Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
6 * Copyright (C) 2002, 2003 H. Peter Anvin
7 *
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
11 */
12
13/*
14 * BITMAP UNPLUGGING:
15 *
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
18 * explanation.
19 *
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
24 * new additions.
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
31 * batch.
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
35 * miss any bits.
36 */
37
38#include <linux/blkdev.h>
39#include <linux/kthread.h>
40#include <linux/raid/pq.h>
41#include <linux/async_tx.h>
42#include <linux/module.h>
43#include <linux/async.h>
44#include <linux/seq_file.h>
45#include <linux/cpu.h>
46#include <linux/slab.h>
47#include <linux/ratelimit.h>
48#include <linux/nodemask.h>
49
50#include <trace/events/block.h>
51#include <linux/list_sort.h>
52
53#include "md.h"
54#include "raid5.h"
55#include "raid0.h"
56#include "md-bitmap.h"
57#include "raid5-log.h"
58
59#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
60
61#define cpu_to_group(cpu) cpu_to_node(cpu)
62#define ANY_GROUP NUMA_NO_NODE
63
64static bool devices_handle_discard_safely = false;
65module_param(devices_handle_discard_safely, bool, 0644);
66MODULE_PARM_DESC(devices_handle_discard_safely,
67 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
68static struct workqueue_struct *raid5_wq;
69
70static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
71{
72 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
73 return &conf->stripe_hashtbl[hash];
74}
75
76static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
77{
78 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
79}
80
81static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
82{
83 spin_lock_irq(conf->hash_locks + hash);
84 spin_lock(&conf->device_lock);
85}
86
87static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
88{
89 spin_unlock(&conf->device_lock);
90 spin_unlock_irq(conf->hash_locks + hash);
91}
92
93static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
94{
95 int i;
96 spin_lock_irq(conf->hash_locks);
97 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
98 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
99 spin_lock(&conf->device_lock);
100}
101
102static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
103{
104 int i;
105 spin_unlock(&conf->device_lock);
106 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
107 spin_unlock(conf->hash_locks + i);
108 spin_unlock_irq(conf->hash_locks);
109}
110
111/* Find first data disk in a raid6 stripe */
112static inline int raid6_d0(struct stripe_head *sh)
113{
114 if (sh->ddf_layout)
115 /* ddf always start from first device */
116 return 0;
117 /* md starts just after Q block */
118 if (sh->qd_idx == sh->disks - 1)
119 return 0;
120 else
121 return sh->qd_idx + 1;
122}
123static inline int raid6_next_disk(int disk, int raid_disks)
124{
125 disk++;
126 return (disk < raid_disks) ? disk : 0;
127}
128
129/* When walking through the disks in a raid5, starting at raid6_d0,
130 * We need to map each disk to a 'slot', where the data disks are slot
131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
132 * is raid_disks-1. This help does that mapping.
133 */
134static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
135 int *count, int syndrome_disks)
136{
137 int slot = *count;
138
139 if (sh->ddf_layout)
140 (*count)++;
141 if (idx == sh->pd_idx)
142 return syndrome_disks;
143 if (idx == sh->qd_idx)
144 return syndrome_disks + 1;
145 if (!sh->ddf_layout)
146 (*count)++;
147 return slot;
148}
149
150static void print_raid5_conf (struct r5conf *conf);
151
152static int stripe_operations_active(struct stripe_head *sh)
153{
154 return sh->check_state || sh->reconstruct_state ||
155 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
156 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
157}
158
159static bool stripe_is_lowprio(struct stripe_head *sh)
160{
161 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
162 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
163 !test_bit(STRIPE_R5C_CACHING, &sh->state);
164}
165
166static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
167{
168 struct r5conf *conf = sh->raid_conf;
169 struct r5worker_group *group;
170 int thread_cnt;
171 int i, cpu = sh->cpu;
172
173 if (!cpu_online(cpu)) {
174 cpu = cpumask_any(cpu_online_mask);
175 sh->cpu = cpu;
176 }
177
178 if (list_empty(&sh->lru)) {
179 struct r5worker_group *group;
180 group = conf->worker_groups + cpu_to_group(cpu);
181 if (stripe_is_lowprio(sh))
182 list_add_tail(&sh->lru, &group->loprio_list);
183 else
184 list_add_tail(&sh->lru, &group->handle_list);
185 group->stripes_cnt++;
186 sh->group = group;
187 }
188
189 if (conf->worker_cnt_per_group == 0) {
190 md_wakeup_thread(conf->mddev->thread);
191 return;
192 }
193
194 group = conf->worker_groups + cpu_to_group(sh->cpu);
195
196 group->workers[0].working = true;
197 /* at least one worker should run to avoid race */
198 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
199
200 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
201 /* wakeup more workers */
202 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
203 if (group->workers[i].working == false) {
204 group->workers[i].working = true;
205 queue_work_on(sh->cpu, raid5_wq,
206 &group->workers[i].work);
207 thread_cnt--;
208 }
209 }
210}
211
212static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
213 struct list_head *temp_inactive_list)
214{
215 int i;
216 int injournal = 0; /* number of date pages with R5_InJournal */
217
218 BUG_ON(!list_empty(&sh->lru));
219 BUG_ON(atomic_read(&conf->active_stripes)==0);
220
221 if (r5c_is_writeback(conf->log))
222 for (i = sh->disks; i--; )
223 if (test_bit(R5_InJournal, &sh->dev[i].flags))
224 injournal++;
225 /*
226 * In the following cases, the stripe cannot be released to cached
227 * lists. Therefore, we make the stripe write out and set
228 * STRIPE_HANDLE:
229 * 1. when quiesce in r5c write back;
230 * 2. when resync is requested fot the stripe.
231 */
232 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
233 (conf->quiesce && r5c_is_writeback(conf->log) &&
234 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
235 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
236 r5c_make_stripe_write_out(sh);
237 set_bit(STRIPE_HANDLE, &sh->state);
238 }
239
240 if (test_bit(STRIPE_HANDLE, &sh->state)) {
241 if (test_bit(STRIPE_DELAYED, &sh->state) &&
242 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
243 list_add_tail(&sh->lru, &conf->delayed_list);
244 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
245 sh->bm_seq - conf->seq_write > 0)
246 list_add_tail(&sh->lru, &conf->bitmap_list);
247 else {
248 clear_bit(STRIPE_DELAYED, &sh->state);
249 clear_bit(STRIPE_BIT_DELAY, &sh->state);
250 if (conf->worker_cnt_per_group == 0) {
251 if (stripe_is_lowprio(sh))
252 list_add_tail(&sh->lru,
253 &conf->loprio_list);
254 else
255 list_add_tail(&sh->lru,
256 &conf->handle_list);
257 } else {
258 raid5_wakeup_stripe_thread(sh);
259 return;
260 }
261 }
262 md_wakeup_thread(conf->mddev->thread);
263 } else {
264 BUG_ON(stripe_operations_active(sh));
265 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
266 if (atomic_dec_return(&conf->preread_active_stripes)
267 < IO_THRESHOLD)
268 md_wakeup_thread(conf->mddev->thread);
269 atomic_dec(&conf->active_stripes);
270 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
271 if (!r5c_is_writeback(conf->log))
272 list_add_tail(&sh->lru, temp_inactive_list);
273 else {
274 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
275 if (injournal == 0)
276 list_add_tail(&sh->lru, temp_inactive_list);
277 else if (injournal == conf->raid_disks - conf->max_degraded) {
278 /* full stripe */
279 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
280 atomic_inc(&conf->r5c_cached_full_stripes);
281 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
282 atomic_dec(&conf->r5c_cached_partial_stripes);
283 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
284 r5c_check_cached_full_stripe(conf);
285 } else
286 /*
287 * STRIPE_R5C_PARTIAL_STRIPE is set in
288 * r5c_try_caching_write(). No need to
289 * set it again.
290 */
291 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
292 }
293 }
294 }
295}
296
297static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
298 struct list_head *temp_inactive_list)
299{
300 if (atomic_dec_and_test(&sh->count))
301 do_release_stripe(conf, sh, temp_inactive_list);
302}
303
304/*
305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
306 *
307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
308 * given time. Adding stripes only takes device lock, while deleting stripes
309 * only takes hash lock.
310 */
311static void release_inactive_stripe_list(struct r5conf *conf,
312 struct list_head *temp_inactive_list,
313 int hash)
314{
315 int size;
316 bool do_wakeup = false;
317 unsigned long flags;
318
319 if (hash == NR_STRIPE_HASH_LOCKS) {
320 size = NR_STRIPE_HASH_LOCKS;
321 hash = NR_STRIPE_HASH_LOCKS - 1;
322 } else
323 size = 1;
324 while (size) {
325 struct list_head *list = &temp_inactive_list[size - 1];
326
327 /*
328 * We don't hold any lock here yet, raid5_get_active_stripe() might
329 * remove stripes from the list
330 */
331 if (!list_empty_careful(list)) {
332 spin_lock_irqsave(conf->hash_locks + hash, flags);
333 if (list_empty(conf->inactive_list + hash) &&
334 !list_empty(list))
335 atomic_dec(&conf->empty_inactive_list_nr);
336 list_splice_tail_init(list, conf->inactive_list + hash);
337 do_wakeup = true;
338 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
339 }
340 size--;
341 hash--;
342 }
343
344 if (do_wakeup) {
345 wake_up(&conf->wait_for_stripe);
346 if (atomic_read(&conf->active_stripes) == 0)
347 wake_up(&conf->wait_for_quiescent);
348 if (conf->retry_read_aligned)
349 md_wakeup_thread(conf->mddev->thread);
350 }
351}
352
353/* should hold conf->device_lock already */
354static int release_stripe_list(struct r5conf *conf,
355 struct list_head *temp_inactive_list)
356{
357 struct stripe_head *sh, *t;
358 int count = 0;
359 struct llist_node *head;
360
361 head = llist_del_all(&conf->released_stripes);
362 head = llist_reverse_order(head);
363 llist_for_each_entry_safe(sh, t, head, release_list) {
364 int hash;
365
366 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
367 smp_mb();
368 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
369 /*
370 * Don't worry the bit is set here, because if the bit is set
371 * again, the count is always > 1. This is true for
372 * STRIPE_ON_UNPLUG_LIST bit too.
373 */
374 hash = sh->hash_lock_index;
375 __release_stripe(conf, sh, &temp_inactive_list[hash]);
376 count++;
377 }
378
379 return count;
380}
381
382void raid5_release_stripe(struct stripe_head *sh)
383{
384 struct r5conf *conf = sh->raid_conf;
385 unsigned long flags;
386 struct list_head list;
387 int hash;
388 bool wakeup;
389
390 /* Avoid release_list until the last reference.
391 */
392 if (atomic_add_unless(&sh->count, -1, 1))
393 return;
394
395 if (unlikely(!conf->mddev->thread) ||
396 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
397 goto slow_path;
398 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
399 if (wakeup)
400 md_wakeup_thread(conf->mddev->thread);
401 return;
402slow_path:
403 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
404 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
405 INIT_LIST_HEAD(&list);
406 hash = sh->hash_lock_index;
407 do_release_stripe(conf, sh, &list);
408 spin_unlock_irqrestore(&conf->device_lock, flags);
409 release_inactive_stripe_list(conf, &list, hash);
410 }
411}
412
413static inline void remove_hash(struct stripe_head *sh)
414{
415 pr_debug("remove_hash(), stripe %llu\n",
416 (unsigned long long)sh->sector);
417
418 hlist_del_init(&sh->hash);
419}
420
421static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
422{
423 struct hlist_head *hp = stripe_hash(conf, sh->sector);
424
425 pr_debug("insert_hash(), stripe %llu\n",
426 (unsigned long long)sh->sector);
427
428 hlist_add_head(&sh->hash, hp);
429}
430
431/* find an idle stripe, make sure it is unhashed, and return it. */
432static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
433{
434 struct stripe_head *sh = NULL;
435 struct list_head *first;
436
437 if (list_empty(conf->inactive_list + hash))
438 goto out;
439 first = (conf->inactive_list + hash)->next;
440 sh = list_entry(first, struct stripe_head, lru);
441 list_del_init(first);
442 remove_hash(sh);
443 atomic_inc(&conf->active_stripes);
444 BUG_ON(hash != sh->hash_lock_index);
445 if (list_empty(conf->inactive_list + hash))
446 atomic_inc(&conf->empty_inactive_list_nr);
447out:
448 return sh;
449}
450
451#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
452static void free_stripe_pages(struct stripe_head *sh)
453{
454 int i;
455 struct page *p;
456
457 /* Have not allocate page pool */
458 if (!sh->pages)
459 return;
460
461 for (i = 0; i < sh->nr_pages; i++) {
462 p = sh->pages[i];
463 if (p)
464 put_page(p);
465 sh->pages[i] = NULL;
466 }
467}
468
469static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
470{
471 int i;
472 struct page *p;
473
474 for (i = 0; i < sh->nr_pages; i++) {
475 /* The page have allocated. */
476 if (sh->pages[i])
477 continue;
478
479 p = alloc_page(gfp);
480 if (!p) {
481 free_stripe_pages(sh);
482 return -ENOMEM;
483 }
484 sh->pages[i] = p;
485 }
486 return 0;
487}
488
489static int
490init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
491{
492 int nr_pages, cnt;
493
494 if (sh->pages)
495 return 0;
496
497 /* Each of the sh->dev[i] need one conf->stripe_size */
498 cnt = PAGE_SIZE / conf->stripe_size;
499 nr_pages = (disks + cnt - 1) / cnt;
500
501 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
502 if (!sh->pages)
503 return -ENOMEM;
504 sh->nr_pages = nr_pages;
505 sh->stripes_per_page = cnt;
506 return 0;
507}
508#endif
509
510static void shrink_buffers(struct stripe_head *sh)
511{
512 int i;
513 int num = sh->raid_conf->pool_size;
514
515#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
516 for (i = 0; i < num ; i++) {
517 struct page *p;
518
519 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
520 p = sh->dev[i].page;
521 if (!p)
522 continue;
523 sh->dev[i].page = NULL;
524 put_page(p);
525 }
526#else
527 for (i = 0; i < num; i++)
528 sh->dev[i].page = NULL;
529 free_stripe_pages(sh); /* Free pages */
530#endif
531}
532
533static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
534{
535 int i;
536 int num = sh->raid_conf->pool_size;
537
538#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
539 for (i = 0; i < num; i++) {
540 struct page *page;
541
542 if (!(page = alloc_page(gfp))) {
543 return 1;
544 }
545 sh->dev[i].page = page;
546 sh->dev[i].orig_page = page;
547 sh->dev[i].offset = 0;
548 }
549#else
550 if (alloc_stripe_pages(sh, gfp))
551 return -ENOMEM;
552
553 for (i = 0; i < num; i++) {
554 sh->dev[i].page = raid5_get_dev_page(sh, i);
555 sh->dev[i].orig_page = sh->dev[i].page;
556 sh->dev[i].offset = raid5_get_page_offset(sh, i);
557 }
558#endif
559 return 0;
560}
561
562static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
563 struct stripe_head *sh);
564
565static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
566{
567 struct r5conf *conf = sh->raid_conf;
568 int i, seq;
569
570 BUG_ON(atomic_read(&sh->count) != 0);
571 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
572 BUG_ON(stripe_operations_active(sh));
573 BUG_ON(sh->batch_head);
574
575 pr_debug("init_stripe called, stripe %llu\n",
576 (unsigned long long)sector);
577retry:
578 seq = read_seqcount_begin(&conf->gen_lock);
579 sh->generation = conf->generation - previous;
580 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
581 sh->sector = sector;
582 stripe_set_idx(sector, conf, previous, sh);
583 sh->state = 0;
584
585 for (i = sh->disks; i--; ) {
586 struct r5dev *dev = &sh->dev[i];
587
588 if (dev->toread || dev->read || dev->towrite || dev->written ||
589 test_bit(R5_LOCKED, &dev->flags)) {
590 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
591 (unsigned long long)sh->sector, i, dev->toread,
592 dev->read, dev->towrite, dev->written,
593 test_bit(R5_LOCKED, &dev->flags));
594 WARN_ON(1);
595 }
596 dev->flags = 0;
597 dev->sector = raid5_compute_blocknr(sh, i, previous);
598 }
599 if (read_seqcount_retry(&conf->gen_lock, seq))
600 goto retry;
601 sh->overwrite_disks = 0;
602 insert_hash(conf, sh);
603 sh->cpu = smp_processor_id();
604 set_bit(STRIPE_BATCH_READY, &sh->state);
605}
606
607static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
608 short generation)
609{
610 struct stripe_head *sh;
611
612 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
613 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
614 if (sh->sector == sector && sh->generation == generation)
615 return sh;
616 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
617 return NULL;
618}
619
620/*
621 * Need to check if array has failed when deciding whether to:
622 * - start an array
623 * - remove non-faulty devices
624 * - add a spare
625 * - allow a reshape
626 * This determination is simple when no reshape is happening.
627 * However if there is a reshape, we need to carefully check
628 * both the before and after sections.
629 * This is because some failed devices may only affect one
630 * of the two sections, and some non-in_sync devices may
631 * be insync in the section most affected by failed devices.
632 */
633int raid5_calc_degraded(struct r5conf *conf)
634{
635 int degraded, degraded2;
636 int i;
637
638 rcu_read_lock();
639 degraded = 0;
640 for (i = 0; i < conf->previous_raid_disks; i++) {
641 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
642 if (rdev && test_bit(Faulty, &rdev->flags))
643 rdev = rcu_dereference(conf->disks[i].replacement);
644 if (!rdev || test_bit(Faulty, &rdev->flags))
645 degraded++;
646 else if (test_bit(In_sync, &rdev->flags))
647 ;
648 else
649 /* not in-sync or faulty.
650 * If the reshape increases the number of devices,
651 * this is being recovered by the reshape, so
652 * this 'previous' section is not in_sync.
653 * If the number of devices is being reduced however,
654 * the device can only be part of the array if
655 * we are reverting a reshape, so this section will
656 * be in-sync.
657 */
658 if (conf->raid_disks >= conf->previous_raid_disks)
659 degraded++;
660 }
661 rcu_read_unlock();
662 if (conf->raid_disks == conf->previous_raid_disks)
663 return degraded;
664 rcu_read_lock();
665 degraded2 = 0;
666 for (i = 0; i < conf->raid_disks; i++) {
667 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
668 if (rdev && test_bit(Faulty, &rdev->flags))
669 rdev = rcu_dereference(conf->disks[i].replacement);
670 if (!rdev || test_bit(Faulty, &rdev->flags))
671 degraded2++;
672 else if (test_bit(In_sync, &rdev->flags))
673 ;
674 else
675 /* not in-sync or faulty.
676 * If reshape increases the number of devices, this
677 * section has already been recovered, else it
678 * almost certainly hasn't.
679 */
680 if (conf->raid_disks <= conf->previous_raid_disks)
681 degraded2++;
682 }
683 rcu_read_unlock();
684 if (degraded2 > degraded)
685 return degraded2;
686 return degraded;
687}
688
689static int has_failed(struct r5conf *conf)
690{
691 int degraded;
692
693 if (conf->mddev->reshape_position == MaxSector)
694 return conf->mddev->degraded > conf->max_degraded;
695
696 degraded = raid5_calc_degraded(conf);
697 if (degraded > conf->max_degraded)
698 return 1;
699 return 0;
700}
701
702struct stripe_head *
703raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
704 int previous, int noblock, int noquiesce)
705{
706 struct stripe_head *sh;
707 int hash = stripe_hash_locks_hash(conf, sector);
708 int inc_empty_inactive_list_flag;
709
710 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
711
712 spin_lock_irq(conf->hash_locks + hash);
713
714 do {
715 wait_event_lock_irq(conf->wait_for_quiescent,
716 conf->quiesce == 0 || noquiesce,
717 *(conf->hash_locks + hash));
718 sh = __find_stripe(conf, sector, conf->generation - previous);
719 if (!sh) {
720 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
721 sh = get_free_stripe(conf, hash);
722 if (!sh && !test_bit(R5_DID_ALLOC,
723 &conf->cache_state))
724 set_bit(R5_ALLOC_MORE,
725 &conf->cache_state);
726 }
727 if (noblock && sh == NULL)
728 break;
729
730 r5c_check_stripe_cache_usage(conf);
731 if (!sh) {
732 set_bit(R5_INACTIVE_BLOCKED,
733 &conf->cache_state);
734 r5l_wake_reclaim(conf->log, 0);
735 wait_event_lock_irq(
736 conf->wait_for_stripe,
737 !list_empty(conf->inactive_list + hash) &&
738 (atomic_read(&conf->active_stripes)
739 < (conf->max_nr_stripes * 3 / 4)
740 || !test_bit(R5_INACTIVE_BLOCKED,
741 &conf->cache_state)),
742 *(conf->hash_locks + hash));
743 clear_bit(R5_INACTIVE_BLOCKED,
744 &conf->cache_state);
745 } else {
746 init_stripe(sh, sector, previous);
747 atomic_inc(&sh->count);
748 }
749 } else if (!atomic_inc_not_zero(&sh->count)) {
750 spin_lock(&conf->device_lock);
751 if (!atomic_read(&sh->count)) {
752 if (!test_bit(STRIPE_HANDLE, &sh->state))
753 atomic_inc(&conf->active_stripes);
754 BUG_ON(list_empty(&sh->lru) &&
755 !test_bit(STRIPE_EXPANDING, &sh->state));
756 inc_empty_inactive_list_flag = 0;
757 if (!list_empty(conf->inactive_list + hash))
758 inc_empty_inactive_list_flag = 1;
759 list_del_init(&sh->lru);
760 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
761 atomic_inc(&conf->empty_inactive_list_nr);
762 if (sh->group) {
763 sh->group->stripes_cnt--;
764 sh->group = NULL;
765 }
766 }
767 atomic_inc(&sh->count);
768 spin_unlock(&conf->device_lock);
769 }
770 } while (sh == NULL);
771
772 spin_unlock_irq(conf->hash_locks + hash);
773 return sh;
774}
775
776static bool is_full_stripe_write(struct stripe_head *sh)
777{
778 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
779 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
780}
781
782static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
783 __acquires(&sh1->stripe_lock)
784 __acquires(&sh2->stripe_lock)
785{
786 if (sh1 > sh2) {
787 spin_lock_irq(&sh2->stripe_lock);
788 spin_lock_nested(&sh1->stripe_lock, 1);
789 } else {
790 spin_lock_irq(&sh1->stripe_lock);
791 spin_lock_nested(&sh2->stripe_lock, 1);
792 }
793}
794
795static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
796 __releases(&sh1->stripe_lock)
797 __releases(&sh2->stripe_lock)
798{
799 spin_unlock(&sh1->stripe_lock);
800 spin_unlock_irq(&sh2->stripe_lock);
801}
802
803/* Only freshly new full stripe normal write stripe can be added to a batch list */
804static bool stripe_can_batch(struct stripe_head *sh)
805{
806 struct r5conf *conf = sh->raid_conf;
807
808 if (raid5_has_log(conf) || raid5_has_ppl(conf))
809 return false;
810 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
811 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
812 is_full_stripe_write(sh);
813}
814
815/* we only do back search */
816static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
817{
818 struct stripe_head *head;
819 sector_t head_sector, tmp_sec;
820 int hash;
821 int dd_idx;
822 int inc_empty_inactive_list_flag;
823
824 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
825 tmp_sec = sh->sector;
826 if (!sector_div(tmp_sec, conf->chunk_sectors))
827 return;
828 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
829
830 hash = stripe_hash_locks_hash(conf, head_sector);
831 spin_lock_irq(conf->hash_locks + hash);
832 head = __find_stripe(conf, head_sector, conf->generation);
833 if (head && !atomic_inc_not_zero(&head->count)) {
834 spin_lock(&conf->device_lock);
835 if (!atomic_read(&head->count)) {
836 if (!test_bit(STRIPE_HANDLE, &head->state))
837 atomic_inc(&conf->active_stripes);
838 BUG_ON(list_empty(&head->lru) &&
839 !test_bit(STRIPE_EXPANDING, &head->state));
840 inc_empty_inactive_list_flag = 0;
841 if (!list_empty(conf->inactive_list + hash))
842 inc_empty_inactive_list_flag = 1;
843 list_del_init(&head->lru);
844 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
845 atomic_inc(&conf->empty_inactive_list_nr);
846 if (head->group) {
847 head->group->stripes_cnt--;
848 head->group = NULL;
849 }
850 }
851 atomic_inc(&head->count);
852 spin_unlock(&conf->device_lock);
853 }
854 spin_unlock_irq(conf->hash_locks + hash);
855
856 if (!head)
857 return;
858 if (!stripe_can_batch(head))
859 goto out;
860
861 lock_two_stripes(head, sh);
862 /* clear_batch_ready clear the flag */
863 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
864 goto unlock_out;
865
866 if (sh->batch_head)
867 goto unlock_out;
868
869 dd_idx = 0;
870 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
871 dd_idx++;
872 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
873 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
874 goto unlock_out;
875
876 if (head->batch_head) {
877 spin_lock(&head->batch_head->batch_lock);
878 /* This batch list is already running */
879 if (!stripe_can_batch(head)) {
880 spin_unlock(&head->batch_head->batch_lock);
881 goto unlock_out;
882 }
883 /*
884 * We must assign batch_head of this stripe within the
885 * batch_lock, otherwise clear_batch_ready of batch head
886 * stripe could clear BATCH_READY bit of this stripe and
887 * this stripe->batch_head doesn't get assigned, which
888 * could confuse clear_batch_ready for this stripe
889 */
890 sh->batch_head = head->batch_head;
891
892 /*
893 * at this point, head's BATCH_READY could be cleared, but we
894 * can still add the stripe to batch list
895 */
896 list_add(&sh->batch_list, &head->batch_list);
897 spin_unlock(&head->batch_head->batch_lock);
898 } else {
899 head->batch_head = head;
900 sh->batch_head = head->batch_head;
901 spin_lock(&head->batch_lock);
902 list_add_tail(&sh->batch_list, &head->batch_list);
903 spin_unlock(&head->batch_lock);
904 }
905
906 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
907 if (atomic_dec_return(&conf->preread_active_stripes)
908 < IO_THRESHOLD)
909 md_wakeup_thread(conf->mddev->thread);
910
911 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
912 int seq = sh->bm_seq;
913 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
914 sh->batch_head->bm_seq > seq)
915 seq = sh->batch_head->bm_seq;
916 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
917 sh->batch_head->bm_seq = seq;
918 }
919
920 atomic_inc(&sh->count);
921unlock_out:
922 unlock_two_stripes(head, sh);
923out:
924 raid5_release_stripe(head);
925}
926
927/* Determine if 'data_offset' or 'new_data_offset' should be used
928 * in this stripe_head.
929 */
930static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
931{
932 sector_t progress = conf->reshape_progress;
933 /* Need a memory barrier to make sure we see the value
934 * of conf->generation, or ->data_offset that was set before
935 * reshape_progress was updated.
936 */
937 smp_rmb();
938 if (progress == MaxSector)
939 return 0;
940 if (sh->generation == conf->generation - 1)
941 return 0;
942 /* We are in a reshape, and this is a new-generation stripe,
943 * so use new_data_offset.
944 */
945 return 1;
946}
947
948static void dispatch_bio_list(struct bio_list *tmp)
949{
950 struct bio *bio;
951
952 while ((bio = bio_list_pop(tmp)))
953 submit_bio_noacct(bio);
954}
955
956static int cmp_stripe(void *priv, const struct list_head *a,
957 const struct list_head *b)
958{
959 const struct r5pending_data *da = list_entry(a,
960 struct r5pending_data, sibling);
961 const struct r5pending_data *db = list_entry(b,
962 struct r5pending_data, sibling);
963 if (da->sector > db->sector)
964 return 1;
965 if (da->sector < db->sector)
966 return -1;
967 return 0;
968}
969
970static void dispatch_defer_bios(struct r5conf *conf, int target,
971 struct bio_list *list)
972{
973 struct r5pending_data *data;
974 struct list_head *first, *next = NULL;
975 int cnt = 0;
976
977 if (conf->pending_data_cnt == 0)
978 return;
979
980 list_sort(NULL, &conf->pending_list, cmp_stripe);
981
982 first = conf->pending_list.next;
983
984 /* temporarily move the head */
985 if (conf->next_pending_data)
986 list_move_tail(&conf->pending_list,
987 &conf->next_pending_data->sibling);
988
989 while (!list_empty(&conf->pending_list)) {
990 data = list_first_entry(&conf->pending_list,
991 struct r5pending_data, sibling);
992 if (&data->sibling == first)
993 first = data->sibling.next;
994 next = data->sibling.next;
995
996 bio_list_merge(list, &data->bios);
997 list_move(&data->sibling, &conf->free_list);
998 cnt++;
999 if (cnt >= target)
1000 break;
1001 }
1002 conf->pending_data_cnt -= cnt;
1003 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1004
1005 if (next != &conf->pending_list)
1006 conf->next_pending_data = list_entry(next,
1007 struct r5pending_data, sibling);
1008 else
1009 conf->next_pending_data = NULL;
1010 /* list isn't empty */
1011 if (first != &conf->pending_list)
1012 list_move_tail(&conf->pending_list, first);
1013}
1014
1015static void flush_deferred_bios(struct r5conf *conf)
1016{
1017 struct bio_list tmp = BIO_EMPTY_LIST;
1018
1019 if (conf->pending_data_cnt == 0)
1020 return;
1021
1022 spin_lock(&conf->pending_bios_lock);
1023 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1024 BUG_ON(conf->pending_data_cnt != 0);
1025 spin_unlock(&conf->pending_bios_lock);
1026
1027 dispatch_bio_list(&tmp);
1028}
1029
1030static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1031 struct bio_list *bios)
1032{
1033 struct bio_list tmp = BIO_EMPTY_LIST;
1034 struct r5pending_data *ent;
1035
1036 spin_lock(&conf->pending_bios_lock);
1037 ent = list_first_entry(&conf->free_list, struct r5pending_data,
1038 sibling);
1039 list_move_tail(&ent->sibling, &conf->pending_list);
1040 ent->sector = sector;
1041 bio_list_init(&ent->bios);
1042 bio_list_merge(&ent->bios, bios);
1043 conf->pending_data_cnt++;
1044 if (conf->pending_data_cnt >= PENDING_IO_MAX)
1045 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1046
1047 spin_unlock(&conf->pending_bios_lock);
1048
1049 dispatch_bio_list(&tmp);
1050}
1051
1052static void
1053raid5_end_read_request(struct bio *bi);
1054static void
1055raid5_end_write_request(struct bio *bi);
1056
1057static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1058{
1059 struct r5conf *conf = sh->raid_conf;
1060 int i, disks = sh->disks;
1061 struct stripe_head *head_sh = sh;
1062 struct bio_list pending_bios = BIO_EMPTY_LIST;
1063 struct r5dev *dev;
1064 bool should_defer;
1065
1066 might_sleep();
1067
1068 if (log_stripe(sh, s) == 0)
1069 return;
1070
1071 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1072
1073 for (i = disks; i--; ) {
1074 int op, op_flags = 0;
1075 int replace_only = 0;
1076 struct bio *bi, *rbi;
1077 struct md_rdev *rdev, *rrdev = NULL;
1078
1079 sh = head_sh;
1080 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1081 op = REQ_OP_WRITE;
1082 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1083 op_flags = REQ_FUA;
1084 if (test_bit(R5_Discard, &sh->dev[i].flags))
1085 op = REQ_OP_DISCARD;
1086 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1087 op = REQ_OP_READ;
1088 else if (test_and_clear_bit(R5_WantReplace,
1089 &sh->dev[i].flags)) {
1090 op = REQ_OP_WRITE;
1091 replace_only = 1;
1092 } else
1093 continue;
1094 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1095 op_flags |= REQ_SYNC;
1096
1097again:
1098 dev = &sh->dev[i];
1099 bi = &dev->req;
1100 rbi = &dev->rreq; /* For writing to replacement */
1101
1102 rcu_read_lock();
1103 rrdev = rcu_dereference(conf->disks[i].replacement);
1104 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1105 rdev = rcu_dereference(conf->disks[i].rdev);
1106 if (!rdev) {
1107 rdev = rrdev;
1108 rrdev = NULL;
1109 }
1110 if (op_is_write(op)) {
1111 if (replace_only)
1112 rdev = NULL;
1113 if (rdev == rrdev)
1114 /* We raced and saw duplicates */
1115 rrdev = NULL;
1116 } else {
1117 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1118 rdev = rrdev;
1119 rrdev = NULL;
1120 }
1121
1122 if (rdev && test_bit(Faulty, &rdev->flags))
1123 rdev = NULL;
1124 if (rdev)
1125 atomic_inc(&rdev->nr_pending);
1126 if (rrdev && test_bit(Faulty, &rrdev->flags))
1127 rrdev = NULL;
1128 if (rrdev)
1129 atomic_inc(&rrdev->nr_pending);
1130 rcu_read_unlock();
1131
1132 /* We have already checked bad blocks for reads. Now
1133 * need to check for writes. We never accept write errors
1134 * on the replacement, so we don't to check rrdev.
1135 */
1136 while (op_is_write(op) && rdev &&
1137 test_bit(WriteErrorSeen, &rdev->flags)) {
1138 sector_t first_bad;
1139 int bad_sectors;
1140 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
1141 &first_bad, &bad_sectors);
1142 if (!bad)
1143 break;
1144
1145 if (bad < 0) {
1146 set_bit(BlockedBadBlocks, &rdev->flags);
1147 if (!conf->mddev->external &&
1148 conf->mddev->sb_flags) {
1149 /* It is very unlikely, but we might
1150 * still need to write out the
1151 * bad block log - better give it
1152 * a chance*/
1153 md_check_recovery(conf->mddev);
1154 }
1155 /*
1156 * Because md_wait_for_blocked_rdev
1157 * will dec nr_pending, we must
1158 * increment it first.
1159 */
1160 atomic_inc(&rdev->nr_pending);
1161 md_wait_for_blocked_rdev(rdev, conf->mddev);
1162 } else {
1163 /* Acknowledged bad block - skip the write */
1164 rdev_dec_pending(rdev, conf->mddev);
1165 rdev = NULL;
1166 }
1167 }
1168
1169 if (rdev) {
1170 if (s->syncing || s->expanding || s->expanded
1171 || s->replacing)
1172 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1173
1174 set_bit(STRIPE_IO_STARTED, &sh->state);
1175
1176 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1177 bi->bi_end_io = op_is_write(op)
1178 ? raid5_end_write_request
1179 : raid5_end_read_request;
1180 bi->bi_private = sh;
1181
1182 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1183 __func__, (unsigned long long)sh->sector,
1184 bi->bi_opf, i);
1185 atomic_inc(&sh->count);
1186 if (sh != head_sh)
1187 atomic_inc(&head_sh->count);
1188 if (use_new_offset(conf, sh))
1189 bi->bi_iter.bi_sector = (sh->sector
1190 + rdev->new_data_offset);
1191 else
1192 bi->bi_iter.bi_sector = (sh->sector
1193 + rdev->data_offset);
1194 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1195 bi->bi_opf |= REQ_NOMERGE;
1196
1197 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1198 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1199
1200 if (!op_is_write(op) &&
1201 test_bit(R5_InJournal, &sh->dev[i].flags))
1202 /*
1203 * issuing read for a page in journal, this
1204 * must be preparing for prexor in rmw; read
1205 * the data into orig_page
1206 */
1207 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1208 else
1209 sh->dev[i].vec.bv_page = sh->dev[i].page;
1210 bi->bi_vcnt = 1;
1211 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1212 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1213 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1214 /*
1215 * If this is discard request, set bi_vcnt 0. We don't
1216 * want to confuse SCSI because SCSI will replace payload
1217 */
1218 if (op == REQ_OP_DISCARD)
1219 bi->bi_vcnt = 0;
1220 if (rrdev)
1221 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1222
1223 if (conf->mddev->gendisk)
1224 trace_block_bio_remap(bi,
1225 disk_devt(conf->mddev->gendisk),
1226 sh->dev[i].sector);
1227 if (should_defer && op_is_write(op))
1228 bio_list_add(&pending_bios, bi);
1229 else
1230 submit_bio_noacct(bi);
1231 }
1232 if (rrdev) {
1233 if (s->syncing || s->expanding || s->expanded
1234 || s->replacing)
1235 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1236
1237 set_bit(STRIPE_IO_STARTED, &sh->state);
1238
1239 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1240 BUG_ON(!op_is_write(op));
1241 rbi->bi_end_io = raid5_end_write_request;
1242 rbi->bi_private = sh;
1243
1244 pr_debug("%s: for %llu schedule op %d on "
1245 "replacement disc %d\n",
1246 __func__, (unsigned long long)sh->sector,
1247 rbi->bi_opf, i);
1248 atomic_inc(&sh->count);
1249 if (sh != head_sh)
1250 atomic_inc(&head_sh->count);
1251 if (use_new_offset(conf, sh))
1252 rbi->bi_iter.bi_sector = (sh->sector
1253 + rrdev->new_data_offset);
1254 else
1255 rbi->bi_iter.bi_sector = (sh->sector
1256 + rrdev->data_offset);
1257 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1258 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1259 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1260 rbi->bi_vcnt = 1;
1261 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1262 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1263 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1264 /*
1265 * If this is discard request, set bi_vcnt 0. We don't
1266 * want to confuse SCSI because SCSI will replace payload
1267 */
1268 if (op == REQ_OP_DISCARD)
1269 rbi->bi_vcnt = 0;
1270 if (conf->mddev->gendisk)
1271 trace_block_bio_remap(rbi,
1272 disk_devt(conf->mddev->gendisk),
1273 sh->dev[i].sector);
1274 if (should_defer && op_is_write(op))
1275 bio_list_add(&pending_bios, rbi);
1276 else
1277 submit_bio_noacct(rbi);
1278 }
1279 if (!rdev && !rrdev) {
1280 if (op_is_write(op))
1281 set_bit(STRIPE_DEGRADED, &sh->state);
1282 pr_debug("skip op %d on disc %d for sector %llu\n",
1283 bi->bi_opf, i, (unsigned long long)sh->sector);
1284 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1285 set_bit(STRIPE_HANDLE, &sh->state);
1286 }
1287
1288 if (!head_sh->batch_head)
1289 continue;
1290 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1291 batch_list);
1292 if (sh != head_sh)
1293 goto again;
1294 }
1295
1296 if (should_defer && !bio_list_empty(&pending_bios))
1297 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1298}
1299
1300static struct dma_async_tx_descriptor *
1301async_copy_data(int frombio, struct bio *bio, struct page **page,
1302 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1303 struct stripe_head *sh, int no_skipcopy)
1304{
1305 struct bio_vec bvl;
1306 struct bvec_iter iter;
1307 struct page *bio_page;
1308 int page_offset;
1309 struct async_submit_ctl submit;
1310 enum async_tx_flags flags = 0;
1311 struct r5conf *conf = sh->raid_conf;
1312
1313 if (bio->bi_iter.bi_sector >= sector)
1314 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1315 else
1316 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1317
1318 if (frombio)
1319 flags |= ASYNC_TX_FENCE;
1320 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1321
1322 bio_for_each_segment(bvl, bio, iter) {
1323 int len = bvl.bv_len;
1324 int clen;
1325 int b_offset = 0;
1326
1327 if (page_offset < 0) {
1328 b_offset = -page_offset;
1329 page_offset += b_offset;
1330 len -= b_offset;
1331 }
1332
1333 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1334 clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1335 else
1336 clen = len;
1337
1338 if (clen > 0) {
1339 b_offset += bvl.bv_offset;
1340 bio_page = bvl.bv_page;
1341 if (frombio) {
1342 if (conf->skip_copy &&
1343 b_offset == 0 && page_offset == 0 &&
1344 clen == RAID5_STRIPE_SIZE(conf) &&
1345 !no_skipcopy)
1346 *page = bio_page;
1347 else
1348 tx = async_memcpy(*page, bio_page, page_offset + poff,
1349 b_offset, clen, &submit);
1350 } else
1351 tx = async_memcpy(bio_page, *page, b_offset,
1352 page_offset + poff, clen, &submit);
1353 }
1354 /* chain the operations */
1355 submit.depend_tx = tx;
1356
1357 if (clen < len) /* hit end of page */
1358 break;
1359 page_offset += len;
1360 }
1361
1362 return tx;
1363}
1364
1365static void ops_complete_biofill(void *stripe_head_ref)
1366{
1367 struct stripe_head *sh = stripe_head_ref;
1368 int i;
1369 struct r5conf *conf = sh->raid_conf;
1370
1371 pr_debug("%s: stripe %llu\n", __func__,
1372 (unsigned long long)sh->sector);
1373
1374 /* clear completed biofills */
1375 for (i = sh->disks; i--; ) {
1376 struct r5dev *dev = &sh->dev[i];
1377
1378 /* acknowledge completion of a biofill operation */
1379 /* and check if we need to reply to a read request,
1380 * new R5_Wantfill requests are held off until
1381 * !STRIPE_BIOFILL_RUN
1382 */
1383 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1384 struct bio *rbi, *rbi2;
1385
1386 BUG_ON(!dev->read);
1387 rbi = dev->read;
1388 dev->read = NULL;
1389 while (rbi && rbi->bi_iter.bi_sector <
1390 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1391 rbi2 = r5_next_bio(conf, rbi, dev->sector);
1392 bio_endio(rbi);
1393 rbi = rbi2;
1394 }
1395 }
1396 }
1397 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1398
1399 set_bit(STRIPE_HANDLE, &sh->state);
1400 raid5_release_stripe(sh);
1401}
1402
1403static void ops_run_biofill(struct stripe_head *sh)
1404{
1405 struct dma_async_tx_descriptor *tx = NULL;
1406 struct async_submit_ctl submit;
1407 int i;
1408 struct r5conf *conf = sh->raid_conf;
1409
1410 BUG_ON(sh->batch_head);
1411 pr_debug("%s: stripe %llu\n", __func__,
1412 (unsigned long long)sh->sector);
1413
1414 for (i = sh->disks; i--; ) {
1415 struct r5dev *dev = &sh->dev[i];
1416 if (test_bit(R5_Wantfill, &dev->flags)) {
1417 struct bio *rbi;
1418 spin_lock_irq(&sh->stripe_lock);
1419 dev->read = rbi = dev->toread;
1420 dev->toread = NULL;
1421 spin_unlock_irq(&sh->stripe_lock);
1422 while (rbi && rbi->bi_iter.bi_sector <
1423 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1424 tx = async_copy_data(0, rbi, &dev->page,
1425 dev->offset,
1426 dev->sector, tx, sh, 0);
1427 rbi = r5_next_bio(conf, rbi, dev->sector);
1428 }
1429 }
1430 }
1431
1432 atomic_inc(&sh->count);
1433 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1434 async_trigger_callback(&submit);
1435}
1436
1437static void mark_target_uptodate(struct stripe_head *sh, int target)
1438{
1439 struct r5dev *tgt;
1440
1441 if (target < 0)
1442 return;
1443
1444 tgt = &sh->dev[target];
1445 set_bit(R5_UPTODATE, &tgt->flags);
1446 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1447 clear_bit(R5_Wantcompute, &tgt->flags);
1448}
1449
1450static void ops_complete_compute(void *stripe_head_ref)
1451{
1452 struct stripe_head *sh = stripe_head_ref;
1453
1454 pr_debug("%s: stripe %llu\n", __func__,
1455 (unsigned long long)sh->sector);
1456
1457 /* mark the computed target(s) as uptodate */
1458 mark_target_uptodate(sh, sh->ops.target);
1459 mark_target_uptodate(sh, sh->ops.target2);
1460
1461 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1462 if (sh->check_state == check_state_compute_run)
1463 sh->check_state = check_state_compute_result;
1464 set_bit(STRIPE_HANDLE, &sh->state);
1465 raid5_release_stripe(sh);
1466}
1467
1468/* return a pointer to the address conversion region of the scribble buffer */
1469static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1470{
1471 return percpu->scribble + i * percpu->scribble_obj_size;
1472}
1473
1474/* return a pointer to the address conversion region of the scribble buffer */
1475static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1476 struct raid5_percpu *percpu, int i)
1477{
1478 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1479}
1480
1481/*
1482 * Return a pointer to record offset address.
1483 */
1484static unsigned int *
1485to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1486{
1487 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1488}
1489
1490static struct dma_async_tx_descriptor *
1491ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1492{
1493 int disks = sh->disks;
1494 struct page **xor_srcs = to_addr_page(percpu, 0);
1495 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1496 int target = sh->ops.target;
1497 struct r5dev *tgt = &sh->dev[target];
1498 struct page *xor_dest = tgt->page;
1499 unsigned int off_dest = tgt->offset;
1500 int count = 0;
1501 struct dma_async_tx_descriptor *tx;
1502 struct async_submit_ctl submit;
1503 int i;
1504
1505 BUG_ON(sh->batch_head);
1506
1507 pr_debug("%s: stripe %llu block: %d\n",
1508 __func__, (unsigned long long)sh->sector, target);
1509 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1510
1511 for (i = disks; i--; ) {
1512 if (i != target) {
1513 off_srcs[count] = sh->dev[i].offset;
1514 xor_srcs[count++] = sh->dev[i].page;
1515 }
1516 }
1517
1518 atomic_inc(&sh->count);
1519
1520 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1521 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1522 if (unlikely(count == 1))
1523 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1524 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1525 else
1526 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1527 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1528
1529 return tx;
1530}
1531
1532/* set_syndrome_sources - populate source buffers for gen_syndrome
1533 * @srcs - (struct page *) array of size sh->disks
1534 * @offs - (unsigned int) array of offset for each page
1535 * @sh - stripe_head to parse
1536 *
1537 * Populates srcs in proper layout order for the stripe and returns the
1538 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1539 * destination buffer is recorded in srcs[count] and the Q destination
1540 * is recorded in srcs[count+1]].
1541 */
1542static int set_syndrome_sources(struct page **srcs,
1543 unsigned int *offs,
1544 struct stripe_head *sh,
1545 int srctype)
1546{
1547 int disks = sh->disks;
1548 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1549 int d0_idx = raid6_d0(sh);
1550 int count;
1551 int i;
1552
1553 for (i = 0; i < disks; i++)
1554 srcs[i] = NULL;
1555
1556 count = 0;
1557 i = d0_idx;
1558 do {
1559 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1560 struct r5dev *dev = &sh->dev[i];
1561
1562 if (i == sh->qd_idx || i == sh->pd_idx ||
1563 (srctype == SYNDROME_SRC_ALL) ||
1564 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1565 (test_bit(R5_Wantdrain, &dev->flags) ||
1566 test_bit(R5_InJournal, &dev->flags))) ||
1567 (srctype == SYNDROME_SRC_WRITTEN &&
1568 (dev->written ||
1569 test_bit(R5_InJournal, &dev->flags)))) {
1570 if (test_bit(R5_InJournal, &dev->flags))
1571 srcs[slot] = sh->dev[i].orig_page;
1572 else
1573 srcs[slot] = sh->dev[i].page;
1574 /*
1575 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1576 * not shared page. In that case, dev[i].offset
1577 * is 0.
1578 */
1579 offs[slot] = sh->dev[i].offset;
1580 }
1581 i = raid6_next_disk(i, disks);
1582 } while (i != d0_idx);
1583
1584 return syndrome_disks;
1585}
1586
1587static struct dma_async_tx_descriptor *
1588ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1589{
1590 int disks = sh->disks;
1591 struct page **blocks = to_addr_page(percpu, 0);
1592 unsigned int *offs = to_addr_offs(sh, percpu);
1593 int target;
1594 int qd_idx = sh->qd_idx;
1595 struct dma_async_tx_descriptor *tx;
1596 struct async_submit_ctl submit;
1597 struct r5dev *tgt;
1598 struct page *dest;
1599 unsigned int dest_off;
1600 int i;
1601 int count;
1602
1603 BUG_ON(sh->batch_head);
1604 if (sh->ops.target < 0)
1605 target = sh->ops.target2;
1606 else if (sh->ops.target2 < 0)
1607 target = sh->ops.target;
1608 else
1609 /* we should only have one valid target */
1610 BUG();
1611 BUG_ON(target < 0);
1612 pr_debug("%s: stripe %llu block: %d\n",
1613 __func__, (unsigned long long)sh->sector, target);
1614
1615 tgt = &sh->dev[target];
1616 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1617 dest = tgt->page;
1618 dest_off = tgt->offset;
1619
1620 atomic_inc(&sh->count);
1621
1622 if (target == qd_idx) {
1623 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1624 blocks[count] = NULL; /* regenerating p is not necessary */
1625 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1626 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1627 ops_complete_compute, sh,
1628 to_addr_conv(sh, percpu, 0));
1629 tx = async_gen_syndrome(blocks, offs, count+2,
1630 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1631 } else {
1632 /* Compute any data- or p-drive using XOR */
1633 count = 0;
1634 for (i = disks; i-- ; ) {
1635 if (i == target || i == qd_idx)
1636 continue;
1637 offs[count] = sh->dev[i].offset;
1638 blocks[count++] = sh->dev[i].page;
1639 }
1640
1641 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1642 NULL, ops_complete_compute, sh,
1643 to_addr_conv(sh, percpu, 0));
1644 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1645 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1646 }
1647
1648 return tx;
1649}
1650
1651static struct dma_async_tx_descriptor *
1652ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1653{
1654 int i, count, disks = sh->disks;
1655 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1656 int d0_idx = raid6_d0(sh);
1657 int faila = -1, failb = -1;
1658 int target = sh->ops.target;
1659 int target2 = sh->ops.target2;
1660 struct r5dev *tgt = &sh->dev[target];
1661 struct r5dev *tgt2 = &sh->dev[target2];
1662 struct dma_async_tx_descriptor *tx;
1663 struct page **blocks = to_addr_page(percpu, 0);
1664 unsigned int *offs = to_addr_offs(sh, percpu);
1665 struct async_submit_ctl submit;
1666
1667 BUG_ON(sh->batch_head);
1668 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1669 __func__, (unsigned long long)sh->sector, target, target2);
1670 BUG_ON(target < 0 || target2 < 0);
1671 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1672 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1673
1674 /* we need to open-code set_syndrome_sources to handle the
1675 * slot number conversion for 'faila' and 'failb'
1676 */
1677 for (i = 0; i < disks ; i++) {
1678 offs[i] = 0;
1679 blocks[i] = NULL;
1680 }
1681 count = 0;
1682 i = d0_idx;
1683 do {
1684 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1685
1686 offs[slot] = sh->dev[i].offset;
1687 blocks[slot] = sh->dev[i].page;
1688
1689 if (i == target)
1690 faila = slot;
1691 if (i == target2)
1692 failb = slot;
1693 i = raid6_next_disk(i, disks);
1694 } while (i != d0_idx);
1695
1696 BUG_ON(faila == failb);
1697 if (failb < faila)
1698 swap(faila, failb);
1699 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1700 __func__, (unsigned long long)sh->sector, faila, failb);
1701
1702 atomic_inc(&sh->count);
1703
1704 if (failb == syndrome_disks+1) {
1705 /* Q disk is one of the missing disks */
1706 if (faila == syndrome_disks) {
1707 /* Missing P+Q, just recompute */
1708 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1709 ops_complete_compute, sh,
1710 to_addr_conv(sh, percpu, 0));
1711 return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1712 RAID5_STRIPE_SIZE(sh->raid_conf),
1713 &submit);
1714 } else {
1715 struct page *dest;
1716 unsigned int dest_off;
1717 int data_target;
1718 int qd_idx = sh->qd_idx;
1719
1720 /* Missing D+Q: recompute D from P, then recompute Q */
1721 if (target == qd_idx)
1722 data_target = target2;
1723 else
1724 data_target = target;
1725
1726 count = 0;
1727 for (i = disks; i-- ; ) {
1728 if (i == data_target || i == qd_idx)
1729 continue;
1730 offs[count] = sh->dev[i].offset;
1731 blocks[count++] = sh->dev[i].page;
1732 }
1733 dest = sh->dev[data_target].page;
1734 dest_off = sh->dev[data_target].offset;
1735 init_async_submit(&submit,
1736 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1737 NULL, NULL, NULL,
1738 to_addr_conv(sh, percpu, 0));
1739 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1740 RAID5_STRIPE_SIZE(sh->raid_conf),
1741 &submit);
1742
1743 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1744 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1745 ops_complete_compute, sh,
1746 to_addr_conv(sh, percpu, 0));
1747 return async_gen_syndrome(blocks, offs, count+2,
1748 RAID5_STRIPE_SIZE(sh->raid_conf),
1749 &submit);
1750 }
1751 } else {
1752 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1753 ops_complete_compute, sh,
1754 to_addr_conv(sh, percpu, 0));
1755 if (failb == syndrome_disks) {
1756 /* We're missing D+P. */
1757 return async_raid6_datap_recov(syndrome_disks+2,
1758 RAID5_STRIPE_SIZE(sh->raid_conf),
1759 faila,
1760 blocks, offs, &submit);
1761 } else {
1762 /* We're missing D+D. */
1763 return async_raid6_2data_recov(syndrome_disks+2,
1764 RAID5_STRIPE_SIZE(sh->raid_conf),
1765 faila, failb,
1766 blocks, offs, &submit);
1767 }
1768 }
1769}
1770
1771static void ops_complete_prexor(void *stripe_head_ref)
1772{
1773 struct stripe_head *sh = stripe_head_ref;
1774
1775 pr_debug("%s: stripe %llu\n", __func__,
1776 (unsigned long long)sh->sector);
1777
1778 if (r5c_is_writeback(sh->raid_conf->log))
1779 /*
1780 * raid5-cache write back uses orig_page during prexor.
1781 * After prexor, it is time to free orig_page
1782 */
1783 r5c_release_extra_page(sh);
1784}
1785
1786static struct dma_async_tx_descriptor *
1787ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1788 struct dma_async_tx_descriptor *tx)
1789{
1790 int disks = sh->disks;
1791 struct page **xor_srcs = to_addr_page(percpu, 0);
1792 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1793 int count = 0, pd_idx = sh->pd_idx, i;
1794 struct async_submit_ctl submit;
1795
1796 /* existing parity data subtracted */
1797 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1798 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1799
1800 BUG_ON(sh->batch_head);
1801 pr_debug("%s: stripe %llu\n", __func__,
1802 (unsigned long long)sh->sector);
1803
1804 for (i = disks; i--; ) {
1805 struct r5dev *dev = &sh->dev[i];
1806 /* Only process blocks that are known to be uptodate */
1807 if (test_bit(R5_InJournal, &dev->flags)) {
1808 /*
1809 * For this case, PAGE_SIZE must be equal to 4KB and
1810 * page offset is zero.
1811 */
1812 off_srcs[count] = dev->offset;
1813 xor_srcs[count++] = dev->orig_page;
1814 } else if (test_bit(R5_Wantdrain, &dev->flags)) {
1815 off_srcs[count] = dev->offset;
1816 xor_srcs[count++] = dev->page;
1817 }
1818 }
1819
1820 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1821 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1822 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1823 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1824
1825 return tx;
1826}
1827
1828static struct dma_async_tx_descriptor *
1829ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1830 struct dma_async_tx_descriptor *tx)
1831{
1832 struct page **blocks = to_addr_page(percpu, 0);
1833 unsigned int *offs = to_addr_offs(sh, percpu);
1834 int count;
1835 struct async_submit_ctl submit;
1836
1837 pr_debug("%s: stripe %llu\n", __func__,
1838 (unsigned long long)sh->sector);
1839
1840 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1841
1842 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1843 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1844 tx = async_gen_syndrome(blocks, offs, count+2,
1845 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1846
1847 return tx;
1848}
1849
1850static struct dma_async_tx_descriptor *
1851ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1852{
1853 struct r5conf *conf = sh->raid_conf;
1854 int disks = sh->disks;
1855 int i;
1856 struct stripe_head *head_sh = sh;
1857
1858 pr_debug("%s: stripe %llu\n", __func__,
1859 (unsigned long long)sh->sector);
1860
1861 for (i = disks; i--; ) {
1862 struct r5dev *dev;
1863 struct bio *chosen;
1864
1865 sh = head_sh;
1866 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1867 struct bio *wbi;
1868
1869again:
1870 dev = &sh->dev[i];
1871 /*
1872 * clear R5_InJournal, so when rewriting a page in
1873 * journal, it is not skipped by r5l_log_stripe()
1874 */
1875 clear_bit(R5_InJournal, &dev->flags);
1876 spin_lock_irq(&sh->stripe_lock);
1877 chosen = dev->towrite;
1878 dev->towrite = NULL;
1879 sh->overwrite_disks = 0;
1880 BUG_ON(dev->written);
1881 wbi = dev->written = chosen;
1882 spin_unlock_irq(&sh->stripe_lock);
1883 WARN_ON(dev->page != dev->orig_page);
1884
1885 while (wbi && wbi->bi_iter.bi_sector <
1886 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1887 if (wbi->bi_opf & REQ_FUA)
1888 set_bit(R5_WantFUA, &dev->flags);
1889 if (wbi->bi_opf & REQ_SYNC)
1890 set_bit(R5_SyncIO, &dev->flags);
1891 if (bio_op(wbi) == REQ_OP_DISCARD)
1892 set_bit(R5_Discard, &dev->flags);
1893 else {
1894 tx = async_copy_data(1, wbi, &dev->page,
1895 dev->offset,
1896 dev->sector, tx, sh,
1897 r5c_is_writeback(conf->log));
1898 if (dev->page != dev->orig_page &&
1899 !r5c_is_writeback(conf->log)) {
1900 set_bit(R5_SkipCopy, &dev->flags);
1901 clear_bit(R5_UPTODATE, &dev->flags);
1902 clear_bit(R5_OVERWRITE, &dev->flags);
1903 }
1904 }
1905 wbi = r5_next_bio(conf, wbi, dev->sector);
1906 }
1907
1908 if (head_sh->batch_head) {
1909 sh = list_first_entry(&sh->batch_list,
1910 struct stripe_head,
1911 batch_list);
1912 if (sh == head_sh)
1913 continue;
1914 goto again;
1915 }
1916 }
1917 }
1918
1919 return tx;
1920}
1921
1922static void ops_complete_reconstruct(void *stripe_head_ref)
1923{
1924 struct stripe_head *sh = stripe_head_ref;
1925 int disks = sh->disks;
1926 int pd_idx = sh->pd_idx;
1927 int qd_idx = sh->qd_idx;
1928 int i;
1929 bool fua = false, sync = false, discard = false;
1930
1931 pr_debug("%s: stripe %llu\n", __func__,
1932 (unsigned long long)sh->sector);
1933
1934 for (i = disks; i--; ) {
1935 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1936 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1937 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1938 }
1939
1940 for (i = disks; i--; ) {
1941 struct r5dev *dev = &sh->dev[i];
1942
1943 if (dev->written || i == pd_idx || i == qd_idx) {
1944 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1945 set_bit(R5_UPTODATE, &dev->flags);
1946 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1947 set_bit(R5_Expanded, &dev->flags);
1948 }
1949 if (fua)
1950 set_bit(R5_WantFUA, &dev->flags);
1951 if (sync)
1952 set_bit(R5_SyncIO, &dev->flags);
1953 }
1954 }
1955
1956 if (sh->reconstruct_state == reconstruct_state_drain_run)
1957 sh->reconstruct_state = reconstruct_state_drain_result;
1958 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1959 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1960 else {
1961 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1962 sh->reconstruct_state = reconstruct_state_result;
1963 }
1964
1965 set_bit(STRIPE_HANDLE, &sh->state);
1966 raid5_release_stripe(sh);
1967}
1968
1969static void
1970ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1971 struct dma_async_tx_descriptor *tx)
1972{
1973 int disks = sh->disks;
1974 struct page **xor_srcs;
1975 unsigned int *off_srcs;
1976 struct async_submit_ctl submit;
1977 int count, pd_idx = sh->pd_idx, i;
1978 struct page *xor_dest;
1979 unsigned int off_dest;
1980 int prexor = 0;
1981 unsigned long flags;
1982 int j = 0;
1983 struct stripe_head *head_sh = sh;
1984 int last_stripe;
1985
1986 pr_debug("%s: stripe %llu\n", __func__,
1987 (unsigned long long)sh->sector);
1988
1989 for (i = 0; i < sh->disks; i++) {
1990 if (pd_idx == i)
1991 continue;
1992 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1993 break;
1994 }
1995 if (i >= sh->disks) {
1996 atomic_inc(&sh->count);
1997 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1998 ops_complete_reconstruct(sh);
1999 return;
2000 }
2001again:
2002 count = 0;
2003 xor_srcs = to_addr_page(percpu, j);
2004 off_srcs = to_addr_offs(sh, percpu);
2005 /* check if prexor is active which means only process blocks
2006 * that are part of a read-modify-write (written)
2007 */
2008 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2009 prexor = 1;
2010 off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2011 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2012 for (i = disks; i--; ) {
2013 struct r5dev *dev = &sh->dev[i];
2014 if (head_sh->dev[i].written ||
2015 test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2016 off_srcs[count] = dev->offset;
2017 xor_srcs[count++] = dev->page;
2018 }
2019 }
2020 } else {
2021 xor_dest = sh->dev[pd_idx].page;
2022 off_dest = sh->dev[pd_idx].offset;
2023 for (i = disks; i--; ) {
2024 struct r5dev *dev = &sh->dev[i];
2025 if (i != pd_idx) {
2026 off_srcs[count] = dev->offset;
2027 xor_srcs[count++] = dev->page;
2028 }
2029 }
2030 }
2031
2032 /* 1/ if we prexor'd then the dest is reused as a source
2033 * 2/ if we did not prexor then we are redoing the parity
2034 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2035 * for the synchronous xor case
2036 */
2037 last_stripe = !head_sh->batch_head ||
2038 list_first_entry(&sh->batch_list,
2039 struct stripe_head, batch_list) == head_sh;
2040 if (last_stripe) {
2041 flags = ASYNC_TX_ACK |
2042 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2043
2044 atomic_inc(&head_sh->count);
2045 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2046 to_addr_conv(sh, percpu, j));
2047 } else {
2048 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2049 init_async_submit(&submit, flags, tx, NULL, NULL,
2050 to_addr_conv(sh, percpu, j));
2051 }
2052
2053 if (unlikely(count == 1))
2054 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2055 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2056 else
2057 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2058 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2059 if (!last_stripe) {
2060 j++;
2061 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2062 batch_list);
2063 goto again;
2064 }
2065}
2066
2067static void
2068ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2069 struct dma_async_tx_descriptor *tx)
2070{
2071 struct async_submit_ctl submit;
2072 struct page **blocks;
2073 unsigned int *offs;
2074 int count, i, j = 0;
2075 struct stripe_head *head_sh = sh;
2076 int last_stripe;
2077 int synflags;
2078 unsigned long txflags;
2079
2080 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2081
2082 for (i = 0; i < sh->disks; i++) {
2083 if (sh->pd_idx == i || sh->qd_idx == i)
2084 continue;
2085 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2086 break;
2087 }
2088 if (i >= sh->disks) {
2089 atomic_inc(&sh->count);
2090 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2091 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2092 ops_complete_reconstruct(sh);
2093 return;
2094 }
2095
2096again:
2097 blocks = to_addr_page(percpu, j);
2098 offs = to_addr_offs(sh, percpu);
2099
2100 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2101 synflags = SYNDROME_SRC_WRITTEN;
2102 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2103 } else {
2104 synflags = SYNDROME_SRC_ALL;
2105 txflags = ASYNC_TX_ACK;
2106 }
2107
2108 count = set_syndrome_sources(blocks, offs, sh, synflags);
2109 last_stripe = !head_sh->batch_head ||
2110 list_first_entry(&sh->batch_list,
2111 struct stripe_head, batch_list) == head_sh;
2112
2113 if (last_stripe) {
2114 atomic_inc(&head_sh->count);
2115 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2116 head_sh, to_addr_conv(sh, percpu, j));
2117 } else
2118 init_async_submit(&submit, 0, tx, NULL, NULL,
2119 to_addr_conv(sh, percpu, j));
2120 tx = async_gen_syndrome(blocks, offs, count+2,
2121 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2122 if (!last_stripe) {
2123 j++;
2124 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2125 batch_list);
2126 goto again;
2127 }
2128}
2129
2130static void ops_complete_check(void *stripe_head_ref)
2131{
2132 struct stripe_head *sh = stripe_head_ref;
2133
2134 pr_debug("%s: stripe %llu\n", __func__,
2135 (unsigned long long)sh->sector);
2136
2137 sh->check_state = check_state_check_result;
2138 set_bit(STRIPE_HANDLE, &sh->state);
2139 raid5_release_stripe(sh);
2140}
2141
2142static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2143{
2144 int disks = sh->disks;
2145 int pd_idx = sh->pd_idx;
2146 int qd_idx = sh->qd_idx;
2147 struct page *xor_dest;
2148 unsigned int off_dest;
2149 struct page **xor_srcs = to_addr_page(percpu, 0);
2150 unsigned int *off_srcs = to_addr_offs(sh, percpu);
2151 struct dma_async_tx_descriptor *tx;
2152 struct async_submit_ctl submit;
2153 int count;
2154 int i;
2155
2156 pr_debug("%s: stripe %llu\n", __func__,
2157 (unsigned long long)sh->sector);
2158
2159 BUG_ON(sh->batch_head);
2160 count = 0;
2161 xor_dest = sh->dev[pd_idx].page;
2162 off_dest = sh->dev[pd_idx].offset;
2163 off_srcs[count] = off_dest;
2164 xor_srcs[count++] = xor_dest;
2165 for (i = disks; i--; ) {
2166 if (i == pd_idx || i == qd_idx)
2167 continue;
2168 off_srcs[count] = sh->dev[i].offset;
2169 xor_srcs[count++] = sh->dev[i].page;
2170 }
2171
2172 init_async_submit(&submit, 0, NULL, NULL, NULL,
2173 to_addr_conv(sh, percpu, 0));
2174 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2175 RAID5_STRIPE_SIZE(sh->raid_conf),
2176 &sh->ops.zero_sum_result, &submit);
2177
2178 atomic_inc(&sh->count);
2179 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2180 tx = async_trigger_callback(&submit);
2181}
2182
2183static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2184{
2185 struct page **srcs = to_addr_page(percpu, 0);
2186 unsigned int *offs = to_addr_offs(sh, percpu);
2187 struct async_submit_ctl submit;
2188 int count;
2189
2190 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2191 (unsigned long long)sh->sector, checkp);
2192
2193 BUG_ON(sh->batch_head);
2194 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2195 if (!checkp)
2196 srcs[count] = NULL;
2197
2198 atomic_inc(&sh->count);
2199 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2200 sh, to_addr_conv(sh, percpu, 0));
2201 async_syndrome_val(srcs, offs, count+2,
2202 RAID5_STRIPE_SIZE(sh->raid_conf),
2203 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2204}
2205
2206static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2207{
2208 int overlap_clear = 0, i, disks = sh->disks;
2209 struct dma_async_tx_descriptor *tx = NULL;
2210 struct r5conf *conf = sh->raid_conf;
2211 int level = conf->level;
2212 struct raid5_percpu *percpu;
2213
2214 local_lock(&conf->percpu->lock);
2215 percpu = this_cpu_ptr(conf->percpu);
2216 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2217 ops_run_biofill(sh);
2218 overlap_clear++;
2219 }
2220
2221 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2222 if (level < 6)
2223 tx = ops_run_compute5(sh, percpu);
2224 else {
2225 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2226 tx = ops_run_compute6_1(sh, percpu);
2227 else
2228 tx = ops_run_compute6_2(sh, percpu);
2229 }
2230 /* terminate the chain if reconstruct is not set to be run */
2231 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2232 async_tx_ack(tx);
2233 }
2234
2235 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2236 if (level < 6)
2237 tx = ops_run_prexor5(sh, percpu, tx);
2238 else
2239 tx = ops_run_prexor6(sh, percpu, tx);
2240 }
2241
2242 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2243 tx = ops_run_partial_parity(sh, percpu, tx);
2244
2245 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2246 tx = ops_run_biodrain(sh, tx);
2247 overlap_clear++;
2248 }
2249
2250 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2251 if (level < 6)
2252 ops_run_reconstruct5(sh, percpu, tx);
2253 else
2254 ops_run_reconstruct6(sh, percpu, tx);
2255 }
2256
2257 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2258 if (sh->check_state == check_state_run)
2259 ops_run_check_p(sh, percpu);
2260 else if (sh->check_state == check_state_run_q)
2261 ops_run_check_pq(sh, percpu, 0);
2262 else if (sh->check_state == check_state_run_pq)
2263 ops_run_check_pq(sh, percpu, 1);
2264 else
2265 BUG();
2266 }
2267
2268 if (overlap_clear && !sh->batch_head) {
2269 for (i = disks; i--; ) {
2270 struct r5dev *dev = &sh->dev[i];
2271 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2272 wake_up(&sh->raid_conf->wait_for_overlap);
2273 }
2274 }
2275 local_unlock(&conf->percpu->lock);
2276}
2277
2278static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2279{
2280#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2281 kfree(sh->pages);
2282#endif
2283 if (sh->ppl_page)
2284 __free_page(sh->ppl_page);
2285 kmem_cache_free(sc, sh);
2286}
2287
2288static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2289 int disks, struct r5conf *conf)
2290{
2291 struct stripe_head *sh;
2292
2293 sh = kmem_cache_zalloc(sc, gfp);
2294 if (sh) {
2295 spin_lock_init(&sh->stripe_lock);
2296 spin_lock_init(&sh->batch_lock);
2297 INIT_LIST_HEAD(&sh->batch_list);
2298 INIT_LIST_HEAD(&sh->lru);
2299 INIT_LIST_HEAD(&sh->r5c);
2300 INIT_LIST_HEAD(&sh->log_list);
2301 atomic_set(&sh->count, 1);
2302 sh->raid_conf = conf;
2303 sh->log_start = MaxSector;
2304
2305 if (raid5_has_ppl(conf)) {
2306 sh->ppl_page = alloc_page(gfp);
2307 if (!sh->ppl_page) {
2308 free_stripe(sc, sh);
2309 return NULL;
2310 }
2311 }
2312#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2313 if (init_stripe_shared_pages(sh, conf, disks)) {
2314 free_stripe(sc, sh);
2315 return NULL;
2316 }
2317#endif
2318 }
2319 return sh;
2320}
2321static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2322{
2323 struct stripe_head *sh;
2324
2325 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2326 if (!sh)
2327 return 0;
2328
2329 if (grow_buffers(sh, gfp)) {
2330 shrink_buffers(sh);
2331 free_stripe(conf->slab_cache, sh);
2332 return 0;
2333 }
2334 sh->hash_lock_index =
2335 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2336 /* we just created an active stripe so... */
2337 atomic_inc(&conf->active_stripes);
2338
2339 raid5_release_stripe(sh);
2340 conf->max_nr_stripes++;
2341 return 1;
2342}
2343
2344static int grow_stripes(struct r5conf *conf, int num)
2345{
2346 struct kmem_cache *sc;
2347 size_t namelen = sizeof(conf->cache_name[0]);
2348 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2349
2350 if (conf->mddev->gendisk)
2351 snprintf(conf->cache_name[0], namelen,
2352 "raid%d-%s", conf->level, mdname(conf->mddev));
2353 else
2354 snprintf(conf->cache_name[0], namelen,
2355 "raid%d-%p", conf->level, conf->mddev);
2356 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2357
2358 conf->active_name = 0;
2359 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2360 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2361 0, 0, NULL);
2362 if (!sc)
2363 return 1;
2364 conf->slab_cache = sc;
2365 conf->pool_size = devs;
2366 while (num--)
2367 if (!grow_one_stripe(conf, GFP_KERNEL))
2368 return 1;
2369
2370 return 0;
2371}
2372
2373/**
2374 * scribble_alloc - allocate percpu scribble buffer for required size
2375 * of the scribble region
2376 * @percpu: from for_each_present_cpu() of the caller
2377 * @num: total number of disks in the array
2378 * @cnt: scribble objs count for required size of the scribble region
2379 *
2380 * The scribble buffer size must be enough to contain:
2381 * 1/ a struct page pointer for each device in the array +2
2382 * 2/ room to convert each entry in (1) to its corresponding dma
2383 * (dma_map_page()) or page (page_address()) address.
2384 *
2385 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2386 * calculate over all devices (not just the data blocks), using zeros in place
2387 * of the P and Q blocks.
2388 */
2389static int scribble_alloc(struct raid5_percpu *percpu,
2390 int num, int cnt)
2391{
2392 size_t obj_size =
2393 sizeof(struct page *) * (num + 2) +
2394 sizeof(addr_conv_t) * (num + 2) +
2395 sizeof(unsigned int) * (num + 2);
2396 void *scribble;
2397
2398 /*
2399 * If here is in raid array suspend context, it is in memalloc noio
2400 * context as well, there is no potential recursive memory reclaim
2401 * I/Os with the GFP_KERNEL flag.
2402 */
2403 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2404 if (!scribble)
2405 return -ENOMEM;
2406
2407 kvfree(percpu->scribble);
2408
2409 percpu->scribble = scribble;
2410 percpu->scribble_obj_size = obj_size;
2411 return 0;
2412}
2413
2414static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2415{
2416 unsigned long cpu;
2417 int err = 0;
2418
2419 /*
2420 * Never shrink. And mddev_suspend() could deadlock if this is called
2421 * from raid5d. In that case, scribble_disks and scribble_sectors
2422 * should equal to new_disks and new_sectors
2423 */
2424 if (conf->scribble_disks >= new_disks &&
2425 conf->scribble_sectors >= new_sectors)
2426 return 0;
2427 mddev_suspend(conf->mddev);
2428 cpus_read_lock();
2429
2430 for_each_present_cpu(cpu) {
2431 struct raid5_percpu *percpu;
2432
2433 percpu = per_cpu_ptr(conf->percpu, cpu);
2434 err = scribble_alloc(percpu, new_disks,
2435 new_sectors / RAID5_STRIPE_SECTORS(conf));
2436 if (err)
2437 break;
2438 }
2439
2440 cpus_read_unlock();
2441 mddev_resume(conf->mddev);
2442 if (!err) {
2443 conf->scribble_disks = new_disks;
2444 conf->scribble_sectors = new_sectors;
2445 }
2446 return err;
2447}
2448
2449static int resize_stripes(struct r5conf *conf, int newsize)
2450{
2451 /* Make all the stripes able to hold 'newsize' devices.
2452 * New slots in each stripe get 'page' set to a new page.
2453 *
2454 * This happens in stages:
2455 * 1/ create a new kmem_cache and allocate the required number of
2456 * stripe_heads.
2457 * 2/ gather all the old stripe_heads and transfer the pages across
2458 * to the new stripe_heads. This will have the side effect of
2459 * freezing the array as once all stripe_heads have been collected,
2460 * no IO will be possible. Old stripe heads are freed once their
2461 * pages have been transferred over, and the old kmem_cache is
2462 * freed when all stripes are done.
2463 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2464 * we simple return a failure status - no need to clean anything up.
2465 * 4/ allocate new pages for the new slots in the new stripe_heads.
2466 * If this fails, we don't bother trying the shrink the
2467 * stripe_heads down again, we just leave them as they are.
2468 * As each stripe_head is processed the new one is released into
2469 * active service.
2470 *
2471 * Once step2 is started, we cannot afford to wait for a write,
2472 * so we use GFP_NOIO allocations.
2473 */
2474 struct stripe_head *osh, *nsh;
2475 LIST_HEAD(newstripes);
2476 struct disk_info *ndisks;
2477 int err = 0;
2478 struct kmem_cache *sc;
2479 int i;
2480 int hash, cnt;
2481
2482 md_allow_write(conf->mddev);
2483
2484 /* Step 1 */
2485 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2486 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2487 0, 0, NULL);
2488 if (!sc)
2489 return -ENOMEM;
2490
2491 /* Need to ensure auto-resizing doesn't interfere */
2492 mutex_lock(&conf->cache_size_mutex);
2493
2494 for (i = conf->max_nr_stripes; i; i--) {
2495 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2496 if (!nsh)
2497 break;
2498
2499 list_add(&nsh->lru, &newstripes);
2500 }
2501 if (i) {
2502 /* didn't get enough, give up */
2503 while (!list_empty(&newstripes)) {
2504 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2505 list_del(&nsh->lru);
2506 free_stripe(sc, nsh);
2507 }
2508 kmem_cache_destroy(sc);
2509 mutex_unlock(&conf->cache_size_mutex);
2510 return -ENOMEM;
2511 }
2512 /* Step 2 - Must use GFP_NOIO now.
2513 * OK, we have enough stripes, start collecting inactive
2514 * stripes and copying them over
2515 */
2516 hash = 0;
2517 cnt = 0;
2518 list_for_each_entry(nsh, &newstripes, lru) {
2519 lock_device_hash_lock(conf, hash);
2520 wait_event_cmd(conf->wait_for_stripe,
2521 !list_empty(conf->inactive_list + hash),
2522 unlock_device_hash_lock(conf, hash),
2523 lock_device_hash_lock(conf, hash));
2524 osh = get_free_stripe(conf, hash);
2525 unlock_device_hash_lock(conf, hash);
2526
2527#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2528 for (i = 0; i < osh->nr_pages; i++) {
2529 nsh->pages[i] = osh->pages[i];
2530 osh->pages[i] = NULL;
2531 }
2532#endif
2533 for(i=0; i<conf->pool_size; i++) {
2534 nsh->dev[i].page = osh->dev[i].page;
2535 nsh->dev[i].orig_page = osh->dev[i].page;
2536 nsh->dev[i].offset = osh->dev[i].offset;
2537 }
2538 nsh->hash_lock_index = hash;
2539 free_stripe(conf->slab_cache, osh);
2540 cnt++;
2541 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2542 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2543 hash++;
2544 cnt = 0;
2545 }
2546 }
2547 kmem_cache_destroy(conf->slab_cache);
2548
2549 /* Step 3.
2550 * At this point, we are holding all the stripes so the array
2551 * is completely stalled, so now is a good time to resize
2552 * conf->disks and the scribble region
2553 */
2554 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2555 if (ndisks) {
2556 for (i = 0; i < conf->pool_size; i++)
2557 ndisks[i] = conf->disks[i];
2558
2559 for (i = conf->pool_size; i < newsize; i++) {
2560 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2561 if (!ndisks[i].extra_page)
2562 err = -ENOMEM;
2563 }
2564
2565 if (err) {
2566 for (i = conf->pool_size; i < newsize; i++)
2567 if (ndisks[i].extra_page)
2568 put_page(ndisks[i].extra_page);
2569 kfree(ndisks);
2570 } else {
2571 kfree(conf->disks);
2572 conf->disks = ndisks;
2573 }
2574 } else
2575 err = -ENOMEM;
2576
2577 conf->slab_cache = sc;
2578 conf->active_name = 1-conf->active_name;
2579
2580 /* Step 4, return new stripes to service */
2581 while(!list_empty(&newstripes)) {
2582 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2583 list_del_init(&nsh->lru);
2584
2585#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2586 for (i = 0; i < nsh->nr_pages; i++) {
2587 if (nsh->pages[i])
2588 continue;
2589 nsh->pages[i] = alloc_page(GFP_NOIO);
2590 if (!nsh->pages[i])
2591 err = -ENOMEM;
2592 }
2593
2594 for (i = conf->raid_disks; i < newsize; i++) {
2595 if (nsh->dev[i].page)
2596 continue;
2597 nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2598 nsh->dev[i].orig_page = nsh->dev[i].page;
2599 nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2600 }
2601#else
2602 for (i=conf->raid_disks; i < newsize; i++)
2603 if (nsh->dev[i].page == NULL) {
2604 struct page *p = alloc_page(GFP_NOIO);
2605 nsh->dev[i].page = p;
2606 nsh->dev[i].orig_page = p;
2607 nsh->dev[i].offset = 0;
2608 if (!p)
2609 err = -ENOMEM;
2610 }
2611#endif
2612 raid5_release_stripe(nsh);
2613 }
2614 /* critical section pass, GFP_NOIO no longer needed */
2615
2616 if (!err)
2617 conf->pool_size = newsize;
2618 mutex_unlock(&conf->cache_size_mutex);
2619
2620 return err;
2621}
2622
2623static int drop_one_stripe(struct r5conf *conf)
2624{
2625 struct stripe_head *sh;
2626 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2627
2628 spin_lock_irq(conf->hash_locks + hash);
2629 sh = get_free_stripe(conf, hash);
2630 spin_unlock_irq(conf->hash_locks + hash);
2631 if (!sh)
2632 return 0;
2633 BUG_ON(atomic_read(&sh->count));
2634 shrink_buffers(sh);
2635 free_stripe(conf->slab_cache, sh);
2636 atomic_dec(&conf->active_stripes);
2637 conf->max_nr_stripes--;
2638 return 1;
2639}
2640
2641static void shrink_stripes(struct r5conf *conf)
2642{
2643 while (conf->max_nr_stripes &&
2644 drop_one_stripe(conf))
2645 ;
2646
2647 kmem_cache_destroy(conf->slab_cache);
2648 conf->slab_cache = NULL;
2649}
2650
2651static void raid5_end_read_request(struct bio * bi)
2652{
2653 struct stripe_head *sh = bi->bi_private;
2654 struct r5conf *conf = sh->raid_conf;
2655 int disks = sh->disks, i;
2656 char b[BDEVNAME_SIZE];
2657 struct md_rdev *rdev = NULL;
2658 sector_t s;
2659
2660 for (i=0 ; i<disks; i++)
2661 if (bi == &sh->dev[i].req)
2662 break;
2663
2664 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2665 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2666 bi->bi_status);
2667 if (i == disks) {
2668 BUG();
2669 return;
2670 }
2671 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2672 /* If replacement finished while this request was outstanding,
2673 * 'replacement' might be NULL already.
2674 * In that case it moved down to 'rdev'.
2675 * rdev is not removed until all requests are finished.
2676 */
2677 rdev = conf->disks[i].replacement;
2678 if (!rdev)
2679 rdev = conf->disks[i].rdev;
2680
2681 if (use_new_offset(conf, sh))
2682 s = sh->sector + rdev->new_data_offset;
2683 else
2684 s = sh->sector + rdev->data_offset;
2685 if (!bi->bi_status) {
2686 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2687 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2688 /* Note that this cannot happen on a
2689 * replacement device. We just fail those on
2690 * any error
2691 */
2692 pr_info_ratelimited(
2693 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2694 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2695 (unsigned long long)s,
2696 bdevname(rdev->bdev, b));
2697 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2698 clear_bit(R5_ReadError, &sh->dev[i].flags);
2699 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2700 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2701 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2702
2703 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2704 /*
2705 * end read for a page in journal, this
2706 * must be preparing for prexor in rmw
2707 */
2708 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2709
2710 if (atomic_read(&rdev->read_errors))
2711 atomic_set(&rdev->read_errors, 0);
2712 } else {
2713 const char *bdn = bdevname(rdev->bdev, b);
2714 int retry = 0;
2715 int set_bad = 0;
2716
2717 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2718 if (!(bi->bi_status == BLK_STS_PROTECTION))
2719 atomic_inc(&rdev->read_errors);
2720 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2721 pr_warn_ratelimited(
2722 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2723 mdname(conf->mddev),
2724 (unsigned long long)s,
2725 bdn);
2726 else if (conf->mddev->degraded >= conf->max_degraded) {
2727 set_bad = 1;
2728 pr_warn_ratelimited(
2729 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2730 mdname(conf->mddev),
2731 (unsigned long long)s,
2732 bdn);
2733 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2734 /* Oh, no!!! */
2735 set_bad = 1;
2736 pr_warn_ratelimited(
2737 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2738 mdname(conf->mddev),
2739 (unsigned long long)s,
2740 bdn);
2741 } else if (atomic_read(&rdev->read_errors)
2742 > conf->max_nr_stripes) {
2743 if (!test_bit(Faulty, &rdev->flags)) {
2744 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2745 mdname(conf->mddev),
2746 atomic_read(&rdev->read_errors),
2747 conf->max_nr_stripes);
2748 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2749 mdname(conf->mddev), bdn);
2750 }
2751 } else
2752 retry = 1;
2753 if (set_bad && test_bit(In_sync, &rdev->flags)
2754 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2755 retry = 1;
2756 if (retry)
2757 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2758 set_bit(R5_ReadError, &sh->dev[i].flags);
2759 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2760 set_bit(R5_ReadError, &sh->dev[i].flags);
2761 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2762 } else
2763 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2764 else {
2765 clear_bit(R5_ReadError, &sh->dev[i].flags);
2766 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2767 if (!(set_bad
2768 && test_bit(In_sync, &rdev->flags)
2769 && rdev_set_badblocks(
2770 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2771 md_error(conf->mddev, rdev);
2772 }
2773 }
2774 rdev_dec_pending(rdev, conf->mddev);
2775 bio_uninit(bi);
2776 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2777 set_bit(STRIPE_HANDLE, &sh->state);
2778 raid5_release_stripe(sh);
2779}
2780
2781static void raid5_end_write_request(struct bio *bi)
2782{
2783 struct stripe_head *sh = bi->bi_private;
2784 struct r5conf *conf = sh->raid_conf;
2785 int disks = sh->disks, i;
2786 struct md_rdev *rdev;
2787 sector_t first_bad;
2788 int bad_sectors;
2789 int replacement = 0;
2790
2791 for (i = 0 ; i < disks; i++) {
2792 if (bi == &sh->dev[i].req) {
2793 rdev = conf->disks[i].rdev;
2794 break;
2795 }
2796 if (bi == &sh->dev[i].rreq) {
2797 rdev = conf->disks[i].replacement;
2798 if (rdev)
2799 replacement = 1;
2800 else
2801 /* rdev was removed and 'replacement'
2802 * replaced it. rdev is not removed
2803 * until all requests are finished.
2804 */
2805 rdev = conf->disks[i].rdev;
2806 break;
2807 }
2808 }
2809 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2810 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2811 bi->bi_status);
2812 if (i == disks) {
2813 BUG();
2814 return;
2815 }
2816
2817 if (replacement) {
2818 if (bi->bi_status)
2819 md_error(conf->mddev, rdev);
2820 else if (is_badblock(rdev, sh->sector,
2821 RAID5_STRIPE_SECTORS(conf),
2822 &first_bad, &bad_sectors))
2823 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2824 } else {
2825 if (bi->bi_status) {
2826 set_bit(STRIPE_DEGRADED, &sh->state);
2827 set_bit(WriteErrorSeen, &rdev->flags);
2828 set_bit(R5_WriteError, &sh->dev[i].flags);
2829 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2830 set_bit(MD_RECOVERY_NEEDED,
2831 &rdev->mddev->recovery);
2832 } else if (is_badblock(rdev, sh->sector,
2833 RAID5_STRIPE_SECTORS(conf),
2834 &first_bad, &bad_sectors)) {
2835 set_bit(R5_MadeGood, &sh->dev[i].flags);
2836 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2837 /* That was a successful write so make
2838 * sure it looks like we already did
2839 * a re-write.
2840 */
2841 set_bit(R5_ReWrite, &sh->dev[i].flags);
2842 }
2843 }
2844 rdev_dec_pending(rdev, conf->mddev);
2845
2846 if (sh->batch_head && bi->bi_status && !replacement)
2847 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2848
2849 bio_uninit(bi);
2850 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2851 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2852 set_bit(STRIPE_HANDLE, &sh->state);
2853 raid5_release_stripe(sh);
2854
2855 if (sh->batch_head && sh != sh->batch_head)
2856 raid5_release_stripe(sh->batch_head);
2857}
2858
2859static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2860{
2861 char b[BDEVNAME_SIZE];
2862 struct r5conf *conf = mddev->private;
2863 unsigned long flags;
2864 pr_debug("raid456: error called\n");
2865
2866 spin_lock_irqsave(&conf->device_lock, flags);
2867
2868 if (test_bit(In_sync, &rdev->flags) &&
2869 mddev->degraded == conf->max_degraded) {
2870 /*
2871 * Don't allow to achieve failed state
2872 * Don't try to recover this device
2873 */
2874 conf->recovery_disabled = mddev->recovery_disabled;
2875 spin_unlock_irqrestore(&conf->device_lock, flags);
2876 return;
2877 }
2878
2879 set_bit(Faulty, &rdev->flags);
2880 clear_bit(In_sync, &rdev->flags);
2881 mddev->degraded = raid5_calc_degraded(conf);
2882 spin_unlock_irqrestore(&conf->device_lock, flags);
2883 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2884
2885 set_bit(Blocked, &rdev->flags);
2886 set_mask_bits(&mddev->sb_flags, 0,
2887 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2888 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2889 "md/raid:%s: Operation continuing on %d devices.\n",
2890 mdname(mddev),
2891 bdevname(rdev->bdev, b),
2892 mdname(mddev),
2893 conf->raid_disks - mddev->degraded);
2894 r5c_update_on_rdev_error(mddev, rdev);
2895}
2896
2897/*
2898 * Input: a 'big' sector number,
2899 * Output: index of the data and parity disk, and the sector # in them.
2900 */
2901sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2902 int previous, int *dd_idx,
2903 struct stripe_head *sh)
2904{
2905 sector_t stripe, stripe2;
2906 sector_t chunk_number;
2907 unsigned int chunk_offset;
2908 int pd_idx, qd_idx;
2909 int ddf_layout = 0;
2910 sector_t new_sector;
2911 int algorithm = previous ? conf->prev_algo
2912 : conf->algorithm;
2913 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2914 : conf->chunk_sectors;
2915 int raid_disks = previous ? conf->previous_raid_disks
2916 : conf->raid_disks;
2917 int data_disks = raid_disks - conf->max_degraded;
2918
2919 /* First compute the information on this sector */
2920
2921 /*
2922 * Compute the chunk number and the sector offset inside the chunk
2923 */
2924 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2925 chunk_number = r_sector;
2926
2927 /*
2928 * Compute the stripe number
2929 */
2930 stripe = chunk_number;
2931 *dd_idx = sector_div(stripe, data_disks);
2932 stripe2 = stripe;
2933 /*
2934 * Select the parity disk based on the user selected algorithm.
2935 */
2936 pd_idx = qd_idx = -1;
2937 switch(conf->level) {
2938 case 4:
2939 pd_idx = data_disks;
2940 break;
2941 case 5:
2942 switch (algorithm) {
2943 case ALGORITHM_LEFT_ASYMMETRIC:
2944 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2945 if (*dd_idx >= pd_idx)
2946 (*dd_idx)++;
2947 break;
2948 case ALGORITHM_RIGHT_ASYMMETRIC:
2949 pd_idx = sector_div(stripe2, raid_disks);
2950 if (*dd_idx >= pd_idx)
2951 (*dd_idx)++;
2952 break;
2953 case ALGORITHM_LEFT_SYMMETRIC:
2954 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2955 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2956 break;
2957 case ALGORITHM_RIGHT_SYMMETRIC:
2958 pd_idx = sector_div(stripe2, raid_disks);
2959 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2960 break;
2961 case ALGORITHM_PARITY_0:
2962 pd_idx = 0;
2963 (*dd_idx)++;
2964 break;
2965 case ALGORITHM_PARITY_N:
2966 pd_idx = data_disks;
2967 break;
2968 default:
2969 BUG();
2970 }
2971 break;
2972 case 6:
2973
2974 switch (algorithm) {
2975 case ALGORITHM_LEFT_ASYMMETRIC:
2976 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2977 qd_idx = pd_idx + 1;
2978 if (pd_idx == raid_disks-1) {
2979 (*dd_idx)++; /* Q D D D P */
2980 qd_idx = 0;
2981 } else if (*dd_idx >= pd_idx)
2982 (*dd_idx) += 2; /* D D P Q D */
2983 break;
2984 case ALGORITHM_RIGHT_ASYMMETRIC:
2985 pd_idx = sector_div(stripe2, raid_disks);
2986 qd_idx = pd_idx + 1;
2987 if (pd_idx == raid_disks-1) {
2988 (*dd_idx)++; /* Q D D D P */
2989 qd_idx = 0;
2990 } else if (*dd_idx >= pd_idx)
2991 (*dd_idx) += 2; /* D D P Q D */
2992 break;
2993 case ALGORITHM_LEFT_SYMMETRIC:
2994 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2995 qd_idx = (pd_idx + 1) % raid_disks;
2996 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2997 break;
2998 case ALGORITHM_RIGHT_SYMMETRIC:
2999 pd_idx = sector_div(stripe2, raid_disks);
3000 qd_idx = (pd_idx + 1) % raid_disks;
3001 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3002 break;
3003
3004 case ALGORITHM_PARITY_0:
3005 pd_idx = 0;
3006 qd_idx = 1;
3007 (*dd_idx) += 2;
3008 break;
3009 case ALGORITHM_PARITY_N:
3010 pd_idx = data_disks;
3011 qd_idx = data_disks + 1;
3012 break;
3013
3014 case ALGORITHM_ROTATING_ZERO_RESTART:
3015 /* Exactly the same as RIGHT_ASYMMETRIC, but or
3016 * of blocks for computing Q is different.
3017 */
3018 pd_idx = sector_div(stripe2, raid_disks);
3019 qd_idx = pd_idx + 1;
3020 if (pd_idx == raid_disks-1) {
3021 (*dd_idx)++; /* Q D D D P */
3022 qd_idx = 0;
3023 } else if (*dd_idx >= pd_idx)
3024 (*dd_idx) += 2; /* D D P Q D */
3025 ddf_layout = 1;
3026 break;
3027
3028 case ALGORITHM_ROTATING_N_RESTART:
3029 /* Same a left_asymmetric, by first stripe is
3030 * D D D P Q rather than
3031 * Q D D D P
3032 */
3033 stripe2 += 1;
3034 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3035 qd_idx = pd_idx + 1;
3036 if (pd_idx == raid_disks-1) {
3037 (*dd_idx)++; /* Q D D D P */
3038 qd_idx = 0;
3039 } else if (*dd_idx >= pd_idx)
3040 (*dd_idx) += 2; /* D D P Q D */
3041 ddf_layout = 1;
3042 break;
3043
3044 case ALGORITHM_ROTATING_N_CONTINUE:
3045 /* Same as left_symmetric but Q is before P */
3046 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3047 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3048 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3049 ddf_layout = 1;
3050 break;
3051
3052 case ALGORITHM_LEFT_ASYMMETRIC_6:
3053 /* RAID5 left_asymmetric, with Q on last device */
3054 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3055 if (*dd_idx >= pd_idx)
3056 (*dd_idx)++;
3057 qd_idx = raid_disks - 1;
3058 break;
3059
3060 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3061 pd_idx = sector_div(stripe2, raid_disks-1);
3062 if (*dd_idx >= pd_idx)
3063 (*dd_idx)++;
3064 qd_idx = raid_disks - 1;
3065 break;
3066
3067 case ALGORITHM_LEFT_SYMMETRIC_6:
3068 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3069 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3070 qd_idx = raid_disks - 1;
3071 break;
3072
3073 case ALGORITHM_RIGHT_SYMMETRIC_6:
3074 pd_idx = sector_div(stripe2, raid_disks-1);
3075 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3076 qd_idx = raid_disks - 1;
3077 break;
3078
3079 case ALGORITHM_PARITY_0_6:
3080 pd_idx = 0;
3081 (*dd_idx)++;
3082 qd_idx = raid_disks - 1;
3083 break;
3084
3085 default:
3086 BUG();
3087 }
3088 break;
3089 }
3090
3091 if (sh) {
3092 sh->pd_idx = pd_idx;
3093 sh->qd_idx = qd_idx;
3094 sh->ddf_layout = ddf_layout;
3095 }
3096 /*
3097 * Finally, compute the new sector number
3098 */
3099 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3100 return new_sector;
3101}
3102
3103sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3104{
3105 struct r5conf *conf = sh->raid_conf;
3106 int raid_disks = sh->disks;
3107 int data_disks = raid_disks - conf->max_degraded;
3108 sector_t new_sector = sh->sector, check;
3109 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3110 : conf->chunk_sectors;
3111 int algorithm = previous ? conf->prev_algo
3112 : conf->algorithm;
3113 sector_t stripe;
3114 int chunk_offset;
3115 sector_t chunk_number;
3116 int dummy1, dd_idx = i;
3117 sector_t r_sector;
3118 struct stripe_head sh2;
3119
3120 chunk_offset = sector_div(new_sector, sectors_per_chunk);
3121 stripe = new_sector;
3122
3123 if (i == sh->pd_idx)
3124 return 0;
3125 switch(conf->level) {
3126 case 4: break;
3127 case 5:
3128 switch (algorithm) {
3129 case ALGORITHM_LEFT_ASYMMETRIC:
3130 case ALGORITHM_RIGHT_ASYMMETRIC:
3131 if (i > sh->pd_idx)
3132 i--;
3133 break;
3134 case ALGORITHM_LEFT_SYMMETRIC:
3135 case ALGORITHM_RIGHT_SYMMETRIC:
3136 if (i < sh->pd_idx)
3137 i += raid_disks;
3138 i -= (sh->pd_idx + 1);
3139 break;
3140 case ALGORITHM_PARITY_0:
3141 i -= 1;
3142 break;
3143 case ALGORITHM_PARITY_N:
3144 break;
3145 default:
3146 BUG();
3147 }
3148 break;
3149 case 6:
3150 if (i == sh->qd_idx)
3151 return 0; /* It is the Q disk */
3152 switch (algorithm) {
3153 case ALGORITHM_LEFT_ASYMMETRIC:
3154 case ALGORITHM_RIGHT_ASYMMETRIC:
3155 case ALGORITHM_ROTATING_ZERO_RESTART:
3156 case ALGORITHM_ROTATING_N_RESTART:
3157 if (sh->pd_idx == raid_disks-1)
3158 i--; /* Q D D D P */
3159 else if (i > sh->pd_idx)
3160 i -= 2; /* D D P Q D */
3161 break;
3162 case ALGORITHM_LEFT_SYMMETRIC:
3163 case ALGORITHM_RIGHT_SYMMETRIC:
3164 if (sh->pd_idx == raid_disks-1)
3165 i--; /* Q D D D P */
3166 else {
3167 /* D D P Q D */
3168 if (i < sh->pd_idx)
3169 i += raid_disks;
3170 i -= (sh->pd_idx + 2);
3171 }
3172 break;
3173 case ALGORITHM_PARITY_0:
3174 i -= 2;
3175 break;
3176 case ALGORITHM_PARITY_N:
3177 break;
3178 case ALGORITHM_ROTATING_N_CONTINUE:
3179 /* Like left_symmetric, but P is before Q */
3180 if (sh->pd_idx == 0)
3181 i--; /* P D D D Q */
3182 else {
3183 /* D D Q P D */
3184 if (i < sh->pd_idx)
3185 i += raid_disks;
3186 i -= (sh->pd_idx + 1);
3187 }
3188 break;
3189 case ALGORITHM_LEFT_ASYMMETRIC_6:
3190 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3191 if (i > sh->pd_idx)
3192 i--;
3193 break;
3194 case ALGORITHM_LEFT_SYMMETRIC_6:
3195 case ALGORITHM_RIGHT_SYMMETRIC_6:
3196 if (i < sh->pd_idx)
3197 i += data_disks + 1;
3198 i -= (sh->pd_idx + 1);
3199 break;
3200 case ALGORITHM_PARITY_0_6:
3201 i -= 1;
3202 break;
3203 default:
3204 BUG();
3205 }
3206 break;
3207 }
3208
3209 chunk_number = stripe * data_disks + i;
3210 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3211
3212 check = raid5_compute_sector(conf, r_sector,
3213 previous, &dummy1, &sh2);
3214 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3215 || sh2.qd_idx != sh->qd_idx) {
3216 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3217 mdname(conf->mddev));
3218 return 0;
3219 }
3220 return r_sector;
3221}
3222
3223/*
3224 * There are cases where we want handle_stripe_dirtying() and
3225 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3226 *
3227 * This function checks whether we want to delay the towrite. Specifically,
3228 * we delay the towrite when:
3229 *
3230 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3231 * stripe has data in journal (for other devices).
3232 *
3233 * In this case, when reading data for the non-overwrite dev, it is
3234 * necessary to handle complex rmw of write back cache (prexor with
3235 * orig_page, and xor with page). To keep read path simple, we would
3236 * like to flush data in journal to RAID disks first, so complex rmw
3237 * is handled in the write patch (handle_stripe_dirtying).
3238 *
3239 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3240 *
3241 * It is important to be able to flush all stripes in raid5-cache.
3242 * Therefore, we need reserve some space on the journal device for
3243 * these flushes. If flush operation includes pending writes to the
3244 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3245 * for the flush out. If we exclude these pending writes from flush
3246 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3247 * Therefore, excluding pending writes in these cases enables more
3248 * efficient use of the journal device.
3249 *
3250 * Note: To make sure the stripe makes progress, we only delay
3251 * towrite for stripes with data already in journal (injournal > 0).
3252 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3253 * no_space_stripes list.
3254 *
3255 * 3. during journal failure
3256 * In journal failure, we try to flush all cached data to raid disks
3257 * based on data in stripe cache. The array is read-only to upper
3258 * layers, so we would skip all pending writes.
3259 *
3260 */
3261static inline bool delay_towrite(struct r5conf *conf,
3262 struct r5dev *dev,
3263 struct stripe_head_state *s)
3264{
3265 /* case 1 above */
3266 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3267 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3268 return true;
3269 /* case 2 above */
3270 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3271 s->injournal > 0)
3272 return true;
3273 /* case 3 above */
3274 if (s->log_failed && s->injournal)
3275 return true;
3276 return false;
3277}
3278
3279static void
3280schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3281 int rcw, int expand)
3282{
3283 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3284 struct r5conf *conf = sh->raid_conf;
3285 int level = conf->level;
3286
3287 if (rcw) {
3288 /*
3289 * In some cases, handle_stripe_dirtying initially decided to
3290 * run rmw and allocates extra page for prexor. However, rcw is
3291 * cheaper later on. We need to free the extra page now,
3292 * because we won't be able to do that in ops_complete_prexor().
3293 */
3294 r5c_release_extra_page(sh);
3295
3296 for (i = disks; i--; ) {
3297 struct r5dev *dev = &sh->dev[i];
3298
3299 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3300 set_bit(R5_LOCKED, &dev->flags);
3301 set_bit(R5_Wantdrain, &dev->flags);
3302 if (!expand)
3303 clear_bit(R5_UPTODATE, &dev->flags);
3304 s->locked++;
3305 } else if (test_bit(R5_InJournal, &dev->flags)) {
3306 set_bit(R5_LOCKED, &dev->flags);
3307 s->locked++;
3308 }
3309 }
3310 /* if we are not expanding this is a proper write request, and
3311 * there will be bios with new data to be drained into the
3312 * stripe cache
3313 */
3314 if (!expand) {
3315 if (!s->locked)
3316 /* False alarm, nothing to do */
3317 return;
3318 sh->reconstruct_state = reconstruct_state_drain_run;
3319 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3320 } else
3321 sh->reconstruct_state = reconstruct_state_run;
3322
3323 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3324
3325 if (s->locked + conf->max_degraded == disks)
3326 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3327 atomic_inc(&conf->pending_full_writes);
3328 } else {
3329 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3330 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3331 BUG_ON(level == 6 &&
3332 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3333 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3334
3335 for (i = disks; i--; ) {
3336 struct r5dev *dev = &sh->dev[i];
3337 if (i == pd_idx || i == qd_idx)
3338 continue;
3339
3340 if (dev->towrite &&
3341 (test_bit(R5_UPTODATE, &dev->flags) ||
3342 test_bit(R5_Wantcompute, &dev->flags))) {
3343 set_bit(R5_Wantdrain, &dev->flags);
3344 set_bit(R5_LOCKED, &dev->flags);
3345 clear_bit(R5_UPTODATE, &dev->flags);
3346 s->locked++;
3347 } else if (test_bit(R5_InJournal, &dev->flags)) {
3348 set_bit(R5_LOCKED, &dev->flags);
3349 s->locked++;
3350 }
3351 }
3352 if (!s->locked)
3353 /* False alarm - nothing to do */
3354 return;
3355 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3356 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3357 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3358 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3359 }
3360
3361 /* keep the parity disk(s) locked while asynchronous operations
3362 * are in flight
3363 */
3364 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3365 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3366 s->locked++;
3367
3368 if (level == 6) {
3369 int qd_idx = sh->qd_idx;
3370 struct r5dev *dev = &sh->dev[qd_idx];
3371
3372 set_bit(R5_LOCKED, &dev->flags);
3373 clear_bit(R5_UPTODATE, &dev->flags);
3374 s->locked++;
3375 }
3376
3377 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3378 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3379 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3380 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3381 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3382
3383 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3384 __func__, (unsigned long long)sh->sector,
3385 s->locked, s->ops_request);
3386}
3387
3388/*
3389 * Each stripe/dev can have one or more bion attached.
3390 * toread/towrite point to the first in a chain.
3391 * The bi_next chain must be in order.
3392 */
3393static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3394 int forwrite, int previous)
3395{
3396 struct bio **bip;
3397 struct r5conf *conf = sh->raid_conf;
3398 int firstwrite=0;
3399
3400 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3401 (unsigned long long)bi->bi_iter.bi_sector,
3402 (unsigned long long)sh->sector);
3403
3404 spin_lock_irq(&sh->stripe_lock);
3405 /* Don't allow new IO added to stripes in batch list */
3406 if (sh->batch_head)
3407 goto overlap;
3408 if (forwrite) {
3409 bip = &sh->dev[dd_idx].towrite;
3410 if (*bip == NULL)
3411 firstwrite = 1;
3412 } else
3413 bip = &sh->dev[dd_idx].toread;
3414 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3415 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3416 goto overlap;
3417 bip = & (*bip)->bi_next;
3418 }
3419 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3420 goto overlap;
3421
3422 if (forwrite && raid5_has_ppl(conf)) {
3423 /*
3424 * With PPL only writes to consecutive data chunks within a
3425 * stripe are allowed because for a single stripe_head we can
3426 * only have one PPL entry at a time, which describes one data
3427 * range. Not really an overlap, but wait_for_overlap can be
3428 * used to handle this.
3429 */
3430 sector_t sector;
3431 sector_t first = 0;
3432 sector_t last = 0;
3433 int count = 0;
3434 int i;
3435
3436 for (i = 0; i < sh->disks; i++) {
3437 if (i != sh->pd_idx &&
3438 (i == dd_idx || sh->dev[i].towrite)) {
3439 sector = sh->dev[i].sector;
3440 if (count == 0 || sector < first)
3441 first = sector;
3442 if (sector > last)
3443 last = sector;
3444 count++;
3445 }
3446 }
3447
3448 if (first + conf->chunk_sectors * (count - 1) != last)
3449 goto overlap;
3450 }
3451
3452 if (!forwrite || previous)
3453 clear_bit(STRIPE_BATCH_READY, &sh->state);
3454
3455 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3456 if (*bip)
3457 bi->bi_next = *bip;
3458 *bip = bi;
3459 bio_inc_remaining(bi);
3460 md_write_inc(conf->mddev, bi);
3461
3462 if (forwrite) {
3463 /* check if page is covered */
3464 sector_t sector = sh->dev[dd_idx].sector;
3465 for (bi=sh->dev[dd_idx].towrite;
3466 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3467 bi && bi->bi_iter.bi_sector <= sector;
3468 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3469 if (bio_end_sector(bi) >= sector)
3470 sector = bio_end_sector(bi);
3471 }
3472 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3473 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3474 sh->overwrite_disks++;
3475 }
3476
3477 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3478 (unsigned long long)(*bip)->bi_iter.bi_sector,
3479 (unsigned long long)sh->sector, dd_idx);
3480
3481 if (conf->mddev->bitmap && firstwrite) {
3482 /* Cannot hold spinlock over bitmap_startwrite,
3483 * but must ensure this isn't added to a batch until
3484 * we have added to the bitmap and set bm_seq.
3485 * So set STRIPE_BITMAP_PENDING to prevent
3486 * batching.
3487 * If multiple add_stripe_bio() calls race here they
3488 * much all set STRIPE_BITMAP_PENDING. So only the first one
3489 * to complete "bitmap_startwrite" gets to set
3490 * STRIPE_BIT_DELAY. This is important as once a stripe
3491 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3492 * any more.
3493 */
3494 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3495 spin_unlock_irq(&sh->stripe_lock);
3496 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3497 RAID5_STRIPE_SECTORS(conf), 0);
3498 spin_lock_irq(&sh->stripe_lock);
3499 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3500 if (!sh->batch_head) {
3501 sh->bm_seq = conf->seq_flush+1;
3502 set_bit(STRIPE_BIT_DELAY, &sh->state);
3503 }
3504 }
3505 spin_unlock_irq(&sh->stripe_lock);
3506
3507 if (stripe_can_batch(sh))
3508 stripe_add_to_batch_list(conf, sh);
3509 return 1;
3510
3511 overlap:
3512 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3513 spin_unlock_irq(&sh->stripe_lock);
3514 return 0;
3515}
3516
3517static void end_reshape(struct r5conf *conf);
3518
3519static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3520 struct stripe_head *sh)
3521{
3522 int sectors_per_chunk =
3523 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3524 int dd_idx;
3525 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3526 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3527
3528 raid5_compute_sector(conf,
3529 stripe * (disks - conf->max_degraded)
3530 *sectors_per_chunk + chunk_offset,
3531 previous,
3532 &dd_idx, sh);
3533}
3534
3535static void
3536handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3537 struct stripe_head_state *s, int disks)
3538{
3539 int i;
3540 BUG_ON(sh->batch_head);
3541 for (i = disks; i--; ) {
3542 struct bio *bi;
3543 int bitmap_end = 0;
3544
3545 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3546 struct md_rdev *rdev;
3547 rcu_read_lock();
3548 rdev = rcu_dereference(conf->disks[i].rdev);
3549 if (rdev && test_bit(In_sync, &rdev->flags) &&
3550 !test_bit(Faulty, &rdev->flags))
3551 atomic_inc(&rdev->nr_pending);
3552 else
3553 rdev = NULL;
3554 rcu_read_unlock();
3555 if (rdev) {
3556 if (!rdev_set_badblocks(
3557 rdev,
3558 sh->sector,
3559 RAID5_STRIPE_SECTORS(conf), 0))
3560 md_error(conf->mddev, rdev);
3561 rdev_dec_pending(rdev, conf->mddev);
3562 }
3563 }
3564 spin_lock_irq(&sh->stripe_lock);
3565 /* fail all writes first */
3566 bi = sh->dev[i].towrite;
3567 sh->dev[i].towrite = NULL;
3568 sh->overwrite_disks = 0;
3569 spin_unlock_irq(&sh->stripe_lock);
3570 if (bi)
3571 bitmap_end = 1;
3572
3573 log_stripe_write_finished(sh);
3574
3575 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3576 wake_up(&conf->wait_for_overlap);
3577
3578 while (bi && bi->bi_iter.bi_sector <
3579 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3580 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3581
3582 md_write_end(conf->mddev);
3583 bio_io_error(bi);
3584 bi = nextbi;
3585 }
3586 if (bitmap_end)
3587 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3588 RAID5_STRIPE_SECTORS(conf), 0, 0);
3589 bitmap_end = 0;
3590 /* and fail all 'written' */
3591 bi = sh->dev[i].written;
3592 sh->dev[i].written = NULL;
3593 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3594 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3595 sh->dev[i].page = sh->dev[i].orig_page;
3596 }
3597
3598 if (bi) bitmap_end = 1;
3599 while (bi && bi->bi_iter.bi_sector <
3600 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3601 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3602
3603 md_write_end(conf->mddev);
3604 bio_io_error(bi);
3605 bi = bi2;
3606 }
3607
3608 /* fail any reads if this device is non-operational and
3609 * the data has not reached the cache yet.
3610 */
3611 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3612 s->failed > conf->max_degraded &&
3613 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3614 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3615 spin_lock_irq(&sh->stripe_lock);
3616 bi = sh->dev[i].toread;
3617 sh->dev[i].toread = NULL;
3618 spin_unlock_irq(&sh->stripe_lock);
3619 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3620 wake_up(&conf->wait_for_overlap);
3621 if (bi)
3622 s->to_read--;
3623 while (bi && bi->bi_iter.bi_sector <
3624 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3625 struct bio *nextbi =
3626 r5_next_bio(conf, bi, sh->dev[i].sector);
3627
3628 bio_io_error(bi);
3629 bi = nextbi;
3630 }
3631 }
3632 if (bitmap_end)
3633 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3634 RAID5_STRIPE_SECTORS(conf), 0, 0);
3635 /* If we were in the middle of a write the parity block might
3636 * still be locked - so just clear all R5_LOCKED flags
3637 */
3638 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3639 }
3640 s->to_write = 0;
3641 s->written = 0;
3642
3643 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3644 if (atomic_dec_and_test(&conf->pending_full_writes))
3645 md_wakeup_thread(conf->mddev->thread);
3646}
3647
3648static void
3649handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3650 struct stripe_head_state *s)
3651{
3652 int abort = 0;
3653 int i;
3654
3655 BUG_ON(sh->batch_head);
3656 clear_bit(STRIPE_SYNCING, &sh->state);
3657 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3658 wake_up(&conf->wait_for_overlap);
3659 s->syncing = 0;
3660 s->replacing = 0;
3661 /* There is nothing more to do for sync/check/repair.
3662 * Don't even need to abort as that is handled elsewhere
3663 * if needed, and not always wanted e.g. if there is a known
3664 * bad block here.
3665 * For recover/replace we need to record a bad block on all
3666 * non-sync devices, or abort the recovery
3667 */
3668 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3669 /* During recovery devices cannot be removed, so
3670 * locking and refcounting of rdevs is not needed
3671 */
3672 rcu_read_lock();
3673 for (i = 0; i < conf->raid_disks; i++) {
3674 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3675 if (rdev
3676 && !test_bit(Faulty, &rdev->flags)
3677 && !test_bit(In_sync, &rdev->flags)
3678 && !rdev_set_badblocks(rdev, sh->sector,
3679 RAID5_STRIPE_SECTORS(conf), 0))
3680 abort = 1;
3681 rdev = rcu_dereference(conf->disks[i].replacement);
3682 if (rdev
3683 && !test_bit(Faulty, &rdev->flags)
3684 && !test_bit(In_sync, &rdev->flags)
3685 && !rdev_set_badblocks(rdev, sh->sector,
3686 RAID5_STRIPE_SECTORS(conf), 0))
3687 abort = 1;
3688 }
3689 rcu_read_unlock();
3690 if (abort)
3691 conf->recovery_disabled =
3692 conf->mddev->recovery_disabled;
3693 }
3694 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3695}
3696
3697static int want_replace(struct stripe_head *sh, int disk_idx)
3698{
3699 struct md_rdev *rdev;
3700 int rv = 0;
3701
3702 rcu_read_lock();
3703 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3704 if (rdev
3705 && !test_bit(Faulty, &rdev->flags)
3706 && !test_bit(In_sync, &rdev->flags)
3707 && (rdev->recovery_offset <= sh->sector
3708 || rdev->mddev->recovery_cp <= sh->sector))
3709 rv = 1;
3710 rcu_read_unlock();
3711 return rv;
3712}
3713
3714static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3715 int disk_idx, int disks)
3716{
3717 struct r5dev *dev = &sh->dev[disk_idx];
3718 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3719 &sh->dev[s->failed_num[1]] };
3720 int i;
3721 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3722
3723
3724 if (test_bit(R5_LOCKED, &dev->flags) ||
3725 test_bit(R5_UPTODATE, &dev->flags))
3726 /* No point reading this as we already have it or have
3727 * decided to get it.
3728 */
3729 return 0;
3730
3731 if (dev->toread ||
3732 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3733 /* We need this block to directly satisfy a request */
3734 return 1;
3735
3736 if (s->syncing || s->expanding ||
3737 (s->replacing && want_replace(sh, disk_idx)))
3738 /* When syncing, or expanding we read everything.
3739 * When replacing, we need the replaced block.
3740 */
3741 return 1;
3742
3743 if ((s->failed >= 1 && fdev[0]->toread) ||
3744 (s->failed >= 2 && fdev[1]->toread))
3745 /* If we want to read from a failed device, then
3746 * we need to actually read every other device.
3747 */
3748 return 1;
3749
3750 /* Sometimes neither read-modify-write nor reconstruct-write
3751 * cycles can work. In those cases we read every block we
3752 * can. Then the parity-update is certain to have enough to
3753 * work with.
3754 * This can only be a problem when we need to write something,
3755 * and some device has failed. If either of those tests
3756 * fail we need look no further.
3757 */
3758 if (!s->failed || !s->to_write)
3759 return 0;
3760
3761 if (test_bit(R5_Insync, &dev->flags) &&
3762 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3763 /* Pre-reads at not permitted until after short delay
3764 * to gather multiple requests. However if this
3765 * device is no Insync, the block could only be computed
3766 * and there is no need to delay that.
3767 */
3768 return 0;
3769
3770 for (i = 0; i < s->failed && i < 2; i++) {
3771 if (fdev[i]->towrite &&
3772 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3773 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3774 /* If we have a partial write to a failed
3775 * device, then we will need to reconstruct
3776 * the content of that device, so all other
3777 * devices must be read.
3778 */
3779 return 1;
3780
3781 if (s->failed >= 2 &&
3782 (fdev[i]->towrite ||
3783 s->failed_num[i] == sh->pd_idx ||
3784 s->failed_num[i] == sh->qd_idx) &&
3785 !test_bit(R5_UPTODATE, &fdev[i]->flags))
3786 /* In max degraded raid6, If the failed disk is P, Q,
3787 * or we want to read the failed disk, we need to do
3788 * reconstruct-write.
3789 */
3790 force_rcw = true;
3791 }
3792
3793 /* If we are forced to do a reconstruct-write, because parity
3794 * cannot be trusted and we are currently recovering it, there
3795 * is extra need to be careful.
3796 * If one of the devices that we would need to read, because
3797 * it is not being overwritten (and maybe not written at all)
3798 * is missing/faulty, then we need to read everything we can.
3799 */
3800 if (!force_rcw &&
3801 sh->sector < sh->raid_conf->mddev->recovery_cp)
3802 /* reconstruct-write isn't being forced */
3803 return 0;
3804 for (i = 0; i < s->failed && i < 2; i++) {
3805 if (s->failed_num[i] != sh->pd_idx &&
3806 s->failed_num[i] != sh->qd_idx &&
3807 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3808 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3809 return 1;
3810 }
3811
3812 return 0;
3813}
3814
3815/* fetch_block - checks the given member device to see if its data needs
3816 * to be read or computed to satisfy a request.
3817 *
3818 * Returns 1 when no more member devices need to be checked, otherwise returns
3819 * 0 to tell the loop in handle_stripe_fill to continue
3820 */
3821static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3822 int disk_idx, int disks)
3823{
3824 struct r5dev *dev = &sh->dev[disk_idx];
3825
3826 /* is the data in this block needed, and can we get it? */
3827 if (need_this_block(sh, s, disk_idx, disks)) {
3828 /* we would like to get this block, possibly by computing it,
3829 * otherwise read it if the backing disk is insync
3830 */
3831 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3832 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3833 BUG_ON(sh->batch_head);
3834
3835 /*
3836 * In the raid6 case if the only non-uptodate disk is P
3837 * then we already trusted P to compute the other failed
3838 * drives. It is safe to compute rather than re-read P.
3839 * In other cases we only compute blocks from failed
3840 * devices, otherwise check/repair might fail to detect
3841 * a real inconsistency.
3842 */
3843
3844 if ((s->uptodate == disks - 1) &&
3845 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3846 (s->failed && (disk_idx == s->failed_num[0] ||
3847 disk_idx == s->failed_num[1])))) {
3848 /* have disk failed, and we're requested to fetch it;
3849 * do compute it
3850 */
3851 pr_debug("Computing stripe %llu block %d\n",
3852 (unsigned long long)sh->sector, disk_idx);
3853 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3854 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3855 set_bit(R5_Wantcompute, &dev->flags);
3856 sh->ops.target = disk_idx;
3857 sh->ops.target2 = -1; /* no 2nd target */
3858 s->req_compute = 1;
3859 /* Careful: from this point on 'uptodate' is in the eye
3860 * of raid_run_ops which services 'compute' operations
3861 * before writes. R5_Wantcompute flags a block that will
3862 * be R5_UPTODATE by the time it is needed for a
3863 * subsequent operation.
3864 */
3865 s->uptodate++;
3866 return 1;
3867 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3868 /* Computing 2-failure is *very* expensive; only
3869 * do it if failed >= 2
3870 */
3871 int other;
3872 for (other = disks; other--; ) {
3873 if (other == disk_idx)
3874 continue;
3875 if (!test_bit(R5_UPTODATE,
3876 &sh->dev[other].flags))
3877 break;
3878 }
3879 BUG_ON(other < 0);
3880 pr_debug("Computing stripe %llu blocks %d,%d\n",
3881 (unsigned long long)sh->sector,
3882 disk_idx, other);
3883 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3884 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3885 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3886 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3887 sh->ops.target = disk_idx;
3888 sh->ops.target2 = other;
3889 s->uptodate += 2;
3890 s->req_compute = 1;
3891 return 1;
3892 } else if (test_bit(R5_Insync, &dev->flags)) {
3893 set_bit(R5_LOCKED, &dev->flags);
3894 set_bit(R5_Wantread, &dev->flags);
3895 s->locked++;
3896 pr_debug("Reading block %d (sync=%d)\n",
3897 disk_idx, s->syncing);
3898 }
3899 }
3900
3901 return 0;
3902}
3903
3904/*
3905 * handle_stripe_fill - read or compute data to satisfy pending requests.
3906 */
3907static void handle_stripe_fill(struct stripe_head *sh,
3908 struct stripe_head_state *s,
3909 int disks)
3910{
3911 int i;
3912
3913 /* look for blocks to read/compute, skip this if a compute
3914 * is already in flight, or if the stripe contents are in the
3915 * midst of changing due to a write
3916 */
3917 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3918 !sh->reconstruct_state) {
3919
3920 /*
3921 * For degraded stripe with data in journal, do not handle
3922 * read requests yet, instead, flush the stripe to raid
3923 * disks first, this avoids handling complex rmw of write
3924 * back cache (prexor with orig_page, and then xor with
3925 * page) in the read path
3926 */
3927 if (s->injournal && s->failed) {
3928 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3929 r5c_make_stripe_write_out(sh);
3930 goto out;
3931 }
3932
3933 for (i = disks; i--; )
3934 if (fetch_block(sh, s, i, disks))
3935 break;
3936 }
3937out:
3938 set_bit(STRIPE_HANDLE, &sh->state);
3939}
3940
3941static void break_stripe_batch_list(struct stripe_head *head_sh,
3942 unsigned long handle_flags);
3943/* handle_stripe_clean_event
3944 * any written block on an uptodate or failed drive can be returned.
3945 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3946 * never LOCKED, so we don't need to test 'failed' directly.
3947 */
3948static void handle_stripe_clean_event(struct r5conf *conf,
3949 struct stripe_head *sh, int disks)
3950{
3951 int i;
3952 struct r5dev *dev;
3953 int discard_pending = 0;
3954 struct stripe_head *head_sh = sh;
3955 bool do_endio = false;
3956
3957 for (i = disks; i--; )
3958 if (sh->dev[i].written) {
3959 dev = &sh->dev[i];
3960 if (!test_bit(R5_LOCKED, &dev->flags) &&
3961 (test_bit(R5_UPTODATE, &dev->flags) ||
3962 test_bit(R5_Discard, &dev->flags) ||
3963 test_bit(R5_SkipCopy, &dev->flags))) {
3964 /* We can return any write requests */
3965 struct bio *wbi, *wbi2;
3966 pr_debug("Return write for disc %d\n", i);
3967 if (test_and_clear_bit(R5_Discard, &dev->flags))
3968 clear_bit(R5_UPTODATE, &dev->flags);
3969 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3970 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3971 }
3972 do_endio = true;
3973
3974returnbi:
3975 dev->page = dev->orig_page;
3976 wbi = dev->written;
3977 dev->written = NULL;
3978 while (wbi && wbi->bi_iter.bi_sector <
3979 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
3980 wbi2 = r5_next_bio(conf, wbi, dev->sector);
3981 md_write_end(conf->mddev);
3982 bio_endio(wbi);
3983 wbi = wbi2;
3984 }
3985 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3986 RAID5_STRIPE_SECTORS(conf),
3987 !test_bit(STRIPE_DEGRADED, &sh->state),
3988 0);
3989 if (head_sh->batch_head) {
3990 sh = list_first_entry(&sh->batch_list,
3991 struct stripe_head,
3992 batch_list);
3993 if (sh != head_sh) {
3994 dev = &sh->dev[i];
3995 goto returnbi;
3996 }
3997 }
3998 sh = head_sh;
3999 dev = &sh->dev[i];
4000 } else if (test_bit(R5_Discard, &dev->flags))
4001 discard_pending = 1;
4002 }
4003
4004 log_stripe_write_finished(sh);
4005
4006 if (!discard_pending &&
4007 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4008 int hash;
4009 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4010 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4011 if (sh->qd_idx >= 0) {
4012 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4013 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4014 }
4015 /* now that discard is done we can proceed with any sync */
4016 clear_bit(STRIPE_DISCARD, &sh->state);
4017 /*
4018 * SCSI discard will change some bio fields and the stripe has
4019 * no updated data, so remove it from hash list and the stripe
4020 * will be reinitialized
4021 */
4022unhash:
4023 hash = sh->hash_lock_index;
4024 spin_lock_irq(conf->hash_locks + hash);
4025 remove_hash(sh);
4026 spin_unlock_irq(conf->hash_locks + hash);
4027 if (head_sh->batch_head) {
4028 sh = list_first_entry(&sh->batch_list,
4029 struct stripe_head, batch_list);
4030 if (sh != head_sh)
4031 goto unhash;
4032 }
4033 sh = head_sh;
4034
4035 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4036 set_bit(STRIPE_HANDLE, &sh->state);
4037
4038 }
4039
4040 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4041 if (atomic_dec_and_test(&conf->pending_full_writes))
4042 md_wakeup_thread(conf->mddev->thread);
4043
4044 if (head_sh->batch_head && do_endio)
4045 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4046}
4047
4048/*
4049 * For RMW in write back cache, we need extra page in prexor to store the
4050 * old data. This page is stored in dev->orig_page.
4051 *
4052 * This function checks whether we have data for prexor. The exact logic
4053 * is:
4054 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4055 */
4056static inline bool uptodate_for_rmw(struct r5dev *dev)
4057{
4058 return (test_bit(R5_UPTODATE, &dev->flags)) &&
4059 (!test_bit(R5_InJournal, &dev->flags) ||
4060 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4061}
4062
4063static int handle_stripe_dirtying(struct r5conf *conf,
4064 struct stripe_head *sh,
4065 struct stripe_head_state *s,
4066 int disks)
4067{
4068 int rmw = 0, rcw = 0, i;
4069 sector_t recovery_cp = conf->mddev->recovery_cp;
4070
4071 /* Check whether resync is now happening or should start.
4072 * If yes, then the array is dirty (after unclean shutdown or
4073 * initial creation), so parity in some stripes might be inconsistent.
4074 * In this case, we need to always do reconstruct-write, to ensure
4075 * that in case of drive failure or read-error correction, we
4076 * generate correct data from the parity.
4077 */
4078 if (conf->rmw_level == PARITY_DISABLE_RMW ||
4079 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4080 s->failed == 0)) {
4081 /* Calculate the real rcw later - for now make it
4082 * look like rcw is cheaper
4083 */
4084 rcw = 1; rmw = 2;
4085 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4086 conf->rmw_level, (unsigned long long)recovery_cp,
4087 (unsigned long long)sh->sector);
4088 } else for (i = disks; i--; ) {
4089 /* would I have to read this buffer for read_modify_write */
4090 struct r5dev *dev = &sh->dev[i];
4091 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4092 i == sh->pd_idx || i == sh->qd_idx ||
4093 test_bit(R5_InJournal, &dev->flags)) &&
4094 !test_bit(R5_LOCKED, &dev->flags) &&
4095 !(uptodate_for_rmw(dev) ||
4096 test_bit(R5_Wantcompute, &dev->flags))) {
4097 if (test_bit(R5_Insync, &dev->flags))
4098 rmw++;
4099 else
4100 rmw += 2*disks; /* cannot read it */
4101 }
4102 /* Would I have to read this buffer for reconstruct_write */
4103 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4104 i != sh->pd_idx && i != sh->qd_idx &&
4105 !test_bit(R5_LOCKED, &dev->flags) &&
4106 !(test_bit(R5_UPTODATE, &dev->flags) ||
4107 test_bit(R5_Wantcompute, &dev->flags))) {
4108 if (test_bit(R5_Insync, &dev->flags))
4109 rcw++;
4110 else
4111 rcw += 2*disks;
4112 }
4113 }
4114
4115 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4116 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4117 set_bit(STRIPE_HANDLE, &sh->state);
4118 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4119 /* prefer read-modify-write, but need to get some data */
4120 if (conf->mddev->queue)
4121 blk_add_trace_msg(conf->mddev->queue,
4122 "raid5 rmw %llu %d",
4123 (unsigned long long)sh->sector, rmw);
4124 for (i = disks; i--; ) {
4125 struct r5dev *dev = &sh->dev[i];
4126 if (test_bit(R5_InJournal, &dev->flags) &&
4127 dev->page == dev->orig_page &&
4128 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4129 /* alloc page for prexor */
4130 struct page *p = alloc_page(GFP_NOIO);
4131
4132 if (p) {
4133 dev->orig_page = p;
4134 continue;
4135 }
4136
4137 /*
4138 * alloc_page() failed, try use
4139 * disk_info->extra_page
4140 */
4141 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4142 &conf->cache_state)) {
4143 r5c_use_extra_page(sh);
4144 break;
4145 }
4146
4147 /* extra_page in use, add to delayed_list */
4148 set_bit(STRIPE_DELAYED, &sh->state);
4149 s->waiting_extra_page = 1;
4150 return -EAGAIN;
4151 }
4152 }
4153
4154 for (i = disks; i--; ) {
4155 struct r5dev *dev = &sh->dev[i];
4156 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4157 i == sh->pd_idx || i == sh->qd_idx ||
4158 test_bit(R5_InJournal, &dev->flags)) &&
4159 !test_bit(R5_LOCKED, &dev->flags) &&
4160 !(uptodate_for_rmw(dev) ||
4161 test_bit(R5_Wantcompute, &dev->flags)) &&
4162 test_bit(R5_Insync, &dev->flags)) {
4163 if (test_bit(STRIPE_PREREAD_ACTIVE,
4164 &sh->state)) {
4165 pr_debug("Read_old block %d for r-m-w\n",
4166 i);
4167 set_bit(R5_LOCKED, &dev->flags);
4168 set_bit(R5_Wantread, &dev->flags);
4169 s->locked++;
4170 } else
4171 set_bit(STRIPE_DELAYED, &sh->state);
4172 }
4173 }
4174 }
4175 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4176 /* want reconstruct write, but need to get some data */
4177 int qread =0;
4178 rcw = 0;
4179 for (i = disks; i--; ) {
4180 struct r5dev *dev = &sh->dev[i];
4181 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4182 i != sh->pd_idx && i != sh->qd_idx &&
4183 !test_bit(R5_LOCKED, &dev->flags) &&
4184 !(test_bit(R5_UPTODATE, &dev->flags) ||
4185 test_bit(R5_Wantcompute, &dev->flags))) {
4186 rcw++;
4187 if (test_bit(R5_Insync, &dev->flags) &&
4188 test_bit(STRIPE_PREREAD_ACTIVE,
4189 &sh->state)) {
4190 pr_debug("Read_old block "
4191 "%d for Reconstruct\n", i);
4192 set_bit(R5_LOCKED, &dev->flags);
4193 set_bit(R5_Wantread, &dev->flags);
4194 s->locked++;
4195 qread++;
4196 } else
4197 set_bit(STRIPE_DELAYED, &sh->state);
4198 }
4199 }
4200 if (rcw && conf->mddev->queue)
4201 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4202 (unsigned long long)sh->sector,
4203 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4204 }
4205
4206 if (rcw > disks && rmw > disks &&
4207 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4208 set_bit(STRIPE_DELAYED, &sh->state);
4209
4210 /* now if nothing is locked, and if we have enough data,
4211 * we can start a write request
4212 */
4213 /* since handle_stripe can be called at any time we need to handle the
4214 * case where a compute block operation has been submitted and then a
4215 * subsequent call wants to start a write request. raid_run_ops only
4216 * handles the case where compute block and reconstruct are requested
4217 * simultaneously. If this is not the case then new writes need to be
4218 * held off until the compute completes.
4219 */
4220 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4221 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4222 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4223 schedule_reconstruction(sh, s, rcw == 0, 0);
4224 return 0;
4225}
4226
4227static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4228 struct stripe_head_state *s, int disks)
4229{
4230 struct r5dev *dev = NULL;
4231
4232 BUG_ON(sh->batch_head);
4233 set_bit(STRIPE_HANDLE, &sh->state);
4234
4235 switch (sh->check_state) {
4236 case check_state_idle:
4237 /* start a new check operation if there are no failures */
4238 if (s->failed == 0) {
4239 BUG_ON(s->uptodate != disks);
4240 sh->check_state = check_state_run;
4241 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4242 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4243 s->uptodate--;
4244 break;
4245 }
4246 dev = &sh->dev[s->failed_num[0]];
4247 fallthrough;
4248 case check_state_compute_result:
4249 sh->check_state = check_state_idle;
4250 if (!dev)
4251 dev = &sh->dev[sh->pd_idx];
4252
4253 /* check that a write has not made the stripe insync */
4254 if (test_bit(STRIPE_INSYNC, &sh->state))
4255 break;
4256
4257 /* either failed parity check, or recovery is happening */
4258 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4259 BUG_ON(s->uptodate != disks);
4260
4261 set_bit(R5_LOCKED, &dev->flags);
4262 s->locked++;
4263 set_bit(R5_Wantwrite, &dev->flags);
4264
4265 clear_bit(STRIPE_DEGRADED, &sh->state);
4266 set_bit(STRIPE_INSYNC, &sh->state);
4267 break;
4268 case check_state_run:
4269 break; /* we will be called again upon completion */
4270 case check_state_check_result:
4271 sh->check_state = check_state_idle;
4272
4273 /* if a failure occurred during the check operation, leave
4274 * STRIPE_INSYNC not set and let the stripe be handled again
4275 */
4276 if (s->failed)
4277 break;
4278
4279 /* handle a successful check operation, if parity is correct
4280 * we are done. Otherwise update the mismatch count and repair
4281 * parity if !MD_RECOVERY_CHECK
4282 */
4283 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4284 /* parity is correct (on disc,
4285 * not in buffer any more)
4286 */
4287 set_bit(STRIPE_INSYNC, &sh->state);
4288 else {
4289 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4290 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4291 /* don't try to repair!! */
4292 set_bit(STRIPE_INSYNC, &sh->state);
4293 pr_warn_ratelimited("%s: mismatch sector in range "
4294 "%llu-%llu\n", mdname(conf->mddev),
4295 (unsigned long long) sh->sector,
4296 (unsigned long long) sh->sector +
4297 RAID5_STRIPE_SECTORS(conf));
4298 } else {
4299 sh->check_state = check_state_compute_run;
4300 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4301 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4302 set_bit(R5_Wantcompute,
4303 &sh->dev[sh->pd_idx].flags);
4304 sh->ops.target = sh->pd_idx;
4305 sh->ops.target2 = -1;
4306 s->uptodate++;
4307 }
4308 }
4309 break;
4310 case check_state_compute_run:
4311 break;
4312 default:
4313 pr_err("%s: unknown check_state: %d sector: %llu\n",
4314 __func__, sh->check_state,
4315 (unsigned long long) sh->sector);
4316 BUG();
4317 }
4318}
4319
4320static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4321 struct stripe_head_state *s,
4322 int disks)
4323{
4324 int pd_idx = sh->pd_idx;
4325 int qd_idx = sh->qd_idx;
4326 struct r5dev *dev;
4327
4328 BUG_ON(sh->batch_head);
4329 set_bit(STRIPE_HANDLE, &sh->state);
4330
4331 BUG_ON(s->failed > 2);
4332
4333 /* Want to check and possibly repair P and Q.
4334 * However there could be one 'failed' device, in which
4335 * case we can only check one of them, possibly using the
4336 * other to generate missing data
4337 */
4338
4339 switch (sh->check_state) {
4340 case check_state_idle:
4341 /* start a new check operation if there are < 2 failures */
4342 if (s->failed == s->q_failed) {
4343 /* The only possible failed device holds Q, so it
4344 * makes sense to check P (If anything else were failed,
4345 * we would have used P to recreate it).
4346 */
4347 sh->check_state = check_state_run;
4348 }
4349 if (!s->q_failed && s->failed < 2) {
4350 /* Q is not failed, and we didn't use it to generate
4351 * anything, so it makes sense to check it
4352 */
4353 if (sh->check_state == check_state_run)
4354 sh->check_state = check_state_run_pq;
4355 else
4356 sh->check_state = check_state_run_q;
4357 }
4358
4359 /* discard potentially stale zero_sum_result */
4360 sh->ops.zero_sum_result = 0;
4361
4362 if (sh->check_state == check_state_run) {
4363 /* async_xor_zero_sum destroys the contents of P */
4364 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4365 s->uptodate--;
4366 }
4367 if (sh->check_state >= check_state_run &&
4368 sh->check_state <= check_state_run_pq) {
4369 /* async_syndrome_zero_sum preserves P and Q, so
4370 * no need to mark them !uptodate here
4371 */
4372 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4373 break;
4374 }
4375
4376 /* we have 2-disk failure */
4377 BUG_ON(s->failed != 2);
4378 fallthrough;
4379 case check_state_compute_result:
4380 sh->check_state = check_state_idle;
4381
4382 /* check that a write has not made the stripe insync */
4383 if (test_bit(STRIPE_INSYNC, &sh->state))
4384 break;
4385
4386 /* now write out any block on a failed drive,
4387 * or P or Q if they were recomputed
4388 */
4389 dev = NULL;
4390 if (s->failed == 2) {
4391 dev = &sh->dev[s->failed_num[1]];
4392 s->locked++;
4393 set_bit(R5_LOCKED, &dev->flags);
4394 set_bit(R5_Wantwrite, &dev->flags);
4395 }
4396 if (s->failed >= 1) {
4397 dev = &sh->dev[s->failed_num[0]];
4398 s->locked++;
4399 set_bit(R5_LOCKED, &dev->flags);
4400 set_bit(R5_Wantwrite, &dev->flags);
4401 }
4402 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4403 dev = &sh->dev[pd_idx];
4404 s->locked++;
4405 set_bit(R5_LOCKED, &dev->flags);
4406 set_bit(R5_Wantwrite, &dev->flags);
4407 }
4408 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4409 dev = &sh->dev[qd_idx];
4410 s->locked++;
4411 set_bit(R5_LOCKED, &dev->flags);
4412 set_bit(R5_Wantwrite, &dev->flags);
4413 }
4414 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4415 "%s: disk%td not up to date\n",
4416 mdname(conf->mddev),
4417 dev - (struct r5dev *) &sh->dev)) {
4418 clear_bit(R5_LOCKED, &dev->flags);
4419 clear_bit(R5_Wantwrite, &dev->flags);
4420 s->locked--;
4421 }
4422 clear_bit(STRIPE_DEGRADED, &sh->state);
4423
4424 set_bit(STRIPE_INSYNC, &sh->state);
4425 break;
4426 case check_state_run:
4427 case check_state_run_q:
4428 case check_state_run_pq:
4429 break; /* we will be called again upon completion */
4430 case check_state_check_result:
4431 sh->check_state = check_state_idle;
4432
4433 /* handle a successful check operation, if parity is correct
4434 * we are done. Otherwise update the mismatch count and repair
4435 * parity if !MD_RECOVERY_CHECK
4436 */
4437 if (sh->ops.zero_sum_result == 0) {
4438 /* both parities are correct */
4439 if (!s->failed)
4440 set_bit(STRIPE_INSYNC, &sh->state);
4441 else {
4442 /* in contrast to the raid5 case we can validate
4443 * parity, but still have a failure to write
4444 * back
4445 */
4446 sh->check_state = check_state_compute_result;
4447 /* Returning at this point means that we may go
4448 * off and bring p and/or q uptodate again so
4449 * we make sure to check zero_sum_result again
4450 * to verify if p or q need writeback
4451 */
4452 }
4453 } else {
4454 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4455 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4456 /* don't try to repair!! */
4457 set_bit(STRIPE_INSYNC, &sh->state);
4458 pr_warn_ratelimited("%s: mismatch sector in range "
4459 "%llu-%llu\n", mdname(conf->mddev),
4460 (unsigned long long) sh->sector,
4461 (unsigned long long) sh->sector +
4462 RAID5_STRIPE_SECTORS(conf));
4463 } else {
4464 int *target = &sh->ops.target;
4465
4466 sh->ops.target = -1;
4467 sh->ops.target2 = -1;
4468 sh->check_state = check_state_compute_run;
4469 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4470 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4471 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4472 set_bit(R5_Wantcompute,
4473 &sh->dev[pd_idx].flags);
4474 *target = pd_idx;
4475 target = &sh->ops.target2;
4476 s->uptodate++;
4477 }
4478 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4479 set_bit(R5_Wantcompute,
4480 &sh->dev[qd_idx].flags);
4481 *target = qd_idx;
4482 s->uptodate++;
4483 }
4484 }
4485 }
4486 break;
4487 case check_state_compute_run:
4488 break;
4489 default:
4490 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4491 __func__, sh->check_state,
4492 (unsigned long long) sh->sector);
4493 BUG();
4494 }
4495}
4496
4497static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4498{
4499 int i;
4500
4501 /* We have read all the blocks in this stripe and now we need to
4502 * copy some of them into a target stripe for expand.
4503 */
4504 struct dma_async_tx_descriptor *tx = NULL;
4505 BUG_ON(sh->batch_head);
4506 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4507 for (i = 0; i < sh->disks; i++)
4508 if (i != sh->pd_idx && i != sh->qd_idx) {
4509 int dd_idx, j;
4510 struct stripe_head *sh2;
4511 struct async_submit_ctl submit;
4512
4513 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4514 sector_t s = raid5_compute_sector(conf, bn, 0,
4515 &dd_idx, NULL);
4516 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4517 if (sh2 == NULL)
4518 /* so far only the early blocks of this stripe
4519 * have been requested. When later blocks
4520 * get requested, we will try again
4521 */
4522 continue;
4523 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4524 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4525 /* must have already done this block */
4526 raid5_release_stripe(sh2);
4527 continue;
4528 }
4529
4530 /* place all the copies on one channel */
4531 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4532 tx = async_memcpy(sh2->dev[dd_idx].page,
4533 sh->dev[i].page, sh2->dev[dd_idx].offset,
4534 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4535 &submit);
4536
4537 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4538 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4539 for (j = 0; j < conf->raid_disks; j++)
4540 if (j != sh2->pd_idx &&
4541 j != sh2->qd_idx &&
4542 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4543 break;
4544 if (j == conf->raid_disks) {
4545 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4546 set_bit(STRIPE_HANDLE, &sh2->state);
4547 }
4548 raid5_release_stripe(sh2);
4549
4550 }
4551 /* done submitting copies, wait for them to complete */
4552 async_tx_quiesce(&tx);
4553}
4554
4555/*
4556 * handle_stripe - do things to a stripe.
4557 *
4558 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4559 * state of various bits to see what needs to be done.
4560 * Possible results:
4561 * return some read requests which now have data
4562 * return some write requests which are safely on storage
4563 * schedule a read on some buffers
4564 * schedule a write of some buffers
4565 * return confirmation of parity correctness
4566 *
4567 */
4568
4569static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4570{
4571 struct r5conf *conf = sh->raid_conf;
4572 int disks = sh->disks;
4573 struct r5dev *dev;
4574 int i;
4575 int do_recovery = 0;
4576
4577 memset(s, 0, sizeof(*s));
4578
4579 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4580 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4581 s->failed_num[0] = -1;
4582 s->failed_num[1] = -1;
4583 s->log_failed = r5l_log_disk_error(conf);
4584
4585 /* Now to look around and see what can be done */
4586 rcu_read_lock();
4587 for (i=disks; i--; ) {
4588 struct md_rdev *rdev;
4589 sector_t first_bad;
4590 int bad_sectors;
4591 int is_bad = 0;
4592
4593 dev = &sh->dev[i];
4594
4595 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4596 i, dev->flags,
4597 dev->toread, dev->towrite, dev->written);
4598 /* maybe we can reply to a read
4599 *
4600 * new wantfill requests are only permitted while
4601 * ops_complete_biofill is guaranteed to be inactive
4602 */
4603 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4604 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4605 set_bit(R5_Wantfill, &dev->flags);
4606
4607 /* now count some things */
4608 if (test_bit(R5_LOCKED, &dev->flags))
4609 s->locked++;
4610 if (test_bit(R5_UPTODATE, &dev->flags))
4611 s->uptodate++;
4612 if (test_bit(R5_Wantcompute, &dev->flags)) {
4613 s->compute++;
4614 BUG_ON(s->compute > 2);
4615 }
4616
4617 if (test_bit(R5_Wantfill, &dev->flags))
4618 s->to_fill++;
4619 else if (dev->toread)
4620 s->to_read++;
4621 if (dev->towrite) {
4622 s->to_write++;
4623 if (!test_bit(R5_OVERWRITE, &dev->flags))
4624 s->non_overwrite++;
4625 }
4626 if (dev->written)
4627 s->written++;
4628 /* Prefer to use the replacement for reads, but only
4629 * if it is recovered enough and has no bad blocks.
4630 */
4631 rdev = rcu_dereference(conf->disks[i].replacement);
4632 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4633 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4634 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4635 &first_bad, &bad_sectors))
4636 set_bit(R5_ReadRepl, &dev->flags);
4637 else {
4638 if (rdev && !test_bit(Faulty, &rdev->flags))
4639 set_bit(R5_NeedReplace, &dev->flags);
4640 else
4641 clear_bit(R5_NeedReplace, &dev->flags);
4642 rdev = rcu_dereference(conf->disks[i].rdev);
4643 clear_bit(R5_ReadRepl, &dev->flags);
4644 }
4645 if (rdev && test_bit(Faulty, &rdev->flags))
4646 rdev = NULL;
4647 if (rdev) {
4648 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4649 &first_bad, &bad_sectors);
4650 if (s->blocked_rdev == NULL
4651 && (test_bit(Blocked, &rdev->flags)
4652 || is_bad < 0)) {
4653 if (is_bad < 0)
4654 set_bit(BlockedBadBlocks,
4655 &rdev->flags);
4656 s->blocked_rdev = rdev;
4657 atomic_inc(&rdev->nr_pending);
4658 }
4659 }
4660 clear_bit(R5_Insync, &dev->flags);
4661 if (!rdev)
4662 /* Not in-sync */;
4663 else if (is_bad) {
4664 /* also not in-sync */
4665 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4666 test_bit(R5_UPTODATE, &dev->flags)) {
4667 /* treat as in-sync, but with a read error
4668 * which we can now try to correct
4669 */
4670 set_bit(R5_Insync, &dev->flags);
4671 set_bit(R5_ReadError, &dev->flags);
4672 }
4673 } else if (test_bit(In_sync, &rdev->flags))
4674 set_bit(R5_Insync, &dev->flags);
4675 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4676 /* in sync if before recovery_offset */
4677 set_bit(R5_Insync, &dev->flags);
4678 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4679 test_bit(R5_Expanded, &dev->flags))
4680 /* If we've reshaped into here, we assume it is Insync.
4681 * We will shortly update recovery_offset to make
4682 * it official.
4683 */
4684 set_bit(R5_Insync, &dev->flags);
4685
4686 if (test_bit(R5_WriteError, &dev->flags)) {
4687 /* This flag does not apply to '.replacement'
4688 * only to .rdev, so make sure to check that*/
4689 struct md_rdev *rdev2 = rcu_dereference(
4690 conf->disks[i].rdev);
4691 if (rdev2 == rdev)
4692 clear_bit(R5_Insync, &dev->flags);
4693 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4694 s->handle_bad_blocks = 1;
4695 atomic_inc(&rdev2->nr_pending);
4696 } else
4697 clear_bit(R5_WriteError, &dev->flags);
4698 }
4699 if (test_bit(R5_MadeGood, &dev->flags)) {
4700 /* This flag does not apply to '.replacement'
4701 * only to .rdev, so make sure to check that*/
4702 struct md_rdev *rdev2 = rcu_dereference(
4703 conf->disks[i].rdev);
4704 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4705 s->handle_bad_blocks = 1;
4706 atomic_inc(&rdev2->nr_pending);
4707 } else
4708 clear_bit(R5_MadeGood, &dev->flags);
4709 }
4710 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4711 struct md_rdev *rdev2 = rcu_dereference(
4712 conf->disks[i].replacement);
4713 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4714 s->handle_bad_blocks = 1;
4715 atomic_inc(&rdev2->nr_pending);
4716 } else
4717 clear_bit(R5_MadeGoodRepl, &dev->flags);
4718 }
4719 if (!test_bit(R5_Insync, &dev->flags)) {
4720 /* The ReadError flag will just be confusing now */
4721 clear_bit(R5_ReadError, &dev->flags);
4722 clear_bit(R5_ReWrite, &dev->flags);
4723 }
4724 if (test_bit(R5_ReadError, &dev->flags))
4725 clear_bit(R5_Insync, &dev->flags);
4726 if (!test_bit(R5_Insync, &dev->flags)) {
4727 if (s->failed < 2)
4728 s->failed_num[s->failed] = i;
4729 s->failed++;
4730 if (rdev && !test_bit(Faulty, &rdev->flags))
4731 do_recovery = 1;
4732 else if (!rdev) {
4733 rdev = rcu_dereference(
4734 conf->disks[i].replacement);
4735 if (rdev && !test_bit(Faulty, &rdev->flags))
4736 do_recovery = 1;
4737 }
4738 }
4739
4740 if (test_bit(R5_InJournal, &dev->flags))
4741 s->injournal++;
4742 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4743 s->just_cached++;
4744 }
4745 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4746 /* If there is a failed device being replaced,
4747 * we must be recovering.
4748 * else if we are after recovery_cp, we must be syncing
4749 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4750 * else we can only be replacing
4751 * sync and recovery both need to read all devices, and so
4752 * use the same flag.
4753 */
4754 if (do_recovery ||
4755 sh->sector >= conf->mddev->recovery_cp ||
4756 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4757 s->syncing = 1;
4758 else
4759 s->replacing = 1;
4760 }
4761 rcu_read_unlock();
4762}
4763
4764/*
4765 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4766 * a head which can now be handled.
4767 */
4768static int clear_batch_ready(struct stripe_head *sh)
4769{
4770 struct stripe_head *tmp;
4771 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4772 return (sh->batch_head && sh->batch_head != sh);
4773 spin_lock(&sh->stripe_lock);
4774 if (!sh->batch_head) {
4775 spin_unlock(&sh->stripe_lock);
4776 return 0;
4777 }
4778
4779 /*
4780 * this stripe could be added to a batch list before we check
4781 * BATCH_READY, skips it
4782 */
4783 if (sh->batch_head != sh) {
4784 spin_unlock(&sh->stripe_lock);
4785 return 1;
4786 }
4787 spin_lock(&sh->batch_lock);
4788 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4789 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4790 spin_unlock(&sh->batch_lock);
4791 spin_unlock(&sh->stripe_lock);
4792
4793 /*
4794 * BATCH_READY is cleared, no new stripes can be added.
4795 * batch_list can be accessed without lock
4796 */
4797 return 0;
4798}
4799
4800static void break_stripe_batch_list(struct stripe_head *head_sh,
4801 unsigned long handle_flags)
4802{
4803 struct stripe_head *sh, *next;
4804 int i;
4805 int do_wakeup = 0;
4806
4807 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4808
4809 list_del_init(&sh->batch_list);
4810
4811 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4812 (1 << STRIPE_SYNCING) |
4813 (1 << STRIPE_REPLACED) |
4814 (1 << STRIPE_DELAYED) |
4815 (1 << STRIPE_BIT_DELAY) |
4816 (1 << STRIPE_FULL_WRITE) |
4817 (1 << STRIPE_BIOFILL_RUN) |
4818 (1 << STRIPE_COMPUTE_RUN) |
4819 (1 << STRIPE_DISCARD) |
4820 (1 << STRIPE_BATCH_READY) |
4821 (1 << STRIPE_BATCH_ERR) |
4822 (1 << STRIPE_BITMAP_PENDING)),
4823 "stripe state: %lx\n", sh->state);
4824 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4825 (1 << STRIPE_REPLACED)),
4826 "head stripe state: %lx\n", head_sh->state);
4827
4828 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4829 (1 << STRIPE_PREREAD_ACTIVE) |
4830 (1 << STRIPE_DEGRADED) |
4831 (1 << STRIPE_ON_UNPLUG_LIST)),
4832 head_sh->state & (1 << STRIPE_INSYNC));
4833
4834 sh->check_state = head_sh->check_state;
4835 sh->reconstruct_state = head_sh->reconstruct_state;
4836 spin_lock_irq(&sh->stripe_lock);
4837 sh->batch_head = NULL;
4838 spin_unlock_irq(&sh->stripe_lock);
4839 for (i = 0; i < sh->disks; i++) {
4840 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4841 do_wakeup = 1;
4842 sh->dev[i].flags = head_sh->dev[i].flags &
4843 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4844 }
4845 if (handle_flags == 0 ||
4846 sh->state & handle_flags)
4847 set_bit(STRIPE_HANDLE, &sh->state);
4848 raid5_release_stripe(sh);
4849 }
4850 spin_lock_irq(&head_sh->stripe_lock);
4851 head_sh->batch_head = NULL;
4852 spin_unlock_irq(&head_sh->stripe_lock);
4853 for (i = 0; i < head_sh->disks; i++)
4854 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4855 do_wakeup = 1;
4856 if (head_sh->state & handle_flags)
4857 set_bit(STRIPE_HANDLE, &head_sh->state);
4858
4859 if (do_wakeup)
4860 wake_up(&head_sh->raid_conf->wait_for_overlap);
4861}
4862
4863static void handle_stripe(struct stripe_head *sh)
4864{
4865 struct stripe_head_state s;
4866 struct r5conf *conf = sh->raid_conf;
4867 int i;
4868 int prexor;
4869 int disks = sh->disks;
4870 struct r5dev *pdev, *qdev;
4871
4872 clear_bit(STRIPE_HANDLE, &sh->state);
4873
4874 /*
4875 * handle_stripe should not continue handle the batched stripe, only
4876 * the head of batch list or lone stripe can continue. Otherwise we
4877 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4878 * is set for the batched stripe.
4879 */
4880 if (clear_batch_ready(sh))
4881 return;
4882
4883 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4884 /* already being handled, ensure it gets handled
4885 * again when current action finishes */
4886 set_bit(STRIPE_HANDLE, &sh->state);
4887 return;
4888 }
4889
4890 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4891 break_stripe_batch_list(sh, 0);
4892
4893 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4894 spin_lock(&sh->stripe_lock);
4895 /*
4896 * Cannot process 'sync' concurrently with 'discard'.
4897 * Flush data in r5cache before 'sync'.
4898 */
4899 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4900 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4901 !test_bit(STRIPE_DISCARD, &sh->state) &&
4902 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4903 set_bit(STRIPE_SYNCING, &sh->state);
4904 clear_bit(STRIPE_INSYNC, &sh->state);
4905 clear_bit(STRIPE_REPLACED, &sh->state);
4906 }
4907 spin_unlock(&sh->stripe_lock);
4908 }
4909 clear_bit(STRIPE_DELAYED, &sh->state);
4910
4911 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4912 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4913 (unsigned long long)sh->sector, sh->state,
4914 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4915 sh->check_state, sh->reconstruct_state);
4916
4917 analyse_stripe(sh, &s);
4918
4919 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4920 goto finish;
4921
4922 if (s.handle_bad_blocks ||
4923 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4924 set_bit(STRIPE_HANDLE, &sh->state);
4925 goto finish;
4926 }
4927
4928 if (unlikely(s.blocked_rdev)) {
4929 if (s.syncing || s.expanding || s.expanded ||
4930 s.replacing || s.to_write || s.written) {
4931 set_bit(STRIPE_HANDLE, &sh->state);
4932 goto finish;
4933 }
4934 /* There is nothing for the blocked_rdev to block */
4935 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4936 s.blocked_rdev = NULL;
4937 }
4938
4939 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4940 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4941 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4942 }
4943
4944 pr_debug("locked=%d uptodate=%d to_read=%d"
4945 " to_write=%d failed=%d failed_num=%d,%d\n",
4946 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4947 s.failed_num[0], s.failed_num[1]);
4948 /*
4949 * check if the array has lost more than max_degraded devices and,
4950 * if so, some requests might need to be failed.
4951 *
4952 * When journal device failed (log_failed), we will only process
4953 * the stripe if there is data need write to raid disks
4954 */
4955 if (s.failed > conf->max_degraded ||
4956 (s.log_failed && s.injournal == 0)) {
4957 sh->check_state = 0;
4958 sh->reconstruct_state = 0;
4959 break_stripe_batch_list(sh, 0);
4960 if (s.to_read+s.to_write+s.written)
4961 handle_failed_stripe(conf, sh, &s, disks);
4962 if (s.syncing + s.replacing)
4963 handle_failed_sync(conf, sh, &s);
4964 }
4965
4966 /* Now we check to see if any write operations have recently
4967 * completed
4968 */
4969 prexor = 0;
4970 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4971 prexor = 1;
4972 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4973 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4974 sh->reconstruct_state = reconstruct_state_idle;
4975
4976 /* All the 'written' buffers and the parity block are ready to
4977 * be written back to disk
4978 */
4979 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4980 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4981 BUG_ON(sh->qd_idx >= 0 &&
4982 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4983 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4984 for (i = disks; i--; ) {
4985 struct r5dev *dev = &sh->dev[i];
4986 if (test_bit(R5_LOCKED, &dev->flags) &&
4987 (i == sh->pd_idx || i == sh->qd_idx ||
4988 dev->written || test_bit(R5_InJournal,
4989 &dev->flags))) {
4990 pr_debug("Writing block %d\n", i);
4991 set_bit(R5_Wantwrite, &dev->flags);
4992 if (prexor)
4993 continue;
4994 if (s.failed > 1)
4995 continue;
4996 if (!test_bit(R5_Insync, &dev->flags) ||
4997 ((i == sh->pd_idx || i == sh->qd_idx) &&
4998 s.failed == 0))
4999 set_bit(STRIPE_INSYNC, &sh->state);
5000 }
5001 }
5002 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5003 s.dec_preread_active = 1;
5004 }
5005
5006 /*
5007 * might be able to return some write requests if the parity blocks
5008 * are safe, or on a failed drive
5009 */
5010 pdev = &sh->dev[sh->pd_idx];
5011 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5012 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5013 qdev = &sh->dev[sh->qd_idx];
5014 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5015 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5016 || conf->level < 6;
5017
5018 if (s.written &&
5019 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5020 && !test_bit(R5_LOCKED, &pdev->flags)
5021 && (test_bit(R5_UPTODATE, &pdev->flags) ||
5022 test_bit(R5_Discard, &pdev->flags))))) &&
5023 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5024 && !test_bit(R5_LOCKED, &qdev->flags)
5025 && (test_bit(R5_UPTODATE, &qdev->flags) ||
5026 test_bit(R5_Discard, &qdev->flags))))))
5027 handle_stripe_clean_event(conf, sh, disks);
5028
5029 if (s.just_cached)
5030 r5c_handle_cached_data_endio(conf, sh, disks);
5031 log_stripe_write_finished(sh);
5032
5033 /* Now we might consider reading some blocks, either to check/generate
5034 * parity, or to satisfy requests
5035 * or to load a block that is being partially written.
5036 */
5037 if (s.to_read || s.non_overwrite
5038 || (s.to_write && s.failed)
5039 || (s.syncing && (s.uptodate + s.compute < disks))
5040 || s.replacing
5041 || s.expanding)
5042 handle_stripe_fill(sh, &s, disks);
5043
5044 /*
5045 * When the stripe finishes full journal write cycle (write to journal
5046 * and raid disk), this is the clean up procedure so it is ready for
5047 * next operation.
5048 */
5049 r5c_finish_stripe_write_out(conf, sh, &s);
5050
5051 /*
5052 * Now to consider new write requests, cache write back and what else,
5053 * if anything should be read. We do not handle new writes when:
5054 * 1/ A 'write' operation (copy+xor) is already in flight.
5055 * 2/ A 'check' operation is in flight, as it may clobber the parity
5056 * block.
5057 * 3/ A r5c cache log write is in flight.
5058 */
5059
5060 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5061 if (!r5c_is_writeback(conf->log)) {
5062 if (s.to_write)
5063 handle_stripe_dirtying(conf, sh, &s, disks);
5064 } else { /* write back cache */
5065 int ret = 0;
5066
5067 /* First, try handle writes in caching phase */
5068 if (s.to_write)
5069 ret = r5c_try_caching_write(conf, sh, &s,
5070 disks);
5071 /*
5072 * If caching phase failed: ret == -EAGAIN
5073 * OR
5074 * stripe under reclaim: !caching && injournal
5075 *
5076 * fall back to handle_stripe_dirtying()
5077 */
5078 if (ret == -EAGAIN ||
5079 /* stripe under reclaim: !caching && injournal */
5080 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5081 s.injournal > 0)) {
5082 ret = handle_stripe_dirtying(conf, sh, &s,
5083 disks);
5084 if (ret == -EAGAIN)
5085 goto finish;
5086 }
5087 }
5088 }
5089
5090 /* maybe we need to check and possibly fix the parity for this stripe
5091 * Any reads will already have been scheduled, so we just see if enough
5092 * data is available. The parity check is held off while parity
5093 * dependent operations are in flight.
5094 */
5095 if (sh->check_state ||
5096 (s.syncing && s.locked == 0 &&
5097 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5098 !test_bit(STRIPE_INSYNC, &sh->state))) {
5099 if (conf->level == 6)
5100 handle_parity_checks6(conf, sh, &s, disks);
5101 else
5102 handle_parity_checks5(conf, sh, &s, disks);
5103 }
5104
5105 if ((s.replacing || s.syncing) && s.locked == 0
5106 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5107 && !test_bit(STRIPE_REPLACED, &sh->state)) {
5108 /* Write out to replacement devices where possible */
5109 for (i = 0; i < conf->raid_disks; i++)
5110 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5111 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5112 set_bit(R5_WantReplace, &sh->dev[i].flags);
5113 set_bit(R5_LOCKED, &sh->dev[i].flags);
5114 s.locked++;
5115 }
5116 if (s.replacing)
5117 set_bit(STRIPE_INSYNC, &sh->state);
5118 set_bit(STRIPE_REPLACED, &sh->state);
5119 }
5120 if ((s.syncing || s.replacing) && s.locked == 0 &&
5121 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5122 test_bit(STRIPE_INSYNC, &sh->state)) {
5123 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5124 clear_bit(STRIPE_SYNCING, &sh->state);
5125 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5126 wake_up(&conf->wait_for_overlap);
5127 }
5128
5129 /* If the failed drives are just a ReadError, then we might need
5130 * to progress the repair/check process
5131 */
5132 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5133 for (i = 0; i < s.failed; i++) {
5134 struct r5dev *dev = &sh->dev[s.failed_num[i]];
5135 if (test_bit(R5_ReadError, &dev->flags)
5136 && !test_bit(R5_LOCKED, &dev->flags)
5137 && test_bit(R5_UPTODATE, &dev->flags)
5138 ) {
5139 if (!test_bit(R5_ReWrite, &dev->flags)) {
5140 set_bit(R5_Wantwrite, &dev->flags);
5141 set_bit(R5_ReWrite, &dev->flags);
5142 } else
5143 /* let's read it back */
5144 set_bit(R5_Wantread, &dev->flags);
5145 set_bit(R5_LOCKED, &dev->flags);
5146 s.locked++;
5147 }
5148 }
5149
5150 /* Finish reconstruct operations initiated by the expansion process */
5151 if (sh->reconstruct_state == reconstruct_state_result) {
5152 struct stripe_head *sh_src
5153 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
5154 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5155 /* sh cannot be written until sh_src has been read.
5156 * so arrange for sh to be delayed a little
5157 */
5158 set_bit(STRIPE_DELAYED, &sh->state);
5159 set_bit(STRIPE_HANDLE, &sh->state);
5160 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5161 &sh_src->state))
5162 atomic_inc(&conf->preread_active_stripes);
5163 raid5_release_stripe(sh_src);
5164 goto finish;
5165 }
5166 if (sh_src)
5167 raid5_release_stripe(sh_src);
5168
5169 sh->reconstruct_state = reconstruct_state_idle;
5170 clear_bit(STRIPE_EXPANDING, &sh->state);
5171 for (i = conf->raid_disks; i--; ) {
5172 set_bit(R5_Wantwrite, &sh->dev[i].flags);
5173 set_bit(R5_LOCKED, &sh->dev[i].flags);
5174 s.locked++;
5175 }
5176 }
5177
5178 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5179 !sh->reconstruct_state) {
5180 /* Need to write out all blocks after computing parity */
5181 sh->disks = conf->raid_disks;
5182 stripe_set_idx(sh->sector, conf, 0, sh);
5183 schedule_reconstruction(sh, &s, 1, 1);
5184 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5185 clear_bit(STRIPE_EXPAND_READY, &sh->state);
5186 atomic_dec(&conf->reshape_stripes);
5187 wake_up(&conf->wait_for_overlap);
5188 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5189 }
5190
5191 if (s.expanding && s.locked == 0 &&
5192 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5193 handle_stripe_expansion(conf, sh);
5194
5195finish:
5196 /* wait for this device to become unblocked */
5197 if (unlikely(s.blocked_rdev)) {
5198 if (conf->mddev->external)
5199 md_wait_for_blocked_rdev(s.blocked_rdev,
5200 conf->mddev);
5201 else
5202 /* Internal metadata will immediately
5203 * be written by raid5d, so we don't
5204 * need to wait here.
5205 */
5206 rdev_dec_pending(s.blocked_rdev,
5207 conf->mddev);
5208 }
5209
5210 if (s.handle_bad_blocks)
5211 for (i = disks; i--; ) {
5212 struct md_rdev *rdev;
5213 struct r5dev *dev = &sh->dev[i];
5214 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5215 /* We own a safe reference to the rdev */
5216 rdev = conf->disks[i].rdev;
5217 if (!rdev_set_badblocks(rdev, sh->sector,
5218 RAID5_STRIPE_SECTORS(conf), 0))
5219 md_error(conf->mddev, rdev);
5220 rdev_dec_pending(rdev, conf->mddev);
5221 }
5222 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5223 rdev = conf->disks[i].rdev;
5224 rdev_clear_badblocks(rdev, sh->sector,
5225 RAID5_STRIPE_SECTORS(conf), 0);
5226 rdev_dec_pending(rdev, conf->mddev);
5227 }
5228 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5229 rdev = conf->disks[i].replacement;
5230 if (!rdev)
5231 /* rdev have been moved down */
5232 rdev = conf->disks[i].rdev;
5233 rdev_clear_badblocks(rdev, sh->sector,
5234 RAID5_STRIPE_SECTORS(conf), 0);
5235 rdev_dec_pending(rdev, conf->mddev);
5236 }
5237 }
5238
5239 if (s.ops_request)
5240 raid_run_ops(sh, s.ops_request);
5241
5242 ops_run_io(sh, &s);
5243
5244 if (s.dec_preread_active) {
5245 /* We delay this until after ops_run_io so that if make_request
5246 * is waiting on a flush, it won't continue until the writes
5247 * have actually been submitted.
5248 */
5249 atomic_dec(&conf->preread_active_stripes);
5250 if (atomic_read(&conf->preread_active_stripes) <
5251 IO_THRESHOLD)
5252 md_wakeup_thread(conf->mddev->thread);
5253 }
5254
5255 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5256}
5257
5258static void raid5_activate_delayed(struct r5conf *conf)
5259{
5260 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5261 while (!list_empty(&conf->delayed_list)) {
5262 struct list_head *l = conf->delayed_list.next;
5263 struct stripe_head *sh;
5264 sh = list_entry(l, struct stripe_head, lru);
5265 list_del_init(l);
5266 clear_bit(STRIPE_DELAYED, &sh->state);
5267 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5268 atomic_inc(&conf->preread_active_stripes);
5269 list_add_tail(&sh->lru, &conf->hold_list);
5270 raid5_wakeup_stripe_thread(sh);
5271 }
5272 }
5273}
5274
5275static void activate_bit_delay(struct r5conf *conf,
5276 struct list_head *temp_inactive_list)
5277{
5278 /* device_lock is held */
5279 struct list_head head;
5280 list_add(&head, &conf->bitmap_list);
5281 list_del_init(&conf->bitmap_list);
5282 while (!list_empty(&head)) {
5283 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5284 int hash;
5285 list_del_init(&sh->lru);
5286 atomic_inc(&sh->count);
5287 hash = sh->hash_lock_index;
5288 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5289 }
5290}
5291
5292static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5293{
5294 struct r5conf *conf = mddev->private;
5295 sector_t sector = bio->bi_iter.bi_sector;
5296 unsigned int chunk_sectors;
5297 unsigned int bio_sectors = bio_sectors(bio);
5298
5299 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5300 return chunk_sectors >=
5301 ((sector & (chunk_sectors - 1)) + bio_sectors);
5302}
5303
5304/*
5305 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5306 * later sampled by raid5d.
5307 */
5308static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5309{
5310 unsigned long flags;
5311
5312 spin_lock_irqsave(&conf->device_lock, flags);
5313
5314 bi->bi_next = conf->retry_read_aligned_list;
5315 conf->retry_read_aligned_list = bi;
5316
5317 spin_unlock_irqrestore(&conf->device_lock, flags);
5318 md_wakeup_thread(conf->mddev->thread);
5319}
5320
5321static struct bio *remove_bio_from_retry(struct r5conf *conf,
5322 unsigned int *offset)
5323{
5324 struct bio *bi;
5325
5326 bi = conf->retry_read_aligned;
5327 if (bi) {
5328 *offset = conf->retry_read_offset;
5329 conf->retry_read_aligned = NULL;
5330 return bi;
5331 }
5332 bi = conf->retry_read_aligned_list;
5333 if(bi) {
5334 conf->retry_read_aligned_list = bi->bi_next;
5335 bi->bi_next = NULL;
5336 *offset = 0;
5337 }
5338
5339 return bi;
5340}
5341
5342/*
5343 * The "raid5_align_endio" should check if the read succeeded and if it
5344 * did, call bio_endio on the original bio (having bio_put the new bio
5345 * first).
5346 * If the read failed..
5347 */
5348static void raid5_align_endio(struct bio *bi)
5349{
5350 struct md_io_acct *md_io_acct = bi->bi_private;
5351 struct bio *raid_bi = md_io_acct->orig_bio;
5352 struct mddev *mddev;
5353 struct r5conf *conf;
5354 struct md_rdev *rdev;
5355 blk_status_t error = bi->bi_status;
5356 unsigned long start_time = md_io_acct->start_time;
5357
5358 bio_put(bi);
5359
5360 rdev = (void*)raid_bi->bi_next;
5361 raid_bi->bi_next = NULL;
5362 mddev = rdev->mddev;
5363 conf = mddev->private;
5364
5365 rdev_dec_pending(rdev, conf->mddev);
5366
5367 if (!error) {
5368 if (blk_queue_io_stat(raid_bi->bi_bdev->bd_disk->queue))
5369 bio_end_io_acct(raid_bi, start_time);
5370 bio_endio(raid_bi);
5371 if (atomic_dec_and_test(&conf->active_aligned_reads))
5372 wake_up(&conf->wait_for_quiescent);
5373 return;
5374 }
5375
5376 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5377
5378 add_bio_to_retry(raid_bi, conf);
5379}
5380
5381static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5382{
5383 struct r5conf *conf = mddev->private;
5384 struct bio *align_bio;
5385 struct md_rdev *rdev;
5386 sector_t sector, end_sector, first_bad;
5387 int bad_sectors, dd_idx;
5388 struct md_io_acct *md_io_acct;
5389 bool did_inc;
5390
5391 if (!in_chunk_boundary(mddev, raid_bio)) {
5392 pr_debug("%s: non aligned\n", __func__);
5393 return 0;
5394 }
5395
5396 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5397 &dd_idx, NULL);
5398 end_sector = bio_end_sector(raid_bio);
5399
5400 rcu_read_lock();
5401 if (r5c_big_stripe_cached(conf, sector))
5402 goto out_rcu_unlock;
5403
5404 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5405 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5406 rdev->recovery_offset < end_sector) {
5407 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5408 if (!rdev)
5409 goto out_rcu_unlock;
5410 if (test_bit(Faulty, &rdev->flags) ||
5411 !(test_bit(In_sync, &rdev->flags) ||
5412 rdev->recovery_offset >= end_sector))
5413 goto out_rcu_unlock;
5414 }
5415
5416 atomic_inc(&rdev->nr_pending);
5417 rcu_read_unlock();
5418
5419 if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad,
5420 &bad_sectors)) {
5421 bio_put(raid_bio);
5422 rdev_dec_pending(rdev, mddev);
5423 return 0;
5424 }
5425
5426 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5427 &mddev->io_acct_set);
5428 md_io_acct = container_of(align_bio, struct md_io_acct, bio_clone);
5429 raid_bio->bi_next = (void *)rdev;
5430 if (blk_queue_io_stat(raid_bio->bi_bdev->bd_disk->queue))
5431 md_io_acct->start_time = bio_start_io_acct(raid_bio);
5432 md_io_acct->orig_bio = raid_bio;
5433
5434 align_bio->bi_end_io = raid5_align_endio;
5435 align_bio->bi_private = md_io_acct;
5436 align_bio->bi_iter.bi_sector = sector;
5437
5438 /* No reshape active, so we can trust rdev->data_offset */
5439 align_bio->bi_iter.bi_sector += rdev->data_offset;
5440
5441 did_inc = false;
5442 if (conf->quiesce == 0) {
5443 atomic_inc(&conf->active_aligned_reads);
5444 did_inc = true;
5445 }
5446 /* need a memory barrier to detect the race with raid5_quiesce() */
5447 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5448 /* quiesce is in progress, so we need to undo io activation and wait
5449 * for it to finish
5450 */
5451 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5452 wake_up(&conf->wait_for_quiescent);
5453 spin_lock_irq(&conf->device_lock);
5454 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5455 conf->device_lock);
5456 atomic_inc(&conf->active_aligned_reads);
5457 spin_unlock_irq(&conf->device_lock);
5458 }
5459
5460 if (mddev->gendisk)
5461 trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk),
5462 raid_bio->bi_iter.bi_sector);
5463 submit_bio_noacct(align_bio);
5464 return 1;
5465
5466out_rcu_unlock:
5467 rcu_read_unlock();
5468 return 0;
5469}
5470
5471static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5472{
5473 struct bio *split;
5474 sector_t sector = raid_bio->bi_iter.bi_sector;
5475 unsigned chunk_sects = mddev->chunk_sectors;
5476 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5477
5478 if (sectors < bio_sectors(raid_bio)) {
5479 struct r5conf *conf = mddev->private;
5480 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5481 bio_chain(split, raid_bio);
5482 submit_bio_noacct(raid_bio);
5483 raid_bio = split;
5484 }
5485
5486 if (!raid5_read_one_chunk(mddev, raid_bio))
5487 return raid_bio;
5488
5489 return NULL;
5490}
5491
5492/* __get_priority_stripe - get the next stripe to process
5493 *
5494 * Full stripe writes are allowed to pass preread active stripes up until
5495 * the bypass_threshold is exceeded. In general the bypass_count
5496 * increments when the handle_list is handled before the hold_list; however, it
5497 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5498 * stripe with in flight i/o. The bypass_count will be reset when the
5499 * head of the hold_list has changed, i.e. the head was promoted to the
5500 * handle_list.
5501 */
5502static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5503{
5504 struct stripe_head *sh, *tmp;
5505 struct list_head *handle_list = NULL;
5506 struct r5worker_group *wg;
5507 bool second_try = !r5c_is_writeback(conf->log) &&
5508 !r5l_log_disk_error(conf);
5509 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5510 r5l_log_disk_error(conf);
5511
5512again:
5513 wg = NULL;
5514 sh = NULL;
5515 if (conf->worker_cnt_per_group == 0) {
5516 handle_list = try_loprio ? &conf->loprio_list :
5517 &conf->handle_list;
5518 } else if (group != ANY_GROUP) {
5519 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5520 &conf->worker_groups[group].handle_list;
5521 wg = &conf->worker_groups[group];
5522 } else {
5523 int i;
5524 for (i = 0; i < conf->group_cnt; i++) {
5525 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5526 &conf->worker_groups[i].handle_list;
5527 wg = &conf->worker_groups[i];
5528 if (!list_empty(handle_list))
5529 break;
5530 }
5531 }
5532
5533 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5534 __func__,
5535 list_empty(handle_list) ? "empty" : "busy",
5536 list_empty(&conf->hold_list) ? "empty" : "busy",
5537 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5538
5539 if (!list_empty(handle_list)) {
5540 sh = list_entry(handle_list->next, typeof(*sh), lru);
5541
5542 if (list_empty(&conf->hold_list))
5543 conf->bypass_count = 0;
5544 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5545 if (conf->hold_list.next == conf->last_hold)
5546 conf->bypass_count++;
5547 else {
5548 conf->last_hold = conf->hold_list.next;
5549 conf->bypass_count -= conf->bypass_threshold;
5550 if (conf->bypass_count < 0)
5551 conf->bypass_count = 0;
5552 }
5553 }
5554 } else if (!list_empty(&conf->hold_list) &&
5555 ((conf->bypass_threshold &&
5556 conf->bypass_count > conf->bypass_threshold) ||
5557 atomic_read(&conf->pending_full_writes) == 0)) {
5558
5559 list_for_each_entry(tmp, &conf->hold_list, lru) {
5560 if (conf->worker_cnt_per_group == 0 ||
5561 group == ANY_GROUP ||
5562 !cpu_online(tmp->cpu) ||
5563 cpu_to_group(tmp->cpu) == group) {
5564 sh = tmp;
5565 break;
5566 }
5567 }
5568
5569 if (sh) {
5570 conf->bypass_count -= conf->bypass_threshold;
5571 if (conf->bypass_count < 0)
5572 conf->bypass_count = 0;
5573 }
5574 wg = NULL;
5575 }
5576
5577 if (!sh) {
5578 if (second_try)
5579 return NULL;
5580 second_try = true;
5581 try_loprio = !try_loprio;
5582 goto again;
5583 }
5584
5585 if (wg) {
5586 wg->stripes_cnt--;
5587 sh->group = NULL;
5588 }
5589 list_del_init(&sh->lru);
5590 BUG_ON(atomic_inc_return(&sh->count) != 1);
5591 return sh;
5592}
5593
5594struct raid5_plug_cb {
5595 struct blk_plug_cb cb;
5596 struct list_head list;
5597 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5598};
5599
5600static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5601{
5602 struct raid5_plug_cb *cb = container_of(
5603 blk_cb, struct raid5_plug_cb, cb);
5604 struct stripe_head *sh;
5605 struct mddev *mddev = cb->cb.data;
5606 struct r5conf *conf = mddev->private;
5607 int cnt = 0;
5608 int hash;
5609
5610 if (cb->list.next && !list_empty(&cb->list)) {
5611 spin_lock_irq(&conf->device_lock);
5612 while (!list_empty(&cb->list)) {
5613 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5614 list_del_init(&sh->lru);
5615 /*
5616 * avoid race release_stripe_plug() sees
5617 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5618 * is still in our list
5619 */
5620 smp_mb__before_atomic();
5621 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5622 /*
5623 * STRIPE_ON_RELEASE_LIST could be set here. In that
5624 * case, the count is always > 1 here
5625 */
5626 hash = sh->hash_lock_index;
5627 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5628 cnt++;
5629 }
5630 spin_unlock_irq(&conf->device_lock);
5631 }
5632 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5633 NR_STRIPE_HASH_LOCKS);
5634 if (mddev->queue)
5635 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5636 kfree(cb);
5637}
5638
5639static void release_stripe_plug(struct mddev *mddev,
5640 struct stripe_head *sh)
5641{
5642 struct blk_plug_cb *blk_cb = blk_check_plugged(
5643 raid5_unplug, mddev,
5644 sizeof(struct raid5_plug_cb));
5645 struct raid5_plug_cb *cb;
5646
5647 if (!blk_cb) {
5648 raid5_release_stripe(sh);
5649 return;
5650 }
5651
5652 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5653
5654 if (cb->list.next == NULL) {
5655 int i;
5656 INIT_LIST_HEAD(&cb->list);
5657 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5658 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5659 }
5660
5661 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5662 list_add_tail(&sh->lru, &cb->list);
5663 else
5664 raid5_release_stripe(sh);
5665}
5666
5667static void make_discard_request(struct mddev *mddev, struct bio *bi)
5668{
5669 struct r5conf *conf = mddev->private;
5670 sector_t logical_sector, last_sector;
5671 struct stripe_head *sh;
5672 int stripe_sectors;
5673
5674 /* We need to handle this when io_uring supports discard/trim */
5675 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5676 return;
5677
5678 if (mddev->reshape_position != MaxSector)
5679 /* Skip discard while reshape is happening */
5680 return;
5681
5682 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5683 last_sector = bio_end_sector(bi);
5684
5685 bi->bi_next = NULL;
5686
5687 stripe_sectors = conf->chunk_sectors *
5688 (conf->raid_disks - conf->max_degraded);
5689 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5690 stripe_sectors);
5691 sector_div(last_sector, stripe_sectors);
5692
5693 logical_sector *= conf->chunk_sectors;
5694 last_sector *= conf->chunk_sectors;
5695
5696 for (; logical_sector < last_sector;
5697 logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5698 DEFINE_WAIT(w);
5699 int d;
5700 again:
5701 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5702 prepare_to_wait(&conf->wait_for_overlap, &w,
5703 TASK_UNINTERRUPTIBLE);
5704 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5705 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5706 raid5_release_stripe(sh);
5707 schedule();
5708 goto again;
5709 }
5710 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5711 spin_lock_irq(&sh->stripe_lock);
5712 for (d = 0; d < conf->raid_disks; d++) {
5713 if (d == sh->pd_idx || d == sh->qd_idx)
5714 continue;
5715 if (sh->dev[d].towrite || sh->dev[d].toread) {
5716 set_bit(R5_Overlap, &sh->dev[d].flags);
5717 spin_unlock_irq(&sh->stripe_lock);
5718 raid5_release_stripe(sh);
5719 schedule();
5720 goto again;
5721 }
5722 }
5723 set_bit(STRIPE_DISCARD, &sh->state);
5724 finish_wait(&conf->wait_for_overlap, &w);
5725 sh->overwrite_disks = 0;
5726 for (d = 0; d < conf->raid_disks; d++) {
5727 if (d == sh->pd_idx || d == sh->qd_idx)
5728 continue;
5729 sh->dev[d].towrite = bi;
5730 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5731 bio_inc_remaining(bi);
5732 md_write_inc(mddev, bi);
5733 sh->overwrite_disks++;
5734 }
5735 spin_unlock_irq(&sh->stripe_lock);
5736 if (conf->mddev->bitmap) {
5737 for (d = 0;
5738 d < conf->raid_disks - conf->max_degraded;
5739 d++)
5740 md_bitmap_startwrite(mddev->bitmap,
5741 sh->sector,
5742 RAID5_STRIPE_SECTORS(conf),
5743 0);
5744 sh->bm_seq = conf->seq_flush + 1;
5745 set_bit(STRIPE_BIT_DELAY, &sh->state);
5746 }
5747
5748 set_bit(STRIPE_HANDLE, &sh->state);
5749 clear_bit(STRIPE_DELAYED, &sh->state);
5750 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5751 atomic_inc(&conf->preread_active_stripes);
5752 release_stripe_plug(mddev, sh);
5753 }
5754
5755 bio_endio(bi);
5756}
5757
5758static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5759{
5760 struct r5conf *conf = mddev->private;
5761 int dd_idx;
5762 sector_t new_sector;
5763 sector_t logical_sector, last_sector;
5764 struct stripe_head *sh;
5765 const int rw = bio_data_dir(bi);
5766 DEFINE_WAIT(w);
5767 bool do_prepare;
5768 bool do_flush = false;
5769
5770 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5771 int ret = log_handle_flush_request(conf, bi);
5772
5773 if (ret == 0)
5774 return true;
5775 if (ret == -ENODEV) {
5776 if (md_flush_request(mddev, bi))
5777 return true;
5778 }
5779 /* ret == -EAGAIN, fallback */
5780 /*
5781 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5782 * we need to flush journal device
5783 */
5784 do_flush = bi->bi_opf & REQ_PREFLUSH;
5785 }
5786
5787 if (!md_write_start(mddev, bi))
5788 return false;
5789 /*
5790 * If array is degraded, better not do chunk aligned read because
5791 * later we might have to read it again in order to reconstruct
5792 * data on failed drives.
5793 */
5794 if (rw == READ && mddev->degraded == 0 &&
5795 mddev->reshape_position == MaxSector) {
5796 bi = chunk_aligned_read(mddev, bi);
5797 if (!bi)
5798 return true;
5799 }
5800
5801 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5802 make_discard_request(mddev, bi);
5803 md_write_end(mddev);
5804 return true;
5805 }
5806
5807 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5808 last_sector = bio_end_sector(bi);
5809 bi->bi_next = NULL;
5810
5811 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */
5812 if ((bi->bi_opf & REQ_NOWAIT) &&
5813 (conf->reshape_progress != MaxSector) &&
5814 (mddev->reshape_backwards
5815 ? (logical_sector > conf->reshape_progress && logical_sector <= conf->reshape_safe)
5816 : (logical_sector >= conf->reshape_safe && logical_sector < conf->reshape_progress))) {
5817 bio_wouldblock_error(bi);
5818 if (rw == WRITE)
5819 md_write_end(mddev);
5820 return true;
5821 }
5822 md_account_bio(mddev, &bi);
5823 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5824 for (; logical_sector < last_sector; logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5825 int previous;
5826 int seq;
5827
5828 do_prepare = false;
5829 retry:
5830 seq = read_seqcount_begin(&conf->gen_lock);
5831 previous = 0;
5832 if (do_prepare)
5833 prepare_to_wait(&conf->wait_for_overlap, &w,
5834 TASK_UNINTERRUPTIBLE);
5835 if (unlikely(conf->reshape_progress != MaxSector)) {
5836 /* spinlock is needed as reshape_progress may be
5837 * 64bit on a 32bit platform, and so it might be
5838 * possible to see a half-updated value
5839 * Of course reshape_progress could change after
5840 * the lock is dropped, so once we get a reference
5841 * to the stripe that we think it is, we will have
5842 * to check again.
5843 */
5844 spin_lock_irq(&conf->device_lock);
5845 if (mddev->reshape_backwards
5846 ? logical_sector < conf->reshape_progress
5847 : logical_sector >= conf->reshape_progress) {
5848 previous = 1;
5849 } else {
5850 if (mddev->reshape_backwards
5851 ? logical_sector < conf->reshape_safe
5852 : logical_sector >= conf->reshape_safe) {
5853 spin_unlock_irq(&conf->device_lock);
5854 schedule();
5855 do_prepare = true;
5856 goto retry;
5857 }
5858 }
5859 spin_unlock_irq(&conf->device_lock);
5860 }
5861
5862 new_sector = raid5_compute_sector(conf, logical_sector,
5863 previous,
5864 &dd_idx, NULL);
5865 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5866 (unsigned long long)new_sector,
5867 (unsigned long long)logical_sector);
5868
5869 sh = raid5_get_active_stripe(conf, new_sector, previous,
5870 (bi->bi_opf & REQ_RAHEAD), 0);
5871 if (sh) {
5872 if (unlikely(previous)) {
5873 /* expansion might have moved on while waiting for a
5874 * stripe, so we must do the range check again.
5875 * Expansion could still move past after this
5876 * test, but as we are holding a reference to
5877 * 'sh', we know that if that happens,
5878 * STRIPE_EXPANDING will get set and the expansion
5879 * won't proceed until we finish with the stripe.
5880 */
5881 int must_retry = 0;
5882 spin_lock_irq(&conf->device_lock);
5883 if (mddev->reshape_backwards
5884 ? logical_sector >= conf->reshape_progress
5885 : logical_sector < conf->reshape_progress)
5886 /* mismatch, need to try again */
5887 must_retry = 1;
5888 spin_unlock_irq(&conf->device_lock);
5889 if (must_retry) {
5890 raid5_release_stripe(sh);
5891 schedule();
5892 do_prepare = true;
5893 goto retry;
5894 }
5895 }
5896 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5897 /* Might have got the wrong stripe_head
5898 * by accident
5899 */
5900 raid5_release_stripe(sh);
5901 goto retry;
5902 }
5903
5904 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5905 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5906 /* Stripe is busy expanding or
5907 * add failed due to overlap. Flush everything
5908 * and wait a while
5909 */
5910 md_wakeup_thread(mddev->thread);
5911 raid5_release_stripe(sh);
5912 schedule();
5913 do_prepare = true;
5914 goto retry;
5915 }
5916 if (do_flush) {
5917 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5918 /* we only need flush for one stripe */
5919 do_flush = false;
5920 }
5921
5922 set_bit(STRIPE_HANDLE, &sh->state);
5923 clear_bit(STRIPE_DELAYED, &sh->state);
5924 if ((!sh->batch_head || sh == sh->batch_head) &&
5925 (bi->bi_opf & REQ_SYNC) &&
5926 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5927 atomic_inc(&conf->preread_active_stripes);
5928 release_stripe_plug(mddev, sh);
5929 } else {
5930 /* cannot get stripe for read-ahead, just give-up */
5931 bi->bi_status = BLK_STS_IOERR;
5932 break;
5933 }
5934 }
5935 finish_wait(&conf->wait_for_overlap, &w);
5936
5937 if (rw == WRITE)
5938 md_write_end(mddev);
5939 bio_endio(bi);
5940 return true;
5941}
5942
5943static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5944
5945static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5946{
5947 /* reshaping is quite different to recovery/resync so it is
5948 * handled quite separately ... here.
5949 *
5950 * On each call to sync_request, we gather one chunk worth of
5951 * destination stripes and flag them as expanding.
5952 * Then we find all the source stripes and request reads.
5953 * As the reads complete, handle_stripe will copy the data
5954 * into the destination stripe and release that stripe.
5955 */
5956 struct r5conf *conf = mddev->private;
5957 struct stripe_head *sh;
5958 struct md_rdev *rdev;
5959 sector_t first_sector, last_sector;
5960 int raid_disks = conf->previous_raid_disks;
5961 int data_disks = raid_disks - conf->max_degraded;
5962 int new_data_disks = conf->raid_disks - conf->max_degraded;
5963 int i;
5964 int dd_idx;
5965 sector_t writepos, readpos, safepos;
5966 sector_t stripe_addr;
5967 int reshape_sectors;
5968 struct list_head stripes;
5969 sector_t retn;
5970
5971 if (sector_nr == 0) {
5972 /* If restarting in the middle, skip the initial sectors */
5973 if (mddev->reshape_backwards &&
5974 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5975 sector_nr = raid5_size(mddev, 0, 0)
5976 - conf->reshape_progress;
5977 } else if (mddev->reshape_backwards &&
5978 conf->reshape_progress == MaxSector) {
5979 /* shouldn't happen, but just in case, finish up.*/
5980 sector_nr = MaxSector;
5981 } else if (!mddev->reshape_backwards &&
5982 conf->reshape_progress > 0)
5983 sector_nr = conf->reshape_progress;
5984 sector_div(sector_nr, new_data_disks);
5985 if (sector_nr) {
5986 mddev->curr_resync_completed = sector_nr;
5987 sysfs_notify_dirent_safe(mddev->sysfs_completed);
5988 *skipped = 1;
5989 retn = sector_nr;
5990 goto finish;
5991 }
5992 }
5993
5994 /* We need to process a full chunk at a time.
5995 * If old and new chunk sizes differ, we need to process the
5996 * largest of these
5997 */
5998
5999 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6000
6001 /* We update the metadata at least every 10 seconds, or when
6002 * the data about to be copied would over-write the source of
6003 * the data at the front of the range. i.e. one new_stripe
6004 * along from reshape_progress new_maps to after where
6005 * reshape_safe old_maps to
6006 */
6007 writepos = conf->reshape_progress;
6008 sector_div(writepos, new_data_disks);
6009 readpos = conf->reshape_progress;
6010 sector_div(readpos, data_disks);
6011 safepos = conf->reshape_safe;
6012 sector_div(safepos, data_disks);
6013 if (mddev->reshape_backwards) {
6014 BUG_ON(writepos < reshape_sectors);
6015 writepos -= reshape_sectors;
6016 readpos += reshape_sectors;
6017 safepos += reshape_sectors;
6018 } else {
6019 writepos += reshape_sectors;
6020 /* readpos and safepos are worst-case calculations.
6021 * A negative number is overly pessimistic, and causes
6022 * obvious problems for unsigned storage. So clip to 0.
6023 */
6024 readpos -= min_t(sector_t, reshape_sectors, readpos);
6025 safepos -= min_t(sector_t, reshape_sectors, safepos);
6026 }
6027
6028 /* Having calculated the 'writepos' possibly use it
6029 * to set 'stripe_addr' which is where we will write to.
6030 */
6031 if (mddev->reshape_backwards) {
6032 BUG_ON(conf->reshape_progress == 0);
6033 stripe_addr = writepos;
6034 BUG_ON((mddev->dev_sectors &
6035 ~((sector_t)reshape_sectors - 1))
6036 - reshape_sectors - stripe_addr
6037 != sector_nr);
6038 } else {
6039 BUG_ON(writepos != sector_nr + reshape_sectors);
6040 stripe_addr = sector_nr;
6041 }
6042
6043 /* 'writepos' is the most advanced device address we might write.
6044 * 'readpos' is the least advanced device address we might read.
6045 * 'safepos' is the least address recorded in the metadata as having
6046 * been reshaped.
6047 * If there is a min_offset_diff, these are adjusted either by
6048 * increasing the safepos/readpos if diff is negative, or
6049 * increasing writepos if diff is positive.
6050 * If 'readpos' is then behind 'writepos', there is no way that we can
6051 * ensure safety in the face of a crash - that must be done by userspace
6052 * making a backup of the data. So in that case there is no particular
6053 * rush to update metadata.
6054 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6055 * update the metadata to advance 'safepos' to match 'readpos' so that
6056 * we can be safe in the event of a crash.
6057 * So we insist on updating metadata if safepos is behind writepos and
6058 * readpos is beyond writepos.
6059 * In any case, update the metadata every 10 seconds.
6060 * Maybe that number should be configurable, but I'm not sure it is
6061 * worth it.... maybe it could be a multiple of safemode_delay???
6062 */
6063 if (conf->min_offset_diff < 0) {
6064 safepos += -conf->min_offset_diff;
6065 readpos += -conf->min_offset_diff;
6066 } else
6067 writepos += conf->min_offset_diff;
6068
6069 if ((mddev->reshape_backwards
6070 ? (safepos > writepos && readpos < writepos)
6071 : (safepos < writepos && readpos > writepos)) ||
6072 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6073 /* Cannot proceed until we've updated the superblock... */
6074 wait_event(conf->wait_for_overlap,
6075 atomic_read(&conf->reshape_stripes)==0
6076 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6077 if (atomic_read(&conf->reshape_stripes) != 0)
6078 return 0;
6079 mddev->reshape_position = conf->reshape_progress;
6080 mddev->curr_resync_completed = sector_nr;
6081 if (!mddev->reshape_backwards)
6082 /* Can update recovery_offset */
6083 rdev_for_each(rdev, mddev)
6084 if (rdev->raid_disk >= 0 &&
6085 !test_bit(Journal, &rdev->flags) &&
6086 !test_bit(In_sync, &rdev->flags) &&
6087 rdev->recovery_offset < sector_nr)
6088 rdev->recovery_offset = sector_nr;
6089
6090 conf->reshape_checkpoint = jiffies;
6091 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6092 md_wakeup_thread(mddev->thread);
6093 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6094 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6095 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6096 return 0;
6097 spin_lock_irq(&conf->device_lock);
6098 conf->reshape_safe = mddev->reshape_position;
6099 spin_unlock_irq(&conf->device_lock);
6100 wake_up(&conf->wait_for_overlap);
6101 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6102 }
6103
6104 INIT_LIST_HEAD(&stripes);
6105 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6106 int j;
6107 int skipped_disk = 0;
6108 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
6109 set_bit(STRIPE_EXPANDING, &sh->state);
6110 atomic_inc(&conf->reshape_stripes);
6111 /* If any of this stripe is beyond the end of the old
6112 * array, then we need to zero those blocks
6113 */
6114 for (j=sh->disks; j--;) {
6115 sector_t s;
6116 if (j == sh->pd_idx)
6117 continue;
6118 if (conf->level == 6 &&
6119 j == sh->qd_idx)
6120 continue;
6121 s = raid5_compute_blocknr(sh, j, 0);
6122 if (s < raid5_size(mddev, 0, 0)) {
6123 skipped_disk = 1;
6124 continue;
6125 }
6126 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6127 set_bit(R5_Expanded, &sh->dev[j].flags);
6128 set_bit(R5_UPTODATE, &sh->dev[j].flags);
6129 }
6130 if (!skipped_disk) {
6131 set_bit(STRIPE_EXPAND_READY, &sh->state);
6132 set_bit(STRIPE_HANDLE, &sh->state);
6133 }
6134 list_add(&sh->lru, &stripes);
6135 }
6136 spin_lock_irq(&conf->device_lock);
6137 if (mddev->reshape_backwards)
6138 conf->reshape_progress -= reshape_sectors * new_data_disks;
6139 else
6140 conf->reshape_progress += reshape_sectors * new_data_disks;
6141 spin_unlock_irq(&conf->device_lock);
6142 /* Ok, those stripe are ready. We can start scheduling
6143 * reads on the source stripes.
6144 * The source stripes are determined by mapping the first and last
6145 * block on the destination stripes.
6146 */
6147 first_sector =
6148 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6149 1, &dd_idx, NULL);
6150 last_sector =
6151 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6152 * new_data_disks - 1),
6153 1, &dd_idx, NULL);
6154 if (last_sector >= mddev->dev_sectors)
6155 last_sector = mddev->dev_sectors - 1;
6156 while (first_sector <= last_sector) {
6157 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
6158 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6159 set_bit(STRIPE_HANDLE, &sh->state);
6160 raid5_release_stripe(sh);
6161 first_sector += RAID5_STRIPE_SECTORS(conf);
6162 }
6163 /* Now that the sources are clearly marked, we can release
6164 * the destination stripes
6165 */
6166 while (!list_empty(&stripes)) {
6167 sh = list_entry(stripes.next, struct stripe_head, lru);
6168 list_del_init(&sh->lru);
6169 raid5_release_stripe(sh);
6170 }
6171 /* If this takes us to the resync_max point where we have to pause,
6172 * then we need to write out the superblock.
6173 */
6174 sector_nr += reshape_sectors;
6175 retn = reshape_sectors;
6176finish:
6177 if (mddev->curr_resync_completed > mddev->resync_max ||
6178 (sector_nr - mddev->curr_resync_completed) * 2
6179 >= mddev->resync_max - mddev->curr_resync_completed) {
6180 /* Cannot proceed until we've updated the superblock... */
6181 wait_event(conf->wait_for_overlap,
6182 atomic_read(&conf->reshape_stripes) == 0
6183 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6184 if (atomic_read(&conf->reshape_stripes) != 0)
6185 goto ret;
6186 mddev->reshape_position = conf->reshape_progress;
6187 mddev->curr_resync_completed = sector_nr;
6188 if (!mddev->reshape_backwards)
6189 /* Can update recovery_offset */
6190 rdev_for_each(rdev, mddev)
6191 if (rdev->raid_disk >= 0 &&
6192 !test_bit(Journal, &rdev->flags) &&
6193 !test_bit(In_sync, &rdev->flags) &&
6194 rdev->recovery_offset < sector_nr)
6195 rdev->recovery_offset = sector_nr;
6196 conf->reshape_checkpoint = jiffies;
6197 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6198 md_wakeup_thread(mddev->thread);
6199 wait_event(mddev->sb_wait,
6200 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6201 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6202 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6203 goto ret;
6204 spin_lock_irq(&conf->device_lock);
6205 conf->reshape_safe = mddev->reshape_position;
6206 spin_unlock_irq(&conf->device_lock);
6207 wake_up(&conf->wait_for_overlap);
6208 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6209 }
6210ret:
6211 return retn;
6212}
6213
6214static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6215 int *skipped)
6216{
6217 struct r5conf *conf = mddev->private;
6218 struct stripe_head *sh;
6219 sector_t max_sector = mddev->dev_sectors;
6220 sector_t sync_blocks;
6221 int still_degraded = 0;
6222 int i;
6223
6224 if (sector_nr >= max_sector) {
6225 /* just being told to finish up .. nothing much to do */
6226
6227 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6228 end_reshape(conf);
6229 return 0;
6230 }
6231
6232 if (mddev->curr_resync < max_sector) /* aborted */
6233 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6234 &sync_blocks, 1);
6235 else /* completed sync */
6236 conf->fullsync = 0;
6237 md_bitmap_close_sync(mddev->bitmap);
6238
6239 return 0;
6240 }
6241
6242 /* Allow raid5_quiesce to complete */
6243 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6244
6245 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6246 return reshape_request(mddev, sector_nr, skipped);
6247
6248 /* No need to check resync_max as we never do more than one
6249 * stripe, and as resync_max will always be on a chunk boundary,
6250 * if the check in md_do_sync didn't fire, there is no chance
6251 * of overstepping resync_max here
6252 */
6253
6254 /* if there is too many failed drives and we are trying
6255 * to resync, then assert that we are finished, because there is
6256 * nothing we can do.
6257 */
6258 if (mddev->degraded >= conf->max_degraded &&
6259 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6260 sector_t rv = mddev->dev_sectors - sector_nr;
6261 *skipped = 1;
6262 return rv;
6263 }
6264 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6265 !conf->fullsync &&
6266 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6267 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6268 /* we can skip this block, and probably more */
6269 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6270 *skipped = 1;
6271 /* keep things rounded to whole stripes */
6272 return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6273 }
6274
6275 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6276
6277 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6278 if (sh == NULL) {
6279 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6280 /* make sure we don't swamp the stripe cache if someone else
6281 * is trying to get access
6282 */
6283 schedule_timeout_uninterruptible(1);
6284 }
6285 /* Need to check if array will still be degraded after recovery/resync
6286 * Note in case of > 1 drive failures it's possible we're rebuilding
6287 * one drive while leaving another faulty drive in array.
6288 */
6289 rcu_read_lock();
6290 for (i = 0; i < conf->raid_disks; i++) {
6291 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6292
6293 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6294 still_degraded = 1;
6295 }
6296 rcu_read_unlock();
6297
6298 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6299
6300 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6301 set_bit(STRIPE_HANDLE, &sh->state);
6302
6303 raid5_release_stripe(sh);
6304
6305 return RAID5_STRIPE_SECTORS(conf);
6306}
6307
6308static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6309 unsigned int offset)
6310{
6311 /* We may not be able to submit a whole bio at once as there
6312 * may not be enough stripe_heads available.
6313 * We cannot pre-allocate enough stripe_heads as we may need
6314 * more than exist in the cache (if we allow ever large chunks).
6315 * So we do one stripe head at a time and record in
6316 * ->bi_hw_segments how many have been done.
6317 *
6318 * We *know* that this entire raid_bio is in one chunk, so
6319 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6320 */
6321 struct stripe_head *sh;
6322 int dd_idx;
6323 sector_t sector, logical_sector, last_sector;
6324 int scnt = 0;
6325 int handled = 0;
6326
6327 logical_sector = raid_bio->bi_iter.bi_sector &
6328 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6329 sector = raid5_compute_sector(conf, logical_sector,
6330 0, &dd_idx, NULL);
6331 last_sector = bio_end_sector(raid_bio);
6332
6333 for (; logical_sector < last_sector;
6334 logical_sector += RAID5_STRIPE_SECTORS(conf),
6335 sector += RAID5_STRIPE_SECTORS(conf),
6336 scnt++) {
6337
6338 if (scnt < offset)
6339 /* already done this stripe */
6340 continue;
6341
6342 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6343
6344 if (!sh) {
6345 /* failed to get a stripe - must wait */
6346 conf->retry_read_aligned = raid_bio;
6347 conf->retry_read_offset = scnt;
6348 return handled;
6349 }
6350
6351 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6352 raid5_release_stripe(sh);
6353 conf->retry_read_aligned = raid_bio;
6354 conf->retry_read_offset = scnt;
6355 return handled;
6356 }
6357
6358 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6359 handle_stripe(sh);
6360 raid5_release_stripe(sh);
6361 handled++;
6362 }
6363
6364 bio_endio(raid_bio);
6365
6366 if (atomic_dec_and_test(&conf->active_aligned_reads))
6367 wake_up(&conf->wait_for_quiescent);
6368 return handled;
6369}
6370
6371static int handle_active_stripes(struct r5conf *conf, int group,
6372 struct r5worker *worker,
6373 struct list_head *temp_inactive_list)
6374 __releases(&conf->device_lock)
6375 __acquires(&conf->device_lock)
6376{
6377 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6378 int i, batch_size = 0, hash;
6379 bool release_inactive = false;
6380
6381 while (batch_size < MAX_STRIPE_BATCH &&
6382 (sh = __get_priority_stripe(conf, group)) != NULL)
6383 batch[batch_size++] = sh;
6384
6385 if (batch_size == 0) {
6386 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6387 if (!list_empty(temp_inactive_list + i))
6388 break;
6389 if (i == NR_STRIPE_HASH_LOCKS) {
6390 spin_unlock_irq(&conf->device_lock);
6391 log_flush_stripe_to_raid(conf);
6392 spin_lock_irq(&conf->device_lock);
6393 return batch_size;
6394 }
6395 release_inactive = true;
6396 }
6397 spin_unlock_irq(&conf->device_lock);
6398
6399 release_inactive_stripe_list(conf, temp_inactive_list,
6400 NR_STRIPE_HASH_LOCKS);
6401
6402 r5l_flush_stripe_to_raid(conf->log);
6403 if (release_inactive) {
6404 spin_lock_irq(&conf->device_lock);
6405 return 0;
6406 }
6407
6408 for (i = 0; i < batch_size; i++)
6409 handle_stripe(batch[i]);
6410 log_write_stripe_run(conf);
6411
6412 cond_resched();
6413
6414 spin_lock_irq(&conf->device_lock);
6415 for (i = 0; i < batch_size; i++) {
6416 hash = batch[i]->hash_lock_index;
6417 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6418 }
6419 return batch_size;
6420}
6421
6422static void raid5_do_work(struct work_struct *work)
6423{
6424 struct r5worker *worker = container_of(work, struct r5worker, work);
6425 struct r5worker_group *group = worker->group;
6426 struct r5conf *conf = group->conf;
6427 struct mddev *mddev = conf->mddev;
6428 int group_id = group - conf->worker_groups;
6429 int handled;
6430 struct blk_plug plug;
6431
6432 pr_debug("+++ raid5worker active\n");
6433
6434 blk_start_plug(&plug);
6435 handled = 0;
6436 spin_lock_irq(&conf->device_lock);
6437 while (1) {
6438 int batch_size, released;
6439
6440 released = release_stripe_list(conf, worker->temp_inactive_list);
6441
6442 batch_size = handle_active_stripes(conf, group_id, worker,
6443 worker->temp_inactive_list);
6444 worker->working = false;
6445 if (!batch_size && !released)
6446 break;
6447 handled += batch_size;
6448 wait_event_lock_irq(mddev->sb_wait,
6449 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6450 conf->device_lock);
6451 }
6452 pr_debug("%d stripes handled\n", handled);
6453
6454 spin_unlock_irq(&conf->device_lock);
6455
6456 flush_deferred_bios(conf);
6457
6458 r5l_flush_stripe_to_raid(conf->log);
6459
6460 async_tx_issue_pending_all();
6461 blk_finish_plug(&plug);
6462
6463 pr_debug("--- raid5worker inactive\n");
6464}
6465
6466/*
6467 * This is our raid5 kernel thread.
6468 *
6469 * We scan the hash table for stripes which can be handled now.
6470 * During the scan, completed stripes are saved for us by the interrupt
6471 * handler, so that they will not have to wait for our next wakeup.
6472 */
6473static void raid5d(struct md_thread *thread)
6474{
6475 struct mddev *mddev = thread->mddev;
6476 struct r5conf *conf = mddev->private;
6477 int handled;
6478 struct blk_plug plug;
6479
6480 pr_debug("+++ raid5d active\n");
6481
6482 md_check_recovery(mddev);
6483
6484 blk_start_plug(&plug);
6485 handled = 0;
6486 spin_lock_irq(&conf->device_lock);
6487 while (1) {
6488 struct bio *bio;
6489 int batch_size, released;
6490 unsigned int offset;
6491
6492 released = release_stripe_list(conf, conf->temp_inactive_list);
6493 if (released)
6494 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6495
6496 if (
6497 !list_empty(&conf->bitmap_list)) {
6498 /* Now is a good time to flush some bitmap updates */
6499 conf->seq_flush++;
6500 spin_unlock_irq(&conf->device_lock);
6501 md_bitmap_unplug(mddev->bitmap);
6502 spin_lock_irq(&conf->device_lock);
6503 conf->seq_write = conf->seq_flush;
6504 activate_bit_delay(conf, conf->temp_inactive_list);
6505 }
6506 raid5_activate_delayed(conf);
6507
6508 while ((bio = remove_bio_from_retry(conf, &offset))) {
6509 int ok;
6510 spin_unlock_irq(&conf->device_lock);
6511 ok = retry_aligned_read(conf, bio, offset);
6512 spin_lock_irq(&conf->device_lock);
6513 if (!ok)
6514 break;
6515 handled++;
6516 }
6517
6518 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6519 conf->temp_inactive_list);
6520 if (!batch_size && !released)
6521 break;
6522 handled += batch_size;
6523
6524 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6525 spin_unlock_irq(&conf->device_lock);
6526 md_check_recovery(mddev);
6527 spin_lock_irq(&conf->device_lock);
6528 }
6529 }
6530 pr_debug("%d stripes handled\n", handled);
6531
6532 spin_unlock_irq(&conf->device_lock);
6533 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6534 mutex_trylock(&conf->cache_size_mutex)) {
6535 grow_one_stripe(conf, __GFP_NOWARN);
6536 /* Set flag even if allocation failed. This helps
6537 * slow down allocation requests when mem is short
6538 */
6539 set_bit(R5_DID_ALLOC, &conf->cache_state);
6540 mutex_unlock(&conf->cache_size_mutex);
6541 }
6542
6543 flush_deferred_bios(conf);
6544
6545 r5l_flush_stripe_to_raid(conf->log);
6546
6547 async_tx_issue_pending_all();
6548 blk_finish_plug(&plug);
6549
6550 pr_debug("--- raid5d inactive\n");
6551}
6552
6553static ssize_t
6554raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6555{
6556 struct r5conf *conf;
6557 int ret = 0;
6558 spin_lock(&mddev->lock);
6559 conf = mddev->private;
6560 if (conf)
6561 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6562 spin_unlock(&mddev->lock);
6563 return ret;
6564}
6565
6566int
6567raid5_set_cache_size(struct mddev *mddev, int size)
6568{
6569 int result = 0;
6570 struct r5conf *conf = mddev->private;
6571
6572 if (size <= 16 || size > 32768)
6573 return -EINVAL;
6574
6575 conf->min_nr_stripes = size;
6576 mutex_lock(&conf->cache_size_mutex);
6577 while (size < conf->max_nr_stripes &&
6578 drop_one_stripe(conf))
6579 ;
6580 mutex_unlock(&conf->cache_size_mutex);
6581
6582 md_allow_write(mddev);
6583
6584 mutex_lock(&conf->cache_size_mutex);
6585 while (size > conf->max_nr_stripes)
6586 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6587 conf->min_nr_stripes = conf->max_nr_stripes;
6588 result = -ENOMEM;
6589 break;
6590 }
6591 mutex_unlock(&conf->cache_size_mutex);
6592
6593 return result;
6594}
6595EXPORT_SYMBOL(raid5_set_cache_size);
6596
6597static ssize_t
6598raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6599{
6600 struct r5conf *conf;
6601 unsigned long new;
6602 int err;
6603
6604 if (len >= PAGE_SIZE)
6605 return -EINVAL;
6606 if (kstrtoul(page, 10, &new))
6607 return -EINVAL;
6608 err = mddev_lock(mddev);
6609 if (err)
6610 return err;
6611 conf = mddev->private;
6612 if (!conf)
6613 err = -ENODEV;
6614 else
6615 err = raid5_set_cache_size(mddev, new);
6616 mddev_unlock(mddev);
6617
6618 return err ?: len;
6619}
6620
6621static struct md_sysfs_entry
6622raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6623 raid5_show_stripe_cache_size,
6624 raid5_store_stripe_cache_size);
6625
6626static ssize_t
6627raid5_show_rmw_level(struct mddev *mddev, char *page)
6628{
6629 struct r5conf *conf = mddev->private;
6630 if (conf)
6631 return sprintf(page, "%d\n", conf->rmw_level);
6632 else
6633 return 0;
6634}
6635
6636static ssize_t
6637raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6638{
6639 struct r5conf *conf = mddev->private;
6640 unsigned long new;
6641
6642 if (!conf)
6643 return -ENODEV;
6644
6645 if (len >= PAGE_SIZE)
6646 return -EINVAL;
6647
6648 if (kstrtoul(page, 10, &new))
6649 return -EINVAL;
6650
6651 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6652 return -EINVAL;
6653
6654 if (new != PARITY_DISABLE_RMW &&
6655 new != PARITY_ENABLE_RMW &&
6656 new != PARITY_PREFER_RMW)
6657 return -EINVAL;
6658
6659 conf->rmw_level = new;
6660 return len;
6661}
6662
6663static struct md_sysfs_entry
6664raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6665 raid5_show_rmw_level,
6666 raid5_store_rmw_level);
6667
6668static ssize_t
6669raid5_show_stripe_size(struct mddev *mddev, char *page)
6670{
6671 struct r5conf *conf;
6672 int ret = 0;
6673
6674 spin_lock(&mddev->lock);
6675 conf = mddev->private;
6676 if (conf)
6677 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6678 spin_unlock(&mddev->lock);
6679 return ret;
6680}
6681
6682#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6683static ssize_t
6684raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len)
6685{
6686 struct r5conf *conf;
6687 unsigned long new;
6688 int err;
6689 int size;
6690
6691 if (len >= PAGE_SIZE)
6692 return -EINVAL;
6693 if (kstrtoul(page, 10, &new))
6694 return -EINVAL;
6695
6696 /*
6697 * The value should not be bigger than PAGE_SIZE. It requires to
6698 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6699 * of two.
6700 */
6701 if (new % DEFAULT_STRIPE_SIZE != 0 ||
6702 new > PAGE_SIZE || new == 0 ||
6703 new != roundup_pow_of_two(new))
6704 return -EINVAL;
6705
6706 err = mddev_lock(mddev);
6707 if (err)
6708 return err;
6709
6710 conf = mddev->private;
6711 if (!conf) {
6712 err = -ENODEV;
6713 goto out_unlock;
6714 }
6715
6716 if (new == conf->stripe_size)
6717 goto out_unlock;
6718
6719 pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6720 conf->stripe_size, new);
6721
6722 if (mddev->sync_thread ||
6723 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6724 mddev->reshape_position != MaxSector ||
6725 mddev->sysfs_active) {
6726 err = -EBUSY;
6727 goto out_unlock;
6728 }
6729
6730 mddev_suspend(mddev);
6731 mutex_lock(&conf->cache_size_mutex);
6732 size = conf->max_nr_stripes;
6733
6734 shrink_stripes(conf);
6735
6736 conf->stripe_size = new;
6737 conf->stripe_shift = ilog2(new) - 9;
6738 conf->stripe_sectors = new >> 9;
6739 if (grow_stripes(conf, size)) {
6740 pr_warn("md/raid:%s: couldn't allocate buffers\n",
6741 mdname(mddev));
6742 err = -ENOMEM;
6743 }
6744 mutex_unlock(&conf->cache_size_mutex);
6745 mddev_resume(mddev);
6746
6747out_unlock:
6748 mddev_unlock(mddev);
6749 return err ?: len;
6750}
6751
6752static struct md_sysfs_entry
6753raid5_stripe_size = __ATTR(stripe_size, 0644,
6754 raid5_show_stripe_size,
6755 raid5_store_stripe_size);
6756#else
6757static struct md_sysfs_entry
6758raid5_stripe_size = __ATTR(stripe_size, 0444,
6759 raid5_show_stripe_size,
6760 NULL);
6761#endif
6762
6763static ssize_t
6764raid5_show_preread_threshold(struct mddev *mddev, char *page)
6765{
6766 struct r5conf *conf;
6767 int ret = 0;
6768 spin_lock(&mddev->lock);
6769 conf = mddev->private;
6770 if (conf)
6771 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6772 spin_unlock(&mddev->lock);
6773 return ret;
6774}
6775
6776static ssize_t
6777raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6778{
6779 struct r5conf *conf;
6780 unsigned long new;
6781 int err;
6782
6783 if (len >= PAGE_SIZE)
6784 return -EINVAL;
6785 if (kstrtoul(page, 10, &new))
6786 return -EINVAL;
6787
6788 err = mddev_lock(mddev);
6789 if (err)
6790 return err;
6791 conf = mddev->private;
6792 if (!conf)
6793 err = -ENODEV;
6794 else if (new > conf->min_nr_stripes)
6795 err = -EINVAL;
6796 else
6797 conf->bypass_threshold = new;
6798 mddev_unlock(mddev);
6799 return err ?: len;
6800}
6801
6802static struct md_sysfs_entry
6803raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6804 S_IRUGO | S_IWUSR,
6805 raid5_show_preread_threshold,
6806 raid5_store_preread_threshold);
6807
6808static ssize_t
6809raid5_show_skip_copy(struct mddev *mddev, char *page)
6810{
6811 struct r5conf *conf;
6812 int ret = 0;
6813 spin_lock(&mddev->lock);
6814 conf = mddev->private;
6815 if (conf)
6816 ret = sprintf(page, "%d\n", conf->skip_copy);
6817 spin_unlock(&mddev->lock);
6818 return ret;
6819}
6820
6821static ssize_t
6822raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6823{
6824 struct r5conf *conf;
6825 unsigned long new;
6826 int err;
6827
6828 if (len >= PAGE_SIZE)
6829 return -EINVAL;
6830 if (kstrtoul(page, 10, &new))
6831 return -EINVAL;
6832 new = !!new;
6833
6834 err = mddev_lock(mddev);
6835 if (err)
6836 return err;
6837 conf = mddev->private;
6838 if (!conf)
6839 err = -ENODEV;
6840 else if (new != conf->skip_copy) {
6841 struct request_queue *q = mddev->queue;
6842
6843 mddev_suspend(mddev);
6844 conf->skip_copy = new;
6845 if (new)
6846 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
6847 else
6848 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
6849 mddev_resume(mddev);
6850 }
6851 mddev_unlock(mddev);
6852 return err ?: len;
6853}
6854
6855static struct md_sysfs_entry
6856raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6857 raid5_show_skip_copy,
6858 raid5_store_skip_copy);
6859
6860static ssize_t
6861stripe_cache_active_show(struct mddev *mddev, char *page)
6862{
6863 struct r5conf *conf = mddev->private;
6864 if (conf)
6865 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6866 else
6867 return 0;
6868}
6869
6870static struct md_sysfs_entry
6871raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6872
6873static ssize_t
6874raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6875{
6876 struct r5conf *conf;
6877 int ret = 0;
6878 spin_lock(&mddev->lock);
6879 conf = mddev->private;
6880 if (conf)
6881 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6882 spin_unlock(&mddev->lock);
6883 return ret;
6884}
6885
6886static int alloc_thread_groups(struct r5conf *conf, int cnt,
6887 int *group_cnt,
6888 struct r5worker_group **worker_groups);
6889static ssize_t
6890raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6891{
6892 struct r5conf *conf;
6893 unsigned int new;
6894 int err;
6895 struct r5worker_group *new_groups, *old_groups;
6896 int group_cnt;
6897
6898 if (len >= PAGE_SIZE)
6899 return -EINVAL;
6900 if (kstrtouint(page, 10, &new))
6901 return -EINVAL;
6902 /* 8192 should be big enough */
6903 if (new > 8192)
6904 return -EINVAL;
6905
6906 err = mddev_lock(mddev);
6907 if (err)
6908 return err;
6909 conf = mddev->private;
6910 if (!conf)
6911 err = -ENODEV;
6912 else if (new != conf->worker_cnt_per_group) {
6913 mddev_suspend(mddev);
6914
6915 old_groups = conf->worker_groups;
6916 if (old_groups)
6917 flush_workqueue(raid5_wq);
6918
6919 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
6920 if (!err) {
6921 spin_lock_irq(&conf->device_lock);
6922 conf->group_cnt = group_cnt;
6923 conf->worker_cnt_per_group = new;
6924 conf->worker_groups = new_groups;
6925 spin_unlock_irq(&conf->device_lock);
6926
6927 if (old_groups)
6928 kfree(old_groups[0].workers);
6929 kfree(old_groups);
6930 }
6931 mddev_resume(mddev);
6932 }
6933 mddev_unlock(mddev);
6934
6935 return err ?: len;
6936}
6937
6938static struct md_sysfs_entry
6939raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6940 raid5_show_group_thread_cnt,
6941 raid5_store_group_thread_cnt);
6942
6943static struct attribute *raid5_attrs[] = {
6944 &raid5_stripecache_size.attr,
6945 &raid5_stripecache_active.attr,
6946 &raid5_preread_bypass_threshold.attr,
6947 &raid5_group_thread_cnt.attr,
6948 &raid5_skip_copy.attr,
6949 &raid5_rmw_level.attr,
6950 &raid5_stripe_size.attr,
6951 &r5c_journal_mode.attr,
6952 &ppl_write_hint.attr,
6953 NULL,
6954};
6955static const struct attribute_group raid5_attrs_group = {
6956 .name = NULL,
6957 .attrs = raid5_attrs,
6958};
6959
6960static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
6961 struct r5worker_group **worker_groups)
6962{
6963 int i, j, k;
6964 ssize_t size;
6965 struct r5worker *workers;
6966
6967 if (cnt == 0) {
6968 *group_cnt = 0;
6969 *worker_groups = NULL;
6970 return 0;
6971 }
6972 *group_cnt = num_possible_nodes();
6973 size = sizeof(struct r5worker) * cnt;
6974 workers = kcalloc(size, *group_cnt, GFP_NOIO);
6975 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6976 GFP_NOIO);
6977 if (!*worker_groups || !workers) {
6978 kfree(workers);
6979 kfree(*worker_groups);
6980 return -ENOMEM;
6981 }
6982
6983 for (i = 0; i < *group_cnt; i++) {
6984 struct r5worker_group *group;
6985
6986 group = &(*worker_groups)[i];
6987 INIT_LIST_HEAD(&group->handle_list);
6988 INIT_LIST_HEAD(&group->loprio_list);
6989 group->conf = conf;
6990 group->workers = workers + i * cnt;
6991
6992 for (j = 0; j < cnt; j++) {
6993 struct r5worker *worker = group->workers + j;
6994 worker->group = group;
6995 INIT_WORK(&worker->work, raid5_do_work);
6996
6997 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6998 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6999 }
7000 }
7001
7002 return 0;
7003}
7004
7005static void free_thread_groups(struct r5conf *conf)
7006{
7007 if (conf->worker_groups)
7008 kfree(conf->worker_groups[0].workers);
7009 kfree(conf->worker_groups);
7010 conf->worker_groups = NULL;
7011}
7012
7013static sector_t
7014raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7015{
7016 struct r5conf *conf = mddev->private;
7017
7018 if (!sectors)
7019 sectors = mddev->dev_sectors;
7020 if (!raid_disks)
7021 /* size is defined by the smallest of previous and new size */
7022 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7023
7024 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7025 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7026 return sectors * (raid_disks - conf->max_degraded);
7027}
7028
7029static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7030{
7031 safe_put_page(percpu->spare_page);
7032 percpu->spare_page = NULL;
7033 kvfree(percpu->scribble);
7034 percpu->scribble = NULL;
7035}
7036
7037static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7038{
7039 if (conf->level == 6 && !percpu->spare_page) {
7040 percpu->spare_page = alloc_page(GFP_KERNEL);
7041 if (!percpu->spare_page)
7042 return -ENOMEM;
7043 }
7044
7045 if (scribble_alloc(percpu,
7046 max(conf->raid_disks,
7047 conf->previous_raid_disks),
7048 max(conf->chunk_sectors,
7049 conf->prev_chunk_sectors)
7050 / RAID5_STRIPE_SECTORS(conf))) {
7051 free_scratch_buffer(conf, percpu);
7052 return -ENOMEM;
7053 }
7054
7055 local_lock_init(&percpu->lock);
7056 return 0;
7057}
7058
7059static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7060{
7061 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7062
7063 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7064 return 0;
7065}
7066
7067static void raid5_free_percpu(struct r5conf *conf)
7068{
7069 if (!conf->percpu)
7070 return;
7071
7072 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7073 free_percpu(conf->percpu);
7074}
7075
7076static void free_conf(struct r5conf *conf)
7077{
7078 int i;
7079
7080 log_exit(conf);
7081
7082 unregister_shrinker(&conf->shrinker);
7083 free_thread_groups(conf);
7084 shrink_stripes(conf);
7085 raid5_free_percpu(conf);
7086 for (i = 0; i < conf->pool_size; i++)
7087 if (conf->disks[i].extra_page)
7088 put_page(conf->disks[i].extra_page);
7089 kfree(conf->disks);
7090 bioset_exit(&conf->bio_split);
7091 kfree(conf->stripe_hashtbl);
7092 kfree(conf->pending_data);
7093 kfree(conf);
7094}
7095
7096static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7097{
7098 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7099 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7100
7101 if (alloc_scratch_buffer(conf, percpu)) {
7102 pr_warn("%s: failed memory allocation for cpu%u\n",
7103 __func__, cpu);
7104 return -ENOMEM;
7105 }
7106 return 0;
7107}
7108
7109static int raid5_alloc_percpu(struct r5conf *conf)
7110{
7111 int err = 0;
7112
7113 conf->percpu = alloc_percpu(struct raid5_percpu);
7114 if (!conf->percpu)
7115 return -ENOMEM;
7116
7117 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7118 if (!err) {
7119 conf->scribble_disks = max(conf->raid_disks,
7120 conf->previous_raid_disks);
7121 conf->scribble_sectors = max(conf->chunk_sectors,
7122 conf->prev_chunk_sectors);
7123 }
7124 return err;
7125}
7126
7127static unsigned long raid5_cache_scan(struct shrinker *shrink,
7128 struct shrink_control *sc)
7129{
7130 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7131 unsigned long ret = SHRINK_STOP;
7132
7133 if (mutex_trylock(&conf->cache_size_mutex)) {
7134 ret= 0;
7135 while (ret < sc->nr_to_scan &&
7136 conf->max_nr_stripes > conf->min_nr_stripes) {
7137 if (drop_one_stripe(conf) == 0) {
7138 ret = SHRINK_STOP;
7139 break;
7140 }
7141 ret++;
7142 }
7143 mutex_unlock(&conf->cache_size_mutex);
7144 }
7145 return ret;
7146}
7147
7148static unsigned long raid5_cache_count(struct shrinker *shrink,
7149 struct shrink_control *sc)
7150{
7151 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7152
7153 if (conf->max_nr_stripes < conf->min_nr_stripes)
7154 /* unlikely, but not impossible */
7155 return 0;
7156 return conf->max_nr_stripes - conf->min_nr_stripes;
7157}
7158
7159static struct r5conf *setup_conf(struct mddev *mddev)
7160{
7161 struct r5conf *conf;
7162 int raid_disk, memory, max_disks;
7163 struct md_rdev *rdev;
7164 struct disk_info *disk;
7165 char pers_name[6];
7166 int i;
7167 int group_cnt;
7168 struct r5worker_group *new_group;
7169 int ret;
7170
7171 if (mddev->new_level != 5
7172 && mddev->new_level != 4
7173 && mddev->new_level != 6) {
7174 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7175 mdname(mddev), mddev->new_level);
7176 return ERR_PTR(-EIO);
7177 }
7178 if ((mddev->new_level == 5
7179 && !algorithm_valid_raid5(mddev->new_layout)) ||
7180 (mddev->new_level == 6
7181 && !algorithm_valid_raid6(mddev->new_layout))) {
7182 pr_warn("md/raid:%s: layout %d not supported\n",
7183 mdname(mddev), mddev->new_layout);
7184 return ERR_PTR(-EIO);
7185 }
7186 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7187 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7188 mdname(mddev), mddev->raid_disks);
7189 return ERR_PTR(-EINVAL);
7190 }
7191
7192 if (!mddev->new_chunk_sectors ||
7193 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7194 !is_power_of_2(mddev->new_chunk_sectors)) {
7195 pr_warn("md/raid:%s: invalid chunk size %d\n",
7196 mdname(mddev), mddev->new_chunk_sectors << 9);
7197 return ERR_PTR(-EINVAL);
7198 }
7199
7200 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7201 if (conf == NULL)
7202 goto abort;
7203
7204#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7205 conf->stripe_size = DEFAULT_STRIPE_SIZE;
7206 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7207 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7208#endif
7209 INIT_LIST_HEAD(&conf->free_list);
7210 INIT_LIST_HEAD(&conf->pending_list);
7211 conf->pending_data = kcalloc(PENDING_IO_MAX,
7212 sizeof(struct r5pending_data),
7213 GFP_KERNEL);
7214 if (!conf->pending_data)
7215 goto abort;
7216 for (i = 0; i < PENDING_IO_MAX; i++)
7217 list_add(&conf->pending_data[i].sibling, &conf->free_list);
7218 /* Don't enable multi-threading by default*/
7219 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7220 conf->group_cnt = group_cnt;
7221 conf->worker_cnt_per_group = 0;
7222 conf->worker_groups = new_group;
7223 } else
7224 goto abort;
7225 spin_lock_init(&conf->device_lock);
7226 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7227 mutex_init(&conf->cache_size_mutex);
7228 init_waitqueue_head(&conf->wait_for_quiescent);
7229 init_waitqueue_head(&conf->wait_for_stripe);
7230 init_waitqueue_head(&conf->wait_for_overlap);
7231 INIT_LIST_HEAD(&conf->handle_list);
7232 INIT_LIST_HEAD(&conf->loprio_list);
7233 INIT_LIST_HEAD(&conf->hold_list);
7234 INIT_LIST_HEAD(&conf->delayed_list);
7235 INIT_LIST_HEAD(&conf->bitmap_list);
7236 init_llist_head(&conf->released_stripes);
7237 atomic_set(&conf->active_stripes, 0);
7238 atomic_set(&conf->preread_active_stripes, 0);
7239 atomic_set(&conf->active_aligned_reads, 0);
7240 spin_lock_init(&conf->pending_bios_lock);
7241 conf->batch_bio_dispatch = true;
7242 rdev_for_each(rdev, mddev) {
7243 if (test_bit(Journal, &rdev->flags))
7244 continue;
7245 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
7246 conf->batch_bio_dispatch = false;
7247 break;
7248 }
7249 }
7250
7251 conf->bypass_threshold = BYPASS_THRESHOLD;
7252 conf->recovery_disabled = mddev->recovery_disabled - 1;
7253
7254 conf->raid_disks = mddev->raid_disks;
7255 if (mddev->reshape_position == MaxSector)
7256 conf->previous_raid_disks = mddev->raid_disks;
7257 else
7258 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7259 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7260
7261 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7262 GFP_KERNEL);
7263
7264 if (!conf->disks)
7265 goto abort;
7266
7267 for (i = 0; i < max_disks; i++) {
7268 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7269 if (!conf->disks[i].extra_page)
7270 goto abort;
7271 }
7272
7273 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7274 if (ret)
7275 goto abort;
7276 conf->mddev = mddev;
7277
7278 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
7279 goto abort;
7280
7281 /* We init hash_locks[0] separately to that it can be used
7282 * as the reference lock in the spin_lock_nest_lock() call
7283 * in lock_all_device_hash_locks_irq in order to convince
7284 * lockdep that we know what we are doing.
7285 */
7286 spin_lock_init(conf->hash_locks);
7287 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7288 spin_lock_init(conf->hash_locks + i);
7289
7290 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7291 INIT_LIST_HEAD(conf->inactive_list + i);
7292
7293 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7294 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7295
7296 atomic_set(&conf->r5c_cached_full_stripes, 0);
7297 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7298 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7299 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7300 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7301 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7302
7303 conf->level = mddev->new_level;
7304 conf->chunk_sectors = mddev->new_chunk_sectors;
7305 if (raid5_alloc_percpu(conf) != 0)
7306 goto abort;
7307
7308 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7309
7310 rdev_for_each(rdev, mddev) {
7311 raid_disk = rdev->raid_disk;
7312 if (raid_disk >= max_disks
7313 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7314 continue;
7315 disk = conf->disks + raid_disk;
7316
7317 if (test_bit(Replacement, &rdev->flags)) {
7318 if (disk->replacement)
7319 goto abort;
7320 disk->replacement = rdev;
7321 } else {
7322 if (disk->rdev)
7323 goto abort;
7324 disk->rdev = rdev;
7325 }
7326
7327 if (test_bit(In_sync, &rdev->flags)) {
7328 char b[BDEVNAME_SIZE];
7329 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7330 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7331 } else if (rdev->saved_raid_disk != raid_disk)
7332 /* Cannot rely on bitmap to complete recovery */
7333 conf->fullsync = 1;
7334 }
7335
7336 conf->level = mddev->new_level;
7337 if (conf->level == 6) {
7338 conf->max_degraded = 2;
7339 if (raid6_call.xor_syndrome)
7340 conf->rmw_level = PARITY_ENABLE_RMW;
7341 else
7342 conf->rmw_level = PARITY_DISABLE_RMW;
7343 } else {
7344 conf->max_degraded = 1;
7345 conf->rmw_level = PARITY_ENABLE_RMW;
7346 }
7347 conf->algorithm = mddev->new_layout;
7348 conf->reshape_progress = mddev->reshape_position;
7349 if (conf->reshape_progress != MaxSector) {
7350 conf->prev_chunk_sectors = mddev->chunk_sectors;
7351 conf->prev_algo = mddev->layout;
7352 } else {
7353 conf->prev_chunk_sectors = conf->chunk_sectors;
7354 conf->prev_algo = conf->algorithm;
7355 }
7356
7357 conf->min_nr_stripes = NR_STRIPES;
7358 if (mddev->reshape_position != MaxSector) {
7359 int stripes = max_t(int,
7360 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7361 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7362 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7363 if (conf->min_nr_stripes != NR_STRIPES)
7364 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7365 mdname(mddev), conf->min_nr_stripes);
7366 }
7367 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7368 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7369 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7370 if (grow_stripes(conf, conf->min_nr_stripes)) {
7371 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7372 mdname(mddev), memory);
7373 goto abort;
7374 } else
7375 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7376 /*
7377 * Losing a stripe head costs more than the time to refill it,
7378 * it reduces the queue depth and so can hurt throughput.
7379 * So set it rather large, scaled by number of devices.
7380 */
7381 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7382 conf->shrinker.scan_objects = raid5_cache_scan;
7383 conf->shrinker.count_objects = raid5_cache_count;
7384 conf->shrinker.batch = 128;
7385 conf->shrinker.flags = 0;
7386 if (register_shrinker(&conf->shrinker)) {
7387 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7388 mdname(mddev));
7389 goto abort;
7390 }
7391
7392 sprintf(pers_name, "raid%d", mddev->new_level);
7393 conf->thread = md_register_thread(raid5d, mddev, pers_name);
7394 if (!conf->thread) {
7395 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7396 mdname(mddev));
7397 goto abort;
7398 }
7399
7400 return conf;
7401
7402 abort:
7403 if (conf) {
7404 free_conf(conf);
7405 return ERR_PTR(-EIO);
7406 } else
7407 return ERR_PTR(-ENOMEM);
7408}
7409
7410static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7411{
7412 switch (algo) {
7413 case ALGORITHM_PARITY_0:
7414 if (raid_disk < max_degraded)
7415 return 1;
7416 break;
7417 case ALGORITHM_PARITY_N:
7418 if (raid_disk >= raid_disks - max_degraded)
7419 return 1;
7420 break;
7421 case ALGORITHM_PARITY_0_6:
7422 if (raid_disk == 0 ||
7423 raid_disk == raid_disks - 1)
7424 return 1;
7425 break;
7426 case ALGORITHM_LEFT_ASYMMETRIC_6:
7427 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7428 case ALGORITHM_LEFT_SYMMETRIC_6:
7429 case ALGORITHM_RIGHT_SYMMETRIC_6:
7430 if (raid_disk == raid_disks - 1)
7431 return 1;
7432 }
7433 return 0;
7434}
7435
7436static void raid5_set_io_opt(struct r5conf *conf)
7437{
7438 blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
7439 (conf->raid_disks - conf->max_degraded));
7440}
7441
7442static int raid5_run(struct mddev *mddev)
7443{
7444 struct r5conf *conf;
7445 int working_disks = 0;
7446 int dirty_parity_disks = 0;
7447 struct md_rdev *rdev;
7448 struct md_rdev *journal_dev = NULL;
7449 sector_t reshape_offset = 0;
7450 int i, ret = 0;
7451 long long min_offset_diff = 0;
7452 int first = 1;
7453
7454 if (acct_bioset_init(mddev)) {
7455 pr_err("md/raid456:%s: alloc acct bioset failed.\n", mdname(mddev));
7456 return -ENOMEM;
7457 }
7458
7459 if (mddev_init_writes_pending(mddev) < 0) {
7460 ret = -ENOMEM;
7461 goto exit_acct_set;
7462 }
7463
7464 if (mddev->recovery_cp != MaxSector)
7465 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7466 mdname(mddev));
7467
7468 rdev_for_each(rdev, mddev) {
7469 long long diff;
7470
7471 if (test_bit(Journal, &rdev->flags)) {
7472 journal_dev = rdev;
7473 continue;
7474 }
7475 if (rdev->raid_disk < 0)
7476 continue;
7477 diff = (rdev->new_data_offset - rdev->data_offset);
7478 if (first) {
7479 min_offset_diff = diff;
7480 first = 0;
7481 } else if (mddev->reshape_backwards &&
7482 diff < min_offset_diff)
7483 min_offset_diff = diff;
7484 else if (!mddev->reshape_backwards &&
7485 diff > min_offset_diff)
7486 min_offset_diff = diff;
7487 }
7488
7489 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7490 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7491 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7492 mdname(mddev));
7493 ret = -EINVAL;
7494 goto exit_acct_set;
7495 }
7496
7497 if (mddev->reshape_position != MaxSector) {
7498 /* Check that we can continue the reshape.
7499 * Difficulties arise if the stripe we would write to
7500 * next is at or after the stripe we would read from next.
7501 * For a reshape that changes the number of devices, this
7502 * is only possible for a very short time, and mdadm makes
7503 * sure that time appears to have past before assembling
7504 * the array. So we fail if that time hasn't passed.
7505 * For a reshape that keeps the number of devices the same
7506 * mdadm must be monitoring the reshape can keeping the
7507 * critical areas read-only and backed up. It will start
7508 * the array in read-only mode, so we check for that.
7509 */
7510 sector_t here_new, here_old;
7511 int old_disks;
7512 int max_degraded = (mddev->level == 6 ? 2 : 1);
7513 int chunk_sectors;
7514 int new_data_disks;
7515
7516 if (journal_dev) {
7517 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7518 mdname(mddev));
7519 ret = -EINVAL;
7520 goto exit_acct_set;
7521 }
7522
7523 if (mddev->new_level != mddev->level) {
7524 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7525 mdname(mddev));
7526 ret = -EINVAL;
7527 goto exit_acct_set;
7528 }
7529 old_disks = mddev->raid_disks - mddev->delta_disks;
7530 /* reshape_position must be on a new-stripe boundary, and one
7531 * further up in new geometry must map after here in old
7532 * geometry.
7533 * If the chunk sizes are different, then as we perform reshape
7534 * in units of the largest of the two, reshape_position needs
7535 * be a multiple of the largest chunk size times new data disks.
7536 */
7537 here_new = mddev->reshape_position;
7538 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7539 new_data_disks = mddev->raid_disks - max_degraded;
7540 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7541 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7542 mdname(mddev));
7543 ret = -EINVAL;
7544 goto exit_acct_set;
7545 }
7546 reshape_offset = here_new * chunk_sectors;
7547 /* here_new is the stripe we will write to */
7548 here_old = mddev->reshape_position;
7549 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7550 /* here_old is the first stripe that we might need to read
7551 * from */
7552 if (mddev->delta_disks == 0) {
7553 /* We cannot be sure it is safe to start an in-place
7554 * reshape. It is only safe if user-space is monitoring
7555 * and taking constant backups.
7556 * mdadm always starts a situation like this in
7557 * readonly mode so it can take control before
7558 * allowing any writes. So just check for that.
7559 */
7560 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7561 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7562 /* not really in-place - so OK */;
7563 else if (mddev->ro == 0) {
7564 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7565 mdname(mddev));
7566 ret = -EINVAL;
7567 goto exit_acct_set;
7568 }
7569 } else if (mddev->reshape_backwards
7570 ? (here_new * chunk_sectors + min_offset_diff <=
7571 here_old * chunk_sectors)
7572 : (here_new * chunk_sectors >=
7573 here_old * chunk_sectors + (-min_offset_diff))) {
7574 /* Reading from the same stripe as writing to - bad */
7575 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7576 mdname(mddev));
7577 ret = -EINVAL;
7578 goto exit_acct_set;
7579 }
7580 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7581 /* OK, we should be able to continue; */
7582 } else {
7583 BUG_ON(mddev->level != mddev->new_level);
7584 BUG_ON(mddev->layout != mddev->new_layout);
7585 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7586 BUG_ON(mddev->delta_disks != 0);
7587 }
7588
7589 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7590 test_bit(MD_HAS_PPL, &mddev->flags)) {
7591 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7592 mdname(mddev));
7593 clear_bit(MD_HAS_PPL, &mddev->flags);
7594 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7595 }
7596
7597 if (mddev->private == NULL)
7598 conf = setup_conf(mddev);
7599 else
7600 conf = mddev->private;
7601
7602 if (IS_ERR(conf)) {
7603 ret = PTR_ERR(conf);
7604 goto exit_acct_set;
7605 }
7606
7607 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7608 if (!journal_dev) {
7609 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7610 mdname(mddev));
7611 mddev->ro = 1;
7612 set_disk_ro(mddev->gendisk, 1);
7613 } else if (mddev->recovery_cp == MaxSector)
7614 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7615 }
7616
7617 conf->min_offset_diff = min_offset_diff;
7618 mddev->thread = conf->thread;
7619 conf->thread = NULL;
7620 mddev->private = conf;
7621
7622 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7623 i++) {
7624 rdev = conf->disks[i].rdev;
7625 if (!rdev && conf->disks[i].replacement) {
7626 /* The replacement is all we have yet */
7627 rdev = conf->disks[i].replacement;
7628 conf->disks[i].replacement = NULL;
7629 clear_bit(Replacement, &rdev->flags);
7630 conf->disks[i].rdev = rdev;
7631 }
7632 if (!rdev)
7633 continue;
7634 if (conf->disks[i].replacement &&
7635 conf->reshape_progress != MaxSector) {
7636 /* replacements and reshape simply do not mix. */
7637 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7638 goto abort;
7639 }
7640 if (test_bit(In_sync, &rdev->flags)) {
7641 working_disks++;
7642 continue;
7643 }
7644 /* This disc is not fully in-sync. However if it
7645 * just stored parity (beyond the recovery_offset),
7646 * when we don't need to be concerned about the
7647 * array being dirty.
7648 * When reshape goes 'backwards', we never have
7649 * partially completed devices, so we only need
7650 * to worry about reshape going forwards.
7651 */
7652 /* Hack because v0.91 doesn't store recovery_offset properly. */
7653 if (mddev->major_version == 0 &&
7654 mddev->minor_version > 90)
7655 rdev->recovery_offset = reshape_offset;
7656
7657 if (rdev->recovery_offset < reshape_offset) {
7658 /* We need to check old and new layout */
7659 if (!only_parity(rdev->raid_disk,
7660 conf->algorithm,
7661 conf->raid_disks,
7662 conf->max_degraded))
7663 continue;
7664 }
7665 if (!only_parity(rdev->raid_disk,
7666 conf->prev_algo,
7667 conf->previous_raid_disks,
7668 conf->max_degraded))
7669 continue;
7670 dirty_parity_disks++;
7671 }
7672
7673 /*
7674 * 0 for a fully functional array, 1 or 2 for a degraded array.
7675 */
7676 mddev->degraded = raid5_calc_degraded(conf);
7677
7678 if (has_failed(conf)) {
7679 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7680 mdname(mddev), mddev->degraded, conf->raid_disks);
7681 goto abort;
7682 }
7683
7684 /* device size must be a multiple of chunk size */
7685 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7686 mddev->resync_max_sectors = mddev->dev_sectors;
7687
7688 if (mddev->degraded > dirty_parity_disks &&
7689 mddev->recovery_cp != MaxSector) {
7690 if (test_bit(MD_HAS_PPL, &mddev->flags))
7691 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7692 mdname(mddev));
7693 else if (mddev->ok_start_degraded)
7694 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7695 mdname(mddev));
7696 else {
7697 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7698 mdname(mddev));
7699 goto abort;
7700 }
7701 }
7702
7703 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7704 mdname(mddev), conf->level,
7705 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7706 mddev->new_layout);
7707
7708 print_raid5_conf(conf);
7709
7710 if (conf->reshape_progress != MaxSector) {
7711 conf->reshape_safe = conf->reshape_progress;
7712 atomic_set(&conf->reshape_stripes, 0);
7713 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7714 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7715 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7716 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7717 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7718 "reshape");
7719 if (!mddev->sync_thread)
7720 goto abort;
7721 }
7722
7723 /* Ok, everything is just fine now */
7724 if (mddev->to_remove == &raid5_attrs_group)
7725 mddev->to_remove = NULL;
7726 else if (mddev->kobj.sd &&
7727 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7728 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7729 mdname(mddev));
7730 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7731
7732 if (mddev->queue) {
7733 int chunk_size;
7734 /* read-ahead size must cover two whole stripes, which
7735 * is 2 * (datadisks) * chunksize where 'n' is the
7736 * number of raid devices
7737 */
7738 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7739 int stripe = data_disks *
7740 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7741
7742 chunk_size = mddev->chunk_sectors << 9;
7743 blk_queue_io_min(mddev->queue, chunk_size);
7744 raid5_set_io_opt(conf);
7745 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7746 /*
7747 * We can only discard a whole stripe. It doesn't make sense to
7748 * discard data disk but write parity disk
7749 */
7750 stripe = stripe * PAGE_SIZE;
7751 stripe = roundup_pow_of_two(stripe);
7752 mddev->queue->limits.discard_alignment = stripe;
7753 mddev->queue->limits.discard_granularity = stripe;
7754
7755 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7756
7757 rdev_for_each(rdev, mddev) {
7758 disk_stack_limits(mddev->gendisk, rdev->bdev,
7759 rdev->data_offset << 9);
7760 disk_stack_limits(mddev->gendisk, rdev->bdev,
7761 rdev->new_data_offset << 9);
7762 }
7763
7764 /*
7765 * zeroing is required, otherwise data
7766 * could be lost. Consider a scenario: discard a stripe
7767 * (the stripe could be inconsistent if
7768 * discard_zeroes_data is 0); write one disk of the
7769 * stripe (the stripe could be inconsistent again
7770 * depending on which disks are used to calculate
7771 * parity); the disk is broken; The stripe data of this
7772 * disk is lost.
7773 *
7774 * We only allow DISCARD if the sysadmin has confirmed that
7775 * only safe devices are in use by setting a module parameter.
7776 * A better idea might be to turn DISCARD into WRITE_ZEROES
7777 * requests, as that is required to be safe.
7778 */
7779 if (devices_handle_discard_safely &&
7780 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7781 mddev->queue->limits.discard_granularity >= stripe)
7782 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7783 mddev->queue);
7784 else
7785 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7786 mddev->queue);
7787
7788 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7789 }
7790
7791 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7792 goto abort;
7793
7794 return 0;
7795abort:
7796 md_unregister_thread(&mddev->thread);
7797 print_raid5_conf(conf);
7798 free_conf(conf);
7799 mddev->private = NULL;
7800 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7801 ret = -EIO;
7802exit_acct_set:
7803 acct_bioset_exit(mddev);
7804 return ret;
7805}
7806
7807static void raid5_free(struct mddev *mddev, void *priv)
7808{
7809 struct r5conf *conf = priv;
7810
7811 free_conf(conf);
7812 acct_bioset_exit(mddev);
7813 mddev->to_remove = &raid5_attrs_group;
7814}
7815
7816static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7817{
7818 struct r5conf *conf = mddev->private;
7819 int i;
7820
7821 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7822 conf->chunk_sectors / 2, mddev->layout);
7823 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7824 rcu_read_lock();
7825 for (i = 0; i < conf->raid_disks; i++) {
7826 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7827 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7828 }
7829 rcu_read_unlock();
7830 seq_printf (seq, "]");
7831}
7832
7833static void print_raid5_conf (struct r5conf *conf)
7834{
7835 int i;
7836 struct disk_info *tmp;
7837
7838 pr_debug("RAID conf printout:\n");
7839 if (!conf) {
7840 pr_debug("(conf==NULL)\n");
7841 return;
7842 }
7843 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7844 conf->raid_disks,
7845 conf->raid_disks - conf->mddev->degraded);
7846
7847 for (i = 0; i < conf->raid_disks; i++) {
7848 char b[BDEVNAME_SIZE];
7849 tmp = conf->disks + i;
7850 if (tmp->rdev)
7851 pr_debug(" disk %d, o:%d, dev:%s\n",
7852 i, !test_bit(Faulty, &tmp->rdev->flags),
7853 bdevname(tmp->rdev->bdev, b));
7854 }
7855}
7856
7857static int raid5_spare_active(struct mddev *mddev)
7858{
7859 int i;
7860 struct r5conf *conf = mddev->private;
7861 struct disk_info *tmp;
7862 int count = 0;
7863 unsigned long flags;
7864
7865 for (i = 0; i < conf->raid_disks; i++) {
7866 tmp = conf->disks + i;
7867 if (tmp->replacement
7868 && tmp->replacement->recovery_offset == MaxSector
7869 && !test_bit(Faulty, &tmp->replacement->flags)
7870 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7871 /* Replacement has just become active. */
7872 if (!tmp->rdev
7873 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7874 count++;
7875 if (tmp->rdev) {
7876 /* Replaced device not technically faulty,
7877 * but we need to be sure it gets removed
7878 * and never re-added.
7879 */
7880 set_bit(Faulty, &tmp->rdev->flags);
7881 sysfs_notify_dirent_safe(
7882 tmp->rdev->sysfs_state);
7883 }
7884 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7885 } else if (tmp->rdev
7886 && tmp->rdev->recovery_offset == MaxSector
7887 && !test_bit(Faulty, &tmp->rdev->flags)
7888 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7889 count++;
7890 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7891 }
7892 }
7893 spin_lock_irqsave(&conf->device_lock, flags);
7894 mddev->degraded = raid5_calc_degraded(conf);
7895 spin_unlock_irqrestore(&conf->device_lock, flags);
7896 print_raid5_conf(conf);
7897 return count;
7898}
7899
7900static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7901{
7902 struct r5conf *conf = mddev->private;
7903 int err = 0;
7904 int number = rdev->raid_disk;
7905 struct md_rdev **rdevp;
7906 struct disk_info *p = conf->disks + number;
7907
7908 print_raid5_conf(conf);
7909 if (test_bit(Journal, &rdev->flags) && conf->log) {
7910 /*
7911 * we can't wait pending write here, as this is called in
7912 * raid5d, wait will deadlock.
7913 * neilb: there is no locking about new writes here,
7914 * so this cannot be safe.
7915 */
7916 if (atomic_read(&conf->active_stripes) ||
7917 atomic_read(&conf->r5c_cached_full_stripes) ||
7918 atomic_read(&conf->r5c_cached_partial_stripes)) {
7919 return -EBUSY;
7920 }
7921 log_exit(conf);
7922 return 0;
7923 }
7924 if (rdev == p->rdev)
7925 rdevp = &p->rdev;
7926 else if (rdev == p->replacement)
7927 rdevp = &p->replacement;
7928 else
7929 return 0;
7930
7931 if (number >= conf->raid_disks &&
7932 conf->reshape_progress == MaxSector)
7933 clear_bit(In_sync, &rdev->flags);
7934
7935 if (test_bit(In_sync, &rdev->flags) ||
7936 atomic_read(&rdev->nr_pending)) {
7937 err = -EBUSY;
7938 goto abort;
7939 }
7940 /* Only remove non-faulty devices if recovery
7941 * isn't possible.
7942 */
7943 if (!test_bit(Faulty, &rdev->flags) &&
7944 mddev->recovery_disabled != conf->recovery_disabled &&
7945 !has_failed(conf) &&
7946 (!p->replacement || p->replacement == rdev) &&
7947 number < conf->raid_disks) {
7948 err = -EBUSY;
7949 goto abort;
7950 }
7951 *rdevp = NULL;
7952 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7953 synchronize_rcu();
7954 if (atomic_read(&rdev->nr_pending)) {
7955 /* lost the race, try later */
7956 err = -EBUSY;
7957 *rdevp = rdev;
7958 }
7959 }
7960 if (!err) {
7961 err = log_modify(conf, rdev, false);
7962 if (err)
7963 goto abort;
7964 }
7965 if (p->replacement) {
7966 /* We must have just cleared 'rdev' */
7967 p->rdev = p->replacement;
7968 clear_bit(Replacement, &p->replacement->flags);
7969 smp_mb(); /* Make sure other CPUs may see both as identical
7970 * but will never see neither - if they are careful
7971 */
7972 p->replacement = NULL;
7973
7974 if (!err)
7975 err = log_modify(conf, p->rdev, true);
7976 }
7977
7978 clear_bit(WantReplacement, &rdev->flags);
7979abort:
7980
7981 print_raid5_conf(conf);
7982 return err;
7983}
7984
7985static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7986{
7987 struct r5conf *conf = mddev->private;
7988 int ret, err = -EEXIST;
7989 int disk;
7990 struct disk_info *p;
7991 int first = 0;
7992 int last = conf->raid_disks - 1;
7993
7994 if (test_bit(Journal, &rdev->flags)) {
7995 if (conf->log)
7996 return -EBUSY;
7997
7998 rdev->raid_disk = 0;
7999 /*
8000 * The array is in readonly mode if journal is missing, so no
8001 * write requests running. We should be safe
8002 */
8003 ret = log_init(conf, rdev, false);
8004 if (ret)
8005 return ret;
8006
8007 ret = r5l_start(conf->log);
8008 if (ret)
8009 return ret;
8010
8011 return 0;
8012 }
8013 if (mddev->recovery_disabled == conf->recovery_disabled)
8014 return -EBUSY;
8015
8016 if (rdev->saved_raid_disk < 0 && has_failed(conf))
8017 /* no point adding a device */
8018 return -EINVAL;
8019
8020 if (rdev->raid_disk >= 0)
8021 first = last = rdev->raid_disk;
8022
8023 /*
8024 * find the disk ... but prefer rdev->saved_raid_disk
8025 * if possible.
8026 */
8027 if (rdev->saved_raid_disk >= 0 &&
8028 rdev->saved_raid_disk >= first &&
8029 conf->disks[rdev->saved_raid_disk].rdev == NULL)
8030 first = rdev->saved_raid_disk;
8031
8032 for (disk = first; disk <= last; disk++) {
8033 p = conf->disks + disk;
8034 if (p->rdev == NULL) {
8035 clear_bit(In_sync, &rdev->flags);
8036 rdev->raid_disk = disk;
8037 if (rdev->saved_raid_disk != disk)
8038 conf->fullsync = 1;
8039 rcu_assign_pointer(p->rdev, rdev);
8040
8041 err = log_modify(conf, rdev, true);
8042
8043 goto out;
8044 }
8045 }
8046 for (disk = first; disk <= last; disk++) {
8047 p = conf->disks + disk;
8048 if (test_bit(WantReplacement, &p->rdev->flags) &&
8049 p->replacement == NULL) {
8050 clear_bit(In_sync, &rdev->flags);
8051 set_bit(Replacement, &rdev->flags);
8052 rdev->raid_disk = disk;
8053 err = 0;
8054 conf->fullsync = 1;
8055 rcu_assign_pointer(p->replacement, rdev);
8056 break;
8057 }
8058 }
8059out:
8060 print_raid5_conf(conf);
8061 return err;
8062}
8063
8064static int raid5_resize(struct mddev *mddev, sector_t sectors)
8065{
8066 /* no resync is happening, and there is enough space
8067 * on all devices, so we can resize.
8068 * We need to make sure resync covers any new space.
8069 * If the array is shrinking we should possibly wait until
8070 * any io in the removed space completes, but it hardly seems
8071 * worth it.
8072 */
8073 sector_t newsize;
8074 struct r5conf *conf = mddev->private;
8075
8076 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8077 return -EINVAL;
8078 sectors &= ~((sector_t)conf->chunk_sectors - 1);
8079 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8080 if (mddev->external_size &&
8081 mddev->array_sectors > newsize)
8082 return -EINVAL;
8083 if (mddev->bitmap) {
8084 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
8085 if (ret)
8086 return ret;
8087 }
8088 md_set_array_sectors(mddev, newsize);
8089 if (sectors > mddev->dev_sectors &&
8090 mddev->recovery_cp > mddev->dev_sectors) {
8091 mddev->recovery_cp = mddev->dev_sectors;
8092 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8093 }
8094 mddev->dev_sectors = sectors;
8095 mddev->resync_max_sectors = sectors;
8096 return 0;
8097}
8098
8099static int check_stripe_cache(struct mddev *mddev)
8100{
8101 /* Can only proceed if there are plenty of stripe_heads.
8102 * We need a minimum of one full stripe,, and for sensible progress
8103 * it is best to have about 4 times that.
8104 * If we require 4 times, then the default 256 4K stripe_heads will
8105 * allow for chunk sizes up to 256K, which is probably OK.
8106 * If the chunk size is greater, user-space should request more
8107 * stripe_heads first.
8108 */
8109 struct r5conf *conf = mddev->private;
8110 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8111 > conf->min_nr_stripes ||
8112 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8113 > conf->min_nr_stripes) {
8114 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
8115 mdname(mddev),
8116 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8117 / RAID5_STRIPE_SIZE(conf))*4);
8118 return 0;
8119 }
8120 return 1;
8121}
8122
8123static int check_reshape(struct mddev *mddev)
8124{
8125 struct r5conf *conf = mddev->private;
8126
8127 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8128 return -EINVAL;
8129 if (mddev->delta_disks == 0 &&
8130 mddev->new_layout == mddev->layout &&
8131 mddev->new_chunk_sectors == mddev->chunk_sectors)
8132 return 0; /* nothing to do */
8133 if (has_failed(conf))
8134 return -EINVAL;
8135 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8136 /* We might be able to shrink, but the devices must
8137 * be made bigger first.
8138 * For raid6, 4 is the minimum size.
8139 * Otherwise 2 is the minimum
8140 */
8141 int min = 2;
8142 if (mddev->level == 6)
8143 min = 4;
8144 if (mddev->raid_disks + mddev->delta_disks < min)
8145 return -EINVAL;
8146 }
8147
8148 if (!check_stripe_cache(mddev))
8149 return -ENOSPC;
8150
8151 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8152 mddev->delta_disks > 0)
8153 if (resize_chunks(conf,
8154 conf->previous_raid_disks
8155 + max(0, mddev->delta_disks),
8156 max(mddev->new_chunk_sectors,
8157 mddev->chunk_sectors)
8158 ) < 0)
8159 return -ENOMEM;
8160
8161 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8162 return 0; /* never bother to shrink */
8163 return resize_stripes(conf, (conf->previous_raid_disks
8164 + mddev->delta_disks));
8165}
8166
8167static int raid5_start_reshape(struct mddev *mddev)
8168{
8169 struct r5conf *conf = mddev->private;
8170 struct md_rdev *rdev;
8171 int spares = 0;
8172 unsigned long flags;
8173
8174 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8175 return -EBUSY;
8176
8177 if (!check_stripe_cache(mddev))
8178 return -ENOSPC;
8179
8180 if (has_failed(conf))
8181 return -EINVAL;
8182
8183 rdev_for_each(rdev, mddev) {
8184 if (!test_bit(In_sync, &rdev->flags)
8185 && !test_bit(Faulty, &rdev->flags))
8186 spares++;
8187 }
8188
8189 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8190 /* Not enough devices even to make a degraded array
8191 * of that size
8192 */
8193 return -EINVAL;
8194
8195 /* Refuse to reduce size of the array. Any reductions in
8196 * array size must be through explicit setting of array_size
8197 * attribute.
8198 */
8199 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8200 < mddev->array_sectors) {
8201 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8202 mdname(mddev));
8203 return -EINVAL;
8204 }
8205
8206 atomic_set(&conf->reshape_stripes, 0);
8207 spin_lock_irq(&conf->device_lock);
8208 write_seqcount_begin(&conf->gen_lock);
8209 conf->previous_raid_disks = conf->raid_disks;
8210 conf->raid_disks += mddev->delta_disks;
8211 conf->prev_chunk_sectors = conf->chunk_sectors;
8212 conf->chunk_sectors = mddev->new_chunk_sectors;
8213 conf->prev_algo = conf->algorithm;
8214 conf->algorithm = mddev->new_layout;
8215 conf->generation++;
8216 /* Code that selects data_offset needs to see the generation update
8217 * if reshape_progress has been set - so a memory barrier needed.
8218 */
8219 smp_mb();
8220 if (mddev->reshape_backwards)
8221 conf->reshape_progress = raid5_size(mddev, 0, 0);
8222 else
8223 conf->reshape_progress = 0;
8224 conf->reshape_safe = conf->reshape_progress;
8225 write_seqcount_end(&conf->gen_lock);
8226 spin_unlock_irq(&conf->device_lock);
8227
8228 /* Now make sure any requests that proceeded on the assumption
8229 * the reshape wasn't running - like Discard or Read - have
8230 * completed.
8231 */
8232 mddev_suspend(mddev);
8233 mddev_resume(mddev);
8234
8235 /* Add some new drives, as many as will fit.
8236 * We know there are enough to make the newly sized array work.
8237 * Don't add devices if we are reducing the number of
8238 * devices in the array. This is because it is not possible
8239 * to correctly record the "partially reconstructed" state of
8240 * such devices during the reshape and confusion could result.
8241 */
8242 if (mddev->delta_disks >= 0) {
8243 rdev_for_each(rdev, mddev)
8244 if (rdev->raid_disk < 0 &&
8245 !test_bit(Faulty, &rdev->flags)) {
8246 if (raid5_add_disk(mddev, rdev) == 0) {
8247 if (rdev->raid_disk
8248 >= conf->previous_raid_disks)
8249 set_bit(In_sync, &rdev->flags);
8250 else
8251 rdev->recovery_offset = 0;
8252
8253 /* Failure here is OK */
8254 sysfs_link_rdev(mddev, rdev);
8255 }
8256 } else if (rdev->raid_disk >= conf->previous_raid_disks
8257 && !test_bit(Faulty, &rdev->flags)) {
8258 /* This is a spare that was manually added */
8259 set_bit(In_sync, &rdev->flags);
8260 }
8261
8262 /* When a reshape changes the number of devices,
8263 * ->degraded is measured against the larger of the
8264 * pre and post number of devices.
8265 */
8266 spin_lock_irqsave(&conf->device_lock, flags);
8267 mddev->degraded = raid5_calc_degraded(conf);
8268 spin_unlock_irqrestore(&conf->device_lock, flags);
8269 }
8270 mddev->raid_disks = conf->raid_disks;
8271 mddev->reshape_position = conf->reshape_progress;
8272 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8273
8274 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8275 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8276 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8277 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8278 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8279 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
8280 "reshape");
8281 if (!mddev->sync_thread) {
8282 mddev->recovery = 0;
8283 spin_lock_irq(&conf->device_lock);
8284 write_seqcount_begin(&conf->gen_lock);
8285 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
8286 mddev->new_chunk_sectors =
8287 conf->chunk_sectors = conf->prev_chunk_sectors;
8288 mddev->new_layout = conf->algorithm = conf->prev_algo;
8289 rdev_for_each(rdev, mddev)
8290 rdev->new_data_offset = rdev->data_offset;
8291 smp_wmb();
8292 conf->generation --;
8293 conf->reshape_progress = MaxSector;
8294 mddev->reshape_position = MaxSector;
8295 write_seqcount_end(&conf->gen_lock);
8296 spin_unlock_irq(&conf->device_lock);
8297 return -EAGAIN;
8298 }
8299 conf->reshape_checkpoint = jiffies;
8300 md_wakeup_thread(mddev->sync_thread);
8301 md_new_event();
8302 return 0;
8303}
8304
8305/* This is called from the reshape thread and should make any
8306 * changes needed in 'conf'
8307 */
8308static void end_reshape(struct r5conf *conf)
8309{
8310
8311 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8312 struct md_rdev *rdev;
8313
8314 spin_lock_irq(&conf->device_lock);
8315 conf->previous_raid_disks = conf->raid_disks;
8316 md_finish_reshape(conf->mddev);
8317 smp_wmb();
8318 conf->reshape_progress = MaxSector;
8319 conf->mddev->reshape_position = MaxSector;
8320 rdev_for_each(rdev, conf->mddev)
8321 if (rdev->raid_disk >= 0 &&
8322 !test_bit(Journal, &rdev->flags) &&
8323 !test_bit(In_sync, &rdev->flags))
8324 rdev->recovery_offset = MaxSector;
8325 spin_unlock_irq(&conf->device_lock);
8326 wake_up(&conf->wait_for_overlap);
8327
8328 if (conf->mddev->queue)
8329 raid5_set_io_opt(conf);
8330 }
8331}
8332
8333/* This is called from the raid5d thread with mddev_lock held.
8334 * It makes config changes to the device.
8335 */
8336static void raid5_finish_reshape(struct mddev *mddev)
8337{
8338 struct r5conf *conf = mddev->private;
8339
8340 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8341
8342 if (mddev->delta_disks <= 0) {
8343 int d;
8344 spin_lock_irq(&conf->device_lock);
8345 mddev->degraded = raid5_calc_degraded(conf);
8346 spin_unlock_irq(&conf->device_lock);
8347 for (d = conf->raid_disks ;
8348 d < conf->raid_disks - mddev->delta_disks;
8349 d++) {
8350 struct md_rdev *rdev = conf->disks[d].rdev;
8351 if (rdev)
8352 clear_bit(In_sync, &rdev->flags);
8353 rdev = conf->disks[d].replacement;
8354 if (rdev)
8355 clear_bit(In_sync, &rdev->flags);
8356 }
8357 }
8358 mddev->layout = conf->algorithm;
8359 mddev->chunk_sectors = conf->chunk_sectors;
8360 mddev->reshape_position = MaxSector;
8361 mddev->delta_disks = 0;
8362 mddev->reshape_backwards = 0;
8363 }
8364}
8365
8366static void raid5_quiesce(struct mddev *mddev, int quiesce)
8367{
8368 struct r5conf *conf = mddev->private;
8369
8370 if (quiesce) {
8371 /* stop all writes */
8372 lock_all_device_hash_locks_irq(conf);
8373 /* '2' tells resync/reshape to pause so that all
8374 * active stripes can drain
8375 */
8376 r5c_flush_cache(conf, INT_MAX);
8377 /* need a memory barrier to make sure read_one_chunk() sees
8378 * quiesce started and reverts to slow (locked) path.
8379 */
8380 smp_store_release(&conf->quiesce, 2);
8381 wait_event_cmd(conf->wait_for_quiescent,
8382 atomic_read(&conf->active_stripes) == 0 &&
8383 atomic_read(&conf->active_aligned_reads) == 0,
8384 unlock_all_device_hash_locks_irq(conf),
8385 lock_all_device_hash_locks_irq(conf));
8386 conf->quiesce = 1;
8387 unlock_all_device_hash_locks_irq(conf);
8388 /* allow reshape to continue */
8389 wake_up(&conf->wait_for_overlap);
8390 } else {
8391 /* re-enable writes */
8392 lock_all_device_hash_locks_irq(conf);
8393 conf->quiesce = 0;
8394 wake_up(&conf->wait_for_quiescent);
8395 wake_up(&conf->wait_for_overlap);
8396 unlock_all_device_hash_locks_irq(conf);
8397 }
8398 log_quiesce(conf, quiesce);
8399}
8400
8401static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8402{
8403 struct r0conf *raid0_conf = mddev->private;
8404 sector_t sectors;
8405
8406 /* for raid0 takeover only one zone is supported */
8407 if (raid0_conf->nr_strip_zones > 1) {
8408 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8409 mdname(mddev));
8410 return ERR_PTR(-EINVAL);
8411 }
8412
8413 sectors = raid0_conf->strip_zone[0].zone_end;
8414 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8415 mddev->dev_sectors = sectors;
8416 mddev->new_level = level;
8417 mddev->new_layout = ALGORITHM_PARITY_N;
8418 mddev->new_chunk_sectors = mddev->chunk_sectors;
8419 mddev->raid_disks += 1;
8420 mddev->delta_disks = 1;
8421 /* make sure it will be not marked as dirty */
8422 mddev->recovery_cp = MaxSector;
8423
8424 return setup_conf(mddev);
8425}
8426
8427static void *raid5_takeover_raid1(struct mddev *mddev)
8428{
8429 int chunksect;
8430 void *ret;
8431
8432 if (mddev->raid_disks != 2 ||
8433 mddev->degraded > 1)
8434 return ERR_PTR(-EINVAL);
8435
8436 /* Should check if there are write-behind devices? */
8437
8438 chunksect = 64*2; /* 64K by default */
8439
8440 /* The array must be an exact multiple of chunksize */
8441 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8442 chunksect >>= 1;
8443
8444 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8445 /* array size does not allow a suitable chunk size */
8446 return ERR_PTR(-EINVAL);
8447
8448 mddev->new_level = 5;
8449 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8450 mddev->new_chunk_sectors = chunksect;
8451
8452 ret = setup_conf(mddev);
8453 if (!IS_ERR(ret))
8454 mddev_clear_unsupported_flags(mddev,
8455 UNSUPPORTED_MDDEV_FLAGS);
8456 return ret;
8457}
8458
8459static void *raid5_takeover_raid6(struct mddev *mddev)
8460{
8461 int new_layout;
8462
8463 switch (mddev->layout) {
8464 case ALGORITHM_LEFT_ASYMMETRIC_6:
8465 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8466 break;
8467 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8468 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8469 break;
8470 case ALGORITHM_LEFT_SYMMETRIC_6:
8471 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8472 break;
8473 case ALGORITHM_RIGHT_SYMMETRIC_6:
8474 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8475 break;
8476 case ALGORITHM_PARITY_0_6:
8477 new_layout = ALGORITHM_PARITY_0;
8478 break;
8479 case ALGORITHM_PARITY_N:
8480 new_layout = ALGORITHM_PARITY_N;
8481 break;
8482 default:
8483 return ERR_PTR(-EINVAL);
8484 }
8485 mddev->new_level = 5;
8486 mddev->new_layout = new_layout;
8487 mddev->delta_disks = -1;
8488 mddev->raid_disks -= 1;
8489 return setup_conf(mddev);
8490}
8491
8492static int raid5_check_reshape(struct mddev *mddev)
8493{
8494 /* For a 2-drive array, the layout and chunk size can be changed
8495 * immediately as not restriping is needed.
8496 * For larger arrays we record the new value - after validation
8497 * to be used by a reshape pass.
8498 */
8499 struct r5conf *conf = mddev->private;
8500 int new_chunk = mddev->new_chunk_sectors;
8501
8502 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8503 return -EINVAL;
8504 if (new_chunk > 0) {
8505 if (!is_power_of_2(new_chunk))
8506 return -EINVAL;
8507 if (new_chunk < (PAGE_SIZE>>9))
8508 return -EINVAL;
8509 if (mddev->array_sectors & (new_chunk-1))
8510 /* not factor of array size */
8511 return -EINVAL;
8512 }
8513
8514 /* They look valid */
8515
8516 if (mddev->raid_disks == 2) {
8517 /* can make the change immediately */
8518 if (mddev->new_layout >= 0) {
8519 conf->algorithm = mddev->new_layout;
8520 mddev->layout = mddev->new_layout;
8521 }
8522 if (new_chunk > 0) {
8523 conf->chunk_sectors = new_chunk ;
8524 mddev->chunk_sectors = new_chunk;
8525 }
8526 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8527 md_wakeup_thread(mddev->thread);
8528 }
8529 return check_reshape(mddev);
8530}
8531
8532static int raid6_check_reshape(struct mddev *mddev)
8533{
8534 int new_chunk = mddev->new_chunk_sectors;
8535
8536 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8537 return -EINVAL;
8538 if (new_chunk > 0) {
8539 if (!is_power_of_2(new_chunk))
8540 return -EINVAL;
8541 if (new_chunk < (PAGE_SIZE >> 9))
8542 return -EINVAL;
8543 if (mddev->array_sectors & (new_chunk-1))
8544 /* not factor of array size */
8545 return -EINVAL;
8546 }
8547
8548 /* They look valid */
8549 return check_reshape(mddev);
8550}
8551
8552static void *raid5_takeover(struct mddev *mddev)
8553{
8554 /* raid5 can take over:
8555 * raid0 - if there is only one strip zone - make it a raid4 layout
8556 * raid1 - if there are two drives. We need to know the chunk size
8557 * raid4 - trivial - just use a raid4 layout.
8558 * raid6 - Providing it is a *_6 layout
8559 */
8560 if (mddev->level == 0)
8561 return raid45_takeover_raid0(mddev, 5);
8562 if (mddev->level == 1)
8563 return raid5_takeover_raid1(mddev);
8564 if (mddev->level == 4) {
8565 mddev->new_layout = ALGORITHM_PARITY_N;
8566 mddev->new_level = 5;
8567 return setup_conf(mddev);
8568 }
8569 if (mddev->level == 6)
8570 return raid5_takeover_raid6(mddev);
8571
8572 return ERR_PTR(-EINVAL);
8573}
8574
8575static void *raid4_takeover(struct mddev *mddev)
8576{
8577 /* raid4 can take over:
8578 * raid0 - if there is only one strip zone
8579 * raid5 - if layout is right
8580 */
8581 if (mddev->level == 0)
8582 return raid45_takeover_raid0(mddev, 4);
8583 if (mddev->level == 5 &&
8584 mddev->layout == ALGORITHM_PARITY_N) {
8585 mddev->new_layout = 0;
8586 mddev->new_level = 4;
8587 return setup_conf(mddev);
8588 }
8589 return ERR_PTR(-EINVAL);
8590}
8591
8592static struct md_personality raid5_personality;
8593
8594static void *raid6_takeover(struct mddev *mddev)
8595{
8596 /* Currently can only take over a raid5. We map the
8597 * personality to an equivalent raid6 personality
8598 * with the Q block at the end.
8599 */
8600 int new_layout;
8601
8602 if (mddev->pers != &raid5_personality)
8603 return ERR_PTR(-EINVAL);
8604 if (mddev->degraded > 1)
8605 return ERR_PTR(-EINVAL);
8606 if (mddev->raid_disks > 253)
8607 return ERR_PTR(-EINVAL);
8608 if (mddev->raid_disks < 3)
8609 return ERR_PTR(-EINVAL);
8610
8611 switch (mddev->layout) {
8612 case ALGORITHM_LEFT_ASYMMETRIC:
8613 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8614 break;
8615 case ALGORITHM_RIGHT_ASYMMETRIC:
8616 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8617 break;
8618 case ALGORITHM_LEFT_SYMMETRIC:
8619 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8620 break;
8621 case ALGORITHM_RIGHT_SYMMETRIC:
8622 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8623 break;
8624 case ALGORITHM_PARITY_0:
8625 new_layout = ALGORITHM_PARITY_0_6;
8626 break;
8627 case ALGORITHM_PARITY_N:
8628 new_layout = ALGORITHM_PARITY_N;
8629 break;
8630 default:
8631 return ERR_PTR(-EINVAL);
8632 }
8633 mddev->new_level = 6;
8634 mddev->new_layout = new_layout;
8635 mddev->delta_disks = 1;
8636 mddev->raid_disks += 1;
8637 return setup_conf(mddev);
8638}
8639
8640static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8641{
8642 struct r5conf *conf;
8643 int err;
8644
8645 err = mddev_lock(mddev);
8646 if (err)
8647 return err;
8648 conf = mddev->private;
8649 if (!conf) {
8650 mddev_unlock(mddev);
8651 return -ENODEV;
8652 }
8653
8654 if (strncmp(buf, "ppl", 3) == 0) {
8655 /* ppl only works with RAID 5 */
8656 if (!raid5_has_ppl(conf) && conf->level == 5) {
8657 err = log_init(conf, NULL, true);
8658 if (!err) {
8659 err = resize_stripes(conf, conf->pool_size);
8660 if (err)
8661 log_exit(conf);
8662 }
8663 } else
8664 err = -EINVAL;
8665 } else if (strncmp(buf, "resync", 6) == 0) {
8666 if (raid5_has_ppl(conf)) {
8667 mddev_suspend(mddev);
8668 log_exit(conf);
8669 mddev_resume(mddev);
8670 err = resize_stripes(conf, conf->pool_size);
8671 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8672 r5l_log_disk_error(conf)) {
8673 bool journal_dev_exists = false;
8674 struct md_rdev *rdev;
8675
8676 rdev_for_each(rdev, mddev)
8677 if (test_bit(Journal, &rdev->flags)) {
8678 journal_dev_exists = true;
8679 break;
8680 }
8681
8682 if (!journal_dev_exists) {
8683 mddev_suspend(mddev);
8684 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8685 mddev_resume(mddev);
8686 } else /* need remove journal device first */
8687 err = -EBUSY;
8688 } else
8689 err = -EINVAL;
8690 } else {
8691 err = -EINVAL;
8692 }
8693
8694 if (!err)
8695 md_update_sb(mddev, 1);
8696
8697 mddev_unlock(mddev);
8698
8699 return err;
8700}
8701
8702static int raid5_start(struct mddev *mddev)
8703{
8704 struct r5conf *conf = mddev->private;
8705
8706 return r5l_start(conf->log);
8707}
8708
8709static struct md_personality raid6_personality =
8710{
8711 .name = "raid6",
8712 .level = 6,
8713 .owner = THIS_MODULE,
8714 .make_request = raid5_make_request,
8715 .run = raid5_run,
8716 .start = raid5_start,
8717 .free = raid5_free,
8718 .status = raid5_status,
8719 .error_handler = raid5_error,
8720 .hot_add_disk = raid5_add_disk,
8721 .hot_remove_disk= raid5_remove_disk,
8722 .spare_active = raid5_spare_active,
8723 .sync_request = raid5_sync_request,
8724 .resize = raid5_resize,
8725 .size = raid5_size,
8726 .check_reshape = raid6_check_reshape,
8727 .start_reshape = raid5_start_reshape,
8728 .finish_reshape = raid5_finish_reshape,
8729 .quiesce = raid5_quiesce,
8730 .takeover = raid6_takeover,
8731 .change_consistency_policy = raid5_change_consistency_policy,
8732};
8733static struct md_personality raid5_personality =
8734{
8735 .name = "raid5",
8736 .level = 5,
8737 .owner = THIS_MODULE,
8738 .make_request = raid5_make_request,
8739 .run = raid5_run,
8740 .start = raid5_start,
8741 .free = raid5_free,
8742 .status = raid5_status,
8743 .error_handler = raid5_error,
8744 .hot_add_disk = raid5_add_disk,
8745 .hot_remove_disk= raid5_remove_disk,
8746 .spare_active = raid5_spare_active,
8747 .sync_request = raid5_sync_request,
8748 .resize = raid5_resize,
8749 .size = raid5_size,
8750 .check_reshape = raid5_check_reshape,
8751 .start_reshape = raid5_start_reshape,
8752 .finish_reshape = raid5_finish_reshape,
8753 .quiesce = raid5_quiesce,
8754 .takeover = raid5_takeover,
8755 .change_consistency_policy = raid5_change_consistency_policy,
8756};
8757
8758static struct md_personality raid4_personality =
8759{
8760 .name = "raid4",
8761 .level = 4,
8762 .owner = THIS_MODULE,
8763 .make_request = raid5_make_request,
8764 .run = raid5_run,
8765 .start = raid5_start,
8766 .free = raid5_free,
8767 .status = raid5_status,
8768 .error_handler = raid5_error,
8769 .hot_add_disk = raid5_add_disk,
8770 .hot_remove_disk= raid5_remove_disk,
8771 .spare_active = raid5_spare_active,
8772 .sync_request = raid5_sync_request,
8773 .resize = raid5_resize,
8774 .size = raid5_size,
8775 .check_reshape = raid5_check_reshape,
8776 .start_reshape = raid5_start_reshape,
8777 .finish_reshape = raid5_finish_reshape,
8778 .quiesce = raid5_quiesce,
8779 .takeover = raid4_takeover,
8780 .change_consistency_policy = raid5_change_consistency_policy,
8781};
8782
8783static int __init raid5_init(void)
8784{
8785 int ret;
8786
8787 raid5_wq = alloc_workqueue("raid5wq",
8788 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8789 if (!raid5_wq)
8790 return -ENOMEM;
8791
8792 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8793 "md/raid5:prepare",
8794 raid456_cpu_up_prepare,
8795 raid456_cpu_dead);
8796 if (ret) {
8797 destroy_workqueue(raid5_wq);
8798 return ret;
8799 }
8800 register_md_personality(&raid6_personality);
8801 register_md_personality(&raid5_personality);
8802 register_md_personality(&raid4_personality);
8803 return 0;
8804}
8805
8806static void raid5_exit(void)
8807{
8808 unregister_md_personality(&raid6_personality);
8809 unregister_md_personality(&raid5_personality);
8810 unregister_md_personality(&raid4_personality);
8811 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8812 destroy_workqueue(raid5_wq);
8813}
8814
8815module_init(raid5_init);
8816module_exit(raid5_exit);
8817MODULE_LICENSE("GPL");
8818MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8819MODULE_ALIAS("md-personality-4"); /* RAID5 */
8820MODULE_ALIAS("md-raid5");
8821MODULE_ALIAS("md-raid4");
8822MODULE_ALIAS("md-level-5");
8823MODULE_ALIAS("md-level-4");
8824MODULE_ALIAS("md-personality-8"); /* RAID6 */
8825MODULE_ALIAS("md-raid6");
8826MODULE_ALIAS("md-level-6");
8827
8828/* This used to be two separate modules, they were: */
8829MODULE_ALIAS("raid5");
8830MODULE_ALIAS("raid6");