Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid10.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 2000-2004 Neil Brown
6 *
7 * RAID-10 support for md.
8 *
9 * Base on code in raid1.c. See raid1.c for further copyright information.
10 */
11
12#include <linux/slab.h>
13#include <linux/delay.h>
14#include <linux/blkdev.h>
15#include <linux/module.h>
16#include <linux/seq_file.h>
17#include <linux/ratelimit.h>
18#include <linux/kthread.h>
19#include <linux/raid/md_p.h>
20#include <trace/events/block.h>
21#include "md.h"
22#include "raid10.h"
23#include "raid0.h"
24#include "md-bitmap.h"
25
26/*
27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
28 * The layout of data is defined by
29 * chunk_size
30 * raid_disks
31 * near_copies (stored in low byte of layout)
32 * far_copies (stored in second byte of layout)
33 * far_offset (stored in bit 16 of layout )
34 * use_far_sets (stored in bit 17 of layout )
35 * use_far_sets_bugfixed (stored in bit 18 of layout )
36 *
37 * The data to be stored is divided into chunks using chunksize. Each device
38 * is divided into far_copies sections. In each section, chunks are laid out
39 * in a style similar to raid0, but near_copies copies of each chunk is stored
40 * (each on a different drive). The starting device for each section is offset
41 * near_copies from the starting device of the previous section. Thus there
42 * are (near_copies * far_copies) of each chunk, and each is on a different
43 * drive. near_copies and far_copies must be at least one, and their product
44 * is at most raid_disks.
45 *
46 * If far_offset is true, then the far_copies are handled a bit differently.
47 * The copies are still in different stripes, but instead of being very far
48 * apart on disk, there are adjacent stripes.
49 *
50 * The far and offset algorithms are handled slightly differently if
51 * 'use_far_sets' is true. In this case, the array's devices are grouped into
52 * sets that are (near_copies * far_copies) in size. The far copied stripes
53 * are still shifted by 'near_copies' devices, but this shifting stays confined
54 * to the set rather than the entire array. This is done to improve the number
55 * of device combinations that can fail without causing the array to fail.
56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57 * on a device):
58 * A B C D A B C D E
59 * ... ...
60 * D A B C E A B C D
61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62 * [A B] [C D] [A B] [C D E]
63 * |...| |...| |...| | ... |
64 * [B A] [D C] [B A] [E C D]
65 */
66
67static void allow_barrier(struct r10conf *conf);
68static void lower_barrier(struct r10conf *conf);
69static int _enough(struct r10conf *conf, int previous, int ignore);
70static int enough(struct r10conf *conf, int ignore);
71static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 int *skipped);
73static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74static void end_reshape_write(struct bio *bio);
75static void end_reshape(struct r10conf *conf);
76
77#define raid10_log(md, fmt, args...) \
78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80#include "raid1-10.c"
81
82/*
83 * for resync bio, r10bio pointer can be retrieved from the per-bio
84 * 'struct resync_pages'.
85 */
86static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87{
88 return get_resync_pages(bio)->raid_bio;
89}
90
91static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92{
93 struct r10conf *conf = data;
94 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
95
96 /* allocate a r10bio with room for raid_disks entries in the
97 * bios array */
98 return kzalloc(size, gfp_flags);
99}
100
101#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102/* amount of memory to reserve for resync requests */
103#define RESYNC_WINDOW (1024*1024)
104/* maximum number of concurrent requests, memory permitting */
105#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108
109/*
110 * When performing a resync, we need to read and compare, so
111 * we need as many pages are there are copies.
112 * When performing a recovery, we need 2 bios, one for read,
113 * one for write (we recover only one drive per r10buf)
114 *
115 */
116static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117{
118 struct r10conf *conf = data;
119 struct r10bio *r10_bio;
120 struct bio *bio;
121 int j;
122 int nalloc, nalloc_rp;
123 struct resync_pages *rps;
124
125 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126 if (!r10_bio)
127 return NULL;
128
129 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131 nalloc = conf->copies; /* resync */
132 else
133 nalloc = 2; /* recovery */
134
135 /* allocate once for all bios */
136 if (!conf->have_replacement)
137 nalloc_rp = nalloc;
138 else
139 nalloc_rp = nalloc * 2;
140 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141 if (!rps)
142 goto out_free_r10bio;
143
144 /*
145 * Allocate bios.
146 */
147 for (j = nalloc ; j-- ; ) {
148 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149 if (!bio)
150 goto out_free_bio;
151 r10_bio->devs[j].bio = bio;
152 if (!conf->have_replacement)
153 continue;
154 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155 if (!bio)
156 goto out_free_bio;
157 r10_bio->devs[j].repl_bio = bio;
158 }
159 /*
160 * Allocate RESYNC_PAGES data pages and attach them
161 * where needed.
162 */
163 for (j = 0; j < nalloc; j++) {
164 struct bio *rbio = r10_bio->devs[j].repl_bio;
165 struct resync_pages *rp, *rp_repl;
166
167 rp = &rps[j];
168 if (rbio)
169 rp_repl = &rps[nalloc + j];
170
171 bio = r10_bio->devs[j].bio;
172
173 if (!j || test_bit(MD_RECOVERY_SYNC,
174 &conf->mddev->recovery)) {
175 if (resync_alloc_pages(rp, gfp_flags))
176 goto out_free_pages;
177 } else {
178 memcpy(rp, &rps[0], sizeof(*rp));
179 resync_get_all_pages(rp);
180 }
181
182 rp->raid_bio = r10_bio;
183 bio->bi_private = rp;
184 if (rbio) {
185 memcpy(rp_repl, rp, sizeof(*rp));
186 rbio->bi_private = rp_repl;
187 }
188 }
189
190 return r10_bio;
191
192out_free_pages:
193 while (--j >= 0)
194 resync_free_pages(&rps[j]);
195
196 j = 0;
197out_free_bio:
198 for ( ; j < nalloc; j++) {
199 if (r10_bio->devs[j].bio)
200 bio_put(r10_bio->devs[j].bio);
201 if (r10_bio->devs[j].repl_bio)
202 bio_put(r10_bio->devs[j].repl_bio);
203 }
204 kfree(rps);
205out_free_r10bio:
206 rbio_pool_free(r10_bio, conf);
207 return NULL;
208}
209
210static void r10buf_pool_free(void *__r10_bio, void *data)
211{
212 struct r10conf *conf = data;
213 struct r10bio *r10bio = __r10_bio;
214 int j;
215 struct resync_pages *rp = NULL;
216
217 for (j = conf->copies; j--; ) {
218 struct bio *bio = r10bio->devs[j].bio;
219
220 if (bio) {
221 rp = get_resync_pages(bio);
222 resync_free_pages(rp);
223 bio_put(bio);
224 }
225
226 bio = r10bio->devs[j].repl_bio;
227 if (bio)
228 bio_put(bio);
229 }
230
231 /* resync pages array stored in the 1st bio's .bi_private */
232 kfree(rp);
233
234 rbio_pool_free(r10bio, conf);
235}
236
237static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238{
239 int i;
240
241 for (i = 0; i < conf->geo.raid_disks; i++) {
242 struct bio **bio = & r10_bio->devs[i].bio;
243 if (!BIO_SPECIAL(*bio))
244 bio_put(*bio);
245 *bio = NULL;
246 bio = &r10_bio->devs[i].repl_bio;
247 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248 bio_put(*bio);
249 *bio = NULL;
250 }
251}
252
253static void free_r10bio(struct r10bio *r10_bio)
254{
255 struct r10conf *conf = r10_bio->mddev->private;
256
257 put_all_bios(conf, r10_bio);
258 mempool_free(r10_bio, &conf->r10bio_pool);
259}
260
261static void put_buf(struct r10bio *r10_bio)
262{
263 struct r10conf *conf = r10_bio->mddev->private;
264
265 mempool_free(r10_bio, &conf->r10buf_pool);
266
267 lower_barrier(conf);
268}
269
270static void reschedule_retry(struct r10bio *r10_bio)
271{
272 unsigned long flags;
273 struct mddev *mddev = r10_bio->mddev;
274 struct r10conf *conf = mddev->private;
275
276 spin_lock_irqsave(&conf->device_lock, flags);
277 list_add(&r10_bio->retry_list, &conf->retry_list);
278 conf->nr_queued ++;
279 spin_unlock_irqrestore(&conf->device_lock, flags);
280
281 /* wake up frozen array... */
282 wake_up(&conf->wait_barrier);
283
284 md_wakeup_thread(mddev->thread);
285}
286
287/*
288 * raid_end_bio_io() is called when we have finished servicing a mirrored
289 * operation and are ready to return a success/failure code to the buffer
290 * cache layer.
291 */
292static void raid_end_bio_io(struct r10bio *r10_bio)
293{
294 struct bio *bio = r10_bio->master_bio;
295 struct r10conf *conf = r10_bio->mddev->private;
296
297 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298 bio->bi_status = BLK_STS_IOERR;
299
300 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
301 bio_end_io_acct(bio, r10_bio->start_time);
302 bio_endio(bio);
303 /*
304 * Wake up any possible resync thread that waits for the device
305 * to go idle.
306 */
307 allow_barrier(conf);
308
309 free_r10bio(r10_bio);
310}
311
312/*
313 * Update disk head position estimator based on IRQ completion info.
314 */
315static inline void update_head_pos(int slot, struct r10bio *r10_bio)
316{
317 struct r10conf *conf = r10_bio->mddev->private;
318
319 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
320 r10_bio->devs[slot].addr + (r10_bio->sectors);
321}
322
323/*
324 * Find the disk number which triggered given bio
325 */
326static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
327 struct bio *bio, int *slotp, int *replp)
328{
329 int slot;
330 int repl = 0;
331
332 for (slot = 0; slot < conf->geo.raid_disks; slot++) {
333 if (r10_bio->devs[slot].bio == bio)
334 break;
335 if (r10_bio->devs[slot].repl_bio == bio) {
336 repl = 1;
337 break;
338 }
339 }
340
341 update_head_pos(slot, r10_bio);
342
343 if (slotp)
344 *slotp = slot;
345 if (replp)
346 *replp = repl;
347 return r10_bio->devs[slot].devnum;
348}
349
350static void raid10_end_read_request(struct bio *bio)
351{
352 int uptodate = !bio->bi_status;
353 struct r10bio *r10_bio = bio->bi_private;
354 int slot;
355 struct md_rdev *rdev;
356 struct r10conf *conf = r10_bio->mddev->private;
357
358 slot = r10_bio->read_slot;
359 rdev = r10_bio->devs[slot].rdev;
360 /*
361 * this branch is our 'one mirror IO has finished' event handler:
362 */
363 update_head_pos(slot, r10_bio);
364
365 if (uptodate) {
366 /*
367 * Set R10BIO_Uptodate in our master bio, so that
368 * we will return a good error code to the higher
369 * levels even if IO on some other mirrored buffer fails.
370 *
371 * The 'master' represents the composite IO operation to
372 * user-side. So if something waits for IO, then it will
373 * wait for the 'master' bio.
374 */
375 set_bit(R10BIO_Uptodate, &r10_bio->state);
376 } else {
377 /* If all other devices that store this block have
378 * failed, we want to return the error upwards rather
379 * than fail the last device. Here we redefine
380 * "uptodate" to mean "Don't want to retry"
381 */
382 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
383 rdev->raid_disk))
384 uptodate = 1;
385 }
386 if (uptodate) {
387 raid_end_bio_io(r10_bio);
388 rdev_dec_pending(rdev, conf->mddev);
389 } else {
390 /*
391 * oops, read error - keep the refcount on the rdev
392 */
393 char b[BDEVNAME_SIZE];
394 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
395 mdname(conf->mddev),
396 bdevname(rdev->bdev, b),
397 (unsigned long long)r10_bio->sector);
398 set_bit(R10BIO_ReadError, &r10_bio->state);
399 reschedule_retry(r10_bio);
400 }
401}
402
403static void close_write(struct r10bio *r10_bio)
404{
405 /* clear the bitmap if all writes complete successfully */
406 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
407 r10_bio->sectors,
408 !test_bit(R10BIO_Degraded, &r10_bio->state),
409 0);
410 md_write_end(r10_bio->mddev);
411}
412
413static void one_write_done(struct r10bio *r10_bio)
414{
415 if (atomic_dec_and_test(&r10_bio->remaining)) {
416 if (test_bit(R10BIO_WriteError, &r10_bio->state))
417 reschedule_retry(r10_bio);
418 else {
419 close_write(r10_bio);
420 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
421 reschedule_retry(r10_bio);
422 else
423 raid_end_bio_io(r10_bio);
424 }
425 }
426}
427
428static void raid10_end_write_request(struct bio *bio)
429{
430 struct r10bio *r10_bio = bio->bi_private;
431 int dev;
432 int dec_rdev = 1;
433 struct r10conf *conf = r10_bio->mddev->private;
434 int slot, repl;
435 struct md_rdev *rdev = NULL;
436 struct bio *to_put = NULL;
437 bool discard_error;
438
439 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
440
441 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
442
443 if (repl)
444 rdev = conf->mirrors[dev].replacement;
445 if (!rdev) {
446 smp_rmb();
447 repl = 0;
448 rdev = conf->mirrors[dev].rdev;
449 }
450 /*
451 * this branch is our 'one mirror IO has finished' event handler:
452 */
453 if (bio->bi_status && !discard_error) {
454 if (repl)
455 /* Never record new bad blocks to replacement,
456 * just fail it.
457 */
458 md_error(rdev->mddev, rdev);
459 else {
460 set_bit(WriteErrorSeen, &rdev->flags);
461 if (!test_and_set_bit(WantReplacement, &rdev->flags))
462 set_bit(MD_RECOVERY_NEEDED,
463 &rdev->mddev->recovery);
464
465 dec_rdev = 0;
466 if (test_bit(FailFast, &rdev->flags) &&
467 (bio->bi_opf & MD_FAILFAST)) {
468 md_error(rdev->mddev, rdev);
469 }
470
471 /*
472 * When the device is faulty, it is not necessary to
473 * handle write error.
474 */
475 if (!test_bit(Faulty, &rdev->flags))
476 set_bit(R10BIO_WriteError, &r10_bio->state);
477 else {
478 /* Fail the request */
479 set_bit(R10BIO_Degraded, &r10_bio->state);
480 r10_bio->devs[slot].bio = NULL;
481 to_put = bio;
482 dec_rdev = 1;
483 }
484 }
485 } else {
486 /*
487 * Set R10BIO_Uptodate in our master bio, so that
488 * we will return a good error code for to the higher
489 * levels even if IO on some other mirrored buffer fails.
490 *
491 * The 'master' represents the composite IO operation to
492 * user-side. So if something waits for IO, then it will
493 * wait for the 'master' bio.
494 */
495 sector_t first_bad;
496 int bad_sectors;
497
498 /*
499 * Do not set R10BIO_Uptodate if the current device is
500 * rebuilding or Faulty. This is because we cannot use
501 * such device for properly reading the data back (we could
502 * potentially use it, if the current write would have felt
503 * before rdev->recovery_offset, but for simplicity we don't
504 * check this here.
505 */
506 if (test_bit(In_sync, &rdev->flags) &&
507 !test_bit(Faulty, &rdev->flags))
508 set_bit(R10BIO_Uptodate, &r10_bio->state);
509
510 /* Maybe we can clear some bad blocks. */
511 if (is_badblock(rdev,
512 r10_bio->devs[slot].addr,
513 r10_bio->sectors,
514 &first_bad, &bad_sectors) && !discard_error) {
515 bio_put(bio);
516 if (repl)
517 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
518 else
519 r10_bio->devs[slot].bio = IO_MADE_GOOD;
520 dec_rdev = 0;
521 set_bit(R10BIO_MadeGood, &r10_bio->state);
522 }
523 }
524
525 /*
526 *
527 * Let's see if all mirrored write operations have finished
528 * already.
529 */
530 one_write_done(r10_bio);
531 if (dec_rdev)
532 rdev_dec_pending(rdev, conf->mddev);
533 if (to_put)
534 bio_put(to_put);
535}
536
537/*
538 * RAID10 layout manager
539 * As well as the chunksize and raid_disks count, there are two
540 * parameters: near_copies and far_copies.
541 * near_copies * far_copies must be <= raid_disks.
542 * Normally one of these will be 1.
543 * If both are 1, we get raid0.
544 * If near_copies == raid_disks, we get raid1.
545 *
546 * Chunks are laid out in raid0 style with near_copies copies of the
547 * first chunk, followed by near_copies copies of the next chunk and
548 * so on.
549 * If far_copies > 1, then after 1/far_copies of the array has been assigned
550 * as described above, we start again with a device offset of near_copies.
551 * So we effectively have another copy of the whole array further down all
552 * the drives, but with blocks on different drives.
553 * With this layout, and block is never stored twice on the one device.
554 *
555 * raid10_find_phys finds the sector offset of a given virtual sector
556 * on each device that it is on.
557 *
558 * raid10_find_virt does the reverse mapping, from a device and a
559 * sector offset to a virtual address
560 */
561
562static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
563{
564 int n,f;
565 sector_t sector;
566 sector_t chunk;
567 sector_t stripe;
568 int dev;
569 int slot = 0;
570 int last_far_set_start, last_far_set_size;
571
572 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
573 last_far_set_start *= geo->far_set_size;
574
575 last_far_set_size = geo->far_set_size;
576 last_far_set_size += (geo->raid_disks % geo->far_set_size);
577
578 /* now calculate first sector/dev */
579 chunk = r10bio->sector >> geo->chunk_shift;
580 sector = r10bio->sector & geo->chunk_mask;
581
582 chunk *= geo->near_copies;
583 stripe = chunk;
584 dev = sector_div(stripe, geo->raid_disks);
585 if (geo->far_offset)
586 stripe *= geo->far_copies;
587
588 sector += stripe << geo->chunk_shift;
589
590 /* and calculate all the others */
591 for (n = 0; n < geo->near_copies; n++) {
592 int d = dev;
593 int set;
594 sector_t s = sector;
595 r10bio->devs[slot].devnum = d;
596 r10bio->devs[slot].addr = s;
597 slot++;
598
599 for (f = 1; f < geo->far_copies; f++) {
600 set = d / geo->far_set_size;
601 d += geo->near_copies;
602
603 if ((geo->raid_disks % geo->far_set_size) &&
604 (d > last_far_set_start)) {
605 d -= last_far_set_start;
606 d %= last_far_set_size;
607 d += last_far_set_start;
608 } else {
609 d %= geo->far_set_size;
610 d += geo->far_set_size * set;
611 }
612 s += geo->stride;
613 r10bio->devs[slot].devnum = d;
614 r10bio->devs[slot].addr = s;
615 slot++;
616 }
617 dev++;
618 if (dev >= geo->raid_disks) {
619 dev = 0;
620 sector += (geo->chunk_mask + 1);
621 }
622 }
623}
624
625static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
626{
627 struct geom *geo = &conf->geo;
628
629 if (conf->reshape_progress != MaxSector &&
630 ((r10bio->sector >= conf->reshape_progress) !=
631 conf->mddev->reshape_backwards)) {
632 set_bit(R10BIO_Previous, &r10bio->state);
633 geo = &conf->prev;
634 } else
635 clear_bit(R10BIO_Previous, &r10bio->state);
636
637 __raid10_find_phys(geo, r10bio);
638}
639
640static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
641{
642 sector_t offset, chunk, vchunk;
643 /* Never use conf->prev as this is only called during resync
644 * or recovery, so reshape isn't happening
645 */
646 struct geom *geo = &conf->geo;
647 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
648 int far_set_size = geo->far_set_size;
649 int last_far_set_start;
650
651 if (geo->raid_disks % geo->far_set_size) {
652 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
653 last_far_set_start *= geo->far_set_size;
654
655 if (dev >= last_far_set_start) {
656 far_set_size = geo->far_set_size;
657 far_set_size += (geo->raid_disks % geo->far_set_size);
658 far_set_start = last_far_set_start;
659 }
660 }
661
662 offset = sector & geo->chunk_mask;
663 if (geo->far_offset) {
664 int fc;
665 chunk = sector >> geo->chunk_shift;
666 fc = sector_div(chunk, geo->far_copies);
667 dev -= fc * geo->near_copies;
668 if (dev < far_set_start)
669 dev += far_set_size;
670 } else {
671 while (sector >= geo->stride) {
672 sector -= geo->stride;
673 if (dev < (geo->near_copies + far_set_start))
674 dev += far_set_size - geo->near_copies;
675 else
676 dev -= geo->near_copies;
677 }
678 chunk = sector >> geo->chunk_shift;
679 }
680 vchunk = chunk * geo->raid_disks + dev;
681 sector_div(vchunk, geo->near_copies);
682 return (vchunk << geo->chunk_shift) + offset;
683}
684
685/*
686 * This routine returns the disk from which the requested read should
687 * be done. There is a per-array 'next expected sequential IO' sector
688 * number - if this matches on the next IO then we use the last disk.
689 * There is also a per-disk 'last know head position' sector that is
690 * maintained from IRQ contexts, both the normal and the resync IO
691 * completion handlers update this position correctly. If there is no
692 * perfect sequential match then we pick the disk whose head is closest.
693 *
694 * If there are 2 mirrors in the same 2 devices, performance degrades
695 * because position is mirror, not device based.
696 *
697 * The rdev for the device selected will have nr_pending incremented.
698 */
699
700/*
701 * FIXME: possibly should rethink readbalancing and do it differently
702 * depending on near_copies / far_copies geometry.
703 */
704static struct md_rdev *read_balance(struct r10conf *conf,
705 struct r10bio *r10_bio,
706 int *max_sectors)
707{
708 const sector_t this_sector = r10_bio->sector;
709 int disk, slot;
710 int sectors = r10_bio->sectors;
711 int best_good_sectors;
712 sector_t new_distance, best_dist;
713 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
714 int do_balance;
715 int best_dist_slot, best_pending_slot;
716 bool has_nonrot_disk = false;
717 unsigned int min_pending;
718 struct geom *geo = &conf->geo;
719
720 raid10_find_phys(conf, r10_bio);
721 rcu_read_lock();
722 best_dist_slot = -1;
723 min_pending = UINT_MAX;
724 best_dist_rdev = NULL;
725 best_pending_rdev = NULL;
726 best_dist = MaxSector;
727 best_good_sectors = 0;
728 do_balance = 1;
729 clear_bit(R10BIO_FailFast, &r10_bio->state);
730 /*
731 * Check if we can balance. We can balance on the whole
732 * device if no resync is going on (recovery is ok), or below
733 * the resync window. We take the first readable disk when
734 * above the resync window.
735 */
736 if ((conf->mddev->recovery_cp < MaxSector
737 && (this_sector + sectors >= conf->next_resync)) ||
738 (mddev_is_clustered(conf->mddev) &&
739 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
740 this_sector + sectors)))
741 do_balance = 0;
742
743 for (slot = 0; slot < conf->copies ; slot++) {
744 sector_t first_bad;
745 int bad_sectors;
746 sector_t dev_sector;
747 unsigned int pending;
748 bool nonrot;
749
750 if (r10_bio->devs[slot].bio == IO_BLOCKED)
751 continue;
752 disk = r10_bio->devs[slot].devnum;
753 rdev = rcu_dereference(conf->mirrors[disk].replacement);
754 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
755 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
756 rdev = rcu_dereference(conf->mirrors[disk].rdev);
757 if (rdev == NULL ||
758 test_bit(Faulty, &rdev->flags))
759 continue;
760 if (!test_bit(In_sync, &rdev->flags) &&
761 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
762 continue;
763
764 dev_sector = r10_bio->devs[slot].addr;
765 if (is_badblock(rdev, dev_sector, sectors,
766 &first_bad, &bad_sectors)) {
767 if (best_dist < MaxSector)
768 /* Already have a better slot */
769 continue;
770 if (first_bad <= dev_sector) {
771 /* Cannot read here. If this is the
772 * 'primary' device, then we must not read
773 * beyond 'bad_sectors' from another device.
774 */
775 bad_sectors -= (dev_sector - first_bad);
776 if (!do_balance && sectors > bad_sectors)
777 sectors = bad_sectors;
778 if (best_good_sectors > sectors)
779 best_good_sectors = sectors;
780 } else {
781 sector_t good_sectors =
782 first_bad - dev_sector;
783 if (good_sectors > best_good_sectors) {
784 best_good_sectors = good_sectors;
785 best_dist_slot = slot;
786 best_dist_rdev = rdev;
787 }
788 if (!do_balance)
789 /* Must read from here */
790 break;
791 }
792 continue;
793 } else
794 best_good_sectors = sectors;
795
796 if (!do_balance)
797 break;
798
799 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
800 has_nonrot_disk |= nonrot;
801 pending = atomic_read(&rdev->nr_pending);
802 if (min_pending > pending && nonrot) {
803 min_pending = pending;
804 best_pending_slot = slot;
805 best_pending_rdev = rdev;
806 }
807
808 if (best_dist_slot >= 0)
809 /* At least 2 disks to choose from so failfast is OK */
810 set_bit(R10BIO_FailFast, &r10_bio->state);
811 /* This optimisation is debatable, and completely destroys
812 * sequential read speed for 'far copies' arrays. So only
813 * keep it for 'near' arrays, and review those later.
814 */
815 if (geo->near_copies > 1 && !pending)
816 new_distance = 0;
817
818 /* for far > 1 always use the lowest address */
819 else if (geo->far_copies > 1)
820 new_distance = r10_bio->devs[slot].addr;
821 else
822 new_distance = abs(r10_bio->devs[slot].addr -
823 conf->mirrors[disk].head_position);
824
825 if (new_distance < best_dist) {
826 best_dist = new_distance;
827 best_dist_slot = slot;
828 best_dist_rdev = rdev;
829 }
830 }
831 if (slot >= conf->copies) {
832 if (has_nonrot_disk) {
833 slot = best_pending_slot;
834 rdev = best_pending_rdev;
835 } else {
836 slot = best_dist_slot;
837 rdev = best_dist_rdev;
838 }
839 }
840
841 if (slot >= 0) {
842 atomic_inc(&rdev->nr_pending);
843 r10_bio->read_slot = slot;
844 } else
845 rdev = NULL;
846 rcu_read_unlock();
847 *max_sectors = best_good_sectors;
848
849 return rdev;
850}
851
852static void flush_pending_writes(struct r10conf *conf)
853{
854 /* Any writes that have been queued but are awaiting
855 * bitmap updates get flushed here.
856 */
857 spin_lock_irq(&conf->device_lock);
858
859 if (conf->pending_bio_list.head) {
860 struct blk_plug plug;
861 struct bio *bio;
862
863 bio = bio_list_get(&conf->pending_bio_list);
864 spin_unlock_irq(&conf->device_lock);
865
866 /*
867 * As this is called in a wait_event() loop (see freeze_array),
868 * current->state might be TASK_UNINTERRUPTIBLE which will
869 * cause a warning when we prepare to wait again. As it is
870 * rare that this path is taken, it is perfectly safe to force
871 * us to go around the wait_event() loop again, so the warning
872 * is a false-positive. Silence the warning by resetting
873 * thread state
874 */
875 __set_current_state(TASK_RUNNING);
876
877 blk_start_plug(&plug);
878 /* flush any pending bitmap writes to disk
879 * before proceeding w/ I/O */
880 md_bitmap_unplug(conf->mddev->bitmap);
881 wake_up(&conf->wait_barrier);
882
883 while (bio) { /* submit pending writes */
884 struct bio *next = bio->bi_next;
885 struct md_rdev *rdev = (void*)bio->bi_bdev;
886 bio->bi_next = NULL;
887 bio_set_dev(bio, rdev->bdev);
888 if (test_bit(Faulty, &rdev->flags)) {
889 bio_io_error(bio);
890 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
891 !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
892 /* Just ignore it */
893 bio_endio(bio);
894 else
895 submit_bio_noacct(bio);
896 bio = next;
897 }
898 blk_finish_plug(&plug);
899 } else
900 spin_unlock_irq(&conf->device_lock);
901}
902
903/* Barriers....
904 * Sometimes we need to suspend IO while we do something else,
905 * either some resync/recovery, or reconfigure the array.
906 * To do this we raise a 'barrier'.
907 * The 'barrier' is a counter that can be raised multiple times
908 * to count how many activities are happening which preclude
909 * normal IO.
910 * We can only raise the barrier if there is no pending IO.
911 * i.e. if nr_pending == 0.
912 * We choose only to raise the barrier if no-one is waiting for the
913 * barrier to go down. This means that as soon as an IO request
914 * is ready, no other operations which require a barrier will start
915 * until the IO request has had a chance.
916 *
917 * So: regular IO calls 'wait_barrier'. When that returns there
918 * is no backgroup IO happening, It must arrange to call
919 * allow_barrier when it has finished its IO.
920 * backgroup IO calls must call raise_barrier. Once that returns
921 * there is no normal IO happeing. It must arrange to call
922 * lower_barrier when the particular background IO completes.
923 */
924
925static void raise_barrier(struct r10conf *conf, int force)
926{
927 BUG_ON(force && !conf->barrier);
928 spin_lock_irq(&conf->resync_lock);
929
930 /* Wait until no block IO is waiting (unless 'force') */
931 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
932 conf->resync_lock);
933
934 /* block any new IO from starting */
935 conf->barrier++;
936
937 /* Now wait for all pending IO to complete */
938 wait_event_lock_irq(conf->wait_barrier,
939 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
940 conf->resync_lock);
941
942 spin_unlock_irq(&conf->resync_lock);
943}
944
945static void lower_barrier(struct r10conf *conf)
946{
947 unsigned long flags;
948 spin_lock_irqsave(&conf->resync_lock, flags);
949 conf->barrier--;
950 spin_unlock_irqrestore(&conf->resync_lock, flags);
951 wake_up(&conf->wait_barrier);
952}
953
954static bool wait_barrier(struct r10conf *conf, bool nowait)
955{
956 bool ret = true;
957
958 spin_lock_irq(&conf->resync_lock);
959 if (conf->barrier) {
960 struct bio_list *bio_list = current->bio_list;
961 conf->nr_waiting++;
962 /* Wait for the barrier to drop.
963 * However if there are already pending
964 * requests (preventing the barrier from
965 * rising completely), and the
966 * pre-process bio queue isn't empty,
967 * then don't wait, as we need to empty
968 * that queue to get the nr_pending
969 * count down.
970 */
971 /* Return false when nowait flag is set */
972 if (nowait) {
973 ret = false;
974 } else {
975 raid10_log(conf->mddev, "wait barrier");
976 wait_event_lock_irq(conf->wait_barrier,
977 !conf->barrier ||
978 (atomic_read(&conf->nr_pending) &&
979 bio_list &&
980 (!bio_list_empty(&bio_list[0]) ||
981 !bio_list_empty(&bio_list[1]))) ||
982 /* move on if recovery thread is
983 * blocked by us
984 */
985 (conf->mddev->thread->tsk == current &&
986 test_bit(MD_RECOVERY_RUNNING,
987 &conf->mddev->recovery) &&
988 conf->nr_queued > 0),
989 conf->resync_lock);
990 }
991 conf->nr_waiting--;
992 if (!conf->nr_waiting)
993 wake_up(&conf->wait_barrier);
994 }
995 /* Only increment nr_pending when we wait */
996 if (ret)
997 atomic_inc(&conf->nr_pending);
998 spin_unlock_irq(&conf->resync_lock);
999 return ret;
1000}
1001
1002static void allow_barrier(struct r10conf *conf)
1003{
1004 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1005 (conf->array_freeze_pending))
1006 wake_up(&conf->wait_barrier);
1007}
1008
1009static void freeze_array(struct r10conf *conf, int extra)
1010{
1011 /* stop syncio and normal IO and wait for everything to
1012 * go quiet.
1013 * We increment barrier and nr_waiting, and then
1014 * wait until nr_pending match nr_queued+extra
1015 * This is called in the context of one normal IO request
1016 * that has failed. Thus any sync request that might be pending
1017 * will be blocked by nr_pending, and we need to wait for
1018 * pending IO requests to complete or be queued for re-try.
1019 * Thus the number queued (nr_queued) plus this request (extra)
1020 * must match the number of pending IOs (nr_pending) before
1021 * we continue.
1022 */
1023 spin_lock_irq(&conf->resync_lock);
1024 conf->array_freeze_pending++;
1025 conf->barrier++;
1026 conf->nr_waiting++;
1027 wait_event_lock_irq_cmd(conf->wait_barrier,
1028 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1029 conf->resync_lock,
1030 flush_pending_writes(conf));
1031
1032 conf->array_freeze_pending--;
1033 spin_unlock_irq(&conf->resync_lock);
1034}
1035
1036static void unfreeze_array(struct r10conf *conf)
1037{
1038 /* reverse the effect of the freeze */
1039 spin_lock_irq(&conf->resync_lock);
1040 conf->barrier--;
1041 conf->nr_waiting--;
1042 wake_up(&conf->wait_barrier);
1043 spin_unlock_irq(&conf->resync_lock);
1044}
1045
1046static sector_t choose_data_offset(struct r10bio *r10_bio,
1047 struct md_rdev *rdev)
1048{
1049 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1050 test_bit(R10BIO_Previous, &r10_bio->state))
1051 return rdev->data_offset;
1052 else
1053 return rdev->new_data_offset;
1054}
1055
1056static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1057{
1058 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1059 struct mddev *mddev = plug->cb.data;
1060 struct r10conf *conf = mddev->private;
1061 struct bio *bio;
1062
1063 if (from_schedule || current->bio_list) {
1064 spin_lock_irq(&conf->device_lock);
1065 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1066 spin_unlock_irq(&conf->device_lock);
1067 wake_up(&conf->wait_barrier);
1068 md_wakeup_thread(mddev->thread);
1069 kfree(plug);
1070 return;
1071 }
1072
1073 /* we aren't scheduling, so we can do the write-out directly. */
1074 bio = bio_list_get(&plug->pending);
1075 md_bitmap_unplug(mddev->bitmap);
1076 wake_up(&conf->wait_barrier);
1077
1078 while (bio) { /* submit pending writes */
1079 struct bio *next = bio->bi_next;
1080 struct md_rdev *rdev = (void*)bio->bi_bdev;
1081 bio->bi_next = NULL;
1082 bio_set_dev(bio, rdev->bdev);
1083 if (test_bit(Faulty, &rdev->flags)) {
1084 bio_io_error(bio);
1085 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1086 !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
1087 /* Just ignore it */
1088 bio_endio(bio);
1089 else
1090 submit_bio_noacct(bio);
1091 bio = next;
1092 }
1093 kfree(plug);
1094}
1095
1096/*
1097 * 1. Register the new request and wait if the reconstruction thread has put
1098 * up a bar for new requests. Continue immediately if no resync is active
1099 * currently.
1100 * 2. If IO spans the reshape position. Need to wait for reshape to pass.
1101 */
1102static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1103 struct bio *bio, sector_t sectors)
1104{
1105 /* Bail out if REQ_NOWAIT is set for the bio */
1106 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1107 bio_wouldblock_error(bio);
1108 return false;
1109 }
1110 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1111 bio->bi_iter.bi_sector < conf->reshape_progress &&
1112 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1113 allow_barrier(conf);
1114 if (bio->bi_opf & REQ_NOWAIT) {
1115 bio_wouldblock_error(bio);
1116 return false;
1117 }
1118 raid10_log(conf->mddev, "wait reshape");
1119 wait_event(conf->wait_barrier,
1120 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1121 conf->reshape_progress >= bio->bi_iter.bi_sector +
1122 sectors);
1123 wait_barrier(conf, false);
1124 }
1125 return true;
1126}
1127
1128static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1129 struct r10bio *r10_bio)
1130{
1131 struct r10conf *conf = mddev->private;
1132 struct bio *read_bio;
1133 const int op = bio_op(bio);
1134 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1135 int max_sectors;
1136 struct md_rdev *rdev;
1137 char b[BDEVNAME_SIZE];
1138 int slot = r10_bio->read_slot;
1139 struct md_rdev *err_rdev = NULL;
1140 gfp_t gfp = GFP_NOIO;
1141
1142 if (slot >= 0 && r10_bio->devs[slot].rdev) {
1143 /*
1144 * This is an error retry, but we cannot
1145 * safely dereference the rdev in the r10_bio,
1146 * we must use the one in conf.
1147 * If it has already been disconnected (unlikely)
1148 * we lose the device name in error messages.
1149 */
1150 int disk;
1151 /*
1152 * As we are blocking raid10, it is a little safer to
1153 * use __GFP_HIGH.
1154 */
1155 gfp = GFP_NOIO | __GFP_HIGH;
1156
1157 rcu_read_lock();
1158 disk = r10_bio->devs[slot].devnum;
1159 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1160 if (err_rdev)
1161 bdevname(err_rdev->bdev, b);
1162 else {
1163 strcpy(b, "???");
1164 /* This never gets dereferenced */
1165 err_rdev = r10_bio->devs[slot].rdev;
1166 }
1167 rcu_read_unlock();
1168 }
1169
1170 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1171 return;
1172 rdev = read_balance(conf, r10_bio, &max_sectors);
1173 if (!rdev) {
1174 if (err_rdev) {
1175 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1176 mdname(mddev), b,
1177 (unsigned long long)r10_bio->sector);
1178 }
1179 raid_end_bio_io(r10_bio);
1180 return;
1181 }
1182 if (err_rdev)
1183 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1184 mdname(mddev),
1185 bdevname(rdev->bdev, b),
1186 (unsigned long long)r10_bio->sector);
1187 if (max_sectors < bio_sectors(bio)) {
1188 struct bio *split = bio_split(bio, max_sectors,
1189 gfp, &conf->bio_split);
1190 bio_chain(split, bio);
1191 allow_barrier(conf);
1192 submit_bio_noacct(bio);
1193 wait_barrier(conf, false);
1194 bio = split;
1195 r10_bio->master_bio = bio;
1196 r10_bio->sectors = max_sectors;
1197 }
1198 slot = r10_bio->read_slot;
1199
1200 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1201 r10_bio->start_time = bio_start_io_acct(bio);
1202 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1203
1204 r10_bio->devs[slot].bio = read_bio;
1205 r10_bio->devs[slot].rdev = rdev;
1206
1207 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1208 choose_data_offset(r10_bio, rdev);
1209 read_bio->bi_end_io = raid10_end_read_request;
1210 bio_set_op_attrs(read_bio, op, do_sync);
1211 if (test_bit(FailFast, &rdev->flags) &&
1212 test_bit(R10BIO_FailFast, &r10_bio->state))
1213 read_bio->bi_opf |= MD_FAILFAST;
1214 read_bio->bi_private = r10_bio;
1215
1216 if (mddev->gendisk)
1217 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1218 r10_bio->sector);
1219 submit_bio_noacct(read_bio);
1220 return;
1221}
1222
1223static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1224 struct bio *bio, bool replacement,
1225 int n_copy)
1226{
1227 const int op = bio_op(bio);
1228 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1229 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1230 unsigned long flags;
1231 struct blk_plug_cb *cb;
1232 struct raid1_plug_cb *plug = NULL;
1233 struct r10conf *conf = mddev->private;
1234 struct md_rdev *rdev;
1235 int devnum = r10_bio->devs[n_copy].devnum;
1236 struct bio *mbio;
1237
1238 if (replacement) {
1239 rdev = conf->mirrors[devnum].replacement;
1240 if (rdev == NULL) {
1241 /* Replacement just got moved to main 'rdev' */
1242 smp_mb();
1243 rdev = conf->mirrors[devnum].rdev;
1244 }
1245 } else
1246 rdev = conf->mirrors[devnum].rdev;
1247
1248 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1249 if (replacement)
1250 r10_bio->devs[n_copy].repl_bio = mbio;
1251 else
1252 r10_bio->devs[n_copy].bio = mbio;
1253
1254 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1255 choose_data_offset(r10_bio, rdev));
1256 mbio->bi_end_io = raid10_end_write_request;
1257 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1258 if (!replacement && test_bit(FailFast,
1259 &conf->mirrors[devnum].rdev->flags)
1260 && enough(conf, devnum))
1261 mbio->bi_opf |= MD_FAILFAST;
1262 mbio->bi_private = r10_bio;
1263
1264 if (conf->mddev->gendisk)
1265 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1266 r10_bio->sector);
1267 /* flush_pending_writes() needs access to the rdev so...*/
1268 mbio->bi_bdev = (void *)rdev;
1269
1270 atomic_inc(&r10_bio->remaining);
1271
1272 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1273 if (cb)
1274 plug = container_of(cb, struct raid1_plug_cb, cb);
1275 else
1276 plug = NULL;
1277 if (plug) {
1278 bio_list_add(&plug->pending, mbio);
1279 } else {
1280 spin_lock_irqsave(&conf->device_lock, flags);
1281 bio_list_add(&conf->pending_bio_list, mbio);
1282 spin_unlock_irqrestore(&conf->device_lock, flags);
1283 md_wakeup_thread(mddev->thread);
1284 }
1285}
1286
1287static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1288{
1289 int i;
1290 struct r10conf *conf = mddev->private;
1291 struct md_rdev *blocked_rdev;
1292
1293retry_wait:
1294 blocked_rdev = NULL;
1295 rcu_read_lock();
1296 for (i = 0; i < conf->copies; i++) {
1297 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1298 struct md_rdev *rrdev = rcu_dereference(
1299 conf->mirrors[i].replacement);
1300 if (rdev == rrdev)
1301 rrdev = NULL;
1302 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1303 atomic_inc(&rdev->nr_pending);
1304 blocked_rdev = rdev;
1305 break;
1306 }
1307 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1308 atomic_inc(&rrdev->nr_pending);
1309 blocked_rdev = rrdev;
1310 break;
1311 }
1312
1313 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1314 sector_t first_bad;
1315 sector_t dev_sector = r10_bio->devs[i].addr;
1316 int bad_sectors;
1317 int is_bad;
1318
1319 /*
1320 * Discard request doesn't care the write result
1321 * so it doesn't need to wait blocked disk here.
1322 */
1323 if (!r10_bio->sectors)
1324 continue;
1325
1326 is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1327 &first_bad, &bad_sectors);
1328 if (is_bad < 0) {
1329 /*
1330 * Mustn't write here until the bad block
1331 * is acknowledged
1332 */
1333 atomic_inc(&rdev->nr_pending);
1334 set_bit(BlockedBadBlocks, &rdev->flags);
1335 blocked_rdev = rdev;
1336 break;
1337 }
1338 }
1339 }
1340 rcu_read_unlock();
1341
1342 if (unlikely(blocked_rdev)) {
1343 /* Have to wait for this device to get unblocked, then retry */
1344 allow_barrier(conf);
1345 raid10_log(conf->mddev, "%s wait rdev %d blocked",
1346 __func__, blocked_rdev->raid_disk);
1347 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1348 wait_barrier(conf, false);
1349 goto retry_wait;
1350 }
1351}
1352
1353static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1354 struct r10bio *r10_bio)
1355{
1356 struct r10conf *conf = mddev->private;
1357 int i;
1358 sector_t sectors;
1359 int max_sectors;
1360
1361 if ((mddev_is_clustered(mddev) &&
1362 md_cluster_ops->area_resyncing(mddev, WRITE,
1363 bio->bi_iter.bi_sector,
1364 bio_end_sector(bio)))) {
1365 DEFINE_WAIT(w);
1366 /* Bail out if REQ_NOWAIT is set for the bio */
1367 if (bio->bi_opf & REQ_NOWAIT) {
1368 bio_wouldblock_error(bio);
1369 return;
1370 }
1371 for (;;) {
1372 prepare_to_wait(&conf->wait_barrier,
1373 &w, TASK_IDLE);
1374 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1375 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1376 break;
1377 schedule();
1378 }
1379 finish_wait(&conf->wait_barrier, &w);
1380 }
1381
1382 sectors = r10_bio->sectors;
1383 if (!regular_request_wait(mddev, conf, bio, sectors))
1384 return;
1385 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1386 (mddev->reshape_backwards
1387 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1388 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1389 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1390 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1391 /* Need to update reshape_position in metadata */
1392 mddev->reshape_position = conf->reshape_progress;
1393 set_mask_bits(&mddev->sb_flags, 0,
1394 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1395 md_wakeup_thread(mddev->thread);
1396 if (bio->bi_opf & REQ_NOWAIT) {
1397 allow_barrier(conf);
1398 bio_wouldblock_error(bio);
1399 return;
1400 }
1401 raid10_log(conf->mddev, "wait reshape metadata");
1402 wait_event(mddev->sb_wait,
1403 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1404
1405 conf->reshape_safe = mddev->reshape_position;
1406 }
1407
1408 /* first select target devices under rcu_lock and
1409 * inc refcount on their rdev. Record them by setting
1410 * bios[x] to bio
1411 * If there are known/acknowledged bad blocks on any device
1412 * on which we have seen a write error, we want to avoid
1413 * writing to those blocks. This potentially requires several
1414 * writes to write around the bad blocks. Each set of writes
1415 * gets its own r10_bio with a set of bios attached.
1416 */
1417
1418 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1419 raid10_find_phys(conf, r10_bio);
1420
1421 wait_blocked_dev(mddev, r10_bio);
1422
1423 rcu_read_lock();
1424 max_sectors = r10_bio->sectors;
1425
1426 for (i = 0; i < conf->copies; i++) {
1427 int d = r10_bio->devs[i].devnum;
1428 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1429 struct md_rdev *rrdev = rcu_dereference(
1430 conf->mirrors[d].replacement);
1431 if (rdev == rrdev)
1432 rrdev = NULL;
1433 if (rdev && (test_bit(Faulty, &rdev->flags)))
1434 rdev = NULL;
1435 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1436 rrdev = NULL;
1437
1438 r10_bio->devs[i].bio = NULL;
1439 r10_bio->devs[i].repl_bio = NULL;
1440
1441 if (!rdev && !rrdev) {
1442 set_bit(R10BIO_Degraded, &r10_bio->state);
1443 continue;
1444 }
1445 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1446 sector_t first_bad;
1447 sector_t dev_sector = r10_bio->devs[i].addr;
1448 int bad_sectors;
1449 int is_bad;
1450
1451 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1452 &first_bad, &bad_sectors);
1453 if (is_bad && first_bad <= dev_sector) {
1454 /* Cannot write here at all */
1455 bad_sectors -= (dev_sector - first_bad);
1456 if (bad_sectors < max_sectors)
1457 /* Mustn't write more than bad_sectors
1458 * to other devices yet
1459 */
1460 max_sectors = bad_sectors;
1461 /* We don't set R10BIO_Degraded as that
1462 * only applies if the disk is missing,
1463 * so it might be re-added, and we want to
1464 * know to recover this chunk.
1465 * In this case the device is here, and the
1466 * fact that this chunk is not in-sync is
1467 * recorded in the bad block log.
1468 */
1469 continue;
1470 }
1471 if (is_bad) {
1472 int good_sectors = first_bad - dev_sector;
1473 if (good_sectors < max_sectors)
1474 max_sectors = good_sectors;
1475 }
1476 }
1477 if (rdev) {
1478 r10_bio->devs[i].bio = bio;
1479 atomic_inc(&rdev->nr_pending);
1480 }
1481 if (rrdev) {
1482 r10_bio->devs[i].repl_bio = bio;
1483 atomic_inc(&rrdev->nr_pending);
1484 }
1485 }
1486 rcu_read_unlock();
1487
1488 if (max_sectors < r10_bio->sectors)
1489 r10_bio->sectors = max_sectors;
1490
1491 if (r10_bio->sectors < bio_sectors(bio)) {
1492 struct bio *split = bio_split(bio, r10_bio->sectors,
1493 GFP_NOIO, &conf->bio_split);
1494 bio_chain(split, bio);
1495 allow_barrier(conf);
1496 submit_bio_noacct(bio);
1497 wait_barrier(conf, false);
1498 bio = split;
1499 r10_bio->master_bio = bio;
1500 }
1501
1502 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1503 r10_bio->start_time = bio_start_io_acct(bio);
1504 atomic_set(&r10_bio->remaining, 1);
1505 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1506
1507 for (i = 0; i < conf->copies; i++) {
1508 if (r10_bio->devs[i].bio)
1509 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1510 if (r10_bio->devs[i].repl_bio)
1511 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1512 }
1513 one_write_done(r10_bio);
1514}
1515
1516static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1517{
1518 struct r10conf *conf = mddev->private;
1519 struct r10bio *r10_bio;
1520
1521 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1522
1523 r10_bio->master_bio = bio;
1524 r10_bio->sectors = sectors;
1525
1526 r10_bio->mddev = mddev;
1527 r10_bio->sector = bio->bi_iter.bi_sector;
1528 r10_bio->state = 0;
1529 r10_bio->read_slot = -1;
1530 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1531 conf->geo.raid_disks);
1532
1533 if (bio_data_dir(bio) == READ)
1534 raid10_read_request(mddev, bio, r10_bio);
1535 else
1536 raid10_write_request(mddev, bio, r10_bio);
1537}
1538
1539static void raid_end_discard_bio(struct r10bio *r10bio)
1540{
1541 struct r10conf *conf = r10bio->mddev->private;
1542 struct r10bio *first_r10bio;
1543
1544 while (atomic_dec_and_test(&r10bio->remaining)) {
1545
1546 allow_barrier(conf);
1547
1548 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1549 first_r10bio = (struct r10bio *)r10bio->master_bio;
1550 free_r10bio(r10bio);
1551 r10bio = first_r10bio;
1552 } else {
1553 md_write_end(r10bio->mddev);
1554 bio_endio(r10bio->master_bio);
1555 free_r10bio(r10bio);
1556 break;
1557 }
1558 }
1559}
1560
1561static void raid10_end_discard_request(struct bio *bio)
1562{
1563 struct r10bio *r10_bio = bio->bi_private;
1564 struct r10conf *conf = r10_bio->mddev->private;
1565 struct md_rdev *rdev = NULL;
1566 int dev;
1567 int slot, repl;
1568
1569 /*
1570 * We don't care the return value of discard bio
1571 */
1572 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1573 set_bit(R10BIO_Uptodate, &r10_bio->state);
1574
1575 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1576 if (repl)
1577 rdev = conf->mirrors[dev].replacement;
1578 if (!rdev) {
1579 /*
1580 * raid10_remove_disk uses smp_mb to make sure rdev is set to
1581 * replacement before setting replacement to NULL. It can read
1582 * rdev first without barrier protect even replacment is NULL
1583 */
1584 smp_rmb();
1585 rdev = conf->mirrors[dev].rdev;
1586 }
1587
1588 raid_end_discard_bio(r10_bio);
1589 rdev_dec_pending(rdev, conf->mddev);
1590}
1591
1592/*
1593 * There are some limitations to handle discard bio
1594 * 1st, the discard size is bigger than stripe_size*2.
1595 * 2st, if the discard bio spans reshape progress, we use the old way to
1596 * handle discard bio
1597 */
1598static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1599{
1600 struct r10conf *conf = mddev->private;
1601 struct geom *geo = &conf->geo;
1602 int far_copies = geo->far_copies;
1603 bool first_copy = true;
1604 struct r10bio *r10_bio, *first_r10bio;
1605 struct bio *split;
1606 int disk;
1607 sector_t chunk;
1608 unsigned int stripe_size;
1609 unsigned int stripe_data_disks;
1610 sector_t split_size;
1611 sector_t bio_start, bio_end;
1612 sector_t first_stripe_index, last_stripe_index;
1613 sector_t start_disk_offset;
1614 unsigned int start_disk_index;
1615 sector_t end_disk_offset;
1616 unsigned int end_disk_index;
1617 unsigned int remainder;
1618
1619 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1620 return -EAGAIN;
1621
1622 if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1623 bio_wouldblock_error(bio);
1624 return 0;
1625 }
1626 wait_barrier(conf, false);
1627
1628 /*
1629 * Check reshape again to avoid reshape happens after checking
1630 * MD_RECOVERY_RESHAPE and before wait_barrier
1631 */
1632 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1633 goto out;
1634
1635 if (geo->near_copies)
1636 stripe_data_disks = geo->raid_disks / geo->near_copies +
1637 geo->raid_disks % geo->near_copies;
1638 else
1639 stripe_data_disks = geo->raid_disks;
1640
1641 stripe_size = stripe_data_disks << geo->chunk_shift;
1642
1643 bio_start = bio->bi_iter.bi_sector;
1644 bio_end = bio_end_sector(bio);
1645
1646 /*
1647 * Maybe one discard bio is smaller than strip size or across one
1648 * stripe and discard region is larger than one stripe size. For far
1649 * offset layout, if the discard region is not aligned with stripe
1650 * size, there is hole when we submit discard bio to member disk.
1651 * For simplicity, we only handle discard bio which discard region
1652 * is bigger than stripe_size * 2
1653 */
1654 if (bio_sectors(bio) < stripe_size*2)
1655 goto out;
1656
1657 /*
1658 * Keep bio aligned with strip size.
1659 */
1660 div_u64_rem(bio_start, stripe_size, &remainder);
1661 if (remainder) {
1662 split_size = stripe_size - remainder;
1663 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1664 bio_chain(split, bio);
1665 allow_barrier(conf);
1666 /* Resend the fist split part */
1667 submit_bio_noacct(split);
1668 wait_barrier(conf, false);
1669 }
1670 div_u64_rem(bio_end, stripe_size, &remainder);
1671 if (remainder) {
1672 split_size = bio_sectors(bio) - remainder;
1673 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1674 bio_chain(split, bio);
1675 allow_barrier(conf);
1676 /* Resend the second split part */
1677 submit_bio_noacct(bio);
1678 bio = split;
1679 wait_barrier(conf, false);
1680 }
1681
1682 bio_start = bio->bi_iter.bi_sector;
1683 bio_end = bio_end_sector(bio);
1684
1685 /*
1686 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1687 * One stripe contains the chunks from all member disk (one chunk from
1688 * one disk at the same HBA address). For layout detail, see 'man md 4'
1689 */
1690 chunk = bio_start >> geo->chunk_shift;
1691 chunk *= geo->near_copies;
1692 first_stripe_index = chunk;
1693 start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1694 if (geo->far_offset)
1695 first_stripe_index *= geo->far_copies;
1696 start_disk_offset = (bio_start & geo->chunk_mask) +
1697 (first_stripe_index << geo->chunk_shift);
1698
1699 chunk = bio_end >> geo->chunk_shift;
1700 chunk *= geo->near_copies;
1701 last_stripe_index = chunk;
1702 end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1703 if (geo->far_offset)
1704 last_stripe_index *= geo->far_copies;
1705 end_disk_offset = (bio_end & geo->chunk_mask) +
1706 (last_stripe_index << geo->chunk_shift);
1707
1708retry_discard:
1709 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1710 r10_bio->mddev = mddev;
1711 r10_bio->state = 0;
1712 r10_bio->sectors = 0;
1713 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1714 wait_blocked_dev(mddev, r10_bio);
1715
1716 /*
1717 * For far layout it needs more than one r10bio to cover all regions.
1718 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1719 * to record the discard bio. Other r10bio->master_bio record the first
1720 * r10bio. The first r10bio only release after all other r10bios finish.
1721 * The discard bio returns only first r10bio finishes
1722 */
1723 if (first_copy) {
1724 r10_bio->master_bio = bio;
1725 set_bit(R10BIO_Discard, &r10_bio->state);
1726 first_copy = false;
1727 first_r10bio = r10_bio;
1728 } else
1729 r10_bio->master_bio = (struct bio *)first_r10bio;
1730
1731 /*
1732 * first select target devices under rcu_lock and
1733 * inc refcount on their rdev. Record them by setting
1734 * bios[x] to bio
1735 */
1736 rcu_read_lock();
1737 for (disk = 0; disk < geo->raid_disks; disk++) {
1738 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1739 struct md_rdev *rrdev = rcu_dereference(
1740 conf->mirrors[disk].replacement);
1741
1742 r10_bio->devs[disk].bio = NULL;
1743 r10_bio->devs[disk].repl_bio = NULL;
1744
1745 if (rdev && (test_bit(Faulty, &rdev->flags)))
1746 rdev = NULL;
1747 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1748 rrdev = NULL;
1749 if (!rdev && !rrdev)
1750 continue;
1751
1752 if (rdev) {
1753 r10_bio->devs[disk].bio = bio;
1754 atomic_inc(&rdev->nr_pending);
1755 }
1756 if (rrdev) {
1757 r10_bio->devs[disk].repl_bio = bio;
1758 atomic_inc(&rrdev->nr_pending);
1759 }
1760 }
1761 rcu_read_unlock();
1762
1763 atomic_set(&r10_bio->remaining, 1);
1764 for (disk = 0; disk < geo->raid_disks; disk++) {
1765 sector_t dev_start, dev_end;
1766 struct bio *mbio, *rbio = NULL;
1767
1768 /*
1769 * Now start to calculate the start and end address for each disk.
1770 * The space between dev_start and dev_end is the discard region.
1771 *
1772 * For dev_start, it needs to consider three conditions:
1773 * 1st, the disk is before start_disk, you can imagine the disk in
1774 * the next stripe. So the dev_start is the start address of next
1775 * stripe.
1776 * 2st, the disk is after start_disk, it means the disk is at the
1777 * same stripe of first disk
1778 * 3st, the first disk itself, we can use start_disk_offset directly
1779 */
1780 if (disk < start_disk_index)
1781 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1782 else if (disk > start_disk_index)
1783 dev_start = first_stripe_index * mddev->chunk_sectors;
1784 else
1785 dev_start = start_disk_offset;
1786
1787 if (disk < end_disk_index)
1788 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1789 else if (disk > end_disk_index)
1790 dev_end = last_stripe_index * mddev->chunk_sectors;
1791 else
1792 dev_end = end_disk_offset;
1793
1794 /*
1795 * It only handles discard bio which size is >= stripe size, so
1796 * dev_end > dev_start all the time.
1797 * It doesn't need to use rcu lock to get rdev here. We already
1798 * add rdev->nr_pending in the first loop.
1799 */
1800 if (r10_bio->devs[disk].bio) {
1801 struct md_rdev *rdev = conf->mirrors[disk].rdev;
1802 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1803 &mddev->bio_set);
1804 mbio->bi_end_io = raid10_end_discard_request;
1805 mbio->bi_private = r10_bio;
1806 r10_bio->devs[disk].bio = mbio;
1807 r10_bio->devs[disk].devnum = disk;
1808 atomic_inc(&r10_bio->remaining);
1809 md_submit_discard_bio(mddev, rdev, mbio,
1810 dev_start + choose_data_offset(r10_bio, rdev),
1811 dev_end - dev_start);
1812 bio_endio(mbio);
1813 }
1814 if (r10_bio->devs[disk].repl_bio) {
1815 struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1816 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1817 &mddev->bio_set);
1818 rbio->bi_end_io = raid10_end_discard_request;
1819 rbio->bi_private = r10_bio;
1820 r10_bio->devs[disk].repl_bio = rbio;
1821 r10_bio->devs[disk].devnum = disk;
1822 atomic_inc(&r10_bio->remaining);
1823 md_submit_discard_bio(mddev, rrdev, rbio,
1824 dev_start + choose_data_offset(r10_bio, rrdev),
1825 dev_end - dev_start);
1826 bio_endio(rbio);
1827 }
1828 }
1829
1830 if (!geo->far_offset && --far_copies) {
1831 first_stripe_index += geo->stride >> geo->chunk_shift;
1832 start_disk_offset += geo->stride;
1833 last_stripe_index += geo->stride >> geo->chunk_shift;
1834 end_disk_offset += geo->stride;
1835 atomic_inc(&first_r10bio->remaining);
1836 raid_end_discard_bio(r10_bio);
1837 wait_barrier(conf, false);
1838 goto retry_discard;
1839 }
1840
1841 raid_end_discard_bio(r10_bio);
1842
1843 return 0;
1844out:
1845 allow_barrier(conf);
1846 return -EAGAIN;
1847}
1848
1849static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1850{
1851 struct r10conf *conf = mddev->private;
1852 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1853 int chunk_sects = chunk_mask + 1;
1854 int sectors = bio_sectors(bio);
1855
1856 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1857 && md_flush_request(mddev, bio))
1858 return true;
1859
1860 if (!md_write_start(mddev, bio))
1861 return false;
1862
1863 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1864 if (!raid10_handle_discard(mddev, bio))
1865 return true;
1866
1867 /*
1868 * If this request crosses a chunk boundary, we need to split
1869 * it.
1870 */
1871 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1872 sectors > chunk_sects
1873 && (conf->geo.near_copies < conf->geo.raid_disks
1874 || conf->prev.near_copies <
1875 conf->prev.raid_disks)))
1876 sectors = chunk_sects -
1877 (bio->bi_iter.bi_sector &
1878 (chunk_sects - 1));
1879 __make_request(mddev, bio, sectors);
1880
1881 /* In case raid10d snuck in to freeze_array */
1882 wake_up(&conf->wait_barrier);
1883 return true;
1884}
1885
1886static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1887{
1888 struct r10conf *conf = mddev->private;
1889 int i;
1890
1891 if (conf->geo.near_copies < conf->geo.raid_disks)
1892 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1893 if (conf->geo.near_copies > 1)
1894 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1895 if (conf->geo.far_copies > 1) {
1896 if (conf->geo.far_offset)
1897 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1898 else
1899 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1900 if (conf->geo.far_set_size != conf->geo.raid_disks)
1901 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1902 }
1903 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1904 conf->geo.raid_disks - mddev->degraded);
1905 rcu_read_lock();
1906 for (i = 0; i < conf->geo.raid_disks; i++) {
1907 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1908 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1909 }
1910 rcu_read_unlock();
1911 seq_printf(seq, "]");
1912}
1913
1914/* check if there are enough drives for
1915 * every block to appear on atleast one.
1916 * Don't consider the device numbered 'ignore'
1917 * as we might be about to remove it.
1918 */
1919static int _enough(struct r10conf *conf, int previous, int ignore)
1920{
1921 int first = 0;
1922 int has_enough = 0;
1923 int disks, ncopies;
1924 if (previous) {
1925 disks = conf->prev.raid_disks;
1926 ncopies = conf->prev.near_copies;
1927 } else {
1928 disks = conf->geo.raid_disks;
1929 ncopies = conf->geo.near_copies;
1930 }
1931
1932 rcu_read_lock();
1933 do {
1934 int n = conf->copies;
1935 int cnt = 0;
1936 int this = first;
1937 while (n--) {
1938 struct md_rdev *rdev;
1939 if (this != ignore &&
1940 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1941 test_bit(In_sync, &rdev->flags))
1942 cnt++;
1943 this = (this+1) % disks;
1944 }
1945 if (cnt == 0)
1946 goto out;
1947 first = (first + ncopies) % disks;
1948 } while (first != 0);
1949 has_enough = 1;
1950out:
1951 rcu_read_unlock();
1952 return has_enough;
1953}
1954
1955static int enough(struct r10conf *conf, int ignore)
1956{
1957 /* when calling 'enough', both 'prev' and 'geo' must
1958 * be stable.
1959 * This is ensured if ->reconfig_mutex or ->device_lock
1960 * is held.
1961 */
1962 return _enough(conf, 0, ignore) &&
1963 _enough(conf, 1, ignore);
1964}
1965
1966static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1967{
1968 char b[BDEVNAME_SIZE];
1969 struct r10conf *conf = mddev->private;
1970 unsigned long flags;
1971
1972 /*
1973 * If it is not operational, then we have already marked it as dead
1974 * else if it is the last working disks with "fail_last_dev == false",
1975 * ignore the error, let the next level up know.
1976 * else mark the drive as failed
1977 */
1978 spin_lock_irqsave(&conf->device_lock, flags);
1979 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1980 && !enough(conf, rdev->raid_disk)) {
1981 /*
1982 * Don't fail the drive, just return an IO error.
1983 */
1984 spin_unlock_irqrestore(&conf->device_lock, flags);
1985 return;
1986 }
1987 if (test_and_clear_bit(In_sync, &rdev->flags))
1988 mddev->degraded++;
1989 /*
1990 * If recovery is running, make sure it aborts.
1991 */
1992 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1993 set_bit(Blocked, &rdev->flags);
1994 set_bit(Faulty, &rdev->flags);
1995 set_mask_bits(&mddev->sb_flags, 0,
1996 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1997 spin_unlock_irqrestore(&conf->device_lock, flags);
1998 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1999 "md/raid10:%s: Operation continuing on %d devices.\n",
2000 mdname(mddev), bdevname(rdev->bdev, b),
2001 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2002}
2003
2004static void print_conf(struct r10conf *conf)
2005{
2006 int i;
2007 struct md_rdev *rdev;
2008
2009 pr_debug("RAID10 conf printout:\n");
2010 if (!conf) {
2011 pr_debug("(!conf)\n");
2012 return;
2013 }
2014 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2015 conf->geo.raid_disks);
2016
2017 /* This is only called with ->reconfix_mutex held, so
2018 * rcu protection of rdev is not needed */
2019 for (i = 0; i < conf->geo.raid_disks; i++) {
2020 char b[BDEVNAME_SIZE];
2021 rdev = conf->mirrors[i].rdev;
2022 if (rdev)
2023 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
2024 i, !test_bit(In_sync, &rdev->flags),
2025 !test_bit(Faulty, &rdev->flags),
2026 bdevname(rdev->bdev,b));
2027 }
2028}
2029
2030static void close_sync(struct r10conf *conf)
2031{
2032 wait_barrier(conf, false);
2033 allow_barrier(conf);
2034
2035 mempool_exit(&conf->r10buf_pool);
2036}
2037
2038static int raid10_spare_active(struct mddev *mddev)
2039{
2040 int i;
2041 struct r10conf *conf = mddev->private;
2042 struct raid10_info *tmp;
2043 int count = 0;
2044 unsigned long flags;
2045
2046 /*
2047 * Find all non-in_sync disks within the RAID10 configuration
2048 * and mark them in_sync
2049 */
2050 for (i = 0; i < conf->geo.raid_disks; i++) {
2051 tmp = conf->mirrors + i;
2052 if (tmp->replacement
2053 && tmp->replacement->recovery_offset == MaxSector
2054 && !test_bit(Faulty, &tmp->replacement->flags)
2055 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2056 /* Replacement has just become active */
2057 if (!tmp->rdev
2058 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2059 count++;
2060 if (tmp->rdev) {
2061 /* Replaced device not technically faulty,
2062 * but we need to be sure it gets removed
2063 * and never re-added.
2064 */
2065 set_bit(Faulty, &tmp->rdev->flags);
2066 sysfs_notify_dirent_safe(
2067 tmp->rdev->sysfs_state);
2068 }
2069 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2070 } else if (tmp->rdev
2071 && tmp->rdev->recovery_offset == MaxSector
2072 && !test_bit(Faulty, &tmp->rdev->flags)
2073 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2074 count++;
2075 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2076 }
2077 }
2078 spin_lock_irqsave(&conf->device_lock, flags);
2079 mddev->degraded -= count;
2080 spin_unlock_irqrestore(&conf->device_lock, flags);
2081
2082 print_conf(conf);
2083 return count;
2084}
2085
2086static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2087{
2088 struct r10conf *conf = mddev->private;
2089 int err = -EEXIST;
2090 int mirror;
2091 int first = 0;
2092 int last = conf->geo.raid_disks - 1;
2093
2094 if (mddev->recovery_cp < MaxSector)
2095 /* only hot-add to in-sync arrays, as recovery is
2096 * very different from resync
2097 */
2098 return -EBUSY;
2099 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2100 return -EINVAL;
2101
2102 if (md_integrity_add_rdev(rdev, mddev))
2103 return -ENXIO;
2104
2105 if (rdev->raid_disk >= 0)
2106 first = last = rdev->raid_disk;
2107
2108 if (rdev->saved_raid_disk >= first &&
2109 rdev->saved_raid_disk < conf->geo.raid_disks &&
2110 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2111 mirror = rdev->saved_raid_disk;
2112 else
2113 mirror = first;
2114 for ( ; mirror <= last ; mirror++) {
2115 struct raid10_info *p = &conf->mirrors[mirror];
2116 if (p->recovery_disabled == mddev->recovery_disabled)
2117 continue;
2118 if (p->rdev) {
2119 if (!test_bit(WantReplacement, &p->rdev->flags) ||
2120 p->replacement != NULL)
2121 continue;
2122 clear_bit(In_sync, &rdev->flags);
2123 set_bit(Replacement, &rdev->flags);
2124 rdev->raid_disk = mirror;
2125 err = 0;
2126 if (mddev->gendisk)
2127 disk_stack_limits(mddev->gendisk, rdev->bdev,
2128 rdev->data_offset << 9);
2129 conf->fullsync = 1;
2130 rcu_assign_pointer(p->replacement, rdev);
2131 break;
2132 }
2133
2134 if (mddev->gendisk)
2135 disk_stack_limits(mddev->gendisk, rdev->bdev,
2136 rdev->data_offset << 9);
2137
2138 p->head_position = 0;
2139 p->recovery_disabled = mddev->recovery_disabled - 1;
2140 rdev->raid_disk = mirror;
2141 err = 0;
2142 if (rdev->saved_raid_disk != mirror)
2143 conf->fullsync = 1;
2144 rcu_assign_pointer(p->rdev, rdev);
2145 break;
2146 }
2147 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2148 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
2149
2150 print_conf(conf);
2151 return err;
2152}
2153
2154static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2155{
2156 struct r10conf *conf = mddev->private;
2157 int err = 0;
2158 int number = rdev->raid_disk;
2159 struct md_rdev **rdevp;
2160 struct raid10_info *p = conf->mirrors + number;
2161
2162 print_conf(conf);
2163 if (rdev == p->rdev)
2164 rdevp = &p->rdev;
2165 else if (rdev == p->replacement)
2166 rdevp = &p->replacement;
2167 else
2168 return 0;
2169
2170 if (test_bit(In_sync, &rdev->flags) ||
2171 atomic_read(&rdev->nr_pending)) {
2172 err = -EBUSY;
2173 goto abort;
2174 }
2175 /* Only remove non-faulty devices if recovery
2176 * is not possible.
2177 */
2178 if (!test_bit(Faulty, &rdev->flags) &&
2179 mddev->recovery_disabled != p->recovery_disabled &&
2180 (!p->replacement || p->replacement == rdev) &&
2181 number < conf->geo.raid_disks &&
2182 enough(conf, -1)) {
2183 err = -EBUSY;
2184 goto abort;
2185 }
2186 *rdevp = NULL;
2187 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2188 synchronize_rcu();
2189 if (atomic_read(&rdev->nr_pending)) {
2190 /* lost the race, try later */
2191 err = -EBUSY;
2192 *rdevp = rdev;
2193 goto abort;
2194 }
2195 }
2196 if (p->replacement) {
2197 /* We must have just cleared 'rdev' */
2198 p->rdev = p->replacement;
2199 clear_bit(Replacement, &p->replacement->flags);
2200 smp_mb(); /* Make sure other CPUs may see both as identical
2201 * but will never see neither -- if they are careful.
2202 */
2203 p->replacement = NULL;
2204 }
2205
2206 clear_bit(WantReplacement, &rdev->flags);
2207 err = md_integrity_register(mddev);
2208
2209abort:
2210
2211 print_conf(conf);
2212 return err;
2213}
2214
2215static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2216{
2217 struct r10conf *conf = r10_bio->mddev->private;
2218
2219 if (!bio->bi_status)
2220 set_bit(R10BIO_Uptodate, &r10_bio->state);
2221 else
2222 /* The write handler will notice the lack of
2223 * R10BIO_Uptodate and record any errors etc
2224 */
2225 atomic_add(r10_bio->sectors,
2226 &conf->mirrors[d].rdev->corrected_errors);
2227
2228 /* for reconstruct, we always reschedule after a read.
2229 * for resync, only after all reads
2230 */
2231 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2232 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2233 atomic_dec_and_test(&r10_bio->remaining)) {
2234 /* we have read all the blocks,
2235 * do the comparison in process context in raid10d
2236 */
2237 reschedule_retry(r10_bio);
2238 }
2239}
2240
2241static void end_sync_read(struct bio *bio)
2242{
2243 struct r10bio *r10_bio = get_resync_r10bio(bio);
2244 struct r10conf *conf = r10_bio->mddev->private;
2245 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2246
2247 __end_sync_read(r10_bio, bio, d);
2248}
2249
2250static void end_reshape_read(struct bio *bio)
2251{
2252 /* reshape read bio isn't allocated from r10buf_pool */
2253 struct r10bio *r10_bio = bio->bi_private;
2254
2255 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2256}
2257
2258static void end_sync_request(struct r10bio *r10_bio)
2259{
2260 struct mddev *mddev = r10_bio->mddev;
2261
2262 while (atomic_dec_and_test(&r10_bio->remaining)) {
2263 if (r10_bio->master_bio == NULL) {
2264 /* the primary of several recovery bios */
2265 sector_t s = r10_bio->sectors;
2266 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2267 test_bit(R10BIO_WriteError, &r10_bio->state))
2268 reschedule_retry(r10_bio);
2269 else
2270 put_buf(r10_bio);
2271 md_done_sync(mddev, s, 1);
2272 break;
2273 } else {
2274 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2275 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2276 test_bit(R10BIO_WriteError, &r10_bio->state))
2277 reschedule_retry(r10_bio);
2278 else
2279 put_buf(r10_bio);
2280 r10_bio = r10_bio2;
2281 }
2282 }
2283}
2284
2285static void end_sync_write(struct bio *bio)
2286{
2287 struct r10bio *r10_bio = get_resync_r10bio(bio);
2288 struct mddev *mddev = r10_bio->mddev;
2289 struct r10conf *conf = mddev->private;
2290 int d;
2291 sector_t first_bad;
2292 int bad_sectors;
2293 int slot;
2294 int repl;
2295 struct md_rdev *rdev = NULL;
2296
2297 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2298 if (repl)
2299 rdev = conf->mirrors[d].replacement;
2300 else
2301 rdev = conf->mirrors[d].rdev;
2302
2303 if (bio->bi_status) {
2304 if (repl)
2305 md_error(mddev, rdev);
2306 else {
2307 set_bit(WriteErrorSeen, &rdev->flags);
2308 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2309 set_bit(MD_RECOVERY_NEEDED,
2310 &rdev->mddev->recovery);
2311 set_bit(R10BIO_WriteError, &r10_bio->state);
2312 }
2313 } else if (is_badblock(rdev,
2314 r10_bio->devs[slot].addr,
2315 r10_bio->sectors,
2316 &first_bad, &bad_sectors))
2317 set_bit(R10BIO_MadeGood, &r10_bio->state);
2318
2319 rdev_dec_pending(rdev, mddev);
2320
2321 end_sync_request(r10_bio);
2322}
2323
2324/*
2325 * Note: sync and recover and handled very differently for raid10
2326 * This code is for resync.
2327 * For resync, we read through virtual addresses and read all blocks.
2328 * If there is any error, we schedule a write. The lowest numbered
2329 * drive is authoritative.
2330 * However requests come for physical address, so we need to map.
2331 * For every physical address there are raid_disks/copies virtual addresses,
2332 * which is always are least one, but is not necessarly an integer.
2333 * This means that a physical address can span multiple chunks, so we may
2334 * have to submit multiple io requests for a single sync request.
2335 */
2336/*
2337 * We check if all blocks are in-sync and only write to blocks that
2338 * aren't in sync
2339 */
2340static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2341{
2342 struct r10conf *conf = mddev->private;
2343 int i, first;
2344 struct bio *tbio, *fbio;
2345 int vcnt;
2346 struct page **tpages, **fpages;
2347
2348 atomic_set(&r10_bio->remaining, 1);
2349
2350 /* find the first device with a block */
2351 for (i=0; i<conf->copies; i++)
2352 if (!r10_bio->devs[i].bio->bi_status)
2353 break;
2354
2355 if (i == conf->copies)
2356 goto done;
2357
2358 first = i;
2359 fbio = r10_bio->devs[i].bio;
2360 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2361 fbio->bi_iter.bi_idx = 0;
2362 fpages = get_resync_pages(fbio)->pages;
2363
2364 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2365 /* now find blocks with errors */
2366 for (i=0 ; i < conf->copies ; i++) {
2367 int j, d;
2368 struct md_rdev *rdev;
2369 struct resync_pages *rp;
2370
2371 tbio = r10_bio->devs[i].bio;
2372
2373 if (tbio->bi_end_io != end_sync_read)
2374 continue;
2375 if (i == first)
2376 continue;
2377
2378 tpages = get_resync_pages(tbio)->pages;
2379 d = r10_bio->devs[i].devnum;
2380 rdev = conf->mirrors[d].rdev;
2381 if (!r10_bio->devs[i].bio->bi_status) {
2382 /* We know that the bi_io_vec layout is the same for
2383 * both 'first' and 'i', so we just compare them.
2384 * All vec entries are PAGE_SIZE;
2385 */
2386 int sectors = r10_bio->sectors;
2387 for (j = 0; j < vcnt; j++) {
2388 int len = PAGE_SIZE;
2389 if (sectors < (len / 512))
2390 len = sectors * 512;
2391 if (memcmp(page_address(fpages[j]),
2392 page_address(tpages[j]),
2393 len))
2394 break;
2395 sectors -= len/512;
2396 }
2397 if (j == vcnt)
2398 continue;
2399 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2400 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2401 /* Don't fix anything. */
2402 continue;
2403 } else if (test_bit(FailFast, &rdev->flags)) {
2404 /* Just give up on this device */
2405 md_error(rdev->mddev, rdev);
2406 continue;
2407 }
2408 /* Ok, we need to write this bio, either to correct an
2409 * inconsistency or to correct an unreadable block.
2410 * First we need to fixup bv_offset, bv_len and
2411 * bi_vecs, as the read request might have corrupted these
2412 */
2413 rp = get_resync_pages(tbio);
2414 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2415
2416 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2417
2418 rp->raid_bio = r10_bio;
2419 tbio->bi_private = rp;
2420 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2421 tbio->bi_end_io = end_sync_write;
2422
2423 bio_copy_data(tbio, fbio);
2424
2425 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2426 atomic_inc(&r10_bio->remaining);
2427 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2428
2429 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2430 tbio->bi_opf |= MD_FAILFAST;
2431 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2432 submit_bio_noacct(tbio);
2433 }
2434
2435 /* Now write out to any replacement devices
2436 * that are active
2437 */
2438 for (i = 0; i < conf->copies; i++) {
2439 int d;
2440
2441 tbio = r10_bio->devs[i].repl_bio;
2442 if (!tbio || !tbio->bi_end_io)
2443 continue;
2444 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2445 && r10_bio->devs[i].bio != fbio)
2446 bio_copy_data(tbio, fbio);
2447 d = r10_bio->devs[i].devnum;
2448 atomic_inc(&r10_bio->remaining);
2449 md_sync_acct(conf->mirrors[d].replacement->bdev,
2450 bio_sectors(tbio));
2451 submit_bio_noacct(tbio);
2452 }
2453
2454done:
2455 if (atomic_dec_and_test(&r10_bio->remaining)) {
2456 md_done_sync(mddev, r10_bio->sectors, 1);
2457 put_buf(r10_bio);
2458 }
2459}
2460
2461/*
2462 * Now for the recovery code.
2463 * Recovery happens across physical sectors.
2464 * We recover all non-is_sync drives by finding the virtual address of
2465 * each, and then choose a working drive that also has that virt address.
2466 * There is a separate r10_bio for each non-in_sync drive.
2467 * Only the first two slots are in use. The first for reading,
2468 * The second for writing.
2469 *
2470 */
2471static void fix_recovery_read_error(struct r10bio *r10_bio)
2472{
2473 /* We got a read error during recovery.
2474 * We repeat the read in smaller page-sized sections.
2475 * If a read succeeds, write it to the new device or record
2476 * a bad block if we cannot.
2477 * If a read fails, record a bad block on both old and
2478 * new devices.
2479 */
2480 struct mddev *mddev = r10_bio->mddev;
2481 struct r10conf *conf = mddev->private;
2482 struct bio *bio = r10_bio->devs[0].bio;
2483 sector_t sect = 0;
2484 int sectors = r10_bio->sectors;
2485 int idx = 0;
2486 int dr = r10_bio->devs[0].devnum;
2487 int dw = r10_bio->devs[1].devnum;
2488 struct page **pages = get_resync_pages(bio)->pages;
2489
2490 while (sectors) {
2491 int s = sectors;
2492 struct md_rdev *rdev;
2493 sector_t addr;
2494 int ok;
2495
2496 if (s > (PAGE_SIZE>>9))
2497 s = PAGE_SIZE >> 9;
2498
2499 rdev = conf->mirrors[dr].rdev;
2500 addr = r10_bio->devs[0].addr + sect,
2501 ok = sync_page_io(rdev,
2502 addr,
2503 s << 9,
2504 pages[idx],
2505 REQ_OP_READ, 0, false);
2506 if (ok) {
2507 rdev = conf->mirrors[dw].rdev;
2508 addr = r10_bio->devs[1].addr + sect;
2509 ok = sync_page_io(rdev,
2510 addr,
2511 s << 9,
2512 pages[idx],
2513 REQ_OP_WRITE, 0, false);
2514 if (!ok) {
2515 set_bit(WriteErrorSeen, &rdev->flags);
2516 if (!test_and_set_bit(WantReplacement,
2517 &rdev->flags))
2518 set_bit(MD_RECOVERY_NEEDED,
2519 &rdev->mddev->recovery);
2520 }
2521 }
2522 if (!ok) {
2523 /* We don't worry if we cannot set a bad block -
2524 * it really is bad so there is no loss in not
2525 * recording it yet
2526 */
2527 rdev_set_badblocks(rdev, addr, s, 0);
2528
2529 if (rdev != conf->mirrors[dw].rdev) {
2530 /* need bad block on destination too */
2531 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2532 addr = r10_bio->devs[1].addr + sect;
2533 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2534 if (!ok) {
2535 /* just abort the recovery */
2536 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2537 mdname(mddev));
2538
2539 conf->mirrors[dw].recovery_disabled
2540 = mddev->recovery_disabled;
2541 set_bit(MD_RECOVERY_INTR,
2542 &mddev->recovery);
2543 break;
2544 }
2545 }
2546 }
2547
2548 sectors -= s;
2549 sect += s;
2550 idx++;
2551 }
2552}
2553
2554static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2555{
2556 struct r10conf *conf = mddev->private;
2557 int d;
2558 struct bio *wbio, *wbio2;
2559
2560 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2561 fix_recovery_read_error(r10_bio);
2562 end_sync_request(r10_bio);
2563 return;
2564 }
2565
2566 /*
2567 * share the pages with the first bio
2568 * and submit the write request
2569 */
2570 d = r10_bio->devs[1].devnum;
2571 wbio = r10_bio->devs[1].bio;
2572 wbio2 = r10_bio->devs[1].repl_bio;
2573 /* Need to test wbio2->bi_end_io before we call
2574 * submit_bio_noacct as if the former is NULL,
2575 * the latter is free to free wbio2.
2576 */
2577 if (wbio2 && !wbio2->bi_end_io)
2578 wbio2 = NULL;
2579 if (wbio->bi_end_io) {
2580 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2581 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2582 submit_bio_noacct(wbio);
2583 }
2584 if (wbio2) {
2585 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2586 md_sync_acct(conf->mirrors[d].replacement->bdev,
2587 bio_sectors(wbio2));
2588 submit_bio_noacct(wbio2);
2589 }
2590}
2591
2592/*
2593 * Used by fix_read_error() to decay the per rdev read_errors.
2594 * We halve the read error count for every hour that has elapsed
2595 * since the last recorded read error.
2596 *
2597 */
2598static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2599{
2600 long cur_time_mon;
2601 unsigned long hours_since_last;
2602 unsigned int read_errors = atomic_read(&rdev->read_errors);
2603
2604 cur_time_mon = ktime_get_seconds();
2605
2606 if (rdev->last_read_error == 0) {
2607 /* first time we've seen a read error */
2608 rdev->last_read_error = cur_time_mon;
2609 return;
2610 }
2611
2612 hours_since_last = (long)(cur_time_mon -
2613 rdev->last_read_error) / 3600;
2614
2615 rdev->last_read_error = cur_time_mon;
2616
2617 /*
2618 * if hours_since_last is > the number of bits in read_errors
2619 * just set read errors to 0. We do this to avoid
2620 * overflowing the shift of read_errors by hours_since_last.
2621 */
2622 if (hours_since_last >= 8 * sizeof(read_errors))
2623 atomic_set(&rdev->read_errors, 0);
2624 else
2625 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2626}
2627
2628static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2629 int sectors, struct page *page, int rw)
2630{
2631 sector_t first_bad;
2632 int bad_sectors;
2633
2634 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2635 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2636 return -1;
2637 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2638 /* success */
2639 return 1;
2640 if (rw == WRITE) {
2641 set_bit(WriteErrorSeen, &rdev->flags);
2642 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2643 set_bit(MD_RECOVERY_NEEDED,
2644 &rdev->mddev->recovery);
2645 }
2646 /* need to record an error - either for the block or the device */
2647 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2648 md_error(rdev->mddev, rdev);
2649 return 0;
2650}
2651
2652/*
2653 * This is a kernel thread which:
2654 *
2655 * 1. Retries failed read operations on working mirrors.
2656 * 2. Updates the raid superblock when problems encounter.
2657 * 3. Performs writes following reads for array synchronising.
2658 */
2659
2660static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2661{
2662 int sect = 0; /* Offset from r10_bio->sector */
2663 int sectors = r10_bio->sectors;
2664 struct md_rdev *rdev;
2665 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2666 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2667
2668 /* still own a reference to this rdev, so it cannot
2669 * have been cleared recently.
2670 */
2671 rdev = conf->mirrors[d].rdev;
2672
2673 if (test_bit(Faulty, &rdev->flags))
2674 /* drive has already been failed, just ignore any
2675 more fix_read_error() attempts */
2676 return;
2677
2678 check_decay_read_errors(mddev, rdev);
2679 atomic_inc(&rdev->read_errors);
2680 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2681 char b[BDEVNAME_SIZE];
2682 bdevname(rdev->bdev, b);
2683
2684 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2685 mdname(mddev), b,
2686 atomic_read(&rdev->read_errors), max_read_errors);
2687 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2688 mdname(mddev), b);
2689 md_error(mddev, rdev);
2690 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2691 return;
2692 }
2693
2694 while(sectors) {
2695 int s = sectors;
2696 int sl = r10_bio->read_slot;
2697 int success = 0;
2698 int start;
2699
2700 if (s > (PAGE_SIZE>>9))
2701 s = PAGE_SIZE >> 9;
2702
2703 rcu_read_lock();
2704 do {
2705 sector_t first_bad;
2706 int bad_sectors;
2707
2708 d = r10_bio->devs[sl].devnum;
2709 rdev = rcu_dereference(conf->mirrors[d].rdev);
2710 if (rdev &&
2711 test_bit(In_sync, &rdev->flags) &&
2712 !test_bit(Faulty, &rdev->flags) &&
2713 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2714 &first_bad, &bad_sectors) == 0) {
2715 atomic_inc(&rdev->nr_pending);
2716 rcu_read_unlock();
2717 success = sync_page_io(rdev,
2718 r10_bio->devs[sl].addr +
2719 sect,
2720 s<<9,
2721 conf->tmppage,
2722 REQ_OP_READ, 0, false);
2723 rdev_dec_pending(rdev, mddev);
2724 rcu_read_lock();
2725 if (success)
2726 break;
2727 }
2728 sl++;
2729 if (sl == conf->copies)
2730 sl = 0;
2731 } while (!success && sl != r10_bio->read_slot);
2732 rcu_read_unlock();
2733
2734 if (!success) {
2735 /* Cannot read from anywhere, just mark the block
2736 * as bad on the first device to discourage future
2737 * reads.
2738 */
2739 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2740 rdev = conf->mirrors[dn].rdev;
2741
2742 if (!rdev_set_badblocks(
2743 rdev,
2744 r10_bio->devs[r10_bio->read_slot].addr
2745 + sect,
2746 s, 0)) {
2747 md_error(mddev, rdev);
2748 r10_bio->devs[r10_bio->read_slot].bio
2749 = IO_BLOCKED;
2750 }
2751 break;
2752 }
2753
2754 start = sl;
2755 /* write it back and re-read */
2756 rcu_read_lock();
2757 while (sl != r10_bio->read_slot) {
2758 char b[BDEVNAME_SIZE];
2759
2760 if (sl==0)
2761 sl = conf->copies;
2762 sl--;
2763 d = r10_bio->devs[sl].devnum;
2764 rdev = rcu_dereference(conf->mirrors[d].rdev);
2765 if (!rdev ||
2766 test_bit(Faulty, &rdev->flags) ||
2767 !test_bit(In_sync, &rdev->flags))
2768 continue;
2769
2770 atomic_inc(&rdev->nr_pending);
2771 rcu_read_unlock();
2772 if (r10_sync_page_io(rdev,
2773 r10_bio->devs[sl].addr +
2774 sect,
2775 s, conf->tmppage, WRITE)
2776 == 0) {
2777 /* Well, this device is dead */
2778 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2779 mdname(mddev), s,
2780 (unsigned long long)(
2781 sect +
2782 choose_data_offset(r10_bio,
2783 rdev)),
2784 bdevname(rdev->bdev, b));
2785 pr_notice("md/raid10:%s: %s: failing drive\n",
2786 mdname(mddev),
2787 bdevname(rdev->bdev, b));
2788 }
2789 rdev_dec_pending(rdev, mddev);
2790 rcu_read_lock();
2791 }
2792 sl = start;
2793 while (sl != r10_bio->read_slot) {
2794 char b[BDEVNAME_SIZE];
2795
2796 if (sl==0)
2797 sl = conf->copies;
2798 sl--;
2799 d = r10_bio->devs[sl].devnum;
2800 rdev = rcu_dereference(conf->mirrors[d].rdev);
2801 if (!rdev ||
2802 test_bit(Faulty, &rdev->flags) ||
2803 !test_bit(In_sync, &rdev->flags))
2804 continue;
2805
2806 atomic_inc(&rdev->nr_pending);
2807 rcu_read_unlock();
2808 switch (r10_sync_page_io(rdev,
2809 r10_bio->devs[sl].addr +
2810 sect,
2811 s, conf->tmppage,
2812 READ)) {
2813 case 0:
2814 /* Well, this device is dead */
2815 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2816 mdname(mddev), s,
2817 (unsigned long long)(
2818 sect +
2819 choose_data_offset(r10_bio, rdev)),
2820 bdevname(rdev->bdev, b));
2821 pr_notice("md/raid10:%s: %s: failing drive\n",
2822 mdname(mddev),
2823 bdevname(rdev->bdev, b));
2824 break;
2825 case 1:
2826 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2827 mdname(mddev), s,
2828 (unsigned long long)(
2829 sect +
2830 choose_data_offset(r10_bio, rdev)),
2831 bdevname(rdev->bdev, b));
2832 atomic_add(s, &rdev->corrected_errors);
2833 }
2834
2835 rdev_dec_pending(rdev, mddev);
2836 rcu_read_lock();
2837 }
2838 rcu_read_unlock();
2839
2840 sectors -= s;
2841 sect += s;
2842 }
2843}
2844
2845static int narrow_write_error(struct r10bio *r10_bio, int i)
2846{
2847 struct bio *bio = r10_bio->master_bio;
2848 struct mddev *mddev = r10_bio->mddev;
2849 struct r10conf *conf = mddev->private;
2850 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2851 /* bio has the data to be written to slot 'i' where
2852 * we just recently had a write error.
2853 * We repeatedly clone the bio and trim down to one block,
2854 * then try the write. Where the write fails we record
2855 * a bad block.
2856 * It is conceivable that the bio doesn't exactly align with
2857 * blocks. We must handle this.
2858 *
2859 * We currently own a reference to the rdev.
2860 */
2861
2862 int block_sectors;
2863 sector_t sector;
2864 int sectors;
2865 int sect_to_write = r10_bio->sectors;
2866 int ok = 1;
2867
2868 if (rdev->badblocks.shift < 0)
2869 return 0;
2870
2871 block_sectors = roundup(1 << rdev->badblocks.shift,
2872 bdev_logical_block_size(rdev->bdev) >> 9);
2873 sector = r10_bio->sector;
2874 sectors = ((r10_bio->sector + block_sectors)
2875 & ~(sector_t)(block_sectors - 1))
2876 - sector;
2877
2878 while (sect_to_write) {
2879 struct bio *wbio;
2880 sector_t wsector;
2881 if (sectors > sect_to_write)
2882 sectors = sect_to_write;
2883 /* Write at 'sector' for 'sectors' */
2884 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2885 &mddev->bio_set);
2886 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2887 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2888 wbio->bi_iter.bi_sector = wsector +
2889 choose_data_offset(r10_bio, rdev);
2890 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2891
2892 if (submit_bio_wait(wbio) < 0)
2893 /* Failure! */
2894 ok = rdev_set_badblocks(rdev, wsector,
2895 sectors, 0)
2896 && ok;
2897
2898 bio_put(wbio);
2899 sect_to_write -= sectors;
2900 sector += sectors;
2901 sectors = block_sectors;
2902 }
2903 return ok;
2904}
2905
2906static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2907{
2908 int slot = r10_bio->read_slot;
2909 struct bio *bio;
2910 struct r10conf *conf = mddev->private;
2911 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2912
2913 /* we got a read error. Maybe the drive is bad. Maybe just
2914 * the block and we can fix it.
2915 * We freeze all other IO, and try reading the block from
2916 * other devices. When we find one, we re-write
2917 * and check it that fixes the read error.
2918 * This is all done synchronously while the array is
2919 * frozen.
2920 */
2921 bio = r10_bio->devs[slot].bio;
2922 bio_put(bio);
2923 r10_bio->devs[slot].bio = NULL;
2924
2925 if (mddev->ro)
2926 r10_bio->devs[slot].bio = IO_BLOCKED;
2927 else if (!test_bit(FailFast, &rdev->flags)) {
2928 freeze_array(conf, 1);
2929 fix_read_error(conf, mddev, r10_bio);
2930 unfreeze_array(conf);
2931 } else
2932 md_error(mddev, rdev);
2933
2934 rdev_dec_pending(rdev, mddev);
2935 allow_barrier(conf);
2936 r10_bio->state = 0;
2937 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2938}
2939
2940static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2941{
2942 /* Some sort of write request has finished and it
2943 * succeeded in writing where we thought there was a
2944 * bad block. So forget the bad block.
2945 * Or possibly if failed and we need to record
2946 * a bad block.
2947 */
2948 int m;
2949 struct md_rdev *rdev;
2950
2951 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2952 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2953 for (m = 0; m < conf->copies; m++) {
2954 int dev = r10_bio->devs[m].devnum;
2955 rdev = conf->mirrors[dev].rdev;
2956 if (r10_bio->devs[m].bio == NULL ||
2957 r10_bio->devs[m].bio->bi_end_io == NULL)
2958 continue;
2959 if (!r10_bio->devs[m].bio->bi_status) {
2960 rdev_clear_badblocks(
2961 rdev,
2962 r10_bio->devs[m].addr,
2963 r10_bio->sectors, 0);
2964 } else {
2965 if (!rdev_set_badblocks(
2966 rdev,
2967 r10_bio->devs[m].addr,
2968 r10_bio->sectors, 0))
2969 md_error(conf->mddev, rdev);
2970 }
2971 rdev = conf->mirrors[dev].replacement;
2972 if (r10_bio->devs[m].repl_bio == NULL ||
2973 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2974 continue;
2975
2976 if (!r10_bio->devs[m].repl_bio->bi_status) {
2977 rdev_clear_badblocks(
2978 rdev,
2979 r10_bio->devs[m].addr,
2980 r10_bio->sectors, 0);
2981 } else {
2982 if (!rdev_set_badblocks(
2983 rdev,
2984 r10_bio->devs[m].addr,
2985 r10_bio->sectors, 0))
2986 md_error(conf->mddev, rdev);
2987 }
2988 }
2989 put_buf(r10_bio);
2990 } else {
2991 bool fail = false;
2992 for (m = 0; m < conf->copies; m++) {
2993 int dev = r10_bio->devs[m].devnum;
2994 struct bio *bio = r10_bio->devs[m].bio;
2995 rdev = conf->mirrors[dev].rdev;
2996 if (bio == IO_MADE_GOOD) {
2997 rdev_clear_badblocks(
2998 rdev,
2999 r10_bio->devs[m].addr,
3000 r10_bio->sectors, 0);
3001 rdev_dec_pending(rdev, conf->mddev);
3002 } else if (bio != NULL && bio->bi_status) {
3003 fail = true;
3004 if (!narrow_write_error(r10_bio, m)) {
3005 md_error(conf->mddev, rdev);
3006 set_bit(R10BIO_Degraded,
3007 &r10_bio->state);
3008 }
3009 rdev_dec_pending(rdev, conf->mddev);
3010 }
3011 bio = r10_bio->devs[m].repl_bio;
3012 rdev = conf->mirrors[dev].replacement;
3013 if (rdev && bio == IO_MADE_GOOD) {
3014 rdev_clear_badblocks(
3015 rdev,
3016 r10_bio->devs[m].addr,
3017 r10_bio->sectors, 0);
3018 rdev_dec_pending(rdev, conf->mddev);
3019 }
3020 }
3021 if (fail) {
3022 spin_lock_irq(&conf->device_lock);
3023 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3024 conf->nr_queued++;
3025 spin_unlock_irq(&conf->device_lock);
3026 /*
3027 * In case freeze_array() is waiting for condition
3028 * nr_pending == nr_queued + extra to be true.
3029 */
3030 wake_up(&conf->wait_barrier);
3031 md_wakeup_thread(conf->mddev->thread);
3032 } else {
3033 if (test_bit(R10BIO_WriteError,
3034 &r10_bio->state))
3035 close_write(r10_bio);
3036 raid_end_bio_io(r10_bio);
3037 }
3038 }
3039}
3040
3041static void raid10d(struct md_thread *thread)
3042{
3043 struct mddev *mddev = thread->mddev;
3044 struct r10bio *r10_bio;
3045 unsigned long flags;
3046 struct r10conf *conf = mddev->private;
3047 struct list_head *head = &conf->retry_list;
3048 struct blk_plug plug;
3049
3050 md_check_recovery(mddev);
3051
3052 if (!list_empty_careful(&conf->bio_end_io_list) &&
3053 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3054 LIST_HEAD(tmp);
3055 spin_lock_irqsave(&conf->device_lock, flags);
3056 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3057 while (!list_empty(&conf->bio_end_io_list)) {
3058 list_move(conf->bio_end_io_list.prev, &tmp);
3059 conf->nr_queued--;
3060 }
3061 }
3062 spin_unlock_irqrestore(&conf->device_lock, flags);
3063 while (!list_empty(&tmp)) {
3064 r10_bio = list_first_entry(&tmp, struct r10bio,
3065 retry_list);
3066 list_del(&r10_bio->retry_list);
3067 if (mddev->degraded)
3068 set_bit(R10BIO_Degraded, &r10_bio->state);
3069
3070 if (test_bit(R10BIO_WriteError,
3071 &r10_bio->state))
3072 close_write(r10_bio);
3073 raid_end_bio_io(r10_bio);
3074 }
3075 }
3076
3077 blk_start_plug(&plug);
3078 for (;;) {
3079
3080 flush_pending_writes(conf);
3081
3082 spin_lock_irqsave(&conf->device_lock, flags);
3083 if (list_empty(head)) {
3084 spin_unlock_irqrestore(&conf->device_lock, flags);
3085 break;
3086 }
3087 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3088 list_del(head->prev);
3089 conf->nr_queued--;
3090 spin_unlock_irqrestore(&conf->device_lock, flags);
3091
3092 mddev = r10_bio->mddev;
3093 conf = mddev->private;
3094 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3095 test_bit(R10BIO_WriteError, &r10_bio->state))
3096 handle_write_completed(conf, r10_bio);
3097 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3098 reshape_request_write(mddev, r10_bio);
3099 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3100 sync_request_write(mddev, r10_bio);
3101 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3102 recovery_request_write(mddev, r10_bio);
3103 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3104 handle_read_error(mddev, r10_bio);
3105 else
3106 WARN_ON_ONCE(1);
3107
3108 cond_resched();
3109 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3110 md_check_recovery(mddev);
3111 }
3112 blk_finish_plug(&plug);
3113}
3114
3115static int init_resync(struct r10conf *conf)
3116{
3117 int ret, buffs, i;
3118
3119 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3120 BUG_ON(mempool_initialized(&conf->r10buf_pool));
3121 conf->have_replacement = 0;
3122 for (i = 0; i < conf->geo.raid_disks; i++)
3123 if (conf->mirrors[i].replacement)
3124 conf->have_replacement = 1;
3125 ret = mempool_init(&conf->r10buf_pool, buffs,
3126 r10buf_pool_alloc, r10buf_pool_free, conf);
3127 if (ret)
3128 return ret;
3129 conf->next_resync = 0;
3130 return 0;
3131}
3132
3133static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3134{
3135 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3136 struct rsync_pages *rp;
3137 struct bio *bio;
3138 int nalloc;
3139 int i;
3140
3141 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3142 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3143 nalloc = conf->copies; /* resync */
3144 else
3145 nalloc = 2; /* recovery */
3146
3147 for (i = 0; i < nalloc; i++) {
3148 bio = r10bio->devs[i].bio;
3149 rp = bio->bi_private;
3150 bio_reset(bio, NULL, 0);
3151 bio->bi_private = rp;
3152 bio = r10bio->devs[i].repl_bio;
3153 if (bio) {
3154 rp = bio->bi_private;
3155 bio_reset(bio, NULL, 0);
3156 bio->bi_private = rp;
3157 }
3158 }
3159 return r10bio;
3160}
3161
3162/*
3163 * Set cluster_sync_high since we need other nodes to add the
3164 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3165 */
3166static void raid10_set_cluster_sync_high(struct r10conf *conf)
3167{
3168 sector_t window_size;
3169 int extra_chunk, chunks;
3170
3171 /*
3172 * First, here we define "stripe" as a unit which across
3173 * all member devices one time, so we get chunks by use
3174 * raid_disks / near_copies. Otherwise, if near_copies is
3175 * close to raid_disks, then resync window could increases
3176 * linearly with the increase of raid_disks, which means
3177 * we will suspend a really large IO window while it is not
3178 * necessary. If raid_disks is not divisible by near_copies,
3179 * an extra chunk is needed to ensure the whole "stripe" is
3180 * covered.
3181 */
3182
3183 chunks = conf->geo.raid_disks / conf->geo.near_copies;
3184 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3185 extra_chunk = 0;
3186 else
3187 extra_chunk = 1;
3188 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3189
3190 /*
3191 * At least use a 32M window to align with raid1's resync window
3192 */
3193 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3194 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3195
3196 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3197}
3198
3199/*
3200 * perform a "sync" on one "block"
3201 *
3202 * We need to make sure that no normal I/O request - particularly write
3203 * requests - conflict with active sync requests.
3204 *
3205 * This is achieved by tracking pending requests and a 'barrier' concept
3206 * that can be installed to exclude normal IO requests.
3207 *
3208 * Resync and recovery are handled very differently.
3209 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3210 *
3211 * For resync, we iterate over virtual addresses, read all copies,
3212 * and update if there are differences. If only one copy is live,
3213 * skip it.
3214 * For recovery, we iterate over physical addresses, read a good
3215 * value for each non-in_sync drive, and over-write.
3216 *
3217 * So, for recovery we may have several outstanding complex requests for a
3218 * given address, one for each out-of-sync device. We model this by allocating
3219 * a number of r10_bio structures, one for each out-of-sync device.
3220 * As we setup these structures, we collect all bio's together into a list
3221 * which we then process collectively to add pages, and then process again
3222 * to pass to submit_bio_noacct.
3223 *
3224 * The r10_bio structures are linked using a borrowed master_bio pointer.
3225 * This link is counted in ->remaining. When the r10_bio that points to NULL
3226 * has its remaining count decremented to 0, the whole complex operation
3227 * is complete.
3228 *
3229 */
3230
3231static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3232 int *skipped)
3233{
3234 struct r10conf *conf = mddev->private;
3235 struct r10bio *r10_bio;
3236 struct bio *biolist = NULL, *bio;
3237 sector_t max_sector, nr_sectors;
3238 int i;
3239 int max_sync;
3240 sector_t sync_blocks;
3241 sector_t sectors_skipped = 0;
3242 int chunks_skipped = 0;
3243 sector_t chunk_mask = conf->geo.chunk_mask;
3244 int page_idx = 0;
3245
3246 if (!mempool_initialized(&conf->r10buf_pool))
3247 if (init_resync(conf))
3248 return 0;
3249
3250 /*
3251 * Allow skipping a full rebuild for incremental assembly
3252 * of a clean array, like RAID1 does.
3253 */
3254 if (mddev->bitmap == NULL &&
3255 mddev->recovery_cp == MaxSector &&
3256 mddev->reshape_position == MaxSector &&
3257 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3258 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3259 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3260 conf->fullsync == 0) {
3261 *skipped = 1;
3262 return mddev->dev_sectors - sector_nr;
3263 }
3264
3265 skipped:
3266 max_sector = mddev->dev_sectors;
3267 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3268 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3269 max_sector = mddev->resync_max_sectors;
3270 if (sector_nr >= max_sector) {
3271 conf->cluster_sync_low = 0;
3272 conf->cluster_sync_high = 0;
3273
3274 /* If we aborted, we need to abort the
3275 * sync on the 'current' bitmap chucks (there can
3276 * be several when recovering multiple devices).
3277 * as we may have started syncing it but not finished.
3278 * We can find the current address in
3279 * mddev->curr_resync, but for recovery,
3280 * we need to convert that to several
3281 * virtual addresses.
3282 */
3283 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3284 end_reshape(conf);
3285 close_sync(conf);
3286 return 0;
3287 }
3288
3289 if (mddev->curr_resync < max_sector) { /* aborted */
3290 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3291 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3292 &sync_blocks, 1);
3293 else for (i = 0; i < conf->geo.raid_disks; i++) {
3294 sector_t sect =
3295 raid10_find_virt(conf, mddev->curr_resync, i);
3296 md_bitmap_end_sync(mddev->bitmap, sect,
3297 &sync_blocks, 1);
3298 }
3299 } else {
3300 /* completed sync */
3301 if ((!mddev->bitmap || conf->fullsync)
3302 && conf->have_replacement
3303 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3304 /* Completed a full sync so the replacements
3305 * are now fully recovered.
3306 */
3307 rcu_read_lock();
3308 for (i = 0; i < conf->geo.raid_disks; i++) {
3309 struct md_rdev *rdev =
3310 rcu_dereference(conf->mirrors[i].replacement);
3311 if (rdev)
3312 rdev->recovery_offset = MaxSector;
3313 }
3314 rcu_read_unlock();
3315 }
3316 conf->fullsync = 0;
3317 }
3318 md_bitmap_close_sync(mddev->bitmap);
3319 close_sync(conf);
3320 *skipped = 1;
3321 return sectors_skipped;
3322 }
3323
3324 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3325 return reshape_request(mddev, sector_nr, skipped);
3326
3327 if (chunks_skipped >= conf->geo.raid_disks) {
3328 /* if there has been nothing to do on any drive,
3329 * then there is nothing to do at all..
3330 */
3331 *skipped = 1;
3332 return (max_sector - sector_nr) + sectors_skipped;
3333 }
3334
3335 if (max_sector > mddev->resync_max)
3336 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3337
3338 /* make sure whole request will fit in a chunk - if chunks
3339 * are meaningful
3340 */
3341 if (conf->geo.near_copies < conf->geo.raid_disks &&
3342 max_sector > (sector_nr | chunk_mask))
3343 max_sector = (sector_nr | chunk_mask) + 1;
3344
3345 /*
3346 * If there is non-resync activity waiting for a turn, then let it
3347 * though before starting on this new sync request.
3348 */
3349 if (conf->nr_waiting)
3350 schedule_timeout_uninterruptible(1);
3351
3352 /* Again, very different code for resync and recovery.
3353 * Both must result in an r10bio with a list of bios that
3354 * have bi_end_io, bi_sector, bi_bdev set,
3355 * and bi_private set to the r10bio.
3356 * For recovery, we may actually create several r10bios
3357 * with 2 bios in each, that correspond to the bios in the main one.
3358 * In this case, the subordinate r10bios link back through a
3359 * borrowed master_bio pointer, and the counter in the master
3360 * includes a ref from each subordinate.
3361 */
3362 /* First, we decide what to do and set ->bi_end_io
3363 * To end_sync_read if we want to read, and
3364 * end_sync_write if we will want to write.
3365 */
3366
3367 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3368 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3369 /* recovery... the complicated one */
3370 int j;
3371 r10_bio = NULL;
3372
3373 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3374 int still_degraded;
3375 struct r10bio *rb2;
3376 sector_t sect;
3377 int must_sync;
3378 int any_working;
3379 int need_recover = 0;
3380 int need_replace = 0;
3381 struct raid10_info *mirror = &conf->mirrors[i];
3382 struct md_rdev *mrdev, *mreplace;
3383
3384 rcu_read_lock();
3385 mrdev = rcu_dereference(mirror->rdev);
3386 mreplace = rcu_dereference(mirror->replacement);
3387
3388 if (mrdev != NULL &&
3389 !test_bit(Faulty, &mrdev->flags) &&
3390 !test_bit(In_sync, &mrdev->flags))
3391 need_recover = 1;
3392 if (mreplace != NULL &&
3393 !test_bit(Faulty, &mreplace->flags))
3394 need_replace = 1;
3395
3396 if (!need_recover && !need_replace) {
3397 rcu_read_unlock();
3398 continue;
3399 }
3400
3401 still_degraded = 0;
3402 /* want to reconstruct this device */
3403 rb2 = r10_bio;
3404 sect = raid10_find_virt(conf, sector_nr, i);
3405 if (sect >= mddev->resync_max_sectors) {
3406 /* last stripe is not complete - don't
3407 * try to recover this sector.
3408 */
3409 rcu_read_unlock();
3410 continue;
3411 }
3412 if (mreplace && test_bit(Faulty, &mreplace->flags))
3413 mreplace = NULL;
3414 /* Unless we are doing a full sync, or a replacement
3415 * we only need to recover the block if it is set in
3416 * the bitmap
3417 */
3418 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3419 &sync_blocks, 1);
3420 if (sync_blocks < max_sync)
3421 max_sync = sync_blocks;
3422 if (!must_sync &&
3423 mreplace == NULL &&
3424 !conf->fullsync) {
3425 /* yep, skip the sync_blocks here, but don't assume
3426 * that there will never be anything to do here
3427 */
3428 chunks_skipped = -1;
3429 rcu_read_unlock();
3430 continue;
3431 }
3432 atomic_inc(&mrdev->nr_pending);
3433 if (mreplace)
3434 atomic_inc(&mreplace->nr_pending);
3435 rcu_read_unlock();
3436
3437 r10_bio = raid10_alloc_init_r10buf(conf);
3438 r10_bio->state = 0;
3439 raise_barrier(conf, rb2 != NULL);
3440 atomic_set(&r10_bio->remaining, 0);
3441
3442 r10_bio->master_bio = (struct bio*)rb2;
3443 if (rb2)
3444 atomic_inc(&rb2->remaining);
3445 r10_bio->mddev = mddev;
3446 set_bit(R10BIO_IsRecover, &r10_bio->state);
3447 r10_bio->sector = sect;
3448
3449 raid10_find_phys(conf, r10_bio);
3450
3451 /* Need to check if the array will still be
3452 * degraded
3453 */
3454 rcu_read_lock();
3455 for (j = 0; j < conf->geo.raid_disks; j++) {
3456 struct md_rdev *rdev = rcu_dereference(
3457 conf->mirrors[j].rdev);
3458 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3459 still_degraded = 1;
3460 break;
3461 }
3462 }
3463
3464 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3465 &sync_blocks, still_degraded);
3466
3467 any_working = 0;
3468 for (j=0; j<conf->copies;j++) {
3469 int k;
3470 int d = r10_bio->devs[j].devnum;
3471 sector_t from_addr, to_addr;
3472 struct md_rdev *rdev =
3473 rcu_dereference(conf->mirrors[d].rdev);
3474 sector_t sector, first_bad;
3475 int bad_sectors;
3476 if (!rdev ||
3477 !test_bit(In_sync, &rdev->flags))
3478 continue;
3479 /* This is where we read from */
3480 any_working = 1;
3481 sector = r10_bio->devs[j].addr;
3482
3483 if (is_badblock(rdev, sector, max_sync,
3484 &first_bad, &bad_sectors)) {
3485 if (first_bad > sector)
3486 max_sync = first_bad - sector;
3487 else {
3488 bad_sectors -= (sector
3489 - first_bad);
3490 if (max_sync > bad_sectors)
3491 max_sync = bad_sectors;
3492 continue;
3493 }
3494 }
3495 bio = r10_bio->devs[0].bio;
3496 bio->bi_next = biolist;
3497 biolist = bio;
3498 bio->bi_end_io = end_sync_read;
3499 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3500 if (test_bit(FailFast, &rdev->flags))
3501 bio->bi_opf |= MD_FAILFAST;
3502 from_addr = r10_bio->devs[j].addr;
3503 bio->bi_iter.bi_sector = from_addr +
3504 rdev->data_offset;
3505 bio_set_dev(bio, rdev->bdev);
3506 atomic_inc(&rdev->nr_pending);
3507 /* and we write to 'i' (if not in_sync) */
3508
3509 for (k=0; k<conf->copies; k++)
3510 if (r10_bio->devs[k].devnum == i)
3511 break;
3512 BUG_ON(k == conf->copies);
3513 to_addr = r10_bio->devs[k].addr;
3514 r10_bio->devs[0].devnum = d;
3515 r10_bio->devs[0].addr = from_addr;
3516 r10_bio->devs[1].devnum = i;
3517 r10_bio->devs[1].addr = to_addr;
3518
3519 if (need_recover) {
3520 bio = r10_bio->devs[1].bio;
3521 bio->bi_next = biolist;
3522 biolist = bio;
3523 bio->bi_end_io = end_sync_write;
3524 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3525 bio->bi_iter.bi_sector = to_addr
3526 + mrdev->data_offset;
3527 bio_set_dev(bio, mrdev->bdev);
3528 atomic_inc(&r10_bio->remaining);
3529 } else
3530 r10_bio->devs[1].bio->bi_end_io = NULL;
3531
3532 /* and maybe write to replacement */
3533 bio = r10_bio->devs[1].repl_bio;
3534 if (bio)
3535 bio->bi_end_io = NULL;
3536 /* Note: if need_replace, then bio
3537 * cannot be NULL as r10buf_pool_alloc will
3538 * have allocated it.
3539 */
3540 if (!need_replace)
3541 break;
3542 bio->bi_next = biolist;
3543 biolist = bio;
3544 bio->bi_end_io = end_sync_write;
3545 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3546 bio->bi_iter.bi_sector = to_addr +
3547 mreplace->data_offset;
3548 bio_set_dev(bio, mreplace->bdev);
3549 atomic_inc(&r10_bio->remaining);
3550 break;
3551 }
3552 rcu_read_unlock();
3553 if (j == conf->copies) {
3554 /* Cannot recover, so abort the recovery or
3555 * record a bad block */
3556 if (any_working) {
3557 /* problem is that there are bad blocks
3558 * on other device(s)
3559 */
3560 int k;
3561 for (k = 0; k < conf->copies; k++)
3562 if (r10_bio->devs[k].devnum == i)
3563 break;
3564 if (!test_bit(In_sync,
3565 &mrdev->flags)
3566 && !rdev_set_badblocks(
3567 mrdev,
3568 r10_bio->devs[k].addr,
3569 max_sync, 0))
3570 any_working = 0;
3571 if (mreplace &&
3572 !rdev_set_badblocks(
3573 mreplace,
3574 r10_bio->devs[k].addr,
3575 max_sync, 0))
3576 any_working = 0;
3577 }
3578 if (!any_working) {
3579 if (!test_and_set_bit(MD_RECOVERY_INTR,
3580 &mddev->recovery))
3581 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3582 mdname(mddev));
3583 mirror->recovery_disabled
3584 = mddev->recovery_disabled;
3585 }
3586 put_buf(r10_bio);
3587 if (rb2)
3588 atomic_dec(&rb2->remaining);
3589 r10_bio = rb2;
3590 rdev_dec_pending(mrdev, mddev);
3591 if (mreplace)
3592 rdev_dec_pending(mreplace, mddev);
3593 break;
3594 }
3595 rdev_dec_pending(mrdev, mddev);
3596 if (mreplace)
3597 rdev_dec_pending(mreplace, mddev);
3598 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3599 /* Only want this if there is elsewhere to
3600 * read from. 'j' is currently the first
3601 * readable copy.
3602 */
3603 int targets = 1;
3604 for (; j < conf->copies; j++) {
3605 int d = r10_bio->devs[j].devnum;
3606 if (conf->mirrors[d].rdev &&
3607 test_bit(In_sync,
3608 &conf->mirrors[d].rdev->flags))
3609 targets++;
3610 }
3611 if (targets == 1)
3612 r10_bio->devs[0].bio->bi_opf
3613 &= ~MD_FAILFAST;
3614 }
3615 }
3616 if (biolist == NULL) {
3617 while (r10_bio) {
3618 struct r10bio *rb2 = r10_bio;
3619 r10_bio = (struct r10bio*) rb2->master_bio;
3620 rb2->master_bio = NULL;
3621 put_buf(rb2);
3622 }
3623 goto giveup;
3624 }
3625 } else {
3626 /* resync. Schedule a read for every block at this virt offset */
3627 int count = 0;
3628
3629 /*
3630 * Since curr_resync_completed could probably not update in
3631 * time, and we will set cluster_sync_low based on it.
3632 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3633 * safety reason, which ensures curr_resync_completed is
3634 * updated in bitmap_cond_end_sync.
3635 */
3636 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3637 mddev_is_clustered(mddev) &&
3638 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3639
3640 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3641 &sync_blocks, mddev->degraded) &&
3642 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3643 &mddev->recovery)) {
3644 /* We can skip this block */
3645 *skipped = 1;
3646 return sync_blocks + sectors_skipped;
3647 }
3648 if (sync_blocks < max_sync)
3649 max_sync = sync_blocks;
3650 r10_bio = raid10_alloc_init_r10buf(conf);
3651 r10_bio->state = 0;
3652
3653 r10_bio->mddev = mddev;
3654 atomic_set(&r10_bio->remaining, 0);
3655 raise_barrier(conf, 0);
3656 conf->next_resync = sector_nr;
3657
3658 r10_bio->master_bio = NULL;
3659 r10_bio->sector = sector_nr;
3660 set_bit(R10BIO_IsSync, &r10_bio->state);
3661 raid10_find_phys(conf, r10_bio);
3662 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3663
3664 for (i = 0; i < conf->copies; i++) {
3665 int d = r10_bio->devs[i].devnum;
3666 sector_t first_bad, sector;
3667 int bad_sectors;
3668 struct md_rdev *rdev;
3669
3670 if (r10_bio->devs[i].repl_bio)
3671 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3672
3673 bio = r10_bio->devs[i].bio;
3674 bio->bi_status = BLK_STS_IOERR;
3675 rcu_read_lock();
3676 rdev = rcu_dereference(conf->mirrors[d].rdev);
3677 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3678 rcu_read_unlock();
3679 continue;
3680 }
3681 sector = r10_bio->devs[i].addr;
3682 if (is_badblock(rdev, sector, max_sync,
3683 &first_bad, &bad_sectors)) {
3684 if (first_bad > sector)
3685 max_sync = first_bad - sector;
3686 else {
3687 bad_sectors -= (sector - first_bad);
3688 if (max_sync > bad_sectors)
3689 max_sync = bad_sectors;
3690 rcu_read_unlock();
3691 continue;
3692 }
3693 }
3694 atomic_inc(&rdev->nr_pending);
3695 atomic_inc(&r10_bio->remaining);
3696 bio->bi_next = biolist;
3697 biolist = bio;
3698 bio->bi_end_io = end_sync_read;
3699 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3700 if (test_bit(FailFast, &rdev->flags))
3701 bio->bi_opf |= MD_FAILFAST;
3702 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3703 bio_set_dev(bio, rdev->bdev);
3704 count++;
3705
3706 rdev = rcu_dereference(conf->mirrors[d].replacement);
3707 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3708 rcu_read_unlock();
3709 continue;
3710 }
3711 atomic_inc(&rdev->nr_pending);
3712
3713 /* Need to set up for writing to the replacement */
3714 bio = r10_bio->devs[i].repl_bio;
3715 bio->bi_status = BLK_STS_IOERR;
3716
3717 sector = r10_bio->devs[i].addr;
3718 bio->bi_next = biolist;
3719 biolist = bio;
3720 bio->bi_end_io = end_sync_write;
3721 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3722 if (test_bit(FailFast, &rdev->flags))
3723 bio->bi_opf |= MD_FAILFAST;
3724 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3725 bio_set_dev(bio, rdev->bdev);
3726 count++;
3727 rcu_read_unlock();
3728 }
3729
3730 if (count < 2) {
3731 for (i=0; i<conf->copies; i++) {
3732 int d = r10_bio->devs[i].devnum;
3733 if (r10_bio->devs[i].bio->bi_end_io)
3734 rdev_dec_pending(conf->mirrors[d].rdev,
3735 mddev);
3736 if (r10_bio->devs[i].repl_bio &&
3737 r10_bio->devs[i].repl_bio->bi_end_io)
3738 rdev_dec_pending(
3739 conf->mirrors[d].replacement,
3740 mddev);
3741 }
3742 put_buf(r10_bio);
3743 biolist = NULL;
3744 goto giveup;
3745 }
3746 }
3747
3748 nr_sectors = 0;
3749 if (sector_nr + max_sync < max_sector)
3750 max_sector = sector_nr + max_sync;
3751 do {
3752 struct page *page;
3753 int len = PAGE_SIZE;
3754 if (sector_nr + (len>>9) > max_sector)
3755 len = (max_sector - sector_nr) << 9;
3756 if (len == 0)
3757 break;
3758 for (bio= biolist ; bio ; bio=bio->bi_next) {
3759 struct resync_pages *rp = get_resync_pages(bio);
3760 page = resync_fetch_page(rp, page_idx);
3761 /*
3762 * won't fail because the vec table is big enough
3763 * to hold all these pages
3764 */
3765 bio_add_page(bio, page, len, 0);
3766 }
3767 nr_sectors += len>>9;
3768 sector_nr += len>>9;
3769 } while (++page_idx < RESYNC_PAGES);
3770 r10_bio->sectors = nr_sectors;
3771
3772 if (mddev_is_clustered(mddev) &&
3773 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3774 /* It is resync not recovery */
3775 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3776 conf->cluster_sync_low = mddev->curr_resync_completed;
3777 raid10_set_cluster_sync_high(conf);
3778 /* Send resync message */
3779 md_cluster_ops->resync_info_update(mddev,
3780 conf->cluster_sync_low,
3781 conf->cluster_sync_high);
3782 }
3783 } else if (mddev_is_clustered(mddev)) {
3784 /* This is recovery not resync */
3785 sector_t sect_va1, sect_va2;
3786 bool broadcast_msg = false;
3787
3788 for (i = 0; i < conf->geo.raid_disks; i++) {
3789 /*
3790 * sector_nr is a device address for recovery, so we
3791 * need translate it to array address before compare
3792 * with cluster_sync_high.
3793 */
3794 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3795
3796 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3797 broadcast_msg = true;
3798 /*
3799 * curr_resync_completed is similar as
3800 * sector_nr, so make the translation too.
3801 */
3802 sect_va2 = raid10_find_virt(conf,
3803 mddev->curr_resync_completed, i);
3804
3805 if (conf->cluster_sync_low == 0 ||
3806 conf->cluster_sync_low > sect_va2)
3807 conf->cluster_sync_low = sect_va2;
3808 }
3809 }
3810 if (broadcast_msg) {
3811 raid10_set_cluster_sync_high(conf);
3812 md_cluster_ops->resync_info_update(mddev,
3813 conf->cluster_sync_low,
3814 conf->cluster_sync_high);
3815 }
3816 }
3817
3818 while (biolist) {
3819 bio = biolist;
3820 biolist = biolist->bi_next;
3821
3822 bio->bi_next = NULL;
3823 r10_bio = get_resync_r10bio(bio);
3824 r10_bio->sectors = nr_sectors;
3825
3826 if (bio->bi_end_io == end_sync_read) {
3827 md_sync_acct_bio(bio, nr_sectors);
3828 bio->bi_status = 0;
3829 submit_bio_noacct(bio);
3830 }
3831 }
3832
3833 if (sectors_skipped)
3834 /* pretend they weren't skipped, it makes
3835 * no important difference in this case
3836 */
3837 md_done_sync(mddev, sectors_skipped, 1);
3838
3839 return sectors_skipped + nr_sectors;
3840 giveup:
3841 /* There is nowhere to write, so all non-sync
3842 * drives must be failed or in resync, all drives
3843 * have a bad block, so try the next chunk...
3844 */
3845 if (sector_nr + max_sync < max_sector)
3846 max_sector = sector_nr + max_sync;
3847
3848 sectors_skipped += (max_sector - sector_nr);
3849 chunks_skipped ++;
3850 sector_nr = max_sector;
3851 goto skipped;
3852}
3853
3854static sector_t
3855raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3856{
3857 sector_t size;
3858 struct r10conf *conf = mddev->private;
3859
3860 if (!raid_disks)
3861 raid_disks = min(conf->geo.raid_disks,
3862 conf->prev.raid_disks);
3863 if (!sectors)
3864 sectors = conf->dev_sectors;
3865
3866 size = sectors >> conf->geo.chunk_shift;
3867 sector_div(size, conf->geo.far_copies);
3868 size = size * raid_disks;
3869 sector_div(size, conf->geo.near_copies);
3870
3871 return size << conf->geo.chunk_shift;
3872}
3873
3874static void calc_sectors(struct r10conf *conf, sector_t size)
3875{
3876 /* Calculate the number of sectors-per-device that will
3877 * actually be used, and set conf->dev_sectors and
3878 * conf->stride
3879 */
3880
3881 size = size >> conf->geo.chunk_shift;
3882 sector_div(size, conf->geo.far_copies);
3883 size = size * conf->geo.raid_disks;
3884 sector_div(size, conf->geo.near_copies);
3885 /* 'size' is now the number of chunks in the array */
3886 /* calculate "used chunks per device" */
3887 size = size * conf->copies;
3888
3889 /* We need to round up when dividing by raid_disks to
3890 * get the stride size.
3891 */
3892 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3893
3894 conf->dev_sectors = size << conf->geo.chunk_shift;
3895
3896 if (conf->geo.far_offset)
3897 conf->geo.stride = 1 << conf->geo.chunk_shift;
3898 else {
3899 sector_div(size, conf->geo.far_copies);
3900 conf->geo.stride = size << conf->geo.chunk_shift;
3901 }
3902}
3903
3904enum geo_type {geo_new, geo_old, geo_start};
3905static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3906{
3907 int nc, fc, fo;
3908 int layout, chunk, disks;
3909 switch (new) {
3910 case geo_old:
3911 layout = mddev->layout;
3912 chunk = mddev->chunk_sectors;
3913 disks = mddev->raid_disks - mddev->delta_disks;
3914 break;
3915 case geo_new:
3916 layout = mddev->new_layout;
3917 chunk = mddev->new_chunk_sectors;
3918 disks = mddev->raid_disks;
3919 break;
3920 default: /* avoid 'may be unused' warnings */
3921 case geo_start: /* new when starting reshape - raid_disks not
3922 * updated yet. */
3923 layout = mddev->new_layout;
3924 chunk = mddev->new_chunk_sectors;
3925 disks = mddev->raid_disks + mddev->delta_disks;
3926 break;
3927 }
3928 if (layout >> 19)
3929 return -1;
3930 if (chunk < (PAGE_SIZE >> 9) ||
3931 !is_power_of_2(chunk))
3932 return -2;
3933 nc = layout & 255;
3934 fc = (layout >> 8) & 255;
3935 fo = layout & (1<<16);
3936 geo->raid_disks = disks;
3937 geo->near_copies = nc;
3938 geo->far_copies = fc;
3939 geo->far_offset = fo;
3940 switch (layout >> 17) {
3941 case 0: /* original layout. simple but not always optimal */
3942 geo->far_set_size = disks;
3943 break;
3944 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3945 * actually using this, but leave code here just in case.*/
3946 geo->far_set_size = disks/fc;
3947 WARN(geo->far_set_size < fc,
3948 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3949 break;
3950 case 2: /* "improved" layout fixed to match documentation */
3951 geo->far_set_size = fc * nc;
3952 break;
3953 default: /* Not a valid layout */
3954 return -1;
3955 }
3956 geo->chunk_mask = chunk - 1;
3957 geo->chunk_shift = ffz(~chunk);
3958 return nc*fc;
3959}
3960
3961static struct r10conf *setup_conf(struct mddev *mddev)
3962{
3963 struct r10conf *conf = NULL;
3964 int err = -EINVAL;
3965 struct geom geo;
3966 int copies;
3967
3968 copies = setup_geo(&geo, mddev, geo_new);
3969
3970 if (copies == -2) {
3971 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3972 mdname(mddev), PAGE_SIZE);
3973 goto out;
3974 }
3975
3976 if (copies < 2 || copies > mddev->raid_disks) {
3977 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3978 mdname(mddev), mddev->new_layout);
3979 goto out;
3980 }
3981
3982 err = -ENOMEM;
3983 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3984 if (!conf)
3985 goto out;
3986
3987 /* FIXME calc properly */
3988 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3989 sizeof(struct raid10_info),
3990 GFP_KERNEL);
3991 if (!conf->mirrors)
3992 goto out;
3993
3994 conf->tmppage = alloc_page(GFP_KERNEL);
3995 if (!conf->tmppage)
3996 goto out;
3997
3998 conf->geo = geo;
3999 conf->copies = copies;
4000 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
4001 rbio_pool_free, conf);
4002 if (err)
4003 goto out;
4004
4005 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
4006 if (err)
4007 goto out;
4008
4009 calc_sectors(conf, mddev->dev_sectors);
4010 if (mddev->reshape_position == MaxSector) {
4011 conf->prev = conf->geo;
4012 conf->reshape_progress = MaxSector;
4013 } else {
4014 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
4015 err = -EINVAL;
4016 goto out;
4017 }
4018 conf->reshape_progress = mddev->reshape_position;
4019 if (conf->prev.far_offset)
4020 conf->prev.stride = 1 << conf->prev.chunk_shift;
4021 else
4022 /* far_copies must be 1 */
4023 conf->prev.stride = conf->dev_sectors;
4024 }
4025 conf->reshape_safe = conf->reshape_progress;
4026 spin_lock_init(&conf->device_lock);
4027 INIT_LIST_HEAD(&conf->retry_list);
4028 INIT_LIST_HEAD(&conf->bio_end_io_list);
4029
4030 spin_lock_init(&conf->resync_lock);
4031 init_waitqueue_head(&conf->wait_barrier);
4032 atomic_set(&conf->nr_pending, 0);
4033
4034 err = -ENOMEM;
4035 conf->thread = md_register_thread(raid10d, mddev, "raid10");
4036 if (!conf->thread)
4037 goto out;
4038
4039 conf->mddev = mddev;
4040 return conf;
4041
4042 out:
4043 if (conf) {
4044 mempool_exit(&conf->r10bio_pool);
4045 kfree(conf->mirrors);
4046 safe_put_page(conf->tmppage);
4047 bioset_exit(&conf->bio_split);
4048 kfree(conf);
4049 }
4050 return ERR_PTR(err);
4051}
4052
4053static void raid10_set_io_opt(struct r10conf *conf)
4054{
4055 int raid_disks = conf->geo.raid_disks;
4056
4057 if (!(conf->geo.raid_disks % conf->geo.near_copies))
4058 raid_disks /= conf->geo.near_copies;
4059 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4060 raid_disks);
4061}
4062
4063static int raid10_run(struct mddev *mddev)
4064{
4065 struct r10conf *conf;
4066 int i, disk_idx;
4067 struct raid10_info *disk;
4068 struct md_rdev *rdev;
4069 sector_t size;
4070 sector_t min_offset_diff = 0;
4071 int first = 1;
4072 bool discard_supported = false;
4073
4074 if (mddev_init_writes_pending(mddev) < 0)
4075 return -ENOMEM;
4076
4077 if (mddev->private == NULL) {
4078 conf = setup_conf(mddev);
4079 if (IS_ERR(conf))
4080 return PTR_ERR(conf);
4081 mddev->private = conf;
4082 }
4083 conf = mddev->private;
4084 if (!conf)
4085 goto out;
4086
4087 if (mddev_is_clustered(conf->mddev)) {
4088 int fc, fo;
4089
4090 fc = (mddev->layout >> 8) & 255;
4091 fo = mddev->layout & (1<<16);
4092 if (fc > 1 || fo > 0) {
4093 pr_err("only near layout is supported by clustered"
4094 " raid10\n");
4095 goto out_free_conf;
4096 }
4097 }
4098
4099 mddev->thread = conf->thread;
4100 conf->thread = NULL;
4101
4102 if (mddev->queue) {
4103 blk_queue_max_discard_sectors(mddev->queue,
4104 UINT_MAX);
4105 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4106 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4107 raid10_set_io_opt(conf);
4108 }
4109
4110 rdev_for_each(rdev, mddev) {
4111 long long diff;
4112
4113 disk_idx = rdev->raid_disk;
4114 if (disk_idx < 0)
4115 continue;
4116 if (disk_idx >= conf->geo.raid_disks &&
4117 disk_idx >= conf->prev.raid_disks)
4118 continue;
4119 disk = conf->mirrors + disk_idx;
4120
4121 if (test_bit(Replacement, &rdev->flags)) {
4122 if (disk->replacement)
4123 goto out_free_conf;
4124 disk->replacement = rdev;
4125 } else {
4126 if (disk->rdev)
4127 goto out_free_conf;
4128 disk->rdev = rdev;
4129 }
4130 diff = (rdev->new_data_offset - rdev->data_offset);
4131 if (!mddev->reshape_backwards)
4132 diff = -diff;
4133 if (diff < 0)
4134 diff = 0;
4135 if (first || diff < min_offset_diff)
4136 min_offset_diff = diff;
4137
4138 if (mddev->gendisk)
4139 disk_stack_limits(mddev->gendisk, rdev->bdev,
4140 rdev->data_offset << 9);
4141
4142 disk->head_position = 0;
4143
4144 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
4145 discard_supported = true;
4146 first = 0;
4147 }
4148
4149 if (mddev->queue) {
4150 if (discard_supported)
4151 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
4152 mddev->queue);
4153 else
4154 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
4155 mddev->queue);
4156 }
4157 /* need to check that every block has at least one working mirror */
4158 if (!enough(conf, -1)) {
4159 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4160 mdname(mddev));
4161 goto out_free_conf;
4162 }
4163
4164 if (conf->reshape_progress != MaxSector) {
4165 /* must ensure that shape change is supported */
4166 if (conf->geo.far_copies != 1 &&
4167 conf->geo.far_offset == 0)
4168 goto out_free_conf;
4169 if (conf->prev.far_copies != 1 &&
4170 conf->prev.far_offset == 0)
4171 goto out_free_conf;
4172 }
4173
4174 mddev->degraded = 0;
4175 for (i = 0;
4176 i < conf->geo.raid_disks
4177 || i < conf->prev.raid_disks;
4178 i++) {
4179
4180 disk = conf->mirrors + i;
4181
4182 if (!disk->rdev && disk->replacement) {
4183 /* The replacement is all we have - use it */
4184 disk->rdev = disk->replacement;
4185 disk->replacement = NULL;
4186 clear_bit(Replacement, &disk->rdev->flags);
4187 }
4188
4189 if (!disk->rdev ||
4190 !test_bit(In_sync, &disk->rdev->flags)) {
4191 disk->head_position = 0;
4192 mddev->degraded++;
4193 if (disk->rdev &&
4194 disk->rdev->saved_raid_disk < 0)
4195 conf->fullsync = 1;
4196 }
4197
4198 if (disk->replacement &&
4199 !test_bit(In_sync, &disk->replacement->flags) &&
4200 disk->replacement->saved_raid_disk < 0) {
4201 conf->fullsync = 1;
4202 }
4203
4204 disk->recovery_disabled = mddev->recovery_disabled - 1;
4205 }
4206
4207 if (mddev->recovery_cp != MaxSector)
4208 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4209 mdname(mddev));
4210 pr_info("md/raid10:%s: active with %d out of %d devices\n",
4211 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4212 conf->geo.raid_disks);
4213 /*
4214 * Ok, everything is just fine now
4215 */
4216 mddev->dev_sectors = conf->dev_sectors;
4217 size = raid10_size(mddev, 0, 0);
4218 md_set_array_sectors(mddev, size);
4219 mddev->resync_max_sectors = size;
4220 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4221
4222 if (md_integrity_register(mddev))
4223 goto out_free_conf;
4224
4225 if (conf->reshape_progress != MaxSector) {
4226 unsigned long before_length, after_length;
4227
4228 before_length = ((1 << conf->prev.chunk_shift) *
4229 conf->prev.far_copies);
4230 after_length = ((1 << conf->geo.chunk_shift) *
4231 conf->geo.far_copies);
4232
4233 if (max(before_length, after_length) > min_offset_diff) {
4234 /* This cannot work */
4235 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4236 goto out_free_conf;
4237 }
4238 conf->offset_diff = min_offset_diff;
4239
4240 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4241 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4242 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4243 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4244 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4245 "reshape");
4246 if (!mddev->sync_thread)
4247 goto out_free_conf;
4248 }
4249
4250 return 0;
4251
4252out_free_conf:
4253 md_unregister_thread(&mddev->thread);
4254 mempool_exit(&conf->r10bio_pool);
4255 safe_put_page(conf->tmppage);
4256 kfree(conf->mirrors);
4257 kfree(conf);
4258 mddev->private = NULL;
4259out:
4260 return -EIO;
4261}
4262
4263static void raid10_free(struct mddev *mddev, void *priv)
4264{
4265 struct r10conf *conf = priv;
4266
4267 mempool_exit(&conf->r10bio_pool);
4268 safe_put_page(conf->tmppage);
4269 kfree(conf->mirrors);
4270 kfree(conf->mirrors_old);
4271 kfree(conf->mirrors_new);
4272 bioset_exit(&conf->bio_split);
4273 kfree(conf);
4274}
4275
4276static void raid10_quiesce(struct mddev *mddev, int quiesce)
4277{
4278 struct r10conf *conf = mddev->private;
4279
4280 if (quiesce)
4281 raise_barrier(conf, 0);
4282 else
4283 lower_barrier(conf);
4284}
4285
4286static int raid10_resize(struct mddev *mddev, sector_t sectors)
4287{
4288 /* Resize of 'far' arrays is not supported.
4289 * For 'near' and 'offset' arrays we can set the
4290 * number of sectors used to be an appropriate multiple
4291 * of the chunk size.
4292 * For 'offset', this is far_copies*chunksize.
4293 * For 'near' the multiplier is the LCM of
4294 * near_copies and raid_disks.
4295 * So if far_copies > 1 && !far_offset, fail.
4296 * Else find LCM(raid_disks, near_copy)*far_copies and
4297 * multiply by chunk_size. Then round to this number.
4298 * This is mostly done by raid10_size()
4299 */
4300 struct r10conf *conf = mddev->private;
4301 sector_t oldsize, size;
4302
4303 if (mddev->reshape_position != MaxSector)
4304 return -EBUSY;
4305
4306 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4307 return -EINVAL;
4308
4309 oldsize = raid10_size(mddev, 0, 0);
4310 size = raid10_size(mddev, sectors, 0);
4311 if (mddev->external_size &&
4312 mddev->array_sectors > size)
4313 return -EINVAL;
4314 if (mddev->bitmap) {
4315 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4316 if (ret)
4317 return ret;
4318 }
4319 md_set_array_sectors(mddev, size);
4320 if (sectors > mddev->dev_sectors &&
4321 mddev->recovery_cp > oldsize) {
4322 mddev->recovery_cp = oldsize;
4323 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4324 }
4325 calc_sectors(conf, sectors);
4326 mddev->dev_sectors = conf->dev_sectors;
4327 mddev->resync_max_sectors = size;
4328 return 0;
4329}
4330
4331static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4332{
4333 struct md_rdev *rdev;
4334 struct r10conf *conf;
4335
4336 if (mddev->degraded > 0) {
4337 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4338 mdname(mddev));
4339 return ERR_PTR(-EINVAL);
4340 }
4341 sector_div(size, devs);
4342
4343 /* Set new parameters */
4344 mddev->new_level = 10;
4345 /* new layout: far_copies = 1, near_copies = 2 */
4346 mddev->new_layout = (1<<8) + 2;
4347 mddev->new_chunk_sectors = mddev->chunk_sectors;
4348 mddev->delta_disks = mddev->raid_disks;
4349 mddev->raid_disks *= 2;
4350 /* make sure it will be not marked as dirty */
4351 mddev->recovery_cp = MaxSector;
4352 mddev->dev_sectors = size;
4353
4354 conf = setup_conf(mddev);
4355 if (!IS_ERR(conf)) {
4356 rdev_for_each(rdev, mddev)
4357 if (rdev->raid_disk >= 0) {
4358 rdev->new_raid_disk = rdev->raid_disk * 2;
4359 rdev->sectors = size;
4360 }
4361 conf->barrier = 1;
4362 }
4363
4364 return conf;
4365}
4366
4367static void *raid10_takeover(struct mddev *mddev)
4368{
4369 struct r0conf *raid0_conf;
4370
4371 /* raid10 can take over:
4372 * raid0 - providing it has only two drives
4373 */
4374 if (mddev->level == 0) {
4375 /* for raid0 takeover only one zone is supported */
4376 raid0_conf = mddev->private;
4377 if (raid0_conf->nr_strip_zones > 1) {
4378 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4379 mdname(mddev));
4380 return ERR_PTR(-EINVAL);
4381 }
4382 return raid10_takeover_raid0(mddev,
4383 raid0_conf->strip_zone->zone_end,
4384 raid0_conf->strip_zone->nb_dev);
4385 }
4386 return ERR_PTR(-EINVAL);
4387}
4388
4389static int raid10_check_reshape(struct mddev *mddev)
4390{
4391 /* Called when there is a request to change
4392 * - layout (to ->new_layout)
4393 * - chunk size (to ->new_chunk_sectors)
4394 * - raid_disks (by delta_disks)
4395 * or when trying to restart a reshape that was ongoing.
4396 *
4397 * We need to validate the request and possibly allocate
4398 * space if that might be an issue later.
4399 *
4400 * Currently we reject any reshape of a 'far' mode array,
4401 * allow chunk size to change if new is generally acceptable,
4402 * allow raid_disks to increase, and allow
4403 * a switch between 'near' mode and 'offset' mode.
4404 */
4405 struct r10conf *conf = mddev->private;
4406 struct geom geo;
4407
4408 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4409 return -EINVAL;
4410
4411 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4412 /* mustn't change number of copies */
4413 return -EINVAL;
4414 if (geo.far_copies > 1 && !geo.far_offset)
4415 /* Cannot switch to 'far' mode */
4416 return -EINVAL;
4417
4418 if (mddev->array_sectors & geo.chunk_mask)
4419 /* not factor of array size */
4420 return -EINVAL;
4421
4422 if (!enough(conf, -1))
4423 return -EINVAL;
4424
4425 kfree(conf->mirrors_new);
4426 conf->mirrors_new = NULL;
4427 if (mddev->delta_disks > 0) {
4428 /* allocate new 'mirrors' list */
4429 conf->mirrors_new =
4430 kcalloc(mddev->raid_disks + mddev->delta_disks,
4431 sizeof(struct raid10_info),
4432 GFP_KERNEL);
4433 if (!conf->mirrors_new)
4434 return -ENOMEM;
4435 }
4436 return 0;
4437}
4438
4439/*
4440 * Need to check if array has failed when deciding whether to:
4441 * - start an array
4442 * - remove non-faulty devices
4443 * - add a spare
4444 * - allow a reshape
4445 * This determination is simple when no reshape is happening.
4446 * However if there is a reshape, we need to carefully check
4447 * both the before and after sections.
4448 * This is because some failed devices may only affect one
4449 * of the two sections, and some non-in_sync devices may
4450 * be insync in the section most affected by failed devices.
4451 */
4452static int calc_degraded(struct r10conf *conf)
4453{
4454 int degraded, degraded2;
4455 int i;
4456
4457 rcu_read_lock();
4458 degraded = 0;
4459 /* 'prev' section first */
4460 for (i = 0; i < conf->prev.raid_disks; i++) {
4461 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4462 if (!rdev || test_bit(Faulty, &rdev->flags))
4463 degraded++;
4464 else if (!test_bit(In_sync, &rdev->flags))
4465 /* When we can reduce the number of devices in
4466 * an array, this might not contribute to
4467 * 'degraded'. It does now.
4468 */
4469 degraded++;
4470 }
4471 rcu_read_unlock();
4472 if (conf->geo.raid_disks == conf->prev.raid_disks)
4473 return degraded;
4474 rcu_read_lock();
4475 degraded2 = 0;
4476 for (i = 0; i < conf->geo.raid_disks; i++) {
4477 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4478 if (!rdev || test_bit(Faulty, &rdev->flags))
4479 degraded2++;
4480 else if (!test_bit(In_sync, &rdev->flags)) {
4481 /* If reshape is increasing the number of devices,
4482 * this section has already been recovered, so
4483 * it doesn't contribute to degraded.
4484 * else it does.
4485 */
4486 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4487 degraded2++;
4488 }
4489 }
4490 rcu_read_unlock();
4491 if (degraded2 > degraded)
4492 return degraded2;
4493 return degraded;
4494}
4495
4496static int raid10_start_reshape(struct mddev *mddev)
4497{
4498 /* A 'reshape' has been requested. This commits
4499 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4500 * This also checks if there are enough spares and adds them
4501 * to the array.
4502 * We currently require enough spares to make the final
4503 * array non-degraded. We also require that the difference
4504 * between old and new data_offset - on each device - is
4505 * enough that we never risk over-writing.
4506 */
4507
4508 unsigned long before_length, after_length;
4509 sector_t min_offset_diff = 0;
4510 int first = 1;
4511 struct geom new;
4512 struct r10conf *conf = mddev->private;
4513 struct md_rdev *rdev;
4514 int spares = 0;
4515 int ret;
4516
4517 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4518 return -EBUSY;
4519
4520 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4521 return -EINVAL;
4522
4523 before_length = ((1 << conf->prev.chunk_shift) *
4524 conf->prev.far_copies);
4525 after_length = ((1 << conf->geo.chunk_shift) *
4526 conf->geo.far_copies);
4527
4528 rdev_for_each(rdev, mddev) {
4529 if (!test_bit(In_sync, &rdev->flags)
4530 && !test_bit(Faulty, &rdev->flags))
4531 spares++;
4532 if (rdev->raid_disk >= 0) {
4533 long long diff = (rdev->new_data_offset
4534 - rdev->data_offset);
4535 if (!mddev->reshape_backwards)
4536 diff = -diff;
4537 if (diff < 0)
4538 diff = 0;
4539 if (first || diff < min_offset_diff)
4540 min_offset_diff = diff;
4541 first = 0;
4542 }
4543 }
4544
4545 if (max(before_length, after_length) > min_offset_diff)
4546 return -EINVAL;
4547
4548 if (spares < mddev->delta_disks)
4549 return -EINVAL;
4550
4551 conf->offset_diff = min_offset_diff;
4552 spin_lock_irq(&conf->device_lock);
4553 if (conf->mirrors_new) {
4554 memcpy(conf->mirrors_new, conf->mirrors,
4555 sizeof(struct raid10_info)*conf->prev.raid_disks);
4556 smp_mb();
4557 kfree(conf->mirrors_old);
4558 conf->mirrors_old = conf->mirrors;
4559 conf->mirrors = conf->mirrors_new;
4560 conf->mirrors_new = NULL;
4561 }
4562 setup_geo(&conf->geo, mddev, geo_start);
4563 smp_mb();
4564 if (mddev->reshape_backwards) {
4565 sector_t size = raid10_size(mddev, 0, 0);
4566 if (size < mddev->array_sectors) {
4567 spin_unlock_irq(&conf->device_lock);
4568 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4569 mdname(mddev));
4570 return -EINVAL;
4571 }
4572 mddev->resync_max_sectors = size;
4573 conf->reshape_progress = size;
4574 } else
4575 conf->reshape_progress = 0;
4576 conf->reshape_safe = conf->reshape_progress;
4577 spin_unlock_irq(&conf->device_lock);
4578
4579 if (mddev->delta_disks && mddev->bitmap) {
4580 struct mdp_superblock_1 *sb = NULL;
4581 sector_t oldsize, newsize;
4582
4583 oldsize = raid10_size(mddev, 0, 0);
4584 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4585
4586 if (!mddev_is_clustered(mddev)) {
4587 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4588 if (ret)
4589 goto abort;
4590 else
4591 goto out;
4592 }
4593
4594 rdev_for_each(rdev, mddev) {
4595 if (rdev->raid_disk > -1 &&
4596 !test_bit(Faulty, &rdev->flags))
4597 sb = page_address(rdev->sb_page);
4598 }
4599
4600 /*
4601 * some node is already performing reshape, and no need to
4602 * call md_bitmap_resize again since it should be called when
4603 * receiving BITMAP_RESIZE msg
4604 */
4605 if ((sb && (le32_to_cpu(sb->feature_map) &
4606 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4607 goto out;
4608
4609 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4610 if (ret)
4611 goto abort;
4612
4613 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4614 if (ret) {
4615 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4616 goto abort;
4617 }
4618 }
4619out:
4620 if (mddev->delta_disks > 0) {
4621 rdev_for_each(rdev, mddev)
4622 if (rdev->raid_disk < 0 &&
4623 !test_bit(Faulty, &rdev->flags)) {
4624 if (raid10_add_disk(mddev, rdev) == 0) {
4625 if (rdev->raid_disk >=
4626 conf->prev.raid_disks)
4627 set_bit(In_sync, &rdev->flags);
4628 else
4629 rdev->recovery_offset = 0;
4630
4631 /* Failure here is OK */
4632 sysfs_link_rdev(mddev, rdev);
4633 }
4634 } else if (rdev->raid_disk >= conf->prev.raid_disks
4635 && !test_bit(Faulty, &rdev->flags)) {
4636 /* This is a spare that was manually added */
4637 set_bit(In_sync, &rdev->flags);
4638 }
4639 }
4640 /* When a reshape changes the number of devices,
4641 * ->degraded is measured against the larger of the
4642 * pre and post numbers.
4643 */
4644 spin_lock_irq(&conf->device_lock);
4645 mddev->degraded = calc_degraded(conf);
4646 spin_unlock_irq(&conf->device_lock);
4647 mddev->raid_disks = conf->geo.raid_disks;
4648 mddev->reshape_position = conf->reshape_progress;
4649 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4650
4651 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4652 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4653 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4654 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4655 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4656
4657 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4658 "reshape");
4659 if (!mddev->sync_thread) {
4660 ret = -EAGAIN;
4661 goto abort;
4662 }
4663 conf->reshape_checkpoint = jiffies;
4664 md_wakeup_thread(mddev->sync_thread);
4665 md_new_event();
4666 return 0;
4667
4668abort:
4669 mddev->recovery = 0;
4670 spin_lock_irq(&conf->device_lock);
4671 conf->geo = conf->prev;
4672 mddev->raid_disks = conf->geo.raid_disks;
4673 rdev_for_each(rdev, mddev)
4674 rdev->new_data_offset = rdev->data_offset;
4675 smp_wmb();
4676 conf->reshape_progress = MaxSector;
4677 conf->reshape_safe = MaxSector;
4678 mddev->reshape_position = MaxSector;
4679 spin_unlock_irq(&conf->device_lock);
4680 return ret;
4681}
4682
4683/* Calculate the last device-address that could contain
4684 * any block from the chunk that includes the array-address 's'
4685 * and report the next address.
4686 * i.e. the address returned will be chunk-aligned and after
4687 * any data that is in the chunk containing 's'.
4688 */
4689static sector_t last_dev_address(sector_t s, struct geom *geo)
4690{
4691 s = (s | geo->chunk_mask) + 1;
4692 s >>= geo->chunk_shift;
4693 s *= geo->near_copies;
4694 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4695 s *= geo->far_copies;
4696 s <<= geo->chunk_shift;
4697 return s;
4698}
4699
4700/* Calculate the first device-address that could contain
4701 * any block from the chunk that includes the array-address 's'.
4702 * This too will be the start of a chunk
4703 */
4704static sector_t first_dev_address(sector_t s, struct geom *geo)
4705{
4706 s >>= geo->chunk_shift;
4707 s *= geo->near_copies;
4708 sector_div(s, geo->raid_disks);
4709 s *= geo->far_copies;
4710 s <<= geo->chunk_shift;
4711 return s;
4712}
4713
4714static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4715 int *skipped)
4716{
4717 /* We simply copy at most one chunk (smallest of old and new)
4718 * at a time, possibly less if that exceeds RESYNC_PAGES,
4719 * or we hit a bad block or something.
4720 * This might mean we pause for normal IO in the middle of
4721 * a chunk, but that is not a problem as mddev->reshape_position
4722 * can record any location.
4723 *
4724 * If we will want to write to a location that isn't
4725 * yet recorded as 'safe' (i.e. in metadata on disk) then
4726 * we need to flush all reshape requests and update the metadata.
4727 *
4728 * When reshaping forwards (e.g. to more devices), we interpret
4729 * 'safe' as the earliest block which might not have been copied
4730 * down yet. We divide this by previous stripe size and multiply
4731 * by previous stripe length to get lowest device offset that we
4732 * cannot write to yet.
4733 * We interpret 'sector_nr' as an address that we want to write to.
4734 * From this we use last_device_address() to find where we might
4735 * write to, and first_device_address on the 'safe' position.
4736 * If this 'next' write position is after the 'safe' position,
4737 * we must update the metadata to increase the 'safe' position.
4738 *
4739 * When reshaping backwards, we round in the opposite direction
4740 * and perform the reverse test: next write position must not be
4741 * less than current safe position.
4742 *
4743 * In all this the minimum difference in data offsets
4744 * (conf->offset_diff - always positive) allows a bit of slack,
4745 * so next can be after 'safe', but not by more than offset_diff
4746 *
4747 * We need to prepare all the bios here before we start any IO
4748 * to ensure the size we choose is acceptable to all devices.
4749 * The means one for each copy for write-out and an extra one for
4750 * read-in.
4751 * We store the read-in bio in ->master_bio and the others in
4752 * ->devs[x].bio and ->devs[x].repl_bio.
4753 */
4754 struct r10conf *conf = mddev->private;
4755 struct r10bio *r10_bio;
4756 sector_t next, safe, last;
4757 int max_sectors;
4758 int nr_sectors;
4759 int s;
4760 struct md_rdev *rdev;
4761 int need_flush = 0;
4762 struct bio *blist;
4763 struct bio *bio, *read_bio;
4764 int sectors_done = 0;
4765 struct page **pages;
4766
4767 if (sector_nr == 0) {
4768 /* If restarting in the middle, skip the initial sectors */
4769 if (mddev->reshape_backwards &&
4770 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4771 sector_nr = (raid10_size(mddev, 0, 0)
4772 - conf->reshape_progress);
4773 } else if (!mddev->reshape_backwards &&
4774 conf->reshape_progress > 0)
4775 sector_nr = conf->reshape_progress;
4776 if (sector_nr) {
4777 mddev->curr_resync_completed = sector_nr;
4778 sysfs_notify_dirent_safe(mddev->sysfs_completed);
4779 *skipped = 1;
4780 return sector_nr;
4781 }
4782 }
4783
4784 /* We don't use sector_nr to track where we are up to
4785 * as that doesn't work well for ->reshape_backwards.
4786 * So just use ->reshape_progress.
4787 */
4788 if (mddev->reshape_backwards) {
4789 /* 'next' is the earliest device address that we might
4790 * write to for this chunk in the new layout
4791 */
4792 next = first_dev_address(conf->reshape_progress - 1,
4793 &conf->geo);
4794
4795 /* 'safe' is the last device address that we might read from
4796 * in the old layout after a restart
4797 */
4798 safe = last_dev_address(conf->reshape_safe - 1,
4799 &conf->prev);
4800
4801 if (next + conf->offset_diff < safe)
4802 need_flush = 1;
4803
4804 last = conf->reshape_progress - 1;
4805 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4806 & conf->prev.chunk_mask);
4807 if (sector_nr + RESYNC_SECTORS < last)
4808 sector_nr = last + 1 - RESYNC_SECTORS;
4809 } else {
4810 /* 'next' is after the last device address that we
4811 * might write to for this chunk in the new layout
4812 */
4813 next = last_dev_address(conf->reshape_progress, &conf->geo);
4814
4815 /* 'safe' is the earliest device address that we might
4816 * read from in the old layout after a restart
4817 */
4818 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4819
4820 /* Need to update metadata if 'next' might be beyond 'safe'
4821 * as that would possibly corrupt data
4822 */
4823 if (next > safe + conf->offset_diff)
4824 need_flush = 1;
4825
4826 sector_nr = conf->reshape_progress;
4827 last = sector_nr | (conf->geo.chunk_mask
4828 & conf->prev.chunk_mask);
4829
4830 if (sector_nr + RESYNC_SECTORS <= last)
4831 last = sector_nr + RESYNC_SECTORS - 1;
4832 }
4833
4834 if (need_flush ||
4835 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4836 /* Need to update reshape_position in metadata */
4837 wait_barrier(conf, false);
4838 mddev->reshape_position = conf->reshape_progress;
4839 if (mddev->reshape_backwards)
4840 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4841 - conf->reshape_progress;
4842 else
4843 mddev->curr_resync_completed = conf->reshape_progress;
4844 conf->reshape_checkpoint = jiffies;
4845 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4846 md_wakeup_thread(mddev->thread);
4847 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4848 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4849 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4850 allow_barrier(conf);
4851 return sectors_done;
4852 }
4853 conf->reshape_safe = mddev->reshape_position;
4854 allow_barrier(conf);
4855 }
4856
4857 raise_barrier(conf, 0);
4858read_more:
4859 /* Now schedule reads for blocks from sector_nr to last */
4860 r10_bio = raid10_alloc_init_r10buf(conf);
4861 r10_bio->state = 0;
4862 raise_barrier(conf, 1);
4863 atomic_set(&r10_bio->remaining, 0);
4864 r10_bio->mddev = mddev;
4865 r10_bio->sector = sector_nr;
4866 set_bit(R10BIO_IsReshape, &r10_bio->state);
4867 r10_bio->sectors = last - sector_nr + 1;
4868 rdev = read_balance(conf, r10_bio, &max_sectors);
4869 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4870
4871 if (!rdev) {
4872 /* Cannot read from here, so need to record bad blocks
4873 * on all the target devices.
4874 */
4875 // FIXME
4876 mempool_free(r10_bio, &conf->r10buf_pool);
4877 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4878 return sectors_done;
4879 }
4880
4881 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4882 GFP_KERNEL, &mddev->bio_set);
4883 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4884 + rdev->data_offset);
4885 read_bio->bi_private = r10_bio;
4886 read_bio->bi_end_io = end_reshape_read;
4887 r10_bio->master_bio = read_bio;
4888 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4889
4890 /*
4891 * Broadcast RESYNC message to other nodes, so all nodes would not
4892 * write to the region to avoid conflict.
4893 */
4894 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4895 struct mdp_superblock_1 *sb = NULL;
4896 int sb_reshape_pos = 0;
4897
4898 conf->cluster_sync_low = sector_nr;
4899 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4900 sb = page_address(rdev->sb_page);
4901 if (sb) {
4902 sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4903 /*
4904 * Set cluster_sync_low again if next address for array
4905 * reshape is less than cluster_sync_low. Since we can't
4906 * update cluster_sync_low until it has finished reshape.
4907 */
4908 if (sb_reshape_pos < conf->cluster_sync_low)
4909 conf->cluster_sync_low = sb_reshape_pos;
4910 }
4911
4912 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4913 conf->cluster_sync_high);
4914 }
4915
4916 /* Now find the locations in the new layout */
4917 __raid10_find_phys(&conf->geo, r10_bio);
4918
4919 blist = read_bio;
4920 read_bio->bi_next = NULL;
4921
4922 rcu_read_lock();
4923 for (s = 0; s < conf->copies*2; s++) {
4924 struct bio *b;
4925 int d = r10_bio->devs[s/2].devnum;
4926 struct md_rdev *rdev2;
4927 if (s&1) {
4928 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4929 b = r10_bio->devs[s/2].repl_bio;
4930 } else {
4931 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4932 b = r10_bio->devs[s/2].bio;
4933 }
4934 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4935 continue;
4936
4937 bio_set_dev(b, rdev2->bdev);
4938 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4939 rdev2->new_data_offset;
4940 b->bi_end_io = end_reshape_write;
4941 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4942 b->bi_next = blist;
4943 blist = b;
4944 }
4945
4946 /* Now add as many pages as possible to all of these bios. */
4947
4948 nr_sectors = 0;
4949 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4950 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4951 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4952 int len = (max_sectors - s) << 9;
4953 if (len > PAGE_SIZE)
4954 len = PAGE_SIZE;
4955 for (bio = blist; bio ; bio = bio->bi_next) {
4956 /*
4957 * won't fail because the vec table is big enough
4958 * to hold all these pages
4959 */
4960 bio_add_page(bio, page, len, 0);
4961 }
4962 sector_nr += len >> 9;
4963 nr_sectors += len >> 9;
4964 }
4965 rcu_read_unlock();
4966 r10_bio->sectors = nr_sectors;
4967
4968 /* Now submit the read */
4969 md_sync_acct_bio(read_bio, r10_bio->sectors);
4970 atomic_inc(&r10_bio->remaining);
4971 read_bio->bi_next = NULL;
4972 submit_bio_noacct(read_bio);
4973 sectors_done += nr_sectors;
4974 if (sector_nr <= last)
4975 goto read_more;
4976
4977 lower_barrier(conf);
4978
4979 /* Now that we have done the whole section we can
4980 * update reshape_progress
4981 */
4982 if (mddev->reshape_backwards)
4983 conf->reshape_progress -= sectors_done;
4984 else
4985 conf->reshape_progress += sectors_done;
4986
4987 return sectors_done;
4988}
4989
4990static void end_reshape_request(struct r10bio *r10_bio);
4991static int handle_reshape_read_error(struct mddev *mddev,
4992 struct r10bio *r10_bio);
4993static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4994{
4995 /* Reshape read completed. Hopefully we have a block
4996 * to write out.
4997 * If we got a read error then we do sync 1-page reads from
4998 * elsewhere until we find the data - or give up.
4999 */
5000 struct r10conf *conf = mddev->private;
5001 int s;
5002
5003 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
5004 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
5005 /* Reshape has been aborted */
5006 md_done_sync(mddev, r10_bio->sectors, 0);
5007 return;
5008 }
5009
5010 /* We definitely have the data in the pages, schedule the
5011 * writes.
5012 */
5013 atomic_set(&r10_bio->remaining, 1);
5014 for (s = 0; s < conf->copies*2; s++) {
5015 struct bio *b;
5016 int d = r10_bio->devs[s/2].devnum;
5017 struct md_rdev *rdev;
5018 rcu_read_lock();
5019 if (s&1) {
5020 rdev = rcu_dereference(conf->mirrors[d].replacement);
5021 b = r10_bio->devs[s/2].repl_bio;
5022 } else {
5023 rdev = rcu_dereference(conf->mirrors[d].rdev);
5024 b = r10_bio->devs[s/2].bio;
5025 }
5026 if (!rdev || test_bit(Faulty, &rdev->flags)) {
5027 rcu_read_unlock();
5028 continue;
5029 }
5030 atomic_inc(&rdev->nr_pending);
5031 rcu_read_unlock();
5032 md_sync_acct_bio(b, r10_bio->sectors);
5033 atomic_inc(&r10_bio->remaining);
5034 b->bi_next = NULL;
5035 submit_bio_noacct(b);
5036 }
5037 end_reshape_request(r10_bio);
5038}
5039
5040static void end_reshape(struct r10conf *conf)
5041{
5042 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5043 return;
5044
5045 spin_lock_irq(&conf->device_lock);
5046 conf->prev = conf->geo;
5047 md_finish_reshape(conf->mddev);
5048 smp_wmb();
5049 conf->reshape_progress = MaxSector;
5050 conf->reshape_safe = MaxSector;
5051 spin_unlock_irq(&conf->device_lock);
5052
5053 if (conf->mddev->queue)
5054 raid10_set_io_opt(conf);
5055 conf->fullsync = 0;
5056}
5057
5058static void raid10_update_reshape_pos(struct mddev *mddev)
5059{
5060 struct r10conf *conf = mddev->private;
5061 sector_t lo, hi;
5062
5063 md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5064 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5065 || mddev->reshape_position == MaxSector)
5066 conf->reshape_progress = mddev->reshape_position;
5067 else
5068 WARN_ON_ONCE(1);
5069}
5070
5071static int handle_reshape_read_error(struct mddev *mddev,
5072 struct r10bio *r10_bio)
5073{
5074 /* Use sync reads to get the blocks from somewhere else */
5075 int sectors = r10_bio->sectors;
5076 struct r10conf *conf = mddev->private;
5077 struct r10bio *r10b;
5078 int slot = 0;
5079 int idx = 0;
5080 struct page **pages;
5081
5082 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5083 if (!r10b) {
5084 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5085 return -ENOMEM;
5086 }
5087
5088 /* reshape IOs share pages from .devs[0].bio */
5089 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5090
5091 r10b->sector = r10_bio->sector;
5092 __raid10_find_phys(&conf->prev, r10b);
5093
5094 while (sectors) {
5095 int s = sectors;
5096 int success = 0;
5097 int first_slot = slot;
5098
5099 if (s > (PAGE_SIZE >> 9))
5100 s = PAGE_SIZE >> 9;
5101
5102 rcu_read_lock();
5103 while (!success) {
5104 int d = r10b->devs[slot].devnum;
5105 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5106 sector_t addr;
5107 if (rdev == NULL ||
5108 test_bit(Faulty, &rdev->flags) ||
5109 !test_bit(In_sync, &rdev->flags))
5110 goto failed;
5111
5112 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5113 atomic_inc(&rdev->nr_pending);
5114 rcu_read_unlock();
5115 success = sync_page_io(rdev,
5116 addr,
5117 s << 9,
5118 pages[idx],
5119 REQ_OP_READ, 0, false);
5120 rdev_dec_pending(rdev, mddev);
5121 rcu_read_lock();
5122 if (success)
5123 break;
5124 failed:
5125 slot++;
5126 if (slot >= conf->copies)
5127 slot = 0;
5128 if (slot == first_slot)
5129 break;
5130 }
5131 rcu_read_unlock();
5132 if (!success) {
5133 /* couldn't read this block, must give up */
5134 set_bit(MD_RECOVERY_INTR,
5135 &mddev->recovery);
5136 kfree(r10b);
5137 return -EIO;
5138 }
5139 sectors -= s;
5140 idx++;
5141 }
5142 kfree(r10b);
5143 return 0;
5144}
5145
5146static void end_reshape_write(struct bio *bio)
5147{
5148 struct r10bio *r10_bio = get_resync_r10bio(bio);
5149 struct mddev *mddev = r10_bio->mddev;
5150 struct r10conf *conf = mddev->private;
5151 int d;
5152 int slot;
5153 int repl;
5154 struct md_rdev *rdev = NULL;
5155
5156 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5157 if (repl)
5158 rdev = conf->mirrors[d].replacement;
5159 if (!rdev) {
5160 smp_mb();
5161 rdev = conf->mirrors[d].rdev;
5162 }
5163
5164 if (bio->bi_status) {
5165 /* FIXME should record badblock */
5166 md_error(mddev, rdev);
5167 }
5168
5169 rdev_dec_pending(rdev, mddev);
5170 end_reshape_request(r10_bio);
5171}
5172
5173static void end_reshape_request(struct r10bio *r10_bio)
5174{
5175 if (!atomic_dec_and_test(&r10_bio->remaining))
5176 return;
5177 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5178 bio_put(r10_bio->master_bio);
5179 put_buf(r10_bio);
5180}
5181
5182static void raid10_finish_reshape(struct mddev *mddev)
5183{
5184 struct r10conf *conf = mddev->private;
5185
5186 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5187 return;
5188
5189 if (mddev->delta_disks > 0) {
5190 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5191 mddev->recovery_cp = mddev->resync_max_sectors;
5192 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5193 }
5194 mddev->resync_max_sectors = mddev->array_sectors;
5195 } else {
5196 int d;
5197 rcu_read_lock();
5198 for (d = conf->geo.raid_disks ;
5199 d < conf->geo.raid_disks - mddev->delta_disks;
5200 d++) {
5201 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5202 if (rdev)
5203 clear_bit(In_sync, &rdev->flags);
5204 rdev = rcu_dereference(conf->mirrors[d].replacement);
5205 if (rdev)
5206 clear_bit(In_sync, &rdev->flags);
5207 }
5208 rcu_read_unlock();
5209 }
5210 mddev->layout = mddev->new_layout;
5211 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5212 mddev->reshape_position = MaxSector;
5213 mddev->delta_disks = 0;
5214 mddev->reshape_backwards = 0;
5215}
5216
5217static struct md_personality raid10_personality =
5218{
5219 .name = "raid10",
5220 .level = 10,
5221 .owner = THIS_MODULE,
5222 .make_request = raid10_make_request,
5223 .run = raid10_run,
5224 .free = raid10_free,
5225 .status = raid10_status,
5226 .error_handler = raid10_error,
5227 .hot_add_disk = raid10_add_disk,
5228 .hot_remove_disk= raid10_remove_disk,
5229 .spare_active = raid10_spare_active,
5230 .sync_request = raid10_sync_request,
5231 .quiesce = raid10_quiesce,
5232 .size = raid10_size,
5233 .resize = raid10_resize,
5234 .takeover = raid10_takeover,
5235 .check_reshape = raid10_check_reshape,
5236 .start_reshape = raid10_start_reshape,
5237 .finish_reshape = raid10_finish_reshape,
5238 .update_reshape_pos = raid10_update_reshape_pos,
5239};
5240
5241static int __init raid_init(void)
5242{
5243 return register_md_personality(&raid10_personality);
5244}
5245
5246static void raid_exit(void)
5247{
5248 unregister_md_personality(&raid10_personality);
5249}
5250
5251module_init(raid_init);
5252module_exit(raid_exit);
5253MODULE_LICENSE("GPL");
5254MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5255MODULE_ALIAS("md-personality-9"); /* RAID10 */
5256MODULE_ALIAS("md-raid10");
5257MODULE_ALIAS("md-level-10");