1120unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1121 gfp_t gfp_mask,
1122 unsigned long *total_scanned);
1123
1124#else /* CONFIG_MEMCG */
1125
1126#define MEM_CGROUP_ID_SHIFT 0
1127#define MEM_CGROUP_ID_MAX 0
1128
1129static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1130{
1131 return NULL;
1132}
1133
1134static inline struct mem_cgroup *page_memcg(struct page *page)
1135{
1136 return NULL;
1137}
1138
1139static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1140{
1141 WARN_ON_ONCE(!rcu_read_lock_held());
1142 return NULL;
1143}
1144
1145static inline struct mem_cgroup *page_memcg_check(struct page *page)
1146{
1147 return NULL;
1148}
1149
1150static inline bool folio_memcg_kmem(struct folio *folio)
1151{
1152 return false;
1153}
1154
1155static inline bool PageMemcgKmem(struct page *page)
1156{
1157 return false;
1158}
1159
1160static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1161{
1162 return true;
1163}
1164
1165static inline bool mem_cgroup_disabled(void)
1166{
1167 return true;
1168}
1169
1170static inline void memcg_memory_event(struct mem_cgroup *memcg,
1171 enum memcg_memory_event event)
1172{
1173}
1174
1175static inline void memcg_memory_event_mm(struct mm_struct *mm,
1176 enum memcg_memory_event event)
1177{
1178}
1179
1180static inline void mem_cgroup_protection(struct mem_cgroup *root,
1181 struct mem_cgroup *memcg,
1182 unsigned long *min,
1183 unsigned long *low)
1184{
1185 *min = *low = 0;
1186}
1187
1188static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1189 struct mem_cgroup *memcg)
1190{
1191}
1192
1193static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1194{
1195 return false;
1196}
1197
1198static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1199{
1200 return false;
1201}
1202
1203static inline int mem_cgroup_charge(struct folio *folio,
1204 struct mm_struct *mm, gfp_t gfp)
1205{
1206 return 0;
1207}
1208
1209static inline int mem_cgroup_swapin_charge_page(struct page *page,
1210 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1211{
1212 return 0;
1213}
1214
1215static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1216{
1217}
1218
1219static inline void mem_cgroup_uncharge(struct folio *folio)
1220{
1221}
1222
1223static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1224{
1225}
1226
1227static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1228{
1229}
1230
1231static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1232 struct pglist_data *pgdat)
1233{
1234 return &pgdat->__lruvec;
1235}
1236
1237static inline struct lruvec *folio_lruvec(struct folio *folio)
1238{
1239 struct pglist_data *pgdat = folio_pgdat(folio);
1240 return &pgdat->__lruvec;
1241}
1242
1243static inline
1244void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1245{
1246}
1247
1248static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1249{
1250 return NULL;
1251}
1252
1253static inline bool mm_match_cgroup(struct mm_struct *mm,
1254 struct mem_cgroup *memcg)
1255{
1256 return true;
1257}
1258
1259static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1260{
1261 return NULL;
1262}
1263
1264static inline
1265struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1266{
1267 return NULL;
1268}
1269
1270static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1271{
1272}
1273
1274static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1275{
1276 struct pglist_data *pgdat = folio_pgdat(folio);
1277
1278 spin_lock(&pgdat->__lruvec.lru_lock);
1279 return &pgdat->__lruvec;
1280}
1281
1282static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1283{
1284 struct pglist_data *pgdat = folio_pgdat(folio);
1285
1286 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1287 return &pgdat->__lruvec;
1288}
1289
1290static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1291 unsigned long *flagsp)
1292{
1293 struct pglist_data *pgdat = folio_pgdat(folio);
1294
1295 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1296 return &pgdat->__lruvec;
1297}
1298
1299static inline struct mem_cgroup *
1300mem_cgroup_iter(struct mem_cgroup *root,
1301 struct mem_cgroup *prev,
1302 struct mem_cgroup_reclaim_cookie *reclaim)
1303{
1304 return NULL;
1305}
1306
1307static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1308 struct mem_cgroup *prev)
1309{
1310}
1311
1312static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1313 int (*fn)(struct task_struct *, void *), void *arg)
1314{
1315 return 0;
1316}
1317
1318static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1319{
1320 return 0;
1321}
1322
1323static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1324{
1325 WARN_ON_ONCE(id);
1326 /* XXX: This should always return root_mem_cgroup */
1327 return NULL;
1328}
1329
1330static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1331{
1332 return NULL;
1333}
1334
1335static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1336{
1337 return NULL;
1338}
1339
1340static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1341{
1342 return true;
1343}
1344
1345static inline
1346unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1347 enum lru_list lru, int zone_idx)
1348{
1349 return 0;
1350}
1351
1352static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1353{
1354 return 0;
1355}
1356
1357static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1358{
1359 return 0;
1360}
1361
1362static inline void
1363mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1364{
1365}
1366
1367static inline void
1368mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1369{
1370}
1371
1372static inline void lock_page_memcg(struct page *page)
1373{
1374}
1375
1376static inline void unlock_page_memcg(struct page *page)
1377{
1378}
1379
1380static inline void folio_memcg_lock(struct folio *folio)
1381{
1382}
1383
1384static inline void folio_memcg_unlock(struct folio *folio)
1385{
1386}
1387
1388static inline void mem_cgroup_handle_over_high(void)
1389{
1390}
1391
1392static inline void mem_cgroup_enter_user_fault(void)
1393{
1394}
1395
1396static inline void mem_cgroup_exit_user_fault(void)
1397{
1398}
1399
1400static inline bool task_in_memcg_oom(struct task_struct *p)
1401{
1402 return false;
1403}
1404
1405static inline bool mem_cgroup_oom_synchronize(bool wait)
1406{
1407 return false;
1408}
1409
1410static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1411 struct task_struct *victim, struct mem_cgroup *oom_domain)
1412{
1413 return NULL;
1414}
1415
1416static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1417{
1418}
1419
1420static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1421 int idx,
1422 int nr)
1423{
1424}
1425
1426static inline void mod_memcg_state(struct mem_cgroup *memcg,
1427 int idx,
1428 int nr)
1429{
1430}
1431
1432static inline void mod_memcg_page_state(struct page *page,
1433 int idx, int val)
1434{
1435}
1436
1437static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1438{
1439 return 0;
1440}
1441
1442static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1443 enum node_stat_item idx)
1444{
1445 return node_page_state(lruvec_pgdat(lruvec), idx);
1446}
1447
1448static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1449 enum node_stat_item idx)
1450{
1451 return node_page_state(lruvec_pgdat(lruvec), idx);
1452}
1453
1454static inline void mem_cgroup_flush_stats(void)
1455{
1456}
1457
1458static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1459 enum node_stat_item idx, int val)
1460{
1461}
1462
1463static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1464 int val)
1465{
1466 struct page *page = virt_to_head_page(p);
1467
1468 __mod_node_page_state(page_pgdat(page), idx, val);
1469}
1470
1471static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1472 int val)
1473{
1474 struct page *page = virt_to_head_page(p);
1475
1476 mod_node_page_state(page_pgdat(page), idx, val);
1477}
1478
1479static inline void count_memcg_events(struct mem_cgroup *memcg,
1480 enum vm_event_item idx,
1481 unsigned long count)
1482{
1483}
1484
1485static inline void __count_memcg_events(struct mem_cgroup *memcg,
1486 enum vm_event_item idx,
1487 unsigned long count)
1488{
1489}
1490
1491static inline void count_memcg_page_event(struct page *page,
1492 int idx)
1493{
1494}
1495
1496static inline
1497void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1498{
1499}
1500
1501static inline void split_page_memcg(struct page *head, unsigned int nr)
1502{
1503}
1504
1505static inline
1506unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1507 gfp_t gfp_mask,
1508 unsigned long *total_scanned)
1509{
1510 return 0;
1511}
1512#endif /* CONFIG_MEMCG */
1513
1514static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1515{
1516 __mod_lruvec_kmem_state(p, idx, 1);
1517}
1518
1519static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1520{
1521 __mod_lruvec_kmem_state(p, idx, -1);
1522}
1523
1524static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1525{
1526 struct mem_cgroup *memcg;
1527
1528 memcg = lruvec_memcg(lruvec);
1529 if (!memcg)
1530 return NULL;
1531 memcg = parent_mem_cgroup(memcg);
1532 if (!memcg)
1533 return NULL;
1534 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1535}
1536
1537static inline void unlock_page_lruvec(struct lruvec *lruvec)
1538{
1539 spin_unlock(&lruvec->lru_lock);
1540}
1541
1542static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1543{
1544 spin_unlock_irq(&lruvec->lru_lock);
1545}
1546
1547static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1548 unsigned long flags)
1549{
1550 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1551}
1552
1553/* Test requires a stable page->memcg binding, see page_memcg() */
1554static inline bool folio_matches_lruvec(struct folio *folio,
1555 struct lruvec *lruvec)
1556{
1557 return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1558 lruvec_memcg(lruvec) == folio_memcg(folio);
1559}
1560
1561/* Don't lock again iff page's lruvec locked */
1562static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1563 struct lruvec *locked_lruvec)
1564{
1565 if (locked_lruvec) {
1566 if (folio_matches_lruvec(folio, locked_lruvec))
1567 return locked_lruvec;
1568
1569 unlock_page_lruvec_irq(locked_lruvec);
1570 }
1571
1572 return folio_lruvec_lock_irq(folio);
1573}
1574
1575/* Don't lock again iff page's lruvec locked */
1576static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1577 struct lruvec *locked_lruvec, unsigned long *flags)
1578{
1579 if (locked_lruvec) {
1580 if (folio_matches_lruvec(folio, locked_lruvec))
1581 return locked_lruvec;
1582
1583 unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1584 }
1585
1586 return folio_lruvec_lock_irqsave(folio, flags);
1587}
1588
1589#ifdef CONFIG_CGROUP_WRITEBACK
1590
1591struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1592void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1593 unsigned long *pheadroom, unsigned long *pdirty,
1594 unsigned long *pwriteback);
1595
1596void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1597 struct bdi_writeback *wb);
1598
1599static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1600 struct bdi_writeback *wb)
1601{
1602 if (mem_cgroup_disabled())
1603 return;
1604
1605 if (unlikely(&folio_memcg(folio)->css != wb->memcg_css))
1606 mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1607}
1608
1609void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1610
1611#else /* CONFIG_CGROUP_WRITEBACK */
1612
1613static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1614{
1615 return NULL;
1616}
1617
1618static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1619 unsigned long *pfilepages,
1620 unsigned long *pheadroom,
1621 unsigned long *pdirty,
1622 unsigned long *pwriteback)
1623{
1624}
1625
1626static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1627 struct bdi_writeback *wb)
1628{
1629}
1630
1631static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1632{
1633}
1634
1635#endif /* CONFIG_CGROUP_WRITEBACK */
1636
1637struct sock;
1638bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1639 gfp_t gfp_mask);
1640void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1641#ifdef CONFIG_MEMCG
1642extern struct static_key_false memcg_sockets_enabled_key;
1643#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1644void mem_cgroup_sk_alloc(struct sock *sk);
1645void mem_cgroup_sk_free(struct sock *sk);
1646static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1647{
1648 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1649 return true;
1650 do {
1651 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1652 return true;
1653 } while ((memcg = parent_mem_cgroup(memcg)));
1654 return false;
1655}
1656
1657int alloc_shrinker_info(struct mem_cgroup *memcg);
1658void free_shrinker_info(struct mem_cgroup *memcg);
1659void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1660void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1661#else
1662#define mem_cgroup_sockets_enabled 0
1663static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1664static inline void mem_cgroup_sk_free(struct sock *sk) { };
1665static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1666{
1667 return false;
1668}
1669
1670static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1671 int nid, int shrinker_id)
1672{
1673}
1674#endif
1675
1676#ifdef CONFIG_MEMCG_KMEM
1677bool mem_cgroup_kmem_disabled(void);
1678int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1679void __memcg_kmem_uncharge_page(struct page *page, int order);
1680
1681struct obj_cgroup *get_obj_cgroup_from_current(void);
1682
1683int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1684void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1685
1686extern struct static_key_false memcg_kmem_enabled_key;
1687
1688static inline bool memcg_kmem_enabled(void)
1689{
1690 return static_branch_likely(&memcg_kmem_enabled_key);
1691}
1692
1693static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1694 int order)
1695{
1696 if (memcg_kmem_enabled())
1697 return __memcg_kmem_charge_page(page, gfp, order);
1698 return 0;
1699}
1700
1701static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1702{
1703 if (memcg_kmem_enabled())
1704 __memcg_kmem_uncharge_page(page, order);
1705}
1706
1707/*
1708 * A helper for accessing memcg's kmem_id, used for getting
1709 * corresponding LRU lists.
1710 */
1711static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1712{
1713 return memcg ? memcg->kmemcg_id : -1;
1714}
1715
1716struct mem_cgroup *mem_cgroup_from_obj(void *p);
1717
1718#else
1719static inline bool mem_cgroup_kmem_disabled(void)
1720{
1721 return true;
1722}
1723
1724static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1725 int order)
1726{
1727 return 0;
1728}
1729
1730static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1731{
1732}
1733
1734static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1735 int order)
1736{
1737 return 0;
1738}
1739
1740static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1741{
1742}
1743
1744static inline bool memcg_kmem_enabled(void)
1745{
1746 return false;
1747}
1748
1749static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1750{
1751 return -1;
1752}
1753
1754static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1755{
1756 return NULL;
1757}
1758
1759#endif /* CONFIG_MEMCG_KMEM */
1760
1761#endif /* _LINUX_MEMCONTROL_H */