Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/regmap.h>
23#include <linux/regulator/of_regulator.h>
24#include <linux/regulator/consumer.h>
25#include <linux/regulator/coupler.h>
26#include <linux/regulator/driver.h>
27#include <linux/regulator/machine.h>
28#include <linux/module.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34#include "internal.h"
35
36static DEFINE_WW_CLASS(regulator_ww_class);
37static DEFINE_MUTEX(regulator_nesting_mutex);
38static DEFINE_MUTEX(regulator_list_mutex);
39static LIST_HEAD(regulator_map_list);
40static LIST_HEAD(regulator_ena_gpio_list);
41static LIST_HEAD(regulator_supply_alias_list);
42static LIST_HEAD(regulator_coupler_list);
43static bool has_full_constraints;
44
45static struct dentry *debugfs_root;
46
47/*
48 * struct regulator_map
49 *
50 * Used to provide symbolic supply names to devices.
51 */
52struct regulator_map {
53 struct list_head list;
54 const char *dev_name; /* The dev_name() for the consumer */
55 const char *supply;
56 struct regulator_dev *regulator;
57};
58
59/*
60 * struct regulator_enable_gpio
61 *
62 * Management for shared enable GPIO pin
63 */
64struct regulator_enable_gpio {
65 struct list_head list;
66 struct gpio_desc *gpiod;
67 u32 enable_count; /* a number of enabled shared GPIO */
68 u32 request_count; /* a number of requested shared GPIO */
69};
70
71/*
72 * struct regulator_supply_alias
73 *
74 * Used to map lookups for a supply onto an alternative device.
75 */
76struct regulator_supply_alias {
77 struct list_head list;
78 struct device *src_dev;
79 const char *src_supply;
80 struct device *alias_dev;
81 const char *alias_supply;
82};
83
84static int _regulator_is_enabled(struct regulator_dev *rdev);
85static int _regulator_disable(struct regulator *regulator);
86static int _regulator_get_current_limit(struct regulator_dev *rdev);
87static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
88static int _notifier_call_chain(struct regulator_dev *rdev,
89 unsigned long event, void *data);
90static int _regulator_do_set_voltage(struct regulator_dev *rdev,
91 int min_uV, int max_uV);
92static int regulator_balance_voltage(struct regulator_dev *rdev,
93 suspend_state_t state);
94static struct regulator *create_regulator(struct regulator_dev *rdev,
95 struct device *dev,
96 const char *supply_name);
97static void destroy_regulator(struct regulator *regulator);
98static void _regulator_put(struct regulator *regulator);
99
100const char *rdev_get_name(struct regulator_dev *rdev)
101{
102 if (rdev->constraints && rdev->constraints->name)
103 return rdev->constraints->name;
104 else if (rdev->desc->name)
105 return rdev->desc->name;
106 else
107 return "";
108}
109EXPORT_SYMBOL_GPL(rdev_get_name);
110
111static bool have_full_constraints(void)
112{
113 return has_full_constraints || of_have_populated_dt();
114}
115
116static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
117{
118 if (!rdev->constraints) {
119 rdev_err(rdev, "no constraints\n");
120 return false;
121 }
122
123 if (rdev->constraints->valid_ops_mask & ops)
124 return true;
125
126 return false;
127}
128
129/**
130 * regulator_lock_nested - lock a single regulator
131 * @rdev: regulator source
132 * @ww_ctx: w/w mutex acquire context
133 *
134 * This function can be called many times by one task on
135 * a single regulator and its mutex will be locked only
136 * once. If a task, which is calling this function is other
137 * than the one, which initially locked the mutex, it will
138 * wait on mutex.
139 */
140static inline int regulator_lock_nested(struct regulator_dev *rdev,
141 struct ww_acquire_ctx *ww_ctx)
142{
143 bool lock = false;
144 int ret = 0;
145
146 mutex_lock(®ulator_nesting_mutex);
147
148 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
149 if (rdev->mutex_owner == current)
150 rdev->ref_cnt++;
151 else
152 lock = true;
153
154 if (lock) {
155 mutex_unlock(®ulator_nesting_mutex);
156 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
157 mutex_lock(®ulator_nesting_mutex);
158 }
159 } else {
160 lock = true;
161 }
162
163 if (lock && ret != -EDEADLK) {
164 rdev->ref_cnt++;
165 rdev->mutex_owner = current;
166 }
167
168 mutex_unlock(®ulator_nesting_mutex);
169
170 return ret;
171}
172
173/**
174 * regulator_lock - lock a single regulator
175 * @rdev: regulator source
176 *
177 * This function can be called many times by one task on
178 * a single regulator and its mutex will be locked only
179 * once. If a task, which is calling this function is other
180 * than the one, which initially locked the mutex, it will
181 * wait on mutex.
182 */
183static void regulator_lock(struct regulator_dev *rdev)
184{
185 regulator_lock_nested(rdev, NULL);
186}
187
188/**
189 * regulator_unlock - unlock a single regulator
190 * @rdev: regulator_source
191 *
192 * This function unlocks the mutex when the
193 * reference counter reaches 0.
194 */
195static void regulator_unlock(struct regulator_dev *rdev)
196{
197 mutex_lock(®ulator_nesting_mutex);
198
199 if (--rdev->ref_cnt == 0) {
200 rdev->mutex_owner = NULL;
201 ww_mutex_unlock(&rdev->mutex);
202 }
203
204 WARN_ON_ONCE(rdev->ref_cnt < 0);
205
206 mutex_unlock(®ulator_nesting_mutex);
207}
208
209static bool regulator_supply_is_couple(struct regulator_dev *rdev)
210{
211 struct regulator_dev *c_rdev;
212 int i;
213
214 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
215 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
216
217 if (rdev->supply->rdev == c_rdev)
218 return true;
219 }
220
221 return false;
222}
223
224static void regulator_unlock_recursive(struct regulator_dev *rdev,
225 unsigned int n_coupled)
226{
227 struct regulator_dev *c_rdev, *supply_rdev;
228 int i, supply_n_coupled;
229
230 for (i = n_coupled; i > 0; i--) {
231 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
232
233 if (!c_rdev)
234 continue;
235
236 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
237 supply_rdev = c_rdev->supply->rdev;
238 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
239
240 regulator_unlock_recursive(supply_rdev,
241 supply_n_coupled);
242 }
243
244 regulator_unlock(c_rdev);
245 }
246}
247
248static int regulator_lock_recursive(struct regulator_dev *rdev,
249 struct regulator_dev **new_contended_rdev,
250 struct regulator_dev **old_contended_rdev,
251 struct ww_acquire_ctx *ww_ctx)
252{
253 struct regulator_dev *c_rdev;
254 int i, err;
255
256 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
257 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
258
259 if (!c_rdev)
260 continue;
261
262 if (c_rdev != *old_contended_rdev) {
263 err = regulator_lock_nested(c_rdev, ww_ctx);
264 if (err) {
265 if (err == -EDEADLK) {
266 *new_contended_rdev = c_rdev;
267 goto err_unlock;
268 }
269
270 /* shouldn't happen */
271 WARN_ON_ONCE(err != -EALREADY);
272 }
273 } else {
274 *old_contended_rdev = NULL;
275 }
276
277 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
278 err = regulator_lock_recursive(c_rdev->supply->rdev,
279 new_contended_rdev,
280 old_contended_rdev,
281 ww_ctx);
282 if (err) {
283 regulator_unlock(c_rdev);
284 goto err_unlock;
285 }
286 }
287 }
288
289 return 0;
290
291err_unlock:
292 regulator_unlock_recursive(rdev, i);
293
294 return err;
295}
296
297/**
298 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
299 * regulators
300 * @rdev: regulator source
301 * @ww_ctx: w/w mutex acquire context
302 *
303 * Unlock all regulators related with rdev by coupling or supplying.
304 */
305static void regulator_unlock_dependent(struct regulator_dev *rdev,
306 struct ww_acquire_ctx *ww_ctx)
307{
308 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
309 ww_acquire_fini(ww_ctx);
310}
311
312/**
313 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
314 * @rdev: regulator source
315 * @ww_ctx: w/w mutex acquire context
316 *
317 * This function as a wrapper on regulator_lock_recursive(), which locks
318 * all regulators related with rdev by coupling or supplying.
319 */
320static void regulator_lock_dependent(struct regulator_dev *rdev,
321 struct ww_acquire_ctx *ww_ctx)
322{
323 struct regulator_dev *new_contended_rdev = NULL;
324 struct regulator_dev *old_contended_rdev = NULL;
325 int err;
326
327 mutex_lock(®ulator_list_mutex);
328
329 ww_acquire_init(ww_ctx, ®ulator_ww_class);
330
331 do {
332 if (new_contended_rdev) {
333 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
334 old_contended_rdev = new_contended_rdev;
335 old_contended_rdev->ref_cnt++;
336 }
337
338 err = regulator_lock_recursive(rdev,
339 &new_contended_rdev,
340 &old_contended_rdev,
341 ww_ctx);
342
343 if (old_contended_rdev)
344 regulator_unlock(old_contended_rdev);
345
346 } while (err == -EDEADLK);
347
348 ww_acquire_done(ww_ctx);
349
350 mutex_unlock(®ulator_list_mutex);
351}
352
353/**
354 * of_get_child_regulator - get a child regulator device node
355 * based on supply name
356 * @parent: Parent device node
357 * @prop_name: Combination regulator supply name and "-supply"
358 *
359 * Traverse all child nodes.
360 * Extract the child regulator device node corresponding to the supply name.
361 * returns the device node corresponding to the regulator if found, else
362 * returns NULL.
363 */
364static struct device_node *of_get_child_regulator(struct device_node *parent,
365 const char *prop_name)
366{
367 struct device_node *regnode = NULL;
368 struct device_node *child = NULL;
369
370 for_each_child_of_node(parent, child) {
371 regnode = of_parse_phandle(child, prop_name, 0);
372
373 if (!regnode) {
374 regnode = of_get_child_regulator(child, prop_name);
375 if (regnode)
376 goto err_node_put;
377 } else {
378 goto err_node_put;
379 }
380 }
381 return NULL;
382
383err_node_put:
384 of_node_put(child);
385 return regnode;
386}
387
388/**
389 * of_get_regulator - get a regulator device node based on supply name
390 * @dev: Device pointer for the consumer (of regulator) device
391 * @supply: regulator supply name
392 *
393 * Extract the regulator device node corresponding to the supply name.
394 * returns the device node corresponding to the regulator if found, else
395 * returns NULL.
396 */
397static struct device_node *of_get_regulator(struct device *dev, const char *supply)
398{
399 struct device_node *regnode = NULL;
400 char prop_name[64]; /* 64 is max size of property name */
401
402 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
403
404 snprintf(prop_name, 64, "%s-supply", supply);
405 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
406
407 if (!regnode) {
408 regnode = of_get_child_regulator(dev->of_node, prop_name);
409 if (regnode)
410 return regnode;
411
412 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
413 prop_name, dev->of_node);
414 return NULL;
415 }
416 return regnode;
417}
418
419/* Platform voltage constraint check */
420int regulator_check_voltage(struct regulator_dev *rdev,
421 int *min_uV, int *max_uV)
422{
423 BUG_ON(*min_uV > *max_uV);
424
425 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
426 rdev_err(rdev, "voltage operation not allowed\n");
427 return -EPERM;
428 }
429
430 if (*max_uV > rdev->constraints->max_uV)
431 *max_uV = rdev->constraints->max_uV;
432 if (*min_uV < rdev->constraints->min_uV)
433 *min_uV = rdev->constraints->min_uV;
434
435 if (*min_uV > *max_uV) {
436 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
437 *min_uV, *max_uV);
438 return -EINVAL;
439 }
440
441 return 0;
442}
443
444/* return 0 if the state is valid */
445static int regulator_check_states(suspend_state_t state)
446{
447 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
448}
449
450/* Make sure we select a voltage that suits the needs of all
451 * regulator consumers
452 */
453int regulator_check_consumers(struct regulator_dev *rdev,
454 int *min_uV, int *max_uV,
455 suspend_state_t state)
456{
457 struct regulator *regulator;
458 struct regulator_voltage *voltage;
459
460 list_for_each_entry(regulator, &rdev->consumer_list, list) {
461 voltage = ®ulator->voltage[state];
462 /*
463 * Assume consumers that didn't say anything are OK
464 * with anything in the constraint range.
465 */
466 if (!voltage->min_uV && !voltage->max_uV)
467 continue;
468
469 if (*max_uV > voltage->max_uV)
470 *max_uV = voltage->max_uV;
471 if (*min_uV < voltage->min_uV)
472 *min_uV = voltage->min_uV;
473 }
474
475 if (*min_uV > *max_uV) {
476 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
477 *min_uV, *max_uV);
478 return -EINVAL;
479 }
480
481 return 0;
482}
483
484/* current constraint check */
485static int regulator_check_current_limit(struct regulator_dev *rdev,
486 int *min_uA, int *max_uA)
487{
488 BUG_ON(*min_uA > *max_uA);
489
490 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
491 rdev_err(rdev, "current operation not allowed\n");
492 return -EPERM;
493 }
494
495 if (*max_uA > rdev->constraints->max_uA)
496 *max_uA = rdev->constraints->max_uA;
497 if (*min_uA < rdev->constraints->min_uA)
498 *min_uA = rdev->constraints->min_uA;
499
500 if (*min_uA > *max_uA) {
501 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
502 *min_uA, *max_uA);
503 return -EINVAL;
504 }
505
506 return 0;
507}
508
509/* operating mode constraint check */
510static int regulator_mode_constrain(struct regulator_dev *rdev,
511 unsigned int *mode)
512{
513 switch (*mode) {
514 case REGULATOR_MODE_FAST:
515 case REGULATOR_MODE_NORMAL:
516 case REGULATOR_MODE_IDLE:
517 case REGULATOR_MODE_STANDBY:
518 break;
519 default:
520 rdev_err(rdev, "invalid mode %x specified\n", *mode);
521 return -EINVAL;
522 }
523
524 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
525 rdev_err(rdev, "mode operation not allowed\n");
526 return -EPERM;
527 }
528
529 /* The modes are bitmasks, the most power hungry modes having
530 * the lowest values. If the requested mode isn't supported
531 * try higher modes.
532 */
533 while (*mode) {
534 if (rdev->constraints->valid_modes_mask & *mode)
535 return 0;
536 *mode /= 2;
537 }
538
539 return -EINVAL;
540}
541
542static inline struct regulator_state *
543regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
544{
545 if (rdev->constraints == NULL)
546 return NULL;
547
548 switch (state) {
549 case PM_SUSPEND_STANDBY:
550 return &rdev->constraints->state_standby;
551 case PM_SUSPEND_MEM:
552 return &rdev->constraints->state_mem;
553 case PM_SUSPEND_MAX:
554 return &rdev->constraints->state_disk;
555 default:
556 return NULL;
557 }
558}
559
560static const struct regulator_state *
561regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
562{
563 const struct regulator_state *rstate;
564
565 rstate = regulator_get_suspend_state(rdev, state);
566 if (rstate == NULL)
567 return NULL;
568
569 /* If we have no suspend mode configuration don't set anything;
570 * only warn if the driver implements set_suspend_voltage or
571 * set_suspend_mode callback.
572 */
573 if (rstate->enabled != ENABLE_IN_SUSPEND &&
574 rstate->enabled != DISABLE_IN_SUSPEND) {
575 if (rdev->desc->ops->set_suspend_voltage ||
576 rdev->desc->ops->set_suspend_mode)
577 rdev_warn(rdev, "No configuration\n");
578 return NULL;
579 }
580
581 return rstate;
582}
583
584static ssize_t microvolts_show(struct device *dev,
585 struct device_attribute *attr, char *buf)
586{
587 struct regulator_dev *rdev = dev_get_drvdata(dev);
588 int uV;
589
590 regulator_lock(rdev);
591 uV = regulator_get_voltage_rdev(rdev);
592 regulator_unlock(rdev);
593
594 if (uV < 0)
595 return uV;
596 return sprintf(buf, "%d\n", uV);
597}
598static DEVICE_ATTR_RO(microvolts);
599
600static ssize_t microamps_show(struct device *dev,
601 struct device_attribute *attr, char *buf)
602{
603 struct regulator_dev *rdev = dev_get_drvdata(dev);
604
605 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
606}
607static DEVICE_ATTR_RO(microamps);
608
609static ssize_t name_show(struct device *dev, struct device_attribute *attr,
610 char *buf)
611{
612 struct regulator_dev *rdev = dev_get_drvdata(dev);
613
614 return sprintf(buf, "%s\n", rdev_get_name(rdev));
615}
616static DEVICE_ATTR_RO(name);
617
618static const char *regulator_opmode_to_str(int mode)
619{
620 switch (mode) {
621 case REGULATOR_MODE_FAST:
622 return "fast";
623 case REGULATOR_MODE_NORMAL:
624 return "normal";
625 case REGULATOR_MODE_IDLE:
626 return "idle";
627 case REGULATOR_MODE_STANDBY:
628 return "standby";
629 }
630 return "unknown";
631}
632
633static ssize_t regulator_print_opmode(char *buf, int mode)
634{
635 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
636}
637
638static ssize_t opmode_show(struct device *dev,
639 struct device_attribute *attr, char *buf)
640{
641 struct regulator_dev *rdev = dev_get_drvdata(dev);
642
643 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
644}
645static DEVICE_ATTR_RO(opmode);
646
647static ssize_t regulator_print_state(char *buf, int state)
648{
649 if (state > 0)
650 return sprintf(buf, "enabled\n");
651 else if (state == 0)
652 return sprintf(buf, "disabled\n");
653 else
654 return sprintf(buf, "unknown\n");
655}
656
657static ssize_t state_show(struct device *dev,
658 struct device_attribute *attr, char *buf)
659{
660 struct regulator_dev *rdev = dev_get_drvdata(dev);
661 ssize_t ret;
662
663 regulator_lock(rdev);
664 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
665 regulator_unlock(rdev);
666
667 return ret;
668}
669static DEVICE_ATTR_RO(state);
670
671static ssize_t status_show(struct device *dev,
672 struct device_attribute *attr, char *buf)
673{
674 struct regulator_dev *rdev = dev_get_drvdata(dev);
675 int status;
676 char *label;
677
678 status = rdev->desc->ops->get_status(rdev);
679 if (status < 0)
680 return status;
681
682 switch (status) {
683 case REGULATOR_STATUS_OFF:
684 label = "off";
685 break;
686 case REGULATOR_STATUS_ON:
687 label = "on";
688 break;
689 case REGULATOR_STATUS_ERROR:
690 label = "error";
691 break;
692 case REGULATOR_STATUS_FAST:
693 label = "fast";
694 break;
695 case REGULATOR_STATUS_NORMAL:
696 label = "normal";
697 break;
698 case REGULATOR_STATUS_IDLE:
699 label = "idle";
700 break;
701 case REGULATOR_STATUS_STANDBY:
702 label = "standby";
703 break;
704 case REGULATOR_STATUS_BYPASS:
705 label = "bypass";
706 break;
707 case REGULATOR_STATUS_UNDEFINED:
708 label = "undefined";
709 break;
710 default:
711 return -ERANGE;
712 }
713
714 return sprintf(buf, "%s\n", label);
715}
716static DEVICE_ATTR_RO(status);
717
718static ssize_t min_microamps_show(struct device *dev,
719 struct device_attribute *attr, char *buf)
720{
721 struct regulator_dev *rdev = dev_get_drvdata(dev);
722
723 if (!rdev->constraints)
724 return sprintf(buf, "constraint not defined\n");
725
726 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
727}
728static DEVICE_ATTR_RO(min_microamps);
729
730static ssize_t max_microamps_show(struct device *dev,
731 struct device_attribute *attr, char *buf)
732{
733 struct regulator_dev *rdev = dev_get_drvdata(dev);
734
735 if (!rdev->constraints)
736 return sprintf(buf, "constraint not defined\n");
737
738 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
739}
740static DEVICE_ATTR_RO(max_microamps);
741
742static ssize_t min_microvolts_show(struct device *dev,
743 struct device_attribute *attr, char *buf)
744{
745 struct regulator_dev *rdev = dev_get_drvdata(dev);
746
747 if (!rdev->constraints)
748 return sprintf(buf, "constraint not defined\n");
749
750 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
751}
752static DEVICE_ATTR_RO(min_microvolts);
753
754static ssize_t max_microvolts_show(struct device *dev,
755 struct device_attribute *attr, char *buf)
756{
757 struct regulator_dev *rdev = dev_get_drvdata(dev);
758
759 if (!rdev->constraints)
760 return sprintf(buf, "constraint not defined\n");
761
762 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
763}
764static DEVICE_ATTR_RO(max_microvolts);
765
766static ssize_t requested_microamps_show(struct device *dev,
767 struct device_attribute *attr, char *buf)
768{
769 struct regulator_dev *rdev = dev_get_drvdata(dev);
770 struct regulator *regulator;
771 int uA = 0;
772
773 regulator_lock(rdev);
774 list_for_each_entry(regulator, &rdev->consumer_list, list) {
775 if (regulator->enable_count)
776 uA += regulator->uA_load;
777 }
778 regulator_unlock(rdev);
779 return sprintf(buf, "%d\n", uA);
780}
781static DEVICE_ATTR_RO(requested_microamps);
782
783static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
784 char *buf)
785{
786 struct regulator_dev *rdev = dev_get_drvdata(dev);
787 return sprintf(buf, "%d\n", rdev->use_count);
788}
789static DEVICE_ATTR_RO(num_users);
790
791static ssize_t type_show(struct device *dev, struct device_attribute *attr,
792 char *buf)
793{
794 struct regulator_dev *rdev = dev_get_drvdata(dev);
795
796 switch (rdev->desc->type) {
797 case REGULATOR_VOLTAGE:
798 return sprintf(buf, "voltage\n");
799 case REGULATOR_CURRENT:
800 return sprintf(buf, "current\n");
801 }
802 return sprintf(buf, "unknown\n");
803}
804static DEVICE_ATTR_RO(type);
805
806static ssize_t suspend_mem_microvolts_show(struct device *dev,
807 struct device_attribute *attr, char *buf)
808{
809 struct regulator_dev *rdev = dev_get_drvdata(dev);
810
811 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
812}
813static DEVICE_ATTR_RO(suspend_mem_microvolts);
814
815static ssize_t suspend_disk_microvolts_show(struct device *dev,
816 struct device_attribute *attr, char *buf)
817{
818 struct regulator_dev *rdev = dev_get_drvdata(dev);
819
820 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
821}
822static DEVICE_ATTR_RO(suspend_disk_microvolts);
823
824static ssize_t suspend_standby_microvolts_show(struct device *dev,
825 struct device_attribute *attr, char *buf)
826{
827 struct regulator_dev *rdev = dev_get_drvdata(dev);
828
829 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
830}
831static DEVICE_ATTR_RO(suspend_standby_microvolts);
832
833static ssize_t suspend_mem_mode_show(struct device *dev,
834 struct device_attribute *attr, char *buf)
835{
836 struct regulator_dev *rdev = dev_get_drvdata(dev);
837
838 return regulator_print_opmode(buf,
839 rdev->constraints->state_mem.mode);
840}
841static DEVICE_ATTR_RO(suspend_mem_mode);
842
843static ssize_t suspend_disk_mode_show(struct device *dev,
844 struct device_attribute *attr, char *buf)
845{
846 struct regulator_dev *rdev = dev_get_drvdata(dev);
847
848 return regulator_print_opmode(buf,
849 rdev->constraints->state_disk.mode);
850}
851static DEVICE_ATTR_RO(suspend_disk_mode);
852
853static ssize_t suspend_standby_mode_show(struct device *dev,
854 struct device_attribute *attr, char *buf)
855{
856 struct regulator_dev *rdev = dev_get_drvdata(dev);
857
858 return regulator_print_opmode(buf,
859 rdev->constraints->state_standby.mode);
860}
861static DEVICE_ATTR_RO(suspend_standby_mode);
862
863static ssize_t suspend_mem_state_show(struct device *dev,
864 struct device_attribute *attr, char *buf)
865{
866 struct regulator_dev *rdev = dev_get_drvdata(dev);
867
868 return regulator_print_state(buf,
869 rdev->constraints->state_mem.enabled);
870}
871static DEVICE_ATTR_RO(suspend_mem_state);
872
873static ssize_t suspend_disk_state_show(struct device *dev,
874 struct device_attribute *attr, char *buf)
875{
876 struct regulator_dev *rdev = dev_get_drvdata(dev);
877
878 return regulator_print_state(buf,
879 rdev->constraints->state_disk.enabled);
880}
881static DEVICE_ATTR_RO(suspend_disk_state);
882
883static ssize_t suspend_standby_state_show(struct device *dev,
884 struct device_attribute *attr, char *buf)
885{
886 struct regulator_dev *rdev = dev_get_drvdata(dev);
887
888 return regulator_print_state(buf,
889 rdev->constraints->state_standby.enabled);
890}
891static DEVICE_ATTR_RO(suspend_standby_state);
892
893static ssize_t bypass_show(struct device *dev,
894 struct device_attribute *attr, char *buf)
895{
896 struct regulator_dev *rdev = dev_get_drvdata(dev);
897 const char *report;
898 bool bypass;
899 int ret;
900
901 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
902
903 if (ret != 0)
904 report = "unknown";
905 else if (bypass)
906 report = "enabled";
907 else
908 report = "disabled";
909
910 return sprintf(buf, "%s\n", report);
911}
912static DEVICE_ATTR_RO(bypass);
913
914/* Calculate the new optimum regulator operating mode based on the new total
915 * consumer load. All locks held by caller
916 */
917static int drms_uA_update(struct regulator_dev *rdev)
918{
919 struct regulator *sibling;
920 int current_uA = 0, output_uV, input_uV, err;
921 unsigned int mode;
922
923 /*
924 * first check to see if we can set modes at all, otherwise just
925 * tell the consumer everything is OK.
926 */
927 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
928 rdev_dbg(rdev, "DRMS operation not allowed\n");
929 return 0;
930 }
931
932 if (!rdev->desc->ops->get_optimum_mode &&
933 !rdev->desc->ops->set_load)
934 return 0;
935
936 if (!rdev->desc->ops->set_mode &&
937 !rdev->desc->ops->set_load)
938 return -EINVAL;
939
940 /* calc total requested load */
941 list_for_each_entry(sibling, &rdev->consumer_list, list) {
942 if (sibling->enable_count)
943 current_uA += sibling->uA_load;
944 }
945
946 current_uA += rdev->constraints->system_load;
947
948 if (rdev->desc->ops->set_load) {
949 /* set the optimum mode for our new total regulator load */
950 err = rdev->desc->ops->set_load(rdev, current_uA);
951 if (err < 0)
952 rdev_err(rdev, "failed to set load %d: %pe\n",
953 current_uA, ERR_PTR(err));
954 } else {
955 /* get output voltage */
956 output_uV = regulator_get_voltage_rdev(rdev);
957 if (output_uV <= 0) {
958 rdev_err(rdev, "invalid output voltage found\n");
959 return -EINVAL;
960 }
961
962 /* get input voltage */
963 input_uV = 0;
964 if (rdev->supply)
965 input_uV = regulator_get_voltage(rdev->supply);
966 if (input_uV <= 0)
967 input_uV = rdev->constraints->input_uV;
968 if (input_uV <= 0) {
969 rdev_err(rdev, "invalid input voltage found\n");
970 return -EINVAL;
971 }
972
973 /* now get the optimum mode for our new total regulator load */
974 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
975 output_uV, current_uA);
976
977 /* check the new mode is allowed */
978 err = regulator_mode_constrain(rdev, &mode);
979 if (err < 0) {
980 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
981 current_uA, input_uV, output_uV, ERR_PTR(err));
982 return err;
983 }
984
985 err = rdev->desc->ops->set_mode(rdev, mode);
986 if (err < 0)
987 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
988 mode, ERR_PTR(err));
989 }
990
991 return err;
992}
993
994static int __suspend_set_state(struct regulator_dev *rdev,
995 const struct regulator_state *rstate)
996{
997 int ret = 0;
998
999 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1000 rdev->desc->ops->set_suspend_enable)
1001 ret = rdev->desc->ops->set_suspend_enable(rdev);
1002 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1003 rdev->desc->ops->set_suspend_disable)
1004 ret = rdev->desc->ops->set_suspend_disable(rdev);
1005 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1006 ret = 0;
1007
1008 if (ret < 0) {
1009 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1010 return ret;
1011 }
1012
1013 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1014 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1015 if (ret < 0) {
1016 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1017 return ret;
1018 }
1019 }
1020
1021 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1022 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1023 if (ret < 0) {
1024 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1025 return ret;
1026 }
1027 }
1028
1029 return ret;
1030}
1031
1032static int suspend_set_initial_state(struct regulator_dev *rdev)
1033{
1034 const struct regulator_state *rstate;
1035
1036 rstate = regulator_get_suspend_state_check(rdev,
1037 rdev->constraints->initial_state);
1038 if (!rstate)
1039 return 0;
1040
1041 return __suspend_set_state(rdev, rstate);
1042}
1043
1044#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1045static void print_constraints_debug(struct regulator_dev *rdev)
1046{
1047 struct regulation_constraints *constraints = rdev->constraints;
1048 char buf[160] = "";
1049 size_t len = sizeof(buf) - 1;
1050 int count = 0;
1051 int ret;
1052
1053 if (constraints->min_uV && constraints->max_uV) {
1054 if (constraints->min_uV == constraints->max_uV)
1055 count += scnprintf(buf + count, len - count, "%d mV ",
1056 constraints->min_uV / 1000);
1057 else
1058 count += scnprintf(buf + count, len - count,
1059 "%d <--> %d mV ",
1060 constraints->min_uV / 1000,
1061 constraints->max_uV / 1000);
1062 }
1063
1064 if (!constraints->min_uV ||
1065 constraints->min_uV != constraints->max_uV) {
1066 ret = regulator_get_voltage_rdev(rdev);
1067 if (ret > 0)
1068 count += scnprintf(buf + count, len - count,
1069 "at %d mV ", ret / 1000);
1070 }
1071
1072 if (constraints->uV_offset)
1073 count += scnprintf(buf + count, len - count, "%dmV offset ",
1074 constraints->uV_offset / 1000);
1075
1076 if (constraints->min_uA && constraints->max_uA) {
1077 if (constraints->min_uA == constraints->max_uA)
1078 count += scnprintf(buf + count, len - count, "%d mA ",
1079 constraints->min_uA / 1000);
1080 else
1081 count += scnprintf(buf + count, len - count,
1082 "%d <--> %d mA ",
1083 constraints->min_uA / 1000,
1084 constraints->max_uA / 1000);
1085 }
1086
1087 if (!constraints->min_uA ||
1088 constraints->min_uA != constraints->max_uA) {
1089 ret = _regulator_get_current_limit(rdev);
1090 if (ret > 0)
1091 count += scnprintf(buf + count, len - count,
1092 "at %d mA ", ret / 1000);
1093 }
1094
1095 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1096 count += scnprintf(buf + count, len - count, "fast ");
1097 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1098 count += scnprintf(buf + count, len - count, "normal ");
1099 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1100 count += scnprintf(buf + count, len - count, "idle ");
1101 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1102 count += scnprintf(buf + count, len - count, "standby ");
1103
1104 if (!count)
1105 count = scnprintf(buf, len, "no parameters");
1106 else
1107 --count;
1108
1109 count += scnprintf(buf + count, len - count, ", %s",
1110 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1111
1112 rdev_dbg(rdev, "%s\n", buf);
1113}
1114#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1115static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1116#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1117
1118static void print_constraints(struct regulator_dev *rdev)
1119{
1120 struct regulation_constraints *constraints = rdev->constraints;
1121
1122 print_constraints_debug(rdev);
1123
1124 if ((constraints->min_uV != constraints->max_uV) &&
1125 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1126 rdev_warn(rdev,
1127 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1128}
1129
1130static int machine_constraints_voltage(struct regulator_dev *rdev,
1131 struct regulation_constraints *constraints)
1132{
1133 const struct regulator_ops *ops = rdev->desc->ops;
1134 int ret;
1135
1136 /* do we need to apply the constraint voltage */
1137 if (rdev->constraints->apply_uV &&
1138 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1139 int target_min, target_max;
1140 int current_uV = regulator_get_voltage_rdev(rdev);
1141
1142 if (current_uV == -ENOTRECOVERABLE) {
1143 /* This regulator can't be read and must be initialized */
1144 rdev_info(rdev, "Setting %d-%duV\n",
1145 rdev->constraints->min_uV,
1146 rdev->constraints->max_uV);
1147 _regulator_do_set_voltage(rdev,
1148 rdev->constraints->min_uV,
1149 rdev->constraints->max_uV);
1150 current_uV = regulator_get_voltage_rdev(rdev);
1151 }
1152
1153 if (current_uV < 0) {
1154 if (current_uV != -EPROBE_DEFER)
1155 rdev_err(rdev,
1156 "failed to get the current voltage: %pe\n",
1157 ERR_PTR(current_uV));
1158 return current_uV;
1159 }
1160
1161 /*
1162 * If we're below the minimum voltage move up to the
1163 * minimum voltage, if we're above the maximum voltage
1164 * then move down to the maximum.
1165 */
1166 target_min = current_uV;
1167 target_max = current_uV;
1168
1169 if (current_uV < rdev->constraints->min_uV) {
1170 target_min = rdev->constraints->min_uV;
1171 target_max = rdev->constraints->min_uV;
1172 }
1173
1174 if (current_uV > rdev->constraints->max_uV) {
1175 target_min = rdev->constraints->max_uV;
1176 target_max = rdev->constraints->max_uV;
1177 }
1178
1179 if (target_min != current_uV || target_max != current_uV) {
1180 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1181 current_uV, target_min, target_max);
1182 ret = _regulator_do_set_voltage(
1183 rdev, target_min, target_max);
1184 if (ret < 0) {
1185 rdev_err(rdev,
1186 "failed to apply %d-%duV constraint: %pe\n",
1187 target_min, target_max, ERR_PTR(ret));
1188 return ret;
1189 }
1190 }
1191 }
1192
1193 /* constrain machine-level voltage specs to fit
1194 * the actual range supported by this regulator.
1195 */
1196 if (ops->list_voltage && rdev->desc->n_voltages) {
1197 int count = rdev->desc->n_voltages;
1198 int i;
1199 int min_uV = INT_MAX;
1200 int max_uV = INT_MIN;
1201 int cmin = constraints->min_uV;
1202 int cmax = constraints->max_uV;
1203
1204 /* it's safe to autoconfigure fixed-voltage supplies
1205 * and the constraints are used by list_voltage.
1206 */
1207 if (count == 1 && !cmin) {
1208 cmin = 1;
1209 cmax = INT_MAX;
1210 constraints->min_uV = cmin;
1211 constraints->max_uV = cmax;
1212 }
1213
1214 /* voltage constraints are optional */
1215 if ((cmin == 0) && (cmax == 0))
1216 return 0;
1217
1218 /* else require explicit machine-level constraints */
1219 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1220 rdev_err(rdev, "invalid voltage constraints\n");
1221 return -EINVAL;
1222 }
1223
1224 /* no need to loop voltages if range is continuous */
1225 if (rdev->desc->continuous_voltage_range)
1226 return 0;
1227
1228 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1229 for (i = 0; i < count; i++) {
1230 int value;
1231
1232 value = ops->list_voltage(rdev, i);
1233 if (value <= 0)
1234 continue;
1235
1236 /* maybe adjust [min_uV..max_uV] */
1237 if (value >= cmin && value < min_uV)
1238 min_uV = value;
1239 if (value <= cmax && value > max_uV)
1240 max_uV = value;
1241 }
1242
1243 /* final: [min_uV..max_uV] valid iff constraints valid */
1244 if (max_uV < min_uV) {
1245 rdev_err(rdev,
1246 "unsupportable voltage constraints %u-%uuV\n",
1247 min_uV, max_uV);
1248 return -EINVAL;
1249 }
1250
1251 /* use regulator's subset of machine constraints */
1252 if (constraints->min_uV < min_uV) {
1253 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1254 constraints->min_uV, min_uV);
1255 constraints->min_uV = min_uV;
1256 }
1257 if (constraints->max_uV > max_uV) {
1258 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1259 constraints->max_uV, max_uV);
1260 constraints->max_uV = max_uV;
1261 }
1262 }
1263
1264 return 0;
1265}
1266
1267static int machine_constraints_current(struct regulator_dev *rdev,
1268 struct regulation_constraints *constraints)
1269{
1270 const struct regulator_ops *ops = rdev->desc->ops;
1271 int ret;
1272
1273 if (!constraints->min_uA && !constraints->max_uA)
1274 return 0;
1275
1276 if (constraints->min_uA > constraints->max_uA) {
1277 rdev_err(rdev, "Invalid current constraints\n");
1278 return -EINVAL;
1279 }
1280
1281 if (!ops->set_current_limit || !ops->get_current_limit) {
1282 rdev_warn(rdev, "Operation of current configuration missing\n");
1283 return 0;
1284 }
1285
1286 /* Set regulator current in constraints range */
1287 ret = ops->set_current_limit(rdev, constraints->min_uA,
1288 constraints->max_uA);
1289 if (ret < 0) {
1290 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1291 return ret;
1292 }
1293
1294 return 0;
1295}
1296
1297static int _regulator_do_enable(struct regulator_dev *rdev);
1298
1299static int notif_set_limit(struct regulator_dev *rdev,
1300 int (*set)(struct regulator_dev *, int, int, bool),
1301 int limit, int severity)
1302{
1303 bool enable;
1304
1305 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1306 enable = false;
1307 limit = 0;
1308 } else {
1309 enable = true;
1310 }
1311
1312 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1313 limit = 0;
1314
1315 return set(rdev, limit, severity, enable);
1316}
1317
1318static int handle_notify_limits(struct regulator_dev *rdev,
1319 int (*set)(struct regulator_dev *, int, int, bool),
1320 struct notification_limit *limits)
1321{
1322 int ret = 0;
1323
1324 if (!set)
1325 return -EOPNOTSUPP;
1326
1327 if (limits->prot)
1328 ret = notif_set_limit(rdev, set, limits->prot,
1329 REGULATOR_SEVERITY_PROT);
1330 if (ret)
1331 return ret;
1332
1333 if (limits->err)
1334 ret = notif_set_limit(rdev, set, limits->err,
1335 REGULATOR_SEVERITY_ERR);
1336 if (ret)
1337 return ret;
1338
1339 if (limits->warn)
1340 ret = notif_set_limit(rdev, set, limits->warn,
1341 REGULATOR_SEVERITY_WARN);
1342
1343 return ret;
1344}
1345/**
1346 * set_machine_constraints - sets regulator constraints
1347 * @rdev: regulator source
1348 *
1349 * Allows platform initialisation code to define and constrain
1350 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1351 * Constraints *must* be set by platform code in order for some
1352 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1353 * set_mode.
1354 */
1355static int set_machine_constraints(struct regulator_dev *rdev)
1356{
1357 int ret = 0;
1358 const struct regulator_ops *ops = rdev->desc->ops;
1359
1360 ret = machine_constraints_voltage(rdev, rdev->constraints);
1361 if (ret != 0)
1362 return ret;
1363
1364 ret = machine_constraints_current(rdev, rdev->constraints);
1365 if (ret != 0)
1366 return ret;
1367
1368 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1369 ret = ops->set_input_current_limit(rdev,
1370 rdev->constraints->ilim_uA);
1371 if (ret < 0) {
1372 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1373 return ret;
1374 }
1375 }
1376
1377 /* do we need to setup our suspend state */
1378 if (rdev->constraints->initial_state) {
1379 ret = suspend_set_initial_state(rdev);
1380 if (ret < 0) {
1381 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1382 return ret;
1383 }
1384 }
1385
1386 if (rdev->constraints->initial_mode) {
1387 if (!ops->set_mode) {
1388 rdev_err(rdev, "no set_mode operation\n");
1389 return -EINVAL;
1390 }
1391
1392 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1393 if (ret < 0) {
1394 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1395 return ret;
1396 }
1397 } else if (rdev->constraints->system_load) {
1398 /*
1399 * We'll only apply the initial system load if an
1400 * initial mode wasn't specified.
1401 */
1402 drms_uA_update(rdev);
1403 }
1404
1405 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1406 && ops->set_ramp_delay) {
1407 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1408 if (ret < 0) {
1409 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1410 return ret;
1411 }
1412 }
1413
1414 if (rdev->constraints->pull_down && ops->set_pull_down) {
1415 ret = ops->set_pull_down(rdev);
1416 if (ret < 0) {
1417 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1418 return ret;
1419 }
1420 }
1421
1422 if (rdev->constraints->soft_start && ops->set_soft_start) {
1423 ret = ops->set_soft_start(rdev);
1424 if (ret < 0) {
1425 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1426 return ret;
1427 }
1428 }
1429
1430 /*
1431 * Existing logic does not warn if over_current_protection is given as
1432 * a constraint but driver does not support that. I think we should
1433 * warn about this type of issues as it is possible someone changes
1434 * PMIC on board to another type - and the another PMIC's driver does
1435 * not support setting protection. Board composer may happily believe
1436 * the DT limits are respected - especially if the new PMIC HW also
1437 * supports protection but the driver does not. I won't change the logic
1438 * without hearing more experienced opinion on this though.
1439 *
1440 * If warning is seen as a good idea then we can merge handling the
1441 * over-curret protection and detection and get rid of this special
1442 * handling.
1443 */
1444 if (rdev->constraints->over_current_protection
1445 && ops->set_over_current_protection) {
1446 int lim = rdev->constraints->over_curr_limits.prot;
1447
1448 ret = ops->set_over_current_protection(rdev, lim,
1449 REGULATOR_SEVERITY_PROT,
1450 true);
1451 if (ret < 0) {
1452 rdev_err(rdev, "failed to set over current protection: %pe\n",
1453 ERR_PTR(ret));
1454 return ret;
1455 }
1456 }
1457
1458 if (rdev->constraints->over_current_detection)
1459 ret = handle_notify_limits(rdev,
1460 ops->set_over_current_protection,
1461 &rdev->constraints->over_curr_limits);
1462 if (ret) {
1463 if (ret != -EOPNOTSUPP) {
1464 rdev_err(rdev, "failed to set over current limits: %pe\n",
1465 ERR_PTR(ret));
1466 return ret;
1467 }
1468 rdev_warn(rdev,
1469 "IC does not support requested over-current limits\n");
1470 }
1471
1472 if (rdev->constraints->over_voltage_detection)
1473 ret = handle_notify_limits(rdev,
1474 ops->set_over_voltage_protection,
1475 &rdev->constraints->over_voltage_limits);
1476 if (ret) {
1477 if (ret != -EOPNOTSUPP) {
1478 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1479 ERR_PTR(ret));
1480 return ret;
1481 }
1482 rdev_warn(rdev,
1483 "IC does not support requested over voltage limits\n");
1484 }
1485
1486 if (rdev->constraints->under_voltage_detection)
1487 ret = handle_notify_limits(rdev,
1488 ops->set_under_voltage_protection,
1489 &rdev->constraints->under_voltage_limits);
1490 if (ret) {
1491 if (ret != -EOPNOTSUPP) {
1492 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1493 ERR_PTR(ret));
1494 return ret;
1495 }
1496 rdev_warn(rdev,
1497 "IC does not support requested under voltage limits\n");
1498 }
1499
1500 if (rdev->constraints->over_temp_detection)
1501 ret = handle_notify_limits(rdev,
1502 ops->set_thermal_protection,
1503 &rdev->constraints->temp_limits);
1504 if (ret) {
1505 if (ret != -EOPNOTSUPP) {
1506 rdev_err(rdev, "failed to set temperature limits %pe\n",
1507 ERR_PTR(ret));
1508 return ret;
1509 }
1510 rdev_warn(rdev,
1511 "IC does not support requested temperature limits\n");
1512 }
1513
1514 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1515 bool ad_state = (rdev->constraints->active_discharge ==
1516 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1517
1518 ret = ops->set_active_discharge(rdev, ad_state);
1519 if (ret < 0) {
1520 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1521 return ret;
1522 }
1523 }
1524
1525 /* If the constraints say the regulator should be on at this point
1526 * and we have control then make sure it is enabled.
1527 */
1528 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1529 /* If we want to enable this regulator, make sure that we know
1530 * the supplying regulator.
1531 */
1532 if (rdev->supply_name && !rdev->supply)
1533 return -EPROBE_DEFER;
1534
1535 if (rdev->supply) {
1536 ret = regulator_enable(rdev->supply);
1537 if (ret < 0) {
1538 _regulator_put(rdev->supply);
1539 rdev->supply = NULL;
1540 return ret;
1541 }
1542 }
1543
1544 ret = _regulator_do_enable(rdev);
1545 if (ret < 0 && ret != -EINVAL) {
1546 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1547 return ret;
1548 }
1549
1550 if (rdev->constraints->always_on)
1551 rdev->use_count++;
1552 } else if (rdev->desc->off_on_delay) {
1553 rdev->last_off = ktime_get();
1554 }
1555
1556 print_constraints(rdev);
1557 return 0;
1558}
1559
1560/**
1561 * set_supply - set regulator supply regulator
1562 * @rdev: regulator name
1563 * @supply_rdev: supply regulator name
1564 *
1565 * Called by platform initialisation code to set the supply regulator for this
1566 * regulator. This ensures that a regulators supply will also be enabled by the
1567 * core if it's child is enabled.
1568 */
1569static int set_supply(struct regulator_dev *rdev,
1570 struct regulator_dev *supply_rdev)
1571{
1572 int err;
1573
1574 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1575
1576 if (!try_module_get(supply_rdev->owner))
1577 return -ENODEV;
1578
1579 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1580 if (rdev->supply == NULL) {
1581 err = -ENOMEM;
1582 return err;
1583 }
1584 supply_rdev->open_count++;
1585
1586 return 0;
1587}
1588
1589/**
1590 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1591 * @rdev: regulator source
1592 * @consumer_dev_name: dev_name() string for device supply applies to
1593 * @supply: symbolic name for supply
1594 *
1595 * Allows platform initialisation code to map physical regulator
1596 * sources to symbolic names for supplies for use by devices. Devices
1597 * should use these symbolic names to request regulators, avoiding the
1598 * need to provide board-specific regulator names as platform data.
1599 */
1600static int set_consumer_device_supply(struct regulator_dev *rdev,
1601 const char *consumer_dev_name,
1602 const char *supply)
1603{
1604 struct regulator_map *node, *new_node;
1605 int has_dev;
1606
1607 if (supply == NULL)
1608 return -EINVAL;
1609
1610 if (consumer_dev_name != NULL)
1611 has_dev = 1;
1612 else
1613 has_dev = 0;
1614
1615 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1616 if (new_node == NULL)
1617 return -ENOMEM;
1618
1619 new_node->regulator = rdev;
1620 new_node->supply = supply;
1621
1622 if (has_dev) {
1623 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1624 if (new_node->dev_name == NULL) {
1625 kfree(new_node);
1626 return -ENOMEM;
1627 }
1628 }
1629
1630 mutex_lock(®ulator_list_mutex);
1631 list_for_each_entry(node, ®ulator_map_list, list) {
1632 if (node->dev_name && consumer_dev_name) {
1633 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1634 continue;
1635 } else if (node->dev_name || consumer_dev_name) {
1636 continue;
1637 }
1638
1639 if (strcmp(node->supply, supply) != 0)
1640 continue;
1641
1642 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1643 consumer_dev_name,
1644 dev_name(&node->regulator->dev),
1645 node->regulator->desc->name,
1646 supply,
1647 dev_name(&rdev->dev), rdev_get_name(rdev));
1648 goto fail;
1649 }
1650
1651 list_add(&new_node->list, ®ulator_map_list);
1652 mutex_unlock(®ulator_list_mutex);
1653
1654 return 0;
1655
1656fail:
1657 mutex_unlock(®ulator_list_mutex);
1658 kfree(new_node->dev_name);
1659 kfree(new_node);
1660 return -EBUSY;
1661}
1662
1663static void unset_regulator_supplies(struct regulator_dev *rdev)
1664{
1665 struct regulator_map *node, *n;
1666
1667 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1668 if (rdev == node->regulator) {
1669 list_del(&node->list);
1670 kfree(node->dev_name);
1671 kfree(node);
1672 }
1673 }
1674}
1675
1676#ifdef CONFIG_DEBUG_FS
1677static ssize_t constraint_flags_read_file(struct file *file,
1678 char __user *user_buf,
1679 size_t count, loff_t *ppos)
1680{
1681 const struct regulator *regulator = file->private_data;
1682 const struct regulation_constraints *c = regulator->rdev->constraints;
1683 char *buf;
1684 ssize_t ret;
1685
1686 if (!c)
1687 return 0;
1688
1689 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1690 if (!buf)
1691 return -ENOMEM;
1692
1693 ret = snprintf(buf, PAGE_SIZE,
1694 "always_on: %u\n"
1695 "boot_on: %u\n"
1696 "apply_uV: %u\n"
1697 "ramp_disable: %u\n"
1698 "soft_start: %u\n"
1699 "pull_down: %u\n"
1700 "over_current_protection: %u\n",
1701 c->always_on,
1702 c->boot_on,
1703 c->apply_uV,
1704 c->ramp_disable,
1705 c->soft_start,
1706 c->pull_down,
1707 c->over_current_protection);
1708
1709 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1710 kfree(buf);
1711
1712 return ret;
1713}
1714
1715#endif
1716
1717static const struct file_operations constraint_flags_fops = {
1718#ifdef CONFIG_DEBUG_FS
1719 .open = simple_open,
1720 .read = constraint_flags_read_file,
1721 .llseek = default_llseek,
1722#endif
1723};
1724
1725#define REG_STR_SIZE 64
1726
1727static struct regulator *create_regulator(struct regulator_dev *rdev,
1728 struct device *dev,
1729 const char *supply_name)
1730{
1731 struct regulator *regulator;
1732 int err = 0;
1733
1734 if (dev) {
1735 char buf[REG_STR_SIZE];
1736 int size;
1737
1738 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1739 dev->kobj.name, supply_name);
1740 if (size >= REG_STR_SIZE)
1741 return NULL;
1742
1743 supply_name = kstrdup(buf, GFP_KERNEL);
1744 if (supply_name == NULL)
1745 return NULL;
1746 } else {
1747 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1748 if (supply_name == NULL)
1749 return NULL;
1750 }
1751
1752 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1753 if (regulator == NULL) {
1754 kfree(supply_name);
1755 return NULL;
1756 }
1757
1758 regulator->rdev = rdev;
1759 regulator->supply_name = supply_name;
1760
1761 regulator_lock(rdev);
1762 list_add(®ulator->list, &rdev->consumer_list);
1763 regulator_unlock(rdev);
1764
1765 if (dev) {
1766 regulator->dev = dev;
1767
1768 /* Add a link to the device sysfs entry */
1769 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1770 supply_name);
1771 if (err) {
1772 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1773 dev->kobj.name, ERR_PTR(err));
1774 /* non-fatal */
1775 }
1776 }
1777
1778 if (err != -EEXIST)
1779 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1780 if (!regulator->debugfs) {
1781 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1782 } else {
1783 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1784 ®ulator->uA_load);
1785 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1786 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1787 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1788 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1789 debugfs_create_file("constraint_flags", 0444,
1790 regulator->debugfs, regulator,
1791 &constraint_flags_fops);
1792 }
1793
1794 /*
1795 * Check now if the regulator is an always on regulator - if
1796 * it is then we don't need to do nearly so much work for
1797 * enable/disable calls.
1798 */
1799 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1800 _regulator_is_enabled(rdev))
1801 regulator->always_on = true;
1802
1803 return regulator;
1804}
1805
1806static int _regulator_get_enable_time(struct regulator_dev *rdev)
1807{
1808 if (rdev->constraints && rdev->constraints->enable_time)
1809 return rdev->constraints->enable_time;
1810 if (rdev->desc->ops->enable_time)
1811 return rdev->desc->ops->enable_time(rdev);
1812 return rdev->desc->enable_time;
1813}
1814
1815static struct regulator_supply_alias *regulator_find_supply_alias(
1816 struct device *dev, const char *supply)
1817{
1818 struct regulator_supply_alias *map;
1819
1820 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1821 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1822 return map;
1823
1824 return NULL;
1825}
1826
1827static void regulator_supply_alias(struct device **dev, const char **supply)
1828{
1829 struct regulator_supply_alias *map;
1830
1831 map = regulator_find_supply_alias(*dev, *supply);
1832 if (map) {
1833 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1834 *supply, map->alias_supply,
1835 dev_name(map->alias_dev));
1836 *dev = map->alias_dev;
1837 *supply = map->alias_supply;
1838 }
1839}
1840
1841static int regulator_match(struct device *dev, const void *data)
1842{
1843 struct regulator_dev *r = dev_to_rdev(dev);
1844
1845 return strcmp(rdev_get_name(r), data) == 0;
1846}
1847
1848static struct regulator_dev *regulator_lookup_by_name(const char *name)
1849{
1850 struct device *dev;
1851
1852 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1853
1854 return dev ? dev_to_rdev(dev) : NULL;
1855}
1856
1857/**
1858 * regulator_dev_lookup - lookup a regulator device.
1859 * @dev: device for regulator "consumer".
1860 * @supply: Supply name or regulator ID.
1861 *
1862 * If successful, returns a struct regulator_dev that corresponds to the name
1863 * @supply and with the embedded struct device refcount incremented by one.
1864 * The refcount must be dropped by calling put_device().
1865 * On failure one of the following ERR-PTR-encoded values is returned:
1866 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1867 * in the future.
1868 */
1869static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1870 const char *supply)
1871{
1872 struct regulator_dev *r = NULL;
1873 struct device_node *node;
1874 struct regulator_map *map;
1875 const char *devname = NULL;
1876
1877 regulator_supply_alias(&dev, &supply);
1878
1879 /* first do a dt based lookup */
1880 if (dev && dev->of_node) {
1881 node = of_get_regulator(dev, supply);
1882 if (node) {
1883 r = of_find_regulator_by_node(node);
1884 if (r)
1885 return r;
1886
1887 /*
1888 * We have a node, but there is no device.
1889 * assume it has not registered yet.
1890 */
1891 return ERR_PTR(-EPROBE_DEFER);
1892 }
1893 }
1894
1895 /* if not found, try doing it non-dt way */
1896 if (dev)
1897 devname = dev_name(dev);
1898
1899 mutex_lock(®ulator_list_mutex);
1900 list_for_each_entry(map, ®ulator_map_list, list) {
1901 /* If the mapping has a device set up it must match */
1902 if (map->dev_name &&
1903 (!devname || strcmp(map->dev_name, devname)))
1904 continue;
1905
1906 if (strcmp(map->supply, supply) == 0 &&
1907 get_device(&map->regulator->dev)) {
1908 r = map->regulator;
1909 break;
1910 }
1911 }
1912 mutex_unlock(®ulator_list_mutex);
1913
1914 if (r)
1915 return r;
1916
1917 r = regulator_lookup_by_name(supply);
1918 if (r)
1919 return r;
1920
1921 return ERR_PTR(-ENODEV);
1922}
1923
1924static int regulator_resolve_supply(struct regulator_dev *rdev)
1925{
1926 struct regulator_dev *r;
1927 struct device *dev = rdev->dev.parent;
1928 int ret = 0;
1929
1930 /* No supply to resolve? */
1931 if (!rdev->supply_name)
1932 return 0;
1933
1934 /* Supply already resolved? (fast-path without locking contention) */
1935 if (rdev->supply)
1936 return 0;
1937
1938 r = regulator_dev_lookup(dev, rdev->supply_name);
1939 if (IS_ERR(r)) {
1940 ret = PTR_ERR(r);
1941
1942 /* Did the lookup explicitly defer for us? */
1943 if (ret == -EPROBE_DEFER)
1944 goto out;
1945
1946 if (have_full_constraints()) {
1947 r = dummy_regulator_rdev;
1948 get_device(&r->dev);
1949 } else {
1950 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1951 rdev->supply_name, rdev->desc->name);
1952 ret = -EPROBE_DEFER;
1953 goto out;
1954 }
1955 }
1956
1957 if (r == rdev) {
1958 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1959 rdev->desc->name, rdev->supply_name);
1960 if (!have_full_constraints()) {
1961 ret = -EINVAL;
1962 goto out;
1963 }
1964 r = dummy_regulator_rdev;
1965 get_device(&r->dev);
1966 }
1967
1968 /*
1969 * If the supply's parent device is not the same as the
1970 * regulator's parent device, then ensure the parent device
1971 * is bound before we resolve the supply, in case the parent
1972 * device get probe deferred and unregisters the supply.
1973 */
1974 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1975 if (!device_is_bound(r->dev.parent)) {
1976 put_device(&r->dev);
1977 ret = -EPROBE_DEFER;
1978 goto out;
1979 }
1980 }
1981
1982 /* Recursively resolve the supply of the supply */
1983 ret = regulator_resolve_supply(r);
1984 if (ret < 0) {
1985 put_device(&r->dev);
1986 goto out;
1987 }
1988
1989 /*
1990 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1991 * between rdev->supply null check and setting rdev->supply in
1992 * set_supply() from concurrent tasks.
1993 */
1994 regulator_lock(rdev);
1995
1996 /* Supply just resolved by a concurrent task? */
1997 if (rdev->supply) {
1998 regulator_unlock(rdev);
1999 put_device(&r->dev);
2000 goto out;
2001 }
2002
2003 ret = set_supply(rdev, r);
2004 if (ret < 0) {
2005 regulator_unlock(rdev);
2006 put_device(&r->dev);
2007 goto out;
2008 }
2009
2010 regulator_unlock(rdev);
2011
2012 /*
2013 * In set_machine_constraints() we may have turned this regulator on
2014 * but we couldn't propagate to the supply if it hadn't been resolved
2015 * yet. Do it now.
2016 */
2017 if (rdev->use_count) {
2018 ret = regulator_enable(rdev->supply);
2019 if (ret < 0) {
2020 _regulator_put(rdev->supply);
2021 rdev->supply = NULL;
2022 goto out;
2023 }
2024 }
2025
2026out:
2027 return ret;
2028}
2029
2030/* Internal regulator request function */
2031struct regulator *_regulator_get(struct device *dev, const char *id,
2032 enum regulator_get_type get_type)
2033{
2034 struct regulator_dev *rdev;
2035 struct regulator *regulator;
2036 struct device_link *link;
2037 int ret;
2038
2039 if (get_type >= MAX_GET_TYPE) {
2040 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2041 return ERR_PTR(-EINVAL);
2042 }
2043
2044 if (id == NULL) {
2045 pr_err("get() with no identifier\n");
2046 return ERR_PTR(-EINVAL);
2047 }
2048
2049 rdev = regulator_dev_lookup(dev, id);
2050 if (IS_ERR(rdev)) {
2051 ret = PTR_ERR(rdev);
2052
2053 /*
2054 * If regulator_dev_lookup() fails with error other
2055 * than -ENODEV our job here is done, we simply return it.
2056 */
2057 if (ret != -ENODEV)
2058 return ERR_PTR(ret);
2059
2060 if (!have_full_constraints()) {
2061 dev_warn(dev,
2062 "incomplete constraints, dummy supplies not allowed\n");
2063 return ERR_PTR(-ENODEV);
2064 }
2065
2066 switch (get_type) {
2067 case NORMAL_GET:
2068 /*
2069 * Assume that a regulator is physically present and
2070 * enabled, even if it isn't hooked up, and just
2071 * provide a dummy.
2072 */
2073 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2074 rdev = dummy_regulator_rdev;
2075 get_device(&rdev->dev);
2076 break;
2077
2078 case EXCLUSIVE_GET:
2079 dev_warn(dev,
2080 "dummy supplies not allowed for exclusive requests\n");
2081 fallthrough;
2082
2083 default:
2084 return ERR_PTR(-ENODEV);
2085 }
2086 }
2087
2088 if (rdev->exclusive) {
2089 regulator = ERR_PTR(-EPERM);
2090 put_device(&rdev->dev);
2091 return regulator;
2092 }
2093
2094 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2095 regulator = ERR_PTR(-EBUSY);
2096 put_device(&rdev->dev);
2097 return regulator;
2098 }
2099
2100 mutex_lock(®ulator_list_mutex);
2101 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2102 mutex_unlock(®ulator_list_mutex);
2103
2104 if (ret != 0) {
2105 regulator = ERR_PTR(-EPROBE_DEFER);
2106 put_device(&rdev->dev);
2107 return regulator;
2108 }
2109
2110 ret = regulator_resolve_supply(rdev);
2111 if (ret < 0) {
2112 regulator = ERR_PTR(ret);
2113 put_device(&rdev->dev);
2114 return regulator;
2115 }
2116
2117 if (!try_module_get(rdev->owner)) {
2118 regulator = ERR_PTR(-EPROBE_DEFER);
2119 put_device(&rdev->dev);
2120 return regulator;
2121 }
2122
2123 regulator = create_regulator(rdev, dev, id);
2124 if (regulator == NULL) {
2125 regulator = ERR_PTR(-ENOMEM);
2126 module_put(rdev->owner);
2127 put_device(&rdev->dev);
2128 return regulator;
2129 }
2130
2131 rdev->open_count++;
2132 if (get_type == EXCLUSIVE_GET) {
2133 rdev->exclusive = 1;
2134
2135 ret = _regulator_is_enabled(rdev);
2136 if (ret > 0)
2137 rdev->use_count = 1;
2138 else
2139 rdev->use_count = 0;
2140 }
2141
2142 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2143 if (!IS_ERR_OR_NULL(link))
2144 regulator->device_link = true;
2145
2146 return regulator;
2147}
2148
2149/**
2150 * regulator_get - lookup and obtain a reference to a regulator.
2151 * @dev: device for regulator "consumer"
2152 * @id: Supply name or regulator ID.
2153 *
2154 * Returns a struct regulator corresponding to the regulator producer,
2155 * or IS_ERR() condition containing errno.
2156 *
2157 * Use of supply names configured via set_consumer_device_supply() is
2158 * strongly encouraged. It is recommended that the supply name used
2159 * should match the name used for the supply and/or the relevant
2160 * device pins in the datasheet.
2161 */
2162struct regulator *regulator_get(struct device *dev, const char *id)
2163{
2164 return _regulator_get(dev, id, NORMAL_GET);
2165}
2166EXPORT_SYMBOL_GPL(regulator_get);
2167
2168/**
2169 * regulator_get_exclusive - obtain exclusive access to a regulator.
2170 * @dev: device for regulator "consumer"
2171 * @id: Supply name or regulator ID.
2172 *
2173 * Returns a struct regulator corresponding to the regulator producer,
2174 * or IS_ERR() condition containing errno. Other consumers will be
2175 * unable to obtain this regulator while this reference is held and the
2176 * use count for the regulator will be initialised to reflect the current
2177 * state of the regulator.
2178 *
2179 * This is intended for use by consumers which cannot tolerate shared
2180 * use of the regulator such as those which need to force the
2181 * regulator off for correct operation of the hardware they are
2182 * controlling.
2183 *
2184 * Use of supply names configured via set_consumer_device_supply() is
2185 * strongly encouraged. It is recommended that the supply name used
2186 * should match the name used for the supply and/or the relevant
2187 * device pins in the datasheet.
2188 */
2189struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2190{
2191 return _regulator_get(dev, id, EXCLUSIVE_GET);
2192}
2193EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2194
2195/**
2196 * regulator_get_optional - obtain optional access to a regulator.
2197 * @dev: device for regulator "consumer"
2198 * @id: Supply name or regulator ID.
2199 *
2200 * Returns a struct regulator corresponding to the regulator producer,
2201 * or IS_ERR() condition containing errno.
2202 *
2203 * This is intended for use by consumers for devices which can have
2204 * some supplies unconnected in normal use, such as some MMC devices.
2205 * It can allow the regulator core to provide stub supplies for other
2206 * supplies requested using normal regulator_get() calls without
2207 * disrupting the operation of drivers that can handle absent
2208 * supplies.
2209 *
2210 * Use of supply names configured via set_consumer_device_supply() is
2211 * strongly encouraged. It is recommended that the supply name used
2212 * should match the name used for the supply and/or the relevant
2213 * device pins in the datasheet.
2214 */
2215struct regulator *regulator_get_optional(struct device *dev, const char *id)
2216{
2217 return _regulator_get(dev, id, OPTIONAL_GET);
2218}
2219EXPORT_SYMBOL_GPL(regulator_get_optional);
2220
2221static void destroy_regulator(struct regulator *regulator)
2222{
2223 struct regulator_dev *rdev = regulator->rdev;
2224
2225 debugfs_remove_recursive(regulator->debugfs);
2226
2227 if (regulator->dev) {
2228 if (regulator->device_link)
2229 device_link_remove(regulator->dev, &rdev->dev);
2230
2231 /* remove any sysfs entries */
2232 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2233 }
2234
2235 regulator_lock(rdev);
2236 list_del(®ulator->list);
2237
2238 rdev->open_count--;
2239 rdev->exclusive = 0;
2240 regulator_unlock(rdev);
2241
2242 kfree_const(regulator->supply_name);
2243 kfree(regulator);
2244}
2245
2246/* regulator_list_mutex lock held by regulator_put() */
2247static void _regulator_put(struct regulator *regulator)
2248{
2249 struct regulator_dev *rdev;
2250
2251 if (IS_ERR_OR_NULL(regulator))
2252 return;
2253
2254 lockdep_assert_held_once(®ulator_list_mutex);
2255
2256 /* Docs say you must disable before calling regulator_put() */
2257 WARN_ON(regulator->enable_count);
2258
2259 rdev = regulator->rdev;
2260
2261 destroy_regulator(regulator);
2262
2263 module_put(rdev->owner);
2264 put_device(&rdev->dev);
2265}
2266
2267/**
2268 * regulator_put - "free" the regulator source
2269 * @regulator: regulator source
2270 *
2271 * Note: drivers must ensure that all regulator_enable calls made on this
2272 * regulator source are balanced by regulator_disable calls prior to calling
2273 * this function.
2274 */
2275void regulator_put(struct regulator *regulator)
2276{
2277 mutex_lock(®ulator_list_mutex);
2278 _regulator_put(regulator);
2279 mutex_unlock(®ulator_list_mutex);
2280}
2281EXPORT_SYMBOL_GPL(regulator_put);
2282
2283/**
2284 * regulator_register_supply_alias - Provide device alias for supply lookup
2285 *
2286 * @dev: device that will be given as the regulator "consumer"
2287 * @id: Supply name or regulator ID
2288 * @alias_dev: device that should be used to lookup the supply
2289 * @alias_id: Supply name or regulator ID that should be used to lookup the
2290 * supply
2291 *
2292 * All lookups for id on dev will instead be conducted for alias_id on
2293 * alias_dev.
2294 */
2295int regulator_register_supply_alias(struct device *dev, const char *id,
2296 struct device *alias_dev,
2297 const char *alias_id)
2298{
2299 struct regulator_supply_alias *map;
2300
2301 map = regulator_find_supply_alias(dev, id);
2302 if (map)
2303 return -EEXIST;
2304
2305 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2306 if (!map)
2307 return -ENOMEM;
2308
2309 map->src_dev = dev;
2310 map->src_supply = id;
2311 map->alias_dev = alias_dev;
2312 map->alias_supply = alias_id;
2313
2314 list_add(&map->list, ®ulator_supply_alias_list);
2315
2316 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2317 id, dev_name(dev), alias_id, dev_name(alias_dev));
2318
2319 return 0;
2320}
2321EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2322
2323/**
2324 * regulator_unregister_supply_alias - Remove device alias
2325 *
2326 * @dev: device that will be given as the regulator "consumer"
2327 * @id: Supply name or regulator ID
2328 *
2329 * Remove a lookup alias if one exists for id on dev.
2330 */
2331void regulator_unregister_supply_alias(struct device *dev, const char *id)
2332{
2333 struct regulator_supply_alias *map;
2334
2335 map = regulator_find_supply_alias(dev, id);
2336 if (map) {
2337 list_del(&map->list);
2338 kfree(map);
2339 }
2340}
2341EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2342
2343/**
2344 * regulator_bulk_register_supply_alias - register multiple aliases
2345 *
2346 * @dev: device that will be given as the regulator "consumer"
2347 * @id: List of supply names or regulator IDs
2348 * @alias_dev: device that should be used to lookup the supply
2349 * @alias_id: List of supply names or regulator IDs that should be used to
2350 * lookup the supply
2351 * @num_id: Number of aliases to register
2352 *
2353 * @return 0 on success, an errno on failure.
2354 *
2355 * This helper function allows drivers to register several supply
2356 * aliases in one operation. If any of the aliases cannot be
2357 * registered any aliases that were registered will be removed
2358 * before returning to the caller.
2359 */
2360int regulator_bulk_register_supply_alias(struct device *dev,
2361 const char *const *id,
2362 struct device *alias_dev,
2363 const char *const *alias_id,
2364 int num_id)
2365{
2366 int i;
2367 int ret;
2368
2369 for (i = 0; i < num_id; ++i) {
2370 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2371 alias_id[i]);
2372 if (ret < 0)
2373 goto err;
2374 }
2375
2376 return 0;
2377
2378err:
2379 dev_err(dev,
2380 "Failed to create supply alias %s,%s -> %s,%s\n",
2381 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2382
2383 while (--i >= 0)
2384 regulator_unregister_supply_alias(dev, id[i]);
2385
2386 return ret;
2387}
2388EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2389
2390/**
2391 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2392 *
2393 * @dev: device that will be given as the regulator "consumer"
2394 * @id: List of supply names or regulator IDs
2395 * @num_id: Number of aliases to unregister
2396 *
2397 * This helper function allows drivers to unregister several supply
2398 * aliases in one operation.
2399 */
2400void regulator_bulk_unregister_supply_alias(struct device *dev,
2401 const char *const *id,
2402 int num_id)
2403{
2404 int i;
2405
2406 for (i = 0; i < num_id; ++i)
2407 regulator_unregister_supply_alias(dev, id[i]);
2408}
2409EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2410
2411
2412/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2413static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2414 const struct regulator_config *config)
2415{
2416 struct regulator_enable_gpio *pin, *new_pin;
2417 struct gpio_desc *gpiod;
2418
2419 gpiod = config->ena_gpiod;
2420 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2421
2422 mutex_lock(®ulator_list_mutex);
2423
2424 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2425 if (pin->gpiod == gpiod) {
2426 rdev_dbg(rdev, "GPIO is already used\n");
2427 goto update_ena_gpio_to_rdev;
2428 }
2429 }
2430
2431 if (new_pin == NULL) {
2432 mutex_unlock(®ulator_list_mutex);
2433 return -ENOMEM;
2434 }
2435
2436 pin = new_pin;
2437 new_pin = NULL;
2438
2439 pin->gpiod = gpiod;
2440 list_add(&pin->list, ®ulator_ena_gpio_list);
2441
2442update_ena_gpio_to_rdev:
2443 pin->request_count++;
2444 rdev->ena_pin = pin;
2445
2446 mutex_unlock(®ulator_list_mutex);
2447 kfree(new_pin);
2448
2449 return 0;
2450}
2451
2452static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2453{
2454 struct regulator_enable_gpio *pin, *n;
2455
2456 if (!rdev->ena_pin)
2457 return;
2458
2459 /* Free the GPIO only in case of no use */
2460 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2461 if (pin != rdev->ena_pin)
2462 continue;
2463
2464 if (--pin->request_count)
2465 break;
2466
2467 gpiod_put(pin->gpiod);
2468 list_del(&pin->list);
2469 kfree(pin);
2470 break;
2471 }
2472
2473 rdev->ena_pin = NULL;
2474}
2475
2476/**
2477 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2478 * @rdev: regulator_dev structure
2479 * @enable: enable GPIO at initial use?
2480 *
2481 * GPIO is enabled in case of initial use. (enable_count is 0)
2482 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2483 */
2484static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2485{
2486 struct regulator_enable_gpio *pin = rdev->ena_pin;
2487
2488 if (!pin)
2489 return -EINVAL;
2490
2491 if (enable) {
2492 /* Enable GPIO at initial use */
2493 if (pin->enable_count == 0)
2494 gpiod_set_value_cansleep(pin->gpiod, 1);
2495
2496 pin->enable_count++;
2497 } else {
2498 if (pin->enable_count > 1) {
2499 pin->enable_count--;
2500 return 0;
2501 }
2502
2503 /* Disable GPIO if not used */
2504 if (pin->enable_count <= 1) {
2505 gpiod_set_value_cansleep(pin->gpiod, 0);
2506 pin->enable_count = 0;
2507 }
2508 }
2509
2510 return 0;
2511}
2512
2513/**
2514 * _regulator_enable_delay - a delay helper function
2515 * @delay: time to delay in microseconds
2516 *
2517 * Delay for the requested amount of time as per the guidelines in:
2518 *
2519 * Documentation/timers/timers-howto.rst
2520 *
2521 * The assumption here is that regulators will never be enabled in
2522 * atomic context and therefore sleeping functions can be used.
2523 */
2524static void _regulator_enable_delay(unsigned int delay)
2525{
2526 unsigned int ms = delay / 1000;
2527 unsigned int us = delay % 1000;
2528
2529 if (ms > 0) {
2530 /*
2531 * For small enough values, handle super-millisecond
2532 * delays in the usleep_range() call below.
2533 */
2534 if (ms < 20)
2535 us += ms * 1000;
2536 else
2537 msleep(ms);
2538 }
2539
2540 /*
2541 * Give the scheduler some room to coalesce with any other
2542 * wakeup sources. For delays shorter than 10 us, don't even
2543 * bother setting up high-resolution timers and just busy-
2544 * loop.
2545 */
2546 if (us >= 10)
2547 usleep_range(us, us + 100);
2548 else
2549 udelay(us);
2550}
2551
2552/**
2553 * _regulator_check_status_enabled
2554 *
2555 * A helper function to check if the regulator status can be interpreted
2556 * as 'regulator is enabled'.
2557 * @rdev: the regulator device to check
2558 *
2559 * Return:
2560 * * 1 - if status shows regulator is in enabled state
2561 * * 0 - if not enabled state
2562 * * Error Value - as received from ops->get_status()
2563 */
2564static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2565{
2566 int ret = rdev->desc->ops->get_status(rdev);
2567
2568 if (ret < 0) {
2569 rdev_info(rdev, "get_status returned error: %d\n", ret);
2570 return ret;
2571 }
2572
2573 switch (ret) {
2574 case REGULATOR_STATUS_OFF:
2575 case REGULATOR_STATUS_ERROR:
2576 case REGULATOR_STATUS_UNDEFINED:
2577 return 0;
2578 default:
2579 return 1;
2580 }
2581}
2582
2583static int _regulator_do_enable(struct regulator_dev *rdev)
2584{
2585 int ret, delay;
2586
2587 /* Query before enabling in case configuration dependent. */
2588 ret = _regulator_get_enable_time(rdev);
2589 if (ret >= 0) {
2590 delay = ret;
2591 } else {
2592 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2593 delay = 0;
2594 }
2595
2596 trace_regulator_enable(rdev_get_name(rdev));
2597
2598 if (rdev->desc->off_on_delay && rdev->last_off) {
2599 /* if needed, keep a distance of off_on_delay from last time
2600 * this regulator was disabled.
2601 */
2602 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2603 s64 remaining = ktime_us_delta(end, ktime_get());
2604
2605 if (remaining > 0)
2606 _regulator_enable_delay(remaining);
2607 }
2608
2609 if (rdev->ena_pin) {
2610 if (!rdev->ena_gpio_state) {
2611 ret = regulator_ena_gpio_ctrl(rdev, true);
2612 if (ret < 0)
2613 return ret;
2614 rdev->ena_gpio_state = 1;
2615 }
2616 } else if (rdev->desc->ops->enable) {
2617 ret = rdev->desc->ops->enable(rdev);
2618 if (ret < 0)
2619 return ret;
2620 } else {
2621 return -EINVAL;
2622 }
2623
2624 /* Allow the regulator to ramp; it would be useful to extend
2625 * this for bulk operations so that the regulators can ramp
2626 * together.
2627 */
2628 trace_regulator_enable_delay(rdev_get_name(rdev));
2629
2630 /* If poll_enabled_time is set, poll upto the delay calculated
2631 * above, delaying poll_enabled_time uS to check if the regulator
2632 * actually got enabled.
2633 * If the regulator isn't enabled after enable_delay has
2634 * expired, return -ETIMEDOUT.
2635 */
2636 if (rdev->desc->poll_enabled_time) {
2637 unsigned int time_remaining = delay;
2638
2639 while (time_remaining > 0) {
2640 _regulator_enable_delay(rdev->desc->poll_enabled_time);
2641
2642 if (rdev->desc->ops->get_status) {
2643 ret = _regulator_check_status_enabled(rdev);
2644 if (ret < 0)
2645 return ret;
2646 else if (ret)
2647 break;
2648 } else if (rdev->desc->ops->is_enabled(rdev))
2649 break;
2650
2651 time_remaining -= rdev->desc->poll_enabled_time;
2652 }
2653
2654 if (time_remaining <= 0) {
2655 rdev_err(rdev, "Enabled check timed out\n");
2656 return -ETIMEDOUT;
2657 }
2658 } else {
2659 _regulator_enable_delay(delay);
2660 }
2661
2662 trace_regulator_enable_complete(rdev_get_name(rdev));
2663
2664 return 0;
2665}
2666
2667/**
2668 * _regulator_handle_consumer_enable - handle that a consumer enabled
2669 * @regulator: regulator source
2670 *
2671 * Some things on a regulator consumer (like the contribution towards total
2672 * load on the regulator) only have an effect when the consumer wants the
2673 * regulator enabled. Explained in example with two consumers of the same
2674 * regulator:
2675 * consumer A: set_load(100); => total load = 0
2676 * consumer A: regulator_enable(); => total load = 100
2677 * consumer B: set_load(1000); => total load = 100
2678 * consumer B: regulator_enable(); => total load = 1100
2679 * consumer A: regulator_disable(); => total_load = 1000
2680 *
2681 * This function (together with _regulator_handle_consumer_disable) is
2682 * responsible for keeping track of the refcount for a given regulator consumer
2683 * and applying / unapplying these things.
2684 *
2685 * Returns 0 upon no error; -error upon error.
2686 */
2687static int _regulator_handle_consumer_enable(struct regulator *regulator)
2688{
2689 struct regulator_dev *rdev = regulator->rdev;
2690
2691 lockdep_assert_held_once(&rdev->mutex.base);
2692
2693 regulator->enable_count++;
2694 if (regulator->uA_load && regulator->enable_count == 1)
2695 return drms_uA_update(rdev);
2696
2697 return 0;
2698}
2699
2700/**
2701 * _regulator_handle_consumer_disable - handle that a consumer disabled
2702 * @regulator: regulator source
2703 *
2704 * The opposite of _regulator_handle_consumer_enable().
2705 *
2706 * Returns 0 upon no error; -error upon error.
2707 */
2708static int _regulator_handle_consumer_disable(struct regulator *regulator)
2709{
2710 struct regulator_dev *rdev = regulator->rdev;
2711
2712 lockdep_assert_held_once(&rdev->mutex.base);
2713
2714 if (!regulator->enable_count) {
2715 rdev_err(rdev, "Underflow of regulator enable count\n");
2716 return -EINVAL;
2717 }
2718
2719 regulator->enable_count--;
2720 if (regulator->uA_load && regulator->enable_count == 0)
2721 return drms_uA_update(rdev);
2722
2723 return 0;
2724}
2725
2726/* locks held by regulator_enable() */
2727static int _regulator_enable(struct regulator *regulator)
2728{
2729 struct regulator_dev *rdev = regulator->rdev;
2730 int ret;
2731
2732 lockdep_assert_held_once(&rdev->mutex.base);
2733
2734 if (rdev->use_count == 0 && rdev->supply) {
2735 ret = _regulator_enable(rdev->supply);
2736 if (ret < 0)
2737 return ret;
2738 }
2739
2740 /* balance only if there are regulators coupled */
2741 if (rdev->coupling_desc.n_coupled > 1) {
2742 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2743 if (ret < 0)
2744 goto err_disable_supply;
2745 }
2746
2747 ret = _regulator_handle_consumer_enable(regulator);
2748 if (ret < 0)
2749 goto err_disable_supply;
2750
2751 if (rdev->use_count == 0) {
2752 /*
2753 * The regulator may already be enabled if it's not switchable
2754 * or was left on
2755 */
2756 ret = _regulator_is_enabled(rdev);
2757 if (ret == -EINVAL || ret == 0) {
2758 if (!regulator_ops_is_valid(rdev,
2759 REGULATOR_CHANGE_STATUS)) {
2760 ret = -EPERM;
2761 goto err_consumer_disable;
2762 }
2763
2764 ret = _regulator_do_enable(rdev);
2765 if (ret < 0)
2766 goto err_consumer_disable;
2767
2768 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2769 NULL);
2770 } else if (ret < 0) {
2771 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2772 goto err_consumer_disable;
2773 }
2774 /* Fallthrough on positive return values - already enabled */
2775 }
2776
2777 rdev->use_count++;
2778
2779 return 0;
2780
2781err_consumer_disable:
2782 _regulator_handle_consumer_disable(regulator);
2783
2784err_disable_supply:
2785 if (rdev->use_count == 0 && rdev->supply)
2786 _regulator_disable(rdev->supply);
2787
2788 return ret;
2789}
2790
2791/**
2792 * regulator_enable - enable regulator output
2793 * @regulator: regulator source
2794 *
2795 * Request that the regulator be enabled with the regulator output at
2796 * the predefined voltage or current value. Calls to regulator_enable()
2797 * must be balanced with calls to regulator_disable().
2798 *
2799 * NOTE: the output value can be set by other drivers, boot loader or may be
2800 * hardwired in the regulator.
2801 */
2802int regulator_enable(struct regulator *regulator)
2803{
2804 struct regulator_dev *rdev = regulator->rdev;
2805 struct ww_acquire_ctx ww_ctx;
2806 int ret;
2807
2808 regulator_lock_dependent(rdev, &ww_ctx);
2809 ret = _regulator_enable(regulator);
2810 regulator_unlock_dependent(rdev, &ww_ctx);
2811
2812 return ret;
2813}
2814EXPORT_SYMBOL_GPL(regulator_enable);
2815
2816static int _regulator_do_disable(struct regulator_dev *rdev)
2817{
2818 int ret;
2819
2820 trace_regulator_disable(rdev_get_name(rdev));
2821
2822 if (rdev->ena_pin) {
2823 if (rdev->ena_gpio_state) {
2824 ret = regulator_ena_gpio_ctrl(rdev, false);
2825 if (ret < 0)
2826 return ret;
2827 rdev->ena_gpio_state = 0;
2828 }
2829
2830 } else if (rdev->desc->ops->disable) {
2831 ret = rdev->desc->ops->disable(rdev);
2832 if (ret != 0)
2833 return ret;
2834 }
2835
2836 if (rdev->desc->off_on_delay)
2837 rdev->last_off = ktime_get();
2838
2839 trace_regulator_disable_complete(rdev_get_name(rdev));
2840
2841 return 0;
2842}
2843
2844/* locks held by regulator_disable() */
2845static int _regulator_disable(struct regulator *regulator)
2846{
2847 struct regulator_dev *rdev = regulator->rdev;
2848 int ret = 0;
2849
2850 lockdep_assert_held_once(&rdev->mutex.base);
2851
2852 if (WARN(rdev->use_count <= 0,
2853 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2854 return -EIO;
2855
2856 /* are we the last user and permitted to disable ? */
2857 if (rdev->use_count == 1 &&
2858 (rdev->constraints && !rdev->constraints->always_on)) {
2859
2860 /* we are last user */
2861 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2862 ret = _notifier_call_chain(rdev,
2863 REGULATOR_EVENT_PRE_DISABLE,
2864 NULL);
2865 if (ret & NOTIFY_STOP_MASK)
2866 return -EINVAL;
2867
2868 ret = _regulator_do_disable(rdev);
2869 if (ret < 0) {
2870 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2871 _notifier_call_chain(rdev,
2872 REGULATOR_EVENT_ABORT_DISABLE,
2873 NULL);
2874 return ret;
2875 }
2876 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2877 NULL);
2878 }
2879
2880 rdev->use_count = 0;
2881 } else if (rdev->use_count > 1) {
2882 rdev->use_count--;
2883 }
2884
2885 if (ret == 0)
2886 ret = _regulator_handle_consumer_disable(regulator);
2887
2888 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2889 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2890
2891 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2892 ret = _regulator_disable(rdev->supply);
2893
2894 return ret;
2895}
2896
2897/**
2898 * regulator_disable - disable regulator output
2899 * @regulator: regulator source
2900 *
2901 * Disable the regulator output voltage or current. Calls to
2902 * regulator_enable() must be balanced with calls to
2903 * regulator_disable().
2904 *
2905 * NOTE: this will only disable the regulator output if no other consumer
2906 * devices have it enabled, the regulator device supports disabling and
2907 * machine constraints permit this operation.
2908 */
2909int regulator_disable(struct regulator *regulator)
2910{
2911 struct regulator_dev *rdev = regulator->rdev;
2912 struct ww_acquire_ctx ww_ctx;
2913 int ret;
2914
2915 regulator_lock_dependent(rdev, &ww_ctx);
2916 ret = _regulator_disable(regulator);
2917 regulator_unlock_dependent(rdev, &ww_ctx);
2918
2919 return ret;
2920}
2921EXPORT_SYMBOL_GPL(regulator_disable);
2922
2923/* locks held by regulator_force_disable() */
2924static int _regulator_force_disable(struct regulator_dev *rdev)
2925{
2926 int ret = 0;
2927
2928 lockdep_assert_held_once(&rdev->mutex.base);
2929
2930 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2931 REGULATOR_EVENT_PRE_DISABLE, NULL);
2932 if (ret & NOTIFY_STOP_MASK)
2933 return -EINVAL;
2934
2935 ret = _regulator_do_disable(rdev);
2936 if (ret < 0) {
2937 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2938 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2939 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2940 return ret;
2941 }
2942
2943 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2944 REGULATOR_EVENT_DISABLE, NULL);
2945
2946 return 0;
2947}
2948
2949/**
2950 * regulator_force_disable - force disable regulator output
2951 * @regulator: regulator source
2952 *
2953 * Forcibly disable the regulator output voltage or current.
2954 * NOTE: this *will* disable the regulator output even if other consumer
2955 * devices have it enabled. This should be used for situations when device
2956 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2957 */
2958int regulator_force_disable(struct regulator *regulator)
2959{
2960 struct regulator_dev *rdev = regulator->rdev;
2961 struct ww_acquire_ctx ww_ctx;
2962 int ret;
2963
2964 regulator_lock_dependent(rdev, &ww_ctx);
2965
2966 ret = _regulator_force_disable(regulator->rdev);
2967
2968 if (rdev->coupling_desc.n_coupled > 1)
2969 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2970
2971 if (regulator->uA_load) {
2972 regulator->uA_load = 0;
2973 ret = drms_uA_update(rdev);
2974 }
2975
2976 if (rdev->use_count != 0 && rdev->supply)
2977 _regulator_disable(rdev->supply);
2978
2979 regulator_unlock_dependent(rdev, &ww_ctx);
2980
2981 return ret;
2982}
2983EXPORT_SYMBOL_GPL(regulator_force_disable);
2984
2985static void regulator_disable_work(struct work_struct *work)
2986{
2987 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2988 disable_work.work);
2989 struct ww_acquire_ctx ww_ctx;
2990 int count, i, ret;
2991 struct regulator *regulator;
2992 int total_count = 0;
2993
2994 regulator_lock_dependent(rdev, &ww_ctx);
2995
2996 /*
2997 * Workqueue functions queue the new work instance while the previous
2998 * work instance is being processed. Cancel the queued work instance
2999 * as the work instance under processing does the job of the queued
3000 * work instance.
3001 */
3002 cancel_delayed_work(&rdev->disable_work);
3003
3004 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3005 count = regulator->deferred_disables;
3006
3007 if (!count)
3008 continue;
3009
3010 total_count += count;
3011 regulator->deferred_disables = 0;
3012
3013 for (i = 0; i < count; i++) {
3014 ret = _regulator_disable(regulator);
3015 if (ret != 0)
3016 rdev_err(rdev, "Deferred disable failed: %pe\n",
3017 ERR_PTR(ret));
3018 }
3019 }
3020 WARN_ON(!total_count);
3021
3022 if (rdev->coupling_desc.n_coupled > 1)
3023 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3024
3025 regulator_unlock_dependent(rdev, &ww_ctx);
3026}
3027
3028/**
3029 * regulator_disable_deferred - disable regulator output with delay
3030 * @regulator: regulator source
3031 * @ms: milliseconds until the regulator is disabled
3032 *
3033 * Execute regulator_disable() on the regulator after a delay. This
3034 * is intended for use with devices that require some time to quiesce.
3035 *
3036 * NOTE: this will only disable the regulator output if no other consumer
3037 * devices have it enabled, the regulator device supports disabling and
3038 * machine constraints permit this operation.
3039 */
3040int regulator_disable_deferred(struct regulator *regulator, int ms)
3041{
3042 struct regulator_dev *rdev = regulator->rdev;
3043
3044 if (!ms)
3045 return regulator_disable(regulator);
3046
3047 regulator_lock(rdev);
3048 regulator->deferred_disables++;
3049 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3050 msecs_to_jiffies(ms));
3051 regulator_unlock(rdev);
3052
3053 return 0;
3054}
3055EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3056
3057static int _regulator_is_enabled(struct regulator_dev *rdev)
3058{
3059 /* A GPIO control always takes precedence */
3060 if (rdev->ena_pin)
3061 return rdev->ena_gpio_state;
3062
3063 /* If we don't know then assume that the regulator is always on */
3064 if (!rdev->desc->ops->is_enabled)
3065 return 1;
3066
3067 return rdev->desc->ops->is_enabled(rdev);
3068}
3069
3070static int _regulator_list_voltage(struct regulator_dev *rdev,
3071 unsigned selector, int lock)
3072{
3073 const struct regulator_ops *ops = rdev->desc->ops;
3074 int ret;
3075
3076 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3077 return rdev->desc->fixed_uV;
3078
3079 if (ops->list_voltage) {
3080 if (selector >= rdev->desc->n_voltages)
3081 return -EINVAL;
3082 if (selector < rdev->desc->linear_min_sel)
3083 return 0;
3084 if (lock)
3085 regulator_lock(rdev);
3086 ret = ops->list_voltage(rdev, selector);
3087 if (lock)
3088 regulator_unlock(rdev);
3089 } else if (rdev->is_switch && rdev->supply) {
3090 ret = _regulator_list_voltage(rdev->supply->rdev,
3091 selector, lock);
3092 } else {
3093 return -EINVAL;
3094 }
3095
3096 if (ret > 0) {
3097 if (ret < rdev->constraints->min_uV)
3098 ret = 0;
3099 else if (ret > rdev->constraints->max_uV)
3100 ret = 0;
3101 }
3102
3103 return ret;
3104}
3105
3106/**
3107 * regulator_is_enabled - is the regulator output enabled
3108 * @regulator: regulator source
3109 *
3110 * Returns positive if the regulator driver backing the source/client
3111 * has requested that the device be enabled, zero if it hasn't, else a
3112 * negative errno code.
3113 *
3114 * Note that the device backing this regulator handle can have multiple
3115 * users, so it might be enabled even if regulator_enable() was never
3116 * called for this particular source.
3117 */
3118int regulator_is_enabled(struct regulator *regulator)
3119{
3120 int ret;
3121
3122 if (regulator->always_on)
3123 return 1;
3124
3125 regulator_lock(regulator->rdev);
3126 ret = _regulator_is_enabled(regulator->rdev);
3127 regulator_unlock(regulator->rdev);
3128
3129 return ret;
3130}
3131EXPORT_SYMBOL_GPL(regulator_is_enabled);
3132
3133/**
3134 * regulator_count_voltages - count regulator_list_voltage() selectors
3135 * @regulator: regulator source
3136 *
3137 * Returns number of selectors, or negative errno. Selectors are
3138 * numbered starting at zero, and typically correspond to bitfields
3139 * in hardware registers.
3140 */
3141int regulator_count_voltages(struct regulator *regulator)
3142{
3143 struct regulator_dev *rdev = regulator->rdev;
3144
3145 if (rdev->desc->n_voltages)
3146 return rdev->desc->n_voltages;
3147
3148 if (!rdev->is_switch || !rdev->supply)
3149 return -EINVAL;
3150
3151 return regulator_count_voltages(rdev->supply);
3152}
3153EXPORT_SYMBOL_GPL(regulator_count_voltages);
3154
3155/**
3156 * regulator_list_voltage - enumerate supported voltages
3157 * @regulator: regulator source
3158 * @selector: identify voltage to list
3159 * Context: can sleep
3160 *
3161 * Returns a voltage that can be passed to @regulator_set_voltage(),
3162 * zero if this selector code can't be used on this system, or a
3163 * negative errno.
3164 */
3165int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3166{
3167 return _regulator_list_voltage(regulator->rdev, selector, 1);
3168}
3169EXPORT_SYMBOL_GPL(regulator_list_voltage);
3170
3171/**
3172 * regulator_get_regmap - get the regulator's register map
3173 * @regulator: regulator source
3174 *
3175 * Returns the register map for the given regulator, or an ERR_PTR value
3176 * if the regulator doesn't use regmap.
3177 */
3178struct regmap *regulator_get_regmap(struct regulator *regulator)
3179{
3180 struct regmap *map = regulator->rdev->regmap;
3181
3182 return map ? map : ERR_PTR(-EOPNOTSUPP);
3183}
3184
3185/**
3186 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3187 * @regulator: regulator source
3188 * @vsel_reg: voltage selector register, output parameter
3189 * @vsel_mask: mask for voltage selector bitfield, output parameter
3190 *
3191 * Returns the hardware register offset and bitmask used for setting the
3192 * regulator voltage. This might be useful when configuring voltage-scaling
3193 * hardware or firmware that can make I2C requests behind the kernel's back,
3194 * for example.
3195 *
3196 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3197 * and 0 is returned, otherwise a negative errno is returned.
3198 */
3199int regulator_get_hardware_vsel_register(struct regulator *regulator,
3200 unsigned *vsel_reg,
3201 unsigned *vsel_mask)
3202{
3203 struct regulator_dev *rdev = regulator->rdev;
3204 const struct regulator_ops *ops = rdev->desc->ops;
3205
3206 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3207 return -EOPNOTSUPP;
3208
3209 *vsel_reg = rdev->desc->vsel_reg;
3210 *vsel_mask = rdev->desc->vsel_mask;
3211
3212 return 0;
3213}
3214EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3215
3216/**
3217 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3218 * @regulator: regulator source
3219 * @selector: identify voltage to list
3220 *
3221 * Converts the selector to a hardware-specific voltage selector that can be
3222 * directly written to the regulator registers. The address of the voltage
3223 * register can be determined by calling @regulator_get_hardware_vsel_register.
3224 *
3225 * On error a negative errno is returned.
3226 */
3227int regulator_list_hardware_vsel(struct regulator *regulator,
3228 unsigned selector)
3229{
3230 struct regulator_dev *rdev = regulator->rdev;
3231 const struct regulator_ops *ops = rdev->desc->ops;
3232
3233 if (selector >= rdev->desc->n_voltages)
3234 return -EINVAL;
3235 if (selector < rdev->desc->linear_min_sel)
3236 return 0;
3237 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3238 return -EOPNOTSUPP;
3239
3240 return selector;
3241}
3242EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3243
3244/**
3245 * regulator_get_linear_step - return the voltage step size between VSEL values
3246 * @regulator: regulator source
3247 *
3248 * Returns the voltage step size between VSEL values for linear
3249 * regulators, or return 0 if the regulator isn't a linear regulator.
3250 */
3251unsigned int regulator_get_linear_step(struct regulator *regulator)
3252{
3253 struct regulator_dev *rdev = regulator->rdev;
3254
3255 return rdev->desc->uV_step;
3256}
3257EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3258
3259/**
3260 * regulator_is_supported_voltage - check if a voltage range can be supported
3261 *
3262 * @regulator: Regulator to check.
3263 * @min_uV: Minimum required voltage in uV.
3264 * @max_uV: Maximum required voltage in uV.
3265 *
3266 * Returns a boolean.
3267 */
3268int regulator_is_supported_voltage(struct regulator *regulator,
3269 int min_uV, int max_uV)
3270{
3271 struct regulator_dev *rdev = regulator->rdev;
3272 int i, voltages, ret;
3273
3274 /* If we can't change voltage check the current voltage */
3275 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3276 ret = regulator_get_voltage(regulator);
3277 if (ret >= 0)
3278 return min_uV <= ret && ret <= max_uV;
3279 else
3280 return ret;
3281 }
3282
3283 /* Any voltage within constrains range is fine? */
3284 if (rdev->desc->continuous_voltage_range)
3285 return min_uV >= rdev->constraints->min_uV &&
3286 max_uV <= rdev->constraints->max_uV;
3287
3288 ret = regulator_count_voltages(regulator);
3289 if (ret < 0)
3290 return 0;
3291 voltages = ret;
3292
3293 for (i = 0; i < voltages; i++) {
3294 ret = regulator_list_voltage(regulator, i);
3295
3296 if (ret >= min_uV && ret <= max_uV)
3297 return 1;
3298 }
3299
3300 return 0;
3301}
3302EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3303
3304static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3305 int max_uV)
3306{
3307 const struct regulator_desc *desc = rdev->desc;
3308
3309 if (desc->ops->map_voltage)
3310 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3311
3312 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3313 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3314
3315 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3316 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3317
3318 if (desc->ops->list_voltage ==
3319 regulator_list_voltage_pickable_linear_range)
3320 return regulator_map_voltage_pickable_linear_range(rdev,
3321 min_uV, max_uV);
3322
3323 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3324}
3325
3326static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3327 int min_uV, int max_uV,
3328 unsigned *selector)
3329{
3330 struct pre_voltage_change_data data;
3331 int ret;
3332
3333 data.old_uV = regulator_get_voltage_rdev(rdev);
3334 data.min_uV = min_uV;
3335 data.max_uV = max_uV;
3336 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3337 &data);
3338 if (ret & NOTIFY_STOP_MASK)
3339 return -EINVAL;
3340
3341 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3342 if (ret >= 0)
3343 return ret;
3344
3345 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3346 (void *)data.old_uV);
3347
3348 return ret;
3349}
3350
3351static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3352 int uV, unsigned selector)
3353{
3354 struct pre_voltage_change_data data;
3355 int ret;
3356
3357 data.old_uV = regulator_get_voltage_rdev(rdev);
3358 data.min_uV = uV;
3359 data.max_uV = uV;
3360 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3361 &data);
3362 if (ret & NOTIFY_STOP_MASK)
3363 return -EINVAL;
3364
3365 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3366 if (ret >= 0)
3367 return ret;
3368
3369 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3370 (void *)data.old_uV);
3371
3372 return ret;
3373}
3374
3375static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3376 int uV, int new_selector)
3377{
3378 const struct regulator_ops *ops = rdev->desc->ops;
3379 int diff, old_sel, curr_sel, ret;
3380
3381 /* Stepping is only needed if the regulator is enabled. */
3382 if (!_regulator_is_enabled(rdev))
3383 goto final_set;
3384
3385 if (!ops->get_voltage_sel)
3386 return -EINVAL;
3387
3388 old_sel = ops->get_voltage_sel(rdev);
3389 if (old_sel < 0)
3390 return old_sel;
3391
3392 diff = new_selector - old_sel;
3393 if (diff == 0)
3394 return 0; /* No change needed. */
3395
3396 if (diff > 0) {
3397 /* Stepping up. */
3398 for (curr_sel = old_sel + rdev->desc->vsel_step;
3399 curr_sel < new_selector;
3400 curr_sel += rdev->desc->vsel_step) {
3401 /*
3402 * Call the callback directly instead of using
3403 * _regulator_call_set_voltage_sel() as we don't
3404 * want to notify anyone yet. Same in the branch
3405 * below.
3406 */
3407 ret = ops->set_voltage_sel(rdev, curr_sel);
3408 if (ret)
3409 goto try_revert;
3410 }
3411 } else {
3412 /* Stepping down. */
3413 for (curr_sel = old_sel - rdev->desc->vsel_step;
3414 curr_sel > new_selector;
3415 curr_sel -= rdev->desc->vsel_step) {
3416 ret = ops->set_voltage_sel(rdev, curr_sel);
3417 if (ret)
3418 goto try_revert;
3419 }
3420 }
3421
3422final_set:
3423 /* The final selector will trigger the notifiers. */
3424 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3425
3426try_revert:
3427 /*
3428 * At least try to return to the previous voltage if setting a new
3429 * one failed.
3430 */
3431 (void)ops->set_voltage_sel(rdev, old_sel);
3432 return ret;
3433}
3434
3435static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3436 int old_uV, int new_uV)
3437{
3438 unsigned int ramp_delay = 0;
3439
3440 if (rdev->constraints->ramp_delay)
3441 ramp_delay = rdev->constraints->ramp_delay;
3442 else if (rdev->desc->ramp_delay)
3443 ramp_delay = rdev->desc->ramp_delay;
3444 else if (rdev->constraints->settling_time)
3445 return rdev->constraints->settling_time;
3446 else if (rdev->constraints->settling_time_up &&
3447 (new_uV > old_uV))
3448 return rdev->constraints->settling_time_up;
3449 else if (rdev->constraints->settling_time_down &&
3450 (new_uV < old_uV))
3451 return rdev->constraints->settling_time_down;
3452
3453 if (ramp_delay == 0) {
3454 rdev_dbg(rdev, "ramp_delay not set\n");
3455 return 0;
3456 }
3457
3458 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3459}
3460
3461static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3462 int min_uV, int max_uV)
3463{
3464 int ret;
3465 int delay = 0;
3466 int best_val = 0;
3467 unsigned int selector;
3468 int old_selector = -1;
3469 const struct regulator_ops *ops = rdev->desc->ops;
3470 int old_uV = regulator_get_voltage_rdev(rdev);
3471
3472 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3473
3474 min_uV += rdev->constraints->uV_offset;
3475 max_uV += rdev->constraints->uV_offset;
3476
3477 /*
3478 * If we can't obtain the old selector there is not enough
3479 * info to call set_voltage_time_sel().
3480 */
3481 if (_regulator_is_enabled(rdev) &&
3482 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3483 old_selector = ops->get_voltage_sel(rdev);
3484 if (old_selector < 0)
3485 return old_selector;
3486 }
3487
3488 if (ops->set_voltage) {
3489 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3490 &selector);
3491
3492 if (ret >= 0) {
3493 if (ops->list_voltage)
3494 best_val = ops->list_voltage(rdev,
3495 selector);
3496 else
3497 best_val = regulator_get_voltage_rdev(rdev);
3498 }
3499
3500 } else if (ops->set_voltage_sel) {
3501 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3502 if (ret >= 0) {
3503 best_val = ops->list_voltage(rdev, ret);
3504 if (min_uV <= best_val && max_uV >= best_val) {
3505 selector = ret;
3506 if (old_selector == selector)
3507 ret = 0;
3508 else if (rdev->desc->vsel_step)
3509 ret = _regulator_set_voltage_sel_step(
3510 rdev, best_val, selector);
3511 else
3512 ret = _regulator_call_set_voltage_sel(
3513 rdev, best_val, selector);
3514 } else {
3515 ret = -EINVAL;
3516 }
3517 }
3518 } else {
3519 ret = -EINVAL;
3520 }
3521
3522 if (ret)
3523 goto out;
3524
3525 if (ops->set_voltage_time_sel) {
3526 /*
3527 * Call set_voltage_time_sel if successfully obtained
3528 * old_selector
3529 */
3530 if (old_selector >= 0 && old_selector != selector)
3531 delay = ops->set_voltage_time_sel(rdev, old_selector,
3532 selector);
3533 } else {
3534 if (old_uV != best_val) {
3535 if (ops->set_voltage_time)
3536 delay = ops->set_voltage_time(rdev, old_uV,
3537 best_val);
3538 else
3539 delay = _regulator_set_voltage_time(rdev,
3540 old_uV,
3541 best_val);
3542 }
3543 }
3544
3545 if (delay < 0) {
3546 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3547 delay = 0;
3548 }
3549
3550 /* Insert any necessary delays */
3551 if (delay >= 1000) {
3552 mdelay(delay / 1000);
3553 udelay(delay % 1000);
3554 } else if (delay) {
3555 udelay(delay);
3556 }
3557
3558 if (best_val >= 0) {
3559 unsigned long data = best_val;
3560
3561 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3562 (void *)data);
3563 }
3564
3565out:
3566 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3567
3568 return ret;
3569}
3570
3571static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3572 int min_uV, int max_uV, suspend_state_t state)
3573{
3574 struct regulator_state *rstate;
3575 int uV, sel;
3576
3577 rstate = regulator_get_suspend_state(rdev, state);
3578 if (rstate == NULL)
3579 return -EINVAL;
3580
3581 if (min_uV < rstate->min_uV)
3582 min_uV = rstate->min_uV;
3583 if (max_uV > rstate->max_uV)
3584 max_uV = rstate->max_uV;
3585
3586 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3587 if (sel < 0)
3588 return sel;
3589
3590 uV = rdev->desc->ops->list_voltage(rdev, sel);
3591 if (uV >= min_uV && uV <= max_uV)
3592 rstate->uV = uV;
3593
3594 return 0;
3595}
3596
3597static int regulator_set_voltage_unlocked(struct regulator *regulator,
3598 int min_uV, int max_uV,
3599 suspend_state_t state)
3600{
3601 struct regulator_dev *rdev = regulator->rdev;
3602 struct regulator_voltage *voltage = ®ulator->voltage[state];
3603 int ret = 0;
3604 int old_min_uV, old_max_uV;
3605 int current_uV;
3606
3607 /* If we're setting the same range as last time the change
3608 * should be a noop (some cpufreq implementations use the same
3609 * voltage for multiple frequencies, for example).
3610 */
3611 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3612 goto out;
3613
3614 /* If we're trying to set a range that overlaps the current voltage,
3615 * return successfully even though the regulator does not support
3616 * changing the voltage.
3617 */
3618 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3619 current_uV = regulator_get_voltage_rdev(rdev);
3620 if (min_uV <= current_uV && current_uV <= max_uV) {
3621 voltage->min_uV = min_uV;
3622 voltage->max_uV = max_uV;
3623 goto out;
3624 }
3625 }
3626
3627 /* sanity check */
3628 if (!rdev->desc->ops->set_voltage &&
3629 !rdev->desc->ops->set_voltage_sel) {
3630 ret = -EINVAL;
3631 goto out;
3632 }
3633
3634 /* constraints check */
3635 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3636 if (ret < 0)
3637 goto out;
3638
3639 /* restore original values in case of error */
3640 old_min_uV = voltage->min_uV;
3641 old_max_uV = voltage->max_uV;
3642 voltage->min_uV = min_uV;
3643 voltage->max_uV = max_uV;
3644
3645 /* for not coupled regulators this will just set the voltage */
3646 ret = regulator_balance_voltage(rdev, state);
3647 if (ret < 0) {
3648 voltage->min_uV = old_min_uV;
3649 voltage->max_uV = old_max_uV;
3650 }
3651
3652out:
3653 return ret;
3654}
3655
3656int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3657 int max_uV, suspend_state_t state)
3658{
3659 int best_supply_uV = 0;
3660 int supply_change_uV = 0;
3661 int ret;
3662
3663 if (rdev->supply &&
3664 regulator_ops_is_valid(rdev->supply->rdev,
3665 REGULATOR_CHANGE_VOLTAGE) &&
3666 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3667 rdev->desc->ops->get_voltage_sel))) {
3668 int current_supply_uV;
3669 int selector;
3670
3671 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3672 if (selector < 0) {
3673 ret = selector;
3674 goto out;
3675 }
3676
3677 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3678 if (best_supply_uV < 0) {
3679 ret = best_supply_uV;
3680 goto out;
3681 }
3682
3683 best_supply_uV += rdev->desc->min_dropout_uV;
3684
3685 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3686 if (current_supply_uV < 0) {
3687 ret = current_supply_uV;
3688 goto out;
3689 }
3690
3691 supply_change_uV = best_supply_uV - current_supply_uV;
3692 }
3693
3694 if (supply_change_uV > 0) {
3695 ret = regulator_set_voltage_unlocked(rdev->supply,
3696 best_supply_uV, INT_MAX, state);
3697 if (ret) {
3698 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3699 ERR_PTR(ret));
3700 goto out;
3701 }
3702 }
3703
3704 if (state == PM_SUSPEND_ON)
3705 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3706 else
3707 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3708 max_uV, state);
3709 if (ret < 0)
3710 goto out;
3711
3712 if (supply_change_uV < 0) {
3713 ret = regulator_set_voltage_unlocked(rdev->supply,
3714 best_supply_uV, INT_MAX, state);
3715 if (ret)
3716 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3717 ERR_PTR(ret));
3718 /* No need to fail here */
3719 ret = 0;
3720 }
3721
3722out:
3723 return ret;
3724}
3725EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3726
3727static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3728 int *current_uV, int *min_uV)
3729{
3730 struct regulation_constraints *constraints = rdev->constraints;
3731
3732 /* Limit voltage change only if necessary */
3733 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3734 return 1;
3735
3736 if (*current_uV < 0) {
3737 *current_uV = regulator_get_voltage_rdev(rdev);
3738
3739 if (*current_uV < 0)
3740 return *current_uV;
3741 }
3742
3743 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3744 return 1;
3745
3746 /* Clamp target voltage within the given step */
3747 if (*current_uV < *min_uV)
3748 *min_uV = min(*current_uV + constraints->max_uV_step,
3749 *min_uV);
3750 else
3751 *min_uV = max(*current_uV - constraints->max_uV_step,
3752 *min_uV);
3753
3754 return 0;
3755}
3756
3757static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3758 int *current_uV,
3759 int *min_uV, int *max_uV,
3760 suspend_state_t state,
3761 int n_coupled)
3762{
3763 struct coupling_desc *c_desc = &rdev->coupling_desc;
3764 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3765 struct regulation_constraints *constraints = rdev->constraints;
3766 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3767 int max_current_uV = 0, min_current_uV = INT_MAX;
3768 int highest_min_uV = 0, target_uV, possible_uV;
3769 int i, ret, max_spread;
3770 bool done;
3771
3772 *current_uV = -1;
3773
3774 /*
3775 * If there are no coupled regulators, simply set the voltage
3776 * demanded by consumers.
3777 */
3778 if (n_coupled == 1) {
3779 /*
3780 * If consumers don't provide any demands, set voltage
3781 * to min_uV
3782 */
3783 desired_min_uV = constraints->min_uV;
3784 desired_max_uV = constraints->max_uV;
3785
3786 ret = regulator_check_consumers(rdev,
3787 &desired_min_uV,
3788 &desired_max_uV, state);
3789 if (ret < 0)
3790 return ret;
3791
3792 possible_uV = desired_min_uV;
3793 done = true;
3794
3795 goto finish;
3796 }
3797
3798 /* Find highest min desired voltage */
3799 for (i = 0; i < n_coupled; i++) {
3800 int tmp_min = 0;
3801 int tmp_max = INT_MAX;
3802
3803 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3804
3805 ret = regulator_check_consumers(c_rdevs[i],
3806 &tmp_min,
3807 &tmp_max, state);
3808 if (ret < 0)
3809 return ret;
3810
3811 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3812 if (ret < 0)
3813 return ret;
3814
3815 highest_min_uV = max(highest_min_uV, tmp_min);
3816
3817 if (i == 0) {
3818 desired_min_uV = tmp_min;
3819 desired_max_uV = tmp_max;
3820 }
3821 }
3822
3823 max_spread = constraints->max_spread[0];
3824
3825 /*
3826 * Let target_uV be equal to the desired one if possible.
3827 * If not, set it to minimum voltage, allowed by other coupled
3828 * regulators.
3829 */
3830 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3831
3832 /*
3833 * Find min and max voltages, which currently aren't violating
3834 * max_spread.
3835 */
3836 for (i = 1; i < n_coupled; i++) {
3837 int tmp_act;
3838
3839 if (!_regulator_is_enabled(c_rdevs[i]))
3840 continue;
3841
3842 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3843 if (tmp_act < 0)
3844 return tmp_act;
3845
3846 min_current_uV = min(tmp_act, min_current_uV);
3847 max_current_uV = max(tmp_act, max_current_uV);
3848 }
3849
3850 /* There aren't any other regulators enabled */
3851 if (max_current_uV == 0) {
3852 possible_uV = target_uV;
3853 } else {
3854 /*
3855 * Correct target voltage, so as it currently isn't
3856 * violating max_spread
3857 */
3858 possible_uV = max(target_uV, max_current_uV - max_spread);
3859 possible_uV = min(possible_uV, min_current_uV + max_spread);
3860 }
3861
3862 if (possible_uV > desired_max_uV)
3863 return -EINVAL;
3864
3865 done = (possible_uV == target_uV);
3866 desired_min_uV = possible_uV;
3867
3868finish:
3869 /* Apply max_uV_step constraint if necessary */
3870 if (state == PM_SUSPEND_ON) {
3871 ret = regulator_limit_voltage_step(rdev, current_uV,
3872 &desired_min_uV);
3873 if (ret < 0)
3874 return ret;
3875
3876 if (ret == 0)
3877 done = false;
3878 }
3879
3880 /* Set current_uV if wasn't done earlier in the code and if necessary */
3881 if (n_coupled > 1 && *current_uV == -1) {
3882
3883 if (_regulator_is_enabled(rdev)) {
3884 ret = regulator_get_voltage_rdev(rdev);
3885 if (ret < 0)
3886 return ret;
3887
3888 *current_uV = ret;
3889 } else {
3890 *current_uV = desired_min_uV;
3891 }
3892 }
3893
3894 *min_uV = desired_min_uV;
3895 *max_uV = desired_max_uV;
3896
3897 return done;
3898}
3899
3900int regulator_do_balance_voltage(struct regulator_dev *rdev,
3901 suspend_state_t state, bool skip_coupled)
3902{
3903 struct regulator_dev **c_rdevs;
3904 struct regulator_dev *best_rdev;
3905 struct coupling_desc *c_desc = &rdev->coupling_desc;
3906 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3907 unsigned int delta, best_delta;
3908 unsigned long c_rdev_done = 0;
3909 bool best_c_rdev_done;
3910
3911 c_rdevs = c_desc->coupled_rdevs;
3912 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3913
3914 /*
3915 * Find the best possible voltage change on each loop. Leave the loop
3916 * if there isn't any possible change.
3917 */
3918 do {
3919 best_c_rdev_done = false;
3920 best_delta = 0;
3921 best_min_uV = 0;
3922 best_max_uV = 0;
3923 best_c_rdev = 0;
3924 best_rdev = NULL;
3925
3926 /*
3927 * Find highest difference between optimal voltage
3928 * and current voltage.
3929 */
3930 for (i = 0; i < n_coupled; i++) {
3931 /*
3932 * optimal_uV is the best voltage that can be set for
3933 * i-th regulator at the moment without violating
3934 * max_spread constraint in order to balance
3935 * the coupled voltages.
3936 */
3937 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3938
3939 if (test_bit(i, &c_rdev_done))
3940 continue;
3941
3942 ret = regulator_get_optimal_voltage(c_rdevs[i],
3943 ¤t_uV,
3944 &optimal_uV,
3945 &optimal_max_uV,
3946 state, n_coupled);
3947 if (ret < 0)
3948 goto out;
3949
3950 delta = abs(optimal_uV - current_uV);
3951
3952 if (delta && best_delta <= delta) {
3953 best_c_rdev_done = ret;
3954 best_delta = delta;
3955 best_rdev = c_rdevs[i];
3956 best_min_uV = optimal_uV;
3957 best_max_uV = optimal_max_uV;
3958 best_c_rdev = i;
3959 }
3960 }
3961
3962 /* Nothing to change, return successfully */
3963 if (!best_rdev) {
3964 ret = 0;
3965 goto out;
3966 }
3967
3968 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3969 best_max_uV, state);
3970
3971 if (ret < 0)
3972 goto out;
3973
3974 if (best_c_rdev_done)
3975 set_bit(best_c_rdev, &c_rdev_done);
3976
3977 } while (n_coupled > 1);
3978
3979out:
3980 return ret;
3981}
3982
3983static int regulator_balance_voltage(struct regulator_dev *rdev,
3984 suspend_state_t state)
3985{
3986 struct coupling_desc *c_desc = &rdev->coupling_desc;
3987 struct regulator_coupler *coupler = c_desc->coupler;
3988 bool skip_coupled = false;
3989
3990 /*
3991 * If system is in a state other than PM_SUSPEND_ON, don't check
3992 * other coupled regulators.
3993 */
3994 if (state != PM_SUSPEND_ON)
3995 skip_coupled = true;
3996
3997 if (c_desc->n_resolved < c_desc->n_coupled) {
3998 rdev_err(rdev, "Not all coupled regulators registered\n");
3999 return -EPERM;
4000 }
4001
4002 /* Invoke custom balancer for customized couplers */
4003 if (coupler && coupler->balance_voltage)
4004 return coupler->balance_voltage(coupler, rdev, state);
4005
4006 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4007}
4008
4009/**
4010 * regulator_set_voltage - set regulator output voltage
4011 * @regulator: regulator source
4012 * @min_uV: Minimum required voltage in uV
4013 * @max_uV: Maximum acceptable voltage in uV
4014 *
4015 * Sets a voltage regulator to the desired output voltage. This can be set
4016 * during any regulator state. IOW, regulator can be disabled or enabled.
4017 *
4018 * If the regulator is enabled then the voltage will change to the new value
4019 * immediately otherwise if the regulator is disabled the regulator will
4020 * output at the new voltage when enabled.
4021 *
4022 * NOTE: If the regulator is shared between several devices then the lowest
4023 * request voltage that meets the system constraints will be used.
4024 * Regulator system constraints must be set for this regulator before
4025 * calling this function otherwise this call will fail.
4026 */
4027int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4028{
4029 struct ww_acquire_ctx ww_ctx;
4030 int ret;
4031
4032 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4033
4034 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4035 PM_SUSPEND_ON);
4036
4037 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4038
4039 return ret;
4040}
4041EXPORT_SYMBOL_GPL(regulator_set_voltage);
4042
4043static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4044 suspend_state_t state, bool en)
4045{
4046 struct regulator_state *rstate;
4047
4048 rstate = regulator_get_suspend_state(rdev, state);
4049 if (rstate == NULL)
4050 return -EINVAL;
4051
4052 if (!rstate->changeable)
4053 return -EPERM;
4054
4055 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4056
4057 return 0;
4058}
4059
4060int regulator_suspend_enable(struct regulator_dev *rdev,
4061 suspend_state_t state)
4062{
4063 return regulator_suspend_toggle(rdev, state, true);
4064}
4065EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4066
4067int regulator_suspend_disable(struct regulator_dev *rdev,
4068 suspend_state_t state)
4069{
4070 struct regulator *regulator;
4071 struct regulator_voltage *voltage;
4072
4073 /*
4074 * if any consumer wants this regulator device keeping on in
4075 * suspend states, don't set it as disabled.
4076 */
4077 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4078 voltage = ®ulator->voltage[state];
4079 if (voltage->min_uV || voltage->max_uV)
4080 return 0;
4081 }
4082
4083 return regulator_suspend_toggle(rdev, state, false);
4084}
4085EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4086
4087static int _regulator_set_suspend_voltage(struct regulator *regulator,
4088 int min_uV, int max_uV,
4089 suspend_state_t state)
4090{
4091 struct regulator_dev *rdev = regulator->rdev;
4092 struct regulator_state *rstate;
4093
4094 rstate = regulator_get_suspend_state(rdev, state);
4095 if (rstate == NULL)
4096 return -EINVAL;
4097
4098 if (rstate->min_uV == rstate->max_uV) {
4099 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4100 return -EPERM;
4101 }
4102
4103 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4104}
4105
4106int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4107 int max_uV, suspend_state_t state)
4108{
4109 struct ww_acquire_ctx ww_ctx;
4110 int ret;
4111
4112 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4113 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4114 return -EINVAL;
4115
4116 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4117
4118 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4119 max_uV, state);
4120
4121 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4122
4123 return ret;
4124}
4125EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4126
4127/**
4128 * regulator_set_voltage_time - get raise/fall time
4129 * @regulator: regulator source
4130 * @old_uV: starting voltage in microvolts
4131 * @new_uV: target voltage in microvolts
4132 *
4133 * Provided with the starting and ending voltage, this function attempts to
4134 * calculate the time in microseconds required to rise or fall to this new
4135 * voltage.
4136 */
4137int regulator_set_voltage_time(struct regulator *regulator,
4138 int old_uV, int new_uV)
4139{
4140 struct regulator_dev *rdev = regulator->rdev;
4141 const struct regulator_ops *ops = rdev->desc->ops;
4142 int old_sel = -1;
4143 int new_sel = -1;
4144 int voltage;
4145 int i;
4146
4147 if (ops->set_voltage_time)
4148 return ops->set_voltage_time(rdev, old_uV, new_uV);
4149 else if (!ops->set_voltage_time_sel)
4150 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4151
4152 /* Currently requires operations to do this */
4153 if (!ops->list_voltage || !rdev->desc->n_voltages)
4154 return -EINVAL;
4155
4156 for (i = 0; i < rdev->desc->n_voltages; i++) {
4157 /* We only look for exact voltage matches here */
4158 if (i < rdev->desc->linear_min_sel)
4159 continue;
4160
4161 if (old_sel >= 0 && new_sel >= 0)
4162 break;
4163
4164 voltage = regulator_list_voltage(regulator, i);
4165 if (voltage < 0)
4166 return -EINVAL;
4167 if (voltage == 0)
4168 continue;
4169 if (voltage == old_uV)
4170 old_sel = i;
4171 if (voltage == new_uV)
4172 new_sel = i;
4173 }
4174
4175 if (old_sel < 0 || new_sel < 0)
4176 return -EINVAL;
4177
4178 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4179}
4180EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4181
4182/**
4183 * regulator_set_voltage_time_sel - get raise/fall time
4184 * @rdev: regulator source device
4185 * @old_selector: selector for starting voltage
4186 * @new_selector: selector for target voltage
4187 *
4188 * Provided with the starting and target voltage selectors, this function
4189 * returns time in microseconds required to rise or fall to this new voltage
4190 *
4191 * Drivers providing ramp_delay in regulation_constraints can use this as their
4192 * set_voltage_time_sel() operation.
4193 */
4194int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4195 unsigned int old_selector,
4196 unsigned int new_selector)
4197{
4198 int old_volt, new_volt;
4199
4200 /* sanity check */
4201 if (!rdev->desc->ops->list_voltage)
4202 return -EINVAL;
4203
4204 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4205 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4206
4207 if (rdev->desc->ops->set_voltage_time)
4208 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4209 new_volt);
4210 else
4211 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4212}
4213EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4214
4215int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4216{
4217 int ret;
4218
4219 regulator_lock(rdev);
4220
4221 if (!rdev->desc->ops->set_voltage &&
4222 !rdev->desc->ops->set_voltage_sel) {
4223 ret = -EINVAL;
4224 goto out;
4225 }
4226
4227 /* balance only, if regulator is coupled */
4228 if (rdev->coupling_desc.n_coupled > 1)
4229 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4230 else
4231 ret = -EOPNOTSUPP;
4232
4233out:
4234 regulator_unlock(rdev);
4235 return ret;
4236}
4237
4238/**
4239 * regulator_sync_voltage - re-apply last regulator output voltage
4240 * @regulator: regulator source
4241 *
4242 * Re-apply the last configured voltage. This is intended to be used
4243 * where some external control source the consumer is cooperating with
4244 * has caused the configured voltage to change.
4245 */
4246int regulator_sync_voltage(struct regulator *regulator)
4247{
4248 struct regulator_dev *rdev = regulator->rdev;
4249 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4250 int ret, min_uV, max_uV;
4251
4252 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4253 return 0;
4254
4255 regulator_lock(rdev);
4256
4257 if (!rdev->desc->ops->set_voltage &&
4258 !rdev->desc->ops->set_voltage_sel) {
4259 ret = -EINVAL;
4260 goto out;
4261 }
4262
4263 /* This is only going to work if we've had a voltage configured. */
4264 if (!voltage->min_uV && !voltage->max_uV) {
4265 ret = -EINVAL;
4266 goto out;
4267 }
4268
4269 min_uV = voltage->min_uV;
4270 max_uV = voltage->max_uV;
4271
4272 /* This should be a paranoia check... */
4273 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4274 if (ret < 0)
4275 goto out;
4276
4277 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4278 if (ret < 0)
4279 goto out;
4280
4281 /* balance only, if regulator is coupled */
4282 if (rdev->coupling_desc.n_coupled > 1)
4283 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4284 else
4285 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4286
4287out:
4288 regulator_unlock(rdev);
4289 return ret;
4290}
4291EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4292
4293int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4294{
4295 int sel, ret;
4296 bool bypassed;
4297
4298 if (rdev->desc->ops->get_bypass) {
4299 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4300 if (ret < 0)
4301 return ret;
4302 if (bypassed) {
4303 /* if bypassed the regulator must have a supply */
4304 if (!rdev->supply) {
4305 rdev_err(rdev,
4306 "bypassed regulator has no supply!\n");
4307 return -EPROBE_DEFER;
4308 }
4309
4310 return regulator_get_voltage_rdev(rdev->supply->rdev);
4311 }
4312 }
4313
4314 if (rdev->desc->ops->get_voltage_sel) {
4315 sel = rdev->desc->ops->get_voltage_sel(rdev);
4316 if (sel < 0)
4317 return sel;
4318 ret = rdev->desc->ops->list_voltage(rdev, sel);
4319 } else if (rdev->desc->ops->get_voltage) {
4320 ret = rdev->desc->ops->get_voltage(rdev);
4321 } else if (rdev->desc->ops->list_voltage) {
4322 ret = rdev->desc->ops->list_voltage(rdev, 0);
4323 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4324 ret = rdev->desc->fixed_uV;
4325 } else if (rdev->supply) {
4326 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4327 } else if (rdev->supply_name) {
4328 return -EPROBE_DEFER;
4329 } else {
4330 return -EINVAL;
4331 }
4332
4333 if (ret < 0)
4334 return ret;
4335 return ret - rdev->constraints->uV_offset;
4336}
4337EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4338
4339/**
4340 * regulator_get_voltage - get regulator output voltage
4341 * @regulator: regulator source
4342 *
4343 * This returns the current regulator voltage in uV.
4344 *
4345 * NOTE: If the regulator is disabled it will return the voltage value. This
4346 * function should not be used to determine regulator state.
4347 */
4348int regulator_get_voltage(struct regulator *regulator)
4349{
4350 struct ww_acquire_ctx ww_ctx;
4351 int ret;
4352
4353 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4354 ret = regulator_get_voltage_rdev(regulator->rdev);
4355 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4356
4357 return ret;
4358}
4359EXPORT_SYMBOL_GPL(regulator_get_voltage);
4360
4361/**
4362 * regulator_set_current_limit - set regulator output current limit
4363 * @regulator: regulator source
4364 * @min_uA: Minimum supported current in uA
4365 * @max_uA: Maximum supported current in uA
4366 *
4367 * Sets current sink to the desired output current. This can be set during
4368 * any regulator state. IOW, regulator can be disabled or enabled.
4369 *
4370 * If the regulator is enabled then the current will change to the new value
4371 * immediately otherwise if the regulator is disabled the regulator will
4372 * output at the new current when enabled.
4373 *
4374 * NOTE: Regulator system constraints must be set for this regulator before
4375 * calling this function otherwise this call will fail.
4376 */
4377int regulator_set_current_limit(struct regulator *regulator,
4378 int min_uA, int max_uA)
4379{
4380 struct regulator_dev *rdev = regulator->rdev;
4381 int ret;
4382
4383 regulator_lock(rdev);
4384
4385 /* sanity check */
4386 if (!rdev->desc->ops->set_current_limit) {
4387 ret = -EINVAL;
4388 goto out;
4389 }
4390
4391 /* constraints check */
4392 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4393 if (ret < 0)
4394 goto out;
4395
4396 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4397out:
4398 regulator_unlock(rdev);
4399 return ret;
4400}
4401EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4402
4403static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4404{
4405 /* sanity check */
4406 if (!rdev->desc->ops->get_current_limit)
4407 return -EINVAL;
4408
4409 return rdev->desc->ops->get_current_limit(rdev);
4410}
4411
4412static int _regulator_get_current_limit(struct regulator_dev *rdev)
4413{
4414 int ret;
4415
4416 regulator_lock(rdev);
4417 ret = _regulator_get_current_limit_unlocked(rdev);
4418 regulator_unlock(rdev);
4419
4420 return ret;
4421}
4422
4423/**
4424 * regulator_get_current_limit - get regulator output current
4425 * @regulator: regulator source
4426 *
4427 * This returns the current supplied by the specified current sink in uA.
4428 *
4429 * NOTE: If the regulator is disabled it will return the current value. This
4430 * function should not be used to determine regulator state.
4431 */
4432int regulator_get_current_limit(struct regulator *regulator)
4433{
4434 return _regulator_get_current_limit(regulator->rdev);
4435}
4436EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4437
4438/**
4439 * regulator_set_mode - set regulator operating mode
4440 * @regulator: regulator source
4441 * @mode: operating mode - one of the REGULATOR_MODE constants
4442 *
4443 * Set regulator operating mode to increase regulator efficiency or improve
4444 * regulation performance.
4445 *
4446 * NOTE: Regulator system constraints must be set for this regulator before
4447 * calling this function otherwise this call will fail.
4448 */
4449int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4450{
4451 struct regulator_dev *rdev = regulator->rdev;
4452 int ret;
4453 int regulator_curr_mode;
4454
4455 regulator_lock(rdev);
4456
4457 /* sanity check */
4458 if (!rdev->desc->ops->set_mode) {
4459 ret = -EINVAL;
4460 goto out;
4461 }
4462
4463 /* return if the same mode is requested */
4464 if (rdev->desc->ops->get_mode) {
4465 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4466 if (regulator_curr_mode == mode) {
4467 ret = 0;
4468 goto out;
4469 }
4470 }
4471
4472 /* constraints check */
4473 ret = regulator_mode_constrain(rdev, &mode);
4474 if (ret < 0)
4475 goto out;
4476
4477 ret = rdev->desc->ops->set_mode(rdev, mode);
4478out:
4479 regulator_unlock(rdev);
4480 return ret;
4481}
4482EXPORT_SYMBOL_GPL(regulator_set_mode);
4483
4484static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4485{
4486 /* sanity check */
4487 if (!rdev->desc->ops->get_mode)
4488 return -EINVAL;
4489
4490 return rdev->desc->ops->get_mode(rdev);
4491}
4492
4493static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4494{
4495 int ret;
4496
4497 regulator_lock(rdev);
4498 ret = _regulator_get_mode_unlocked(rdev);
4499 regulator_unlock(rdev);
4500
4501 return ret;
4502}
4503
4504/**
4505 * regulator_get_mode - get regulator operating mode
4506 * @regulator: regulator source
4507 *
4508 * Get the current regulator operating mode.
4509 */
4510unsigned int regulator_get_mode(struct regulator *regulator)
4511{
4512 return _regulator_get_mode(regulator->rdev);
4513}
4514EXPORT_SYMBOL_GPL(regulator_get_mode);
4515
4516static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4517{
4518 int ret = 0;
4519
4520 if (rdev->use_cached_err) {
4521 spin_lock(&rdev->err_lock);
4522 ret = rdev->cached_err;
4523 spin_unlock(&rdev->err_lock);
4524 }
4525 return ret;
4526}
4527
4528static int _regulator_get_error_flags(struct regulator_dev *rdev,
4529 unsigned int *flags)
4530{
4531 int cached_flags, ret = 0;
4532
4533 regulator_lock(rdev);
4534
4535 cached_flags = rdev_get_cached_err_flags(rdev);
4536
4537 if (rdev->desc->ops->get_error_flags)
4538 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4539 else if (!rdev->use_cached_err)
4540 ret = -EINVAL;
4541
4542 *flags |= cached_flags;
4543
4544 regulator_unlock(rdev);
4545
4546 return ret;
4547}
4548
4549/**
4550 * regulator_get_error_flags - get regulator error information
4551 * @regulator: regulator source
4552 * @flags: pointer to store error flags
4553 *
4554 * Get the current regulator error information.
4555 */
4556int regulator_get_error_flags(struct regulator *regulator,
4557 unsigned int *flags)
4558{
4559 return _regulator_get_error_flags(regulator->rdev, flags);
4560}
4561EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4562
4563/**
4564 * regulator_set_load - set regulator load
4565 * @regulator: regulator source
4566 * @uA_load: load current
4567 *
4568 * Notifies the regulator core of a new device load. This is then used by
4569 * DRMS (if enabled by constraints) to set the most efficient regulator
4570 * operating mode for the new regulator loading.
4571 *
4572 * Consumer devices notify their supply regulator of the maximum power
4573 * they will require (can be taken from device datasheet in the power
4574 * consumption tables) when they change operational status and hence power
4575 * state. Examples of operational state changes that can affect power
4576 * consumption are :-
4577 *
4578 * o Device is opened / closed.
4579 * o Device I/O is about to begin or has just finished.
4580 * o Device is idling in between work.
4581 *
4582 * This information is also exported via sysfs to userspace.
4583 *
4584 * DRMS will sum the total requested load on the regulator and change
4585 * to the most efficient operating mode if platform constraints allow.
4586 *
4587 * NOTE: when a regulator consumer requests to have a regulator
4588 * disabled then any load that consumer requested no longer counts
4589 * toward the total requested load. If the regulator is re-enabled
4590 * then the previously requested load will start counting again.
4591 *
4592 * If a regulator is an always-on regulator then an individual consumer's
4593 * load will still be removed if that consumer is fully disabled.
4594 *
4595 * On error a negative errno is returned.
4596 */
4597int regulator_set_load(struct regulator *regulator, int uA_load)
4598{
4599 struct regulator_dev *rdev = regulator->rdev;
4600 int old_uA_load;
4601 int ret = 0;
4602
4603 regulator_lock(rdev);
4604 old_uA_load = regulator->uA_load;
4605 regulator->uA_load = uA_load;
4606 if (regulator->enable_count && old_uA_load != uA_load) {
4607 ret = drms_uA_update(rdev);
4608 if (ret < 0)
4609 regulator->uA_load = old_uA_load;
4610 }
4611 regulator_unlock(rdev);
4612
4613 return ret;
4614}
4615EXPORT_SYMBOL_GPL(regulator_set_load);
4616
4617/**
4618 * regulator_allow_bypass - allow the regulator to go into bypass mode
4619 *
4620 * @regulator: Regulator to configure
4621 * @enable: enable or disable bypass mode
4622 *
4623 * Allow the regulator to go into bypass mode if all other consumers
4624 * for the regulator also enable bypass mode and the machine
4625 * constraints allow this. Bypass mode means that the regulator is
4626 * simply passing the input directly to the output with no regulation.
4627 */
4628int regulator_allow_bypass(struct regulator *regulator, bool enable)
4629{
4630 struct regulator_dev *rdev = regulator->rdev;
4631 const char *name = rdev_get_name(rdev);
4632 int ret = 0;
4633
4634 if (!rdev->desc->ops->set_bypass)
4635 return 0;
4636
4637 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4638 return 0;
4639
4640 regulator_lock(rdev);
4641
4642 if (enable && !regulator->bypass) {
4643 rdev->bypass_count++;
4644
4645 if (rdev->bypass_count == rdev->open_count) {
4646 trace_regulator_bypass_enable(name);
4647
4648 ret = rdev->desc->ops->set_bypass(rdev, enable);
4649 if (ret != 0)
4650 rdev->bypass_count--;
4651 else
4652 trace_regulator_bypass_enable_complete(name);
4653 }
4654
4655 } else if (!enable && regulator->bypass) {
4656 rdev->bypass_count--;
4657
4658 if (rdev->bypass_count != rdev->open_count) {
4659 trace_regulator_bypass_disable(name);
4660
4661 ret = rdev->desc->ops->set_bypass(rdev, enable);
4662 if (ret != 0)
4663 rdev->bypass_count++;
4664 else
4665 trace_regulator_bypass_disable_complete(name);
4666 }
4667 }
4668
4669 if (ret == 0)
4670 regulator->bypass = enable;
4671
4672 regulator_unlock(rdev);
4673
4674 return ret;
4675}
4676EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4677
4678/**
4679 * regulator_register_notifier - register regulator event notifier
4680 * @regulator: regulator source
4681 * @nb: notifier block
4682 *
4683 * Register notifier block to receive regulator events.
4684 */
4685int regulator_register_notifier(struct regulator *regulator,
4686 struct notifier_block *nb)
4687{
4688 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4689 nb);
4690}
4691EXPORT_SYMBOL_GPL(regulator_register_notifier);
4692
4693/**
4694 * regulator_unregister_notifier - unregister regulator event notifier
4695 * @regulator: regulator source
4696 * @nb: notifier block
4697 *
4698 * Unregister regulator event notifier block.
4699 */
4700int regulator_unregister_notifier(struct regulator *regulator,
4701 struct notifier_block *nb)
4702{
4703 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4704 nb);
4705}
4706EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4707
4708/* notify regulator consumers and downstream regulator consumers.
4709 * Note mutex must be held by caller.
4710 */
4711static int _notifier_call_chain(struct regulator_dev *rdev,
4712 unsigned long event, void *data)
4713{
4714 /* call rdev chain first */
4715 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4716}
4717
4718/**
4719 * regulator_bulk_get - get multiple regulator consumers
4720 *
4721 * @dev: Device to supply
4722 * @num_consumers: Number of consumers to register
4723 * @consumers: Configuration of consumers; clients are stored here.
4724 *
4725 * @return 0 on success, an errno on failure.
4726 *
4727 * This helper function allows drivers to get several regulator
4728 * consumers in one operation. If any of the regulators cannot be
4729 * acquired then any regulators that were allocated will be freed
4730 * before returning to the caller.
4731 */
4732int regulator_bulk_get(struct device *dev, int num_consumers,
4733 struct regulator_bulk_data *consumers)
4734{
4735 int i;
4736 int ret;
4737
4738 for (i = 0; i < num_consumers; i++)
4739 consumers[i].consumer = NULL;
4740
4741 for (i = 0; i < num_consumers; i++) {
4742 consumers[i].consumer = regulator_get(dev,
4743 consumers[i].supply);
4744 if (IS_ERR(consumers[i].consumer)) {
4745 ret = PTR_ERR(consumers[i].consumer);
4746 consumers[i].consumer = NULL;
4747 goto err;
4748 }
4749 }
4750
4751 return 0;
4752
4753err:
4754 if (ret != -EPROBE_DEFER)
4755 dev_err(dev, "Failed to get supply '%s': %pe\n",
4756 consumers[i].supply, ERR_PTR(ret));
4757 else
4758 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4759 consumers[i].supply);
4760
4761 while (--i >= 0)
4762 regulator_put(consumers[i].consumer);
4763
4764 return ret;
4765}
4766EXPORT_SYMBOL_GPL(regulator_bulk_get);
4767
4768static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4769{
4770 struct regulator_bulk_data *bulk = data;
4771
4772 bulk->ret = regulator_enable(bulk->consumer);
4773}
4774
4775/**
4776 * regulator_bulk_enable - enable multiple regulator consumers
4777 *
4778 * @num_consumers: Number of consumers
4779 * @consumers: Consumer data; clients are stored here.
4780 * @return 0 on success, an errno on failure
4781 *
4782 * This convenience API allows consumers to enable multiple regulator
4783 * clients in a single API call. If any consumers cannot be enabled
4784 * then any others that were enabled will be disabled again prior to
4785 * return.
4786 */
4787int regulator_bulk_enable(int num_consumers,
4788 struct regulator_bulk_data *consumers)
4789{
4790 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4791 int i;
4792 int ret = 0;
4793
4794 for (i = 0; i < num_consumers; i++) {
4795 async_schedule_domain(regulator_bulk_enable_async,
4796 &consumers[i], &async_domain);
4797 }
4798
4799 async_synchronize_full_domain(&async_domain);
4800
4801 /* If any consumer failed we need to unwind any that succeeded */
4802 for (i = 0; i < num_consumers; i++) {
4803 if (consumers[i].ret != 0) {
4804 ret = consumers[i].ret;
4805 goto err;
4806 }
4807 }
4808
4809 return 0;
4810
4811err:
4812 for (i = 0; i < num_consumers; i++) {
4813 if (consumers[i].ret < 0)
4814 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4815 ERR_PTR(consumers[i].ret));
4816 else
4817 regulator_disable(consumers[i].consumer);
4818 }
4819
4820 return ret;
4821}
4822EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4823
4824/**
4825 * regulator_bulk_disable - disable multiple regulator consumers
4826 *
4827 * @num_consumers: Number of consumers
4828 * @consumers: Consumer data; clients are stored here.
4829 * @return 0 on success, an errno on failure
4830 *
4831 * This convenience API allows consumers to disable multiple regulator
4832 * clients in a single API call. If any consumers cannot be disabled
4833 * then any others that were disabled will be enabled again prior to
4834 * return.
4835 */
4836int regulator_bulk_disable(int num_consumers,
4837 struct regulator_bulk_data *consumers)
4838{
4839 int i;
4840 int ret, r;
4841
4842 for (i = num_consumers - 1; i >= 0; --i) {
4843 ret = regulator_disable(consumers[i].consumer);
4844 if (ret != 0)
4845 goto err;
4846 }
4847
4848 return 0;
4849
4850err:
4851 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4852 for (++i; i < num_consumers; ++i) {
4853 r = regulator_enable(consumers[i].consumer);
4854 if (r != 0)
4855 pr_err("Failed to re-enable %s: %pe\n",
4856 consumers[i].supply, ERR_PTR(r));
4857 }
4858
4859 return ret;
4860}
4861EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4862
4863/**
4864 * regulator_bulk_force_disable - force disable multiple regulator consumers
4865 *
4866 * @num_consumers: Number of consumers
4867 * @consumers: Consumer data; clients are stored here.
4868 * @return 0 on success, an errno on failure
4869 *
4870 * This convenience API allows consumers to forcibly disable multiple regulator
4871 * clients in a single API call.
4872 * NOTE: This should be used for situations when device damage will
4873 * likely occur if the regulators are not disabled (e.g. over temp).
4874 * Although regulator_force_disable function call for some consumers can
4875 * return error numbers, the function is called for all consumers.
4876 */
4877int regulator_bulk_force_disable(int num_consumers,
4878 struct regulator_bulk_data *consumers)
4879{
4880 int i;
4881 int ret = 0;
4882
4883 for (i = 0; i < num_consumers; i++) {
4884 consumers[i].ret =
4885 regulator_force_disable(consumers[i].consumer);
4886
4887 /* Store first error for reporting */
4888 if (consumers[i].ret && !ret)
4889 ret = consumers[i].ret;
4890 }
4891
4892 return ret;
4893}
4894EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4895
4896/**
4897 * regulator_bulk_free - free multiple regulator consumers
4898 *
4899 * @num_consumers: Number of consumers
4900 * @consumers: Consumer data; clients are stored here.
4901 *
4902 * This convenience API allows consumers to free multiple regulator
4903 * clients in a single API call.
4904 */
4905void regulator_bulk_free(int num_consumers,
4906 struct regulator_bulk_data *consumers)
4907{
4908 int i;
4909
4910 for (i = 0; i < num_consumers; i++) {
4911 regulator_put(consumers[i].consumer);
4912 consumers[i].consumer = NULL;
4913 }
4914}
4915EXPORT_SYMBOL_GPL(regulator_bulk_free);
4916
4917/**
4918 * regulator_notifier_call_chain - call regulator event notifier
4919 * @rdev: regulator source
4920 * @event: notifier block
4921 * @data: callback-specific data.
4922 *
4923 * Called by regulator drivers to notify clients a regulator event has
4924 * occurred.
4925 */
4926int regulator_notifier_call_chain(struct regulator_dev *rdev,
4927 unsigned long event, void *data)
4928{
4929 _notifier_call_chain(rdev, event, data);
4930 return NOTIFY_DONE;
4931
4932}
4933EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4934
4935/**
4936 * regulator_mode_to_status - convert a regulator mode into a status
4937 *
4938 * @mode: Mode to convert
4939 *
4940 * Convert a regulator mode into a status.
4941 */
4942int regulator_mode_to_status(unsigned int mode)
4943{
4944 switch (mode) {
4945 case REGULATOR_MODE_FAST:
4946 return REGULATOR_STATUS_FAST;
4947 case REGULATOR_MODE_NORMAL:
4948 return REGULATOR_STATUS_NORMAL;
4949 case REGULATOR_MODE_IDLE:
4950 return REGULATOR_STATUS_IDLE;
4951 case REGULATOR_MODE_STANDBY:
4952 return REGULATOR_STATUS_STANDBY;
4953 default:
4954 return REGULATOR_STATUS_UNDEFINED;
4955 }
4956}
4957EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4958
4959static struct attribute *regulator_dev_attrs[] = {
4960 &dev_attr_name.attr,
4961 &dev_attr_num_users.attr,
4962 &dev_attr_type.attr,
4963 &dev_attr_microvolts.attr,
4964 &dev_attr_microamps.attr,
4965 &dev_attr_opmode.attr,
4966 &dev_attr_state.attr,
4967 &dev_attr_status.attr,
4968 &dev_attr_bypass.attr,
4969 &dev_attr_requested_microamps.attr,
4970 &dev_attr_min_microvolts.attr,
4971 &dev_attr_max_microvolts.attr,
4972 &dev_attr_min_microamps.attr,
4973 &dev_attr_max_microamps.attr,
4974 &dev_attr_suspend_standby_state.attr,
4975 &dev_attr_suspend_mem_state.attr,
4976 &dev_attr_suspend_disk_state.attr,
4977 &dev_attr_suspend_standby_microvolts.attr,
4978 &dev_attr_suspend_mem_microvolts.attr,
4979 &dev_attr_suspend_disk_microvolts.attr,
4980 &dev_attr_suspend_standby_mode.attr,
4981 &dev_attr_suspend_mem_mode.attr,
4982 &dev_attr_suspend_disk_mode.attr,
4983 NULL
4984};
4985
4986/*
4987 * To avoid cluttering sysfs (and memory) with useless state, only
4988 * create attributes that can be meaningfully displayed.
4989 */
4990static umode_t regulator_attr_is_visible(struct kobject *kobj,
4991 struct attribute *attr, int idx)
4992{
4993 struct device *dev = kobj_to_dev(kobj);
4994 struct regulator_dev *rdev = dev_to_rdev(dev);
4995 const struct regulator_ops *ops = rdev->desc->ops;
4996 umode_t mode = attr->mode;
4997
4998 /* these three are always present */
4999 if (attr == &dev_attr_name.attr ||
5000 attr == &dev_attr_num_users.attr ||
5001 attr == &dev_attr_type.attr)
5002 return mode;
5003
5004 /* some attributes need specific methods to be displayed */
5005 if (attr == &dev_attr_microvolts.attr) {
5006 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5007 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5008 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5009 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5010 return mode;
5011 return 0;
5012 }
5013
5014 if (attr == &dev_attr_microamps.attr)
5015 return ops->get_current_limit ? mode : 0;
5016
5017 if (attr == &dev_attr_opmode.attr)
5018 return ops->get_mode ? mode : 0;
5019
5020 if (attr == &dev_attr_state.attr)
5021 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5022
5023 if (attr == &dev_attr_status.attr)
5024 return ops->get_status ? mode : 0;
5025
5026 if (attr == &dev_attr_bypass.attr)
5027 return ops->get_bypass ? mode : 0;
5028
5029 /* constraints need specific supporting methods */
5030 if (attr == &dev_attr_min_microvolts.attr ||
5031 attr == &dev_attr_max_microvolts.attr)
5032 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5033
5034 if (attr == &dev_attr_min_microamps.attr ||
5035 attr == &dev_attr_max_microamps.attr)
5036 return ops->set_current_limit ? mode : 0;
5037
5038 if (attr == &dev_attr_suspend_standby_state.attr ||
5039 attr == &dev_attr_suspend_mem_state.attr ||
5040 attr == &dev_attr_suspend_disk_state.attr)
5041 return mode;
5042
5043 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5044 attr == &dev_attr_suspend_mem_microvolts.attr ||
5045 attr == &dev_attr_suspend_disk_microvolts.attr)
5046 return ops->set_suspend_voltage ? mode : 0;
5047
5048 if (attr == &dev_attr_suspend_standby_mode.attr ||
5049 attr == &dev_attr_suspend_mem_mode.attr ||
5050 attr == &dev_attr_suspend_disk_mode.attr)
5051 return ops->set_suspend_mode ? mode : 0;
5052
5053 return mode;
5054}
5055
5056static const struct attribute_group regulator_dev_group = {
5057 .attrs = regulator_dev_attrs,
5058 .is_visible = regulator_attr_is_visible,
5059};
5060
5061static const struct attribute_group *regulator_dev_groups[] = {
5062 ®ulator_dev_group,
5063 NULL
5064};
5065
5066static void regulator_dev_release(struct device *dev)
5067{
5068 struct regulator_dev *rdev = dev_get_drvdata(dev);
5069
5070 kfree(rdev->constraints);
5071 of_node_put(rdev->dev.of_node);
5072 kfree(rdev);
5073}
5074
5075static void rdev_init_debugfs(struct regulator_dev *rdev)
5076{
5077 struct device *parent = rdev->dev.parent;
5078 const char *rname = rdev_get_name(rdev);
5079 char name[NAME_MAX];
5080
5081 /* Avoid duplicate debugfs directory names */
5082 if (parent && rname == rdev->desc->name) {
5083 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5084 rname);
5085 rname = name;
5086 }
5087
5088 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5089 if (!rdev->debugfs) {
5090 rdev_warn(rdev, "Failed to create debugfs directory\n");
5091 return;
5092 }
5093
5094 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5095 &rdev->use_count);
5096 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5097 &rdev->open_count);
5098 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5099 &rdev->bypass_count);
5100}
5101
5102static int regulator_register_resolve_supply(struct device *dev, void *data)
5103{
5104 struct regulator_dev *rdev = dev_to_rdev(dev);
5105
5106 if (regulator_resolve_supply(rdev))
5107 rdev_dbg(rdev, "unable to resolve supply\n");
5108
5109 return 0;
5110}
5111
5112int regulator_coupler_register(struct regulator_coupler *coupler)
5113{
5114 mutex_lock(®ulator_list_mutex);
5115 list_add_tail(&coupler->list, ®ulator_coupler_list);
5116 mutex_unlock(®ulator_list_mutex);
5117
5118 return 0;
5119}
5120
5121static struct regulator_coupler *
5122regulator_find_coupler(struct regulator_dev *rdev)
5123{
5124 struct regulator_coupler *coupler;
5125 int err;
5126
5127 /*
5128 * Note that regulators are appended to the list and the generic
5129 * coupler is registered first, hence it will be attached at last
5130 * if nobody cared.
5131 */
5132 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5133 err = coupler->attach_regulator(coupler, rdev);
5134 if (!err) {
5135 if (!coupler->balance_voltage &&
5136 rdev->coupling_desc.n_coupled > 2)
5137 goto err_unsupported;
5138
5139 return coupler;
5140 }
5141
5142 if (err < 0)
5143 return ERR_PTR(err);
5144
5145 if (err == 1)
5146 continue;
5147
5148 break;
5149 }
5150
5151 return ERR_PTR(-EINVAL);
5152
5153err_unsupported:
5154 if (coupler->detach_regulator)
5155 coupler->detach_regulator(coupler, rdev);
5156
5157 rdev_err(rdev,
5158 "Voltage balancing for multiple regulator couples is unimplemented\n");
5159
5160 return ERR_PTR(-EPERM);
5161}
5162
5163static void regulator_resolve_coupling(struct regulator_dev *rdev)
5164{
5165 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5166 struct coupling_desc *c_desc = &rdev->coupling_desc;
5167 int n_coupled = c_desc->n_coupled;
5168 struct regulator_dev *c_rdev;
5169 int i;
5170
5171 for (i = 1; i < n_coupled; i++) {
5172 /* already resolved */
5173 if (c_desc->coupled_rdevs[i])
5174 continue;
5175
5176 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5177
5178 if (!c_rdev)
5179 continue;
5180
5181 if (c_rdev->coupling_desc.coupler != coupler) {
5182 rdev_err(rdev, "coupler mismatch with %s\n",
5183 rdev_get_name(c_rdev));
5184 return;
5185 }
5186
5187 c_desc->coupled_rdevs[i] = c_rdev;
5188 c_desc->n_resolved++;
5189
5190 regulator_resolve_coupling(c_rdev);
5191 }
5192}
5193
5194static void regulator_remove_coupling(struct regulator_dev *rdev)
5195{
5196 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5197 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5198 struct regulator_dev *__c_rdev, *c_rdev;
5199 unsigned int __n_coupled, n_coupled;
5200 int i, k;
5201 int err;
5202
5203 n_coupled = c_desc->n_coupled;
5204
5205 for (i = 1; i < n_coupled; i++) {
5206 c_rdev = c_desc->coupled_rdevs[i];
5207
5208 if (!c_rdev)
5209 continue;
5210
5211 regulator_lock(c_rdev);
5212
5213 __c_desc = &c_rdev->coupling_desc;
5214 __n_coupled = __c_desc->n_coupled;
5215
5216 for (k = 1; k < __n_coupled; k++) {
5217 __c_rdev = __c_desc->coupled_rdevs[k];
5218
5219 if (__c_rdev == rdev) {
5220 __c_desc->coupled_rdevs[k] = NULL;
5221 __c_desc->n_resolved--;
5222 break;
5223 }
5224 }
5225
5226 regulator_unlock(c_rdev);
5227
5228 c_desc->coupled_rdevs[i] = NULL;
5229 c_desc->n_resolved--;
5230 }
5231
5232 if (coupler && coupler->detach_regulator) {
5233 err = coupler->detach_regulator(coupler, rdev);
5234 if (err)
5235 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5236 ERR_PTR(err));
5237 }
5238
5239 kfree(rdev->coupling_desc.coupled_rdevs);
5240 rdev->coupling_desc.coupled_rdevs = NULL;
5241}
5242
5243static int regulator_init_coupling(struct regulator_dev *rdev)
5244{
5245 struct regulator_dev **coupled;
5246 int err, n_phandles;
5247
5248 if (!IS_ENABLED(CONFIG_OF))
5249 n_phandles = 0;
5250 else
5251 n_phandles = of_get_n_coupled(rdev);
5252
5253 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5254 if (!coupled)
5255 return -ENOMEM;
5256
5257 rdev->coupling_desc.coupled_rdevs = coupled;
5258
5259 /*
5260 * Every regulator should always have coupling descriptor filled with
5261 * at least pointer to itself.
5262 */
5263 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5264 rdev->coupling_desc.n_coupled = n_phandles + 1;
5265 rdev->coupling_desc.n_resolved++;
5266
5267 /* regulator isn't coupled */
5268 if (n_phandles == 0)
5269 return 0;
5270
5271 if (!of_check_coupling_data(rdev))
5272 return -EPERM;
5273
5274 mutex_lock(®ulator_list_mutex);
5275 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5276 mutex_unlock(®ulator_list_mutex);
5277
5278 if (IS_ERR(rdev->coupling_desc.coupler)) {
5279 err = PTR_ERR(rdev->coupling_desc.coupler);
5280 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5281 return err;
5282 }
5283
5284 return 0;
5285}
5286
5287static int generic_coupler_attach(struct regulator_coupler *coupler,
5288 struct regulator_dev *rdev)
5289{
5290 if (rdev->coupling_desc.n_coupled > 2) {
5291 rdev_err(rdev,
5292 "Voltage balancing for multiple regulator couples is unimplemented\n");
5293 return -EPERM;
5294 }
5295
5296 if (!rdev->constraints->always_on) {
5297 rdev_err(rdev,
5298 "Coupling of a non always-on regulator is unimplemented\n");
5299 return -ENOTSUPP;
5300 }
5301
5302 return 0;
5303}
5304
5305static struct regulator_coupler generic_regulator_coupler = {
5306 .attach_regulator = generic_coupler_attach,
5307};
5308
5309/**
5310 * regulator_register - register regulator
5311 * @regulator_desc: regulator to register
5312 * @cfg: runtime configuration for regulator
5313 *
5314 * Called by regulator drivers to register a regulator.
5315 * Returns a valid pointer to struct regulator_dev on success
5316 * or an ERR_PTR() on error.
5317 */
5318struct regulator_dev *
5319regulator_register(const struct regulator_desc *regulator_desc,
5320 const struct regulator_config *cfg)
5321{
5322 const struct regulator_init_data *init_data;
5323 struct regulator_config *config = NULL;
5324 static atomic_t regulator_no = ATOMIC_INIT(-1);
5325 struct regulator_dev *rdev;
5326 bool dangling_cfg_gpiod = false;
5327 bool dangling_of_gpiod = false;
5328 struct device *dev;
5329 int ret, i;
5330
5331 if (cfg == NULL)
5332 return ERR_PTR(-EINVAL);
5333 if (cfg->ena_gpiod)
5334 dangling_cfg_gpiod = true;
5335 if (regulator_desc == NULL) {
5336 ret = -EINVAL;
5337 goto rinse;
5338 }
5339
5340 dev = cfg->dev;
5341 WARN_ON(!dev);
5342
5343 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5344 ret = -EINVAL;
5345 goto rinse;
5346 }
5347
5348 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5349 regulator_desc->type != REGULATOR_CURRENT) {
5350 ret = -EINVAL;
5351 goto rinse;
5352 }
5353
5354 /* Only one of each should be implemented */
5355 WARN_ON(regulator_desc->ops->get_voltage &&
5356 regulator_desc->ops->get_voltage_sel);
5357 WARN_ON(regulator_desc->ops->set_voltage &&
5358 regulator_desc->ops->set_voltage_sel);
5359
5360 /* If we're using selectors we must implement list_voltage. */
5361 if (regulator_desc->ops->get_voltage_sel &&
5362 !regulator_desc->ops->list_voltage) {
5363 ret = -EINVAL;
5364 goto rinse;
5365 }
5366 if (regulator_desc->ops->set_voltage_sel &&
5367 !regulator_desc->ops->list_voltage) {
5368 ret = -EINVAL;
5369 goto rinse;
5370 }
5371
5372 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5373 if (rdev == NULL) {
5374 ret = -ENOMEM;
5375 goto rinse;
5376 }
5377 device_initialize(&rdev->dev);
5378 spin_lock_init(&rdev->err_lock);
5379
5380 /*
5381 * Duplicate the config so the driver could override it after
5382 * parsing init data.
5383 */
5384 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5385 if (config == NULL) {
5386 ret = -ENOMEM;
5387 goto clean;
5388 }
5389
5390 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5391 &rdev->dev.of_node);
5392
5393 /*
5394 * Sometimes not all resources are probed already so we need to take
5395 * that into account. This happens most the time if the ena_gpiod comes
5396 * from a gpio extender or something else.
5397 */
5398 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5399 ret = -EPROBE_DEFER;
5400 goto clean;
5401 }
5402
5403 /*
5404 * We need to keep track of any GPIO descriptor coming from the
5405 * device tree until we have handled it over to the core. If the
5406 * config that was passed in to this function DOES NOT contain
5407 * a descriptor, and the config after this call DOES contain
5408 * a descriptor, we definitely got one from parsing the device
5409 * tree.
5410 */
5411 if (!cfg->ena_gpiod && config->ena_gpiod)
5412 dangling_of_gpiod = true;
5413 if (!init_data) {
5414 init_data = config->init_data;
5415 rdev->dev.of_node = of_node_get(config->of_node);
5416 }
5417
5418 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5419 rdev->reg_data = config->driver_data;
5420 rdev->owner = regulator_desc->owner;
5421 rdev->desc = regulator_desc;
5422 if (config->regmap)
5423 rdev->regmap = config->regmap;
5424 else if (dev_get_regmap(dev, NULL))
5425 rdev->regmap = dev_get_regmap(dev, NULL);
5426 else if (dev->parent)
5427 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5428 INIT_LIST_HEAD(&rdev->consumer_list);
5429 INIT_LIST_HEAD(&rdev->list);
5430 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5431 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5432
5433 /* preform any regulator specific init */
5434 if (init_data && init_data->regulator_init) {
5435 ret = init_data->regulator_init(rdev->reg_data);
5436 if (ret < 0)
5437 goto clean;
5438 }
5439
5440 if (config->ena_gpiod) {
5441 ret = regulator_ena_gpio_request(rdev, config);
5442 if (ret != 0) {
5443 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5444 ERR_PTR(ret));
5445 goto clean;
5446 }
5447 /* The regulator core took over the GPIO descriptor */
5448 dangling_cfg_gpiod = false;
5449 dangling_of_gpiod = false;
5450 }
5451
5452 /* register with sysfs */
5453 rdev->dev.class = ®ulator_class;
5454 rdev->dev.parent = dev;
5455 dev_set_name(&rdev->dev, "regulator.%lu",
5456 (unsigned long) atomic_inc_return(®ulator_no));
5457 dev_set_drvdata(&rdev->dev, rdev);
5458
5459 /* set regulator constraints */
5460 if (init_data)
5461 rdev->constraints = kmemdup(&init_data->constraints,
5462 sizeof(*rdev->constraints),
5463 GFP_KERNEL);
5464 else
5465 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5466 GFP_KERNEL);
5467 if (!rdev->constraints) {
5468 ret = -ENOMEM;
5469 goto wash;
5470 }
5471
5472 if (init_data && init_data->supply_regulator)
5473 rdev->supply_name = init_data->supply_regulator;
5474 else if (regulator_desc->supply_name)
5475 rdev->supply_name = regulator_desc->supply_name;
5476
5477 ret = set_machine_constraints(rdev);
5478 if (ret == -EPROBE_DEFER) {
5479 /* Regulator might be in bypass mode and so needs its supply
5480 * to set the constraints
5481 */
5482 /* FIXME: this currently triggers a chicken-and-egg problem
5483 * when creating -SUPPLY symlink in sysfs to a regulator
5484 * that is just being created
5485 */
5486 rdev_dbg(rdev, "will resolve supply early: %s\n",
5487 rdev->supply_name);
5488 ret = regulator_resolve_supply(rdev);
5489 if (!ret)
5490 ret = set_machine_constraints(rdev);
5491 else
5492 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5493 ERR_PTR(ret));
5494 }
5495 if (ret < 0)
5496 goto wash;
5497
5498 ret = regulator_init_coupling(rdev);
5499 if (ret < 0)
5500 goto wash;
5501
5502 /* add consumers devices */
5503 if (init_data) {
5504 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5505 ret = set_consumer_device_supply(rdev,
5506 init_data->consumer_supplies[i].dev_name,
5507 init_data->consumer_supplies[i].supply);
5508 if (ret < 0) {
5509 dev_err(dev, "Failed to set supply %s\n",
5510 init_data->consumer_supplies[i].supply);
5511 goto unset_supplies;
5512 }
5513 }
5514 }
5515
5516 if (!rdev->desc->ops->get_voltage &&
5517 !rdev->desc->ops->list_voltage &&
5518 !rdev->desc->fixed_uV)
5519 rdev->is_switch = true;
5520
5521 ret = device_add(&rdev->dev);
5522 if (ret != 0)
5523 goto unset_supplies;
5524
5525 rdev_init_debugfs(rdev);
5526
5527 /* try to resolve regulators coupling since a new one was registered */
5528 mutex_lock(®ulator_list_mutex);
5529 regulator_resolve_coupling(rdev);
5530 mutex_unlock(®ulator_list_mutex);
5531
5532 /* try to resolve regulators supply since a new one was registered */
5533 class_for_each_device(®ulator_class, NULL, NULL,
5534 regulator_register_resolve_supply);
5535 kfree(config);
5536 return rdev;
5537
5538unset_supplies:
5539 mutex_lock(®ulator_list_mutex);
5540 unset_regulator_supplies(rdev);
5541 regulator_remove_coupling(rdev);
5542 mutex_unlock(®ulator_list_mutex);
5543wash:
5544 kfree(rdev->coupling_desc.coupled_rdevs);
5545 mutex_lock(®ulator_list_mutex);
5546 regulator_ena_gpio_free(rdev);
5547 mutex_unlock(®ulator_list_mutex);
5548clean:
5549 if (dangling_of_gpiod)
5550 gpiod_put(config->ena_gpiod);
5551 kfree(config);
5552 put_device(&rdev->dev);
5553rinse:
5554 if (dangling_cfg_gpiod)
5555 gpiod_put(cfg->ena_gpiod);
5556 return ERR_PTR(ret);
5557}
5558EXPORT_SYMBOL_GPL(regulator_register);
5559
5560/**
5561 * regulator_unregister - unregister regulator
5562 * @rdev: regulator to unregister
5563 *
5564 * Called by regulator drivers to unregister a regulator.
5565 */
5566void regulator_unregister(struct regulator_dev *rdev)
5567{
5568 if (rdev == NULL)
5569 return;
5570
5571 if (rdev->supply) {
5572 while (rdev->use_count--)
5573 regulator_disable(rdev->supply);
5574 regulator_put(rdev->supply);
5575 }
5576
5577 flush_work(&rdev->disable_work.work);
5578
5579 mutex_lock(®ulator_list_mutex);
5580
5581 debugfs_remove_recursive(rdev->debugfs);
5582 WARN_ON(rdev->open_count);
5583 regulator_remove_coupling(rdev);
5584 unset_regulator_supplies(rdev);
5585 list_del(&rdev->list);
5586 regulator_ena_gpio_free(rdev);
5587 device_unregister(&rdev->dev);
5588
5589 mutex_unlock(®ulator_list_mutex);
5590}
5591EXPORT_SYMBOL_GPL(regulator_unregister);
5592
5593#ifdef CONFIG_SUSPEND
5594/**
5595 * regulator_suspend - prepare regulators for system wide suspend
5596 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5597 *
5598 * Configure each regulator with it's suspend operating parameters for state.
5599 */
5600static int regulator_suspend(struct device *dev)
5601{
5602 struct regulator_dev *rdev = dev_to_rdev(dev);
5603 suspend_state_t state = pm_suspend_target_state;
5604 int ret;
5605 const struct regulator_state *rstate;
5606
5607 rstate = regulator_get_suspend_state_check(rdev, state);
5608 if (!rstate)
5609 return 0;
5610
5611 regulator_lock(rdev);
5612 ret = __suspend_set_state(rdev, rstate);
5613 regulator_unlock(rdev);
5614
5615 return ret;
5616}
5617
5618static int regulator_resume(struct device *dev)
5619{
5620 suspend_state_t state = pm_suspend_target_state;
5621 struct regulator_dev *rdev = dev_to_rdev(dev);
5622 struct regulator_state *rstate;
5623 int ret = 0;
5624
5625 rstate = regulator_get_suspend_state(rdev, state);
5626 if (rstate == NULL)
5627 return 0;
5628
5629 /* Avoid grabbing the lock if we don't need to */
5630 if (!rdev->desc->ops->resume)
5631 return 0;
5632
5633 regulator_lock(rdev);
5634
5635 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5636 rstate->enabled == DISABLE_IN_SUSPEND)
5637 ret = rdev->desc->ops->resume(rdev);
5638
5639 regulator_unlock(rdev);
5640
5641 return ret;
5642}
5643#else /* !CONFIG_SUSPEND */
5644
5645#define regulator_suspend NULL
5646#define regulator_resume NULL
5647
5648#endif /* !CONFIG_SUSPEND */
5649
5650#ifdef CONFIG_PM
5651static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5652 .suspend = regulator_suspend,
5653 .resume = regulator_resume,
5654};
5655#endif
5656
5657struct class regulator_class = {
5658 .name = "regulator",
5659 .dev_release = regulator_dev_release,
5660 .dev_groups = regulator_dev_groups,
5661#ifdef CONFIG_PM
5662 .pm = ®ulator_pm_ops,
5663#endif
5664};
5665/**
5666 * regulator_has_full_constraints - the system has fully specified constraints
5667 *
5668 * Calling this function will cause the regulator API to disable all
5669 * regulators which have a zero use count and don't have an always_on
5670 * constraint in a late_initcall.
5671 *
5672 * The intention is that this will become the default behaviour in a
5673 * future kernel release so users are encouraged to use this facility
5674 * now.
5675 */
5676void regulator_has_full_constraints(void)
5677{
5678 has_full_constraints = 1;
5679}
5680EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5681
5682/**
5683 * rdev_get_drvdata - get rdev regulator driver data
5684 * @rdev: regulator
5685 *
5686 * Get rdev regulator driver private data. This call can be used in the
5687 * regulator driver context.
5688 */
5689void *rdev_get_drvdata(struct regulator_dev *rdev)
5690{
5691 return rdev->reg_data;
5692}
5693EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5694
5695/**
5696 * regulator_get_drvdata - get regulator driver data
5697 * @regulator: regulator
5698 *
5699 * Get regulator driver private data. This call can be used in the consumer
5700 * driver context when non API regulator specific functions need to be called.
5701 */
5702void *regulator_get_drvdata(struct regulator *regulator)
5703{
5704 return regulator->rdev->reg_data;
5705}
5706EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5707
5708/**
5709 * regulator_set_drvdata - set regulator driver data
5710 * @regulator: regulator
5711 * @data: data
5712 */
5713void regulator_set_drvdata(struct regulator *regulator, void *data)
5714{
5715 regulator->rdev->reg_data = data;
5716}
5717EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5718
5719/**
5720 * rdev_get_id - get regulator ID
5721 * @rdev: regulator
5722 */
5723int rdev_get_id(struct regulator_dev *rdev)
5724{
5725 return rdev->desc->id;
5726}
5727EXPORT_SYMBOL_GPL(rdev_get_id);
5728
5729struct device *rdev_get_dev(struct regulator_dev *rdev)
5730{
5731 return &rdev->dev;
5732}
5733EXPORT_SYMBOL_GPL(rdev_get_dev);
5734
5735struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5736{
5737 return rdev->regmap;
5738}
5739EXPORT_SYMBOL_GPL(rdev_get_regmap);
5740
5741void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5742{
5743 return reg_init_data->driver_data;
5744}
5745EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5746
5747#ifdef CONFIG_DEBUG_FS
5748static int supply_map_show(struct seq_file *sf, void *data)
5749{
5750 struct regulator_map *map;
5751
5752 list_for_each_entry(map, ®ulator_map_list, list) {
5753 seq_printf(sf, "%s -> %s.%s\n",
5754 rdev_get_name(map->regulator), map->dev_name,
5755 map->supply);
5756 }
5757
5758 return 0;
5759}
5760DEFINE_SHOW_ATTRIBUTE(supply_map);
5761
5762struct summary_data {
5763 struct seq_file *s;
5764 struct regulator_dev *parent;
5765 int level;
5766};
5767
5768static void regulator_summary_show_subtree(struct seq_file *s,
5769 struct regulator_dev *rdev,
5770 int level);
5771
5772static int regulator_summary_show_children(struct device *dev, void *data)
5773{
5774 struct regulator_dev *rdev = dev_to_rdev(dev);
5775 struct summary_data *summary_data = data;
5776
5777 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5778 regulator_summary_show_subtree(summary_data->s, rdev,
5779 summary_data->level + 1);
5780
5781 return 0;
5782}
5783
5784static void regulator_summary_show_subtree(struct seq_file *s,
5785 struct regulator_dev *rdev,
5786 int level)
5787{
5788 struct regulation_constraints *c;
5789 struct regulator *consumer;
5790 struct summary_data summary_data;
5791 unsigned int opmode;
5792
5793 if (!rdev)
5794 return;
5795
5796 opmode = _regulator_get_mode_unlocked(rdev);
5797 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5798 level * 3 + 1, "",
5799 30 - level * 3, rdev_get_name(rdev),
5800 rdev->use_count, rdev->open_count, rdev->bypass_count,
5801 regulator_opmode_to_str(opmode));
5802
5803 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5804 seq_printf(s, "%5dmA ",
5805 _regulator_get_current_limit_unlocked(rdev) / 1000);
5806
5807 c = rdev->constraints;
5808 if (c) {
5809 switch (rdev->desc->type) {
5810 case REGULATOR_VOLTAGE:
5811 seq_printf(s, "%5dmV %5dmV ",
5812 c->min_uV / 1000, c->max_uV / 1000);
5813 break;
5814 case REGULATOR_CURRENT:
5815 seq_printf(s, "%5dmA %5dmA ",
5816 c->min_uA / 1000, c->max_uA / 1000);
5817 break;
5818 }
5819 }
5820
5821 seq_puts(s, "\n");
5822
5823 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5824 if (consumer->dev && consumer->dev->class == ®ulator_class)
5825 continue;
5826
5827 seq_printf(s, "%*s%-*s ",
5828 (level + 1) * 3 + 1, "",
5829 30 - (level + 1) * 3,
5830 consumer->supply_name ? consumer->supply_name :
5831 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5832
5833 switch (rdev->desc->type) {
5834 case REGULATOR_VOLTAGE:
5835 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5836 consumer->enable_count,
5837 consumer->uA_load / 1000,
5838 consumer->uA_load && !consumer->enable_count ?
5839 '*' : ' ',
5840 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5841 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5842 break;
5843 case REGULATOR_CURRENT:
5844 break;
5845 }
5846
5847 seq_puts(s, "\n");
5848 }
5849
5850 summary_data.s = s;
5851 summary_data.level = level;
5852 summary_data.parent = rdev;
5853
5854 class_for_each_device(®ulator_class, NULL, &summary_data,
5855 regulator_summary_show_children);
5856}
5857
5858struct summary_lock_data {
5859 struct ww_acquire_ctx *ww_ctx;
5860 struct regulator_dev **new_contended_rdev;
5861 struct regulator_dev **old_contended_rdev;
5862};
5863
5864static int regulator_summary_lock_one(struct device *dev, void *data)
5865{
5866 struct regulator_dev *rdev = dev_to_rdev(dev);
5867 struct summary_lock_data *lock_data = data;
5868 int ret = 0;
5869
5870 if (rdev != *lock_data->old_contended_rdev) {
5871 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5872
5873 if (ret == -EDEADLK)
5874 *lock_data->new_contended_rdev = rdev;
5875 else
5876 WARN_ON_ONCE(ret);
5877 } else {
5878 *lock_data->old_contended_rdev = NULL;
5879 }
5880
5881 return ret;
5882}
5883
5884static int regulator_summary_unlock_one(struct device *dev, void *data)
5885{
5886 struct regulator_dev *rdev = dev_to_rdev(dev);
5887 struct summary_lock_data *lock_data = data;
5888
5889 if (lock_data) {
5890 if (rdev == *lock_data->new_contended_rdev)
5891 return -EDEADLK;
5892 }
5893
5894 regulator_unlock(rdev);
5895
5896 return 0;
5897}
5898
5899static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5900 struct regulator_dev **new_contended_rdev,
5901 struct regulator_dev **old_contended_rdev)
5902{
5903 struct summary_lock_data lock_data;
5904 int ret;
5905
5906 lock_data.ww_ctx = ww_ctx;
5907 lock_data.new_contended_rdev = new_contended_rdev;
5908 lock_data.old_contended_rdev = old_contended_rdev;
5909
5910 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
5911 regulator_summary_lock_one);
5912 if (ret)
5913 class_for_each_device(®ulator_class, NULL, &lock_data,
5914 regulator_summary_unlock_one);
5915
5916 return ret;
5917}
5918
5919static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5920{
5921 struct regulator_dev *new_contended_rdev = NULL;
5922 struct regulator_dev *old_contended_rdev = NULL;
5923 int err;
5924
5925 mutex_lock(®ulator_list_mutex);
5926
5927 ww_acquire_init(ww_ctx, ®ulator_ww_class);
5928
5929 do {
5930 if (new_contended_rdev) {
5931 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5932 old_contended_rdev = new_contended_rdev;
5933 old_contended_rdev->ref_cnt++;
5934 }
5935
5936 err = regulator_summary_lock_all(ww_ctx,
5937 &new_contended_rdev,
5938 &old_contended_rdev);
5939
5940 if (old_contended_rdev)
5941 regulator_unlock(old_contended_rdev);
5942
5943 } while (err == -EDEADLK);
5944
5945 ww_acquire_done(ww_ctx);
5946}
5947
5948static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5949{
5950 class_for_each_device(®ulator_class, NULL, NULL,
5951 regulator_summary_unlock_one);
5952 ww_acquire_fini(ww_ctx);
5953
5954 mutex_unlock(®ulator_list_mutex);
5955}
5956
5957static int regulator_summary_show_roots(struct device *dev, void *data)
5958{
5959 struct regulator_dev *rdev = dev_to_rdev(dev);
5960 struct seq_file *s = data;
5961
5962 if (!rdev->supply)
5963 regulator_summary_show_subtree(s, rdev, 0);
5964
5965 return 0;
5966}
5967
5968static int regulator_summary_show(struct seq_file *s, void *data)
5969{
5970 struct ww_acquire_ctx ww_ctx;
5971
5972 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5973 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5974
5975 regulator_summary_lock(&ww_ctx);
5976
5977 class_for_each_device(®ulator_class, NULL, s,
5978 regulator_summary_show_roots);
5979
5980 regulator_summary_unlock(&ww_ctx);
5981
5982 return 0;
5983}
5984DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5985#endif /* CONFIG_DEBUG_FS */
5986
5987static int __init regulator_init(void)
5988{
5989 int ret;
5990
5991 ret = class_register(®ulator_class);
5992
5993 debugfs_root = debugfs_create_dir("regulator", NULL);
5994 if (!debugfs_root)
5995 pr_warn("regulator: Failed to create debugfs directory\n");
5996
5997#ifdef CONFIG_DEBUG_FS
5998 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5999 &supply_map_fops);
6000
6001 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6002 NULL, ®ulator_summary_fops);
6003#endif
6004 regulator_dummy_init();
6005
6006 regulator_coupler_register(&generic_regulator_coupler);
6007
6008 return ret;
6009}
6010
6011/* init early to allow our consumers to complete system booting */
6012core_initcall(regulator_init);
6013
6014static int regulator_late_cleanup(struct device *dev, void *data)
6015{
6016 struct regulator_dev *rdev = dev_to_rdev(dev);
6017 struct regulation_constraints *c = rdev->constraints;
6018 int ret;
6019
6020 if (c && c->always_on)
6021 return 0;
6022
6023 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6024 return 0;
6025
6026 regulator_lock(rdev);
6027
6028 if (rdev->use_count)
6029 goto unlock;
6030
6031 /* If reading the status failed, assume that it's off. */
6032 if (_regulator_is_enabled(rdev) <= 0)
6033 goto unlock;
6034
6035 if (have_full_constraints()) {
6036 /* We log since this may kill the system if it goes
6037 * wrong.
6038 */
6039 rdev_info(rdev, "disabling\n");
6040 ret = _regulator_do_disable(rdev);
6041 if (ret != 0)
6042 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6043 } else {
6044 /* The intention is that in future we will
6045 * assume that full constraints are provided
6046 * so warn even if we aren't going to do
6047 * anything here.
6048 */
6049 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6050 }
6051
6052unlock:
6053 regulator_unlock(rdev);
6054
6055 return 0;
6056}
6057
6058static void regulator_init_complete_work_function(struct work_struct *work)
6059{
6060 /*
6061 * Regulators may had failed to resolve their input supplies
6062 * when were registered, either because the input supply was
6063 * not registered yet or because its parent device was not
6064 * bound yet. So attempt to resolve the input supplies for
6065 * pending regulators before trying to disable unused ones.
6066 */
6067 class_for_each_device(®ulator_class, NULL, NULL,
6068 regulator_register_resolve_supply);
6069
6070 /* If we have a full configuration then disable any regulators
6071 * we have permission to change the status for and which are
6072 * not in use or always_on. This is effectively the default
6073 * for DT and ACPI as they have full constraints.
6074 */
6075 class_for_each_device(®ulator_class, NULL, NULL,
6076 regulator_late_cleanup);
6077}
6078
6079static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6080 regulator_init_complete_work_function);
6081
6082static int __init regulator_init_complete(void)
6083{
6084 /*
6085 * Since DT doesn't provide an idiomatic mechanism for
6086 * enabling full constraints and since it's much more natural
6087 * with DT to provide them just assume that a DT enabled
6088 * system has full constraints.
6089 */
6090 if (of_have_populated_dt())
6091 has_full_constraints = true;
6092
6093 /*
6094 * We punt completion for an arbitrary amount of time since
6095 * systems like distros will load many drivers from userspace
6096 * so consumers might not always be ready yet, this is
6097 * particularly an issue with laptops where this might bounce
6098 * the display off then on. Ideally we'd get a notification
6099 * from userspace when this happens but we don't so just wait
6100 * a bit and hope we waited long enough. It'd be better if
6101 * we'd only do this on systems that need it, and a kernel
6102 * command line option might be useful.
6103 */
6104 schedule_delayed_work(®ulator_init_complete_work,
6105 msecs_to_jiffies(30000));
6106
6107 return 0;
6108}
6109late_initcall_sync(regulator_init_complete);