Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13#include <linux/export.h>
14#include <linux/compiler.h>
15#include <linux/dax.h>
16#include <linux/fs.h>
17#include <linux/sched/signal.h>
18#include <linux/uaccess.h>
19#include <linux/capability.h>
20#include <linux/kernel_stat.h>
21#include <linux/gfp.h>
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/swapops.h>
25#include <linux/mman.h>
26#include <linux/pagemap.h>
27#include <linux/file.h>
28#include <linux/uio.h>
29#include <linux/error-injection.h>
30#include <linux/hash.h>
31#include <linux/writeback.h>
32#include <linux/backing-dev.h>
33#include <linux/pagevec.h>
34#include <linux/security.h>
35#include <linux/cpuset.h>
36#include <linux/hugetlb.h>
37#include <linux/memcontrol.h>
38#include <linux/shmem_fs.h>
39#include <linux/rmap.h>
40#include <linux/delayacct.h>
41#include <linux/psi.h>
42#include <linux/ramfs.h>
43#include <linux/page_idle.h>
44#include <linux/migrate.h>
45#include <asm/pgalloc.h>
46#include <asm/tlbflush.h>
47#include "internal.h"
48
49#define CREATE_TRACE_POINTS
50#include <trace/events/filemap.h>
51
52/*
53 * FIXME: remove all knowledge of the buffer layer from the core VM
54 */
55#include <linux/buffer_head.h> /* for try_to_free_buffers */
56
57#include <asm/mman.h>
58
59/*
60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
61 * though.
62 *
63 * Shared mappings now work. 15.8.1995 Bruno.
64 *
65 * finished 'unifying' the page and buffer cache and SMP-threaded the
66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67 *
68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69 */
70
71/*
72 * Lock ordering:
73 *
74 * ->i_mmap_rwsem (truncate_pagecache)
75 * ->private_lock (__free_pte->block_dirty_folio)
76 * ->swap_lock (exclusive_swap_page, others)
77 * ->i_pages lock
78 *
79 * ->i_rwsem
80 * ->invalidate_lock (acquired by fs in truncate path)
81 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
82 *
83 * ->mmap_lock
84 * ->i_mmap_rwsem
85 * ->page_table_lock or pte_lock (various, mainly in memory.c)
86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
87 *
88 * ->mmap_lock
89 * ->invalidate_lock (filemap_fault)
90 * ->lock_page (filemap_fault, access_process_vm)
91 *
92 * ->i_rwsem (generic_perform_write)
93 * ->mmap_lock (fault_in_readable->do_page_fault)
94 *
95 * bdi->wb.list_lock
96 * sb_lock (fs/fs-writeback.c)
97 * ->i_pages lock (__sync_single_inode)
98 *
99 * ->i_mmap_rwsem
100 * ->anon_vma.lock (vma_adjust)
101 *
102 * ->anon_vma.lock
103 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
104 *
105 * ->page_table_lock or pte_lock
106 * ->swap_lock (try_to_unmap_one)
107 * ->private_lock (try_to_unmap_one)
108 * ->i_pages lock (try_to_unmap_one)
109 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
111 * ->private_lock (page_remove_rmap->set_page_dirty)
112 * ->i_pages lock (page_remove_rmap->set_page_dirty)
113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
114 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
117 * ->inode->i_lock (zap_pte_range->set_page_dirty)
118 * ->private_lock (zap_pte_range->block_dirty_folio)
119 *
120 * ->i_mmap_rwsem
121 * ->tasklist_lock (memory_failure, collect_procs_ao)
122 */
123
124static void page_cache_delete(struct address_space *mapping,
125 struct folio *folio, void *shadow)
126{
127 XA_STATE(xas, &mapping->i_pages, folio->index);
128 long nr = 1;
129
130 mapping_set_update(&xas, mapping);
131
132 /* hugetlb pages are represented by a single entry in the xarray */
133 if (!folio_test_hugetlb(folio)) {
134 xas_set_order(&xas, folio->index, folio_order(folio));
135 nr = folio_nr_pages(folio);
136 }
137
138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
139
140 xas_store(&xas, shadow);
141 xas_init_marks(&xas);
142
143 folio->mapping = NULL;
144 /* Leave page->index set: truncation lookup relies upon it */
145 mapping->nrpages -= nr;
146}
147
148static void filemap_unaccount_folio(struct address_space *mapping,
149 struct folio *folio)
150{
151 long nr;
152
153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
156 current->comm, folio_pfn(folio));
157 dump_page(&folio->page, "still mapped when deleted");
158 dump_stack();
159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
160
161 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
162 int mapcount = page_mapcount(&folio->page);
163
164 if (folio_ref_count(folio) >= mapcount + 2) {
165 /*
166 * All vmas have already been torn down, so it's
167 * a good bet that actually the page is unmapped
168 * and we'd rather not leak it: if we're wrong,
169 * another bad page check should catch it later.
170 */
171 page_mapcount_reset(&folio->page);
172 folio_ref_sub(folio, mapcount);
173 }
174 }
175 }
176
177 /* hugetlb folios do not participate in page cache accounting. */
178 if (folio_test_hugetlb(folio))
179 return;
180
181 nr = folio_nr_pages(folio);
182
183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 if (folio_test_swapbacked(folio)) {
185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 if (folio_test_pmd_mappable(folio))
187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 } else if (folio_test_pmd_mappable(folio)) {
189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
190 filemap_nr_thps_dec(mapping);
191 }
192
193 /*
194 * At this point folio must be either written or cleaned by
195 * truncate. Dirty folio here signals a bug and loss of
196 * unwritten data - on ordinary filesystems.
197 *
198 * But it's harmless on in-memory filesystems like tmpfs; and can
199 * occur when a driver which did get_user_pages() sets page dirty
200 * before putting it, while the inode is being finally evicted.
201 *
202 * Below fixes dirty accounting after removing the folio entirely
203 * but leaves the dirty flag set: it has no effect for truncated
204 * folio and anyway will be cleared before returning folio to
205 * buddy allocator.
206 */
207 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
208 mapping_can_writeback(mapping)))
209 folio_account_cleaned(folio, inode_to_wb(mapping->host));
210}
211
212/*
213 * Delete a page from the page cache and free it. Caller has to make
214 * sure the page is locked and that nobody else uses it - or that usage
215 * is safe. The caller must hold the i_pages lock.
216 */
217void __filemap_remove_folio(struct folio *folio, void *shadow)
218{
219 struct address_space *mapping = folio->mapping;
220
221 trace_mm_filemap_delete_from_page_cache(folio);
222 filemap_unaccount_folio(mapping, folio);
223 page_cache_delete(mapping, folio, shadow);
224}
225
226void filemap_free_folio(struct address_space *mapping, struct folio *folio)
227{
228 void (*freepage)(struct page *);
229 int refs = 1;
230
231 freepage = mapping->a_ops->freepage;
232 if (freepage)
233 freepage(&folio->page);
234
235 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
236 refs = folio_nr_pages(folio);
237 folio_put_refs(folio, refs);
238}
239
240/**
241 * filemap_remove_folio - Remove folio from page cache.
242 * @folio: The folio.
243 *
244 * This must be called only on folios that are locked and have been
245 * verified to be in the page cache. It will never put the folio into
246 * the free list because the caller has a reference on the page.
247 */
248void filemap_remove_folio(struct folio *folio)
249{
250 struct address_space *mapping = folio->mapping;
251
252 BUG_ON(!folio_test_locked(folio));
253 spin_lock(&mapping->host->i_lock);
254 xa_lock_irq(&mapping->i_pages);
255 __filemap_remove_folio(folio, NULL);
256 xa_unlock_irq(&mapping->i_pages);
257 if (mapping_shrinkable(mapping))
258 inode_add_lru(mapping->host);
259 spin_unlock(&mapping->host->i_lock);
260
261 filemap_free_folio(mapping, folio);
262}
263
264/*
265 * page_cache_delete_batch - delete several folios from page cache
266 * @mapping: the mapping to which folios belong
267 * @fbatch: batch of folios to delete
268 *
269 * The function walks over mapping->i_pages and removes folios passed in
270 * @fbatch from the mapping. The function expects @fbatch to be sorted
271 * by page index and is optimised for it to be dense.
272 * It tolerates holes in @fbatch (mapping entries at those indices are not
273 * modified).
274 *
275 * The function expects the i_pages lock to be held.
276 */
277static void page_cache_delete_batch(struct address_space *mapping,
278 struct folio_batch *fbatch)
279{
280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
281 long total_pages = 0;
282 int i = 0;
283 struct folio *folio;
284
285 mapping_set_update(&xas, mapping);
286 xas_for_each(&xas, folio, ULONG_MAX) {
287 if (i >= folio_batch_count(fbatch))
288 break;
289
290 /* A swap/dax/shadow entry got inserted? Skip it. */
291 if (xa_is_value(folio))
292 continue;
293 /*
294 * A page got inserted in our range? Skip it. We have our
295 * pages locked so they are protected from being removed.
296 * If we see a page whose index is higher than ours, it
297 * means our page has been removed, which shouldn't be
298 * possible because we're holding the PageLock.
299 */
300 if (folio != fbatch->folios[i]) {
301 VM_BUG_ON_FOLIO(folio->index >
302 fbatch->folios[i]->index, folio);
303 continue;
304 }
305
306 WARN_ON_ONCE(!folio_test_locked(folio));
307
308 folio->mapping = NULL;
309 /* Leave folio->index set: truncation lookup relies on it */
310
311 i++;
312 xas_store(&xas, NULL);
313 total_pages += folio_nr_pages(folio);
314 }
315 mapping->nrpages -= total_pages;
316}
317
318void delete_from_page_cache_batch(struct address_space *mapping,
319 struct folio_batch *fbatch)
320{
321 int i;
322
323 if (!folio_batch_count(fbatch))
324 return;
325
326 spin_lock(&mapping->host->i_lock);
327 xa_lock_irq(&mapping->i_pages);
328 for (i = 0; i < folio_batch_count(fbatch); i++) {
329 struct folio *folio = fbatch->folios[i];
330
331 trace_mm_filemap_delete_from_page_cache(folio);
332 filemap_unaccount_folio(mapping, folio);
333 }
334 page_cache_delete_batch(mapping, fbatch);
335 xa_unlock_irq(&mapping->i_pages);
336 if (mapping_shrinkable(mapping))
337 inode_add_lru(mapping->host);
338 spin_unlock(&mapping->host->i_lock);
339
340 for (i = 0; i < folio_batch_count(fbatch); i++)
341 filemap_free_folio(mapping, fbatch->folios[i]);
342}
343
344int filemap_check_errors(struct address_space *mapping)
345{
346 int ret = 0;
347 /* Check for outstanding write errors */
348 if (test_bit(AS_ENOSPC, &mapping->flags) &&
349 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
350 ret = -ENOSPC;
351 if (test_bit(AS_EIO, &mapping->flags) &&
352 test_and_clear_bit(AS_EIO, &mapping->flags))
353 ret = -EIO;
354 return ret;
355}
356EXPORT_SYMBOL(filemap_check_errors);
357
358static int filemap_check_and_keep_errors(struct address_space *mapping)
359{
360 /* Check for outstanding write errors */
361 if (test_bit(AS_EIO, &mapping->flags))
362 return -EIO;
363 if (test_bit(AS_ENOSPC, &mapping->flags))
364 return -ENOSPC;
365 return 0;
366}
367
368/**
369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
370 * @mapping: address space structure to write
371 * @wbc: the writeback_control controlling the writeout
372 *
373 * Call writepages on the mapping using the provided wbc to control the
374 * writeout.
375 *
376 * Return: %0 on success, negative error code otherwise.
377 */
378int filemap_fdatawrite_wbc(struct address_space *mapping,
379 struct writeback_control *wbc)
380{
381 int ret;
382
383 if (!mapping_can_writeback(mapping) ||
384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
385 return 0;
386
387 wbc_attach_fdatawrite_inode(wbc, mapping->host);
388 ret = do_writepages(mapping, wbc);
389 wbc_detach_inode(wbc);
390 return ret;
391}
392EXPORT_SYMBOL(filemap_fdatawrite_wbc);
393
394/**
395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
396 * @mapping: address space structure to write
397 * @start: offset in bytes where the range starts
398 * @end: offset in bytes where the range ends (inclusive)
399 * @sync_mode: enable synchronous operation
400 *
401 * Start writeback against all of a mapping's dirty pages that lie
402 * within the byte offsets <start, end> inclusive.
403 *
404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
405 * opposed to a regular memory cleansing writeback. The difference between
406 * these two operations is that if a dirty page/buffer is encountered, it must
407 * be waited upon, and not just skipped over.
408 *
409 * Return: %0 on success, negative error code otherwise.
410 */
411int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
412 loff_t end, int sync_mode)
413{
414 struct writeback_control wbc = {
415 .sync_mode = sync_mode,
416 .nr_to_write = LONG_MAX,
417 .range_start = start,
418 .range_end = end,
419 };
420
421 return filemap_fdatawrite_wbc(mapping, &wbc);
422}
423
424static inline int __filemap_fdatawrite(struct address_space *mapping,
425 int sync_mode)
426{
427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
428}
429
430int filemap_fdatawrite(struct address_space *mapping)
431{
432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
433}
434EXPORT_SYMBOL(filemap_fdatawrite);
435
436int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
437 loff_t end)
438{
439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
440}
441EXPORT_SYMBOL(filemap_fdatawrite_range);
442
443/**
444 * filemap_flush - mostly a non-blocking flush
445 * @mapping: target address_space
446 *
447 * This is a mostly non-blocking flush. Not suitable for data-integrity
448 * purposes - I/O may not be started against all dirty pages.
449 *
450 * Return: %0 on success, negative error code otherwise.
451 */
452int filemap_flush(struct address_space *mapping)
453{
454 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
455}
456EXPORT_SYMBOL(filemap_flush);
457
458/**
459 * filemap_range_has_page - check if a page exists in range.
460 * @mapping: address space within which to check
461 * @start_byte: offset in bytes where the range starts
462 * @end_byte: offset in bytes where the range ends (inclusive)
463 *
464 * Find at least one page in the range supplied, usually used to check if
465 * direct writing in this range will trigger a writeback.
466 *
467 * Return: %true if at least one page exists in the specified range,
468 * %false otherwise.
469 */
470bool filemap_range_has_page(struct address_space *mapping,
471 loff_t start_byte, loff_t end_byte)
472{
473 struct page *page;
474 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
475 pgoff_t max = end_byte >> PAGE_SHIFT;
476
477 if (end_byte < start_byte)
478 return false;
479
480 rcu_read_lock();
481 for (;;) {
482 page = xas_find(&xas, max);
483 if (xas_retry(&xas, page))
484 continue;
485 /* Shadow entries don't count */
486 if (xa_is_value(page))
487 continue;
488 /*
489 * We don't need to try to pin this page; we're about to
490 * release the RCU lock anyway. It is enough to know that
491 * there was a page here recently.
492 */
493 break;
494 }
495 rcu_read_unlock();
496
497 return page != NULL;
498}
499EXPORT_SYMBOL(filemap_range_has_page);
500
501static void __filemap_fdatawait_range(struct address_space *mapping,
502 loff_t start_byte, loff_t end_byte)
503{
504 pgoff_t index = start_byte >> PAGE_SHIFT;
505 pgoff_t end = end_byte >> PAGE_SHIFT;
506 struct pagevec pvec;
507 int nr_pages;
508
509 if (end_byte < start_byte)
510 return;
511
512 pagevec_init(&pvec);
513 while (index <= end) {
514 unsigned i;
515
516 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
517 end, PAGECACHE_TAG_WRITEBACK);
518 if (!nr_pages)
519 break;
520
521 for (i = 0; i < nr_pages; i++) {
522 struct page *page = pvec.pages[i];
523
524 wait_on_page_writeback(page);
525 ClearPageError(page);
526 }
527 pagevec_release(&pvec);
528 cond_resched();
529 }
530}
531
532/**
533 * filemap_fdatawait_range - wait for writeback to complete
534 * @mapping: address space structure to wait for
535 * @start_byte: offset in bytes where the range starts
536 * @end_byte: offset in bytes where the range ends (inclusive)
537 *
538 * Walk the list of under-writeback pages of the given address space
539 * in the given range and wait for all of them. Check error status of
540 * the address space and return it.
541 *
542 * Since the error status of the address space is cleared by this function,
543 * callers are responsible for checking the return value and handling and/or
544 * reporting the error.
545 *
546 * Return: error status of the address space.
547 */
548int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
549 loff_t end_byte)
550{
551 __filemap_fdatawait_range(mapping, start_byte, end_byte);
552 return filemap_check_errors(mapping);
553}
554EXPORT_SYMBOL(filemap_fdatawait_range);
555
556/**
557 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
558 * @mapping: address space structure to wait for
559 * @start_byte: offset in bytes where the range starts
560 * @end_byte: offset in bytes where the range ends (inclusive)
561 *
562 * Walk the list of under-writeback pages of the given address space in the
563 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
564 * this function does not clear error status of the address space.
565 *
566 * Use this function if callers don't handle errors themselves. Expected
567 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
568 * fsfreeze(8)
569 */
570int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
571 loff_t start_byte, loff_t end_byte)
572{
573 __filemap_fdatawait_range(mapping, start_byte, end_byte);
574 return filemap_check_and_keep_errors(mapping);
575}
576EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
577
578/**
579 * file_fdatawait_range - wait for writeback to complete
580 * @file: file pointing to address space structure to wait for
581 * @start_byte: offset in bytes where the range starts
582 * @end_byte: offset in bytes where the range ends (inclusive)
583 *
584 * Walk the list of under-writeback pages of the address space that file
585 * refers to, in the given range and wait for all of them. Check error
586 * status of the address space vs. the file->f_wb_err cursor and return it.
587 *
588 * Since the error status of the file is advanced by this function,
589 * callers are responsible for checking the return value and handling and/or
590 * reporting the error.
591 *
592 * Return: error status of the address space vs. the file->f_wb_err cursor.
593 */
594int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
595{
596 struct address_space *mapping = file->f_mapping;
597
598 __filemap_fdatawait_range(mapping, start_byte, end_byte);
599 return file_check_and_advance_wb_err(file);
600}
601EXPORT_SYMBOL(file_fdatawait_range);
602
603/**
604 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
605 * @mapping: address space structure to wait for
606 *
607 * Walk the list of under-writeback pages of the given address space
608 * and wait for all of them. Unlike filemap_fdatawait(), this function
609 * does not clear error status of the address space.
610 *
611 * Use this function if callers don't handle errors themselves. Expected
612 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
613 * fsfreeze(8)
614 *
615 * Return: error status of the address space.
616 */
617int filemap_fdatawait_keep_errors(struct address_space *mapping)
618{
619 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
620 return filemap_check_and_keep_errors(mapping);
621}
622EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
623
624/* Returns true if writeback might be needed or already in progress. */
625static bool mapping_needs_writeback(struct address_space *mapping)
626{
627 return mapping->nrpages;
628}
629
630bool filemap_range_has_writeback(struct address_space *mapping,
631 loff_t start_byte, loff_t end_byte)
632{
633 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
634 pgoff_t max = end_byte >> PAGE_SHIFT;
635 struct page *page;
636
637 if (end_byte < start_byte)
638 return false;
639
640 rcu_read_lock();
641 xas_for_each(&xas, page, max) {
642 if (xas_retry(&xas, page))
643 continue;
644 if (xa_is_value(page))
645 continue;
646 if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
647 break;
648 }
649 rcu_read_unlock();
650 return page != NULL;
651}
652EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
653
654/**
655 * filemap_write_and_wait_range - write out & wait on a file range
656 * @mapping: the address_space for the pages
657 * @lstart: offset in bytes where the range starts
658 * @lend: offset in bytes where the range ends (inclusive)
659 *
660 * Write out and wait upon file offsets lstart->lend, inclusive.
661 *
662 * Note that @lend is inclusive (describes the last byte to be written) so
663 * that this function can be used to write to the very end-of-file (end = -1).
664 *
665 * Return: error status of the address space.
666 */
667int filemap_write_and_wait_range(struct address_space *mapping,
668 loff_t lstart, loff_t lend)
669{
670 int err = 0;
671
672 if (mapping_needs_writeback(mapping)) {
673 err = __filemap_fdatawrite_range(mapping, lstart, lend,
674 WB_SYNC_ALL);
675 /*
676 * Even if the above returned error, the pages may be
677 * written partially (e.g. -ENOSPC), so we wait for it.
678 * But the -EIO is special case, it may indicate the worst
679 * thing (e.g. bug) happened, so we avoid waiting for it.
680 */
681 if (err != -EIO) {
682 int err2 = filemap_fdatawait_range(mapping,
683 lstart, lend);
684 if (!err)
685 err = err2;
686 } else {
687 /* Clear any previously stored errors */
688 filemap_check_errors(mapping);
689 }
690 } else {
691 err = filemap_check_errors(mapping);
692 }
693 return err;
694}
695EXPORT_SYMBOL(filemap_write_and_wait_range);
696
697void __filemap_set_wb_err(struct address_space *mapping, int err)
698{
699 errseq_t eseq = errseq_set(&mapping->wb_err, err);
700
701 trace_filemap_set_wb_err(mapping, eseq);
702}
703EXPORT_SYMBOL(__filemap_set_wb_err);
704
705/**
706 * file_check_and_advance_wb_err - report wb error (if any) that was previously
707 * and advance wb_err to current one
708 * @file: struct file on which the error is being reported
709 *
710 * When userland calls fsync (or something like nfsd does the equivalent), we
711 * want to report any writeback errors that occurred since the last fsync (or
712 * since the file was opened if there haven't been any).
713 *
714 * Grab the wb_err from the mapping. If it matches what we have in the file,
715 * then just quickly return 0. The file is all caught up.
716 *
717 * If it doesn't match, then take the mapping value, set the "seen" flag in
718 * it and try to swap it into place. If it works, or another task beat us
719 * to it with the new value, then update the f_wb_err and return the error
720 * portion. The error at this point must be reported via proper channels
721 * (a'la fsync, or NFS COMMIT operation, etc.).
722 *
723 * While we handle mapping->wb_err with atomic operations, the f_wb_err
724 * value is protected by the f_lock since we must ensure that it reflects
725 * the latest value swapped in for this file descriptor.
726 *
727 * Return: %0 on success, negative error code otherwise.
728 */
729int file_check_and_advance_wb_err(struct file *file)
730{
731 int err = 0;
732 errseq_t old = READ_ONCE(file->f_wb_err);
733 struct address_space *mapping = file->f_mapping;
734
735 /* Locklessly handle the common case where nothing has changed */
736 if (errseq_check(&mapping->wb_err, old)) {
737 /* Something changed, must use slow path */
738 spin_lock(&file->f_lock);
739 old = file->f_wb_err;
740 err = errseq_check_and_advance(&mapping->wb_err,
741 &file->f_wb_err);
742 trace_file_check_and_advance_wb_err(file, old);
743 spin_unlock(&file->f_lock);
744 }
745
746 /*
747 * We're mostly using this function as a drop in replacement for
748 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
749 * that the legacy code would have had on these flags.
750 */
751 clear_bit(AS_EIO, &mapping->flags);
752 clear_bit(AS_ENOSPC, &mapping->flags);
753 return err;
754}
755EXPORT_SYMBOL(file_check_and_advance_wb_err);
756
757/**
758 * file_write_and_wait_range - write out & wait on a file range
759 * @file: file pointing to address_space with pages
760 * @lstart: offset in bytes where the range starts
761 * @lend: offset in bytes where the range ends (inclusive)
762 *
763 * Write out and wait upon file offsets lstart->lend, inclusive.
764 *
765 * Note that @lend is inclusive (describes the last byte to be written) so
766 * that this function can be used to write to the very end-of-file (end = -1).
767 *
768 * After writing out and waiting on the data, we check and advance the
769 * f_wb_err cursor to the latest value, and return any errors detected there.
770 *
771 * Return: %0 on success, negative error code otherwise.
772 */
773int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
774{
775 int err = 0, err2;
776 struct address_space *mapping = file->f_mapping;
777
778 if (mapping_needs_writeback(mapping)) {
779 err = __filemap_fdatawrite_range(mapping, lstart, lend,
780 WB_SYNC_ALL);
781 /* See comment of filemap_write_and_wait() */
782 if (err != -EIO)
783 __filemap_fdatawait_range(mapping, lstart, lend);
784 }
785 err2 = file_check_and_advance_wb_err(file);
786 if (!err)
787 err = err2;
788 return err;
789}
790EXPORT_SYMBOL(file_write_and_wait_range);
791
792/**
793 * replace_page_cache_page - replace a pagecache page with a new one
794 * @old: page to be replaced
795 * @new: page to replace with
796 *
797 * This function replaces a page in the pagecache with a new one. On
798 * success it acquires the pagecache reference for the new page and
799 * drops it for the old page. Both the old and new pages must be
800 * locked. This function does not add the new page to the LRU, the
801 * caller must do that.
802 *
803 * The remove + add is atomic. This function cannot fail.
804 */
805void replace_page_cache_page(struct page *old, struct page *new)
806{
807 struct folio *fold = page_folio(old);
808 struct folio *fnew = page_folio(new);
809 struct address_space *mapping = old->mapping;
810 void (*freepage)(struct page *) = mapping->a_ops->freepage;
811 pgoff_t offset = old->index;
812 XA_STATE(xas, &mapping->i_pages, offset);
813
814 VM_BUG_ON_PAGE(!PageLocked(old), old);
815 VM_BUG_ON_PAGE(!PageLocked(new), new);
816 VM_BUG_ON_PAGE(new->mapping, new);
817
818 get_page(new);
819 new->mapping = mapping;
820 new->index = offset;
821
822 mem_cgroup_migrate(fold, fnew);
823
824 xas_lock_irq(&xas);
825 xas_store(&xas, new);
826
827 old->mapping = NULL;
828 /* hugetlb pages do not participate in page cache accounting. */
829 if (!PageHuge(old))
830 __dec_lruvec_page_state(old, NR_FILE_PAGES);
831 if (!PageHuge(new))
832 __inc_lruvec_page_state(new, NR_FILE_PAGES);
833 if (PageSwapBacked(old))
834 __dec_lruvec_page_state(old, NR_SHMEM);
835 if (PageSwapBacked(new))
836 __inc_lruvec_page_state(new, NR_SHMEM);
837 xas_unlock_irq(&xas);
838 if (freepage)
839 freepage(old);
840 put_page(old);
841}
842EXPORT_SYMBOL_GPL(replace_page_cache_page);
843
844noinline int __filemap_add_folio(struct address_space *mapping,
845 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
846{
847 XA_STATE(xas, &mapping->i_pages, index);
848 int huge = folio_test_hugetlb(folio);
849 bool charged = false;
850 long nr = 1;
851
852 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
853 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
854 mapping_set_update(&xas, mapping);
855
856 if (!huge) {
857 int error = mem_cgroup_charge(folio, NULL, gfp);
858 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
859 if (error)
860 return error;
861 charged = true;
862 xas_set_order(&xas, index, folio_order(folio));
863 nr = folio_nr_pages(folio);
864 }
865
866 gfp &= GFP_RECLAIM_MASK;
867 folio_ref_add(folio, nr);
868 folio->mapping = mapping;
869 folio->index = xas.xa_index;
870
871 do {
872 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
873 void *entry, *old = NULL;
874
875 if (order > folio_order(folio))
876 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
877 order, gfp);
878 xas_lock_irq(&xas);
879 xas_for_each_conflict(&xas, entry) {
880 old = entry;
881 if (!xa_is_value(entry)) {
882 xas_set_err(&xas, -EEXIST);
883 goto unlock;
884 }
885 }
886
887 if (old) {
888 if (shadowp)
889 *shadowp = old;
890 /* entry may have been split before we acquired lock */
891 order = xa_get_order(xas.xa, xas.xa_index);
892 if (order > folio_order(folio)) {
893 /* How to handle large swap entries? */
894 BUG_ON(shmem_mapping(mapping));
895 xas_split(&xas, old, order);
896 xas_reset(&xas);
897 }
898 }
899
900 xas_store(&xas, folio);
901 if (xas_error(&xas))
902 goto unlock;
903
904 mapping->nrpages += nr;
905
906 /* hugetlb pages do not participate in page cache accounting */
907 if (!huge) {
908 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
909 if (folio_test_pmd_mappable(folio))
910 __lruvec_stat_mod_folio(folio,
911 NR_FILE_THPS, nr);
912 }
913unlock:
914 xas_unlock_irq(&xas);
915 } while (xas_nomem(&xas, gfp));
916
917 if (xas_error(&xas))
918 goto error;
919
920 trace_mm_filemap_add_to_page_cache(folio);
921 return 0;
922error:
923 if (charged)
924 mem_cgroup_uncharge(folio);
925 folio->mapping = NULL;
926 /* Leave page->index set: truncation relies upon it */
927 folio_put_refs(folio, nr);
928 return xas_error(&xas);
929}
930ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
931
932/**
933 * add_to_page_cache_locked - add a locked page to the pagecache
934 * @page: page to add
935 * @mapping: the page's address_space
936 * @offset: page index
937 * @gfp_mask: page allocation mode
938 *
939 * This function is used to add a page to the pagecache. It must be locked.
940 * This function does not add the page to the LRU. The caller must do that.
941 *
942 * Return: %0 on success, negative error code otherwise.
943 */
944int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
945 pgoff_t offset, gfp_t gfp_mask)
946{
947 return __filemap_add_folio(mapping, page_folio(page), offset,
948 gfp_mask, NULL);
949}
950EXPORT_SYMBOL(add_to_page_cache_locked);
951
952int filemap_add_folio(struct address_space *mapping, struct folio *folio,
953 pgoff_t index, gfp_t gfp)
954{
955 void *shadow = NULL;
956 int ret;
957
958 __folio_set_locked(folio);
959 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
960 if (unlikely(ret))
961 __folio_clear_locked(folio);
962 else {
963 /*
964 * The folio might have been evicted from cache only
965 * recently, in which case it should be activated like
966 * any other repeatedly accessed folio.
967 * The exception is folios getting rewritten; evicting other
968 * data from the working set, only to cache data that will
969 * get overwritten with something else, is a waste of memory.
970 */
971 WARN_ON_ONCE(folio_test_active(folio));
972 if (!(gfp & __GFP_WRITE) && shadow)
973 workingset_refault(folio, shadow);
974 folio_add_lru(folio);
975 }
976 return ret;
977}
978EXPORT_SYMBOL_GPL(filemap_add_folio);
979
980#ifdef CONFIG_NUMA
981struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
982{
983 int n;
984 struct folio *folio;
985
986 if (cpuset_do_page_mem_spread()) {
987 unsigned int cpuset_mems_cookie;
988 do {
989 cpuset_mems_cookie = read_mems_allowed_begin();
990 n = cpuset_mem_spread_node();
991 folio = __folio_alloc_node(gfp, order, n);
992 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
993
994 return folio;
995 }
996 return folio_alloc(gfp, order);
997}
998EXPORT_SYMBOL(filemap_alloc_folio);
999#endif
1000
1001/*
1002 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1003 *
1004 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1005 *
1006 * @mapping1: the first mapping to lock
1007 * @mapping2: the second mapping to lock
1008 */
1009void filemap_invalidate_lock_two(struct address_space *mapping1,
1010 struct address_space *mapping2)
1011{
1012 if (mapping1 > mapping2)
1013 swap(mapping1, mapping2);
1014 if (mapping1)
1015 down_write(&mapping1->invalidate_lock);
1016 if (mapping2 && mapping1 != mapping2)
1017 down_write_nested(&mapping2->invalidate_lock, 1);
1018}
1019EXPORT_SYMBOL(filemap_invalidate_lock_two);
1020
1021/*
1022 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1023 *
1024 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1025 *
1026 * @mapping1: the first mapping to unlock
1027 * @mapping2: the second mapping to unlock
1028 */
1029void filemap_invalidate_unlock_two(struct address_space *mapping1,
1030 struct address_space *mapping2)
1031{
1032 if (mapping1)
1033 up_write(&mapping1->invalidate_lock);
1034 if (mapping2 && mapping1 != mapping2)
1035 up_write(&mapping2->invalidate_lock);
1036}
1037EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1038
1039/*
1040 * In order to wait for pages to become available there must be
1041 * waitqueues associated with pages. By using a hash table of
1042 * waitqueues where the bucket discipline is to maintain all
1043 * waiters on the same queue and wake all when any of the pages
1044 * become available, and for the woken contexts to check to be
1045 * sure the appropriate page became available, this saves space
1046 * at a cost of "thundering herd" phenomena during rare hash
1047 * collisions.
1048 */
1049#define PAGE_WAIT_TABLE_BITS 8
1050#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1051static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1052
1053static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1054{
1055 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1056}
1057
1058void __init pagecache_init(void)
1059{
1060 int i;
1061
1062 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1063 init_waitqueue_head(&folio_wait_table[i]);
1064
1065 page_writeback_init();
1066
1067 /*
1068 * tmpfs uses the ZERO_PAGE for reading holes: it is up-to-date,
1069 * and splice's page_cache_pipe_buf_confirm() needs to see that.
1070 */
1071 SetPageUptodate(ZERO_PAGE(0));
1072}
1073
1074/*
1075 * The page wait code treats the "wait->flags" somewhat unusually, because
1076 * we have multiple different kinds of waits, not just the usual "exclusive"
1077 * one.
1078 *
1079 * We have:
1080 *
1081 * (a) no special bits set:
1082 *
1083 * We're just waiting for the bit to be released, and when a waker
1084 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1085 * and remove it from the wait queue.
1086 *
1087 * Simple and straightforward.
1088 *
1089 * (b) WQ_FLAG_EXCLUSIVE:
1090 *
1091 * The waiter is waiting to get the lock, and only one waiter should
1092 * be woken up to avoid any thundering herd behavior. We'll set the
1093 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1094 *
1095 * This is the traditional exclusive wait.
1096 *
1097 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1098 *
1099 * The waiter is waiting to get the bit, and additionally wants the
1100 * lock to be transferred to it for fair lock behavior. If the lock
1101 * cannot be taken, we stop walking the wait queue without waking
1102 * the waiter.
1103 *
1104 * This is the "fair lock handoff" case, and in addition to setting
1105 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1106 * that it now has the lock.
1107 */
1108static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1109{
1110 unsigned int flags;
1111 struct wait_page_key *key = arg;
1112 struct wait_page_queue *wait_page
1113 = container_of(wait, struct wait_page_queue, wait);
1114
1115 if (!wake_page_match(wait_page, key))
1116 return 0;
1117
1118 /*
1119 * If it's a lock handoff wait, we get the bit for it, and
1120 * stop walking (and do not wake it up) if we can't.
1121 */
1122 flags = wait->flags;
1123 if (flags & WQ_FLAG_EXCLUSIVE) {
1124 if (test_bit(key->bit_nr, &key->folio->flags))
1125 return -1;
1126 if (flags & WQ_FLAG_CUSTOM) {
1127 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1128 return -1;
1129 flags |= WQ_FLAG_DONE;
1130 }
1131 }
1132
1133 /*
1134 * We are holding the wait-queue lock, but the waiter that
1135 * is waiting for this will be checking the flags without
1136 * any locking.
1137 *
1138 * So update the flags atomically, and wake up the waiter
1139 * afterwards to avoid any races. This store-release pairs
1140 * with the load-acquire in folio_wait_bit_common().
1141 */
1142 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1143 wake_up_state(wait->private, mode);
1144
1145 /*
1146 * Ok, we have successfully done what we're waiting for,
1147 * and we can unconditionally remove the wait entry.
1148 *
1149 * Note that this pairs with the "finish_wait()" in the
1150 * waiter, and has to be the absolute last thing we do.
1151 * After this list_del_init(&wait->entry) the wait entry
1152 * might be de-allocated and the process might even have
1153 * exited.
1154 */
1155 list_del_init_careful(&wait->entry);
1156 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1157}
1158
1159static void folio_wake_bit(struct folio *folio, int bit_nr)
1160{
1161 wait_queue_head_t *q = folio_waitqueue(folio);
1162 struct wait_page_key key;
1163 unsigned long flags;
1164 wait_queue_entry_t bookmark;
1165
1166 key.folio = folio;
1167 key.bit_nr = bit_nr;
1168 key.page_match = 0;
1169
1170 bookmark.flags = 0;
1171 bookmark.private = NULL;
1172 bookmark.func = NULL;
1173 INIT_LIST_HEAD(&bookmark.entry);
1174
1175 spin_lock_irqsave(&q->lock, flags);
1176 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1177
1178 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1179 /*
1180 * Take a breather from holding the lock,
1181 * allow pages that finish wake up asynchronously
1182 * to acquire the lock and remove themselves
1183 * from wait queue
1184 */
1185 spin_unlock_irqrestore(&q->lock, flags);
1186 cpu_relax();
1187 spin_lock_irqsave(&q->lock, flags);
1188 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1189 }
1190
1191 /*
1192 * It's possible to miss clearing waiters here, when we woke our page
1193 * waiters, but the hashed waitqueue has waiters for other pages on it.
1194 * That's okay, it's a rare case. The next waker will clear it.
1195 *
1196 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1197 * other), the flag may be cleared in the course of freeing the page;
1198 * but that is not required for correctness.
1199 */
1200 if (!waitqueue_active(q) || !key.page_match)
1201 folio_clear_waiters(folio);
1202
1203 spin_unlock_irqrestore(&q->lock, flags);
1204}
1205
1206static void folio_wake(struct folio *folio, int bit)
1207{
1208 if (!folio_test_waiters(folio))
1209 return;
1210 folio_wake_bit(folio, bit);
1211}
1212
1213/*
1214 * A choice of three behaviors for folio_wait_bit_common():
1215 */
1216enum behavior {
1217 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1218 * __folio_lock() waiting on then setting PG_locked.
1219 */
1220 SHARED, /* Hold ref to page and check the bit when woken, like
1221 * folio_wait_writeback() waiting on PG_writeback.
1222 */
1223 DROP, /* Drop ref to page before wait, no check when woken,
1224 * like folio_put_wait_locked() on PG_locked.
1225 */
1226};
1227
1228/*
1229 * Attempt to check (or get) the folio flag, and mark us done
1230 * if successful.
1231 */
1232static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1233 struct wait_queue_entry *wait)
1234{
1235 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1236 if (test_and_set_bit(bit_nr, &folio->flags))
1237 return false;
1238 } else if (test_bit(bit_nr, &folio->flags))
1239 return false;
1240
1241 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1242 return true;
1243}
1244
1245/* How many times do we accept lock stealing from under a waiter? */
1246int sysctl_page_lock_unfairness = 5;
1247
1248static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1249 int state, enum behavior behavior)
1250{
1251 wait_queue_head_t *q = folio_waitqueue(folio);
1252 int unfairness = sysctl_page_lock_unfairness;
1253 struct wait_page_queue wait_page;
1254 wait_queue_entry_t *wait = &wait_page.wait;
1255 bool thrashing = false;
1256 bool delayacct = false;
1257 unsigned long pflags;
1258
1259 if (bit_nr == PG_locked &&
1260 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1261 if (!folio_test_swapbacked(folio)) {
1262 delayacct_thrashing_start();
1263 delayacct = true;
1264 }
1265 psi_memstall_enter(&pflags);
1266 thrashing = true;
1267 }
1268
1269 init_wait(wait);
1270 wait->func = wake_page_function;
1271 wait_page.folio = folio;
1272 wait_page.bit_nr = bit_nr;
1273
1274repeat:
1275 wait->flags = 0;
1276 if (behavior == EXCLUSIVE) {
1277 wait->flags = WQ_FLAG_EXCLUSIVE;
1278 if (--unfairness < 0)
1279 wait->flags |= WQ_FLAG_CUSTOM;
1280 }
1281
1282 /*
1283 * Do one last check whether we can get the
1284 * page bit synchronously.
1285 *
1286 * Do the folio_set_waiters() marking before that
1287 * to let any waker we _just_ missed know they
1288 * need to wake us up (otherwise they'll never
1289 * even go to the slow case that looks at the
1290 * page queue), and add ourselves to the wait
1291 * queue if we need to sleep.
1292 *
1293 * This part needs to be done under the queue
1294 * lock to avoid races.
1295 */
1296 spin_lock_irq(&q->lock);
1297 folio_set_waiters(folio);
1298 if (!folio_trylock_flag(folio, bit_nr, wait))
1299 __add_wait_queue_entry_tail(q, wait);
1300 spin_unlock_irq(&q->lock);
1301
1302 /*
1303 * From now on, all the logic will be based on
1304 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1305 * see whether the page bit testing has already
1306 * been done by the wake function.
1307 *
1308 * We can drop our reference to the folio.
1309 */
1310 if (behavior == DROP)
1311 folio_put(folio);
1312
1313 /*
1314 * Note that until the "finish_wait()", or until
1315 * we see the WQ_FLAG_WOKEN flag, we need to
1316 * be very careful with the 'wait->flags', because
1317 * we may race with a waker that sets them.
1318 */
1319 for (;;) {
1320 unsigned int flags;
1321
1322 set_current_state(state);
1323
1324 /* Loop until we've been woken or interrupted */
1325 flags = smp_load_acquire(&wait->flags);
1326 if (!(flags & WQ_FLAG_WOKEN)) {
1327 if (signal_pending_state(state, current))
1328 break;
1329
1330 io_schedule();
1331 continue;
1332 }
1333
1334 /* If we were non-exclusive, we're done */
1335 if (behavior != EXCLUSIVE)
1336 break;
1337
1338 /* If the waker got the lock for us, we're done */
1339 if (flags & WQ_FLAG_DONE)
1340 break;
1341
1342 /*
1343 * Otherwise, if we're getting the lock, we need to
1344 * try to get it ourselves.
1345 *
1346 * And if that fails, we'll have to retry this all.
1347 */
1348 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1349 goto repeat;
1350
1351 wait->flags |= WQ_FLAG_DONE;
1352 break;
1353 }
1354
1355 /*
1356 * If a signal happened, this 'finish_wait()' may remove the last
1357 * waiter from the wait-queues, but the folio waiters bit will remain
1358 * set. That's ok. The next wakeup will take care of it, and trying
1359 * to do it here would be difficult and prone to races.
1360 */
1361 finish_wait(q, wait);
1362
1363 if (thrashing) {
1364 if (delayacct)
1365 delayacct_thrashing_end();
1366 psi_memstall_leave(&pflags);
1367 }
1368
1369 /*
1370 * NOTE! The wait->flags weren't stable until we've done the
1371 * 'finish_wait()', and we could have exited the loop above due
1372 * to a signal, and had a wakeup event happen after the signal
1373 * test but before the 'finish_wait()'.
1374 *
1375 * So only after the finish_wait() can we reliably determine
1376 * if we got woken up or not, so we can now figure out the final
1377 * return value based on that state without races.
1378 *
1379 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1380 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1381 */
1382 if (behavior == EXCLUSIVE)
1383 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1384
1385 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1386}
1387
1388#ifdef CONFIG_MIGRATION
1389/**
1390 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1391 * @entry: migration swap entry.
1392 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1393 * for pte entries, pass NULL for pmd entries.
1394 * @ptl: already locked ptl. This function will drop the lock.
1395 *
1396 * Wait for a migration entry referencing the given page to be removed. This is
1397 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1398 * this can be called without taking a reference on the page. Instead this
1399 * should be called while holding the ptl for the migration entry referencing
1400 * the page.
1401 *
1402 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1403 *
1404 * This follows the same logic as folio_wait_bit_common() so see the comments
1405 * there.
1406 */
1407void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1408 spinlock_t *ptl)
1409{
1410 struct wait_page_queue wait_page;
1411 wait_queue_entry_t *wait = &wait_page.wait;
1412 bool thrashing = false;
1413 bool delayacct = false;
1414 unsigned long pflags;
1415 wait_queue_head_t *q;
1416 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1417
1418 q = folio_waitqueue(folio);
1419 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1420 if (!folio_test_swapbacked(folio)) {
1421 delayacct_thrashing_start();
1422 delayacct = true;
1423 }
1424 psi_memstall_enter(&pflags);
1425 thrashing = true;
1426 }
1427
1428 init_wait(wait);
1429 wait->func = wake_page_function;
1430 wait_page.folio = folio;
1431 wait_page.bit_nr = PG_locked;
1432 wait->flags = 0;
1433
1434 spin_lock_irq(&q->lock);
1435 folio_set_waiters(folio);
1436 if (!folio_trylock_flag(folio, PG_locked, wait))
1437 __add_wait_queue_entry_tail(q, wait);
1438 spin_unlock_irq(&q->lock);
1439
1440 /*
1441 * If a migration entry exists for the page the migration path must hold
1442 * a valid reference to the page, and it must take the ptl to remove the
1443 * migration entry. So the page is valid until the ptl is dropped.
1444 */
1445 if (ptep)
1446 pte_unmap_unlock(ptep, ptl);
1447 else
1448 spin_unlock(ptl);
1449
1450 for (;;) {
1451 unsigned int flags;
1452
1453 set_current_state(TASK_UNINTERRUPTIBLE);
1454
1455 /* Loop until we've been woken or interrupted */
1456 flags = smp_load_acquire(&wait->flags);
1457 if (!(flags & WQ_FLAG_WOKEN)) {
1458 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1459 break;
1460
1461 io_schedule();
1462 continue;
1463 }
1464 break;
1465 }
1466
1467 finish_wait(q, wait);
1468
1469 if (thrashing) {
1470 if (delayacct)
1471 delayacct_thrashing_end();
1472 psi_memstall_leave(&pflags);
1473 }
1474}
1475#endif
1476
1477void folio_wait_bit(struct folio *folio, int bit_nr)
1478{
1479 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1480}
1481EXPORT_SYMBOL(folio_wait_bit);
1482
1483int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1484{
1485 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1486}
1487EXPORT_SYMBOL(folio_wait_bit_killable);
1488
1489/**
1490 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1491 * @folio: The folio to wait for.
1492 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1493 *
1494 * The caller should hold a reference on @folio. They expect the page to
1495 * become unlocked relatively soon, but do not wish to hold up migration
1496 * (for example) by holding the reference while waiting for the folio to
1497 * come unlocked. After this function returns, the caller should not
1498 * dereference @folio.
1499 *
1500 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1501 */
1502int folio_put_wait_locked(struct folio *folio, int state)
1503{
1504 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1505}
1506
1507/**
1508 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1509 * @folio: Folio defining the wait queue of interest
1510 * @waiter: Waiter to add to the queue
1511 *
1512 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1513 */
1514void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1515{
1516 wait_queue_head_t *q = folio_waitqueue(folio);
1517 unsigned long flags;
1518
1519 spin_lock_irqsave(&q->lock, flags);
1520 __add_wait_queue_entry_tail(q, waiter);
1521 folio_set_waiters(folio);
1522 spin_unlock_irqrestore(&q->lock, flags);
1523}
1524EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1525
1526#ifndef clear_bit_unlock_is_negative_byte
1527
1528/*
1529 * PG_waiters is the high bit in the same byte as PG_lock.
1530 *
1531 * On x86 (and on many other architectures), we can clear PG_lock and
1532 * test the sign bit at the same time. But if the architecture does
1533 * not support that special operation, we just do this all by hand
1534 * instead.
1535 *
1536 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1537 * being cleared, but a memory barrier should be unnecessary since it is
1538 * in the same byte as PG_locked.
1539 */
1540static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1541{
1542 clear_bit_unlock(nr, mem);
1543 /* smp_mb__after_atomic(); */
1544 return test_bit(PG_waiters, mem);
1545}
1546
1547#endif
1548
1549/**
1550 * folio_unlock - Unlock a locked folio.
1551 * @folio: The folio.
1552 *
1553 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1554 *
1555 * Context: May be called from interrupt or process context. May not be
1556 * called from NMI context.
1557 */
1558void folio_unlock(struct folio *folio)
1559{
1560 /* Bit 7 allows x86 to check the byte's sign bit */
1561 BUILD_BUG_ON(PG_waiters != 7);
1562 BUILD_BUG_ON(PG_locked > 7);
1563 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1564 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1565 folio_wake_bit(folio, PG_locked);
1566}
1567EXPORT_SYMBOL(folio_unlock);
1568
1569/**
1570 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1571 * @folio: The folio.
1572 *
1573 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1574 * it. The folio reference held for PG_private_2 being set is released.
1575 *
1576 * This is, for example, used when a netfs folio is being written to a local
1577 * disk cache, thereby allowing writes to the cache for the same folio to be
1578 * serialised.
1579 */
1580void folio_end_private_2(struct folio *folio)
1581{
1582 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1583 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1584 folio_wake_bit(folio, PG_private_2);
1585 folio_put(folio);
1586}
1587EXPORT_SYMBOL(folio_end_private_2);
1588
1589/**
1590 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1591 * @folio: The folio to wait on.
1592 *
1593 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1594 */
1595void folio_wait_private_2(struct folio *folio)
1596{
1597 while (folio_test_private_2(folio))
1598 folio_wait_bit(folio, PG_private_2);
1599}
1600EXPORT_SYMBOL(folio_wait_private_2);
1601
1602/**
1603 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1604 * @folio: The folio to wait on.
1605 *
1606 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1607 * fatal signal is received by the calling task.
1608 *
1609 * Return:
1610 * - 0 if successful.
1611 * - -EINTR if a fatal signal was encountered.
1612 */
1613int folio_wait_private_2_killable(struct folio *folio)
1614{
1615 int ret = 0;
1616
1617 while (folio_test_private_2(folio)) {
1618 ret = folio_wait_bit_killable(folio, PG_private_2);
1619 if (ret < 0)
1620 break;
1621 }
1622
1623 return ret;
1624}
1625EXPORT_SYMBOL(folio_wait_private_2_killable);
1626
1627/**
1628 * folio_end_writeback - End writeback against a folio.
1629 * @folio: The folio.
1630 */
1631void folio_end_writeback(struct folio *folio)
1632{
1633 /*
1634 * folio_test_clear_reclaim() could be used here but it is an
1635 * atomic operation and overkill in this particular case. Failing
1636 * to shuffle a folio marked for immediate reclaim is too mild
1637 * a gain to justify taking an atomic operation penalty at the
1638 * end of every folio writeback.
1639 */
1640 if (folio_test_reclaim(folio)) {
1641 folio_clear_reclaim(folio);
1642 folio_rotate_reclaimable(folio);
1643 }
1644
1645 /*
1646 * Writeback does not hold a folio reference of its own, relying
1647 * on truncation to wait for the clearing of PG_writeback.
1648 * But here we must make sure that the folio is not freed and
1649 * reused before the folio_wake().
1650 */
1651 folio_get(folio);
1652 if (!__folio_end_writeback(folio))
1653 BUG();
1654
1655 smp_mb__after_atomic();
1656 folio_wake(folio, PG_writeback);
1657 acct_reclaim_writeback(folio);
1658 folio_put(folio);
1659}
1660EXPORT_SYMBOL(folio_end_writeback);
1661
1662/*
1663 * After completing I/O on a page, call this routine to update the page
1664 * flags appropriately
1665 */
1666void page_endio(struct page *page, bool is_write, int err)
1667{
1668 if (!is_write) {
1669 if (!err) {
1670 SetPageUptodate(page);
1671 } else {
1672 ClearPageUptodate(page);
1673 SetPageError(page);
1674 }
1675 unlock_page(page);
1676 } else {
1677 if (err) {
1678 struct address_space *mapping;
1679
1680 SetPageError(page);
1681 mapping = page_mapping(page);
1682 if (mapping)
1683 mapping_set_error(mapping, err);
1684 }
1685 end_page_writeback(page);
1686 }
1687}
1688EXPORT_SYMBOL_GPL(page_endio);
1689
1690/**
1691 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1692 * @folio: The folio to lock
1693 */
1694void __folio_lock(struct folio *folio)
1695{
1696 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1697 EXCLUSIVE);
1698}
1699EXPORT_SYMBOL(__folio_lock);
1700
1701int __folio_lock_killable(struct folio *folio)
1702{
1703 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1704 EXCLUSIVE);
1705}
1706EXPORT_SYMBOL_GPL(__folio_lock_killable);
1707
1708static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1709{
1710 struct wait_queue_head *q = folio_waitqueue(folio);
1711 int ret = 0;
1712
1713 wait->folio = folio;
1714 wait->bit_nr = PG_locked;
1715
1716 spin_lock_irq(&q->lock);
1717 __add_wait_queue_entry_tail(q, &wait->wait);
1718 folio_set_waiters(folio);
1719 ret = !folio_trylock(folio);
1720 /*
1721 * If we were successful now, we know we're still on the
1722 * waitqueue as we're still under the lock. This means it's
1723 * safe to remove and return success, we know the callback
1724 * isn't going to trigger.
1725 */
1726 if (!ret)
1727 __remove_wait_queue(q, &wait->wait);
1728 else
1729 ret = -EIOCBQUEUED;
1730 spin_unlock_irq(&q->lock);
1731 return ret;
1732}
1733
1734/*
1735 * Return values:
1736 * true - folio is locked; mmap_lock is still held.
1737 * false - folio is not locked.
1738 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1739 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1740 * which case mmap_lock is still held.
1741 *
1742 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1743 * with the folio locked and the mmap_lock unperturbed.
1744 */
1745bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1746 unsigned int flags)
1747{
1748 if (fault_flag_allow_retry_first(flags)) {
1749 /*
1750 * CAUTION! In this case, mmap_lock is not released
1751 * even though return 0.
1752 */
1753 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1754 return false;
1755
1756 mmap_read_unlock(mm);
1757 if (flags & FAULT_FLAG_KILLABLE)
1758 folio_wait_locked_killable(folio);
1759 else
1760 folio_wait_locked(folio);
1761 return false;
1762 }
1763 if (flags & FAULT_FLAG_KILLABLE) {
1764 bool ret;
1765
1766 ret = __folio_lock_killable(folio);
1767 if (ret) {
1768 mmap_read_unlock(mm);
1769 return false;
1770 }
1771 } else {
1772 __folio_lock(folio);
1773 }
1774
1775 return true;
1776}
1777
1778/**
1779 * page_cache_next_miss() - Find the next gap in the page cache.
1780 * @mapping: Mapping.
1781 * @index: Index.
1782 * @max_scan: Maximum range to search.
1783 *
1784 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1785 * gap with the lowest index.
1786 *
1787 * This function may be called under the rcu_read_lock. However, this will
1788 * not atomically search a snapshot of the cache at a single point in time.
1789 * For example, if a gap is created at index 5, then subsequently a gap is
1790 * created at index 10, page_cache_next_miss covering both indices may
1791 * return 10 if called under the rcu_read_lock.
1792 *
1793 * Return: The index of the gap if found, otherwise an index outside the
1794 * range specified (in which case 'return - index >= max_scan' will be true).
1795 * In the rare case of index wrap-around, 0 will be returned.
1796 */
1797pgoff_t page_cache_next_miss(struct address_space *mapping,
1798 pgoff_t index, unsigned long max_scan)
1799{
1800 XA_STATE(xas, &mapping->i_pages, index);
1801
1802 while (max_scan--) {
1803 void *entry = xas_next(&xas);
1804 if (!entry || xa_is_value(entry))
1805 break;
1806 if (xas.xa_index == 0)
1807 break;
1808 }
1809
1810 return xas.xa_index;
1811}
1812EXPORT_SYMBOL(page_cache_next_miss);
1813
1814/**
1815 * page_cache_prev_miss() - Find the previous gap in the page cache.
1816 * @mapping: Mapping.
1817 * @index: Index.
1818 * @max_scan: Maximum range to search.
1819 *
1820 * Search the range [max(index - max_scan + 1, 0), index] for the
1821 * gap with the highest index.
1822 *
1823 * This function may be called under the rcu_read_lock. However, this will
1824 * not atomically search a snapshot of the cache at a single point in time.
1825 * For example, if a gap is created at index 10, then subsequently a gap is
1826 * created at index 5, page_cache_prev_miss() covering both indices may
1827 * return 5 if called under the rcu_read_lock.
1828 *
1829 * Return: The index of the gap if found, otherwise an index outside the
1830 * range specified (in which case 'index - return >= max_scan' will be true).
1831 * In the rare case of wrap-around, ULONG_MAX will be returned.
1832 */
1833pgoff_t page_cache_prev_miss(struct address_space *mapping,
1834 pgoff_t index, unsigned long max_scan)
1835{
1836 XA_STATE(xas, &mapping->i_pages, index);
1837
1838 while (max_scan--) {
1839 void *entry = xas_prev(&xas);
1840 if (!entry || xa_is_value(entry))
1841 break;
1842 if (xas.xa_index == ULONG_MAX)
1843 break;
1844 }
1845
1846 return xas.xa_index;
1847}
1848EXPORT_SYMBOL(page_cache_prev_miss);
1849
1850/*
1851 * Lockless page cache protocol:
1852 * On the lookup side:
1853 * 1. Load the folio from i_pages
1854 * 2. Increment the refcount if it's not zero
1855 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1856 *
1857 * On the removal side:
1858 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1859 * B. Remove the page from i_pages
1860 * C. Return the page to the page allocator
1861 *
1862 * This means that any page may have its reference count temporarily
1863 * increased by a speculative page cache (or fast GUP) lookup as it can
1864 * be allocated by another user before the RCU grace period expires.
1865 * Because the refcount temporarily acquired here may end up being the
1866 * last refcount on the page, any page allocation must be freeable by
1867 * folio_put().
1868 */
1869
1870/*
1871 * mapping_get_entry - Get a page cache entry.
1872 * @mapping: the address_space to search
1873 * @index: The page cache index.
1874 *
1875 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1876 * it is returned with an increased refcount. If it is a shadow entry
1877 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1878 * it is returned without further action.
1879 *
1880 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1881 */
1882static void *mapping_get_entry(struct address_space *mapping, pgoff_t index)
1883{
1884 XA_STATE(xas, &mapping->i_pages, index);
1885 struct folio *folio;
1886
1887 rcu_read_lock();
1888repeat:
1889 xas_reset(&xas);
1890 folio = xas_load(&xas);
1891 if (xas_retry(&xas, folio))
1892 goto repeat;
1893 /*
1894 * A shadow entry of a recently evicted page, or a swap entry from
1895 * shmem/tmpfs. Return it without attempting to raise page count.
1896 */
1897 if (!folio || xa_is_value(folio))
1898 goto out;
1899
1900 if (!folio_try_get_rcu(folio))
1901 goto repeat;
1902
1903 if (unlikely(folio != xas_reload(&xas))) {
1904 folio_put(folio);
1905 goto repeat;
1906 }
1907out:
1908 rcu_read_unlock();
1909
1910 return folio;
1911}
1912
1913/**
1914 * __filemap_get_folio - Find and get a reference to a folio.
1915 * @mapping: The address_space to search.
1916 * @index: The page index.
1917 * @fgp_flags: %FGP flags modify how the folio is returned.
1918 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1919 *
1920 * Looks up the page cache entry at @mapping & @index.
1921 *
1922 * @fgp_flags can be zero or more of these flags:
1923 *
1924 * * %FGP_ACCESSED - The folio will be marked accessed.
1925 * * %FGP_LOCK - The folio is returned locked.
1926 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1927 * instead of allocating a new folio to replace it.
1928 * * %FGP_CREAT - If no page is present then a new page is allocated using
1929 * @gfp and added to the page cache and the VM's LRU list.
1930 * The page is returned locked and with an increased refcount.
1931 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1932 * page is already in cache. If the page was allocated, unlock it before
1933 * returning so the caller can do the same dance.
1934 * * %FGP_WRITE - The page will be written to by the caller.
1935 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1936 * * %FGP_NOWAIT - Don't get blocked by page lock.
1937 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1938 *
1939 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1940 * if the %GFP flags specified for %FGP_CREAT are atomic.
1941 *
1942 * If there is a page cache page, it is returned with an increased refcount.
1943 *
1944 * Return: The found folio or %NULL otherwise.
1945 */
1946struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1947 int fgp_flags, gfp_t gfp)
1948{
1949 struct folio *folio;
1950
1951repeat:
1952 folio = mapping_get_entry(mapping, index);
1953 if (xa_is_value(folio)) {
1954 if (fgp_flags & FGP_ENTRY)
1955 return folio;
1956 folio = NULL;
1957 }
1958 if (!folio)
1959 goto no_page;
1960
1961 if (fgp_flags & FGP_LOCK) {
1962 if (fgp_flags & FGP_NOWAIT) {
1963 if (!folio_trylock(folio)) {
1964 folio_put(folio);
1965 return NULL;
1966 }
1967 } else {
1968 folio_lock(folio);
1969 }
1970
1971 /* Has the page been truncated? */
1972 if (unlikely(folio->mapping != mapping)) {
1973 folio_unlock(folio);
1974 folio_put(folio);
1975 goto repeat;
1976 }
1977 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1978 }
1979
1980 if (fgp_flags & FGP_ACCESSED)
1981 folio_mark_accessed(folio);
1982 else if (fgp_flags & FGP_WRITE) {
1983 /* Clear idle flag for buffer write */
1984 if (folio_test_idle(folio))
1985 folio_clear_idle(folio);
1986 }
1987
1988 if (fgp_flags & FGP_STABLE)
1989 folio_wait_stable(folio);
1990no_page:
1991 if (!folio && (fgp_flags & FGP_CREAT)) {
1992 int err;
1993 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1994 gfp |= __GFP_WRITE;
1995 if (fgp_flags & FGP_NOFS)
1996 gfp &= ~__GFP_FS;
1997
1998 folio = filemap_alloc_folio(gfp, 0);
1999 if (!folio)
2000 return NULL;
2001
2002 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2003 fgp_flags |= FGP_LOCK;
2004
2005 /* Init accessed so avoid atomic mark_page_accessed later */
2006 if (fgp_flags & FGP_ACCESSED)
2007 __folio_set_referenced(folio);
2008
2009 err = filemap_add_folio(mapping, folio, index, gfp);
2010 if (unlikely(err)) {
2011 folio_put(folio);
2012 folio = NULL;
2013 if (err == -EEXIST)
2014 goto repeat;
2015 }
2016
2017 /*
2018 * filemap_add_folio locks the page, and for mmap
2019 * we expect an unlocked page.
2020 */
2021 if (folio && (fgp_flags & FGP_FOR_MMAP))
2022 folio_unlock(folio);
2023 }
2024
2025 return folio;
2026}
2027EXPORT_SYMBOL(__filemap_get_folio);
2028
2029static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2030 xa_mark_t mark)
2031{
2032 struct folio *folio;
2033
2034retry:
2035 if (mark == XA_PRESENT)
2036 folio = xas_find(xas, max);
2037 else
2038 folio = xas_find_marked(xas, max, mark);
2039
2040 if (xas_retry(xas, folio))
2041 goto retry;
2042 /*
2043 * A shadow entry of a recently evicted page, a swap
2044 * entry from shmem/tmpfs or a DAX entry. Return it
2045 * without attempting to raise page count.
2046 */
2047 if (!folio || xa_is_value(folio))
2048 return folio;
2049
2050 if (!folio_try_get_rcu(folio))
2051 goto reset;
2052
2053 if (unlikely(folio != xas_reload(xas))) {
2054 folio_put(folio);
2055 goto reset;
2056 }
2057
2058 return folio;
2059reset:
2060 xas_reset(xas);
2061 goto retry;
2062}
2063
2064/**
2065 * find_get_entries - gang pagecache lookup
2066 * @mapping: The address_space to search
2067 * @start: The starting page cache index
2068 * @end: The final page index (inclusive).
2069 * @fbatch: Where the resulting entries are placed.
2070 * @indices: The cache indices corresponding to the entries in @entries
2071 *
2072 * find_get_entries() will search for and return a batch of entries in
2073 * the mapping. The entries are placed in @fbatch. find_get_entries()
2074 * takes a reference on any actual folios it returns.
2075 *
2076 * The entries have ascending indexes. The indices may not be consecutive
2077 * due to not-present entries or large folios.
2078 *
2079 * Any shadow entries of evicted folios, or swap entries from
2080 * shmem/tmpfs, are included in the returned array.
2081 *
2082 * Return: The number of entries which were found.
2083 */
2084unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
2085 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2086{
2087 XA_STATE(xas, &mapping->i_pages, start);
2088 struct folio *folio;
2089
2090 rcu_read_lock();
2091 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2092 indices[fbatch->nr] = xas.xa_index;
2093 if (!folio_batch_add(fbatch, folio))
2094 break;
2095 }
2096 rcu_read_unlock();
2097
2098 return folio_batch_count(fbatch);
2099}
2100
2101/**
2102 * find_lock_entries - Find a batch of pagecache entries.
2103 * @mapping: The address_space to search.
2104 * @start: The starting page cache index.
2105 * @end: The final page index (inclusive).
2106 * @fbatch: Where the resulting entries are placed.
2107 * @indices: The cache indices of the entries in @fbatch.
2108 *
2109 * find_lock_entries() will return a batch of entries from @mapping.
2110 * Swap, shadow and DAX entries are included. Folios are returned
2111 * locked and with an incremented refcount. Folios which are locked
2112 * by somebody else or under writeback are skipped. Folios which are
2113 * partially outside the range are not returned.
2114 *
2115 * The entries have ascending indexes. The indices may not be consecutive
2116 * due to not-present entries, large folios, folios which could not be
2117 * locked or folios under writeback.
2118 *
2119 * Return: The number of entries which were found.
2120 */
2121unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2122 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2123{
2124 XA_STATE(xas, &mapping->i_pages, start);
2125 struct folio *folio;
2126
2127 rcu_read_lock();
2128 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2129 if (!xa_is_value(folio)) {
2130 if (folio->index < start)
2131 goto put;
2132 if (folio->index + folio_nr_pages(folio) - 1 > end)
2133 goto put;
2134 if (!folio_trylock(folio))
2135 goto put;
2136 if (folio->mapping != mapping ||
2137 folio_test_writeback(folio))
2138 goto unlock;
2139 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2140 folio);
2141 }
2142 indices[fbatch->nr] = xas.xa_index;
2143 if (!folio_batch_add(fbatch, folio))
2144 break;
2145 continue;
2146unlock:
2147 folio_unlock(folio);
2148put:
2149 folio_put(folio);
2150 }
2151 rcu_read_unlock();
2152
2153 return folio_batch_count(fbatch);
2154}
2155
2156static inline
2157bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2158{
2159 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2160 return false;
2161 if (index >= max)
2162 return false;
2163 return index < folio->index + folio_nr_pages(folio) - 1;
2164}
2165
2166/**
2167 * find_get_pages_range - gang pagecache lookup
2168 * @mapping: The address_space to search
2169 * @start: The starting page index
2170 * @end: The final page index (inclusive)
2171 * @nr_pages: The maximum number of pages
2172 * @pages: Where the resulting pages are placed
2173 *
2174 * find_get_pages_range() will search for and return a group of up to @nr_pages
2175 * pages in the mapping starting at index @start and up to index @end
2176 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
2177 * a reference against the returned pages.
2178 *
2179 * The search returns a group of mapping-contiguous pages with ascending
2180 * indexes. There may be holes in the indices due to not-present pages.
2181 * We also update @start to index the next page for the traversal.
2182 *
2183 * Return: the number of pages which were found. If this number is
2184 * smaller than @nr_pages, the end of specified range has been
2185 * reached.
2186 */
2187unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2188 pgoff_t end, unsigned int nr_pages,
2189 struct page **pages)
2190{
2191 XA_STATE(xas, &mapping->i_pages, *start);
2192 struct folio *folio;
2193 unsigned ret = 0;
2194
2195 if (unlikely(!nr_pages))
2196 return 0;
2197
2198 rcu_read_lock();
2199 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2200 /* Skip over shadow, swap and DAX entries */
2201 if (xa_is_value(folio))
2202 continue;
2203
2204again:
2205 pages[ret] = folio_file_page(folio, xas.xa_index);
2206 if (++ret == nr_pages) {
2207 *start = xas.xa_index + 1;
2208 goto out;
2209 }
2210 if (folio_more_pages(folio, xas.xa_index, end)) {
2211 xas.xa_index++;
2212 folio_ref_inc(folio);
2213 goto again;
2214 }
2215 }
2216
2217 /*
2218 * We come here when there is no page beyond @end. We take care to not
2219 * overflow the index @start as it confuses some of the callers. This
2220 * breaks the iteration when there is a page at index -1 but that is
2221 * already broken anyway.
2222 */
2223 if (end == (pgoff_t)-1)
2224 *start = (pgoff_t)-1;
2225 else
2226 *start = end + 1;
2227out:
2228 rcu_read_unlock();
2229
2230 return ret;
2231}
2232
2233/**
2234 * find_get_pages_contig - gang contiguous pagecache lookup
2235 * @mapping: The address_space to search
2236 * @index: The starting page index
2237 * @nr_pages: The maximum number of pages
2238 * @pages: Where the resulting pages are placed
2239 *
2240 * find_get_pages_contig() works exactly like find_get_pages_range(),
2241 * except that the returned number of pages are guaranteed to be
2242 * contiguous.
2243 *
2244 * Return: the number of pages which were found.
2245 */
2246unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2247 unsigned int nr_pages, struct page **pages)
2248{
2249 XA_STATE(xas, &mapping->i_pages, index);
2250 struct folio *folio;
2251 unsigned int ret = 0;
2252
2253 if (unlikely(!nr_pages))
2254 return 0;
2255
2256 rcu_read_lock();
2257 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2258 if (xas_retry(&xas, folio))
2259 continue;
2260 /*
2261 * If the entry has been swapped out, we can stop looking.
2262 * No current caller is looking for DAX entries.
2263 */
2264 if (xa_is_value(folio))
2265 break;
2266
2267 if (!folio_try_get_rcu(folio))
2268 goto retry;
2269
2270 if (unlikely(folio != xas_reload(&xas)))
2271 goto put_page;
2272
2273again:
2274 pages[ret] = folio_file_page(folio, xas.xa_index);
2275 if (++ret == nr_pages)
2276 break;
2277 if (folio_more_pages(folio, xas.xa_index, ULONG_MAX)) {
2278 xas.xa_index++;
2279 folio_ref_inc(folio);
2280 goto again;
2281 }
2282 continue;
2283put_page:
2284 folio_put(folio);
2285retry:
2286 xas_reset(&xas);
2287 }
2288 rcu_read_unlock();
2289 return ret;
2290}
2291EXPORT_SYMBOL(find_get_pages_contig);
2292
2293/**
2294 * find_get_pages_range_tag - Find and return head pages matching @tag.
2295 * @mapping: the address_space to search
2296 * @index: the starting page index
2297 * @end: The final page index (inclusive)
2298 * @tag: the tag index
2299 * @nr_pages: the maximum number of pages
2300 * @pages: where the resulting pages are placed
2301 *
2302 * Like find_get_pages_range(), except we only return head pages which are
2303 * tagged with @tag. @index is updated to the index immediately after the
2304 * last page we return, ready for the next iteration.
2305 *
2306 * Return: the number of pages which were found.
2307 */
2308unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2309 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2310 struct page **pages)
2311{
2312 XA_STATE(xas, &mapping->i_pages, *index);
2313 struct folio *folio;
2314 unsigned ret = 0;
2315
2316 if (unlikely(!nr_pages))
2317 return 0;
2318
2319 rcu_read_lock();
2320 while ((folio = find_get_entry(&xas, end, tag))) {
2321 /*
2322 * Shadow entries should never be tagged, but this iteration
2323 * is lockless so there is a window for page reclaim to evict
2324 * a page we saw tagged. Skip over it.
2325 */
2326 if (xa_is_value(folio))
2327 continue;
2328
2329 pages[ret] = &folio->page;
2330 if (++ret == nr_pages) {
2331 *index = folio->index + folio_nr_pages(folio);
2332 goto out;
2333 }
2334 }
2335
2336 /*
2337 * We come here when we got to @end. We take care to not overflow the
2338 * index @index as it confuses some of the callers. This breaks the
2339 * iteration when there is a page at index -1 but that is already
2340 * broken anyway.
2341 */
2342 if (end == (pgoff_t)-1)
2343 *index = (pgoff_t)-1;
2344 else
2345 *index = end + 1;
2346out:
2347 rcu_read_unlock();
2348
2349 return ret;
2350}
2351EXPORT_SYMBOL(find_get_pages_range_tag);
2352
2353/*
2354 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2355 * a _large_ part of the i/o request. Imagine the worst scenario:
2356 *
2357 * ---R__________________________________________B__________
2358 * ^ reading here ^ bad block(assume 4k)
2359 *
2360 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2361 * => failing the whole request => read(R) => read(R+1) =>
2362 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2363 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2364 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2365 *
2366 * It is going insane. Fix it by quickly scaling down the readahead size.
2367 */
2368static void shrink_readahead_size_eio(struct file_ra_state *ra)
2369{
2370 ra->ra_pages /= 4;
2371}
2372
2373/*
2374 * filemap_get_read_batch - Get a batch of folios for read
2375 *
2376 * Get a batch of folios which represent a contiguous range of bytes in
2377 * the file. No exceptional entries will be returned. If @index is in
2378 * the middle of a folio, the entire folio will be returned. The last
2379 * folio in the batch may have the readahead flag set or the uptodate flag
2380 * clear so that the caller can take the appropriate action.
2381 */
2382static void filemap_get_read_batch(struct address_space *mapping,
2383 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2384{
2385 XA_STATE(xas, &mapping->i_pages, index);
2386 struct folio *folio;
2387
2388 rcu_read_lock();
2389 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2390 if (xas_retry(&xas, folio))
2391 continue;
2392 if (xas.xa_index > max || xa_is_value(folio))
2393 break;
2394 if (!folio_try_get_rcu(folio))
2395 goto retry;
2396
2397 if (unlikely(folio != xas_reload(&xas)))
2398 goto put_folio;
2399
2400 if (!folio_batch_add(fbatch, folio))
2401 break;
2402 if (!folio_test_uptodate(folio))
2403 break;
2404 if (folio_test_readahead(folio))
2405 break;
2406 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
2407 continue;
2408put_folio:
2409 folio_put(folio);
2410retry:
2411 xas_reset(&xas);
2412 }
2413 rcu_read_unlock();
2414}
2415
2416static int filemap_read_folio(struct file *file, struct address_space *mapping,
2417 struct folio *folio)
2418{
2419 int error;
2420
2421 /*
2422 * A previous I/O error may have been due to temporary failures,
2423 * eg. multipath errors. PG_error will be set again if readpage
2424 * fails.
2425 */
2426 folio_clear_error(folio);
2427 /* Start the actual read. The read will unlock the page. */
2428 error = mapping->a_ops->readpage(file, &folio->page);
2429 if (error)
2430 return error;
2431
2432 error = folio_wait_locked_killable(folio);
2433 if (error)
2434 return error;
2435 if (folio_test_uptodate(folio))
2436 return 0;
2437 shrink_readahead_size_eio(&file->f_ra);
2438 return -EIO;
2439}
2440
2441static bool filemap_range_uptodate(struct address_space *mapping,
2442 loff_t pos, struct iov_iter *iter, struct folio *folio)
2443{
2444 int count;
2445
2446 if (folio_test_uptodate(folio))
2447 return true;
2448 /* pipes can't handle partially uptodate pages */
2449 if (iov_iter_is_pipe(iter))
2450 return false;
2451 if (!mapping->a_ops->is_partially_uptodate)
2452 return false;
2453 if (mapping->host->i_blkbits >= folio_shift(folio))
2454 return false;
2455
2456 count = iter->count;
2457 if (folio_pos(folio) > pos) {
2458 count -= folio_pos(folio) - pos;
2459 pos = 0;
2460 } else {
2461 pos -= folio_pos(folio);
2462 }
2463
2464 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2465}
2466
2467static int filemap_update_page(struct kiocb *iocb,
2468 struct address_space *mapping, struct iov_iter *iter,
2469 struct folio *folio)
2470{
2471 int error;
2472
2473 if (iocb->ki_flags & IOCB_NOWAIT) {
2474 if (!filemap_invalidate_trylock_shared(mapping))
2475 return -EAGAIN;
2476 } else {
2477 filemap_invalidate_lock_shared(mapping);
2478 }
2479
2480 if (!folio_trylock(folio)) {
2481 error = -EAGAIN;
2482 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2483 goto unlock_mapping;
2484 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2485 filemap_invalidate_unlock_shared(mapping);
2486 /*
2487 * This is where we usually end up waiting for a
2488 * previously submitted readahead to finish.
2489 */
2490 folio_put_wait_locked(folio, TASK_KILLABLE);
2491 return AOP_TRUNCATED_PAGE;
2492 }
2493 error = __folio_lock_async(folio, iocb->ki_waitq);
2494 if (error)
2495 goto unlock_mapping;
2496 }
2497
2498 error = AOP_TRUNCATED_PAGE;
2499 if (!folio->mapping)
2500 goto unlock;
2501
2502 error = 0;
2503 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio))
2504 goto unlock;
2505
2506 error = -EAGAIN;
2507 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2508 goto unlock;
2509
2510 error = filemap_read_folio(iocb->ki_filp, mapping, folio);
2511 goto unlock_mapping;
2512unlock:
2513 folio_unlock(folio);
2514unlock_mapping:
2515 filemap_invalidate_unlock_shared(mapping);
2516 if (error == AOP_TRUNCATED_PAGE)
2517 folio_put(folio);
2518 return error;
2519}
2520
2521static int filemap_create_folio(struct file *file,
2522 struct address_space *mapping, pgoff_t index,
2523 struct folio_batch *fbatch)
2524{
2525 struct folio *folio;
2526 int error;
2527
2528 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2529 if (!folio)
2530 return -ENOMEM;
2531
2532 /*
2533 * Protect against truncate / hole punch. Grabbing invalidate_lock
2534 * here assures we cannot instantiate and bring uptodate new
2535 * pagecache folios after evicting page cache during truncate
2536 * and before actually freeing blocks. Note that we could
2537 * release invalidate_lock after inserting the folio into
2538 * the page cache as the locked folio would then be enough to
2539 * synchronize with hole punching. But there are code paths
2540 * such as filemap_update_page() filling in partially uptodate
2541 * pages or ->readahead() that need to hold invalidate_lock
2542 * while mapping blocks for IO so let's hold the lock here as
2543 * well to keep locking rules simple.
2544 */
2545 filemap_invalidate_lock_shared(mapping);
2546 error = filemap_add_folio(mapping, folio, index,
2547 mapping_gfp_constraint(mapping, GFP_KERNEL));
2548 if (error == -EEXIST)
2549 error = AOP_TRUNCATED_PAGE;
2550 if (error)
2551 goto error;
2552
2553 error = filemap_read_folio(file, mapping, folio);
2554 if (error)
2555 goto error;
2556
2557 filemap_invalidate_unlock_shared(mapping);
2558 folio_batch_add(fbatch, folio);
2559 return 0;
2560error:
2561 filemap_invalidate_unlock_shared(mapping);
2562 folio_put(folio);
2563 return error;
2564}
2565
2566static int filemap_readahead(struct kiocb *iocb, struct file *file,
2567 struct address_space *mapping, struct folio *folio,
2568 pgoff_t last_index)
2569{
2570 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2571
2572 if (iocb->ki_flags & IOCB_NOIO)
2573 return -EAGAIN;
2574 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2575 return 0;
2576}
2577
2578static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2579 struct folio_batch *fbatch)
2580{
2581 struct file *filp = iocb->ki_filp;
2582 struct address_space *mapping = filp->f_mapping;
2583 struct file_ra_state *ra = &filp->f_ra;
2584 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2585 pgoff_t last_index;
2586 struct folio *folio;
2587 int err = 0;
2588
2589 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2590retry:
2591 if (fatal_signal_pending(current))
2592 return -EINTR;
2593
2594 filemap_get_read_batch(mapping, index, last_index, fbatch);
2595 if (!folio_batch_count(fbatch)) {
2596 if (iocb->ki_flags & IOCB_NOIO)
2597 return -EAGAIN;
2598 page_cache_sync_readahead(mapping, ra, filp, index,
2599 last_index - index);
2600 filemap_get_read_batch(mapping, index, last_index, fbatch);
2601 }
2602 if (!folio_batch_count(fbatch)) {
2603 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2604 return -EAGAIN;
2605 err = filemap_create_folio(filp, mapping,
2606 iocb->ki_pos >> PAGE_SHIFT, fbatch);
2607 if (err == AOP_TRUNCATED_PAGE)
2608 goto retry;
2609 return err;
2610 }
2611
2612 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2613 if (folio_test_readahead(folio)) {
2614 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2615 if (err)
2616 goto err;
2617 }
2618 if (!folio_test_uptodate(folio)) {
2619 if ((iocb->ki_flags & IOCB_WAITQ) &&
2620 folio_batch_count(fbatch) > 1)
2621 iocb->ki_flags |= IOCB_NOWAIT;
2622 err = filemap_update_page(iocb, mapping, iter, folio);
2623 if (err)
2624 goto err;
2625 }
2626
2627 return 0;
2628err:
2629 if (err < 0)
2630 folio_put(folio);
2631 if (likely(--fbatch->nr))
2632 return 0;
2633 if (err == AOP_TRUNCATED_PAGE)
2634 goto retry;
2635 return err;
2636}
2637
2638/**
2639 * filemap_read - Read data from the page cache.
2640 * @iocb: The iocb to read.
2641 * @iter: Destination for the data.
2642 * @already_read: Number of bytes already read by the caller.
2643 *
2644 * Copies data from the page cache. If the data is not currently present,
2645 * uses the readahead and readpage address_space operations to fetch it.
2646 *
2647 * Return: Total number of bytes copied, including those already read by
2648 * the caller. If an error happens before any bytes are copied, returns
2649 * a negative error number.
2650 */
2651ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2652 ssize_t already_read)
2653{
2654 struct file *filp = iocb->ki_filp;
2655 struct file_ra_state *ra = &filp->f_ra;
2656 struct address_space *mapping = filp->f_mapping;
2657 struct inode *inode = mapping->host;
2658 struct folio_batch fbatch;
2659 int i, error = 0;
2660 bool writably_mapped;
2661 loff_t isize, end_offset;
2662
2663 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2664 return 0;
2665 if (unlikely(!iov_iter_count(iter)))
2666 return 0;
2667
2668 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2669 folio_batch_init(&fbatch);
2670
2671 do {
2672 cond_resched();
2673
2674 /*
2675 * If we've already successfully copied some data, then we
2676 * can no longer safely return -EIOCBQUEUED. Hence mark
2677 * an async read NOWAIT at that point.
2678 */
2679 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2680 iocb->ki_flags |= IOCB_NOWAIT;
2681
2682 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2683 break;
2684
2685 error = filemap_get_pages(iocb, iter, &fbatch);
2686 if (error < 0)
2687 break;
2688
2689 /*
2690 * i_size must be checked after we know the pages are Uptodate.
2691 *
2692 * Checking i_size after the check allows us to calculate
2693 * the correct value for "nr", which means the zero-filled
2694 * part of the page is not copied back to userspace (unless
2695 * another truncate extends the file - this is desired though).
2696 */
2697 isize = i_size_read(inode);
2698 if (unlikely(iocb->ki_pos >= isize))
2699 goto put_folios;
2700 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2701
2702 /*
2703 * Once we start copying data, we don't want to be touching any
2704 * cachelines that might be contended:
2705 */
2706 writably_mapped = mapping_writably_mapped(mapping);
2707
2708 /*
2709 * When a sequential read accesses a page several times, only
2710 * mark it as accessed the first time.
2711 */
2712 if (iocb->ki_pos >> PAGE_SHIFT !=
2713 ra->prev_pos >> PAGE_SHIFT)
2714 folio_mark_accessed(fbatch.folios[0]);
2715
2716 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2717 struct folio *folio = fbatch.folios[i];
2718 size_t fsize = folio_size(folio);
2719 size_t offset = iocb->ki_pos & (fsize - 1);
2720 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2721 fsize - offset);
2722 size_t copied;
2723
2724 if (end_offset < folio_pos(folio))
2725 break;
2726 if (i > 0)
2727 folio_mark_accessed(folio);
2728 /*
2729 * If users can be writing to this folio using arbitrary
2730 * virtual addresses, take care of potential aliasing
2731 * before reading the folio on the kernel side.
2732 */
2733 if (writably_mapped)
2734 flush_dcache_folio(folio);
2735
2736 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2737
2738 already_read += copied;
2739 iocb->ki_pos += copied;
2740 ra->prev_pos = iocb->ki_pos;
2741
2742 if (copied < bytes) {
2743 error = -EFAULT;
2744 break;
2745 }
2746 }
2747put_folios:
2748 for (i = 0; i < folio_batch_count(&fbatch); i++)
2749 folio_put(fbatch.folios[i]);
2750 folio_batch_init(&fbatch);
2751 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2752
2753 file_accessed(filp);
2754
2755 return already_read ? already_read : error;
2756}
2757EXPORT_SYMBOL_GPL(filemap_read);
2758
2759/**
2760 * generic_file_read_iter - generic filesystem read routine
2761 * @iocb: kernel I/O control block
2762 * @iter: destination for the data read
2763 *
2764 * This is the "read_iter()" routine for all filesystems
2765 * that can use the page cache directly.
2766 *
2767 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2768 * be returned when no data can be read without waiting for I/O requests
2769 * to complete; it doesn't prevent readahead.
2770 *
2771 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2772 * requests shall be made for the read or for readahead. When no data
2773 * can be read, -EAGAIN shall be returned. When readahead would be
2774 * triggered, a partial, possibly empty read shall be returned.
2775 *
2776 * Return:
2777 * * number of bytes copied, even for partial reads
2778 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2779 */
2780ssize_t
2781generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2782{
2783 size_t count = iov_iter_count(iter);
2784 ssize_t retval = 0;
2785
2786 if (!count)
2787 return 0; /* skip atime */
2788
2789 if (iocb->ki_flags & IOCB_DIRECT) {
2790 struct file *file = iocb->ki_filp;
2791 struct address_space *mapping = file->f_mapping;
2792 struct inode *inode = mapping->host;
2793
2794 if (iocb->ki_flags & IOCB_NOWAIT) {
2795 if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2796 iocb->ki_pos + count - 1))
2797 return -EAGAIN;
2798 } else {
2799 retval = filemap_write_and_wait_range(mapping,
2800 iocb->ki_pos,
2801 iocb->ki_pos + count - 1);
2802 if (retval < 0)
2803 return retval;
2804 }
2805
2806 file_accessed(file);
2807
2808 retval = mapping->a_ops->direct_IO(iocb, iter);
2809 if (retval >= 0) {
2810 iocb->ki_pos += retval;
2811 count -= retval;
2812 }
2813 if (retval != -EIOCBQUEUED)
2814 iov_iter_revert(iter, count - iov_iter_count(iter));
2815
2816 /*
2817 * Btrfs can have a short DIO read if we encounter
2818 * compressed extents, so if there was an error, or if
2819 * we've already read everything we wanted to, or if
2820 * there was a short read because we hit EOF, go ahead
2821 * and return. Otherwise fallthrough to buffered io for
2822 * the rest of the read. Buffered reads will not work for
2823 * DAX files, so don't bother trying.
2824 */
2825 if (retval < 0 || !count || IS_DAX(inode))
2826 return retval;
2827 if (iocb->ki_pos >= i_size_read(inode))
2828 return retval;
2829 }
2830
2831 return filemap_read(iocb, iter, retval);
2832}
2833EXPORT_SYMBOL(generic_file_read_iter);
2834
2835static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2836 struct address_space *mapping, struct folio *folio,
2837 loff_t start, loff_t end, bool seek_data)
2838{
2839 const struct address_space_operations *ops = mapping->a_ops;
2840 size_t offset, bsz = i_blocksize(mapping->host);
2841
2842 if (xa_is_value(folio) || folio_test_uptodate(folio))
2843 return seek_data ? start : end;
2844 if (!ops->is_partially_uptodate)
2845 return seek_data ? end : start;
2846
2847 xas_pause(xas);
2848 rcu_read_unlock();
2849 folio_lock(folio);
2850 if (unlikely(folio->mapping != mapping))
2851 goto unlock;
2852
2853 offset = offset_in_folio(folio, start) & ~(bsz - 1);
2854
2855 do {
2856 if (ops->is_partially_uptodate(folio, offset, bsz) ==
2857 seek_data)
2858 break;
2859 start = (start + bsz) & ~(bsz - 1);
2860 offset += bsz;
2861 } while (offset < folio_size(folio));
2862unlock:
2863 folio_unlock(folio);
2864 rcu_read_lock();
2865 return start;
2866}
2867
2868static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2869{
2870 if (xa_is_value(folio))
2871 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2872 return folio_size(folio);
2873}
2874
2875/**
2876 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2877 * @mapping: Address space to search.
2878 * @start: First byte to consider.
2879 * @end: Limit of search (exclusive).
2880 * @whence: Either SEEK_HOLE or SEEK_DATA.
2881 *
2882 * If the page cache knows which blocks contain holes and which blocks
2883 * contain data, your filesystem can use this function to implement
2884 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2885 * entirely memory-based such as tmpfs, and filesystems which support
2886 * unwritten extents.
2887 *
2888 * Return: The requested offset on success, or -ENXIO if @whence specifies
2889 * SEEK_DATA and there is no data after @start. There is an implicit hole
2890 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2891 * and @end contain data.
2892 */
2893loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2894 loff_t end, int whence)
2895{
2896 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2897 pgoff_t max = (end - 1) >> PAGE_SHIFT;
2898 bool seek_data = (whence == SEEK_DATA);
2899 struct folio *folio;
2900
2901 if (end <= start)
2902 return -ENXIO;
2903
2904 rcu_read_lock();
2905 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
2906 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2907 size_t seek_size;
2908
2909 if (start < pos) {
2910 if (!seek_data)
2911 goto unlock;
2912 start = pos;
2913 }
2914
2915 seek_size = seek_folio_size(&xas, folio);
2916 pos = round_up((u64)pos + 1, seek_size);
2917 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
2918 seek_data);
2919 if (start < pos)
2920 goto unlock;
2921 if (start >= end)
2922 break;
2923 if (seek_size > PAGE_SIZE)
2924 xas_set(&xas, pos >> PAGE_SHIFT);
2925 if (!xa_is_value(folio))
2926 folio_put(folio);
2927 }
2928 if (seek_data)
2929 start = -ENXIO;
2930unlock:
2931 rcu_read_unlock();
2932 if (folio && !xa_is_value(folio))
2933 folio_put(folio);
2934 if (start > end)
2935 return end;
2936 return start;
2937}
2938
2939#ifdef CONFIG_MMU
2940#define MMAP_LOTSAMISS (100)
2941/*
2942 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2943 * @vmf - the vm_fault for this fault.
2944 * @folio - the folio to lock.
2945 * @fpin - the pointer to the file we may pin (or is already pinned).
2946 *
2947 * This works similar to lock_folio_or_retry in that it can drop the
2948 * mmap_lock. It differs in that it actually returns the folio locked
2949 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
2950 * to drop the mmap_lock then fpin will point to the pinned file and
2951 * needs to be fput()'ed at a later point.
2952 */
2953static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
2954 struct file **fpin)
2955{
2956 if (folio_trylock(folio))
2957 return 1;
2958
2959 /*
2960 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2961 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2962 * is supposed to work. We have way too many special cases..
2963 */
2964 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2965 return 0;
2966
2967 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2968 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2969 if (__folio_lock_killable(folio)) {
2970 /*
2971 * We didn't have the right flags to drop the mmap_lock,
2972 * but all fault_handlers only check for fatal signals
2973 * if we return VM_FAULT_RETRY, so we need to drop the
2974 * mmap_lock here and return 0 if we don't have a fpin.
2975 */
2976 if (*fpin == NULL)
2977 mmap_read_unlock(vmf->vma->vm_mm);
2978 return 0;
2979 }
2980 } else
2981 __folio_lock(folio);
2982
2983 return 1;
2984}
2985
2986/*
2987 * Synchronous readahead happens when we don't even find a page in the page
2988 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2989 * to drop the mmap sem we return the file that was pinned in order for us to do
2990 * that. If we didn't pin a file then we return NULL. The file that is
2991 * returned needs to be fput()'ed when we're done with it.
2992 */
2993static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2994{
2995 struct file *file = vmf->vma->vm_file;
2996 struct file_ra_state *ra = &file->f_ra;
2997 struct address_space *mapping = file->f_mapping;
2998 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2999 struct file *fpin = NULL;
3000 unsigned int mmap_miss;
3001
3002#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3003 /* Use the readahead code, even if readahead is disabled */
3004 if (vmf->vma->vm_flags & VM_HUGEPAGE) {
3005 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3006 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3007 ra->size = HPAGE_PMD_NR;
3008 /*
3009 * Fetch two PMD folios, so we get the chance to actually
3010 * readahead, unless we've been told not to.
3011 */
3012 if (!(vmf->vma->vm_flags & VM_RAND_READ))
3013 ra->size *= 2;
3014 ra->async_size = HPAGE_PMD_NR;
3015 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3016 return fpin;
3017 }
3018#endif
3019
3020 /* If we don't want any read-ahead, don't bother */
3021 if (vmf->vma->vm_flags & VM_RAND_READ)
3022 return fpin;
3023 if (!ra->ra_pages)
3024 return fpin;
3025
3026 if (vmf->vma->vm_flags & VM_SEQ_READ) {
3027 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3028 page_cache_sync_ra(&ractl, ra->ra_pages);
3029 return fpin;
3030 }
3031
3032 /* Avoid banging the cache line if not needed */
3033 mmap_miss = READ_ONCE(ra->mmap_miss);
3034 if (mmap_miss < MMAP_LOTSAMISS * 10)
3035 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3036
3037 /*
3038 * Do we miss much more than hit in this file? If so,
3039 * stop bothering with read-ahead. It will only hurt.
3040 */
3041 if (mmap_miss > MMAP_LOTSAMISS)
3042 return fpin;
3043
3044 /*
3045 * mmap read-around
3046 */
3047 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3048 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3049 ra->size = ra->ra_pages;
3050 ra->async_size = ra->ra_pages / 4;
3051 ractl._index = ra->start;
3052 page_cache_ra_order(&ractl, ra, 0);
3053 return fpin;
3054}
3055
3056/*
3057 * Asynchronous readahead happens when we find the page and PG_readahead,
3058 * so we want to possibly extend the readahead further. We return the file that
3059 * was pinned if we have to drop the mmap_lock in order to do IO.
3060 */
3061static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3062 struct folio *folio)
3063{
3064 struct file *file = vmf->vma->vm_file;
3065 struct file_ra_state *ra = &file->f_ra;
3066 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3067 struct file *fpin = NULL;
3068 unsigned int mmap_miss;
3069
3070 /* If we don't want any read-ahead, don't bother */
3071 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3072 return fpin;
3073
3074 mmap_miss = READ_ONCE(ra->mmap_miss);
3075 if (mmap_miss)
3076 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3077
3078 if (folio_test_readahead(folio)) {
3079 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3080 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3081 }
3082 return fpin;
3083}
3084
3085/**
3086 * filemap_fault - read in file data for page fault handling
3087 * @vmf: struct vm_fault containing details of the fault
3088 *
3089 * filemap_fault() is invoked via the vma operations vector for a
3090 * mapped memory region to read in file data during a page fault.
3091 *
3092 * The goto's are kind of ugly, but this streamlines the normal case of having
3093 * it in the page cache, and handles the special cases reasonably without
3094 * having a lot of duplicated code.
3095 *
3096 * vma->vm_mm->mmap_lock must be held on entry.
3097 *
3098 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3099 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3100 *
3101 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3102 * has not been released.
3103 *
3104 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3105 *
3106 * Return: bitwise-OR of %VM_FAULT_ codes.
3107 */
3108vm_fault_t filemap_fault(struct vm_fault *vmf)
3109{
3110 int error;
3111 struct file *file = vmf->vma->vm_file;
3112 struct file *fpin = NULL;
3113 struct address_space *mapping = file->f_mapping;
3114 struct inode *inode = mapping->host;
3115 pgoff_t max_idx, index = vmf->pgoff;
3116 struct folio *folio;
3117 vm_fault_t ret = 0;
3118 bool mapping_locked = false;
3119
3120 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3121 if (unlikely(index >= max_idx))
3122 return VM_FAULT_SIGBUS;
3123
3124 /*
3125 * Do we have something in the page cache already?
3126 */
3127 folio = filemap_get_folio(mapping, index);
3128 if (likely(folio)) {
3129 /*
3130 * We found the page, so try async readahead before waiting for
3131 * the lock.
3132 */
3133 if (!(vmf->flags & FAULT_FLAG_TRIED))
3134 fpin = do_async_mmap_readahead(vmf, folio);
3135 if (unlikely(!folio_test_uptodate(folio))) {
3136 filemap_invalidate_lock_shared(mapping);
3137 mapping_locked = true;
3138 }
3139 } else {
3140 /* No page in the page cache at all */
3141 count_vm_event(PGMAJFAULT);
3142 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3143 ret = VM_FAULT_MAJOR;
3144 fpin = do_sync_mmap_readahead(vmf);
3145retry_find:
3146 /*
3147 * See comment in filemap_create_folio() why we need
3148 * invalidate_lock
3149 */
3150 if (!mapping_locked) {
3151 filemap_invalidate_lock_shared(mapping);
3152 mapping_locked = true;
3153 }
3154 folio = __filemap_get_folio(mapping, index,
3155 FGP_CREAT|FGP_FOR_MMAP,
3156 vmf->gfp_mask);
3157 if (!folio) {
3158 if (fpin)
3159 goto out_retry;
3160 filemap_invalidate_unlock_shared(mapping);
3161 return VM_FAULT_OOM;
3162 }
3163 }
3164
3165 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3166 goto out_retry;
3167
3168 /* Did it get truncated? */
3169 if (unlikely(folio->mapping != mapping)) {
3170 folio_unlock(folio);
3171 folio_put(folio);
3172 goto retry_find;
3173 }
3174 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3175
3176 /*
3177 * We have a locked page in the page cache, now we need to check
3178 * that it's up-to-date. If not, it is going to be due to an error.
3179 */
3180 if (unlikely(!folio_test_uptodate(folio))) {
3181 /*
3182 * The page was in cache and uptodate and now it is not.
3183 * Strange but possible since we didn't hold the page lock all
3184 * the time. Let's drop everything get the invalidate lock and
3185 * try again.
3186 */
3187 if (!mapping_locked) {
3188 folio_unlock(folio);
3189 folio_put(folio);
3190 goto retry_find;
3191 }
3192 goto page_not_uptodate;
3193 }
3194
3195 /*
3196 * We've made it this far and we had to drop our mmap_lock, now is the
3197 * time to return to the upper layer and have it re-find the vma and
3198 * redo the fault.
3199 */
3200 if (fpin) {
3201 folio_unlock(folio);
3202 goto out_retry;
3203 }
3204 if (mapping_locked)
3205 filemap_invalidate_unlock_shared(mapping);
3206
3207 /*
3208 * Found the page and have a reference on it.
3209 * We must recheck i_size under page lock.
3210 */
3211 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3212 if (unlikely(index >= max_idx)) {
3213 folio_unlock(folio);
3214 folio_put(folio);
3215 return VM_FAULT_SIGBUS;
3216 }
3217
3218 vmf->page = folio_file_page(folio, index);
3219 return ret | VM_FAULT_LOCKED;
3220
3221page_not_uptodate:
3222 /*
3223 * Umm, take care of errors if the page isn't up-to-date.
3224 * Try to re-read it _once_. We do this synchronously,
3225 * because there really aren't any performance issues here
3226 * and we need to check for errors.
3227 */
3228 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3229 error = filemap_read_folio(file, mapping, folio);
3230 if (fpin)
3231 goto out_retry;
3232 folio_put(folio);
3233
3234 if (!error || error == AOP_TRUNCATED_PAGE)
3235 goto retry_find;
3236 filemap_invalidate_unlock_shared(mapping);
3237
3238 return VM_FAULT_SIGBUS;
3239
3240out_retry:
3241 /*
3242 * We dropped the mmap_lock, we need to return to the fault handler to
3243 * re-find the vma and come back and find our hopefully still populated
3244 * page.
3245 */
3246 if (folio)
3247 folio_put(folio);
3248 if (mapping_locked)
3249 filemap_invalidate_unlock_shared(mapping);
3250 if (fpin)
3251 fput(fpin);
3252 return ret | VM_FAULT_RETRY;
3253}
3254EXPORT_SYMBOL(filemap_fault);
3255
3256static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3257{
3258 struct mm_struct *mm = vmf->vma->vm_mm;
3259
3260 /* Huge page is mapped? No need to proceed. */
3261 if (pmd_trans_huge(*vmf->pmd)) {
3262 unlock_page(page);
3263 put_page(page);
3264 return true;
3265 }
3266
3267 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3268 vm_fault_t ret = do_set_pmd(vmf, page);
3269 if (!ret) {
3270 /* The page is mapped successfully, reference consumed. */
3271 unlock_page(page);
3272 return true;
3273 }
3274 }
3275
3276 if (pmd_none(*vmf->pmd))
3277 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3278
3279 /* See comment in handle_pte_fault() */
3280 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3281 unlock_page(page);
3282 put_page(page);
3283 return true;
3284 }
3285
3286 return false;
3287}
3288
3289static struct folio *next_uptodate_page(struct folio *folio,
3290 struct address_space *mapping,
3291 struct xa_state *xas, pgoff_t end_pgoff)
3292{
3293 unsigned long max_idx;
3294
3295 do {
3296 if (!folio)
3297 return NULL;
3298 if (xas_retry(xas, folio))
3299 continue;
3300 if (xa_is_value(folio))
3301 continue;
3302 if (folio_test_locked(folio))
3303 continue;
3304 if (!folio_try_get_rcu(folio))
3305 continue;
3306 /* Has the page moved or been split? */
3307 if (unlikely(folio != xas_reload(xas)))
3308 goto skip;
3309 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3310 goto skip;
3311 if (!folio_trylock(folio))
3312 goto skip;
3313 if (folio->mapping != mapping)
3314 goto unlock;
3315 if (!folio_test_uptodate(folio))
3316 goto unlock;
3317 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3318 if (xas->xa_index >= max_idx)
3319 goto unlock;
3320 return folio;
3321unlock:
3322 folio_unlock(folio);
3323skip:
3324 folio_put(folio);
3325 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3326
3327 return NULL;
3328}
3329
3330static inline struct folio *first_map_page(struct address_space *mapping,
3331 struct xa_state *xas,
3332 pgoff_t end_pgoff)
3333{
3334 return next_uptodate_page(xas_find(xas, end_pgoff),
3335 mapping, xas, end_pgoff);
3336}
3337
3338static inline struct folio *next_map_page(struct address_space *mapping,
3339 struct xa_state *xas,
3340 pgoff_t end_pgoff)
3341{
3342 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3343 mapping, xas, end_pgoff);
3344}
3345
3346vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3347 pgoff_t start_pgoff, pgoff_t end_pgoff)
3348{
3349 struct vm_area_struct *vma = vmf->vma;
3350 struct file *file = vma->vm_file;
3351 struct address_space *mapping = file->f_mapping;
3352 pgoff_t last_pgoff = start_pgoff;
3353 unsigned long addr;
3354 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3355 struct folio *folio;
3356 struct page *page;
3357 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3358 vm_fault_t ret = 0;
3359
3360 rcu_read_lock();
3361 folio = first_map_page(mapping, &xas, end_pgoff);
3362 if (!folio)
3363 goto out;
3364
3365 if (filemap_map_pmd(vmf, &folio->page)) {
3366 ret = VM_FAULT_NOPAGE;
3367 goto out;
3368 }
3369
3370 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3371 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3372 do {
3373again:
3374 page = folio_file_page(folio, xas.xa_index);
3375 if (PageHWPoison(page))
3376 goto unlock;
3377
3378 if (mmap_miss > 0)
3379 mmap_miss--;
3380
3381 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3382 vmf->pte += xas.xa_index - last_pgoff;
3383 last_pgoff = xas.xa_index;
3384
3385 if (!pte_none(*vmf->pte))
3386 goto unlock;
3387
3388 /* We're about to handle the fault */
3389 if (vmf->address == addr)
3390 ret = VM_FAULT_NOPAGE;
3391
3392 do_set_pte(vmf, page, addr);
3393 /* no need to invalidate: a not-present page won't be cached */
3394 update_mmu_cache(vma, addr, vmf->pte);
3395 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3396 xas.xa_index++;
3397 folio_ref_inc(folio);
3398 goto again;
3399 }
3400 folio_unlock(folio);
3401 continue;
3402unlock:
3403 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3404 xas.xa_index++;
3405 goto again;
3406 }
3407 folio_unlock(folio);
3408 folio_put(folio);
3409 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3410 pte_unmap_unlock(vmf->pte, vmf->ptl);
3411out:
3412 rcu_read_unlock();
3413 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3414 return ret;
3415}
3416EXPORT_SYMBOL(filemap_map_pages);
3417
3418vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3419{
3420 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3421 struct folio *folio = page_folio(vmf->page);
3422 vm_fault_t ret = VM_FAULT_LOCKED;
3423
3424 sb_start_pagefault(mapping->host->i_sb);
3425 file_update_time(vmf->vma->vm_file);
3426 folio_lock(folio);
3427 if (folio->mapping != mapping) {
3428 folio_unlock(folio);
3429 ret = VM_FAULT_NOPAGE;
3430 goto out;
3431 }
3432 /*
3433 * We mark the folio dirty already here so that when freeze is in
3434 * progress, we are guaranteed that writeback during freezing will
3435 * see the dirty folio and writeprotect it again.
3436 */
3437 folio_mark_dirty(folio);
3438 folio_wait_stable(folio);
3439out:
3440 sb_end_pagefault(mapping->host->i_sb);
3441 return ret;
3442}
3443
3444const struct vm_operations_struct generic_file_vm_ops = {
3445 .fault = filemap_fault,
3446 .map_pages = filemap_map_pages,
3447 .page_mkwrite = filemap_page_mkwrite,
3448};
3449
3450/* This is used for a general mmap of a disk file */
3451
3452int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3453{
3454 struct address_space *mapping = file->f_mapping;
3455
3456 if (!mapping->a_ops->readpage)
3457 return -ENOEXEC;
3458 file_accessed(file);
3459 vma->vm_ops = &generic_file_vm_ops;
3460 return 0;
3461}
3462
3463/*
3464 * This is for filesystems which do not implement ->writepage.
3465 */
3466int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3467{
3468 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3469 return -EINVAL;
3470 return generic_file_mmap(file, vma);
3471}
3472#else
3473vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3474{
3475 return VM_FAULT_SIGBUS;
3476}
3477int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3478{
3479 return -ENOSYS;
3480}
3481int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3482{
3483 return -ENOSYS;
3484}
3485#endif /* CONFIG_MMU */
3486
3487EXPORT_SYMBOL(filemap_page_mkwrite);
3488EXPORT_SYMBOL(generic_file_mmap);
3489EXPORT_SYMBOL(generic_file_readonly_mmap);
3490
3491static struct folio *do_read_cache_folio(struct address_space *mapping,
3492 pgoff_t index, filler_t filler, void *data, gfp_t gfp)
3493{
3494 struct folio *folio;
3495 int err;
3496repeat:
3497 folio = filemap_get_folio(mapping, index);
3498 if (!folio) {
3499 folio = filemap_alloc_folio(gfp, 0);
3500 if (!folio)
3501 return ERR_PTR(-ENOMEM);
3502 err = filemap_add_folio(mapping, folio, index, gfp);
3503 if (unlikely(err)) {
3504 folio_put(folio);
3505 if (err == -EEXIST)
3506 goto repeat;
3507 /* Presumably ENOMEM for xarray node */
3508 return ERR_PTR(err);
3509 }
3510
3511filler:
3512 if (filler)
3513 err = filler(data, &folio->page);
3514 else
3515 err = mapping->a_ops->readpage(data, &folio->page);
3516
3517 if (err < 0) {
3518 folio_put(folio);
3519 return ERR_PTR(err);
3520 }
3521
3522 folio_wait_locked(folio);
3523 if (!folio_test_uptodate(folio)) {
3524 folio_put(folio);
3525 return ERR_PTR(-EIO);
3526 }
3527
3528 goto out;
3529 }
3530 if (folio_test_uptodate(folio))
3531 goto out;
3532
3533 if (!folio_trylock(folio)) {
3534 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3535 goto repeat;
3536 }
3537
3538 /* Folio was truncated from mapping */
3539 if (!folio->mapping) {
3540 folio_unlock(folio);
3541 folio_put(folio);
3542 goto repeat;
3543 }
3544
3545 /* Someone else locked and filled the page in a very small window */
3546 if (folio_test_uptodate(folio)) {
3547 folio_unlock(folio);
3548 goto out;
3549 }
3550
3551 /*
3552 * A previous I/O error may have been due to temporary
3553 * failures.
3554 * Clear page error before actual read, PG_error will be
3555 * set again if read page fails.
3556 */
3557 folio_clear_error(folio);
3558 goto filler;
3559
3560out:
3561 folio_mark_accessed(folio);
3562 return folio;
3563}
3564
3565/**
3566 * read_cache_folio - read into page cache, fill it if needed
3567 * @mapping: the page's address_space
3568 * @index: the page index
3569 * @filler: function to perform the read
3570 * @data: first arg to filler(data, page) function, often left as NULL
3571 *
3572 * Read into the page cache. If a page already exists, and PageUptodate() is
3573 * not set, try to fill the page and wait for it to become unlocked.
3574 *
3575 * If the page does not get brought uptodate, return -EIO.
3576 *
3577 * The function expects mapping->invalidate_lock to be already held.
3578 *
3579 * Return: up to date page on success, ERR_PTR() on failure.
3580 */
3581struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3582 filler_t filler, void *data)
3583{
3584 return do_read_cache_folio(mapping, index, filler, data,
3585 mapping_gfp_mask(mapping));
3586}
3587EXPORT_SYMBOL(read_cache_folio);
3588
3589static struct page *do_read_cache_page(struct address_space *mapping,
3590 pgoff_t index, filler_t *filler, void *data, gfp_t gfp)
3591{
3592 struct folio *folio;
3593
3594 folio = do_read_cache_folio(mapping, index, filler, data, gfp);
3595 if (IS_ERR(folio))
3596 return &folio->page;
3597 return folio_file_page(folio, index);
3598}
3599
3600struct page *read_cache_page(struct address_space *mapping,
3601 pgoff_t index, filler_t *filler, void *data)
3602{
3603 return do_read_cache_page(mapping, index, filler, data,
3604 mapping_gfp_mask(mapping));
3605}
3606EXPORT_SYMBOL(read_cache_page);
3607
3608/**
3609 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3610 * @mapping: the page's address_space
3611 * @index: the page index
3612 * @gfp: the page allocator flags to use if allocating
3613 *
3614 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3615 * any new page allocations done using the specified allocation flags.
3616 *
3617 * If the page does not get brought uptodate, return -EIO.
3618 *
3619 * The function expects mapping->invalidate_lock to be already held.
3620 *
3621 * Return: up to date page on success, ERR_PTR() on failure.
3622 */
3623struct page *read_cache_page_gfp(struct address_space *mapping,
3624 pgoff_t index,
3625 gfp_t gfp)
3626{
3627 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3628}
3629EXPORT_SYMBOL(read_cache_page_gfp);
3630
3631int pagecache_write_begin(struct file *file, struct address_space *mapping,
3632 loff_t pos, unsigned len, unsigned flags,
3633 struct page **pagep, void **fsdata)
3634{
3635 const struct address_space_operations *aops = mapping->a_ops;
3636
3637 return aops->write_begin(file, mapping, pos, len, flags,
3638 pagep, fsdata);
3639}
3640EXPORT_SYMBOL(pagecache_write_begin);
3641
3642int pagecache_write_end(struct file *file, struct address_space *mapping,
3643 loff_t pos, unsigned len, unsigned copied,
3644 struct page *page, void *fsdata)
3645{
3646 const struct address_space_operations *aops = mapping->a_ops;
3647
3648 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3649}
3650EXPORT_SYMBOL(pagecache_write_end);
3651
3652/*
3653 * Warn about a page cache invalidation failure during a direct I/O write.
3654 */
3655void dio_warn_stale_pagecache(struct file *filp)
3656{
3657 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3658 char pathname[128];
3659 char *path;
3660
3661 errseq_set(&filp->f_mapping->wb_err, -EIO);
3662 if (__ratelimit(&_rs)) {
3663 path = file_path(filp, pathname, sizeof(pathname));
3664 if (IS_ERR(path))
3665 path = "(unknown)";
3666 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3667 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3668 current->comm);
3669 }
3670}
3671
3672ssize_t
3673generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3674{
3675 struct file *file = iocb->ki_filp;
3676 struct address_space *mapping = file->f_mapping;
3677 struct inode *inode = mapping->host;
3678 loff_t pos = iocb->ki_pos;
3679 ssize_t written;
3680 size_t write_len;
3681 pgoff_t end;
3682
3683 write_len = iov_iter_count(from);
3684 end = (pos + write_len - 1) >> PAGE_SHIFT;
3685
3686 if (iocb->ki_flags & IOCB_NOWAIT) {
3687 /* If there are pages to writeback, return */
3688 if (filemap_range_has_page(file->f_mapping, pos,
3689 pos + write_len - 1))
3690 return -EAGAIN;
3691 } else {
3692 written = filemap_write_and_wait_range(mapping, pos,
3693 pos + write_len - 1);
3694 if (written)
3695 goto out;
3696 }
3697
3698 /*
3699 * After a write we want buffered reads to be sure to go to disk to get
3700 * the new data. We invalidate clean cached page from the region we're
3701 * about to write. We do this *before* the write so that we can return
3702 * without clobbering -EIOCBQUEUED from ->direct_IO().
3703 */
3704 written = invalidate_inode_pages2_range(mapping,
3705 pos >> PAGE_SHIFT, end);
3706 /*
3707 * If a page can not be invalidated, return 0 to fall back
3708 * to buffered write.
3709 */
3710 if (written) {
3711 if (written == -EBUSY)
3712 return 0;
3713 goto out;
3714 }
3715
3716 written = mapping->a_ops->direct_IO(iocb, from);
3717
3718 /*
3719 * Finally, try again to invalidate clean pages which might have been
3720 * cached by non-direct readahead, or faulted in by get_user_pages()
3721 * if the source of the write was an mmap'ed region of the file
3722 * we're writing. Either one is a pretty crazy thing to do,
3723 * so we don't support it 100%. If this invalidation
3724 * fails, tough, the write still worked...
3725 *
3726 * Most of the time we do not need this since dio_complete() will do
3727 * the invalidation for us. However there are some file systems that
3728 * do not end up with dio_complete() being called, so let's not break
3729 * them by removing it completely.
3730 *
3731 * Noticeable example is a blkdev_direct_IO().
3732 *
3733 * Skip invalidation for async writes or if mapping has no pages.
3734 */
3735 if (written > 0 && mapping->nrpages &&
3736 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3737 dio_warn_stale_pagecache(file);
3738
3739 if (written > 0) {
3740 pos += written;
3741 write_len -= written;
3742 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3743 i_size_write(inode, pos);
3744 mark_inode_dirty(inode);
3745 }
3746 iocb->ki_pos = pos;
3747 }
3748 if (written != -EIOCBQUEUED)
3749 iov_iter_revert(from, write_len - iov_iter_count(from));
3750out:
3751 return written;
3752}
3753EXPORT_SYMBOL(generic_file_direct_write);
3754
3755ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3756{
3757 struct file *file = iocb->ki_filp;
3758 loff_t pos = iocb->ki_pos;
3759 struct address_space *mapping = file->f_mapping;
3760 const struct address_space_operations *a_ops = mapping->a_ops;
3761 long status = 0;
3762 ssize_t written = 0;
3763 unsigned int flags = 0;
3764
3765 do {
3766 struct page *page;
3767 unsigned long offset; /* Offset into pagecache page */
3768 unsigned long bytes; /* Bytes to write to page */
3769 size_t copied; /* Bytes copied from user */
3770 void *fsdata;
3771
3772 offset = (pos & (PAGE_SIZE - 1));
3773 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3774 iov_iter_count(i));
3775
3776again:
3777 /*
3778 * Bring in the user page that we will copy from _first_.
3779 * Otherwise there's a nasty deadlock on copying from the
3780 * same page as we're writing to, without it being marked
3781 * up-to-date.
3782 */
3783 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3784 status = -EFAULT;
3785 break;
3786 }
3787
3788 if (fatal_signal_pending(current)) {
3789 status = -EINTR;
3790 break;
3791 }
3792
3793 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3794 &page, &fsdata);
3795 if (unlikely(status < 0))
3796 break;
3797
3798 if (mapping_writably_mapped(mapping))
3799 flush_dcache_page(page);
3800
3801 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3802 flush_dcache_page(page);
3803
3804 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3805 page, fsdata);
3806 if (unlikely(status != copied)) {
3807 iov_iter_revert(i, copied - max(status, 0L));
3808 if (unlikely(status < 0))
3809 break;
3810 }
3811 cond_resched();
3812
3813 if (unlikely(status == 0)) {
3814 /*
3815 * A short copy made ->write_end() reject the
3816 * thing entirely. Might be memory poisoning
3817 * halfway through, might be a race with munmap,
3818 * might be severe memory pressure.
3819 */
3820 if (copied)
3821 bytes = copied;
3822 goto again;
3823 }
3824 pos += status;
3825 written += status;
3826
3827 balance_dirty_pages_ratelimited(mapping);
3828 } while (iov_iter_count(i));
3829
3830 return written ? written : status;
3831}
3832EXPORT_SYMBOL(generic_perform_write);
3833
3834/**
3835 * __generic_file_write_iter - write data to a file
3836 * @iocb: IO state structure (file, offset, etc.)
3837 * @from: iov_iter with data to write
3838 *
3839 * This function does all the work needed for actually writing data to a
3840 * file. It does all basic checks, removes SUID from the file, updates
3841 * modification times and calls proper subroutines depending on whether we
3842 * do direct IO or a standard buffered write.
3843 *
3844 * It expects i_rwsem to be grabbed unless we work on a block device or similar
3845 * object which does not need locking at all.
3846 *
3847 * This function does *not* take care of syncing data in case of O_SYNC write.
3848 * A caller has to handle it. This is mainly due to the fact that we want to
3849 * avoid syncing under i_rwsem.
3850 *
3851 * Return:
3852 * * number of bytes written, even for truncated writes
3853 * * negative error code if no data has been written at all
3854 */
3855ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3856{
3857 struct file *file = iocb->ki_filp;
3858 struct address_space *mapping = file->f_mapping;
3859 struct inode *inode = mapping->host;
3860 ssize_t written = 0;
3861 ssize_t err;
3862 ssize_t status;
3863
3864 /* We can write back this queue in page reclaim */
3865 current->backing_dev_info = inode_to_bdi(inode);
3866 err = file_remove_privs(file);
3867 if (err)
3868 goto out;
3869
3870 err = file_update_time(file);
3871 if (err)
3872 goto out;
3873
3874 if (iocb->ki_flags & IOCB_DIRECT) {
3875 loff_t pos, endbyte;
3876
3877 written = generic_file_direct_write(iocb, from);
3878 /*
3879 * If the write stopped short of completing, fall back to
3880 * buffered writes. Some filesystems do this for writes to
3881 * holes, for example. For DAX files, a buffered write will
3882 * not succeed (even if it did, DAX does not handle dirty
3883 * page-cache pages correctly).
3884 */
3885 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3886 goto out;
3887
3888 pos = iocb->ki_pos;
3889 status = generic_perform_write(iocb, from);
3890 /*
3891 * If generic_perform_write() returned a synchronous error
3892 * then we want to return the number of bytes which were
3893 * direct-written, or the error code if that was zero. Note
3894 * that this differs from normal direct-io semantics, which
3895 * will return -EFOO even if some bytes were written.
3896 */
3897 if (unlikely(status < 0)) {
3898 err = status;
3899 goto out;
3900 }
3901 /*
3902 * We need to ensure that the page cache pages are written to
3903 * disk and invalidated to preserve the expected O_DIRECT
3904 * semantics.
3905 */
3906 endbyte = pos + status - 1;
3907 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3908 if (err == 0) {
3909 iocb->ki_pos = endbyte + 1;
3910 written += status;
3911 invalidate_mapping_pages(mapping,
3912 pos >> PAGE_SHIFT,
3913 endbyte >> PAGE_SHIFT);
3914 } else {
3915 /*
3916 * We don't know how much we wrote, so just return
3917 * the number of bytes which were direct-written
3918 */
3919 }
3920 } else {
3921 written = generic_perform_write(iocb, from);
3922 if (likely(written > 0))
3923 iocb->ki_pos += written;
3924 }
3925out:
3926 current->backing_dev_info = NULL;
3927 return written ? written : err;
3928}
3929EXPORT_SYMBOL(__generic_file_write_iter);
3930
3931/**
3932 * generic_file_write_iter - write data to a file
3933 * @iocb: IO state structure
3934 * @from: iov_iter with data to write
3935 *
3936 * This is a wrapper around __generic_file_write_iter() to be used by most
3937 * filesystems. It takes care of syncing the file in case of O_SYNC file
3938 * and acquires i_rwsem as needed.
3939 * Return:
3940 * * negative error code if no data has been written at all of
3941 * vfs_fsync_range() failed for a synchronous write
3942 * * number of bytes written, even for truncated writes
3943 */
3944ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3945{
3946 struct file *file = iocb->ki_filp;
3947 struct inode *inode = file->f_mapping->host;
3948 ssize_t ret;
3949
3950 inode_lock(inode);
3951 ret = generic_write_checks(iocb, from);
3952 if (ret > 0)
3953 ret = __generic_file_write_iter(iocb, from);
3954 inode_unlock(inode);
3955
3956 if (ret > 0)
3957 ret = generic_write_sync(iocb, ret);
3958 return ret;
3959}
3960EXPORT_SYMBOL(generic_file_write_iter);
3961
3962/**
3963 * filemap_release_folio() - Release fs-specific metadata on a folio.
3964 * @folio: The folio which the kernel is trying to free.
3965 * @gfp: Memory allocation flags (and I/O mode).
3966 *
3967 * The address_space is trying to release any data attached to a folio
3968 * (presumably at folio->private).
3969 *
3970 * This will also be called if the private_2 flag is set on a page,
3971 * indicating that the folio has other metadata associated with it.
3972 *
3973 * The @gfp argument specifies whether I/O may be performed to release
3974 * this page (__GFP_IO), and whether the call may block
3975 * (__GFP_RECLAIM & __GFP_FS).
3976 *
3977 * Return: %true if the release was successful, otherwise %false.
3978 */
3979bool filemap_release_folio(struct folio *folio, gfp_t gfp)
3980{
3981 struct address_space * const mapping = folio->mapping;
3982
3983 BUG_ON(!folio_test_locked(folio));
3984 if (folio_test_writeback(folio))
3985 return false;
3986
3987 if (mapping && mapping->a_ops->releasepage)
3988 return mapping->a_ops->releasepage(&folio->page, gfp);
3989 return try_to_free_buffers(&folio->page);
3990}
3991EXPORT_SYMBOL(filemap_release_folio);