Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 md.c : Multiple Devices driver for Linux
4 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5
6 completely rewritten, based on the MD driver code from Marc Zyngier
7
8 Changes:
9
10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14 - kmod support by: Cyrus Durgin
15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17
18 - lots of fixes and improvements to the RAID1/RAID5 and generic
19 RAID code (such as request based resynchronization):
20
21 Neil Brown <neilb@cse.unsw.edu.au>.
22
23 - persistent bitmap code
24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25
26
27 Errors, Warnings, etc.
28 Please use:
29 pr_crit() for error conditions that risk data loss
30 pr_err() for error conditions that are unexpected, like an IO error
31 or internal inconsistency
32 pr_warn() for error conditions that could have been predicated, like
33 adding a device to an array when it has incompatible metadata
34 pr_info() for every interesting, very rare events, like an array starting
35 or stopping, or resync starting or stopping
36 pr_debug() for everything else.
37
38*/
39
40#include <linux/sched/mm.h>
41#include <linux/sched/signal.h>
42#include <linux/kthread.h>
43#include <linux/blkdev.h>
44#include <linux/blk-integrity.h>
45#include <linux/badblocks.h>
46#include <linux/sysctl.h>
47#include <linux/seq_file.h>
48#include <linux/fs.h>
49#include <linux/poll.h>
50#include <linux/ctype.h>
51#include <linux/string.h>
52#include <linux/hdreg.h>
53#include <linux/proc_fs.h>
54#include <linux/random.h>
55#include <linux/major.h>
56#include <linux/module.h>
57#include <linux/reboot.h>
58#include <linux/file.h>
59#include <linux/compat.h>
60#include <linux/delay.h>
61#include <linux/raid/md_p.h>
62#include <linux/raid/md_u.h>
63#include <linux/raid/detect.h>
64#include <linux/slab.h>
65#include <linux/percpu-refcount.h>
66#include <linux/part_stat.h>
67
68#include <trace/events/block.h>
69#include "md.h"
70#include "md-bitmap.h"
71#include "md-cluster.h"
72
73/* pers_list is a list of registered personalities protected
74 * by pers_lock.
75 * pers_lock does extra service to protect accesses to
76 * mddev->thread when the mutex cannot be held.
77 */
78static LIST_HEAD(pers_list);
79static DEFINE_SPINLOCK(pers_lock);
80
81static struct kobj_type md_ktype;
82
83struct md_cluster_operations *md_cluster_ops;
84EXPORT_SYMBOL(md_cluster_ops);
85static struct module *md_cluster_mod;
86
87static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
88static struct workqueue_struct *md_wq;
89static struct workqueue_struct *md_misc_wq;
90static struct workqueue_struct *md_rdev_misc_wq;
91
92static int remove_and_add_spares(struct mddev *mddev,
93 struct md_rdev *this);
94static void mddev_detach(struct mddev *mddev);
95
96/*
97 * Default number of read corrections we'll attempt on an rdev
98 * before ejecting it from the array. We divide the read error
99 * count by 2 for every hour elapsed between read errors.
100 */
101#define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
102/* Default safemode delay: 200 msec */
103#define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
104/*
105 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
106 * is 1000 KB/sec, so the extra system load does not show up that much.
107 * Increase it if you want to have more _guaranteed_ speed. Note that
108 * the RAID driver will use the maximum available bandwidth if the IO
109 * subsystem is idle. There is also an 'absolute maximum' reconstruction
110 * speed limit - in case reconstruction slows down your system despite
111 * idle IO detection.
112 *
113 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
114 * or /sys/block/mdX/md/sync_speed_{min,max}
115 */
116
117static int sysctl_speed_limit_min = 1000;
118static int sysctl_speed_limit_max = 200000;
119static inline int speed_min(struct mddev *mddev)
120{
121 return mddev->sync_speed_min ?
122 mddev->sync_speed_min : sysctl_speed_limit_min;
123}
124
125static inline int speed_max(struct mddev *mddev)
126{
127 return mddev->sync_speed_max ?
128 mddev->sync_speed_max : sysctl_speed_limit_max;
129}
130
131static void rdev_uninit_serial(struct md_rdev *rdev)
132{
133 if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
134 return;
135
136 kvfree(rdev->serial);
137 rdev->serial = NULL;
138}
139
140static void rdevs_uninit_serial(struct mddev *mddev)
141{
142 struct md_rdev *rdev;
143
144 rdev_for_each(rdev, mddev)
145 rdev_uninit_serial(rdev);
146}
147
148static int rdev_init_serial(struct md_rdev *rdev)
149{
150 /* serial_nums equals with BARRIER_BUCKETS_NR */
151 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
152 struct serial_in_rdev *serial = NULL;
153
154 if (test_bit(CollisionCheck, &rdev->flags))
155 return 0;
156
157 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
158 GFP_KERNEL);
159 if (!serial)
160 return -ENOMEM;
161
162 for (i = 0; i < serial_nums; i++) {
163 struct serial_in_rdev *serial_tmp = &serial[i];
164
165 spin_lock_init(&serial_tmp->serial_lock);
166 serial_tmp->serial_rb = RB_ROOT_CACHED;
167 init_waitqueue_head(&serial_tmp->serial_io_wait);
168 }
169
170 rdev->serial = serial;
171 set_bit(CollisionCheck, &rdev->flags);
172
173 return 0;
174}
175
176static int rdevs_init_serial(struct mddev *mddev)
177{
178 struct md_rdev *rdev;
179 int ret = 0;
180
181 rdev_for_each(rdev, mddev) {
182 ret = rdev_init_serial(rdev);
183 if (ret)
184 break;
185 }
186
187 /* Free all resources if pool is not existed */
188 if (ret && !mddev->serial_info_pool)
189 rdevs_uninit_serial(mddev);
190
191 return ret;
192}
193
194/*
195 * rdev needs to enable serial stuffs if it meets the conditions:
196 * 1. it is multi-queue device flaged with writemostly.
197 * 2. the write-behind mode is enabled.
198 */
199static int rdev_need_serial(struct md_rdev *rdev)
200{
201 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
202 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
203 test_bit(WriteMostly, &rdev->flags));
204}
205
206/*
207 * Init resource for rdev(s), then create serial_info_pool if:
208 * 1. rdev is the first device which return true from rdev_enable_serial.
209 * 2. rdev is NULL, means we want to enable serialization for all rdevs.
210 */
211void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
212 bool is_suspend)
213{
214 int ret = 0;
215
216 if (rdev && !rdev_need_serial(rdev) &&
217 !test_bit(CollisionCheck, &rdev->flags))
218 return;
219
220 if (!is_suspend)
221 mddev_suspend(mddev);
222
223 if (!rdev)
224 ret = rdevs_init_serial(mddev);
225 else
226 ret = rdev_init_serial(rdev);
227 if (ret)
228 goto abort;
229
230 if (mddev->serial_info_pool == NULL) {
231 /*
232 * already in memalloc noio context by
233 * mddev_suspend()
234 */
235 mddev->serial_info_pool =
236 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
237 sizeof(struct serial_info));
238 if (!mddev->serial_info_pool) {
239 rdevs_uninit_serial(mddev);
240 pr_err("can't alloc memory pool for serialization\n");
241 }
242 }
243
244abort:
245 if (!is_suspend)
246 mddev_resume(mddev);
247}
248
249/*
250 * Free resource from rdev(s), and destroy serial_info_pool under conditions:
251 * 1. rdev is the last device flaged with CollisionCheck.
252 * 2. when bitmap is destroyed while policy is not enabled.
253 * 3. for disable policy, the pool is destroyed only when no rdev needs it.
254 */
255void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
256 bool is_suspend)
257{
258 if (rdev && !test_bit(CollisionCheck, &rdev->flags))
259 return;
260
261 if (mddev->serial_info_pool) {
262 struct md_rdev *temp;
263 int num = 0; /* used to track if other rdevs need the pool */
264
265 if (!is_suspend)
266 mddev_suspend(mddev);
267 rdev_for_each(temp, mddev) {
268 if (!rdev) {
269 if (!mddev->serialize_policy ||
270 !rdev_need_serial(temp))
271 rdev_uninit_serial(temp);
272 else
273 num++;
274 } else if (temp != rdev &&
275 test_bit(CollisionCheck, &temp->flags))
276 num++;
277 }
278
279 if (rdev)
280 rdev_uninit_serial(rdev);
281
282 if (num)
283 pr_info("The mempool could be used by other devices\n");
284 else {
285 mempool_destroy(mddev->serial_info_pool);
286 mddev->serial_info_pool = NULL;
287 }
288 if (!is_suspend)
289 mddev_resume(mddev);
290 }
291}
292
293static struct ctl_table_header *raid_table_header;
294
295static struct ctl_table raid_table[] = {
296 {
297 .procname = "speed_limit_min",
298 .data = &sysctl_speed_limit_min,
299 .maxlen = sizeof(int),
300 .mode = S_IRUGO|S_IWUSR,
301 .proc_handler = proc_dointvec,
302 },
303 {
304 .procname = "speed_limit_max",
305 .data = &sysctl_speed_limit_max,
306 .maxlen = sizeof(int),
307 .mode = S_IRUGO|S_IWUSR,
308 .proc_handler = proc_dointvec,
309 },
310 { }
311};
312
313static struct ctl_table raid_dir_table[] = {
314 {
315 .procname = "raid",
316 .maxlen = 0,
317 .mode = S_IRUGO|S_IXUGO,
318 .child = raid_table,
319 },
320 { }
321};
322
323static struct ctl_table raid_root_table[] = {
324 {
325 .procname = "dev",
326 .maxlen = 0,
327 .mode = 0555,
328 .child = raid_dir_table,
329 },
330 { }
331};
332
333static int start_readonly;
334
335/*
336 * The original mechanism for creating an md device is to create
337 * a device node in /dev and to open it. This causes races with device-close.
338 * The preferred method is to write to the "new_array" module parameter.
339 * This can avoid races.
340 * Setting create_on_open to false disables the original mechanism
341 * so all the races disappear.
342 */
343static bool create_on_open = true;
344
345/*
346 * We have a system wide 'event count' that is incremented
347 * on any 'interesting' event, and readers of /proc/mdstat
348 * can use 'poll' or 'select' to find out when the event
349 * count increases.
350 *
351 * Events are:
352 * start array, stop array, error, add device, remove device,
353 * start build, activate spare
354 */
355static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
356static atomic_t md_event_count;
357void md_new_event(void)
358{
359 atomic_inc(&md_event_count);
360 wake_up(&md_event_waiters);
361}
362EXPORT_SYMBOL_GPL(md_new_event);
363
364/*
365 * Enables to iterate over all existing md arrays
366 * all_mddevs_lock protects this list.
367 */
368static LIST_HEAD(all_mddevs);
369static DEFINE_SPINLOCK(all_mddevs_lock);
370
371/*
372 * iterates through all used mddevs in the system.
373 * We take care to grab the all_mddevs_lock whenever navigating
374 * the list, and to always hold a refcount when unlocked.
375 * Any code which breaks out of this loop while own
376 * a reference to the current mddev and must mddev_put it.
377 */
378#define for_each_mddev(_mddev,_tmp) \
379 \
380 for (({ spin_lock(&all_mddevs_lock); \
381 _tmp = all_mddevs.next; \
382 _mddev = NULL;}); \
383 ({ if (_tmp != &all_mddevs) \
384 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
385 spin_unlock(&all_mddevs_lock); \
386 if (_mddev) mddev_put(_mddev); \
387 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
388 _tmp != &all_mddevs;}); \
389 ({ spin_lock(&all_mddevs_lock); \
390 _tmp = _tmp->next;}) \
391 )
392
393/* Rather than calling directly into the personality make_request function,
394 * IO requests come here first so that we can check if the device is
395 * being suspended pending a reconfiguration.
396 * We hold a refcount over the call to ->make_request. By the time that
397 * call has finished, the bio has been linked into some internal structure
398 * and so is visible to ->quiesce(), so we don't need the refcount any more.
399 */
400static bool is_suspended(struct mddev *mddev, struct bio *bio)
401{
402 if (mddev->suspended)
403 return true;
404 if (bio_data_dir(bio) != WRITE)
405 return false;
406 if (mddev->suspend_lo >= mddev->suspend_hi)
407 return false;
408 if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
409 return false;
410 if (bio_end_sector(bio) < mddev->suspend_lo)
411 return false;
412 return true;
413}
414
415void md_handle_request(struct mddev *mddev, struct bio *bio)
416{
417check_suspended:
418 rcu_read_lock();
419 if (is_suspended(mddev, bio)) {
420 DEFINE_WAIT(__wait);
421 /* Bail out if REQ_NOWAIT is set for the bio */
422 if (bio->bi_opf & REQ_NOWAIT) {
423 rcu_read_unlock();
424 bio_wouldblock_error(bio);
425 return;
426 }
427 for (;;) {
428 prepare_to_wait(&mddev->sb_wait, &__wait,
429 TASK_UNINTERRUPTIBLE);
430 if (!is_suspended(mddev, bio))
431 break;
432 rcu_read_unlock();
433 schedule();
434 rcu_read_lock();
435 }
436 finish_wait(&mddev->sb_wait, &__wait);
437 }
438 atomic_inc(&mddev->active_io);
439 rcu_read_unlock();
440
441 if (!mddev->pers->make_request(mddev, bio)) {
442 atomic_dec(&mddev->active_io);
443 wake_up(&mddev->sb_wait);
444 goto check_suspended;
445 }
446
447 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
448 wake_up(&mddev->sb_wait);
449}
450EXPORT_SYMBOL(md_handle_request);
451
452static void md_submit_bio(struct bio *bio)
453{
454 const int rw = bio_data_dir(bio);
455 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data;
456
457 if (mddev == NULL || mddev->pers == NULL) {
458 bio_io_error(bio);
459 return;
460 }
461
462 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
463 bio_io_error(bio);
464 return;
465 }
466
467 blk_queue_split(&bio);
468
469 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
470 if (bio_sectors(bio) != 0)
471 bio->bi_status = BLK_STS_IOERR;
472 bio_endio(bio);
473 return;
474 }
475
476 /* bio could be mergeable after passing to underlayer */
477 bio->bi_opf &= ~REQ_NOMERGE;
478
479 md_handle_request(mddev, bio);
480}
481
482/* mddev_suspend makes sure no new requests are submitted
483 * to the device, and that any requests that have been submitted
484 * are completely handled.
485 * Once mddev_detach() is called and completes, the module will be
486 * completely unused.
487 */
488void mddev_suspend(struct mddev *mddev)
489{
490 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
491 lockdep_assert_held(&mddev->reconfig_mutex);
492 if (mddev->suspended++)
493 return;
494 synchronize_rcu();
495 wake_up(&mddev->sb_wait);
496 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
497 smp_mb__after_atomic();
498 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
499 mddev->pers->quiesce(mddev, 1);
500 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
501 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
502
503 del_timer_sync(&mddev->safemode_timer);
504 /* restrict memory reclaim I/O during raid array is suspend */
505 mddev->noio_flag = memalloc_noio_save();
506}
507EXPORT_SYMBOL_GPL(mddev_suspend);
508
509void mddev_resume(struct mddev *mddev)
510{
511 /* entred the memalloc scope from mddev_suspend() */
512 memalloc_noio_restore(mddev->noio_flag);
513 lockdep_assert_held(&mddev->reconfig_mutex);
514 if (--mddev->suspended)
515 return;
516 wake_up(&mddev->sb_wait);
517 mddev->pers->quiesce(mddev, 0);
518
519 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
520 md_wakeup_thread(mddev->thread);
521 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
522}
523EXPORT_SYMBOL_GPL(mddev_resume);
524
525/*
526 * Generic flush handling for md
527 */
528
529static void md_end_flush(struct bio *bio)
530{
531 struct md_rdev *rdev = bio->bi_private;
532 struct mddev *mddev = rdev->mddev;
533
534 rdev_dec_pending(rdev, mddev);
535
536 if (atomic_dec_and_test(&mddev->flush_pending)) {
537 /* The pre-request flush has finished */
538 queue_work(md_wq, &mddev->flush_work);
539 }
540 bio_put(bio);
541}
542
543static void md_submit_flush_data(struct work_struct *ws);
544
545static void submit_flushes(struct work_struct *ws)
546{
547 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
548 struct md_rdev *rdev;
549
550 mddev->start_flush = ktime_get_boottime();
551 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
552 atomic_set(&mddev->flush_pending, 1);
553 rcu_read_lock();
554 rdev_for_each_rcu(rdev, mddev)
555 if (rdev->raid_disk >= 0 &&
556 !test_bit(Faulty, &rdev->flags)) {
557 /* Take two references, one is dropped
558 * when request finishes, one after
559 * we reclaim rcu_read_lock
560 */
561 struct bio *bi;
562 atomic_inc(&rdev->nr_pending);
563 atomic_inc(&rdev->nr_pending);
564 rcu_read_unlock();
565 bi = bio_alloc_bioset(rdev->bdev, 0,
566 REQ_OP_WRITE | REQ_PREFLUSH,
567 GFP_NOIO, &mddev->bio_set);
568 bi->bi_end_io = md_end_flush;
569 bi->bi_private = rdev;
570 atomic_inc(&mddev->flush_pending);
571 submit_bio(bi);
572 rcu_read_lock();
573 rdev_dec_pending(rdev, mddev);
574 }
575 rcu_read_unlock();
576 if (atomic_dec_and_test(&mddev->flush_pending))
577 queue_work(md_wq, &mddev->flush_work);
578}
579
580static void md_submit_flush_data(struct work_struct *ws)
581{
582 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
583 struct bio *bio = mddev->flush_bio;
584
585 /*
586 * must reset flush_bio before calling into md_handle_request to avoid a
587 * deadlock, because other bios passed md_handle_request suspend check
588 * could wait for this and below md_handle_request could wait for those
589 * bios because of suspend check
590 */
591 spin_lock_irq(&mddev->lock);
592 mddev->prev_flush_start = mddev->start_flush;
593 mddev->flush_bio = NULL;
594 spin_unlock_irq(&mddev->lock);
595 wake_up(&mddev->sb_wait);
596
597 if (bio->bi_iter.bi_size == 0) {
598 /* an empty barrier - all done */
599 bio_endio(bio);
600 } else {
601 bio->bi_opf &= ~REQ_PREFLUSH;
602 md_handle_request(mddev, bio);
603 }
604}
605
606/*
607 * Manages consolidation of flushes and submitting any flushes needed for
608 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is
609 * being finished in another context. Returns false if the flushing is
610 * complete but still needs the I/O portion of the bio to be processed.
611 */
612bool md_flush_request(struct mddev *mddev, struct bio *bio)
613{
614 ktime_t req_start = ktime_get_boottime();
615 spin_lock_irq(&mddev->lock);
616 /* flush requests wait until ongoing flush completes,
617 * hence coalescing all the pending requests.
618 */
619 wait_event_lock_irq(mddev->sb_wait,
620 !mddev->flush_bio ||
621 ktime_before(req_start, mddev->prev_flush_start),
622 mddev->lock);
623 /* new request after previous flush is completed */
624 if (ktime_after(req_start, mddev->prev_flush_start)) {
625 WARN_ON(mddev->flush_bio);
626 mddev->flush_bio = bio;
627 bio = NULL;
628 }
629 spin_unlock_irq(&mddev->lock);
630
631 if (!bio) {
632 INIT_WORK(&mddev->flush_work, submit_flushes);
633 queue_work(md_wq, &mddev->flush_work);
634 } else {
635 /* flush was performed for some other bio while we waited. */
636 if (bio->bi_iter.bi_size == 0)
637 /* an empty barrier - all done */
638 bio_endio(bio);
639 else {
640 bio->bi_opf &= ~REQ_PREFLUSH;
641 return false;
642 }
643 }
644 return true;
645}
646EXPORT_SYMBOL(md_flush_request);
647
648static inline struct mddev *mddev_get(struct mddev *mddev)
649{
650 atomic_inc(&mddev->active);
651 return mddev;
652}
653
654static void mddev_delayed_delete(struct work_struct *ws);
655
656static void mddev_put(struct mddev *mddev)
657{
658 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
659 return;
660 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
661 mddev->ctime == 0 && !mddev->hold_active) {
662 /* Array is not configured at all, and not held active,
663 * so destroy it */
664 list_del_init(&mddev->all_mddevs);
665
666 /*
667 * Call queue_work inside the spinlock so that
668 * flush_workqueue() after mddev_find will succeed in waiting
669 * for the work to be done.
670 */
671 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
672 queue_work(md_misc_wq, &mddev->del_work);
673 }
674 spin_unlock(&all_mddevs_lock);
675}
676
677static void md_safemode_timeout(struct timer_list *t);
678
679void mddev_init(struct mddev *mddev)
680{
681 kobject_init(&mddev->kobj, &md_ktype);
682 mutex_init(&mddev->open_mutex);
683 mutex_init(&mddev->reconfig_mutex);
684 mutex_init(&mddev->bitmap_info.mutex);
685 INIT_LIST_HEAD(&mddev->disks);
686 INIT_LIST_HEAD(&mddev->all_mddevs);
687 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
688 atomic_set(&mddev->active, 1);
689 atomic_set(&mddev->openers, 0);
690 atomic_set(&mddev->active_io, 0);
691 spin_lock_init(&mddev->lock);
692 atomic_set(&mddev->flush_pending, 0);
693 init_waitqueue_head(&mddev->sb_wait);
694 init_waitqueue_head(&mddev->recovery_wait);
695 mddev->reshape_position = MaxSector;
696 mddev->reshape_backwards = 0;
697 mddev->last_sync_action = "none";
698 mddev->resync_min = 0;
699 mddev->resync_max = MaxSector;
700 mddev->level = LEVEL_NONE;
701}
702EXPORT_SYMBOL_GPL(mddev_init);
703
704static struct mddev *mddev_find_locked(dev_t unit)
705{
706 struct mddev *mddev;
707
708 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
709 if (mddev->unit == unit)
710 return mddev;
711
712 return NULL;
713}
714
715/* find an unused unit number */
716static dev_t mddev_alloc_unit(void)
717{
718 static int next_minor = 512;
719 int start = next_minor;
720 bool is_free = 0;
721 dev_t dev = 0;
722
723 while (!is_free) {
724 dev = MKDEV(MD_MAJOR, next_minor);
725 next_minor++;
726 if (next_minor > MINORMASK)
727 next_minor = 0;
728 if (next_minor == start)
729 return 0; /* Oh dear, all in use. */
730 is_free = !mddev_find_locked(dev);
731 }
732
733 return dev;
734}
735
736static struct mddev *mddev_find(dev_t unit)
737{
738 struct mddev *mddev;
739
740 if (MAJOR(unit) != MD_MAJOR)
741 unit &= ~((1 << MdpMinorShift) - 1);
742
743 spin_lock(&all_mddevs_lock);
744 mddev = mddev_find_locked(unit);
745 if (mddev)
746 mddev_get(mddev);
747 spin_unlock(&all_mddevs_lock);
748
749 return mddev;
750}
751
752static struct mddev *mddev_alloc(dev_t unit)
753{
754 struct mddev *new;
755 int error;
756
757 if (unit && MAJOR(unit) != MD_MAJOR)
758 unit &= ~((1 << MdpMinorShift) - 1);
759
760 new = kzalloc(sizeof(*new), GFP_KERNEL);
761 if (!new)
762 return ERR_PTR(-ENOMEM);
763 mddev_init(new);
764
765 spin_lock(&all_mddevs_lock);
766 if (unit) {
767 error = -EEXIST;
768 if (mddev_find_locked(unit))
769 goto out_free_new;
770 new->unit = unit;
771 if (MAJOR(unit) == MD_MAJOR)
772 new->md_minor = MINOR(unit);
773 else
774 new->md_minor = MINOR(unit) >> MdpMinorShift;
775 new->hold_active = UNTIL_IOCTL;
776 } else {
777 error = -ENODEV;
778 new->unit = mddev_alloc_unit();
779 if (!new->unit)
780 goto out_free_new;
781 new->md_minor = MINOR(new->unit);
782 new->hold_active = UNTIL_STOP;
783 }
784
785 list_add(&new->all_mddevs, &all_mddevs);
786 spin_unlock(&all_mddevs_lock);
787 return new;
788out_free_new:
789 spin_unlock(&all_mddevs_lock);
790 kfree(new);
791 return ERR_PTR(error);
792}
793
794static const struct attribute_group md_redundancy_group;
795
796void mddev_unlock(struct mddev *mddev)
797{
798 if (mddev->to_remove) {
799 /* These cannot be removed under reconfig_mutex as
800 * an access to the files will try to take reconfig_mutex
801 * while holding the file unremovable, which leads to
802 * a deadlock.
803 * So hold set sysfs_active while the remove in happeing,
804 * and anything else which might set ->to_remove or my
805 * otherwise change the sysfs namespace will fail with
806 * -EBUSY if sysfs_active is still set.
807 * We set sysfs_active under reconfig_mutex and elsewhere
808 * test it under the same mutex to ensure its correct value
809 * is seen.
810 */
811 const struct attribute_group *to_remove = mddev->to_remove;
812 mddev->to_remove = NULL;
813 mddev->sysfs_active = 1;
814 mutex_unlock(&mddev->reconfig_mutex);
815
816 if (mddev->kobj.sd) {
817 if (to_remove != &md_redundancy_group)
818 sysfs_remove_group(&mddev->kobj, to_remove);
819 if (mddev->pers == NULL ||
820 mddev->pers->sync_request == NULL) {
821 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
822 if (mddev->sysfs_action)
823 sysfs_put(mddev->sysfs_action);
824 if (mddev->sysfs_completed)
825 sysfs_put(mddev->sysfs_completed);
826 if (mddev->sysfs_degraded)
827 sysfs_put(mddev->sysfs_degraded);
828 mddev->sysfs_action = NULL;
829 mddev->sysfs_completed = NULL;
830 mddev->sysfs_degraded = NULL;
831 }
832 }
833 mddev->sysfs_active = 0;
834 } else
835 mutex_unlock(&mddev->reconfig_mutex);
836
837 /* As we've dropped the mutex we need a spinlock to
838 * make sure the thread doesn't disappear
839 */
840 spin_lock(&pers_lock);
841 md_wakeup_thread(mddev->thread);
842 wake_up(&mddev->sb_wait);
843 spin_unlock(&pers_lock);
844}
845EXPORT_SYMBOL_GPL(mddev_unlock);
846
847struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
848{
849 struct md_rdev *rdev;
850
851 rdev_for_each_rcu(rdev, mddev)
852 if (rdev->desc_nr == nr)
853 return rdev;
854
855 return NULL;
856}
857EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
858
859static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
860{
861 struct md_rdev *rdev;
862
863 rdev_for_each(rdev, mddev)
864 if (rdev->bdev->bd_dev == dev)
865 return rdev;
866
867 return NULL;
868}
869
870struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
871{
872 struct md_rdev *rdev;
873
874 rdev_for_each_rcu(rdev, mddev)
875 if (rdev->bdev->bd_dev == dev)
876 return rdev;
877
878 return NULL;
879}
880EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
881
882static struct md_personality *find_pers(int level, char *clevel)
883{
884 struct md_personality *pers;
885 list_for_each_entry(pers, &pers_list, list) {
886 if (level != LEVEL_NONE && pers->level == level)
887 return pers;
888 if (strcmp(pers->name, clevel)==0)
889 return pers;
890 }
891 return NULL;
892}
893
894/* return the offset of the super block in 512byte sectors */
895static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
896{
897 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev));
898}
899
900static int alloc_disk_sb(struct md_rdev *rdev)
901{
902 rdev->sb_page = alloc_page(GFP_KERNEL);
903 if (!rdev->sb_page)
904 return -ENOMEM;
905 return 0;
906}
907
908void md_rdev_clear(struct md_rdev *rdev)
909{
910 if (rdev->sb_page) {
911 put_page(rdev->sb_page);
912 rdev->sb_loaded = 0;
913 rdev->sb_page = NULL;
914 rdev->sb_start = 0;
915 rdev->sectors = 0;
916 }
917 if (rdev->bb_page) {
918 put_page(rdev->bb_page);
919 rdev->bb_page = NULL;
920 }
921 badblocks_exit(&rdev->badblocks);
922}
923EXPORT_SYMBOL_GPL(md_rdev_clear);
924
925static void super_written(struct bio *bio)
926{
927 struct md_rdev *rdev = bio->bi_private;
928 struct mddev *mddev = rdev->mddev;
929
930 if (bio->bi_status) {
931 pr_err("md: %s gets error=%d\n", __func__,
932 blk_status_to_errno(bio->bi_status));
933 md_error(mddev, rdev);
934 if (!test_bit(Faulty, &rdev->flags)
935 && (bio->bi_opf & MD_FAILFAST)) {
936 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
937 set_bit(LastDev, &rdev->flags);
938 }
939 } else
940 clear_bit(LastDev, &rdev->flags);
941
942 if (atomic_dec_and_test(&mddev->pending_writes))
943 wake_up(&mddev->sb_wait);
944 rdev_dec_pending(rdev, mddev);
945 bio_put(bio);
946}
947
948void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
949 sector_t sector, int size, struct page *page)
950{
951 /* write first size bytes of page to sector of rdev
952 * Increment mddev->pending_writes before returning
953 * and decrement it on completion, waking up sb_wait
954 * if zero is reached.
955 * If an error occurred, call md_error
956 */
957 struct bio *bio;
958
959 if (!page)
960 return;
961
962 if (test_bit(Faulty, &rdev->flags))
963 return;
964
965 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev,
966 1,
967 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA,
968 GFP_NOIO, &mddev->sync_set);
969
970 atomic_inc(&rdev->nr_pending);
971
972 bio->bi_iter.bi_sector = sector;
973 bio_add_page(bio, page, size, 0);
974 bio->bi_private = rdev;
975 bio->bi_end_io = super_written;
976
977 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
978 test_bit(FailFast, &rdev->flags) &&
979 !test_bit(LastDev, &rdev->flags))
980 bio->bi_opf |= MD_FAILFAST;
981
982 atomic_inc(&mddev->pending_writes);
983 submit_bio(bio);
984}
985
986int md_super_wait(struct mddev *mddev)
987{
988 /* wait for all superblock writes that were scheduled to complete */
989 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
990 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
991 return -EAGAIN;
992 return 0;
993}
994
995int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
996 struct page *page, int op, int op_flags, bool metadata_op)
997{
998 struct bio bio;
999 struct bio_vec bvec;
1000
1001 if (metadata_op && rdev->meta_bdev)
1002 bio_init(&bio, rdev->meta_bdev, &bvec, 1, op | op_flags);
1003 else
1004 bio_init(&bio, rdev->bdev, &bvec, 1, op | op_flags);
1005
1006 if (metadata_op)
1007 bio.bi_iter.bi_sector = sector + rdev->sb_start;
1008 else if (rdev->mddev->reshape_position != MaxSector &&
1009 (rdev->mddev->reshape_backwards ==
1010 (sector >= rdev->mddev->reshape_position)))
1011 bio.bi_iter.bi_sector = sector + rdev->new_data_offset;
1012 else
1013 bio.bi_iter.bi_sector = sector + rdev->data_offset;
1014 bio_add_page(&bio, page, size, 0);
1015
1016 submit_bio_wait(&bio);
1017
1018 return !bio.bi_status;
1019}
1020EXPORT_SYMBOL_GPL(sync_page_io);
1021
1022static int read_disk_sb(struct md_rdev *rdev, int size)
1023{
1024 char b[BDEVNAME_SIZE];
1025
1026 if (rdev->sb_loaded)
1027 return 0;
1028
1029 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
1030 goto fail;
1031 rdev->sb_loaded = 1;
1032 return 0;
1033
1034fail:
1035 pr_err("md: disabled device %s, could not read superblock.\n",
1036 bdevname(rdev->bdev,b));
1037 return -EINVAL;
1038}
1039
1040static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1041{
1042 return sb1->set_uuid0 == sb2->set_uuid0 &&
1043 sb1->set_uuid1 == sb2->set_uuid1 &&
1044 sb1->set_uuid2 == sb2->set_uuid2 &&
1045 sb1->set_uuid3 == sb2->set_uuid3;
1046}
1047
1048static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1049{
1050 int ret;
1051 mdp_super_t *tmp1, *tmp2;
1052
1053 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1054 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1055
1056 if (!tmp1 || !tmp2) {
1057 ret = 0;
1058 goto abort;
1059 }
1060
1061 *tmp1 = *sb1;
1062 *tmp2 = *sb2;
1063
1064 /*
1065 * nr_disks is not constant
1066 */
1067 tmp1->nr_disks = 0;
1068 tmp2->nr_disks = 0;
1069
1070 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1071abort:
1072 kfree(tmp1);
1073 kfree(tmp2);
1074 return ret;
1075}
1076
1077static u32 md_csum_fold(u32 csum)
1078{
1079 csum = (csum & 0xffff) + (csum >> 16);
1080 return (csum & 0xffff) + (csum >> 16);
1081}
1082
1083static unsigned int calc_sb_csum(mdp_super_t *sb)
1084{
1085 u64 newcsum = 0;
1086 u32 *sb32 = (u32*)sb;
1087 int i;
1088 unsigned int disk_csum, csum;
1089
1090 disk_csum = sb->sb_csum;
1091 sb->sb_csum = 0;
1092
1093 for (i = 0; i < MD_SB_BYTES/4 ; i++)
1094 newcsum += sb32[i];
1095 csum = (newcsum & 0xffffffff) + (newcsum>>32);
1096
1097#ifdef CONFIG_ALPHA
1098 /* This used to use csum_partial, which was wrong for several
1099 * reasons including that different results are returned on
1100 * different architectures. It isn't critical that we get exactly
1101 * the same return value as before (we always csum_fold before
1102 * testing, and that removes any differences). However as we
1103 * know that csum_partial always returned a 16bit value on
1104 * alphas, do a fold to maximise conformity to previous behaviour.
1105 */
1106 sb->sb_csum = md_csum_fold(disk_csum);
1107#else
1108 sb->sb_csum = disk_csum;
1109#endif
1110 return csum;
1111}
1112
1113/*
1114 * Handle superblock details.
1115 * We want to be able to handle multiple superblock formats
1116 * so we have a common interface to them all, and an array of
1117 * different handlers.
1118 * We rely on user-space to write the initial superblock, and support
1119 * reading and updating of superblocks.
1120 * Interface methods are:
1121 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1122 * loads and validates a superblock on dev.
1123 * if refdev != NULL, compare superblocks on both devices
1124 * Return:
1125 * 0 - dev has a superblock that is compatible with refdev
1126 * 1 - dev has a superblock that is compatible and newer than refdev
1127 * so dev should be used as the refdev in future
1128 * -EINVAL superblock incompatible or invalid
1129 * -othererror e.g. -EIO
1130 *
1131 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1132 * Verify that dev is acceptable into mddev.
1133 * The first time, mddev->raid_disks will be 0, and data from
1134 * dev should be merged in. Subsequent calls check that dev
1135 * is new enough. Return 0 or -EINVAL
1136 *
1137 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1138 * Update the superblock for rdev with data in mddev
1139 * This does not write to disc.
1140 *
1141 */
1142
1143struct super_type {
1144 char *name;
1145 struct module *owner;
1146 int (*load_super)(struct md_rdev *rdev,
1147 struct md_rdev *refdev,
1148 int minor_version);
1149 int (*validate_super)(struct mddev *mddev,
1150 struct md_rdev *rdev);
1151 void (*sync_super)(struct mddev *mddev,
1152 struct md_rdev *rdev);
1153 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1154 sector_t num_sectors);
1155 int (*allow_new_offset)(struct md_rdev *rdev,
1156 unsigned long long new_offset);
1157};
1158
1159/*
1160 * Check that the given mddev has no bitmap.
1161 *
1162 * This function is called from the run method of all personalities that do not
1163 * support bitmaps. It prints an error message and returns non-zero if mddev
1164 * has a bitmap. Otherwise, it returns 0.
1165 *
1166 */
1167int md_check_no_bitmap(struct mddev *mddev)
1168{
1169 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1170 return 0;
1171 pr_warn("%s: bitmaps are not supported for %s\n",
1172 mdname(mddev), mddev->pers->name);
1173 return 1;
1174}
1175EXPORT_SYMBOL(md_check_no_bitmap);
1176
1177/*
1178 * load_super for 0.90.0
1179 */
1180static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1181{
1182 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1183 mdp_super_t *sb;
1184 int ret;
1185 bool spare_disk = true;
1186
1187 /*
1188 * Calculate the position of the superblock (512byte sectors),
1189 * it's at the end of the disk.
1190 *
1191 * It also happens to be a multiple of 4Kb.
1192 */
1193 rdev->sb_start = calc_dev_sboffset(rdev);
1194
1195 ret = read_disk_sb(rdev, MD_SB_BYTES);
1196 if (ret)
1197 return ret;
1198
1199 ret = -EINVAL;
1200
1201 bdevname(rdev->bdev, b);
1202 sb = page_address(rdev->sb_page);
1203
1204 if (sb->md_magic != MD_SB_MAGIC) {
1205 pr_warn("md: invalid raid superblock magic on %s\n", b);
1206 goto abort;
1207 }
1208
1209 if (sb->major_version != 0 ||
1210 sb->minor_version < 90 ||
1211 sb->minor_version > 91) {
1212 pr_warn("Bad version number %d.%d on %s\n",
1213 sb->major_version, sb->minor_version, b);
1214 goto abort;
1215 }
1216
1217 if (sb->raid_disks <= 0)
1218 goto abort;
1219
1220 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1221 pr_warn("md: invalid superblock checksum on %s\n", b);
1222 goto abort;
1223 }
1224
1225 rdev->preferred_minor = sb->md_minor;
1226 rdev->data_offset = 0;
1227 rdev->new_data_offset = 0;
1228 rdev->sb_size = MD_SB_BYTES;
1229 rdev->badblocks.shift = -1;
1230
1231 if (sb->level == LEVEL_MULTIPATH)
1232 rdev->desc_nr = -1;
1233 else
1234 rdev->desc_nr = sb->this_disk.number;
1235
1236 /* not spare disk, or LEVEL_MULTIPATH */
1237 if (sb->level == LEVEL_MULTIPATH ||
1238 (rdev->desc_nr >= 0 &&
1239 rdev->desc_nr < MD_SB_DISKS &&
1240 sb->disks[rdev->desc_nr].state &
1241 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1242 spare_disk = false;
1243
1244 if (!refdev) {
1245 if (!spare_disk)
1246 ret = 1;
1247 else
1248 ret = 0;
1249 } else {
1250 __u64 ev1, ev2;
1251 mdp_super_t *refsb = page_address(refdev->sb_page);
1252 if (!md_uuid_equal(refsb, sb)) {
1253 pr_warn("md: %s has different UUID to %s\n",
1254 b, bdevname(refdev->bdev,b2));
1255 goto abort;
1256 }
1257 if (!md_sb_equal(refsb, sb)) {
1258 pr_warn("md: %s has same UUID but different superblock to %s\n",
1259 b, bdevname(refdev->bdev, b2));
1260 goto abort;
1261 }
1262 ev1 = md_event(sb);
1263 ev2 = md_event(refsb);
1264
1265 if (!spare_disk && ev1 > ev2)
1266 ret = 1;
1267 else
1268 ret = 0;
1269 }
1270 rdev->sectors = rdev->sb_start;
1271 /* Limit to 4TB as metadata cannot record more than that.
1272 * (not needed for Linear and RAID0 as metadata doesn't
1273 * record this size)
1274 */
1275 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1276 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1277
1278 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1279 /* "this cannot possibly happen" ... */
1280 ret = -EINVAL;
1281
1282 abort:
1283 return ret;
1284}
1285
1286/*
1287 * validate_super for 0.90.0
1288 */
1289static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1290{
1291 mdp_disk_t *desc;
1292 mdp_super_t *sb = page_address(rdev->sb_page);
1293 __u64 ev1 = md_event(sb);
1294
1295 rdev->raid_disk = -1;
1296 clear_bit(Faulty, &rdev->flags);
1297 clear_bit(In_sync, &rdev->flags);
1298 clear_bit(Bitmap_sync, &rdev->flags);
1299 clear_bit(WriteMostly, &rdev->flags);
1300
1301 if (mddev->raid_disks == 0) {
1302 mddev->major_version = 0;
1303 mddev->minor_version = sb->minor_version;
1304 mddev->patch_version = sb->patch_version;
1305 mddev->external = 0;
1306 mddev->chunk_sectors = sb->chunk_size >> 9;
1307 mddev->ctime = sb->ctime;
1308 mddev->utime = sb->utime;
1309 mddev->level = sb->level;
1310 mddev->clevel[0] = 0;
1311 mddev->layout = sb->layout;
1312 mddev->raid_disks = sb->raid_disks;
1313 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1314 mddev->events = ev1;
1315 mddev->bitmap_info.offset = 0;
1316 mddev->bitmap_info.space = 0;
1317 /* bitmap can use 60 K after the 4K superblocks */
1318 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1319 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1320 mddev->reshape_backwards = 0;
1321
1322 if (mddev->minor_version >= 91) {
1323 mddev->reshape_position = sb->reshape_position;
1324 mddev->delta_disks = sb->delta_disks;
1325 mddev->new_level = sb->new_level;
1326 mddev->new_layout = sb->new_layout;
1327 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1328 if (mddev->delta_disks < 0)
1329 mddev->reshape_backwards = 1;
1330 } else {
1331 mddev->reshape_position = MaxSector;
1332 mddev->delta_disks = 0;
1333 mddev->new_level = mddev->level;
1334 mddev->new_layout = mddev->layout;
1335 mddev->new_chunk_sectors = mddev->chunk_sectors;
1336 }
1337 if (mddev->level == 0)
1338 mddev->layout = -1;
1339
1340 if (sb->state & (1<<MD_SB_CLEAN))
1341 mddev->recovery_cp = MaxSector;
1342 else {
1343 if (sb->events_hi == sb->cp_events_hi &&
1344 sb->events_lo == sb->cp_events_lo) {
1345 mddev->recovery_cp = sb->recovery_cp;
1346 } else
1347 mddev->recovery_cp = 0;
1348 }
1349
1350 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1351 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1352 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1353 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1354
1355 mddev->max_disks = MD_SB_DISKS;
1356
1357 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1358 mddev->bitmap_info.file == NULL) {
1359 mddev->bitmap_info.offset =
1360 mddev->bitmap_info.default_offset;
1361 mddev->bitmap_info.space =
1362 mddev->bitmap_info.default_space;
1363 }
1364
1365 } else if (mddev->pers == NULL) {
1366 /* Insist on good event counter while assembling, except
1367 * for spares (which don't need an event count) */
1368 ++ev1;
1369 if (sb->disks[rdev->desc_nr].state & (
1370 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1371 if (ev1 < mddev->events)
1372 return -EINVAL;
1373 } else if (mddev->bitmap) {
1374 /* if adding to array with a bitmap, then we can accept an
1375 * older device ... but not too old.
1376 */
1377 if (ev1 < mddev->bitmap->events_cleared)
1378 return 0;
1379 if (ev1 < mddev->events)
1380 set_bit(Bitmap_sync, &rdev->flags);
1381 } else {
1382 if (ev1 < mddev->events)
1383 /* just a hot-add of a new device, leave raid_disk at -1 */
1384 return 0;
1385 }
1386
1387 if (mddev->level != LEVEL_MULTIPATH) {
1388 desc = sb->disks + rdev->desc_nr;
1389
1390 if (desc->state & (1<<MD_DISK_FAULTY))
1391 set_bit(Faulty, &rdev->flags);
1392 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1393 desc->raid_disk < mddev->raid_disks */) {
1394 set_bit(In_sync, &rdev->flags);
1395 rdev->raid_disk = desc->raid_disk;
1396 rdev->saved_raid_disk = desc->raid_disk;
1397 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1398 /* active but not in sync implies recovery up to
1399 * reshape position. We don't know exactly where
1400 * that is, so set to zero for now */
1401 if (mddev->minor_version >= 91) {
1402 rdev->recovery_offset = 0;
1403 rdev->raid_disk = desc->raid_disk;
1404 }
1405 }
1406 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1407 set_bit(WriteMostly, &rdev->flags);
1408 if (desc->state & (1<<MD_DISK_FAILFAST))
1409 set_bit(FailFast, &rdev->flags);
1410 } else /* MULTIPATH are always insync */
1411 set_bit(In_sync, &rdev->flags);
1412 return 0;
1413}
1414
1415/*
1416 * sync_super for 0.90.0
1417 */
1418static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1419{
1420 mdp_super_t *sb;
1421 struct md_rdev *rdev2;
1422 int next_spare = mddev->raid_disks;
1423
1424 /* make rdev->sb match mddev data..
1425 *
1426 * 1/ zero out disks
1427 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1428 * 3/ any empty disks < next_spare become removed
1429 *
1430 * disks[0] gets initialised to REMOVED because
1431 * we cannot be sure from other fields if it has
1432 * been initialised or not.
1433 */
1434 int i;
1435 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1436
1437 rdev->sb_size = MD_SB_BYTES;
1438
1439 sb = page_address(rdev->sb_page);
1440
1441 memset(sb, 0, sizeof(*sb));
1442
1443 sb->md_magic = MD_SB_MAGIC;
1444 sb->major_version = mddev->major_version;
1445 sb->patch_version = mddev->patch_version;
1446 sb->gvalid_words = 0; /* ignored */
1447 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1448 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1449 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1450 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1451
1452 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1453 sb->level = mddev->level;
1454 sb->size = mddev->dev_sectors / 2;
1455 sb->raid_disks = mddev->raid_disks;
1456 sb->md_minor = mddev->md_minor;
1457 sb->not_persistent = 0;
1458 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1459 sb->state = 0;
1460 sb->events_hi = (mddev->events>>32);
1461 sb->events_lo = (u32)mddev->events;
1462
1463 if (mddev->reshape_position == MaxSector)
1464 sb->minor_version = 90;
1465 else {
1466 sb->minor_version = 91;
1467 sb->reshape_position = mddev->reshape_position;
1468 sb->new_level = mddev->new_level;
1469 sb->delta_disks = mddev->delta_disks;
1470 sb->new_layout = mddev->new_layout;
1471 sb->new_chunk = mddev->new_chunk_sectors << 9;
1472 }
1473 mddev->minor_version = sb->minor_version;
1474 if (mddev->in_sync)
1475 {
1476 sb->recovery_cp = mddev->recovery_cp;
1477 sb->cp_events_hi = (mddev->events>>32);
1478 sb->cp_events_lo = (u32)mddev->events;
1479 if (mddev->recovery_cp == MaxSector)
1480 sb->state = (1<< MD_SB_CLEAN);
1481 } else
1482 sb->recovery_cp = 0;
1483
1484 sb->layout = mddev->layout;
1485 sb->chunk_size = mddev->chunk_sectors << 9;
1486
1487 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1488 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1489
1490 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1491 rdev_for_each(rdev2, mddev) {
1492 mdp_disk_t *d;
1493 int desc_nr;
1494 int is_active = test_bit(In_sync, &rdev2->flags);
1495
1496 if (rdev2->raid_disk >= 0 &&
1497 sb->minor_version >= 91)
1498 /* we have nowhere to store the recovery_offset,
1499 * but if it is not below the reshape_position,
1500 * we can piggy-back on that.
1501 */
1502 is_active = 1;
1503 if (rdev2->raid_disk < 0 ||
1504 test_bit(Faulty, &rdev2->flags))
1505 is_active = 0;
1506 if (is_active)
1507 desc_nr = rdev2->raid_disk;
1508 else
1509 desc_nr = next_spare++;
1510 rdev2->desc_nr = desc_nr;
1511 d = &sb->disks[rdev2->desc_nr];
1512 nr_disks++;
1513 d->number = rdev2->desc_nr;
1514 d->major = MAJOR(rdev2->bdev->bd_dev);
1515 d->minor = MINOR(rdev2->bdev->bd_dev);
1516 if (is_active)
1517 d->raid_disk = rdev2->raid_disk;
1518 else
1519 d->raid_disk = rdev2->desc_nr; /* compatibility */
1520 if (test_bit(Faulty, &rdev2->flags))
1521 d->state = (1<<MD_DISK_FAULTY);
1522 else if (is_active) {
1523 d->state = (1<<MD_DISK_ACTIVE);
1524 if (test_bit(In_sync, &rdev2->flags))
1525 d->state |= (1<<MD_DISK_SYNC);
1526 active++;
1527 working++;
1528 } else {
1529 d->state = 0;
1530 spare++;
1531 working++;
1532 }
1533 if (test_bit(WriteMostly, &rdev2->flags))
1534 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1535 if (test_bit(FailFast, &rdev2->flags))
1536 d->state |= (1<<MD_DISK_FAILFAST);
1537 }
1538 /* now set the "removed" and "faulty" bits on any missing devices */
1539 for (i=0 ; i < mddev->raid_disks ; i++) {
1540 mdp_disk_t *d = &sb->disks[i];
1541 if (d->state == 0 && d->number == 0) {
1542 d->number = i;
1543 d->raid_disk = i;
1544 d->state = (1<<MD_DISK_REMOVED);
1545 d->state |= (1<<MD_DISK_FAULTY);
1546 failed++;
1547 }
1548 }
1549 sb->nr_disks = nr_disks;
1550 sb->active_disks = active;
1551 sb->working_disks = working;
1552 sb->failed_disks = failed;
1553 sb->spare_disks = spare;
1554
1555 sb->this_disk = sb->disks[rdev->desc_nr];
1556 sb->sb_csum = calc_sb_csum(sb);
1557}
1558
1559/*
1560 * rdev_size_change for 0.90.0
1561 */
1562static unsigned long long
1563super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1564{
1565 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1566 return 0; /* component must fit device */
1567 if (rdev->mddev->bitmap_info.offset)
1568 return 0; /* can't move bitmap */
1569 rdev->sb_start = calc_dev_sboffset(rdev);
1570 if (!num_sectors || num_sectors > rdev->sb_start)
1571 num_sectors = rdev->sb_start;
1572 /* Limit to 4TB as metadata cannot record more than that.
1573 * 4TB == 2^32 KB, or 2*2^32 sectors.
1574 */
1575 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1576 num_sectors = (sector_t)(2ULL << 32) - 2;
1577 do {
1578 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1579 rdev->sb_page);
1580 } while (md_super_wait(rdev->mddev) < 0);
1581 return num_sectors;
1582}
1583
1584static int
1585super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1586{
1587 /* non-zero offset changes not possible with v0.90 */
1588 return new_offset == 0;
1589}
1590
1591/*
1592 * version 1 superblock
1593 */
1594
1595static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1596{
1597 __le32 disk_csum;
1598 u32 csum;
1599 unsigned long long newcsum;
1600 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1601 __le32 *isuper = (__le32*)sb;
1602
1603 disk_csum = sb->sb_csum;
1604 sb->sb_csum = 0;
1605 newcsum = 0;
1606 for (; size >= 4; size -= 4)
1607 newcsum += le32_to_cpu(*isuper++);
1608
1609 if (size == 2)
1610 newcsum += le16_to_cpu(*(__le16*) isuper);
1611
1612 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1613 sb->sb_csum = disk_csum;
1614 return cpu_to_le32(csum);
1615}
1616
1617static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1618{
1619 struct mdp_superblock_1 *sb;
1620 int ret;
1621 sector_t sb_start;
1622 sector_t sectors;
1623 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1624 int bmask;
1625 bool spare_disk = true;
1626
1627 /*
1628 * Calculate the position of the superblock in 512byte sectors.
1629 * It is always aligned to a 4K boundary and
1630 * depeding on minor_version, it can be:
1631 * 0: At least 8K, but less than 12K, from end of device
1632 * 1: At start of device
1633 * 2: 4K from start of device.
1634 */
1635 switch(minor_version) {
1636 case 0:
1637 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2;
1638 sb_start &= ~(sector_t)(4*2-1);
1639 break;
1640 case 1:
1641 sb_start = 0;
1642 break;
1643 case 2:
1644 sb_start = 8;
1645 break;
1646 default:
1647 return -EINVAL;
1648 }
1649 rdev->sb_start = sb_start;
1650
1651 /* superblock is rarely larger than 1K, but it can be larger,
1652 * and it is safe to read 4k, so we do that
1653 */
1654 ret = read_disk_sb(rdev, 4096);
1655 if (ret) return ret;
1656
1657 sb = page_address(rdev->sb_page);
1658
1659 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1660 sb->major_version != cpu_to_le32(1) ||
1661 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1662 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1663 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1664 return -EINVAL;
1665
1666 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1667 pr_warn("md: invalid superblock checksum on %s\n",
1668 bdevname(rdev->bdev,b));
1669 return -EINVAL;
1670 }
1671 if (le64_to_cpu(sb->data_size) < 10) {
1672 pr_warn("md: data_size too small on %s\n",
1673 bdevname(rdev->bdev,b));
1674 return -EINVAL;
1675 }
1676 if (sb->pad0 ||
1677 sb->pad3[0] ||
1678 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1679 /* Some padding is non-zero, might be a new feature */
1680 return -EINVAL;
1681
1682 rdev->preferred_minor = 0xffff;
1683 rdev->data_offset = le64_to_cpu(sb->data_offset);
1684 rdev->new_data_offset = rdev->data_offset;
1685 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1686 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1687 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1688 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1689
1690 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1691 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1692 if (rdev->sb_size & bmask)
1693 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1694
1695 if (minor_version
1696 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1697 return -EINVAL;
1698 if (minor_version
1699 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1700 return -EINVAL;
1701
1702 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1703 rdev->desc_nr = -1;
1704 else
1705 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1706
1707 if (!rdev->bb_page) {
1708 rdev->bb_page = alloc_page(GFP_KERNEL);
1709 if (!rdev->bb_page)
1710 return -ENOMEM;
1711 }
1712 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1713 rdev->badblocks.count == 0) {
1714 /* need to load the bad block list.
1715 * Currently we limit it to one page.
1716 */
1717 s32 offset;
1718 sector_t bb_sector;
1719 __le64 *bbp;
1720 int i;
1721 int sectors = le16_to_cpu(sb->bblog_size);
1722 if (sectors > (PAGE_SIZE / 512))
1723 return -EINVAL;
1724 offset = le32_to_cpu(sb->bblog_offset);
1725 if (offset == 0)
1726 return -EINVAL;
1727 bb_sector = (long long)offset;
1728 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1729 rdev->bb_page, REQ_OP_READ, 0, true))
1730 return -EIO;
1731 bbp = (__le64 *)page_address(rdev->bb_page);
1732 rdev->badblocks.shift = sb->bblog_shift;
1733 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1734 u64 bb = le64_to_cpu(*bbp);
1735 int count = bb & (0x3ff);
1736 u64 sector = bb >> 10;
1737 sector <<= sb->bblog_shift;
1738 count <<= sb->bblog_shift;
1739 if (bb + 1 == 0)
1740 break;
1741 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1742 return -EINVAL;
1743 }
1744 } else if (sb->bblog_offset != 0)
1745 rdev->badblocks.shift = 0;
1746
1747 if ((le32_to_cpu(sb->feature_map) &
1748 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1749 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1750 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1751 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1752 }
1753
1754 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1755 sb->level != 0)
1756 return -EINVAL;
1757
1758 /* not spare disk, or LEVEL_MULTIPATH */
1759 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1760 (rdev->desc_nr >= 0 &&
1761 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1762 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1763 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1764 spare_disk = false;
1765
1766 if (!refdev) {
1767 if (!spare_disk)
1768 ret = 1;
1769 else
1770 ret = 0;
1771 } else {
1772 __u64 ev1, ev2;
1773 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1774
1775 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1776 sb->level != refsb->level ||
1777 sb->layout != refsb->layout ||
1778 sb->chunksize != refsb->chunksize) {
1779 pr_warn("md: %s has strangely different superblock to %s\n",
1780 bdevname(rdev->bdev,b),
1781 bdevname(refdev->bdev,b2));
1782 return -EINVAL;
1783 }
1784 ev1 = le64_to_cpu(sb->events);
1785 ev2 = le64_to_cpu(refsb->events);
1786
1787 if (!spare_disk && ev1 > ev2)
1788 ret = 1;
1789 else
1790 ret = 0;
1791 }
1792 if (minor_version)
1793 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
1794 else
1795 sectors = rdev->sb_start;
1796 if (sectors < le64_to_cpu(sb->data_size))
1797 return -EINVAL;
1798 rdev->sectors = le64_to_cpu(sb->data_size);
1799 return ret;
1800}
1801
1802static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1803{
1804 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1805 __u64 ev1 = le64_to_cpu(sb->events);
1806
1807 rdev->raid_disk = -1;
1808 clear_bit(Faulty, &rdev->flags);
1809 clear_bit(In_sync, &rdev->flags);
1810 clear_bit(Bitmap_sync, &rdev->flags);
1811 clear_bit(WriteMostly, &rdev->flags);
1812
1813 if (mddev->raid_disks == 0) {
1814 mddev->major_version = 1;
1815 mddev->patch_version = 0;
1816 mddev->external = 0;
1817 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1818 mddev->ctime = le64_to_cpu(sb->ctime);
1819 mddev->utime = le64_to_cpu(sb->utime);
1820 mddev->level = le32_to_cpu(sb->level);
1821 mddev->clevel[0] = 0;
1822 mddev->layout = le32_to_cpu(sb->layout);
1823 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1824 mddev->dev_sectors = le64_to_cpu(sb->size);
1825 mddev->events = ev1;
1826 mddev->bitmap_info.offset = 0;
1827 mddev->bitmap_info.space = 0;
1828 /* Default location for bitmap is 1K after superblock
1829 * using 3K - total of 4K
1830 */
1831 mddev->bitmap_info.default_offset = 1024 >> 9;
1832 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1833 mddev->reshape_backwards = 0;
1834
1835 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1836 memcpy(mddev->uuid, sb->set_uuid, 16);
1837
1838 mddev->max_disks = (4096-256)/2;
1839
1840 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1841 mddev->bitmap_info.file == NULL) {
1842 mddev->bitmap_info.offset =
1843 (__s32)le32_to_cpu(sb->bitmap_offset);
1844 /* Metadata doesn't record how much space is available.
1845 * For 1.0, we assume we can use up to the superblock
1846 * if before, else to 4K beyond superblock.
1847 * For others, assume no change is possible.
1848 */
1849 if (mddev->minor_version > 0)
1850 mddev->bitmap_info.space = 0;
1851 else if (mddev->bitmap_info.offset > 0)
1852 mddev->bitmap_info.space =
1853 8 - mddev->bitmap_info.offset;
1854 else
1855 mddev->bitmap_info.space =
1856 -mddev->bitmap_info.offset;
1857 }
1858
1859 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1860 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1861 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1862 mddev->new_level = le32_to_cpu(sb->new_level);
1863 mddev->new_layout = le32_to_cpu(sb->new_layout);
1864 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1865 if (mddev->delta_disks < 0 ||
1866 (mddev->delta_disks == 0 &&
1867 (le32_to_cpu(sb->feature_map)
1868 & MD_FEATURE_RESHAPE_BACKWARDS)))
1869 mddev->reshape_backwards = 1;
1870 } else {
1871 mddev->reshape_position = MaxSector;
1872 mddev->delta_disks = 0;
1873 mddev->new_level = mddev->level;
1874 mddev->new_layout = mddev->layout;
1875 mddev->new_chunk_sectors = mddev->chunk_sectors;
1876 }
1877
1878 if (mddev->level == 0 &&
1879 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1880 mddev->layout = -1;
1881
1882 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1883 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1884
1885 if (le32_to_cpu(sb->feature_map) &
1886 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1887 if (le32_to_cpu(sb->feature_map) &
1888 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1889 return -EINVAL;
1890 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1891 (le32_to_cpu(sb->feature_map) &
1892 MD_FEATURE_MULTIPLE_PPLS))
1893 return -EINVAL;
1894 set_bit(MD_HAS_PPL, &mddev->flags);
1895 }
1896 } else if (mddev->pers == NULL) {
1897 /* Insist of good event counter while assembling, except for
1898 * spares (which don't need an event count) */
1899 ++ev1;
1900 if (rdev->desc_nr >= 0 &&
1901 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1902 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1903 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1904 if (ev1 < mddev->events)
1905 return -EINVAL;
1906 } else if (mddev->bitmap) {
1907 /* If adding to array with a bitmap, then we can accept an
1908 * older device, but not too old.
1909 */
1910 if (ev1 < mddev->bitmap->events_cleared)
1911 return 0;
1912 if (ev1 < mddev->events)
1913 set_bit(Bitmap_sync, &rdev->flags);
1914 } else {
1915 if (ev1 < mddev->events)
1916 /* just a hot-add of a new device, leave raid_disk at -1 */
1917 return 0;
1918 }
1919 if (mddev->level != LEVEL_MULTIPATH) {
1920 int role;
1921 if (rdev->desc_nr < 0 ||
1922 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1923 role = MD_DISK_ROLE_SPARE;
1924 rdev->desc_nr = -1;
1925 } else
1926 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1927 switch(role) {
1928 case MD_DISK_ROLE_SPARE: /* spare */
1929 break;
1930 case MD_DISK_ROLE_FAULTY: /* faulty */
1931 set_bit(Faulty, &rdev->flags);
1932 break;
1933 case MD_DISK_ROLE_JOURNAL: /* journal device */
1934 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1935 /* journal device without journal feature */
1936 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1937 return -EINVAL;
1938 }
1939 set_bit(Journal, &rdev->flags);
1940 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1941 rdev->raid_disk = 0;
1942 break;
1943 default:
1944 rdev->saved_raid_disk = role;
1945 if ((le32_to_cpu(sb->feature_map) &
1946 MD_FEATURE_RECOVERY_OFFSET)) {
1947 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1948 if (!(le32_to_cpu(sb->feature_map) &
1949 MD_FEATURE_RECOVERY_BITMAP))
1950 rdev->saved_raid_disk = -1;
1951 } else {
1952 /*
1953 * If the array is FROZEN, then the device can't
1954 * be in_sync with rest of array.
1955 */
1956 if (!test_bit(MD_RECOVERY_FROZEN,
1957 &mddev->recovery))
1958 set_bit(In_sync, &rdev->flags);
1959 }
1960 rdev->raid_disk = role;
1961 break;
1962 }
1963 if (sb->devflags & WriteMostly1)
1964 set_bit(WriteMostly, &rdev->flags);
1965 if (sb->devflags & FailFast1)
1966 set_bit(FailFast, &rdev->flags);
1967 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1968 set_bit(Replacement, &rdev->flags);
1969 } else /* MULTIPATH are always insync */
1970 set_bit(In_sync, &rdev->flags);
1971
1972 return 0;
1973}
1974
1975static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1976{
1977 struct mdp_superblock_1 *sb;
1978 struct md_rdev *rdev2;
1979 int max_dev, i;
1980 /* make rdev->sb match mddev and rdev data. */
1981
1982 sb = page_address(rdev->sb_page);
1983
1984 sb->feature_map = 0;
1985 sb->pad0 = 0;
1986 sb->recovery_offset = cpu_to_le64(0);
1987 memset(sb->pad3, 0, sizeof(sb->pad3));
1988
1989 sb->utime = cpu_to_le64((__u64)mddev->utime);
1990 sb->events = cpu_to_le64(mddev->events);
1991 if (mddev->in_sync)
1992 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1993 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1994 sb->resync_offset = cpu_to_le64(MaxSector);
1995 else
1996 sb->resync_offset = cpu_to_le64(0);
1997
1998 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1999
2000 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
2001 sb->size = cpu_to_le64(mddev->dev_sectors);
2002 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
2003 sb->level = cpu_to_le32(mddev->level);
2004 sb->layout = cpu_to_le32(mddev->layout);
2005 if (test_bit(FailFast, &rdev->flags))
2006 sb->devflags |= FailFast1;
2007 else
2008 sb->devflags &= ~FailFast1;
2009
2010 if (test_bit(WriteMostly, &rdev->flags))
2011 sb->devflags |= WriteMostly1;
2012 else
2013 sb->devflags &= ~WriteMostly1;
2014 sb->data_offset = cpu_to_le64(rdev->data_offset);
2015 sb->data_size = cpu_to_le64(rdev->sectors);
2016
2017 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
2018 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
2019 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
2020 }
2021
2022 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
2023 !test_bit(In_sync, &rdev->flags)) {
2024 sb->feature_map |=
2025 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
2026 sb->recovery_offset =
2027 cpu_to_le64(rdev->recovery_offset);
2028 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
2029 sb->feature_map |=
2030 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
2031 }
2032 /* Note: recovery_offset and journal_tail share space */
2033 if (test_bit(Journal, &rdev->flags))
2034 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
2035 if (test_bit(Replacement, &rdev->flags))
2036 sb->feature_map |=
2037 cpu_to_le32(MD_FEATURE_REPLACEMENT);
2038
2039 if (mddev->reshape_position != MaxSector) {
2040 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2041 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2042 sb->new_layout = cpu_to_le32(mddev->new_layout);
2043 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2044 sb->new_level = cpu_to_le32(mddev->new_level);
2045 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2046 if (mddev->delta_disks == 0 &&
2047 mddev->reshape_backwards)
2048 sb->feature_map
2049 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2050 if (rdev->new_data_offset != rdev->data_offset) {
2051 sb->feature_map
2052 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2053 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2054 - rdev->data_offset));
2055 }
2056 }
2057
2058 if (mddev_is_clustered(mddev))
2059 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2060
2061 if (rdev->badblocks.count == 0)
2062 /* Nothing to do for bad blocks*/ ;
2063 else if (sb->bblog_offset == 0)
2064 /* Cannot record bad blocks on this device */
2065 md_error(mddev, rdev);
2066 else {
2067 struct badblocks *bb = &rdev->badblocks;
2068 __le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2069 u64 *p = bb->page;
2070 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2071 if (bb->changed) {
2072 unsigned seq;
2073
2074retry:
2075 seq = read_seqbegin(&bb->lock);
2076
2077 memset(bbp, 0xff, PAGE_SIZE);
2078
2079 for (i = 0 ; i < bb->count ; i++) {
2080 u64 internal_bb = p[i];
2081 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2082 | BB_LEN(internal_bb));
2083 bbp[i] = cpu_to_le64(store_bb);
2084 }
2085 bb->changed = 0;
2086 if (read_seqretry(&bb->lock, seq))
2087 goto retry;
2088
2089 bb->sector = (rdev->sb_start +
2090 (int)le32_to_cpu(sb->bblog_offset));
2091 bb->size = le16_to_cpu(sb->bblog_size);
2092 }
2093 }
2094
2095 max_dev = 0;
2096 rdev_for_each(rdev2, mddev)
2097 if (rdev2->desc_nr+1 > max_dev)
2098 max_dev = rdev2->desc_nr+1;
2099
2100 if (max_dev > le32_to_cpu(sb->max_dev)) {
2101 int bmask;
2102 sb->max_dev = cpu_to_le32(max_dev);
2103 rdev->sb_size = max_dev * 2 + 256;
2104 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2105 if (rdev->sb_size & bmask)
2106 rdev->sb_size = (rdev->sb_size | bmask) + 1;
2107 } else
2108 max_dev = le32_to_cpu(sb->max_dev);
2109
2110 for (i=0; i<max_dev;i++)
2111 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2112
2113 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2114 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2115
2116 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2117 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2118 sb->feature_map |=
2119 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2120 else
2121 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2122 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2123 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2124 }
2125
2126 rdev_for_each(rdev2, mddev) {
2127 i = rdev2->desc_nr;
2128 if (test_bit(Faulty, &rdev2->flags))
2129 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2130 else if (test_bit(In_sync, &rdev2->flags))
2131 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2132 else if (test_bit(Journal, &rdev2->flags))
2133 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2134 else if (rdev2->raid_disk >= 0)
2135 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2136 else
2137 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2138 }
2139
2140 sb->sb_csum = calc_sb_1_csum(sb);
2141}
2142
2143static sector_t super_1_choose_bm_space(sector_t dev_size)
2144{
2145 sector_t bm_space;
2146
2147 /* if the device is bigger than 8Gig, save 64k for bitmap
2148 * usage, if bigger than 200Gig, save 128k
2149 */
2150 if (dev_size < 64*2)
2151 bm_space = 0;
2152 else if (dev_size - 64*2 >= 200*1024*1024*2)
2153 bm_space = 128*2;
2154 else if (dev_size - 4*2 > 8*1024*1024*2)
2155 bm_space = 64*2;
2156 else
2157 bm_space = 4*2;
2158 return bm_space;
2159}
2160
2161static unsigned long long
2162super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2163{
2164 struct mdp_superblock_1 *sb;
2165 sector_t max_sectors;
2166 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2167 return 0; /* component must fit device */
2168 if (rdev->data_offset != rdev->new_data_offset)
2169 return 0; /* too confusing */
2170 if (rdev->sb_start < rdev->data_offset) {
2171 /* minor versions 1 and 2; superblock before data */
2172 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
2173 if (!num_sectors || num_sectors > max_sectors)
2174 num_sectors = max_sectors;
2175 } else if (rdev->mddev->bitmap_info.offset) {
2176 /* minor version 0 with bitmap we can't move */
2177 return 0;
2178 } else {
2179 /* minor version 0; superblock after data */
2180 sector_t sb_start, bm_space;
2181 sector_t dev_size = bdev_nr_sectors(rdev->bdev);
2182
2183 /* 8K is for superblock */
2184 sb_start = dev_size - 8*2;
2185 sb_start &= ~(sector_t)(4*2 - 1);
2186
2187 bm_space = super_1_choose_bm_space(dev_size);
2188
2189 /* Space that can be used to store date needs to decrease
2190 * superblock bitmap space and bad block space(4K)
2191 */
2192 max_sectors = sb_start - bm_space - 4*2;
2193
2194 if (!num_sectors || num_sectors > max_sectors)
2195 num_sectors = max_sectors;
2196 rdev->sb_start = sb_start;
2197 }
2198 sb = page_address(rdev->sb_page);
2199 sb->data_size = cpu_to_le64(num_sectors);
2200 sb->super_offset = cpu_to_le64(rdev->sb_start);
2201 sb->sb_csum = calc_sb_1_csum(sb);
2202 do {
2203 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2204 rdev->sb_page);
2205 } while (md_super_wait(rdev->mddev) < 0);
2206 return num_sectors;
2207
2208}
2209
2210static int
2211super_1_allow_new_offset(struct md_rdev *rdev,
2212 unsigned long long new_offset)
2213{
2214 /* All necessary checks on new >= old have been done */
2215 struct bitmap *bitmap;
2216 if (new_offset >= rdev->data_offset)
2217 return 1;
2218
2219 /* with 1.0 metadata, there is no metadata to tread on
2220 * so we can always move back */
2221 if (rdev->mddev->minor_version == 0)
2222 return 1;
2223
2224 /* otherwise we must be sure not to step on
2225 * any metadata, so stay:
2226 * 36K beyond start of superblock
2227 * beyond end of badblocks
2228 * beyond write-intent bitmap
2229 */
2230 if (rdev->sb_start + (32+4)*2 > new_offset)
2231 return 0;
2232 bitmap = rdev->mddev->bitmap;
2233 if (bitmap && !rdev->mddev->bitmap_info.file &&
2234 rdev->sb_start + rdev->mddev->bitmap_info.offset +
2235 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2236 return 0;
2237 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2238 return 0;
2239
2240 return 1;
2241}
2242
2243static struct super_type super_types[] = {
2244 [0] = {
2245 .name = "0.90.0",
2246 .owner = THIS_MODULE,
2247 .load_super = super_90_load,
2248 .validate_super = super_90_validate,
2249 .sync_super = super_90_sync,
2250 .rdev_size_change = super_90_rdev_size_change,
2251 .allow_new_offset = super_90_allow_new_offset,
2252 },
2253 [1] = {
2254 .name = "md-1",
2255 .owner = THIS_MODULE,
2256 .load_super = super_1_load,
2257 .validate_super = super_1_validate,
2258 .sync_super = super_1_sync,
2259 .rdev_size_change = super_1_rdev_size_change,
2260 .allow_new_offset = super_1_allow_new_offset,
2261 },
2262};
2263
2264static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2265{
2266 if (mddev->sync_super) {
2267 mddev->sync_super(mddev, rdev);
2268 return;
2269 }
2270
2271 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2272
2273 super_types[mddev->major_version].sync_super(mddev, rdev);
2274}
2275
2276static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2277{
2278 struct md_rdev *rdev, *rdev2;
2279
2280 rcu_read_lock();
2281 rdev_for_each_rcu(rdev, mddev1) {
2282 if (test_bit(Faulty, &rdev->flags) ||
2283 test_bit(Journal, &rdev->flags) ||
2284 rdev->raid_disk == -1)
2285 continue;
2286 rdev_for_each_rcu(rdev2, mddev2) {
2287 if (test_bit(Faulty, &rdev2->flags) ||
2288 test_bit(Journal, &rdev2->flags) ||
2289 rdev2->raid_disk == -1)
2290 continue;
2291 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2292 rcu_read_unlock();
2293 return 1;
2294 }
2295 }
2296 }
2297 rcu_read_unlock();
2298 return 0;
2299}
2300
2301static LIST_HEAD(pending_raid_disks);
2302
2303/*
2304 * Try to register data integrity profile for an mddev
2305 *
2306 * This is called when an array is started and after a disk has been kicked
2307 * from the array. It only succeeds if all working and active component devices
2308 * are integrity capable with matching profiles.
2309 */
2310int md_integrity_register(struct mddev *mddev)
2311{
2312 struct md_rdev *rdev, *reference = NULL;
2313
2314 if (list_empty(&mddev->disks))
2315 return 0; /* nothing to do */
2316 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2317 return 0; /* shouldn't register, or already is */
2318 rdev_for_each(rdev, mddev) {
2319 /* skip spares and non-functional disks */
2320 if (test_bit(Faulty, &rdev->flags))
2321 continue;
2322 if (rdev->raid_disk < 0)
2323 continue;
2324 if (!reference) {
2325 /* Use the first rdev as the reference */
2326 reference = rdev;
2327 continue;
2328 }
2329 /* does this rdev's profile match the reference profile? */
2330 if (blk_integrity_compare(reference->bdev->bd_disk,
2331 rdev->bdev->bd_disk) < 0)
2332 return -EINVAL;
2333 }
2334 if (!reference || !bdev_get_integrity(reference->bdev))
2335 return 0;
2336 /*
2337 * All component devices are integrity capable and have matching
2338 * profiles, register the common profile for the md device.
2339 */
2340 blk_integrity_register(mddev->gendisk,
2341 bdev_get_integrity(reference->bdev));
2342
2343 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2344 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) ||
2345 (mddev->level != 1 && mddev->level != 10 &&
2346 bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) {
2347 /*
2348 * No need to handle the failure of bioset_integrity_create,
2349 * because the function is called by md_run() -> pers->run(),
2350 * md_run calls bioset_exit -> bioset_integrity_free in case
2351 * of failure case.
2352 */
2353 pr_err("md: failed to create integrity pool for %s\n",
2354 mdname(mddev));
2355 return -EINVAL;
2356 }
2357 return 0;
2358}
2359EXPORT_SYMBOL(md_integrity_register);
2360
2361/*
2362 * Attempt to add an rdev, but only if it is consistent with the current
2363 * integrity profile
2364 */
2365int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2366{
2367 struct blk_integrity *bi_mddev;
2368 char name[BDEVNAME_SIZE];
2369
2370 if (!mddev->gendisk)
2371 return 0;
2372
2373 bi_mddev = blk_get_integrity(mddev->gendisk);
2374
2375 if (!bi_mddev) /* nothing to do */
2376 return 0;
2377
2378 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2379 pr_err("%s: incompatible integrity profile for %s\n",
2380 mdname(mddev), bdevname(rdev->bdev, name));
2381 return -ENXIO;
2382 }
2383
2384 return 0;
2385}
2386EXPORT_SYMBOL(md_integrity_add_rdev);
2387
2388static bool rdev_read_only(struct md_rdev *rdev)
2389{
2390 return bdev_read_only(rdev->bdev) ||
2391 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev));
2392}
2393
2394static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2395{
2396 char b[BDEVNAME_SIZE];
2397 int err;
2398
2399 /* prevent duplicates */
2400 if (find_rdev(mddev, rdev->bdev->bd_dev))
2401 return -EEXIST;
2402
2403 if (rdev_read_only(rdev) && mddev->pers)
2404 return -EROFS;
2405
2406 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2407 if (!test_bit(Journal, &rdev->flags) &&
2408 rdev->sectors &&
2409 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2410 if (mddev->pers) {
2411 /* Cannot change size, so fail
2412 * If mddev->level <= 0, then we don't care
2413 * about aligning sizes (e.g. linear)
2414 */
2415 if (mddev->level > 0)
2416 return -ENOSPC;
2417 } else
2418 mddev->dev_sectors = rdev->sectors;
2419 }
2420
2421 /* Verify rdev->desc_nr is unique.
2422 * If it is -1, assign a free number, else
2423 * check number is not in use
2424 */
2425 rcu_read_lock();
2426 if (rdev->desc_nr < 0) {
2427 int choice = 0;
2428 if (mddev->pers)
2429 choice = mddev->raid_disks;
2430 while (md_find_rdev_nr_rcu(mddev, choice))
2431 choice++;
2432 rdev->desc_nr = choice;
2433 } else {
2434 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2435 rcu_read_unlock();
2436 return -EBUSY;
2437 }
2438 }
2439 rcu_read_unlock();
2440 if (!test_bit(Journal, &rdev->flags) &&
2441 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2442 pr_warn("md: %s: array is limited to %d devices\n",
2443 mdname(mddev), mddev->max_disks);
2444 return -EBUSY;
2445 }
2446 bdevname(rdev->bdev,b);
2447 strreplace(b, '/', '!');
2448
2449 rdev->mddev = mddev;
2450 pr_debug("md: bind<%s>\n", b);
2451
2452 if (mddev->raid_disks)
2453 mddev_create_serial_pool(mddev, rdev, false);
2454
2455 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2456 goto fail;
2457
2458 /* failure here is OK */
2459 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block");
2460 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2461 rdev->sysfs_unack_badblocks =
2462 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2463 rdev->sysfs_badblocks =
2464 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2465
2466 list_add_rcu(&rdev->same_set, &mddev->disks);
2467 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2468
2469 /* May as well allow recovery to be retried once */
2470 mddev->recovery_disabled++;
2471
2472 return 0;
2473
2474 fail:
2475 pr_warn("md: failed to register dev-%s for %s\n",
2476 b, mdname(mddev));
2477 return err;
2478}
2479
2480static void rdev_delayed_delete(struct work_struct *ws)
2481{
2482 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2483 kobject_del(&rdev->kobj);
2484 kobject_put(&rdev->kobj);
2485}
2486
2487static void unbind_rdev_from_array(struct md_rdev *rdev)
2488{
2489 char b[BDEVNAME_SIZE];
2490
2491 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2492 list_del_rcu(&rdev->same_set);
2493 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2494 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2495 rdev->mddev = NULL;
2496 sysfs_remove_link(&rdev->kobj, "block");
2497 sysfs_put(rdev->sysfs_state);
2498 sysfs_put(rdev->sysfs_unack_badblocks);
2499 sysfs_put(rdev->sysfs_badblocks);
2500 rdev->sysfs_state = NULL;
2501 rdev->sysfs_unack_badblocks = NULL;
2502 rdev->sysfs_badblocks = NULL;
2503 rdev->badblocks.count = 0;
2504 /* We need to delay this, otherwise we can deadlock when
2505 * writing to 'remove' to "dev/state". We also need
2506 * to delay it due to rcu usage.
2507 */
2508 synchronize_rcu();
2509 INIT_WORK(&rdev->del_work, rdev_delayed_delete);
2510 kobject_get(&rdev->kobj);
2511 queue_work(md_rdev_misc_wq, &rdev->del_work);
2512}
2513
2514/*
2515 * prevent the device from being mounted, repartitioned or
2516 * otherwise reused by a RAID array (or any other kernel
2517 * subsystem), by bd_claiming the device.
2518 */
2519static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2520{
2521 int err = 0;
2522 struct block_device *bdev;
2523
2524 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2525 shared ? (struct md_rdev *)lock_rdev : rdev);
2526 if (IS_ERR(bdev)) {
2527 pr_warn("md: could not open device unknown-block(%u,%u).\n",
2528 MAJOR(dev), MINOR(dev));
2529 return PTR_ERR(bdev);
2530 }
2531 rdev->bdev = bdev;
2532 return err;
2533}
2534
2535static void unlock_rdev(struct md_rdev *rdev)
2536{
2537 struct block_device *bdev = rdev->bdev;
2538 rdev->bdev = NULL;
2539 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2540}
2541
2542void md_autodetect_dev(dev_t dev);
2543
2544static void export_rdev(struct md_rdev *rdev)
2545{
2546 char b[BDEVNAME_SIZE];
2547
2548 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2549 md_rdev_clear(rdev);
2550#ifndef MODULE
2551 if (test_bit(AutoDetected, &rdev->flags))
2552 md_autodetect_dev(rdev->bdev->bd_dev);
2553#endif
2554 unlock_rdev(rdev);
2555 kobject_put(&rdev->kobj);
2556}
2557
2558void md_kick_rdev_from_array(struct md_rdev *rdev)
2559{
2560 unbind_rdev_from_array(rdev);
2561 export_rdev(rdev);
2562}
2563EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2564
2565static void export_array(struct mddev *mddev)
2566{
2567 struct md_rdev *rdev;
2568
2569 while (!list_empty(&mddev->disks)) {
2570 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2571 same_set);
2572 md_kick_rdev_from_array(rdev);
2573 }
2574 mddev->raid_disks = 0;
2575 mddev->major_version = 0;
2576}
2577
2578static bool set_in_sync(struct mddev *mddev)
2579{
2580 lockdep_assert_held(&mddev->lock);
2581 if (!mddev->in_sync) {
2582 mddev->sync_checkers++;
2583 spin_unlock(&mddev->lock);
2584 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2585 spin_lock(&mddev->lock);
2586 if (!mddev->in_sync &&
2587 percpu_ref_is_zero(&mddev->writes_pending)) {
2588 mddev->in_sync = 1;
2589 /*
2590 * Ensure ->in_sync is visible before we clear
2591 * ->sync_checkers.
2592 */
2593 smp_mb();
2594 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2595 sysfs_notify_dirent_safe(mddev->sysfs_state);
2596 }
2597 if (--mddev->sync_checkers == 0)
2598 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2599 }
2600 if (mddev->safemode == 1)
2601 mddev->safemode = 0;
2602 return mddev->in_sync;
2603}
2604
2605static void sync_sbs(struct mddev *mddev, int nospares)
2606{
2607 /* Update each superblock (in-memory image), but
2608 * if we are allowed to, skip spares which already
2609 * have the right event counter, or have one earlier
2610 * (which would mean they aren't being marked as dirty
2611 * with the rest of the array)
2612 */
2613 struct md_rdev *rdev;
2614 rdev_for_each(rdev, mddev) {
2615 if (rdev->sb_events == mddev->events ||
2616 (nospares &&
2617 rdev->raid_disk < 0 &&
2618 rdev->sb_events+1 == mddev->events)) {
2619 /* Don't update this superblock */
2620 rdev->sb_loaded = 2;
2621 } else {
2622 sync_super(mddev, rdev);
2623 rdev->sb_loaded = 1;
2624 }
2625 }
2626}
2627
2628static bool does_sb_need_changing(struct mddev *mddev)
2629{
2630 struct md_rdev *rdev;
2631 struct mdp_superblock_1 *sb;
2632 int role;
2633
2634 /* Find a good rdev */
2635 rdev_for_each(rdev, mddev)
2636 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2637 break;
2638
2639 /* No good device found. */
2640 if (!rdev)
2641 return false;
2642
2643 sb = page_address(rdev->sb_page);
2644 /* Check if a device has become faulty or a spare become active */
2645 rdev_for_each(rdev, mddev) {
2646 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2647 /* Device activated? */
2648 if (role == 0xffff && rdev->raid_disk >=0 &&
2649 !test_bit(Faulty, &rdev->flags))
2650 return true;
2651 /* Device turned faulty? */
2652 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2653 return true;
2654 }
2655
2656 /* Check if any mddev parameters have changed */
2657 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2658 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2659 (mddev->layout != le32_to_cpu(sb->layout)) ||
2660 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2661 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2662 return true;
2663
2664 return false;
2665}
2666
2667void md_update_sb(struct mddev *mddev, int force_change)
2668{
2669 struct md_rdev *rdev;
2670 int sync_req;
2671 int nospares = 0;
2672 int any_badblocks_changed = 0;
2673 int ret = -1;
2674
2675 if (mddev->ro) {
2676 if (force_change)
2677 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2678 return;
2679 }
2680
2681repeat:
2682 if (mddev_is_clustered(mddev)) {
2683 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2684 force_change = 1;
2685 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2686 nospares = 1;
2687 ret = md_cluster_ops->metadata_update_start(mddev);
2688 /* Has someone else has updated the sb */
2689 if (!does_sb_need_changing(mddev)) {
2690 if (ret == 0)
2691 md_cluster_ops->metadata_update_cancel(mddev);
2692 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2693 BIT(MD_SB_CHANGE_DEVS) |
2694 BIT(MD_SB_CHANGE_CLEAN));
2695 return;
2696 }
2697 }
2698
2699 /*
2700 * First make sure individual recovery_offsets are correct
2701 * curr_resync_completed can only be used during recovery.
2702 * During reshape/resync it might use array-addresses rather
2703 * that device addresses.
2704 */
2705 rdev_for_each(rdev, mddev) {
2706 if (rdev->raid_disk >= 0 &&
2707 mddev->delta_disks >= 0 &&
2708 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2709 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2710 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2711 !test_bit(Journal, &rdev->flags) &&
2712 !test_bit(In_sync, &rdev->flags) &&
2713 mddev->curr_resync_completed > rdev->recovery_offset)
2714 rdev->recovery_offset = mddev->curr_resync_completed;
2715
2716 }
2717 if (!mddev->persistent) {
2718 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2719 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2720 if (!mddev->external) {
2721 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2722 rdev_for_each(rdev, mddev) {
2723 if (rdev->badblocks.changed) {
2724 rdev->badblocks.changed = 0;
2725 ack_all_badblocks(&rdev->badblocks);
2726 md_error(mddev, rdev);
2727 }
2728 clear_bit(Blocked, &rdev->flags);
2729 clear_bit(BlockedBadBlocks, &rdev->flags);
2730 wake_up(&rdev->blocked_wait);
2731 }
2732 }
2733 wake_up(&mddev->sb_wait);
2734 return;
2735 }
2736
2737 spin_lock(&mddev->lock);
2738
2739 mddev->utime = ktime_get_real_seconds();
2740
2741 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2742 force_change = 1;
2743 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2744 /* just a clean<-> dirty transition, possibly leave spares alone,
2745 * though if events isn't the right even/odd, we will have to do
2746 * spares after all
2747 */
2748 nospares = 1;
2749 if (force_change)
2750 nospares = 0;
2751 if (mddev->degraded)
2752 /* If the array is degraded, then skipping spares is both
2753 * dangerous and fairly pointless.
2754 * Dangerous because a device that was removed from the array
2755 * might have a event_count that still looks up-to-date,
2756 * so it can be re-added without a resync.
2757 * Pointless because if there are any spares to skip,
2758 * then a recovery will happen and soon that array won't
2759 * be degraded any more and the spare can go back to sleep then.
2760 */
2761 nospares = 0;
2762
2763 sync_req = mddev->in_sync;
2764
2765 /* If this is just a dirty<->clean transition, and the array is clean
2766 * and 'events' is odd, we can roll back to the previous clean state */
2767 if (nospares
2768 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2769 && mddev->can_decrease_events
2770 && mddev->events != 1) {
2771 mddev->events--;
2772 mddev->can_decrease_events = 0;
2773 } else {
2774 /* otherwise we have to go forward and ... */
2775 mddev->events ++;
2776 mddev->can_decrease_events = nospares;
2777 }
2778
2779 /*
2780 * This 64-bit counter should never wrap.
2781 * Either we are in around ~1 trillion A.C., assuming
2782 * 1 reboot per second, or we have a bug...
2783 */
2784 WARN_ON(mddev->events == 0);
2785
2786 rdev_for_each(rdev, mddev) {
2787 if (rdev->badblocks.changed)
2788 any_badblocks_changed++;
2789 if (test_bit(Faulty, &rdev->flags))
2790 set_bit(FaultRecorded, &rdev->flags);
2791 }
2792
2793 sync_sbs(mddev, nospares);
2794 spin_unlock(&mddev->lock);
2795
2796 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2797 mdname(mddev), mddev->in_sync);
2798
2799 if (mddev->queue)
2800 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2801rewrite:
2802 md_bitmap_update_sb(mddev->bitmap);
2803 rdev_for_each(rdev, mddev) {
2804 char b[BDEVNAME_SIZE];
2805
2806 if (rdev->sb_loaded != 1)
2807 continue; /* no noise on spare devices */
2808
2809 if (!test_bit(Faulty, &rdev->flags)) {
2810 md_super_write(mddev,rdev,
2811 rdev->sb_start, rdev->sb_size,
2812 rdev->sb_page);
2813 pr_debug("md: (write) %s's sb offset: %llu\n",
2814 bdevname(rdev->bdev, b),
2815 (unsigned long long)rdev->sb_start);
2816 rdev->sb_events = mddev->events;
2817 if (rdev->badblocks.size) {
2818 md_super_write(mddev, rdev,
2819 rdev->badblocks.sector,
2820 rdev->badblocks.size << 9,
2821 rdev->bb_page);
2822 rdev->badblocks.size = 0;
2823 }
2824
2825 } else
2826 pr_debug("md: %s (skipping faulty)\n",
2827 bdevname(rdev->bdev, b));
2828
2829 if (mddev->level == LEVEL_MULTIPATH)
2830 /* only need to write one superblock... */
2831 break;
2832 }
2833 if (md_super_wait(mddev) < 0)
2834 goto rewrite;
2835 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2836
2837 if (mddev_is_clustered(mddev) && ret == 0)
2838 md_cluster_ops->metadata_update_finish(mddev);
2839
2840 if (mddev->in_sync != sync_req ||
2841 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2842 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2843 /* have to write it out again */
2844 goto repeat;
2845 wake_up(&mddev->sb_wait);
2846 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2847 sysfs_notify_dirent_safe(mddev->sysfs_completed);
2848
2849 rdev_for_each(rdev, mddev) {
2850 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2851 clear_bit(Blocked, &rdev->flags);
2852
2853 if (any_badblocks_changed)
2854 ack_all_badblocks(&rdev->badblocks);
2855 clear_bit(BlockedBadBlocks, &rdev->flags);
2856 wake_up(&rdev->blocked_wait);
2857 }
2858}
2859EXPORT_SYMBOL(md_update_sb);
2860
2861static int add_bound_rdev(struct md_rdev *rdev)
2862{
2863 struct mddev *mddev = rdev->mddev;
2864 int err = 0;
2865 bool add_journal = test_bit(Journal, &rdev->flags);
2866
2867 if (!mddev->pers->hot_remove_disk || add_journal) {
2868 /* If there is hot_add_disk but no hot_remove_disk
2869 * then added disks for geometry changes,
2870 * and should be added immediately.
2871 */
2872 super_types[mddev->major_version].
2873 validate_super(mddev, rdev);
2874 if (add_journal)
2875 mddev_suspend(mddev);
2876 err = mddev->pers->hot_add_disk(mddev, rdev);
2877 if (add_journal)
2878 mddev_resume(mddev);
2879 if (err) {
2880 md_kick_rdev_from_array(rdev);
2881 return err;
2882 }
2883 }
2884 sysfs_notify_dirent_safe(rdev->sysfs_state);
2885
2886 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2887 if (mddev->degraded)
2888 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2889 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2890 md_new_event();
2891 md_wakeup_thread(mddev->thread);
2892 return 0;
2893}
2894
2895/* words written to sysfs files may, or may not, be \n terminated.
2896 * We want to accept with case. For this we use cmd_match.
2897 */
2898static int cmd_match(const char *cmd, const char *str)
2899{
2900 /* See if cmd, written into a sysfs file, matches
2901 * str. They must either be the same, or cmd can
2902 * have a trailing newline
2903 */
2904 while (*cmd && *str && *cmd == *str) {
2905 cmd++;
2906 str++;
2907 }
2908 if (*cmd == '\n')
2909 cmd++;
2910 if (*str || *cmd)
2911 return 0;
2912 return 1;
2913}
2914
2915struct rdev_sysfs_entry {
2916 struct attribute attr;
2917 ssize_t (*show)(struct md_rdev *, char *);
2918 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2919};
2920
2921static ssize_t
2922state_show(struct md_rdev *rdev, char *page)
2923{
2924 char *sep = ",";
2925 size_t len = 0;
2926 unsigned long flags = READ_ONCE(rdev->flags);
2927
2928 if (test_bit(Faulty, &flags) ||
2929 (!test_bit(ExternalBbl, &flags) &&
2930 rdev->badblocks.unacked_exist))
2931 len += sprintf(page+len, "faulty%s", sep);
2932 if (test_bit(In_sync, &flags))
2933 len += sprintf(page+len, "in_sync%s", sep);
2934 if (test_bit(Journal, &flags))
2935 len += sprintf(page+len, "journal%s", sep);
2936 if (test_bit(WriteMostly, &flags))
2937 len += sprintf(page+len, "write_mostly%s", sep);
2938 if (test_bit(Blocked, &flags) ||
2939 (rdev->badblocks.unacked_exist
2940 && !test_bit(Faulty, &flags)))
2941 len += sprintf(page+len, "blocked%s", sep);
2942 if (!test_bit(Faulty, &flags) &&
2943 !test_bit(Journal, &flags) &&
2944 !test_bit(In_sync, &flags))
2945 len += sprintf(page+len, "spare%s", sep);
2946 if (test_bit(WriteErrorSeen, &flags))
2947 len += sprintf(page+len, "write_error%s", sep);
2948 if (test_bit(WantReplacement, &flags))
2949 len += sprintf(page+len, "want_replacement%s", sep);
2950 if (test_bit(Replacement, &flags))
2951 len += sprintf(page+len, "replacement%s", sep);
2952 if (test_bit(ExternalBbl, &flags))
2953 len += sprintf(page+len, "external_bbl%s", sep);
2954 if (test_bit(FailFast, &flags))
2955 len += sprintf(page+len, "failfast%s", sep);
2956
2957 if (len)
2958 len -= strlen(sep);
2959
2960 return len+sprintf(page+len, "\n");
2961}
2962
2963static ssize_t
2964state_store(struct md_rdev *rdev, const char *buf, size_t len)
2965{
2966 /* can write
2967 * faulty - simulates an error
2968 * remove - disconnects the device
2969 * writemostly - sets write_mostly
2970 * -writemostly - clears write_mostly
2971 * blocked - sets the Blocked flags
2972 * -blocked - clears the Blocked and possibly simulates an error
2973 * insync - sets Insync providing device isn't active
2974 * -insync - clear Insync for a device with a slot assigned,
2975 * so that it gets rebuilt based on bitmap
2976 * write_error - sets WriteErrorSeen
2977 * -write_error - clears WriteErrorSeen
2978 * {,-}failfast - set/clear FailFast
2979 */
2980
2981 struct mddev *mddev = rdev->mddev;
2982 int err = -EINVAL;
2983 bool need_update_sb = false;
2984
2985 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2986 md_error(rdev->mddev, rdev);
2987 if (test_bit(Faulty, &rdev->flags))
2988 err = 0;
2989 else
2990 err = -EBUSY;
2991 } else if (cmd_match(buf, "remove")) {
2992 if (rdev->mddev->pers) {
2993 clear_bit(Blocked, &rdev->flags);
2994 remove_and_add_spares(rdev->mddev, rdev);
2995 }
2996 if (rdev->raid_disk >= 0)
2997 err = -EBUSY;
2998 else {
2999 err = 0;
3000 if (mddev_is_clustered(mddev))
3001 err = md_cluster_ops->remove_disk(mddev, rdev);
3002
3003 if (err == 0) {
3004 md_kick_rdev_from_array(rdev);
3005 if (mddev->pers) {
3006 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3007 md_wakeup_thread(mddev->thread);
3008 }
3009 md_new_event();
3010 }
3011 }
3012 } else if (cmd_match(buf, "writemostly")) {
3013 set_bit(WriteMostly, &rdev->flags);
3014 mddev_create_serial_pool(rdev->mddev, rdev, false);
3015 need_update_sb = true;
3016 err = 0;
3017 } else if (cmd_match(buf, "-writemostly")) {
3018 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
3019 clear_bit(WriteMostly, &rdev->flags);
3020 need_update_sb = true;
3021 err = 0;
3022 } else if (cmd_match(buf, "blocked")) {
3023 set_bit(Blocked, &rdev->flags);
3024 err = 0;
3025 } else if (cmd_match(buf, "-blocked")) {
3026 if (!test_bit(Faulty, &rdev->flags) &&
3027 !test_bit(ExternalBbl, &rdev->flags) &&
3028 rdev->badblocks.unacked_exist) {
3029 /* metadata handler doesn't understand badblocks,
3030 * so we need to fail the device
3031 */
3032 md_error(rdev->mddev, rdev);
3033 }
3034 clear_bit(Blocked, &rdev->flags);
3035 clear_bit(BlockedBadBlocks, &rdev->flags);
3036 wake_up(&rdev->blocked_wait);
3037 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3038 md_wakeup_thread(rdev->mddev->thread);
3039
3040 err = 0;
3041 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
3042 set_bit(In_sync, &rdev->flags);
3043 err = 0;
3044 } else if (cmd_match(buf, "failfast")) {
3045 set_bit(FailFast, &rdev->flags);
3046 need_update_sb = true;
3047 err = 0;
3048 } else if (cmd_match(buf, "-failfast")) {
3049 clear_bit(FailFast, &rdev->flags);
3050 need_update_sb = true;
3051 err = 0;
3052 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
3053 !test_bit(Journal, &rdev->flags)) {
3054 if (rdev->mddev->pers == NULL) {
3055 clear_bit(In_sync, &rdev->flags);
3056 rdev->saved_raid_disk = rdev->raid_disk;
3057 rdev->raid_disk = -1;
3058 err = 0;
3059 }
3060 } else if (cmd_match(buf, "write_error")) {
3061 set_bit(WriteErrorSeen, &rdev->flags);
3062 err = 0;
3063 } else if (cmd_match(buf, "-write_error")) {
3064 clear_bit(WriteErrorSeen, &rdev->flags);
3065 err = 0;
3066 } else if (cmd_match(buf, "want_replacement")) {
3067 /* Any non-spare device that is not a replacement can
3068 * become want_replacement at any time, but we then need to
3069 * check if recovery is needed.
3070 */
3071 if (rdev->raid_disk >= 0 &&
3072 !test_bit(Journal, &rdev->flags) &&
3073 !test_bit(Replacement, &rdev->flags))
3074 set_bit(WantReplacement, &rdev->flags);
3075 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3076 md_wakeup_thread(rdev->mddev->thread);
3077 err = 0;
3078 } else if (cmd_match(buf, "-want_replacement")) {
3079 /* Clearing 'want_replacement' is always allowed.
3080 * Once replacements starts it is too late though.
3081 */
3082 err = 0;
3083 clear_bit(WantReplacement, &rdev->flags);
3084 } else if (cmd_match(buf, "replacement")) {
3085 /* Can only set a device as a replacement when array has not
3086 * yet been started. Once running, replacement is automatic
3087 * from spares, or by assigning 'slot'.
3088 */
3089 if (rdev->mddev->pers)
3090 err = -EBUSY;
3091 else {
3092 set_bit(Replacement, &rdev->flags);
3093 err = 0;
3094 }
3095 } else if (cmd_match(buf, "-replacement")) {
3096 /* Similarly, can only clear Replacement before start */
3097 if (rdev->mddev->pers)
3098 err = -EBUSY;
3099 else {
3100 clear_bit(Replacement, &rdev->flags);
3101 err = 0;
3102 }
3103 } else if (cmd_match(buf, "re-add")) {
3104 if (!rdev->mddev->pers)
3105 err = -EINVAL;
3106 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3107 rdev->saved_raid_disk >= 0) {
3108 /* clear_bit is performed _after_ all the devices
3109 * have their local Faulty bit cleared. If any writes
3110 * happen in the meantime in the local node, they
3111 * will land in the local bitmap, which will be synced
3112 * by this node eventually
3113 */
3114 if (!mddev_is_clustered(rdev->mddev) ||
3115 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3116 clear_bit(Faulty, &rdev->flags);
3117 err = add_bound_rdev(rdev);
3118 }
3119 } else
3120 err = -EBUSY;
3121 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3122 set_bit(ExternalBbl, &rdev->flags);
3123 rdev->badblocks.shift = 0;
3124 err = 0;
3125 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3126 clear_bit(ExternalBbl, &rdev->flags);
3127 err = 0;
3128 }
3129 if (need_update_sb)
3130 md_update_sb(mddev, 1);
3131 if (!err)
3132 sysfs_notify_dirent_safe(rdev->sysfs_state);
3133 return err ? err : len;
3134}
3135static struct rdev_sysfs_entry rdev_state =
3136__ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3137
3138static ssize_t
3139errors_show(struct md_rdev *rdev, char *page)
3140{
3141 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3142}
3143
3144static ssize_t
3145errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3146{
3147 unsigned int n;
3148 int rv;
3149
3150 rv = kstrtouint(buf, 10, &n);
3151 if (rv < 0)
3152 return rv;
3153 atomic_set(&rdev->corrected_errors, n);
3154 return len;
3155}
3156static struct rdev_sysfs_entry rdev_errors =
3157__ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3158
3159static ssize_t
3160slot_show(struct md_rdev *rdev, char *page)
3161{
3162 if (test_bit(Journal, &rdev->flags))
3163 return sprintf(page, "journal\n");
3164 else if (rdev->raid_disk < 0)
3165 return sprintf(page, "none\n");
3166 else
3167 return sprintf(page, "%d\n", rdev->raid_disk);
3168}
3169
3170static ssize_t
3171slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3172{
3173 int slot;
3174 int err;
3175
3176 if (test_bit(Journal, &rdev->flags))
3177 return -EBUSY;
3178 if (strncmp(buf, "none", 4)==0)
3179 slot = -1;
3180 else {
3181 err = kstrtouint(buf, 10, (unsigned int *)&slot);
3182 if (err < 0)
3183 return err;
3184 }
3185 if (rdev->mddev->pers && slot == -1) {
3186 /* Setting 'slot' on an active array requires also
3187 * updating the 'rd%d' link, and communicating
3188 * with the personality with ->hot_*_disk.
3189 * For now we only support removing
3190 * failed/spare devices. This normally happens automatically,
3191 * but not when the metadata is externally managed.
3192 */
3193 if (rdev->raid_disk == -1)
3194 return -EEXIST;
3195 /* personality does all needed checks */
3196 if (rdev->mddev->pers->hot_remove_disk == NULL)
3197 return -EINVAL;
3198 clear_bit(Blocked, &rdev->flags);
3199 remove_and_add_spares(rdev->mddev, rdev);
3200 if (rdev->raid_disk >= 0)
3201 return -EBUSY;
3202 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3203 md_wakeup_thread(rdev->mddev->thread);
3204 } else if (rdev->mddev->pers) {
3205 /* Activating a spare .. or possibly reactivating
3206 * if we ever get bitmaps working here.
3207 */
3208 int err;
3209
3210 if (rdev->raid_disk != -1)
3211 return -EBUSY;
3212
3213 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3214 return -EBUSY;
3215
3216 if (rdev->mddev->pers->hot_add_disk == NULL)
3217 return -EINVAL;
3218
3219 if (slot >= rdev->mddev->raid_disks &&
3220 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3221 return -ENOSPC;
3222
3223 rdev->raid_disk = slot;
3224 if (test_bit(In_sync, &rdev->flags))
3225 rdev->saved_raid_disk = slot;
3226 else
3227 rdev->saved_raid_disk = -1;
3228 clear_bit(In_sync, &rdev->flags);
3229 clear_bit(Bitmap_sync, &rdev->flags);
3230 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3231 if (err) {
3232 rdev->raid_disk = -1;
3233 return err;
3234 } else
3235 sysfs_notify_dirent_safe(rdev->sysfs_state);
3236 /* failure here is OK */;
3237 sysfs_link_rdev(rdev->mddev, rdev);
3238 /* don't wakeup anyone, leave that to userspace. */
3239 } else {
3240 if (slot >= rdev->mddev->raid_disks &&
3241 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3242 return -ENOSPC;
3243 rdev->raid_disk = slot;
3244 /* assume it is working */
3245 clear_bit(Faulty, &rdev->flags);
3246 clear_bit(WriteMostly, &rdev->flags);
3247 set_bit(In_sync, &rdev->flags);
3248 sysfs_notify_dirent_safe(rdev->sysfs_state);
3249 }
3250 return len;
3251}
3252
3253static struct rdev_sysfs_entry rdev_slot =
3254__ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3255
3256static ssize_t
3257offset_show(struct md_rdev *rdev, char *page)
3258{
3259 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3260}
3261
3262static ssize_t
3263offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3264{
3265 unsigned long long offset;
3266 if (kstrtoull(buf, 10, &offset) < 0)
3267 return -EINVAL;
3268 if (rdev->mddev->pers && rdev->raid_disk >= 0)
3269 return -EBUSY;
3270 if (rdev->sectors && rdev->mddev->external)
3271 /* Must set offset before size, so overlap checks
3272 * can be sane */
3273 return -EBUSY;
3274 rdev->data_offset = offset;
3275 rdev->new_data_offset = offset;
3276 return len;
3277}
3278
3279static struct rdev_sysfs_entry rdev_offset =
3280__ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3281
3282static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3283{
3284 return sprintf(page, "%llu\n",
3285 (unsigned long long)rdev->new_data_offset);
3286}
3287
3288static ssize_t new_offset_store(struct md_rdev *rdev,
3289 const char *buf, size_t len)
3290{
3291 unsigned long long new_offset;
3292 struct mddev *mddev = rdev->mddev;
3293
3294 if (kstrtoull(buf, 10, &new_offset) < 0)
3295 return -EINVAL;
3296
3297 if (mddev->sync_thread ||
3298 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3299 return -EBUSY;
3300 if (new_offset == rdev->data_offset)
3301 /* reset is always permitted */
3302 ;
3303 else if (new_offset > rdev->data_offset) {
3304 /* must not push array size beyond rdev_sectors */
3305 if (new_offset - rdev->data_offset
3306 + mddev->dev_sectors > rdev->sectors)
3307 return -E2BIG;
3308 }
3309 /* Metadata worries about other space details. */
3310
3311 /* decreasing the offset is inconsistent with a backwards
3312 * reshape.
3313 */
3314 if (new_offset < rdev->data_offset &&
3315 mddev->reshape_backwards)
3316 return -EINVAL;
3317 /* Increasing offset is inconsistent with forwards
3318 * reshape. reshape_direction should be set to
3319 * 'backwards' first.
3320 */
3321 if (new_offset > rdev->data_offset &&
3322 !mddev->reshape_backwards)
3323 return -EINVAL;
3324
3325 if (mddev->pers && mddev->persistent &&
3326 !super_types[mddev->major_version]
3327 .allow_new_offset(rdev, new_offset))
3328 return -E2BIG;
3329 rdev->new_data_offset = new_offset;
3330 if (new_offset > rdev->data_offset)
3331 mddev->reshape_backwards = 1;
3332 else if (new_offset < rdev->data_offset)
3333 mddev->reshape_backwards = 0;
3334
3335 return len;
3336}
3337static struct rdev_sysfs_entry rdev_new_offset =
3338__ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3339
3340static ssize_t
3341rdev_size_show(struct md_rdev *rdev, char *page)
3342{
3343 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3344}
3345
3346static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3347{
3348 /* check if two start/length pairs overlap */
3349 if (s1+l1 <= s2)
3350 return 0;
3351 if (s2+l2 <= s1)
3352 return 0;
3353 return 1;
3354}
3355
3356static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3357{
3358 unsigned long long blocks;
3359 sector_t new;
3360
3361 if (kstrtoull(buf, 10, &blocks) < 0)
3362 return -EINVAL;
3363
3364 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3365 return -EINVAL; /* sector conversion overflow */
3366
3367 new = blocks * 2;
3368 if (new != blocks * 2)
3369 return -EINVAL; /* unsigned long long to sector_t overflow */
3370
3371 *sectors = new;
3372 return 0;
3373}
3374
3375static ssize_t
3376rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3377{
3378 struct mddev *my_mddev = rdev->mddev;
3379 sector_t oldsectors = rdev->sectors;
3380 sector_t sectors;
3381
3382 if (test_bit(Journal, &rdev->flags))
3383 return -EBUSY;
3384 if (strict_blocks_to_sectors(buf, §ors) < 0)
3385 return -EINVAL;
3386 if (rdev->data_offset != rdev->new_data_offset)
3387 return -EINVAL; /* too confusing */
3388 if (my_mddev->pers && rdev->raid_disk >= 0) {
3389 if (my_mddev->persistent) {
3390 sectors = super_types[my_mddev->major_version].
3391 rdev_size_change(rdev, sectors);
3392 if (!sectors)
3393 return -EBUSY;
3394 } else if (!sectors)
3395 sectors = bdev_nr_sectors(rdev->bdev) -
3396 rdev->data_offset;
3397 if (!my_mddev->pers->resize)
3398 /* Cannot change size for RAID0 or Linear etc */
3399 return -EINVAL;
3400 }
3401 if (sectors < my_mddev->dev_sectors)
3402 return -EINVAL; /* component must fit device */
3403
3404 rdev->sectors = sectors;
3405 if (sectors > oldsectors && my_mddev->external) {
3406 /* Need to check that all other rdevs with the same
3407 * ->bdev do not overlap. 'rcu' is sufficient to walk
3408 * the rdev lists safely.
3409 * This check does not provide a hard guarantee, it
3410 * just helps avoid dangerous mistakes.
3411 */
3412 struct mddev *mddev;
3413 int overlap = 0;
3414 struct list_head *tmp;
3415
3416 rcu_read_lock();
3417 for_each_mddev(mddev, tmp) {
3418 struct md_rdev *rdev2;
3419
3420 rdev_for_each(rdev2, mddev)
3421 if (rdev->bdev == rdev2->bdev &&
3422 rdev != rdev2 &&
3423 overlaps(rdev->data_offset, rdev->sectors,
3424 rdev2->data_offset,
3425 rdev2->sectors)) {
3426 overlap = 1;
3427 break;
3428 }
3429 if (overlap) {
3430 mddev_put(mddev);
3431 break;
3432 }
3433 }
3434 rcu_read_unlock();
3435 if (overlap) {
3436 /* Someone else could have slipped in a size
3437 * change here, but doing so is just silly.
3438 * We put oldsectors back because we *know* it is
3439 * safe, and trust userspace not to race with
3440 * itself
3441 */
3442 rdev->sectors = oldsectors;
3443 return -EBUSY;
3444 }
3445 }
3446 return len;
3447}
3448
3449static struct rdev_sysfs_entry rdev_size =
3450__ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3451
3452static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3453{
3454 unsigned long long recovery_start = rdev->recovery_offset;
3455
3456 if (test_bit(In_sync, &rdev->flags) ||
3457 recovery_start == MaxSector)
3458 return sprintf(page, "none\n");
3459
3460 return sprintf(page, "%llu\n", recovery_start);
3461}
3462
3463static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3464{
3465 unsigned long long recovery_start;
3466
3467 if (cmd_match(buf, "none"))
3468 recovery_start = MaxSector;
3469 else if (kstrtoull(buf, 10, &recovery_start))
3470 return -EINVAL;
3471
3472 if (rdev->mddev->pers &&
3473 rdev->raid_disk >= 0)
3474 return -EBUSY;
3475
3476 rdev->recovery_offset = recovery_start;
3477 if (recovery_start == MaxSector)
3478 set_bit(In_sync, &rdev->flags);
3479 else
3480 clear_bit(In_sync, &rdev->flags);
3481 return len;
3482}
3483
3484static struct rdev_sysfs_entry rdev_recovery_start =
3485__ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3486
3487/* sysfs access to bad-blocks list.
3488 * We present two files.
3489 * 'bad-blocks' lists sector numbers and lengths of ranges that
3490 * are recorded as bad. The list is truncated to fit within
3491 * the one-page limit of sysfs.
3492 * Writing "sector length" to this file adds an acknowledged
3493 * bad block list.
3494 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3495 * been acknowledged. Writing to this file adds bad blocks
3496 * without acknowledging them. This is largely for testing.
3497 */
3498static ssize_t bb_show(struct md_rdev *rdev, char *page)
3499{
3500 return badblocks_show(&rdev->badblocks, page, 0);
3501}
3502static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3503{
3504 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3505 /* Maybe that ack was all we needed */
3506 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3507 wake_up(&rdev->blocked_wait);
3508 return rv;
3509}
3510static struct rdev_sysfs_entry rdev_bad_blocks =
3511__ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3512
3513static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3514{
3515 return badblocks_show(&rdev->badblocks, page, 1);
3516}
3517static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3518{
3519 return badblocks_store(&rdev->badblocks, page, len, 1);
3520}
3521static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3522__ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3523
3524static ssize_t
3525ppl_sector_show(struct md_rdev *rdev, char *page)
3526{
3527 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3528}
3529
3530static ssize_t
3531ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3532{
3533 unsigned long long sector;
3534
3535 if (kstrtoull(buf, 10, §or) < 0)
3536 return -EINVAL;
3537 if (sector != (sector_t)sector)
3538 return -EINVAL;
3539
3540 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3541 rdev->raid_disk >= 0)
3542 return -EBUSY;
3543
3544 if (rdev->mddev->persistent) {
3545 if (rdev->mddev->major_version == 0)
3546 return -EINVAL;
3547 if ((sector > rdev->sb_start &&
3548 sector - rdev->sb_start > S16_MAX) ||
3549 (sector < rdev->sb_start &&
3550 rdev->sb_start - sector > -S16_MIN))
3551 return -EINVAL;
3552 rdev->ppl.offset = sector - rdev->sb_start;
3553 } else if (!rdev->mddev->external) {
3554 return -EBUSY;
3555 }
3556 rdev->ppl.sector = sector;
3557 return len;
3558}
3559
3560static struct rdev_sysfs_entry rdev_ppl_sector =
3561__ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3562
3563static ssize_t
3564ppl_size_show(struct md_rdev *rdev, char *page)
3565{
3566 return sprintf(page, "%u\n", rdev->ppl.size);
3567}
3568
3569static ssize_t
3570ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3571{
3572 unsigned int size;
3573
3574 if (kstrtouint(buf, 10, &size) < 0)
3575 return -EINVAL;
3576
3577 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3578 rdev->raid_disk >= 0)
3579 return -EBUSY;
3580
3581 if (rdev->mddev->persistent) {
3582 if (rdev->mddev->major_version == 0)
3583 return -EINVAL;
3584 if (size > U16_MAX)
3585 return -EINVAL;
3586 } else if (!rdev->mddev->external) {
3587 return -EBUSY;
3588 }
3589 rdev->ppl.size = size;
3590 return len;
3591}
3592
3593static struct rdev_sysfs_entry rdev_ppl_size =
3594__ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3595
3596static struct attribute *rdev_default_attrs[] = {
3597 &rdev_state.attr,
3598 &rdev_errors.attr,
3599 &rdev_slot.attr,
3600 &rdev_offset.attr,
3601 &rdev_new_offset.attr,
3602 &rdev_size.attr,
3603 &rdev_recovery_start.attr,
3604 &rdev_bad_blocks.attr,
3605 &rdev_unack_bad_blocks.attr,
3606 &rdev_ppl_sector.attr,
3607 &rdev_ppl_size.attr,
3608 NULL,
3609};
3610ATTRIBUTE_GROUPS(rdev_default);
3611static ssize_t
3612rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3613{
3614 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3615 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3616
3617 if (!entry->show)
3618 return -EIO;
3619 if (!rdev->mddev)
3620 return -ENODEV;
3621 return entry->show(rdev, page);
3622}
3623
3624static ssize_t
3625rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3626 const char *page, size_t length)
3627{
3628 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3629 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3630 ssize_t rv;
3631 struct mddev *mddev = rdev->mddev;
3632
3633 if (!entry->store)
3634 return -EIO;
3635 if (!capable(CAP_SYS_ADMIN))
3636 return -EACCES;
3637 rv = mddev ? mddev_lock(mddev) : -ENODEV;
3638 if (!rv) {
3639 if (rdev->mddev == NULL)
3640 rv = -ENODEV;
3641 else
3642 rv = entry->store(rdev, page, length);
3643 mddev_unlock(mddev);
3644 }
3645 return rv;
3646}
3647
3648static void rdev_free(struct kobject *ko)
3649{
3650 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3651 kfree(rdev);
3652}
3653static const struct sysfs_ops rdev_sysfs_ops = {
3654 .show = rdev_attr_show,
3655 .store = rdev_attr_store,
3656};
3657static struct kobj_type rdev_ktype = {
3658 .release = rdev_free,
3659 .sysfs_ops = &rdev_sysfs_ops,
3660 .default_groups = rdev_default_groups,
3661};
3662
3663int md_rdev_init(struct md_rdev *rdev)
3664{
3665 rdev->desc_nr = -1;
3666 rdev->saved_raid_disk = -1;
3667 rdev->raid_disk = -1;
3668 rdev->flags = 0;
3669 rdev->data_offset = 0;
3670 rdev->new_data_offset = 0;
3671 rdev->sb_events = 0;
3672 rdev->last_read_error = 0;
3673 rdev->sb_loaded = 0;
3674 rdev->bb_page = NULL;
3675 atomic_set(&rdev->nr_pending, 0);
3676 atomic_set(&rdev->read_errors, 0);
3677 atomic_set(&rdev->corrected_errors, 0);
3678
3679 INIT_LIST_HEAD(&rdev->same_set);
3680 init_waitqueue_head(&rdev->blocked_wait);
3681
3682 /* Add space to store bad block list.
3683 * This reserves the space even on arrays where it cannot
3684 * be used - I wonder if that matters
3685 */
3686 return badblocks_init(&rdev->badblocks, 0);
3687}
3688EXPORT_SYMBOL_GPL(md_rdev_init);
3689/*
3690 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3691 *
3692 * mark the device faulty if:
3693 *
3694 * - the device is nonexistent (zero size)
3695 * - the device has no valid superblock
3696 *
3697 * a faulty rdev _never_ has rdev->sb set.
3698 */
3699static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3700{
3701 char b[BDEVNAME_SIZE];
3702 int err;
3703 struct md_rdev *rdev;
3704 sector_t size;
3705
3706 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3707 if (!rdev)
3708 return ERR_PTR(-ENOMEM);
3709
3710 err = md_rdev_init(rdev);
3711 if (err)
3712 goto abort_free;
3713 err = alloc_disk_sb(rdev);
3714 if (err)
3715 goto abort_free;
3716
3717 err = lock_rdev(rdev, newdev, super_format == -2);
3718 if (err)
3719 goto abort_free;
3720
3721 kobject_init(&rdev->kobj, &rdev_ktype);
3722
3723 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS;
3724 if (!size) {
3725 pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3726 bdevname(rdev->bdev,b));
3727 err = -EINVAL;
3728 goto abort_free;
3729 }
3730
3731 if (super_format >= 0) {
3732 err = super_types[super_format].
3733 load_super(rdev, NULL, super_minor);
3734 if (err == -EINVAL) {
3735 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3736 bdevname(rdev->bdev,b),
3737 super_format, super_minor);
3738 goto abort_free;
3739 }
3740 if (err < 0) {
3741 pr_warn("md: could not read %s's sb, not importing!\n",
3742 bdevname(rdev->bdev,b));
3743 goto abort_free;
3744 }
3745 }
3746
3747 return rdev;
3748
3749abort_free:
3750 if (rdev->bdev)
3751 unlock_rdev(rdev);
3752 md_rdev_clear(rdev);
3753 kfree(rdev);
3754 return ERR_PTR(err);
3755}
3756
3757/*
3758 * Check a full RAID array for plausibility
3759 */
3760
3761static int analyze_sbs(struct mddev *mddev)
3762{
3763 int i;
3764 struct md_rdev *rdev, *freshest, *tmp;
3765 char b[BDEVNAME_SIZE];
3766
3767 freshest = NULL;
3768 rdev_for_each_safe(rdev, tmp, mddev)
3769 switch (super_types[mddev->major_version].
3770 load_super(rdev, freshest, mddev->minor_version)) {
3771 case 1:
3772 freshest = rdev;
3773 break;
3774 case 0:
3775 break;
3776 default:
3777 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3778 bdevname(rdev->bdev,b));
3779 md_kick_rdev_from_array(rdev);
3780 }
3781
3782 /* Cannot find a valid fresh disk */
3783 if (!freshest) {
3784 pr_warn("md: cannot find a valid disk\n");
3785 return -EINVAL;
3786 }
3787
3788 super_types[mddev->major_version].
3789 validate_super(mddev, freshest);
3790
3791 i = 0;
3792 rdev_for_each_safe(rdev, tmp, mddev) {
3793 if (mddev->max_disks &&
3794 (rdev->desc_nr >= mddev->max_disks ||
3795 i > mddev->max_disks)) {
3796 pr_warn("md: %s: %s: only %d devices permitted\n",
3797 mdname(mddev), bdevname(rdev->bdev, b),
3798 mddev->max_disks);
3799 md_kick_rdev_from_array(rdev);
3800 continue;
3801 }
3802 if (rdev != freshest) {
3803 if (super_types[mddev->major_version].
3804 validate_super(mddev, rdev)) {
3805 pr_warn("md: kicking non-fresh %s from array!\n",
3806 bdevname(rdev->bdev,b));
3807 md_kick_rdev_from_array(rdev);
3808 continue;
3809 }
3810 }
3811 if (mddev->level == LEVEL_MULTIPATH) {
3812 rdev->desc_nr = i++;
3813 rdev->raid_disk = rdev->desc_nr;
3814 set_bit(In_sync, &rdev->flags);
3815 } else if (rdev->raid_disk >=
3816 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3817 !test_bit(Journal, &rdev->flags)) {
3818 rdev->raid_disk = -1;
3819 clear_bit(In_sync, &rdev->flags);
3820 }
3821 }
3822
3823 return 0;
3824}
3825
3826/* Read a fixed-point number.
3827 * Numbers in sysfs attributes should be in "standard" units where
3828 * possible, so time should be in seconds.
3829 * However we internally use a a much smaller unit such as
3830 * milliseconds or jiffies.
3831 * This function takes a decimal number with a possible fractional
3832 * component, and produces an integer which is the result of
3833 * multiplying that number by 10^'scale'.
3834 * all without any floating-point arithmetic.
3835 */
3836int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3837{
3838 unsigned long result = 0;
3839 long decimals = -1;
3840 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3841 if (*cp == '.')
3842 decimals = 0;
3843 else if (decimals < scale) {
3844 unsigned int value;
3845 value = *cp - '0';
3846 result = result * 10 + value;
3847 if (decimals >= 0)
3848 decimals++;
3849 }
3850 cp++;
3851 }
3852 if (*cp == '\n')
3853 cp++;
3854 if (*cp)
3855 return -EINVAL;
3856 if (decimals < 0)
3857 decimals = 0;
3858 *res = result * int_pow(10, scale - decimals);
3859 return 0;
3860}
3861
3862static ssize_t
3863safe_delay_show(struct mddev *mddev, char *page)
3864{
3865 int msec = (mddev->safemode_delay*1000)/HZ;
3866 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3867}
3868static ssize_t
3869safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3870{
3871 unsigned long msec;
3872
3873 if (mddev_is_clustered(mddev)) {
3874 pr_warn("md: Safemode is disabled for clustered mode\n");
3875 return -EINVAL;
3876 }
3877
3878 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3879 return -EINVAL;
3880 if (msec == 0)
3881 mddev->safemode_delay = 0;
3882 else {
3883 unsigned long old_delay = mddev->safemode_delay;
3884 unsigned long new_delay = (msec*HZ)/1000;
3885
3886 if (new_delay == 0)
3887 new_delay = 1;
3888 mddev->safemode_delay = new_delay;
3889 if (new_delay < old_delay || old_delay == 0)
3890 mod_timer(&mddev->safemode_timer, jiffies+1);
3891 }
3892 return len;
3893}
3894static struct md_sysfs_entry md_safe_delay =
3895__ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3896
3897static ssize_t
3898level_show(struct mddev *mddev, char *page)
3899{
3900 struct md_personality *p;
3901 int ret;
3902 spin_lock(&mddev->lock);
3903 p = mddev->pers;
3904 if (p)
3905 ret = sprintf(page, "%s\n", p->name);
3906 else if (mddev->clevel[0])
3907 ret = sprintf(page, "%s\n", mddev->clevel);
3908 else if (mddev->level != LEVEL_NONE)
3909 ret = sprintf(page, "%d\n", mddev->level);
3910 else
3911 ret = 0;
3912 spin_unlock(&mddev->lock);
3913 return ret;
3914}
3915
3916static ssize_t
3917level_store(struct mddev *mddev, const char *buf, size_t len)
3918{
3919 char clevel[16];
3920 ssize_t rv;
3921 size_t slen = len;
3922 struct md_personality *pers, *oldpers;
3923 long level;
3924 void *priv, *oldpriv;
3925 struct md_rdev *rdev;
3926
3927 if (slen == 0 || slen >= sizeof(clevel))
3928 return -EINVAL;
3929
3930 rv = mddev_lock(mddev);
3931 if (rv)
3932 return rv;
3933
3934 if (mddev->pers == NULL) {
3935 strncpy(mddev->clevel, buf, slen);
3936 if (mddev->clevel[slen-1] == '\n')
3937 slen--;
3938 mddev->clevel[slen] = 0;
3939 mddev->level = LEVEL_NONE;
3940 rv = len;
3941 goto out_unlock;
3942 }
3943 rv = -EROFS;
3944 if (mddev->ro)
3945 goto out_unlock;
3946
3947 /* request to change the personality. Need to ensure:
3948 * - array is not engaged in resync/recovery/reshape
3949 * - old personality can be suspended
3950 * - new personality will access other array.
3951 */
3952
3953 rv = -EBUSY;
3954 if (mddev->sync_thread ||
3955 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3956 mddev->reshape_position != MaxSector ||
3957 mddev->sysfs_active)
3958 goto out_unlock;
3959
3960 rv = -EINVAL;
3961 if (!mddev->pers->quiesce) {
3962 pr_warn("md: %s: %s does not support online personality change\n",
3963 mdname(mddev), mddev->pers->name);
3964 goto out_unlock;
3965 }
3966
3967 /* Now find the new personality */
3968 strncpy(clevel, buf, slen);
3969 if (clevel[slen-1] == '\n')
3970 slen--;
3971 clevel[slen] = 0;
3972 if (kstrtol(clevel, 10, &level))
3973 level = LEVEL_NONE;
3974
3975 if (request_module("md-%s", clevel) != 0)
3976 request_module("md-level-%s", clevel);
3977 spin_lock(&pers_lock);
3978 pers = find_pers(level, clevel);
3979 if (!pers || !try_module_get(pers->owner)) {
3980 spin_unlock(&pers_lock);
3981 pr_warn("md: personality %s not loaded\n", clevel);
3982 rv = -EINVAL;
3983 goto out_unlock;
3984 }
3985 spin_unlock(&pers_lock);
3986
3987 if (pers == mddev->pers) {
3988 /* Nothing to do! */
3989 module_put(pers->owner);
3990 rv = len;
3991 goto out_unlock;
3992 }
3993 if (!pers->takeover) {
3994 module_put(pers->owner);
3995 pr_warn("md: %s: %s does not support personality takeover\n",
3996 mdname(mddev), clevel);
3997 rv = -EINVAL;
3998 goto out_unlock;
3999 }
4000
4001 rdev_for_each(rdev, mddev)
4002 rdev->new_raid_disk = rdev->raid_disk;
4003
4004 /* ->takeover must set new_* and/or delta_disks
4005 * if it succeeds, and may set them when it fails.
4006 */
4007 priv = pers->takeover(mddev);
4008 if (IS_ERR(priv)) {
4009 mddev->new_level = mddev->level;
4010 mddev->new_layout = mddev->layout;
4011 mddev->new_chunk_sectors = mddev->chunk_sectors;
4012 mddev->raid_disks -= mddev->delta_disks;
4013 mddev->delta_disks = 0;
4014 mddev->reshape_backwards = 0;
4015 module_put(pers->owner);
4016 pr_warn("md: %s: %s would not accept array\n",
4017 mdname(mddev), clevel);
4018 rv = PTR_ERR(priv);
4019 goto out_unlock;
4020 }
4021
4022 /* Looks like we have a winner */
4023 mddev_suspend(mddev);
4024 mddev_detach(mddev);
4025
4026 spin_lock(&mddev->lock);
4027 oldpers = mddev->pers;
4028 oldpriv = mddev->private;
4029 mddev->pers = pers;
4030 mddev->private = priv;
4031 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4032 mddev->level = mddev->new_level;
4033 mddev->layout = mddev->new_layout;
4034 mddev->chunk_sectors = mddev->new_chunk_sectors;
4035 mddev->delta_disks = 0;
4036 mddev->reshape_backwards = 0;
4037 mddev->degraded = 0;
4038 spin_unlock(&mddev->lock);
4039
4040 if (oldpers->sync_request == NULL &&
4041 mddev->external) {
4042 /* We are converting from a no-redundancy array
4043 * to a redundancy array and metadata is managed
4044 * externally so we need to be sure that writes
4045 * won't block due to a need to transition
4046 * clean->dirty
4047 * until external management is started.
4048 */
4049 mddev->in_sync = 0;
4050 mddev->safemode_delay = 0;
4051 mddev->safemode = 0;
4052 }
4053
4054 oldpers->free(mddev, oldpriv);
4055
4056 if (oldpers->sync_request == NULL &&
4057 pers->sync_request != NULL) {
4058 /* need to add the md_redundancy_group */
4059 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4060 pr_warn("md: cannot register extra attributes for %s\n",
4061 mdname(mddev));
4062 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4063 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4064 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4065 }
4066 if (oldpers->sync_request != NULL &&
4067 pers->sync_request == NULL) {
4068 /* need to remove the md_redundancy_group */
4069 if (mddev->to_remove == NULL)
4070 mddev->to_remove = &md_redundancy_group;
4071 }
4072
4073 module_put(oldpers->owner);
4074
4075 rdev_for_each(rdev, mddev) {
4076 if (rdev->raid_disk < 0)
4077 continue;
4078 if (rdev->new_raid_disk >= mddev->raid_disks)
4079 rdev->new_raid_disk = -1;
4080 if (rdev->new_raid_disk == rdev->raid_disk)
4081 continue;
4082 sysfs_unlink_rdev(mddev, rdev);
4083 }
4084 rdev_for_each(rdev, mddev) {
4085 if (rdev->raid_disk < 0)
4086 continue;
4087 if (rdev->new_raid_disk == rdev->raid_disk)
4088 continue;
4089 rdev->raid_disk = rdev->new_raid_disk;
4090 if (rdev->raid_disk < 0)
4091 clear_bit(In_sync, &rdev->flags);
4092 else {
4093 if (sysfs_link_rdev(mddev, rdev))
4094 pr_warn("md: cannot register rd%d for %s after level change\n",
4095 rdev->raid_disk, mdname(mddev));
4096 }
4097 }
4098
4099 if (pers->sync_request == NULL) {
4100 /* this is now an array without redundancy, so
4101 * it must always be in_sync
4102 */
4103 mddev->in_sync = 1;
4104 del_timer_sync(&mddev->safemode_timer);
4105 }
4106 blk_set_stacking_limits(&mddev->queue->limits);
4107 pers->run(mddev);
4108 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4109 mddev_resume(mddev);
4110 if (!mddev->thread)
4111 md_update_sb(mddev, 1);
4112 sysfs_notify_dirent_safe(mddev->sysfs_level);
4113 md_new_event();
4114 rv = len;
4115out_unlock:
4116 mddev_unlock(mddev);
4117 return rv;
4118}
4119
4120static struct md_sysfs_entry md_level =
4121__ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4122
4123static ssize_t
4124layout_show(struct mddev *mddev, char *page)
4125{
4126 /* just a number, not meaningful for all levels */
4127 if (mddev->reshape_position != MaxSector &&
4128 mddev->layout != mddev->new_layout)
4129 return sprintf(page, "%d (%d)\n",
4130 mddev->new_layout, mddev->layout);
4131 return sprintf(page, "%d\n", mddev->layout);
4132}
4133
4134static ssize_t
4135layout_store(struct mddev *mddev, const char *buf, size_t len)
4136{
4137 unsigned int n;
4138 int err;
4139
4140 err = kstrtouint(buf, 10, &n);
4141 if (err < 0)
4142 return err;
4143 err = mddev_lock(mddev);
4144 if (err)
4145 return err;
4146
4147 if (mddev->pers) {
4148 if (mddev->pers->check_reshape == NULL)
4149 err = -EBUSY;
4150 else if (mddev->ro)
4151 err = -EROFS;
4152 else {
4153 mddev->new_layout = n;
4154 err = mddev->pers->check_reshape(mddev);
4155 if (err)
4156 mddev->new_layout = mddev->layout;
4157 }
4158 } else {
4159 mddev->new_layout = n;
4160 if (mddev->reshape_position == MaxSector)
4161 mddev->layout = n;
4162 }
4163 mddev_unlock(mddev);
4164 return err ?: len;
4165}
4166static struct md_sysfs_entry md_layout =
4167__ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4168
4169static ssize_t
4170raid_disks_show(struct mddev *mddev, char *page)
4171{
4172 if (mddev->raid_disks == 0)
4173 return 0;
4174 if (mddev->reshape_position != MaxSector &&
4175 mddev->delta_disks != 0)
4176 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4177 mddev->raid_disks - mddev->delta_disks);
4178 return sprintf(page, "%d\n", mddev->raid_disks);
4179}
4180
4181static int update_raid_disks(struct mddev *mddev, int raid_disks);
4182
4183static ssize_t
4184raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4185{
4186 unsigned int n;
4187 int err;
4188
4189 err = kstrtouint(buf, 10, &n);
4190 if (err < 0)
4191 return err;
4192
4193 err = mddev_lock(mddev);
4194 if (err)
4195 return err;
4196 if (mddev->pers)
4197 err = update_raid_disks(mddev, n);
4198 else if (mddev->reshape_position != MaxSector) {
4199 struct md_rdev *rdev;
4200 int olddisks = mddev->raid_disks - mddev->delta_disks;
4201
4202 err = -EINVAL;
4203 rdev_for_each(rdev, mddev) {
4204 if (olddisks < n &&
4205 rdev->data_offset < rdev->new_data_offset)
4206 goto out_unlock;
4207 if (olddisks > n &&
4208 rdev->data_offset > rdev->new_data_offset)
4209 goto out_unlock;
4210 }
4211 err = 0;
4212 mddev->delta_disks = n - olddisks;
4213 mddev->raid_disks = n;
4214 mddev->reshape_backwards = (mddev->delta_disks < 0);
4215 } else
4216 mddev->raid_disks = n;
4217out_unlock:
4218 mddev_unlock(mddev);
4219 return err ? err : len;
4220}
4221static struct md_sysfs_entry md_raid_disks =
4222__ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4223
4224static ssize_t
4225uuid_show(struct mddev *mddev, char *page)
4226{
4227 return sprintf(page, "%pU\n", mddev->uuid);
4228}
4229static struct md_sysfs_entry md_uuid =
4230__ATTR(uuid, S_IRUGO, uuid_show, NULL);
4231
4232static ssize_t
4233chunk_size_show(struct mddev *mddev, char *page)
4234{
4235 if (mddev->reshape_position != MaxSector &&
4236 mddev->chunk_sectors != mddev->new_chunk_sectors)
4237 return sprintf(page, "%d (%d)\n",
4238 mddev->new_chunk_sectors << 9,
4239 mddev->chunk_sectors << 9);
4240 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4241}
4242
4243static ssize_t
4244chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4245{
4246 unsigned long n;
4247 int err;
4248
4249 err = kstrtoul(buf, 10, &n);
4250 if (err < 0)
4251 return err;
4252
4253 err = mddev_lock(mddev);
4254 if (err)
4255 return err;
4256 if (mddev->pers) {
4257 if (mddev->pers->check_reshape == NULL)
4258 err = -EBUSY;
4259 else if (mddev->ro)
4260 err = -EROFS;
4261 else {
4262 mddev->new_chunk_sectors = n >> 9;
4263 err = mddev->pers->check_reshape(mddev);
4264 if (err)
4265 mddev->new_chunk_sectors = mddev->chunk_sectors;
4266 }
4267 } else {
4268 mddev->new_chunk_sectors = n >> 9;
4269 if (mddev->reshape_position == MaxSector)
4270 mddev->chunk_sectors = n >> 9;
4271 }
4272 mddev_unlock(mddev);
4273 return err ?: len;
4274}
4275static struct md_sysfs_entry md_chunk_size =
4276__ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4277
4278static ssize_t
4279resync_start_show(struct mddev *mddev, char *page)
4280{
4281 if (mddev->recovery_cp == MaxSector)
4282 return sprintf(page, "none\n");
4283 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4284}
4285
4286static ssize_t
4287resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4288{
4289 unsigned long long n;
4290 int err;
4291
4292 if (cmd_match(buf, "none"))
4293 n = MaxSector;
4294 else {
4295 err = kstrtoull(buf, 10, &n);
4296 if (err < 0)
4297 return err;
4298 if (n != (sector_t)n)
4299 return -EINVAL;
4300 }
4301
4302 err = mddev_lock(mddev);
4303 if (err)
4304 return err;
4305 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4306 err = -EBUSY;
4307
4308 if (!err) {
4309 mddev->recovery_cp = n;
4310 if (mddev->pers)
4311 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4312 }
4313 mddev_unlock(mddev);
4314 return err ?: len;
4315}
4316static struct md_sysfs_entry md_resync_start =
4317__ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4318 resync_start_show, resync_start_store);
4319
4320/*
4321 * The array state can be:
4322 *
4323 * clear
4324 * No devices, no size, no level
4325 * Equivalent to STOP_ARRAY ioctl
4326 * inactive
4327 * May have some settings, but array is not active
4328 * all IO results in error
4329 * When written, doesn't tear down array, but just stops it
4330 * suspended (not supported yet)
4331 * All IO requests will block. The array can be reconfigured.
4332 * Writing this, if accepted, will block until array is quiescent
4333 * readonly
4334 * no resync can happen. no superblocks get written.
4335 * write requests fail
4336 * read-auto
4337 * like readonly, but behaves like 'clean' on a write request.
4338 *
4339 * clean - no pending writes, but otherwise active.
4340 * When written to inactive array, starts without resync
4341 * If a write request arrives then
4342 * if metadata is known, mark 'dirty' and switch to 'active'.
4343 * if not known, block and switch to write-pending
4344 * If written to an active array that has pending writes, then fails.
4345 * active
4346 * fully active: IO and resync can be happening.
4347 * When written to inactive array, starts with resync
4348 *
4349 * write-pending
4350 * clean, but writes are blocked waiting for 'active' to be written.
4351 *
4352 * active-idle
4353 * like active, but no writes have been seen for a while (100msec).
4354 *
4355 * broken
4356 * RAID0/LINEAR-only: same as clean, but array is missing a member.
4357 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped
4358 * when a member is gone, so this state will at least alert the
4359 * user that something is wrong.
4360 */
4361enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4362 write_pending, active_idle, broken, bad_word};
4363static char *array_states[] = {
4364 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4365 "write-pending", "active-idle", "broken", NULL };
4366
4367static int match_word(const char *word, char **list)
4368{
4369 int n;
4370 for (n=0; list[n]; n++)
4371 if (cmd_match(word, list[n]))
4372 break;
4373 return n;
4374}
4375
4376static ssize_t
4377array_state_show(struct mddev *mddev, char *page)
4378{
4379 enum array_state st = inactive;
4380
4381 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4382 switch(mddev->ro) {
4383 case 1:
4384 st = readonly;
4385 break;
4386 case 2:
4387 st = read_auto;
4388 break;
4389 case 0:
4390 spin_lock(&mddev->lock);
4391 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4392 st = write_pending;
4393 else if (mddev->in_sync)
4394 st = clean;
4395 else if (mddev->safemode)
4396 st = active_idle;
4397 else
4398 st = active;
4399 spin_unlock(&mddev->lock);
4400 }
4401
4402 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4403 st = broken;
4404 } else {
4405 if (list_empty(&mddev->disks) &&
4406 mddev->raid_disks == 0 &&
4407 mddev->dev_sectors == 0)
4408 st = clear;
4409 else
4410 st = inactive;
4411 }
4412 return sprintf(page, "%s\n", array_states[st]);
4413}
4414
4415static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4416static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4417static int restart_array(struct mddev *mddev);
4418
4419static ssize_t
4420array_state_store(struct mddev *mddev, const char *buf, size_t len)
4421{
4422 int err = 0;
4423 enum array_state st = match_word(buf, array_states);
4424
4425 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4426 /* don't take reconfig_mutex when toggling between
4427 * clean and active
4428 */
4429 spin_lock(&mddev->lock);
4430 if (st == active) {
4431 restart_array(mddev);
4432 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4433 md_wakeup_thread(mddev->thread);
4434 wake_up(&mddev->sb_wait);
4435 } else /* st == clean */ {
4436 restart_array(mddev);
4437 if (!set_in_sync(mddev))
4438 err = -EBUSY;
4439 }
4440 if (!err)
4441 sysfs_notify_dirent_safe(mddev->sysfs_state);
4442 spin_unlock(&mddev->lock);
4443 return err ?: len;
4444 }
4445 err = mddev_lock(mddev);
4446 if (err)
4447 return err;
4448 err = -EINVAL;
4449 switch(st) {
4450 case bad_word:
4451 break;
4452 case clear:
4453 /* stopping an active array */
4454 err = do_md_stop(mddev, 0, NULL);
4455 break;
4456 case inactive:
4457 /* stopping an active array */
4458 if (mddev->pers)
4459 err = do_md_stop(mddev, 2, NULL);
4460 else
4461 err = 0; /* already inactive */
4462 break;
4463 case suspended:
4464 break; /* not supported yet */
4465 case readonly:
4466 if (mddev->pers)
4467 err = md_set_readonly(mddev, NULL);
4468 else {
4469 mddev->ro = 1;
4470 set_disk_ro(mddev->gendisk, 1);
4471 err = do_md_run(mddev);
4472 }
4473 break;
4474 case read_auto:
4475 if (mddev->pers) {
4476 if (mddev->ro == 0)
4477 err = md_set_readonly(mddev, NULL);
4478 else if (mddev->ro == 1)
4479 err = restart_array(mddev);
4480 if (err == 0) {
4481 mddev->ro = 2;
4482 set_disk_ro(mddev->gendisk, 0);
4483 }
4484 } else {
4485 mddev->ro = 2;
4486 err = do_md_run(mddev);
4487 }
4488 break;
4489 case clean:
4490 if (mddev->pers) {
4491 err = restart_array(mddev);
4492 if (err)
4493 break;
4494 spin_lock(&mddev->lock);
4495 if (!set_in_sync(mddev))
4496 err = -EBUSY;
4497 spin_unlock(&mddev->lock);
4498 } else
4499 err = -EINVAL;
4500 break;
4501 case active:
4502 if (mddev->pers) {
4503 err = restart_array(mddev);
4504 if (err)
4505 break;
4506 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4507 wake_up(&mddev->sb_wait);
4508 err = 0;
4509 } else {
4510 mddev->ro = 0;
4511 set_disk_ro(mddev->gendisk, 0);
4512 err = do_md_run(mddev);
4513 }
4514 break;
4515 case write_pending:
4516 case active_idle:
4517 case broken:
4518 /* these cannot be set */
4519 break;
4520 }
4521
4522 if (!err) {
4523 if (mddev->hold_active == UNTIL_IOCTL)
4524 mddev->hold_active = 0;
4525 sysfs_notify_dirent_safe(mddev->sysfs_state);
4526 }
4527 mddev_unlock(mddev);
4528 return err ?: len;
4529}
4530static struct md_sysfs_entry md_array_state =
4531__ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4532
4533static ssize_t
4534max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4535 return sprintf(page, "%d\n",
4536 atomic_read(&mddev->max_corr_read_errors));
4537}
4538
4539static ssize_t
4540max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4541{
4542 unsigned int n;
4543 int rv;
4544
4545 rv = kstrtouint(buf, 10, &n);
4546 if (rv < 0)
4547 return rv;
4548 atomic_set(&mddev->max_corr_read_errors, n);
4549 return len;
4550}
4551
4552static struct md_sysfs_entry max_corr_read_errors =
4553__ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4554 max_corrected_read_errors_store);
4555
4556static ssize_t
4557null_show(struct mddev *mddev, char *page)
4558{
4559 return -EINVAL;
4560}
4561
4562/* need to ensure rdev_delayed_delete() has completed */
4563static void flush_rdev_wq(struct mddev *mddev)
4564{
4565 struct md_rdev *rdev;
4566
4567 rcu_read_lock();
4568 rdev_for_each_rcu(rdev, mddev)
4569 if (work_pending(&rdev->del_work)) {
4570 flush_workqueue(md_rdev_misc_wq);
4571 break;
4572 }
4573 rcu_read_unlock();
4574}
4575
4576static ssize_t
4577new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4578{
4579 /* buf must be %d:%d\n? giving major and minor numbers */
4580 /* The new device is added to the array.
4581 * If the array has a persistent superblock, we read the
4582 * superblock to initialise info and check validity.
4583 * Otherwise, only checking done is that in bind_rdev_to_array,
4584 * which mainly checks size.
4585 */
4586 char *e;
4587 int major = simple_strtoul(buf, &e, 10);
4588 int minor;
4589 dev_t dev;
4590 struct md_rdev *rdev;
4591 int err;
4592
4593 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4594 return -EINVAL;
4595 minor = simple_strtoul(e+1, &e, 10);
4596 if (*e && *e != '\n')
4597 return -EINVAL;
4598 dev = MKDEV(major, minor);
4599 if (major != MAJOR(dev) ||
4600 minor != MINOR(dev))
4601 return -EOVERFLOW;
4602
4603 flush_rdev_wq(mddev);
4604 err = mddev_lock(mddev);
4605 if (err)
4606 return err;
4607 if (mddev->persistent) {
4608 rdev = md_import_device(dev, mddev->major_version,
4609 mddev->minor_version);
4610 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4611 struct md_rdev *rdev0
4612 = list_entry(mddev->disks.next,
4613 struct md_rdev, same_set);
4614 err = super_types[mddev->major_version]
4615 .load_super(rdev, rdev0, mddev->minor_version);
4616 if (err < 0)
4617 goto out;
4618 }
4619 } else if (mddev->external)
4620 rdev = md_import_device(dev, -2, -1);
4621 else
4622 rdev = md_import_device(dev, -1, -1);
4623
4624 if (IS_ERR(rdev)) {
4625 mddev_unlock(mddev);
4626 return PTR_ERR(rdev);
4627 }
4628 err = bind_rdev_to_array(rdev, mddev);
4629 out:
4630 if (err)
4631 export_rdev(rdev);
4632 mddev_unlock(mddev);
4633 if (!err)
4634 md_new_event();
4635 return err ? err : len;
4636}
4637
4638static struct md_sysfs_entry md_new_device =
4639__ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4640
4641static ssize_t
4642bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4643{
4644 char *end;
4645 unsigned long chunk, end_chunk;
4646 int err;
4647
4648 err = mddev_lock(mddev);
4649 if (err)
4650 return err;
4651 if (!mddev->bitmap)
4652 goto out;
4653 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4654 while (*buf) {
4655 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4656 if (buf == end) break;
4657 if (*end == '-') { /* range */
4658 buf = end + 1;
4659 end_chunk = simple_strtoul(buf, &end, 0);
4660 if (buf == end) break;
4661 }
4662 if (*end && !isspace(*end)) break;
4663 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4664 buf = skip_spaces(end);
4665 }
4666 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4667out:
4668 mddev_unlock(mddev);
4669 return len;
4670}
4671
4672static struct md_sysfs_entry md_bitmap =
4673__ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4674
4675static ssize_t
4676size_show(struct mddev *mddev, char *page)
4677{
4678 return sprintf(page, "%llu\n",
4679 (unsigned long long)mddev->dev_sectors / 2);
4680}
4681
4682static int update_size(struct mddev *mddev, sector_t num_sectors);
4683
4684static ssize_t
4685size_store(struct mddev *mddev, const char *buf, size_t len)
4686{
4687 /* If array is inactive, we can reduce the component size, but
4688 * not increase it (except from 0).
4689 * If array is active, we can try an on-line resize
4690 */
4691 sector_t sectors;
4692 int err = strict_blocks_to_sectors(buf, §ors);
4693
4694 if (err < 0)
4695 return err;
4696 err = mddev_lock(mddev);
4697 if (err)
4698 return err;
4699 if (mddev->pers) {
4700 err = update_size(mddev, sectors);
4701 if (err == 0)
4702 md_update_sb(mddev, 1);
4703 } else {
4704 if (mddev->dev_sectors == 0 ||
4705 mddev->dev_sectors > sectors)
4706 mddev->dev_sectors = sectors;
4707 else
4708 err = -ENOSPC;
4709 }
4710 mddev_unlock(mddev);
4711 return err ? err : len;
4712}
4713
4714static struct md_sysfs_entry md_size =
4715__ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4716
4717/* Metadata version.
4718 * This is one of
4719 * 'none' for arrays with no metadata (good luck...)
4720 * 'external' for arrays with externally managed metadata,
4721 * or N.M for internally known formats
4722 */
4723static ssize_t
4724metadata_show(struct mddev *mddev, char *page)
4725{
4726 if (mddev->persistent)
4727 return sprintf(page, "%d.%d\n",
4728 mddev->major_version, mddev->minor_version);
4729 else if (mddev->external)
4730 return sprintf(page, "external:%s\n", mddev->metadata_type);
4731 else
4732 return sprintf(page, "none\n");
4733}
4734
4735static ssize_t
4736metadata_store(struct mddev *mddev, const char *buf, size_t len)
4737{
4738 int major, minor;
4739 char *e;
4740 int err;
4741 /* Changing the details of 'external' metadata is
4742 * always permitted. Otherwise there must be
4743 * no devices attached to the array.
4744 */
4745
4746 err = mddev_lock(mddev);
4747 if (err)
4748 return err;
4749 err = -EBUSY;
4750 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4751 ;
4752 else if (!list_empty(&mddev->disks))
4753 goto out_unlock;
4754
4755 err = 0;
4756 if (cmd_match(buf, "none")) {
4757 mddev->persistent = 0;
4758 mddev->external = 0;
4759 mddev->major_version = 0;
4760 mddev->minor_version = 90;
4761 goto out_unlock;
4762 }
4763 if (strncmp(buf, "external:", 9) == 0) {
4764 size_t namelen = len-9;
4765 if (namelen >= sizeof(mddev->metadata_type))
4766 namelen = sizeof(mddev->metadata_type)-1;
4767 strncpy(mddev->metadata_type, buf+9, namelen);
4768 mddev->metadata_type[namelen] = 0;
4769 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4770 mddev->metadata_type[--namelen] = 0;
4771 mddev->persistent = 0;
4772 mddev->external = 1;
4773 mddev->major_version = 0;
4774 mddev->minor_version = 90;
4775 goto out_unlock;
4776 }
4777 major = simple_strtoul(buf, &e, 10);
4778 err = -EINVAL;
4779 if (e==buf || *e != '.')
4780 goto out_unlock;
4781 buf = e+1;
4782 minor = simple_strtoul(buf, &e, 10);
4783 if (e==buf || (*e && *e != '\n') )
4784 goto out_unlock;
4785 err = -ENOENT;
4786 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4787 goto out_unlock;
4788 mddev->major_version = major;
4789 mddev->minor_version = minor;
4790 mddev->persistent = 1;
4791 mddev->external = 0;
4792 err = 0;
4793out_unlock:
4794 mddev_unlock(mddev);
4795 return err ?: len;
4796}
4797
4798static struct md_sysfs_entry md_metadata =
4799__ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4800
4801static ssize_t
4802action_show(struct mddev *mddev, char *page)
4803{
4804 char *type = "idle";
4805 unsigned long recovery = mddev->recovery;
4806 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4807 type = "frozen";
4808 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4809 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4810 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4811 type = "reshape";
4812 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4813 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4814 type = "resync";
4815 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4816 type = "check";
4817 else
4818 type = "repair";
4819 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4820 type = "recover";
4821 else if (mddev->reshape_position != MaxSector)
4822 type = "reshape";
4823 }
4824 return sprintf(page, "%s\n", type);
4825}
4826
4827static ssize_t
4828action_store(struct mddev *mddev, const char *page, size_t len)
4829{
4830 if (!mddev->pers || !mddev->pers->sync_request)
4831 return -EINVAL;
4832
4833
4834 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4835 if (cmd_match(page, "frozen"))
4836 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4837 else
4838 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4839 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4840 mddev_lock(mddev) == 0) {
4841 if (work_pending(&mddev->del_work))
4842 flush_workqueue(md_misc_wq);
4843 if (mddev->sync_thread) {
4844 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4845 md_reap_sync_thread(mddev);
4846 }
4847 mddev_unlock(mddev);
4848 }
4849 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4850 return -EBUSY;
4851 else if (cmd_match(page, "resync"))
4852 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4853 else if (cmd_match(page, "recover")) {
4854 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4855 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4856 } else if (cmd_match(page, "reshape")) {
4857 int err;
4858 if (mddev->pers->start_reshape == NULL)
4859 return -EINVAL;
4860 err = mddev_lock(mddev);
4861 if (!err) {
4862 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4863 err = -EBUSY;
4864 else {
4865 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4866 err = mddev->pers->start_reshape(mddev);
4867 }
4868 mddev_unlock(mddev);
4869 }
4870 if (err)
4871 return err;
4872 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4873 } else {
4874 if (cmd_match(page, "check"))
4875 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4876 else if (!cmd_match(page, "repair"))
4877 return -EINVAL;
4878 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4879 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4880 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4881 }
4882 if (mddev->ro == 2) {
4883 /* A write to sync_action is enough to justify
4884 * canceling read-auto mode
4885 */
4886 mddev->ro = 0;
4887 md_wakeup_thread(mddev->sync_thread);
4888 }
4889 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4890 md_wakeup_thread(mddev->thread);
4891 sysfs_notify_dirent_safe(mddev->sysfs_action);
4892 return len;
4893}
4894
4895static struct md_sysfs_entry md_scan_mode =
4896__ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4897
4898static ssize_t
4899last_sync_action_show(struct mddev *mddev, char *page)
4900{
4901 return sprintf(page, "%s\n", mddev->last_sync_action);
4902}
4903
4904static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4905
4906static ssize_t
4907mismatch_cnt_show(struct mddev *mddev, char *page)
4908{
4909 return sprintf(page, "%llu\n",
4910 (unsigned long long)
4911 atomic64_read(&mddev->resync_mismatches));
4912}
4913
4914static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4915
4916static ssize_t
4917sync_min_show(struct mddev *mddev, char *page)
4918{
4919 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4920 mddev->sync_speed_min ? "local": "system");
4921}
4922
4923static ssize_t
4924sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4925{
4926 unsigned int min;
4927 int rv;
4928
4929 if (strncmp(buf, "system", 6)==0) {
4930 min = 0;
4931 } else {
4932 rv = kstrtouint(buf, 10, &min);
4933 if (rv < 0)
4934 return rv;
4935 if (min == 0)
4936 return -EINVAL;
4937 }
4938 mddev->sync_speed_min = min;
4939 return len;
4940}
4941
4942static struct md_sysfs_entry md_sync_min =
4943__ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4944
4945static ssize_t
4946sync_max_show(struct mddev *mddev, char *page)
4947{
4948 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4949 mddev->sync_speed_max ? "local": "system");
4950}
4951
4952static ssize_t
4953sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4954{
4955 unsigned int max;
4956 int rv;
4957
4958 if (strncmp(buf, "system", 6)==0) {
4959 max = 0;
4960 } else {
4961 rv = kstrtouint(buf, 10, &max);
4962 if (rv < 0)
4963 return rv;
4964 if (max == 0)
4965 return -EINVAL;
4966 }
4967 mddev->sync_speed_max = max;
4968 return len;
4969}
4970
4971static struct md_sysfs_entry md_sync_max =
4972__ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4973
4974static ssize_t
4975degraded_show(struct mddev *mddev, char *page)
4976{
4977 return sprintf(page, "%d\n", mddev->degraded);
4978}
4979static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4980
4981static ssize_t
4982sync_force_parallel_show(struct mddev *mddev, char *page)
4983{
4984 return sprintf(page, "%d\n", mddev->parallel_resync);
4985}
4986
4987static ssize_t
4988sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4989{
4990 long n;
4991
4992 if (kstrtol(buf, 10, &n))
4993 return -EINVAL;
4994
4995 if (n != 0 && n != 1)
4996 return -EINVAL;
4997
4998 mddev->parallel_resync = n;
4999
5000 if (mddev->sync_thread)
5001 wake_up(&resync_wait);
5002
5003 return len;
5004}
5005
5006/* force parallel resync, even with shared block devices */
5007static struct md_sysfs_entry md_sync_force_parallel =
5008__ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
5009 sync_force_parallel_show, sync_force_parallel_store);
5010
5011static ssize_t
5012sync_speed_show(struct mddev *mddev, char *page)
5013{
5014 unsigned long resync, dt, db;
5015 if (mddev->curr_resync == 0)
5016 return sprintf(page, "none\n");
5017 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
5018 dt = (jiffies - mddev->resync_mark) / HZ;
5019 if (!dt) dt++;
5020 db = resync - mddev->resync_mark_cnt;
5021 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5022}
5023
5024static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5025
5026static ssize_t
5027sync_completed_show(struct mddev *mddev, char *page)
5028{
5029 unsigned long long max_sectors, resync;
5030
5031 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5032 return sprintf(page, "none\n");
5033
5034 if (mddev->curr_resync == 1 ||
5035 mddev->curr_resync == 2)
5036 return sprintf(page, "delayed\n");
5037
5038 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5039 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5040 max_sectors = mddev->resync_max_sectors;
5041 else
5042 max_sectors = mddev->dev_sectors;
5043
5044 resync = mddev->curr_resync_completed;
5045 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5046}
5047
5048static struct md_sysfs_entry md_sync_completed =
5049 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5050
5051static ssize_t
5052min_sync_show(struct mddev *mddev, char *page)
5053{
5054 return sprintf(page, "%llu\n",
5055 (unsigned long long)mddev->resync_min);
5056}
5057static ssize_t
5058min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5059{
5060 unsigned long long min;
5061 int err;
5062
5063 if (kstrtoull(buf, 10, &min))
5064 return -EINVAL;
5065
5066 spin_lock(&mddev->lock);
5067 err = -EINVAL;
5068 if (min > mddev->resync_max)
5069 goto out_unlock;
5070
5071 err = -EBUSY;
5072 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5073 goto out_unlock;
5074
5075 /* Round down to multiple of 4K for safety */
5076 mddev->resync_min = round_down(min, 8);
5077 err = 0;
5078
5079out_unlock:
5080 spin_unlock(&mddev->lock);
5081 return err ?: len;
5082}
5083
5084static struct md_sysfs_entry md_min_sync =
5085__ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5086
5087static ssize_t
5088max_sync_show(struct mddev *mddev, char *page)
5089{
5090 if (mddev->resync_max == MaxSector)
5091 return sprintf(page, "max\n");
5092 else
5093 return sprintf(page, "%llu\n",
5094 (unsigned long long)mddev->resync_max);
5095}
5096static ssize_t
5097max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5098{
5099 int err;
5100 spin_lock(&mddev->lock);
5101 if (strncmp(buf, "max", 3) == 0)
5102 mddev->resync_max = MaxSector;
5103 else {
5104 unsigned long long max;
5105 int chunk;
5106
5107 err = -EINVAL;
5108 if (kstrtoull(buf, 10, &max))
5109 goto out_unlock;
5110 if (max < mddev->resync_min)
5111 goto out_unlock;
5112
5113 err = -EBUSY;
5114 if (max < mddev->resync_max &&
5115 mddev->ro == 0 &&
5116 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5117 goto out_unlock;
5118
5119 /* Must be a multiple of chunk_size */
5120 chunk = mddev->chunk_sectors;
5121 if (chunk) {
5122 sector_t temp = max;
5123
5124 err = -EINVAL;
5125 if (sector_div(temp, chunk))
5126 goto out_unlock;
5127 }
5128 mddev->resync_max = max;
5129 }
5130 wake_up(&mddev->recovery_wait);
5131 err = 0;
5132out_unlock:
5133 spin_unlock(&mddev->lock);
5134 return err ?: len;
5135}
5136
5137static struct md_sysfs_entry md_max_sync =
5138__ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5139
5140static ssize_t
5141suspend_lo_show(struct mddev *mddev, char *page)
5142{
5143 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5144}
5145
5146static ssize_t
5147suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5148{
5149 unsigned long long new;
5150 int err;
5151
5152 err = kstrtoull(buf, 10, &new);
5153 if (err < 0)
5154 return err;
5155 if (new != (sector_t)new)
5156 return -EINVAL;
5157
5158 err = mddev_lock(mddev);
5159 if (err)
5160 return err;
5161 err = -EINVAL;
5162 if (mddev->pers == NULL ||
5163 mddev->pers->quiesce == NULL)
5164 goto unlock;
5165 mddev_suspend(mddev);
5166 mddev->suspend_lo = new;
5167 mddev_resume(mddev);
5168
5169 err = 0;
5170unlock:
5171 mddev_unlock(mddev);
5172 return err ?: len;
5173}
5174static struct md_sysfs_entry md_suspend_lo =
5175__ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5176
5177static ssize_t
5178suspend_hi_show(struct mddev *mddev, char *page)
5179{
5180 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5181}
5182
5183static ssize_t
5184suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5185{
5186 unsigned long long new;
5187 int err;
5188
5189 err = kstrtoull(buf, 10, &new);
5190 if (err < 0)
5191 return err;
5192 if (new != (sector_t)new)
5193 return -EINVAL;
5194
5195 err = mddev_lock(mddev);
5196 if (err)
5197 return err;
5198 err = -EINVAL;
5199 if (mddev->pers == NULL)
5200 goto unlock;
5201
5202 mddev_suspend(mddev);
5203 mddev->suspend_hi = new;
5204 mddev_resume(mddev);
5205
5206 err = 0;
5207unlock:
5208 mddev_unlock(mddev);
5209 return err ?: len;
5210}
5211static struct md_sysfs_entry md_suspend_hi =
5212__ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5213
5214static ssize_t
5215reshape_position_show(struct mddev *mddev, char *page)
5216{
5217 if (mddev->reshape_position != MaxSector)
5218 return sprintf(page, "%llu\n",
5219 (unsigned long long)mddev->reshape_position);
5220 strcpy(page, "none\n");
5221 return 5;
5222}
5223
5224static ssize_t
5225reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5226{
5227 struct md_rdev *rdev;
5228 unsigned long long new;
5229 int err;
5230
5231 err = kstrtoull(buf, 10, &new);
5232 if (err < 0)
5233 return err;
5234 if (new != (sector_t)new)
5235 return -EINVAL;
5236 err = mddev_lock(mddev);
5237 if (err)
5238 return err;
5239 err = -EBUSY;
5240 if (mddev->pers)
5241 goto unlock;
5242 mddev->reshape_position = new;
5243 mddev->delta_disks = 0;
5244 mddev->reshape_backwards = 0;
5245 mddev->new_level = mddev->level;
5246 mddev->new_layout = mddev->layout;
5247 mddev->new_chunk_sectors = mddev->chunk_sectors;
5248 rdev_for_each(rdev, mddev)
5249 rdev->new_data_offset = rdev->data_offset;
5250 err = 0;
5251unlock:
5252 mddev_unlock(mddev);
5253 return err ?: len;
5254}
5255
5256static struct md_sysfs_entry md_reshape_position =
5257__ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5258 reshape_position_store);
5259
5260static ssize_t
5261reshape_direction_show(struct mddev *mddev, char *page)
5262{
5263 return sprintf(page, "%s\n",
5264 mddev->reshape_backwards ? "backwards" : "forwards");
5265}
5266
5267static ssize_t
5268reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5269{
5270 int backwards = 0;
5271 int err;
5272
5273 if (cmd_match(buf, "forwards"))
5274 backwards = 0;
5275 else if (cmd_match(buf, "backwards"))
5276 backwards = 1;
5277 else
5278 return -EINVAL;
5279 if (mddev->reshape_backwards == backwards)
5280 return len;
5281
5282 err = mddev_lock(mddev);
5283 if (err)
5284 return err;
5285 /* check if we are allowed to change */
5286 if (mddev->delta_disks)
5287 err = -EBUSY;
5288 else if (mddev->persistent &&
5289 mddev->major_version == 0)
5290 err = -EINVAL;
5291 else
5292 mddev->reshape_backwards = backwards;
5293 mddev_unlock(mddev);
5294 return err ?: len;
5295}
5296
5297static struct md_sysfs_entry md_reshape_direction =
5298__ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5299 reshape_direction_store);
5300
5301static ssize_t
5302array_size_show(struct mddev *mddev, char *page)
5303{
5304 if (mddev->external_size)
5305 return sprintf(page, "%llu\n",
5306 (unsigned long long)mddev->array_sectors/2);
5307 else
5308 return sprintf(page, "default\n");
5309}
5310
5311static ssize_t
5312array_size_store(struct mddev *mddev, const char *buf, size_t len)
5313{
5314 sector_t sectors;
5315 int err;
5316
5317 err = mddev_lock(mddev);
5318 if (err)
5319 return err;
5320
5321 /* cluster raid doesn't support change array_sectors */
5322 if (mddev_is_clustered(mddev)) {
5323 mddev_unlock(mddev);
5324 return -EINVAL;
5325 }
5326
5327 if (strncmp(buf, "default", 7) == 0) {
5328 if (mddev->pers)
5329 sectors = mddev->pers->size(mddev, 0, 0);
5330 else
5331 sectors = mddev->array_sectors;
5332
5333 mddev->external_size = 0;
5334 } else {
5335 if (strict_blocks_to_sectors(buf, §ors) < 0)
5336 err = -EINVAL;
5337 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5338 err = -E2BIG;
5339 else
5340 mddev->external_size = 1;
5341 }
5342
5343 if (!err) {
5344 mddev->array_sectors = sectors;
5345 if (mddev->pers)
5346 set_capacity_and_notify(mddev->gendisk,
5347 mddev->array_sectors);
5348 }
5349 mddev_unlock(mddev);
5350 return err ?: len;
5351}
5352
5353static struct md_sysfs_entry md_array_size =
5354__ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5355 array_size_store);
5356
5357static ssize_t
5358consistency_policy_show(struct mddev *mddev, char *page)
5359{
5360 int ret;
5361
5362 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5363 ret = sprintf(page, "journal\n");
5364 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5365 ret = sprintf(page, "ppl\n");
5366 } else if (mddev->bitmap) {
5367 ret = sprintf(page, "bitmap\n");
5368 } else if (mddev->pers) {
5369 if (mddev->pers->sync_request)
5370 ret = sprintf(page, "resync\n");
5371 else
5372 ret = sprintf(page, "none\n");
5373 } else {
5374 ret = sprintf(page, "unknown\n");
5375 }
5376
5377 return ret;
5378}
5379
5380static ssize_t
5381consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5382{
5383 int err = 0;
5384
5385 if (mddev->pers) {
5386 if (mddev->pers->change_consistency_policy)
5387 err = mddev->pers->change_consistency_policy(mddev, buf);
5388 else
5389 err = -EBUSY;
5390 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5391 set_bit(MD_HAS_PPL, &mddev->flags);
5392 } else {
5393 err = -EINVAL;
5394 }
5395
5396 return err ? err : len;
5397}
5398
5399static struct md_sysfs_entry md_consistency_policy =
5400__ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5401 consistency_policy_store);
5402
5403static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5404{
5405 return sprintf(page, "%d\n", mddev->fail_last_dev);
5406}
5407
5408/*
5409 * Setting fail_last_dev to true to allow last device to be forcibly removed
5410 * from RAID1/RAID10.
5411 */
5412static ssize_t
5413fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5414{
5415 int ret;
5416 bool value;
5417
5418 ret = kstrtobool(buf, &value);
5419 if (ret)
5420 return ret;
5421
5422 if (value != mddev->fail_last_dev)
5423 mddev->fail_last_dev = value;
5424
5425 return len;
5426}
5427static struct md_sysfs_entry md_fail_last_dev =
5428__ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5429 fail_last_dev_store);
5430
5431static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5432{
5433 if (mddev->pers == NULL || (mddev->pers->level != 1))
5434 return sprintf(page, "n/a\n");
5435 else
5436 return sprintf(page, "%d\n", mddev->serialize_policy);
5437}
5438
5439/*
5440 * Setting serialize_policy to true to enforce write IO is not reordered
5441 * for raid1.
5442 */
5443static ssize_t
5444serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5445{
5446 int err;
5447 bool value;
5448
5449 err = kstrtobool(buf, &value);
5450 if (err)
5451 return err;
5452
5453 if (value == mddev->serialize_policy)
5454 return len;
5455
5456 err = mddev_lock(mddev);
5457 if (err)
5458 return err;
5459 if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5460 pr_err("md: serialize_policy is only effective for raid1\n");
5461 err = -EINVAL;
5462 goto unlock;
5463 }
5464
5465 mddev_suspend(mddev);
5466 if (value)
5467 mddev_create_serial_pool(mddev, NULL, true);
5468 else
5469 mddev_destroy_serial_pool(mddev, NULL, true);
5470 mddev->serialize_policy = value;
5471 mddev_resume(mddev);
5472unlock:
5473 mddev_unlock(mddev);
5474 return err ?: len;
5475}
5476
5477static struct md_sysfs_entry md_serialize_policy =
5478__ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5479 serialize_policy_store);
5480
5481
5482static struct attribute *md_default_attrs[] = {
5483 &md_level.attr,
5484 &md_layout.attr,
5485 &md_raid_disks.attr,
5486 &md_uuid.attr,
5487 &md_chunk_size.attr,
5488 &md_size.attr,
5489 &md_resync_start.attr,
5490 &md_metadata.attr,
5491 &md_new_device.attr,
5492 &md_safe_delay.attr,
5493 &md_array_state.attr,
5494 &md_reshape_position.attr,
5495 &md_reshape_direction.attr,
5496 &md_array_size.attr,
5497 &max_corr_read_errors.attr,
5498 &md_consistency_policy.attr,
5499 &md_fail_last_dev.attr,
5500 &md_serialize_policy.attr,
5501 NULL,
5502};
5503
5504static const struct attribute_group md_default_group = {
5505 .attrs = md_default_attrs,
5506};
5507
5508static struct attribute *md_redundancy_attrs[] = {
5509 &md_scan_mode.attr,
5510 &md_last_scan_mode.attr,
5511 &md_mismatches.attr,
5512 &md_sync_min.attr,
5513 &md_sync_max.attr,
5514 &md_sync_speed.attr,
5515 &md_sync_force_parallel.attr,
5516 &md_sync_completed.attr,
5517 &md_min_sync.attr,
5518 &md_max_sync.attr,
5519 &md_suspend_lo.attr,
5520 &md_suspend_hi.attr,
5521 &md_bitmap.attr,
5522 &md_degraded.attr,
5523 NULL,
5524};
5525static const struct attribute_group md_redundancy_group = {
5526 .name = NULL,
5527 .attrs = md_redundancy_attrs,
5528};
5529
5530static const struct attribute_group *md_attr_groups[] = {
5531 &md_default_group,
5532 &md_bitmap_group,
5533 NULL,
5534};
5535
5536static ssize_t
5537md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5538{
5539 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5540 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5541 ssize_t rv;
5542
5543 if (!entry->show)
5544 return -EIO;
5545 spin_lock(&all_mddevs_lock);
5546 if (list_empty(&mddev->all_mddevs)) {
5547 spin_unlock(&all_mddevs_lock);
5548 return -EBUSY;
5549 }
5550 mddev_get(mddev);
5551 spin_unlock(&all_mddevs_lock);
5552
5553 rv = entry->show(mddev, page);
5554 mddev_put(mddev);
5555 return rv;
5556}
5557
5558static ssize_t
5559md_attr_store(struct kobject *kobj, struct attribute *attr,
5560 const char *page, size_t length)
5561{
5562 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5563 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5564 ssize_t rv;
5565
5566 if (!entry->store)
5567 return -EIO;
5568 if (!capable(CAP_SYS_ADMIN))
5569 return -EACCES;
5570 spin_lock(&all_mddevs_lock);
5571 if (list_empty(&mddev->all_mddevs)) {
5572 spin_unlock(&all_mddevs_lock);
5573 return -EBUSY;
5574 }
5575 mddev_get(mddev);
5576 spin_unlock(&all_mddevs_lock);
5577 rv = entry->store(mddev, page, length);
5578 mddev_put(mddev);
5579 return rv;
5580}
5581
5582static void md_free(struct kobject *ko)
5583{
5584 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5585
5586 if (mddev->sysfs_state)
5587 sysfs_put(mddev->sysfs_state);
5588 if (mddev->sysfs_level)
5589 sysfs_put(mddev->sysfs_level);
5590
5591 if (mddev->gendisk) {
5592 del_gendisk(mddev->gendisk);
5593 blk_cleanup_disk(mddev->gendisk);
5594 }
5595 percpu_ref_exit(&mddev->writes_pending);
5596
5597 bioset_exit(&mddev->bio_set);
5598 bioset_exit(&mddev->sync_set);
5599 if (mddev->level != 1 && mddev->level != 10)
5600 bioset_exit(&mddev->io_acct_set);
5601 kfree(mddev);
5602}
5603
5604static const struct sysfs_ops md_sysfs_ops = {
5605 .show = md_attr_show,
5606 .store = md_attr_store,
5607};
5608static struct kobj_type md_ktype = {
5609 .release = md_free,
5610 .sysfs_ops = &md_sysfs_ops,
5611 .default_groups = md_attr_groups,
5612};
5613
5614int mdp_major = 0;
5615
5616static void mddev_delayed_delete(struct work_struct *ws)
5617{
5618 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5619
5620 kobject_del(&mddev->kobj);
5621 kobject_put(&mddev->kobj);
5622}
5623
5624static void no_op(struct percpu_ref *r) {}
5625
5626int mddev_init_writes_pending(struct mddev *mddev)
5627{
5628 if (mddev->writes_pending.percpu_count_ptr)
5629 return 0;
5630 if (percpu_ref_init(&mddev->writes_pending, no_op,
5631 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5632 return -ENOMEM;
5633 /* We want to start with the refcount at zero */
5634 percpu_ref_put(&mddev->writes_pending);
5635 return 0;
5636}
5637EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5638
5639static int md_alloc(dev_t dev, char *name)
5640{
5641 /*
5642 * If dev is zero, name is the name of a device to allocate with
5643 * an arbitrary minor number. It will be "md_???"
5644 * If dev is non-zero it must be a device number with a MAJOR of
5645 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5646 * the device is being created by opening a node in /dev.
5647 * If "name" is not NULL, the device is being created by
5648 * writing to /sys/module/md_mod/parameters/new_array.
5649 */
5650 static DEFINE_MUTEX(disks_mutex);
5651 struct mddev *mddev;
5652 struct gendisk *disk;
5653 int partitioned;
5654 int shift;
5655 int unit;
5656 int error ;
5657
5658 /*
5659 * Wait for any previous instance of this device to be completely
5660 * removed (mddev_delayed_delete).
5661 */
5662 flush_workqueue(md_misc_wq);
5663
5664 mutex_lock(&disks_mutex);
5665 mddev = mddev_alloc(dev);
5666 if (IS_ERR(mddev)) {
5667 mutex_unlock(&disks_mutex);
5668 return PTR_ERR(mddev);
5669 }
5670
5671 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5672 shift = partitioned ? MdpMinorShift : 0;
5673 unit = MINOR(mddev->unit) >> shift;
5674
5675 if (name && !dev) {
5676 /* Need to ensure that 'name' is not a duplicate.
5677 */
5678 struct mddev *mddev2;
5679 spin_lock(&all_mddevs_lock);
5680
5681 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5682 if (mddev2->gendisk &&
5683 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5684 spin_unlock(&all_mddevs_lock);
5685 error = -EEXIST;
5686 goto out_unlock_disks_mutex;
5687 }
5688 spin_unlock(&all_mddevs_lock);
5689 }
5690 if (name && dev)
5691 /*
5692 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5693 */
5694 mddev->hold_active = UNTIL_STOP;
5695
5696 error = -ENOMEM;
5697 disk = blk_alloc_disk(NUMA_NO_NODE);
5698 if (!disk)
5699 goto out_unlock_disks_mutex;
5700
5701 disk->major = MAJOR(mddev->unit);
5702 disk->first_minor = unit << shift;
5703 disk->minors = 1 << shift;
5704 if (name)
5705 strcpy(disk->disk_name, name);
5706 else if (partitioned)
5707 sprintf(disk->disk_name, "md_d%d", unit);
5708 else
5709 sprintf(disk->disk_name, "md%d", unit);
5710 disk->fops = &md_fops;
5711 disk->private_data = mddev;
5712
5713 mddev->queue = disk->queue;
5714 blk_set_stacking_limits(&mddev->queue->limits);
5715 blk_queue_write_cache(mddev->queue, true, true);
5716 disk->events |= DISK_EVENT_MEDIA_CHANGE;
5717 mddev->gendisk = disk;
5718 error = add_disk(disk);
5719 if (error)
5720 goto out_cleanup_disk;
5721
5722 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5723 if (error)
5724 goto out_del_gendisk;
5725
5726 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5727 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5728 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5729 goto out_unlock_disks_mutex;
5730
5731out_del_gendisk:
5732 del_gendisk(disk);
5733out_cleanup_disk:
5734 blk_cleanup_disk(disk);
5735out_unlock_disks_mutex:
5736 mutex_unlock(&disks_mutex);
5737 mddev_put(mddev);
5738 return error;
5739}
5740
5741static void md_probe(dev_t dev)
5742{
5743 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512)
5744 return;
5745 if (create_on_open)
5746 md_alloc(dev, NULL);
5747}
5748
5749static int add_named_array(const char *val, const struct kernel_param *kp)
5750{
5751 /*
5752 * val must be "md_*" or "mdNNN".
5753 * For "md_*" we allocate an array with a large free minor number, and
5754 * set the name to val. val must not already be an active name.
5755 * For "mdNNN" we allocate an array with the minor number NNN
5756 * which must not already be in use.
5757 */
5758 int len = strlen(val);
5759 char buf[DISK_NAME_LEN];
5760 unsigned long devnum;
5761
5762 while (len && val[len-1] == '\n')
5763 len--;
5764 if (len >= DISK_NAME_LEN)
5765 return -E2BIG;
5766 strlcpy(buf, val, len+1);
5767 if (strncmp(buf, "md_", 3) == 0)
5768 return md_alloc(0, buf);
5769 if (strncmp(buf, "md", 2) == 0 &&
5770 isdigit(buf[2]) &&
5771 kstrtoul(buf+2, 10, &devnum) == 0 &&
5772 devnum <= MINORMASK)
5773 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5774
5775 return -EINVAL;
5776}
5777
5778static void md_safemode_timeout(struct timer_list *t)
5779{
5780 struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5781
5782 mddev->safemode = 1;
5783 if (mddev->external)
5784 sysfs_notify_dirent_safe(mddev->sysfs_state);
5785
5786 md_wakeup_thread(mddev->thread);
5787}
5788
5789static int start_dirty_degraded;
5790
5791int md_run(struct mddev *mddev)
5792{
5793 int err;
5794 struct md_rdev *rdev;
5795 struct md_personality *pers;
5796 bool nowait = true;
5797
5798 if (list_empty(&mddev->disks))
5799 /* cannot run an array with no devices.. */
5800 return -EINVAL;
5801
5802 if (mddev->pers)
5803 return -EBUSY;
5804 /* Cannot run until previous stop completes properly */
5805 if (mddev->sysfs_active)
5806 return -EBUSY;
5807
5808 /*
5809 * Analyze all RAID superblock(s)
5810 */
5811 if (!mddev->raid_disks) {
5812 if (!mddev->persistent)
5813 return -EINVAL;
5814 err = analyze_sbs(mddev);
5815 if (err)
5816 return -EINVAL;
5817 }
5818
5819 if (mddev->level != LEVEL_NONE)
5820 request_module("md-level-%d", mddev->level);
5821 else if (mddev->clevel[0])
5822 request_module("md-%s", mddev->clevel);
5823
5824 /*
5825 * Drop all container device buffers, from now on
5826 * the only valid external interface is through the md
5827 * device.
5828 */
5829 mddev->has_superblocks = false;
5830 rdev_for_each(rdev, mddev) {
5831 if (test_bit(Faulty, &rdev->flags))
5832 continue;
5833 sync_blockdev(rdev->bdev);
5834 invalidate_bdev(rdev->bdev);
5835 if (mddev->ro != 1 && rdev_read_only(rdev)) {
5836 mddev->ro = 1;
5837 if (mddev->gendisk)
5838 set_disk_ro(mddev->gendisk, 1);
5839 }
5840
5841 if (rdev->sb_page)
5842 mddev->has_superblocks = true;
5843
5844 /* perform some consistency tests on the device.
5845 * We don't want the data to overlap the metadata,
5846 * Internal Bitmap issues have been handled elsewhere.
5847 */
5848 if (rdev->meta_bdev) {
5849 /* Nothing to check */;
5850 } else if (rdev->data_offset < rdev->sb_start) {
5851 if (mddev->dev_sectors &&
5852 rdev->data_offset + mddev->dev_sectors
5853 > rdev->sb_start) {
5854 pr_warn("md: %s: data overlaps metadata\n",
5855 mdname(mddev));
5856 return -EINVAL;
5857 }
5858 } else {
5859 if (rdev->sb_start + rdev->sb_size/512
5860 > rdev->data_offset) {
5861 pr_warn("md: %s: metadata overlaps data\n",
5862 mdname(mddev));
5863 return -EINVAL;
5864 }
5865 }
5866 sysfs_notify_dirent_safe(rdev->sysfs_state);
5867 nowait = nowait && blk_queue_nowait(bdev_get_queue(rdev->bdev));
5868 }
5869
5870 if (!bioset_initialized(&mddev->bio_set)) {
5871 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5872 if (err)
5873 return err;
5874 }
5875 if (!bioset_initialized(&mddev->sync_set)) {
5876 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5877 if (err)
5878 goto exit_bio_set;
5879 }
5880
5881 spin_lock(&pers_lock);
5882 pers = find_pers(mddev->level, mddev->clevel);
5883 if (!pers || !try_module_get(pers->owner)) {
5884 spin_unlock(&pers_lock);
5885 if (mddev->level != LEVEL_NONE)
5886 pr_warn("md: personality for level %d is not loaded!\n",
5887 mddev->level);
5888 else
5889 pr_warn("md: personality for level %s is not loaded!\n",
5890 mddev->clevel);
5891 err = -EINVAL;
5892 goto abort;
5893 }
5894 spin_unlock(&pers_lock);
5895 if (mddev->level != pers->level) {
5896 mddev->level = pers->level;
5897 mddev->new_level = pers->level;
5898 }
5899 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5900
5901 if (mddev->reshape_position != MaxSector &&
5902 pers->start_reshape == NULL) {
5903 /* This personality cannot handle reshaping... */
5904 module_put(pers->owner);
5905 err = -EINVAL;
5906 goto abort;
5907 }
5908
5909 if (pers->sync_request) {
5910 /* Warn if this is a potentially silly
5911 * configuration.
5912 */
5913 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5914 struct md_rdev *rdev2;
5915 int warned = 0;
5916
5917 rdev_for_each(rdev, mddev)
5918 rdev_for_each(rdev2, mddev) {
5919 if (rdev < rdev2 &&
5920 rdev->bdev->bd_disk ==
5921 rdev2->bdev->bd_disk) {
5922 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5923 mdname(mddev),
5924 bdevname(rdev->bdev,b),
5925 bdevname(rdev2->bdev,b2));
5926 warned = 1;
5927 }
5928 }
5929
5930 if (warned)
5931 pr_warn("True protection against single-disk failure might be compromised.\n");
5932 }
5933
5934 mddev->recovery = 0;
5935 /* may be over-ridden by personality */
5936 mddev->resync_max_sectors = mddev->dev_sectors;
5937
5938 mddev->ok_start_degraded = start_dirty_degraded;
5939
5940 if (start_readonly && mddev->ro == 0)
5941 mddev->ro = 2; /* read-only, but switch on first write */
5942
5943 err = pers->run(mddev);
5944 if (err)
5945 pr_warn("md: pers->run() failed ...\n");
5946 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5947 WARN_ONCE(!mddev->external_size,
5948 "%s: default size too small, but 'external_size' not in effect?\n",
5949 __func__);
5950 pr_warn("md: invalid array_size %llu > default size %llu\n",
5951 (unsigned long long)mddev->array_sectors / 2,
5952 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5953 err = -EINVAL;
5954 }
5955 if (err == 0 && pers->sync_request &&
5956 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5957 struct bitmap *bitmap;
5958
5959 bitmap = md_bitmap_create(mddev, -1);
5960 if (IS_ERR(bitmap)) {
5961 err = PTR_ERR(bitmap);
5962 pr_warn("%s: failed to create bitmap (%d)\n",
5963 mdname(mddev), err);
5964 } else
5965 mddev->bitmap = bitmap;
5966
5967 }
5968 if (err)
5969 goto bitmap_abort;
5970
5971 if (mddev->bitmap_info.max_write_behind > 0) {
5972 bool create_pool = false;
5973
5974 rdev_for_each(rdev, mddev) {
5975 if (test_bit(WriteMostly, &rdev->flags) &&
5976 rdev_init_serial(rdev))
5977 create_pool = true;
5978 }
5979 if (create_pool && mddev->serial_info_pool == NULL) {
5980 mddev->serial_info_pool =
5981 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
5982 sizeof(struct serial_info));
5983 if (!mddev->serial_info_pool) {
5984 err = -ENOMEM;
5985 goto bitmap_abort;
5986 }
5987 }
5988 }
5989
5990 if (mddev->queue) {
5991 bool nonrot = true;
5992
5993 rdev_for_each(rdev, mddev) {
5994 if (rdev->raid_disk >= 0 &&
5995 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
5996 nonrot = false;
5997 break;
5998 }
5999 }
6000 if (mddev->degraded)
6001 nonrot = false;
6002 if (nonrot)
6003 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
6004 else
6005 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
6006 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue);
6007
6008 /* Set the NOWAIT flags if all underlying devices support it */
6009 if (nowait)
6010 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue);
6011 }
6012 if (pers->sync_request) {
6013 if (mddev->kobj.sd &&
6014 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6015 pr_warn("md: cannot register extra attributes for %s\n",
6016 mdname(mddev));
6017 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6018 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
6019 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
6020 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
6021 mddev->ro = 0;
6022
6023 atomic_set(&mddev->max_corr_read_errors,
6024 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6025 mddev->safemode = 0;
6026 if (mddev_is_clustered(mddev))
6027 mddev->safemode_delay = 0;
6028 else
6029 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6030 mddev->in_sync = 1;
6031 smp_wmb();
6032 spin_lock(&mddev->lock);
6033 mddev->pers = pers;
6034 spin_unlock(&mddev->lock);
6035 rdev_for_each(rdev, mddev)
6036 if (rdev->raid_disk >= 0)
6037 sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6038
6039 if (mddev->degraded && !mddev->ro)
6040 /* This ensures that recovering status is reported immediately
6041 * via sysfs - until a lack of spares is confirmed.
6042 */
6043 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6044 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6045
6046 if (mddev->sb_flags)
6047 md_update_sb(mddev, 0);
6048
6049 md_new_event();
6050 return 0;
6051
6052bitmap_abort:
6053 mddev_detach(mddev);
6054 if (mddev->private)
6055 pers->free(mddev, mddev->private);
6056 mddev->private = NULL;
6057 module_put(pers->owner);
6058 md_bitmap_destroy(mddev);
6059abort:
6060 bioset_exit(&mddev->sync_set);
6061exit_bio_set:
6062 bioset_exit(&mddev->bio_set);
6063 return err;
6064}
6065EXPORT_SYMBOL_GPL(md_run);
6066
6067int do_md_run(struct mddev *mddev)
6068{
6069 int err;
6070
6071 set_bit(MD_NOT_READY, &mddev->flags);
6072 err = md_run(mddev);
6073 if (err)
6074 goto out;
6075 err = md_bitmap_load(mddev);
6076 if (err) {
6077 md_bitmap_destroy(mddev);
6078 goto out;
6079 }
6080
6081 if (mddev_is_clustered(mddev))
6082 md_allow_write(mddev);
6083
6084 /* run start up tasks that require md_thread */
6085 md_start(mddev);
6086
6087 md_wakeup_thread(mddev->thread);
6088 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6089
6090 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
6091 clear_bit(MD_NOT_READY, &mddev->flags);
6092 mddev->changed = 1;
6093 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6094 sysfs_notify_dirent_safe(mddev->sysfs_state);
6095 sysfs_notify_dirent_safe(mddev->sysfs_action);
6096 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6097out:
6098 clear_bit(MD_NOT_READY, &mddev->flags);
6099 return err;
6100}
6101
6102int md_start(struct mddev *mddev)
6103{
6104 int ret = 0;
6105
6106 if (mddev->pers->start) {
6107 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6108 md_wakeup_thread(mddev->thread);
6109 ret = mddev->pers->start(mddev);
6110 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6111 md_wakeup_thread(mddev->sync_thread);
6112 }
6113 return ret;
6114}
6115EXPORT_SYMBOL_GPL(md_start);
6116
6117static int restart_array(struct mddev *mddev)
6118{
6119 struct gendisk *disk = mddev->gendisk;
6120 struct md_rdev *rdev;
6121 bool has_journal = false;
6122 bool has_readonly = false;
6123
6124 /* Complain if it has no devices */
6125 if (list_empty(&mddev->disks))
6126 return -ENXIO;
6127 if (!mddev->pers)
6128 return -EINVAL;
6129 if (!mddev->ro)
6130 return -EBUSY;
6131
6132 rcu_read_lock();
6133 rdev_for_each_rcu(rdev, mddev) {
6134 if (test_bit(Journal, &rdev->flags) &&
6135 !test_bit(Faulty, &rdev->flags))
6136 has_journal = true;
6137 if (rdev_read_only(rdev))
6138 has_readonly = true;
6139 }
6140 rcu_read_unlock();
6141 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6142 /* Don't restart rw with journal missing/faulty */
6143 return -EINVAL;
6144 if (has_readonly)
6145 return -EROFS;
6146
6147 mddev->safemode = 0;
6148 mddev->ro = 0;
6149 set_disk_ro(disk, 0);
6150 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6151 /* Kick recovery or resync if necessary */
6152 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6153 md_wakeup_thread(mddev->thread);
6154 md_wakeup_thread(mddev->sync_thread);
6155 sysfs_notify_dirent_safe(mddev->sysfs_state);
6156 return 0;
6157}
6158
6159static void md_clean(struct mddev *mddev)
6160{
6161 mddev->array_sectors = 0;
6162 mddev->external_size = 0;
6163 mddev->dev_sectors = 0;
6164 mddev->raid_disks = 0;
6165 mddev->recovery_cp = 0;
6166 mddev->resync_min = 0;
6167 mddev->resync_max = MaxSector;
6168 mddev->reshape_position = MaxSector;
6169 mddev->external = 0;
6170 mddev->persistent = 0;
6171 mddev->level = LEVEL_NONE;
6172 mddev->clevel[0] = 0;
6173 mddev->flags = 0;
6174 mddev->sb_flags = 0;
6175 mddev->ro = 0;
6176 mddev->metadata_type[0] = 0;
6177 mddev->chunk_sectors = 0;
6178 mddev->ctime = mddev->utime = 0;
6179 mddev->layout = 0;
6180 mddev->max_disks = 0;
6181 mddev->events = 0;
6182 mddev->can_decrease_events = 0;
6183 mddev->delta_disks = 0;
6184 mddev->reshape_backwards = 0;
6185 mddev->new_level = LEVEL_NONE;
6186 mddev->new_layout = 0;
6187 mddev->new_chunk_sectors = 0;
6188 mddev->curr_resync = 0;
6189 atomic64_set(&mddev->resync_mismatches, 0);
6190 mddev->suspend_lo = mddev->suspend_hi = 0;
6191 mddev->sync_speed_min = mddev->sync_speed_max = 0;
6192 mddev->recovery = 0;
6193 mddev->in_sync = 0;
6194 mddev->changed = 0;
6195 mddev->degraded = 0;
6196 mddev->safemode = 0;
6197 mddev->private = NULL;
6198 mddev->cluster_info = NULL;
6199 mddev->bitmap_info.offset = 0;
6200 mddev->bitmap_info.default_offset = 0;
6201 mddev->bitmap_info.default_space = 0;
6202 mddev->bitmap_info.chunksize = 0;
6203 mddev->bitmap_info.daemon_sleep = 0;
6204 mddev->bitmap_info.max_write_behind = 0;
6205 mddev->bitmap_info.nodes = 0;
6206}
6207
6208static void __md_stop_writes(struct mddev *mddev)
6209{
6210 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6211 if (work_pending(&mddev->del_work))
6212 flush_workqueue(md_misc_wq);
6213 if (mddev->sync_thread) {
6214 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6215 md_reap_sync_thread(mddev);
6216 }
6217
6218 del_timer_sync(&mddev->safemode_timer);
6219
6220 if (mddev->pers && mddev->pers->quiesce) {
6221 mddev->pers->quiesce(mddev, 1);
6222 mddev->pers->quiesce(mddev, 0);
6223 }
6224 md_bitmap_flush(mddev);
6225
6226 if (mddev->ro == 0 &&
6227 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6228 mddev->sb_flags)) {
6229 /* mark array as shutdown cleanly */
6230 if (!mddev_is_clustered(mddev))
6231 mddev->in_sync = 1;
6232 md_update_sb(mddev, 1);
6233 }
6234 /* disable policy to guarantee rdevs free resources for serialization */
6235 mddev->serialize_policy = 0;
6236 mddev_destroy_serial_pool(mddev, NULL, true);
6237}
6238
6239void md_stop_writes(struct mddev *mddev)
6240{
6241 mddev_lock_nointr(mddev);
6242 __md_stop_writes(mddev);
6243 mddev_unlock(mddev);
6244}
6245EXPORT_SYMBOL_GPL(md_stop_writes);
6246
6247static void mddev_detach(struct mddev *mddev)
6248{
6249 md_bitmap_wait_behind_writes(mddev);
6250 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) {
6251 mddev->pers->quiesce(mddev, 1);
6252 mddev->pers->quiesce(mddev, 0);
6253 }
6254 md_unregister_thread(&mddev->thread);
6255 if (mddev->queue)
6256 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6257}
6258
6259static void __md_stop(struct mddev *mddev)
6260{
6261 struct md_personality *pers = mddev->pers;
6262 md_bitmap_destroy(mddev);
6263 mddev_detach(mddev);
6264 /* Ensure ->event_work is done */
6265 if (mddev->event_work.func)
6266 flush_workqueue(md_misc_wq);
6267 spin_lock(&mddev->lock);
6268 mddev->pers = NULL;
6269 spin_unlock(&mddev->lock);
6270 if (mddev->private)
6271 pers->free(mddev, mddev->private);
6272 mddev->private = NULL;
6273 if (pers->sync_request && mddev->to_remove == NULL)
6274 mddev->to_remove = &md_redundancy_group;
6275 module_put(pers->owner);
6276 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6277}
6278
6279void md_stop(struct mddev *mddev)
6280{
6281 /* stop the array and free an attached data structures.
6282 * This is called from dm-raid
6283 */
6284 __md_stop(mddev);
6285 bioset_exit(&mddev->bio_set);
6286 bioset_exit(&mddev->sync_set);
6287 if (mddev->level != 1 && mddev->level != 10)
6288 bioset_exit(&mddev->io_acct_set);
6289}
6290
6291EXPORT_SYMBOL_GPL(md_stop);
6292
6293static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6294{
6295 int err = 0;
6296 int did_freeze = 0;
6297
6298 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6299 did_freeze = 1;
6300 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6301 md_wakeup_thread(mddev->thread);
6302 }
6303 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6304 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6305 if (mddev->sync_thread)
6306 /* Thread might be blocked waiting for metadata update
6307 * which will now never happen */
6308 wake_up_process(mddev->sync_thread->tsk);
6309
6310 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6311 return -EBUSY;
6312 mddev_unlock(mddev);
6313 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6314 &mddev->recovery));
6315 wait_event(mddev->sb_wait,
6316 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6317 mddev_lock_nointr(mddev);
6318
6319 mutex_lock(&mddev->open_mutex);
6320 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6321 mddev->sync_thread ||
6322 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6323 pr_warn("md: %s still in use.\n",mdname(mddev));
6324 if (did_freeze) {
6325 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6326 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6327 md_wakeup_thread(mddev->thread);
6328 }
6329 err = -EBUSY;
6330 goto out;
6331 }
6332 if (mddev->pers) {
6333 __md_stop_writes(mddev);
6334
6335 err = -ENXIO;
6336 if (mddev->ro==1)
6337 goto out;
6338 mddev->ro = 1;
6339 set_disk_ro(mddev->gendisk, 1);
6340 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6341 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6342 md_wakeup_thread(mddev->thread);
6343 sysfs_notify_dirent_safe(mddev->sysfs_state);
6344 err = 0;
6345 }
6346out:
6347 mutex_unlock(&mddev->open_mutex);
6348 return err;
6349}
6350
6351/* mode:
6352 * 0 - completely stop and dis-assemble array
6353 * 2 - stop but do not disassemble array
6354 */
6355static int do_md_stop(struct mddev *mddev, int mode,
6356 struct block_device *bdev)
6357{
6358 struct gendisk *disk = mddev->gendisk;
6359 struct md_rdev *rdev;
6360 int did_freeze = 0;
6361
6362 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6363 did_freeze = 1;
6364 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6365 md_wakeup_thread(mddev->thread);
6366 }
6367 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6368 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6369 if (mddev->sync_thread)
6370 /* Thread might be blocked waiting for metadata update
6371 * which will now never happen */
6372 wake_up_process(mddev->sync_thread->tsk);
6373
6374 mddev_unlock(mddev);
6375 wait_event(resync_wait, (mddev->sync_thread == NULL &&
6376 !test_bit(MD_RECOVERY_RUNNING,
6377 &mddev->recovery)));
6378 mddev_lock_nointr(mddev);
6379
6380 mutex_lock(&mddev->open_mutex);
6381 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6382 mddev->sysfs_active ||
6383 mddev->sync_thread ||
6384 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6385 pr_warn("md: %s still in use.\n",mdname(mddev));
6386 mutex_unlock(&mddev->open_mutex);
6387 if (did_freeze) {
6388 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6389 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6390 md_wakeup_thread(mddev->thread);
6391 }
6392 return -EBUSY;
6393 }
6394 if (mddev->pers) {
6395 if (mddev->ro)
6396 set_disk_ro(disk, 0);
6397
6398 __md_stop_writes(mddev);
6399 __md_stop(mddev);
6400
6401 /* tell userspace to handle 'inactive' */
6402 sysfs_notify_dirent_safe(mddev->sysfs_state);
6403
6404 rdev_for_each(rdev, mddev)
6405 if (rdev->raid_disk >= 0)
6406 sysfs_unlink_rdev(mddev, rdev);
6407
6408 set_capacity_and_notify(disk, 0);
6409 mutex_unlock(&mddev->open_mutex);
6410 mddev->changed = 1;
6411
6412 if (mddev->ro)
6413 mddev->ro = 0;
6414 } else
6415 mutex_unlock(&mddev->open_mutex);
6416 /*
6417 * Free resources if final stop
6418 */
6419 if (mode == 0) {
6420 pr_info("md: %s stopped.\n", mdname(mddev));
6421
6422 if (mddev->bitmap_info.file) {
6423 struct file *f = mddev->bitmap_info.file;
6424 spin_lock(&mddev->lock);
6425 mddev->bitmap_info.file = NULL;
6426 spin_unlock(&mddev->lock);
6427 fput(f);
6428 }
6429 mddev->bitmap_info.offset = 0;
6430
6431 export_array(mddev);
6432
6433 md_clean(mddev);
6434 if (mddev->hold_active == UNTIL_STOP)
6435 mddev->hold_active = 0;
6436 }
6437 md_new_event();
6438 sysfs_notify_dirent_safe(mddev->sysfs_state);
6439 return 0;
6440}
6441
6442#ifndef MODULE
6443static void autorun_array(struct mddev *mddev)
6444{
6445 struct md_rdev *rdev;
6446 int err;
6447
6448 if (list_empty(&mddev->disks))
6449 return;
6450
6451 pr_info("md: running: ");
6452
6453 rdev_for_each(rdev, mddev) {
6454 char b[BDEVNAME_SIZE];
6455 pr_cont("<%s>", bdevname(rdev->bdev,b));
6456 }
6457 pr_cont("\n");
6458
6459 err = do_md_run(mddev);
6460 if (err) {
6461 pr_warn("md: do_md_run() returned %d\n", err);
6462 do_md_stop(mddev, 0, NULL);
6463 }
6464}
6465
6466/*
6467 * lets try to run arrays based on all disks that have arrived
6468 * until now. (those are in pending_raid_disks)
6469 *
6470 * the method: pick the first pending disk, collect all disks with
6471 * the same UUID, remove all from the pending list and put them into
6472 * the 'same_array' list. Then order this list based on superblock
6473 * update time (freshest comes first), kick out 'old' disks and
6474 * compare superblocks. If everything's fine then run it.
6475 *
6476 * If "unit" is allocated, then bump its reference count
6477 */
6478static void autorun_devices(int part)
6479{
6480 struct md_rdev *rdev0, *rdev, *tmp;
6481 struct mddev *mddev;
6482 char b[BDEVNAME_SIZE];
6483
6484 pr_info("md: autorun ...\n");
6485 while (!list_empty(&pending_raid_disks)) {
6486 int unit;
6487 dev_t dev;
6488 LIST_HEAD(candidates);
6489 rdev0 = list_entry(pending_raid_disks.next,
6490 struct md_rdev, same_set);
6491
6492 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6493 INIT_LIST_HEAD(&candidates);
6494 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6495 if (super_90_load(rdev, rdev0, 0) >= 0) {
6496 pr_debug("md: adding %s ...\n",
6497 bdevname(rdev->bdev,b));
6498 list_move(&rdev->same_set, &candidates);
6499 }
6500 /*
6501 * now we have a set of devices, with all of them having
6502 * mostly sane superblocks. It's time to allocate the
6503 * mddev.
6504 */
6505 if (part) {
6506 dev = MKDEV(mdp_major,
6507 rdev0->preferred_minor << MdpMinorShift);
6508 unit = MINOR(dev) >> MdpMinorShift;
6509 } else {
6510 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6511 unit = MINOR(dev);
6512 }
6513 if (rdev0->preferred_minor != unit) {
6514 pr_warn("md: unit number in %s is bad: %d\n",
6515 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6516 break;
6517 }
6518
6519 md_probe(dev);
6520 mddev = mddev_find(dev);
6521 if (!mddev)
6522 break;
6523
6524 if (mddev_lock(mddev))
6525 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6526 else if (mddev->raid_disks || mddev->major_version
6527 || !list_empty(&mddev->disks)) {
6528 pr_warn("md: %s already running, cannot run %s\n",
6529 mdname(mddev), bdevname(rdev0->bdev,b));
6530 mddev_unlock(mddev);
6531 } else {
6532 pr_debug("md: created %s\n", mdname(mddev));
6533 mddev->persistent = 1;
6534 rdev_for_each_list(rdev, tmp, &candidates) {
6535 list_del_init(&rdev->same_set);
6536 if (bind_rdev_to_array(rdev, mddev))
6537 export_rdev(rdev);
6538 }
6539 autorun_array(mddev);
6540 mddev_unlock(mddev);
6541 }
6542 /* on success, candidates will be empty, on error
6543 * it won't...
6544 */
6545 rdev_for_each_list(rdev, tmp, &candidates) {
6546 list_del_init(&rdev->same_set);
6547 export_rdev(rdev);
6548 }
6549 mddev_put(mddev);
6550 }
6551 pr_info("md: ... autorun DONE.\n");
6552}
6553#endif /* !MODULE */
6554
6555static int get_version(void __user *arg)
6556{
6557 mdu_version_t ver;
6558
6559 ver.major = MD_MAJOR_VERSION;
6560 ver.minor = MD_MINOR_VERSION;
6561 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6562
6563 if (copy_to_user(arg, &ver, sizeof(ver)))
6564 return -EFAULT;
6565
6566 return 0;
6567}
6568
6569static int get_array_info(struct mddev *mddev, void __user *arg)
6570{
6571 mdu_array_info_t info;
6572 int nr,working,insync,failed,spare;
6573 struct md_rdev *rdev;
6574
6575 nr = working = insync = failed = spare = 0;
6576 rcu_read_lock();
6577 rdev_for_each_rcu(rdev, mddev) {
6578 nr++;
6579 if (test_bit(Faulty, &rdev->flags))
6580 failed++;
6581 else {
6582 working++;
6583 if (test_bit(In_sync, &rdev->flags))
6584 insync++;
6585 else if (test_bit(Journal, &rdev->flags))
6586 /* TODO: add journal count to md_u.h */
6587 ;
6588 else
6589 spare++;
6590 }
6591 }
6592 rcu_read_unlock();
6593
6594 info.major_version = mddev->major_version;
6595 info.minor_version = mddev->minor_version;
6596 info.patch_version = MD_PATCHLEVEL_VERSION;
6597 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6598 info.level = mddev->level;
6599 info.size = mddev->dev_sectors / 2;
6600 if (info.size != mddev->dev_sectors / 2) /* overflow */
6601 info.size = -1;
6602 info.nr_disks = nr;
6603 info.raid_disks = mddev->raid_disks;
6604 info.md_minor = mddev->md_minor;
6605 info.not_persistent= !mddev->persistent;
6606
6607 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6608 info.state = 0;
6609 if (mddev->in_sync)
6610 info.state = (1<<MD_SB_CLEAN);
6611 if (mddev->bitmap && mddev->bitmap_info.offset)
6612 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6613 if (mddev_is_clustered(mddev))
6614 info.state |= (1<<MD_SB_CLUSTERED);
6615 info.active_disks = insync;
6616 info.working_disks = working;
6617 info.failed_disks = failed;
6618 info.spare_disks = spare;
6619
6620 info.layout = mddev->layout;
6621 info.chunk_size = mddev->chunk_sectors << 9;
6622
6623 if (copy_to_user(arg, &info, sizeof(info)))
6624 return -EFAULT;
6625
6626 return 0;
6627}
6628
6629static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6630{
6631 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6632 char *ptr;
6633 int err;
6634
6635 file = kzalloc(sizeof(*file), GFP_NOIO);
6636 if (!file)
6637 return -ENOMEM;
6638
6639 err = 0;
6640 spin_lock(&mddev->lock);
6641 /* bitmap enabled */
6642 if (mddev->bitmap_info.file) {
6643 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6644 sizeof(file->pathname));
6645 if (IS_ERR(ptr))
6646 err = PTR_ERR(ptr);
6647 else
6648 memmove(file->pathname, ptr,
6649 sizeof(file->pathname)-(ptr-file->pathname));
6650 }
6651 spin_unlock(&mddev->lock);
6652
6653 if (err == 0 &&
6654 copy_to_user(arg, file, sizeof(*file)))
6655 err = -EFAULT;
6656
6657 kfree(file);
6658 return err;
6659}
6660
6661static int get_disk_info(struct mddev *mddev, void __user * arg)
6662{
6663 mdu_disk_info_t info;
6664 struct md_rdev *rdev;
6665
6666 if (copy_from_user(&info, arg, sizeof(info)))
6667 return -EFAULT;
6668
6669 rcu_read_lock();
6670 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6671 if (rdev) {
6672 info.major = MAJOR(rdev->bdev->bd_dev);
6673 info.minor = MINOR(rdev->bdev->bd_dev);
6674 info.raid_disk = rdev->raid_disk;
6675 info.state = 0;
6676 if (test_bit(Faulty, &rdev->flags))
6677 info.state |= (1<<MD_DISK_FAULTY);
6678 else if (test_bit(In_sync, &rdev->flags)) {
6679 info.state |= (1<<MD_DISK_ACTIVE);
6680 info.state |= (1<<MD_DISK_SYNC);
6681 }
6682 if (test_bit(Journal, &rdev->flags))
6683 info.state |= (1<<MD_DISK_JOURNAL);
6684 if (test_bit(WriteMostly, &rdev->flags))
6685 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6686 if (test_bit(FailFast, &rdev->flags))
6687 info.state |= (1<<MD_DISK_FAILFAST);
6688 } else {
6689 info.major = info.minor = 0;
6690 info.raid_disk = -1;
6691 info.state = (1<<MD_DISK_REMOVED);
6692 }
6693 rcu_read_unlock();
6694
6695 if (copy_to_user(arg, &info, sizeof(info)))
6696 return -EFAULT;
6697
6698 return 0;
6699}
6700
6701int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6702{
6703 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6704 struct md_rdev *rdev;
6705 dev_t dev = MKDEV(info->major,info->minor);
6706
6707 if (mddev_is_clustered(mddev) &&
6708 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6709 pr_warn("%s: Cannot add to clustered mddev.\n",
6710 mdname(mddev));
6711 return -EINVAL;
6712 }
6713
6714 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6715 return -EOVERFLOW;
6716
6717 if (!mddev->raid_disks) {
6718 int err;
6719 /* expecting a device which has a superblock */
6720 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6721 if (IS_ERR(rdev)) {
6722 pr_warn("md: md_import_device returned %ld\n",
6723 PTR_ERR(rdev));
6724 return PTR_ERR(rdev);
6725 }
6726 if (!list_empty(&mddev->disks)) {
6727 struct md_rdev *rdev0
6728 = list_entry(mddev->disks.next,
6729 struct md_rdev, same_set);
6730 err = super_types[mddev->major_version]
6731 .load_super(rdev, rdev0, mddev->minor_version);
6732 if (err < 0) {
6733 pr_warn("md: %s has different UUID to %s\n",
6734 bdevname(rdev->bdev,b),
6735 bdevname(rdev0->bdev,b2));
6736 export_rdev(rdev);
6737 return -EINVAL;
6738 }
6739 }
6740 err = bind_rdev_to_array(rdev, mddev);
6741 if (err)
6742 export_rdev(rdev);
6743 return err;
6744 }
6745
6746 /*
6747 * md_add_new_disk can be used once the array is assembled
6748 * to add "hot spares". They must already have a superblock
6749 * written
6750 */
6751 if (mddev->pers) {
6752 int err;
6753 if (!mddev->pers->hot_add_disk) {
6754 pr_warn("%s: personality does not support diskops!\n",
6755 mdname(mddev));
6756 return -EINVAL;
6757 }
6758 if (mddev->persistent)
6759 rdev = md_import_device(dev, mddev->major_version,
6760 mddev->minor_version);
6761 else
6762 rdev = md_import_device(dev, -1, -1);
6763 if (IS_ERR(rdev)) {
6764 pr_warn("md: md_import_device returned %ld\n",
6765 PTR_ERR(rdev));
6766 return PTR_ERR(rdev);
6767 }
6768 /* set saved_raid_disk if appropriate */
6769 if (!mddev->persistent) {
6770 if (info->state & (1<<MD_DISK_SYNC) &&
6771 info->raid_disk < mddev->raid_disks) {
6772 rdev->raid_disk = info->raid_disk;
6773 set_bit(In_sync, &rdev->flags);
6774 clear_bit(Bitmap_sync, &rdev->flags);
6775 } else
6776 rdev->raid_disk = -1;
6777 rdev->saved_raid_disk = rdev->raid_disk;
6778 } else
6779 super_types[mddev->major_version].
6780 validate_super(mddev, rdev);
6781 if ((info->state & (1<<MD_DISK_SYNC)) &&
6782 rdev->raid_disk != info->raid_disk) {
6783 /* This was a hot-add request, but events doesn't
6784 * match, so reject it.
6785 */
6786 export_rdev(rdev);
6787 return -EINVAL;
6788 }
6789
6790 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6791 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6792 set_bit(WriteMostly, &rdev->flags);
6793 else
6794 clear_bit(WriteMostly, &rdev->flags);
6795 if (info->state & (1<<MD_DISK_FAILFAST))
6796 set_bit(FailFast, &rdev->flags);
6797 else
6798 clear_bit(FailFast, &rdev->flags);
6799
6800 if (info->state & (1<<MD_DISK_JOURNAL)) {
6801 struct md_rdev *rdev2;
6802 bool has_journal = false;
6803
6804 /* make sure no existing journal disk */
6805 rdev_for_each(rdev2, mddev) {
6806 if (test_bit(Journal, &rdev2->flags)) {
6807 has_journal = true;
6808 break;
6809 }
6810 }
6811 if (has_journal || mddev->bitmap) {
6812 export_rdev(rdev);
6813 return -EBUSY;
6814 }
6815 set_bit(Journal, &rdev->flags);
6816 }
6817 /*
6818 * check whether the device shows up in other nodes
6819 */
6820 if (mddev_is_clustered(mddev)) {
6821 if (info->state & (1 << MD_DISK_CANDIDATE))
6822 set_bit(Candidate, &rdev->flags);
6823 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6824 /* --add initiated by this node */
6825 err = md_cluster_ops->add_new_disk(mddev, rdev);
6826 if (err) {
6827 export_rdev(rdev);
6828 return err;
6829 }
6830 }
6831 }
6832
6833 rdev->raid_disk = -1;
6834 err = bind_rdev_to_array(rdev, mddev);
6835
6836 if (err)
6837 export_rdev(rdev);
6838
6839 if (mddev_is_clustered(mddev)) {
6840 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6841 if (!err) {
6842 err = md_cluster_ops->new_disk_ack(mddev,
6843 err == 0);
6844 if (err)
6845 md_kick_rdev_from_array(rdev);
6846 }
6847 } else {
6848 if (err)
6849 md_cluster_ops->add_new_disk_cancel(mddev);
6850 else
6851 err = add_bound_rdev(rdev);
6852 }
6853
6854 } else if (!err)
6855 err = add_bound_rdev(rdev);
6856
6857 return err;
6858 }
6859
6860 /* otherwise, md_add_new_disk is only allowed
6861 * for major_version==0 superblocks
6862 */
6863 if (mddev->major_version != 0) {
6864 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6865 return -EINVAL;
6866 }
6867
6868 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6869 int err;
6870 rdev = md_import_device(dev, -1, 0);
6871 if (IS_ERR(rdev)) {
6872 pr_warn("md: error, md_import_device() returned %ld\n",
6873 PTR_ERR(rdev));
6874 return PTR_ERR(rdev);
6875 }
6876 rdev->desc_nr = info->number;
6877 if (info->raid_disk < mddev->raid_disks)
6878 rdev->raid_disk = info->raid_disk;
6879 else
6880 rdev->raid_disk = -1;
6881
6882 if (rdev->raid_disk < mddev->raid_disks)
6883 if (info->state & (1<<MD_DISK_SYNC))
6884 set_bit(In_sync, &rdev->flags);
6885
6886 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6887 set_bit(WriteMostly, &rdev->flags);
6888 if (info->state & (1<<MD_DISK_FAILFAST))
6889 set_bit(FailFast, &rdev->flags);
6890
6891 if (!mddev->persistent) {
6892 pr_debug("md: nonpersistent superblock ...\n");
6893 rdev->sb_start = bdev_nr_sectors(rdev->bdev);
6894 } else
6895 rdev->sb_start = calc_dev_sboffset(rdev);
6896 rdev->sectors = rdev->sb_start;
6897
6898 err = bind_rdev_to_array(rdev, mddev);
6899 if (err) {
6900 export_rdev(rdev);
6901 return err;
6902 }
6903 }
6904
6905 return 0;
6906}
6907
6908static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6909{
6910 char b[BDEVNAME_SIZE];
6911 struct md_rdev *rdev;
6912
6913 if (!mddev->pers)
6914 return -ENODEV;
6915
6916 rdev = find_rdev(mddev, dev);
6917 if (!rdev)
6918 return -ENXIO;
6919
6920 if (rdev->raid_disk < 0)
6921 goto kick_rdev;
6922
6923 clear_bit(Blocked, &rdev->flags);
6924 remove_and_add_spares(mddev, rdev);
6925
6926 if (rdev->raid_disk >= 0)
6927 goto busy;
6928
6929kick_rdev:
6930 if (mddev_is_clustered(mddev)) {
6931 if (md_cluster_ops->remove_disk(mddev, rdev))
6932 goto busy;
6933 }
6934
6935 md_kick_rdev_from_array(rdev);
6936 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6937 if (mddev->thread)
6938 md_wakeup_thread(mddev->thread);
6939 else
6940 md_update_sb(mddev, 1);
6941 md_new_event();
6942
6943 return 0;
6944busy:
6945 pr_debug("md: cannot remove active disk %s from %s ...\n",
6946 bdevname(rdev->bdev,b), mdname(mddev));
6947 return -EBUSY;
6948}
6949
6950static int hot_add_disk(struct mddev *mddev, dev_t dev)
6951{
6952 char b[BDEVNAME_SIZE];
6953 int err;
6954 struct md_rdev *rdev;
6955
6956 if (!mddev->pers)
6957 return -ENODEV;
6958
6959 if (mddev->major_version != 0) {
6960 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6961 mdname(mddev));
6962 return -EINVAL;
6963 }
6964 if (!mddev->pers->hot_add_disk) {
6965 pr_warn("%s: personality does not support diskops!\n",
6966 mdname(mddev));
6967 return -EINVAL;
6968 }
6969
6970 rdev = md_import_device(dev, -1, 0);
6971 if (IS_ERR(rdev)) {
6972 pr_warn("md: error, md_import_device() returned %ld\n",
6973 PTR_ERR(rdev));
6974 return -EINVAL;
6975 }
6976
6977 if (mddev->persistent)
6978 rdev->sb_start = calc_dev_sboffset(rdev);
6979 else
6980 rdev->sb_start = bdev_nr_sectors(rdev->bdev);
6981
6982 rdev->sectors = rdev->sb_start;
6983
6984 if (test_bit(Faulty, &rdev->flags)) {
6985 pr_warn("md: can not hot-add faulty %s disk to %s!\n",
6986 bdevname(rdev->bdev,b), mdname(mddev));
6987 err = -EINVAL;
6988 goto abort_export;
6989 }
6990
6991 clear_bit(In_sync, &rdev->flags);
6992 rdev->desc_nr = -1;
6993 rdev->saved_raid_disk = -1;
6994 err = bind_rdev_to_array(rdev, mddev);
6995 if (err)
6996 goto abort_export;
6997
6998 /*
6999 * The rest should better be atomic, we can have disk failures
7000 * noticed in interrupt contexts ...
7001 */
7002
7003 rdev->raid_disk = -1;
7004
7005 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7006 if (!mddev->thread)
7007 md_update_sb(mddev, 1);
7008 /*
7009 * If the new disk does not support REQ_NOWAIT,
7010 * disable on the whole MD.
7011 */
7012 if (!blk_queue_nowait(bdev_get_queue(rdev->bdev))) {
7013 pr_info("%s: Disabling nowait because %s does not support nowait\n",
7014 mdname(mddev), bdevname(rdev->bdev, b));
7015 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue);
7016 }
7017 /*
7018 * Kick recovery, maybe this spare has to be added to the
7019 * array immediately.
7020 */
7021 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7022 md_wakeup_thread(mddev->thread);
7023 md_new_event();
7024 return 0;
7025
7026abort_export:
7027 export_rdev(rdev);
7028 return err;
7029}
7030
7031static int set_bitmap_file(struct mddev *mddev, int fd)
7032{
7033 int err = 0;
7034
7035 if (mddev->pers) {
7036 if (!mddev->pers->quiesce || !mddev->thread)
7037 return -EBUSY;
7038 if (mddev->recovery || mddev->sync_thread)
7039 return -EBUSY;
7040 /* we should be able to change the bitmap.. */
7041 }
7042
7043 if (fd >= 0) {
7044 struct inode *inode;
7045 struct file *f;
7046
7047 if (mddev->bitmap || mddev->bitmap_info.file)
7048 return -EEXIST; /* cannot add when bitmap is present */
7049 f = fget(fd);
7050
7051 if (f == NULL) {
7052 pr_warn("%s: error: failed to get bitmap file\n",
7053 mdname(mddev));
7054 return -EBADF;
7055 }
7056
7057 inode = f->f_mapping->host;
7058 if (!S_ISREG(inode->i_mode)) {
7059 pr_warn("%s: error: bitmap file must be a regular file\n",
7060 mdname(mddev));
7061 err = -EBADF;
7062 } else if (!(f->f_mode & FMODE_WRITE)) {
7063 pr_warn("%s: error: bitmap file must open for write\n",
7064 mdname(mddev));
7065 err = -EBADF;
7066 } else if (atomic_read(&inode->i_writecount) != 1) {
7067 pr_warn("%s: error: bitmap file is already in use\n",
7068 mdname(mddev));
7069 err = -EBUSY;
7070 }
7071 if (err) {
7072 fput(f);
7073 return err;
7074 }
7075 mddev->bitmap_info.file = f;
7076 mddev->bitmap_info.offset = 0; /* file overrides offset */
7077 } else if (mddev->bitmap == NULL)
7078 return -ENOENT; /* cannot remove what isn't there */
7079 err = 0;
7080 if (mddev->pers) {
7081 if (fd >= 0) {
7082 struct bitmap *bitmap;
7083
7084 bitmap = md_bitmap_create(mddev, -1);
7085 mddev_suspend(mddev);
7086 if (!IS_ERR(bitmap)) {
7087 mddev->bitmap = bitmap;
7088 err = md_bitmap_load(mddev);
7089 } else
7090 err = PTR_ERR(bitmap);
7091 if (err) {
7092 md_bitmap_destroy(mddev);
7093 fd = -1;
7094 }
7095 mddev_resume(mddev);
7096 } else if (fd < 0) {
7097 mddev_suspend(mddev);
7098 md_bitmap_destroy(mddev);
7099 mddev_resume(mddev);
7100 }
7101 }
7102 if (fd < 0) {
7103 struct file *f = mddev->bitmap_info.file;
7104 if (f) {
7105 spin_lock(&mddev->lock);
7106 mddev->bitmap_info.file = NULL;
7107 spin_unlock(&mddev->lock);
7108 fput(f);
7109 }
7110 }
7111
7112 return err;
7113}
7114
7115/*
7116 * md_set_array_info is used two different ways
7117 * The original usage is when creating a new array.
7118 * In this usage, raid_disks is > 0 and it together with
7119 * level, size, not_persistent,layout,chunksize determine the
7120 * shape of the array.
7121 * This will always create an array with a type-0.90.0 superblock.
7122 * The newer usage is when assembling an array.
7123 * In this case raid_disks will be 0, and the major_version field is
7124 * use to determine which style super-blocks are to be found on the devices.
7125 * The minor and patch _version numbers are also kept incase the
7126 * super_block handler wishes to interpret them.
7127 */
7128int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7129{
7130 if (info->raid_disks == 0) {
7131 /* just setting version number for superblock loading */
7132 if (info->major_version < 0 ||
7133 info->major_version >= ARRAY_SIZE(super_types) ||
7134 super_types[info->major_version].name == NULL) {
7135 /* maybe try to auto-load a module? */
7136 pr_warn("md: superblock version %d not known\n",
7137 info->major_version);
7138 return -EINVAL;
7139 }
7140 mddev->major_version = info->major_version;
7141 mddev->minor_version = info->minor_version;
7142 mddev->patch_version = info->patch_version;
7143 mddev->persistent = !info->not_persistent;
7144 /* ensure mddev_put doesn't delete this now that there
7145 * is some minimal configuration.
7146 */
7147 mddev->ctime = ktime_get_real_seconds();
7148 return 0;
7149 }
7150 mddev->major_version = MD_MAJOR_VERSION;
7151 mddev->minor_version = MD_MINOR_VERSION;
7152 mddev->patch_version = MD_PATCHLEVEL_VERSION;
7153 mddev->ctime = ktime_get_real_seconds();
7154
7155 mddev->level = info->level;
7156 mddev->clevel[0] = 0;
7157 mddev->dev_sectors = 2 * (sector_t)info->size;
7158 mddev->raid_disks = info->raid_disks;
7159 /* don't set md_minor, it is determined by which /dev/md* was
7160 * openned
7161 */
7162 if (info->state & (1<<MD_SB_CLEAN))
7163 mddev->recovery_cp = MaxSector;
7164 else
7165 mddev->recovery_cp = 0;
7166 mddev->persistent = ! info->not_persistent;
7167 mddev->external = 0;
7168
7169 mddev->layout = info->layout;
7170 if (mddev->level == 0)
7171 /* Cannot trust RAID0 layout info here */
7172 mddev->layout = -1;
7173 mddev->chunk_sectors = info->chunk_size >> 9;
7174
7175 if (mddev->persistent) {
7176 mddev->max_disks = MD_SB_DISKS;
7177 mddev->flags = 0;
7178 mddev->sb_flags = 0;
7179 }
7180 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7181
7182 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7183 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7184 mddev->bitmap_info.offset = 0;
7185
7186 mddev->reshape_position = MaxSector;
7187
7188 /*
7189 * Generate a 128 bit UUID
7190 */
7191 get_random_bytes(mddev->uuid, 16);
7192
7193 mddev->new_level = mddev->level;
7194 mddev->new_chunk_sectors = mddev->chunk_sectors;
7195 mddev->new_layout = mddev->layout;
7196 mddev->delta_disks = 0;
7197 mddev->reshape_backwards = 0;
7198
7199 return 0;
7200}
7201
7202void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7203{
7204 lockdep_assert_held(&mddev->reconfig_mutex);
7205
7206 if (mddev->external_size)
7207 return;
7208
7209 mddev->array_sectors = array_sectors;
7210}
7211EXPORT_SYMBOL(md_set_array_sectors);
7212
7213static int update_size(struct mddev *mddev, sector_t num_sectors)
7214{
7215 struct md_rdev *rdev;
7216 int rv;
7217 int fit = (num_sectors == 0);
7218 sector_t old_dev_sectors = mddev->dev_sectors;
7219
7220 if (mddev->pers->resize == NULL)
7221 return -EINVAL;
7222 /* The "num_sectors" is the number of sectors of each device that
7223 * is used. This can only make sense for arrays with redundancy.
7224 * linear and raid0 always use whatever space is available. We can only
7225 * consider changing this number if no resync or reconstruction is
7226 * happening, and if the new size is acceptable. It must fit before the
7227 * sb_start or, if that is <data_offset, it must fit before the size
7228 * of each device. If num_sectors is zero, we find the largest size
7229 * that fits.
7230 */
7231 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7232 mddev->sync_thread)
7233 return -EBUSY;
7234 if (mddev->ro)
7235 return -EROFS;
7236
7237 rdev_for_each(rdev, mddev) {
7238 sector_t avail = rdev->sectors;
7239
7240 if (fit && (num_sectors == 0 || num_sectors > avail))
7241 num_sectors = avail;
7242 if (avail < num_sectors)
7243 return -ENOSPC;
7244 }
7245 rv = mddev->pers->resize(mddev, num_sectors);
7246 if (!rv) {
7247 if (mddev_is_clustered(mddev))
7248 md_cluster_ops->update_size(mddev, old_dev_sectors);
7249 else if (mddev->queue) {
7250 set_capacity_and_notify(mddev->gendisk,
7251 mddev->array_sectors);
7252 }
7253 }
7254 return rv;
7255}
7256
7257static int update_raid_disks(struct mddev *mddev, int raid_disks)
7258{
7259 int rv;
7260 struct md_rdev *rdev;
7261 /* change the number of raid disks */
7262 if (mddev->pers->check_reshape == NULL)
7263 return -EINVAL;
7264 if (mddev->ro)
7265 return -EROFS;
7266 if (raid_disks <= 0 ||
7267 (mddev->max_disks && raid_disks >= mddev->max_disks))
7268 return -EINVAL;
7269 if (mddev->sync_thread ||
7270 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7271 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7272 mddev->reshape_position != MaxSector)
7273 return -EBUSY;
7274
7275 rdev_for_each(rdev, mddev) {
7276 if (mddev->raid_disks < raid_disks &&
7277 rdev->data_offset < rdev->new_data_offset)
7278 return -EINVAL;
7279 if (mddev->raid_disks > raid_disks &&
7280 rdev->data_offset > rdev->new_data_offset)
7281 return -EINVAL;
7282 }
7283
7284 mddev->delta_disks = raid_disks - mddev->raid_disks;
7285 if (mddev->delta_disks < 0)
7286 mddev->reshape_backwards = 1;
7287 else if (mddev->delta_disks > 0)
7288 mddev->reshape_backwards = 0;
7289
7290 rv = mddev->pers->check_reshape(mddev);
7291 if (rv < 0) {
7292 mddev->delta_disks = 0;
7293 mddev->reshape_backwards = 0;
7294 }
7295 return rv;
7296}
7297
7298/*
7299 * update_array_info is used to change the configuration of an
7300 * on-line array.
7301 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7302 * fields in the info are checked against the array.
7303 * Any differences that cannot be handled will cause an error.
7304 * Normally, only one change can be managed at a time.
7305 */
7306static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7307{
7308 int rv = 0;
7309 int cnt = 0;
7310 int state = 0;
7311
7312 /* calculate expected state,ignoring low bits */
7313 if (mddev->bitmap && mddev->bitmap_info.offset)
7314 state |= (1 << MD_SB_BITMAP_PRESENT);
7315
7316 if (mddev->major_version != info->major_version ||
7317 mddev->minor_version != info->minor_version ||
7318/* mddev->patch_version != info->patch_version || */
7319 mddev->ctime != info->ctime ||
7320 mddev->level != info->level ||
7321/* mddev->layout != info->layout || */
7322 mddev->persistent != !info->not_persistent ||
7323 mddev->chunk_sectors != info->chunk_size >> 9 ||
7324 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7325 ((state^info->state) & 0xfffffe00)
7326 )
7327 return -EINVAL;
7328 /* Check there is only one change */
7329 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7330 cnt++;
7331 if (mddev->raid_disks != info->raid_disks)
7332 cnt++;
7333 if (mddev->layout != info->layout)
7334 cnt++;
7335 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7336 cnt++;
7337 if (cnt == 0)
7338 return 0;
7339 if (cnt > 1)
7340 return -EINVAL;
7341
7342 if (mddev->layout != info->layout) {
7343 /* Change layout
7344 * we don't need to do anything at the md level, the
7345 * personality will take care of it all.
7346 */
7347 if (mddev->pers->check_reshape == NULL)
7348 return -EINVAL;
7349 else {
7350 mddev->new_layout = info->layout;
7351 rv = mddev->pers->check_reshape(mddev);
7352 if (rv)
7353 mddev->new_layout = mddev->layout;
7354 return rv;
7355 }
7356 }
7357 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7358 rv = update_size(mddev, (sector_t)info->size * 2);
7359
7360 if (mddev->raid_disks != info->raid_disks)
7361 rv = update_raid_disks(mddev, info->raid_disks);
7362
7363 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7364 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7365 rv = -EINVAL;
7366 goto err;
7367 }
7368 if (mddev->recovery || mddev->sync_thread) {
7369 rv = -EBUSY;
7370 goto err;
7371 }
7372 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7373 struct bitmap *bitmap;
7374 /* add the bitmap */
7375 if (mddev->bitmap) {
7376 rv = -EEXIST;
7377 goto err;
7378 }
7379 if (mddev->bitmap_info.default_offset == 0) {
7380 rv = -EINVAL;
7381 goto err;
7382 }
7383 mddev->bitmap_info.offset =
7384 mddev->bitmap_info.default_offset;
7385 mddev->bitmap_info.space =
7386 mddev->bitmap_info.default_space;
7387 bitmap = md_bitmap_create(mddev, -1);
7388 mddev_suspend(mddev);
7389 if (!IS_ERR(bitmap)) {
7390 mddev->bitmap = bitmap;
7391 rv = md_bitmap_load(mddev);
7392 } else
7393 rv = PTR_ERR(bitmap);
7394 if (rv)
7395 md_bitmap_destroy(mddev);
7396 mddev_resume(mddev);
7397 } else {
7398 /* remove the bitmap */
7399 if (!mddev->bitmap) {
7400 rv = -ENOENT;
7401 goto err;
7402 }
7403 if (mddev->bitmap->storage.file) {
7404 rv = -EINVAL;
7405 goto err;
7406 }
7407 if (mddev->bitmap_info.nodes) {
7408 /* hold PW on all the bitmap lock */
7409 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7410 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7411 rv = -EPERM;
7412 md_cluster_ops->unlock_all_bitmaps(mddev);
7413 goto err;
7414 }
7415
7416 mddev->bitmap_info.nodes = 0;
7417 md_cluster_ops->leave(mddev);
7418 module_put(md_cluster_mod);
7419 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7420 }
7421 mddev_suspend(mddev);
7422 md_bitmap_destroy(mddev);
7423 mddev_resume(mddev);
7424 mddev->bitmap_info.offset = 0;
7425 }
7426 }
7427 md_update_sb(mddev, 1);
7428 return rv;
7429err:
7430 return rv;
7431}
7432
7433static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7434{
7435 struct md_rdev *rdev;
7436 int err = 0;
7437
7438 if (mddev->pers == NULL)
7439 return -ENODEV;
7440
7441 rcu_read_lock();
7442 rdev = md_find_rdev_rcu(mddev, dev);
7443 if (!rdev)
7444 err = -ENODEV;
7445 else {
7446 md_error(mddev, rdev);
7447 if (!test_bit(Faulty, &rdev->flags))
7448 err = -EBUSY;
7449 }
7450 rcu_read_unlock();
7451 return err;
7452}
7453
7454/*
7455 * We have a problem here : there is no easy way to give a CHS
7456 * virtual geometry. We currently pretend that we have a 2 heads
7457 * 4 sectors (with a BIG number of cylinders...). This drives
7458 * dosfs just mad... ;-)
7459 */
7460static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7461{
7462 struct mddev *mddev = bdev->bd_disk->private_data;
7463
7464 geo->heads = 2;
7465 geo->sectors = 4;
7466 geo->cylinders = mddev->array_sectors / 8;
7467 return 0;
7468}
7469
7470static inline bool md_ioctl_valid(unsigned int cmd)
7471{
7472 switch (cmd) {
7473 case ADD_NEW_DISK:
7474 case GET_ARRAY_INFO:
7475 case GET_BITMAP_FILE:
7476 case GET_DISK_INFO:
7477 case HOT_ADD_DISK:
7478 case HOT_REMOVE_DISK:
7479 case RAID_VERSION:
7480 case RESTART_ARRAY_RW:
7481 case RUN_ARRAY:
7482 case SET_ARRAY_INFO:
7483 case SET_BITMAP_FILE:
7484 case SET_DISK_FAULTY:
7485 case STOP_ARRAY:
7486 case STOP_ARRAY_RO:
7487 case CLUSTERED_DISK_NACK:
7488 return true;
7489 default:
7490 return false;
7491 }
7492}
7493
7494static int md_ioctl(struct block_device *bdev, fmode_t mode,
7495 unsigned int cmd, unsigned long arg)
7496{
7497 int err = 0;
7498 void __user *argp = (void __user *)arg;
7499 struct mddev *mddev = NULL;
7500 bool did_set_md_closing = false;
7501
7502 if (!md_ioctl_valid(cmd))
7503 return -ENOTTY;
7504
7505 switch (cmd) {
7506 case RAID_VERSION:
7507 case GET_ARRAY_INFO:
7508 case GET_DISK_INFO:
7509 break;
7510 default:
7511 if (!capable(CAP_SYS_ADMIN))
7512 return -EACCES;
7513 }
7514
7515 /*
7516 * Commands dealing with the RAID driver but not any
7517 * particular array:
7518 */
7519 switch (cmd) {
7520 case RAID_VERSION:
7521 err = get_version(argp);
7522 goto out;
7523 default:;
7524 }
7525
7526 /*
7527 * Commands creating/starting a new array:
7528 */
7529
7530 mddev = bdev->bd_disk->private_data;
7531
7532 if (!mddev) {
7533 BUG();
7534 goto out;
7535 }
7536
7537 /* Some actions do not requires the mutex */
7538 switch (cmd) {
7539 case GET_ARRAY_INFO:
7540 if (!mddev->raid_disks && !mddev->external)
7541 err = -ENODEV;
7542 else
7543 err = get_array_info(mddev, argp);
7544 goto out;
7545
7546 case GET_DISK_INFO:
7547 if (!mddev->raid_disks && !mddev->external)
7548 err = -ENODEV;
7549 else
7550 err = get_disk_info(mddev, argp);
7551 goto out;
7552
7553 case SET_DISK_FAULTY:
7554 err = set_disk_faulty(mddev, new_decode_dev(arg));
7555 goto out;
7556
7557 case GET_BITMAP_FILE:
7558 err = get_bitmap_file(mddev, argp);
7559 goto out;
7560
7561 }
7562
7563 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK)
7564 flush_rdev_wq(mddev);
7565
7566 if (cmd == HOT_REMOVE_DISK)
7567 /* need to ensure recovery thread has run */
7568 wait_event_interruptible_timeout(mddev->sb_wait,
7569 !test_bit(MD_RECOVERY_NEEDED,
7570 &mddev->recovery),
7571 msecs_to_jiffies(5000));
7572 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7573 /* Need to flush page cache, and ensure no-one else opens
7574 * and writes
7575 */
7576 mutex_lock(&mddev->open_mutex);
7577 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7578 mutex_unlock(&mddev->open_mutex);
7579 err = -EBUSY;
7580 goto out;
7581 }
7582 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
7583 mutex_unlock(&mddev->open_mutex);
7584 err = -EBUSY;
7585 goto out;
7586 }
7587 did_set_md_closing = true;
7588 mutex_unlock(&mddev->open_mutex);
7589 sync_blockdev(bdev);
7590 }
7591 err = mddev_lock(mddev);
7592 if (err) {
7593 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7594 err, cmd);
7595 goto out;
7596 }
7597
7598 if (cmd == SET_ARRAY_INFO) {
7599 mdu_array_info_t info;
7600 if (!arg)
7601 memset(&info, 0, sizeof(info));
7602 else if (copy_from_user(&info, argp, sizeof(info))) {
7603 err = -EFAULT;
7604 goto unlock;
7605 }
7606 if (mddev->pers) {
7607 err = update_array_info(mddev, &info);
7608 if (err) {
7609 pr_warn("md: couldn't update array info. %d\n", err);
7610 goto unlock;
7611 }
7612 goto unlock;
7613 }
7614 if (!list_empty(&mddev->disks)) {
7615 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7616 err = -EBUSY;
7617 goto unlock;
7618 }
7619 if (mddev->raid_disks) {
7620 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7621 err = -EBUSY;
7622 goto unlock;
7623 }
7624 err = md_set_array_info(mddev, &info);
7625 if (err) {
7626 pr_warn("md: couldn't set array info. %d\n", err);
7627 goto unlock;
7628 }
7629 goto unlock;
7630 }
7631
7632 /*
7633 * Commands querying/configuring an existing array:
7634 */
7635 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7636 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7637 if ((!mddev->raid_disks && !mddev->external)
7638 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7639 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7640 && cmd != GET_BITMAP_FILE) {
7641 err = -ENODEV;
7642 goto unlock;
7643 }
7644
7645 /*
7646 * Commands even a read-only array can execute:
7647 */
7648 switch (cmd) {
7649 case RESTART_ARRAY_RW:
7650 err = restart_array(mddev);
7651 goto unlock;
7652
7653 case STOP_ARRAY:
7654 err = do_md_stop(mddev, 0, bdev);
7655 goto unlock;
7656
7657 case STOP_ARRAY_RO:
7658 err = md_set_readonly(mddev, bdev);
7659 goto unlock;
7660
7661 case HOT_REMOVE_DISK:
7662 err = hot_remove_disk(mddev, new_decode_dev(arg));
7663 goto unlock;
7664
7665 case ADD_NEW_DISK:
7666 /* We can support ADD_NEW_DISK on read-only arrays
7667 * only if we are re-adding a preexisting device.
7668 * So require mddev->pers and MD_DISK_SYNC.
7669 */
7670 if (mddev->pers) {
7671 mdu_disk_info_t info;
7672 if (copy_from_user(&info, argp, sizeof(info)))
7673 err = -EFAULT;
7674 else if (!(info.state & (1<<MD_DISK_SYNC)))
7675 /* Need to clear read-only for this */
7676 break;
7677 else
7678 err = md_add_new_disk(mddev, &info);
7679 goto unlock;
7680 }
7681 break;
7682 }
7683
7684 /*
7685 * The remaining ioctls are changing the state of the
7686 * superblock, so we do not allow them on read-only arrays.
7687 */
7688 if (mddev->ro && mddev->pers) {
7689 if (mddev->ro == 2) {
7690 mddev->ro = 0;
7691 sysfs_notify_dirent_safe(mddev->sysfs_state);
7692 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7693 /* mddev_unlock will wake thread */
7694 /* If a device failed while we were read-only, we
7695 * need to make sure the metadata is updated now.
7696 */
7697 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7698 mddev_unlock(mddev);
7699 wait_event(mddev->sb_wait,
7700 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7701 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7702 mddev_lock_nointr(mddev);
7703 }
7704 } else {
7705 err = -EROFS;
7706 goto unlock;
7707 }
7708 }
7709
7710 switch (cmd) {
7711 case ADD_NEW_DISK:
7712 {
7713 mdu_disk_info_t info;
7714 if (copy_from_user(&info, argp, sizeof(info)))
7715 err = -EFAULT;
7716 else
7717 err = md_add_new_disk(mddev, &info);
7718 goto unlock;
7719 }
7720
7721 case CLUSTERED_DISK_NACK:
7722 if (mddev_is_clustered(mddev))
7723 md_cluster_ops->new_disk_ack(mddev, false);
7724 else
7725 err = -EINVAL;
7726 goto unlock;
7727
7728 case HOT_ADD_DISK:
7729 err = hot_add_disk(mddev, new_decode_dev(arg));
7730 goto unlock;
7731
7732 case RUN_ARRAY:
7733 err = do_md_run(mddev);
7734 goto unlock;
7735
7736 case SET_BITMAP_FILE:
7737 err = set_bitmap_file(mddev, (int)arg);
7738 goto unlock;
7739
7740 default:
7741 err = -EINVAL;
7742 goto unlock;
7743 }
7744
7745unlock:
7746 if (mddev->hold_active == UNTIL_IOCTL &&
7747 err != -EINVAL)
7748 mddev->hold_active = 0;
7749 mddev_unlock(mddev);
7750out:
7751 if(did_set_md_closing)
7752 clear_bit(MD_CLOSING, &mddev->flags);
7753 return err;
7754}
7755#ifdef CONFIG_COMPAT
7756static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7757 unsigned int cmd, unsigned long arg)
7758{
7759 switch (cmd) {
7760 case HOT_REMOVE_DISK:
7761 case HOT_ADD_DISK:
7762 case SET_DISK_FAULTY:
7763 case SET_BITMAP_FILE:
7764 /* These take in integer arg, do not convert */
7765 break;
7766 default:
7767 arg = (unsigned long)compat_ptr(arg);
7768 break;
7769 }
7770
7771 return md_ioctl(bdev, mode, cmd, arg);
7772}
7773#endif /* CONFIG_COMPAT */
7774
7775static int md_set_read_only(struct block_device *bdev, bool ro)
7776{
7777 struct mddev *mddev = bdev->bd_disk->private_data;
7778 int err;
7779
7780 err = mddev_lock(mddev);
7781 if (err)
7782 return err;
7783
7784 if (!mddev->raid_disks && !mddev->external) {
7785 err = -ENODEV;
7786 goto out_unlock;
7787 }
7788
7789 /*
7790 * Transitioning to read-auto need only happen for arrays that call
7791 * md_write_start and which are not ready for writes yet.
7792 */
7793 if (!ro && mddev->ro == 1 && mddev->pers) {
7794 err = restart_array(mddev);
7795 if (err)
7796 goto out_unlock;
7797 mddev->ro = 2;
7798 }
7799
7800out_unlock:
7801 mddev_unlock(mddev);
7802 return err;
7803}
7804
7805static int md_open(struct block_device *bdev, fmode_t mode)
7806{
7807 /*
7808 * Succeed if we can lock the mddev, which confirms that
7809 * it isn't being stopped right now.
7810 */
7811 struct mddev *mddev = mddev_find(bdev->bd_dev);
7812 int err;
7813
7814 if (!mddev)
7815 return -ENODEV;
7816
7817 if (mddev->gendisk != bdev->bd_disk) {
7818 /* we are racing with mddev_put which is discarding this
7819 * bd_disk.
7820 */
7821 mddev_put(mddev);
7822 /* Wait until bdev->bd_disk is definitely gone */
7823 if (work_pending(&mddev->del_work))
7824 flush_workqueue(md_misc_wq);
7825 return -EBUSY;
7826 }
7827 BUG_ON(mddev != bdev->bd_disk->private_data);
7828
7829 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7830 goto out;
7831
7832 if (test_bit(MD_CLOSING, &mddev->flags)) {
7833 mutex_unlock(&mddev->open_mutex);
7834 err = -ENODEV;
7835 goto out;
7836 }
7837
7838 err = 0;
7839 atomic_inc(&mddev->openers);
7840 mutex_unlock(&mddev->open_mutex);
7841
7842 bdev_check_media_change(bdev);
7843 out:
7844 if (err)
7845 mddev_put(mddev);
7846 return err;
7847}
7848
7849static void md_release(struct gendisk *disk, fmode_t mode)
7850{
7851 struct mddev *mddev = disk->private_data;
7852
7853 BUG_ON(!mddev);
7854 atomic_dec(&mddev->openers);
7855 mddev_put(mddev);
7856}
7857
7858static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7859{
7860 struct mddev *mddev = disk->private_data;
7861 unsigned int ret = 0;
7862
7863 if (mddev->changed)
7864 ret = DISK_EVENT_MEDIA_CHANGE;
7865 mddev->changed = 0;
7866 return ret;
7867}
7868
7869const struct block_device_operations md_fops =
7870{
7871 .owner = THIS_MODULE,
7872 .submit_bio = md_submit_bio,
7873 .open = md_open,
7874 .release = md_release,
7875 .ioctl = md_ioctl,
7876#ifdef CONFIG_COMPAT
7877 .compat_ioctl = md_compat_ioctl,
7878#endif
7879 .getgeo = md_getgeo,
7880 .check_events = md_check_events,
7881 .set_read_only = md_set_read_only,
7882};
7883
7884static int md_thread(void *arg)
7885{
7886 struct md_thread *thread = arg;
7887
7888 /*
7889 * md_thread is a 'system-thread', it's priority should be very
7890 * high. We avoid resource deadlocks individually in each
7891 * raid personality. (RAID5 does preallocation) We also use RR and
7892 * the very same RT priority as kswapd, thus we will never get
7893 * into a priority inversion deadlock.
7894 *
7895 * we definitely have to have equal or higher priority than
7896 * bdflush, otherwise bdflush will deadlock if there are too
7897 * many dirty RAID5 blocks.
7898 */
7899
7900 allow_signal(SIGKILL);
7901 while (!kthread_should_stop()) {
7902
7903 /* We need to wait INTERRUPTIBLE so that
7904 * we don't add to the load-average.
7905 * That means we need to be sure no signals are
7906 * pending
7907 */
7908 if (signal_pending(current))
7909 flush_signals(current);
7910
7911 wait_event_interruptible_timeout
7912 (thread->wqueue,
7913 test_bit(THREAD_WAKEUP, &thread->flags)
7914 || kthread_should_stop() || kthread_should_park(),
7915 thread->timeout);
7916
7917 clear_bit(THREAD_WAKEUP, &thread->flags);
7918 if (kthread_should_park())
7919 kthread_parkme();
7920 if (!kthread_should_stop())
7921 thread->run(thread);
7922 }
7923
7924 return 0;
7925}
7926
7927void md_wakeup_thread(struct md_thread *thread)
7928{
7929 if (thread) {
7930 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7931 set_bit(THREAD_WAKEUP, &thread->flags);
7932 wake_up(&thread->wqueue);
7933 }
7934}
7935EXPORT_SYMBOL(md_wakeup_thread);
7936
7937struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7938 struct mddev *mddev, const char *name)
7939{
7940 struct md_thread *thread;
7941
7942 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7943 if (!thread)
7944 return NULL;
7945
7946 init_waitqueue_head(&thread->wqueue);
7947
7948 thread->run = run;
7949 thread->mddev = mddev;
7950 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7951 thread->tsk = kthread_run(md_thread, thread,
7952 "%s_%s",
7953 mdname(thread->mddev),
7954 name);
7955 if (IS_ERR(thread->tsk)) {
7956 kfree(thread);
7957 return NULL;
7958 }
7959 return thread;
7960}
7961EXPORT_SYMBOL(md_register_thread);
7962
7963void md_unregister_thread(struct md_thread **threadp)
7964{
7965 struct md_thread *thread = *threadp;
7966 if (!thread)
7967 return;
7968 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7969 /* Locking ensures that mddev_unlock does not wake_up a
7970 * non-existent thread
7971 */
7972 spin_lock(&pers_lock);
7973 *threadp = NULL;
7974 spin_unlock(&pers_lock);
7975
7976 kthread_stop(thread->tsk);
7977 kfree(thread);
7978}
7979EXPORT_SYMBOL(md_unregister_thread);
7980
7981void md_error(struct mddev *mddev, struct md_rdev *rdev)
7982{
7983 if (!rdev || test_bit(Faulty, &rdev->flags))
7984 return;
7985
7986 if (!mddev->pers || !mddev->pers->error_handler)
7987 return;
7988 mddev->pers->error_handler(mddev,rdev);
7989 if (mddev->degraded)
7990 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7991 sysfs_notify_dirent_safe(rdev->sysfs_state);
7992 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7993 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7994 md_wakeup_thread(mddev->thread);
7995 if (mddev->event_work.func)
7996 queue_work(md_misc_wq, &mddev->event_work);
7997 md_new_event();
7998}
7999EXPORT_SYMBOL(md_error);
8000
8001/* seq_file implementation /proc/mdstat */
8002
8003static void status_unused(struct seq_file *seq)
8004{
8005 int i = 0;
8006 struct md_rdev *rdev;
8007
8008 seq_printf(seq, "unused devices: ");
8009
8010 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
8011 char b[BDEVNAME_SIZE];
8012 i++;
8013 seq_printf(seq, "%s ",
8014 bdevname(rdev->bdev,b));
8015 }
8016 if (!i)
8017 seq_printf(seq, "<none>");
8018
8019 seq_printf(seq, "\n");
8020}
8021
8022static int status_resync(struct seq_file *seq, struct mddev *mddev)
8023{
8024 sector_t max_sectors, resync, res;
8025 unsigned long dt, db = 0;
8026 sector_t rt, curr_mark_cnt, resync_mark_cnt;
8027 int scale, recovery_active;
8028 unsigned int per_milli;
8029
8030 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8031 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8032 max_sectors = mddev->resync_max_sectors;
8033 else
8034 max_sectors = mddev->dev_sectors;
8035
8036 resync = mddev->curr_resync;
8037 if (resync <= 3) {
8038 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8039 /* Still cleaning up */
8040 resync = max_sectors;
8041 } else if (resync > max_sectors)
8042 resync = max_sectors;
8043 else
8044 resync -= atomic_read(&mddev->recovery_active);
8045
8046 if (resync == 0) {
8047 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8048 struct md_rdev *rdev;
8049
8050 rdev_for_each(rdev, mddev)
8051 if (rdev->raid_disk >= 0 &&
8052 !test_bit(Faulty, &rdev->flags) &&
8053 rdev->recovery_offset != MaxSector &&
8054 rdev->recovery_offset) {
8055 seq_printf(seq, "\trecover=REMOTE");
8056 return 1;
8057 }
8058 if (mddev->reshape_position != MaxSector)
8059 seq_printf(seq, "\treshape=REMOTE");
8060 else
8061 seq_printf(seq, "\tresync=REMOTE");
8062 return 1;
8063 }
8064 if (mddev->recovery_cp < MaxSector) {
8065 seq_printf(seq, "\tresync=PENDING");
8066 return 1;
8067 }
8068 return 0;
8069 }
8070 if (resync < 3) {
8071 seq_printf(seq, "\tresync=DELAYED");
8072 return 1;
8073 }
8074
8075 WARN_ON(max_sectors == 0);
8076 /* Pick 'scale' such that (resync>>scale)*1000 will fit
8077 * in a sector_t, and (max_sectors>>scale) will fit in a
8078 * u32, as those are the requirements for sector_div.
8079 * Thus 'scale' must be at least 10
8080 */
8081 scale = 10;
8082 if (sizeof(sector_t) > sizeof(unsigned long)) {
8083 while ( max_sectors/2 > (1ULL<<(scale+32)))
8084 scale++;
8085 }
8086 res = (resync>>scale)*1000;
8087 sector_div(res, (u32)((max_sectors>>scale)+1));
8088
8089 per_milli = res;
8090 {
8091 int i, x = per_milli/50, y = 20-x;
8092 seq_printf(seq, "[");
8093 for (i = 0; i < x; i++)
8094 seq_printf(seq, "=");
8095 seq_printf(seq, ">");
8096 for (i = 0; i < y; i++)
8097 seq_printf(seq, ".");
8098 seq_printf(seq, "] ");
8099 }
8100 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8101 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8102 "reshape" :
8103 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8104 "check" :
8105 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8106 "resync" : "recovery"))),
8107 per_milli/10, per_milli % 10,
8108 (unsigned long long) resync/2,
8109 (unsigned long long) max_sectors/2);
8110
8111 /*
8112 * dt: time from mark until now
8113 * db: blocks written from mark until now
8114 * rt: remaining time
8115 *
8116 * rt is a sector_t, which is always 64bit now. We are keeping
8117 * the original algorithm, but it is not really necessary.
8118 *
8119 * Original algorithm:
8120 * So we divide before multiply in case it is 32bit and close
8121 * to the limit.
8122 * We scale the divisor (db) by 32 to avoid losing precision
8123 * near the end of resync when the number of remaining sectors
8124 * is close to 'db'.
8125 * We then divide rt by 32 after multiplying by db to compensate.
8126 * The '+1' avoids division by zero if db is very small.
8127 */
8128 dt = ((jiffies - mddev->resync_mark) / HZ);
8129 if (!dt) dt++;
8130
8131 curr_mark_cnt = mddev->curr_mark_cnt;
8132 recovery_active = atomic_read(&mddev->recovery_active);
8133 resync_mark_cnt = mddev->resync_mark_cnt;
8134
8135 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8136 db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8137
8138 rt = max_sectors - resync; /* number of remaining sectors */
8139 rt = div64_u64(rt, db/32+1);
8140 rt *= dt;
8141 rt >>= 5;
8142
8143 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8144 ((unsigned long)rt % 60)/6);
8145
8146 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8147 return 1;
8148}
8149
8150static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8151{
8152 struct list_head *tmp;
8153 loff_t l = *pos;
8154 struct mddev *mddev;
8155
8156 if (l == 0x10000) {
8157 ++*pos;
8158 return (void *)2;
8159 }
8160 if (l > 0x10000)
8161 return NULL;
8162 if (!l--)
8163 /* header */
8164 return (void*)1;
8165
8166 spin_lock(&all_mddevs_lock);
8167 list_for_each(tmp,&all_mddevs)
8168 if (!l--) {
8169 mddev = list_entry(tmp, struct mddev, all_mddevs);
8170 mddev_get(mddev);
8171 spin_unlock(&all_mddevs_lock);
8172 return mddev;
8173 }
8174 spin_unlock(&all_mddevs_lock);
8175 if (!l--)
8176 return (void*)2;/* tail */
8177 return NULL;
8178}
8179
8180static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8181{
8182 struct list_head *tmp;
8183 struct mddev *next_mddev, *mddev = v;
8184
8185 ++*pos;
8186 if (v == (void*)2)
8187 return NULL;
8188
8189 spin_lock(&all_mddevs_lock);
8190 if (v == (void*)1)
8191 tmp = all_mddevs.next;
8192 else
8193 tmp = mddev->all_mddevs.next;
8194 if (tmp != &all_mddevs)
8195 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
8196 else {
8197 next_mddev = (void*)2;
8198 *pos = 0x10000;
8199 }
8200 spin_unlock(&all_mddevs_lock);
8201
8202 if (v != (void*)1)
8203 mddev_put(mddev);
8204 return next_mddev;
8205
8206}
8207
8208static void md_seq_stop(struct seq_file *seq, void *v)
8209{
8210 struct mddev *mddev = v;
8211
8212 if (mddev && v != (void*)1 && v != (void*)2)
8213 mddev_put(mddev);
8214}
8215
8216static int md_seq_show(struct seq_file *seq, void *v)
8217{
8218 struct mddev *mddev = v;
8219 sector_t sectors;
8220 struct md_rdev *rdev;
8221
8222 if (v == (void*)1) {
8223 struct md_personality *pers;
8224 seq_printf(seq, "Personalities : ");
8225 spin_lock(&pers_lock);
8226 list_for_each_entry(pers, &pers_list, list)
8227 seq_printf(seq, "[%s] ", pers->name);
8228
8229 spin_unlock(&pers_lock);
8230 seq_printf(seq, "\n");
8231 seq->poll_event = atomic_read(&md_event_count);
8232 return 0;
8233 }
8234 if (v == (void*)2) {
8235 status_unused(seq);
8236 return 0;
8237 }
8238
8239 spin_lock(&mddev->lock);
8240 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8241 seq_printf(seq, "%s : %sactive", mdname(mddev),
8242 mddev->pers ? "" : "in");
8243 if (mddev->pers) {
8244 if (mddev->ro==1)
8245 seq_printf(seq, " (read-only)");
8246 if (mddev->ro==2)
8247 seq_printf(seq, " (auto-read-only)");
8248 seq_printf(seq, " %s", mddev->pers->name);
8249 }
8250
8251 sectors = 0;
8252 rcu_read_lock();
8253 rdev_for_each_rcu(rdev, mddev) {
8254 char b[BDEVNAME_SIZE];
8255 seq_printf(seq, " %s[%d]",
8256 bdevname(rdev->bdev,b), rdev->desc_nr);
8257 if (test_bit(WriteMostly, &rdev->flags))
8258 seq_printf(seq, "(W)");
8259 if (test_bit(Journal, &rdev->flags))
8260 seq_printf(seq, "(J)");
8261 if (test_bit(Faulty, &rdev->flags)) {
8262 seq_printf(seq, "(F)");
8263 continue;
8264 }
8265 if (rdev->raid_disk < 0)
8266 seq_printf(seq, "(S)"); /* spare */
8267 if (test_bit(Replacement, &rdev->flags))
8268 seq_printf(seq, "(R)");
8269 sectors += rdev->sectors;
8270 }
8271 rcu_read_unlock();
8272
8273 if (!list_empty(&mddev->disks)) {
8274 if (mddev->pers)
8275 seq_printf(seq, "\n %llu blocks",
8276 (unsigned long long)
8277 mddev->array_sectors / 2);
8278 else
8279 seq_printf(seq, "\n %llu blocks",
8280 (unsigned long long)sectors / 2);
8281 }
8282 if (mddev->persistent) {
8283 if (mddev->major_version != 0 ||
8284 mddev->minor_version != 90) {
8285 seq_printf(seq," super %d.%d",
8286 mddev->major_version,
8287 mddev->minor_version);
8288 }
8289 } else if (mddev->external)
8290 seq_printf(seq, " super external:%s",
8291 mddev->metadata_type);
8292 else
8293 seq_printf(seq, " super non-persistent");
8294
8295 if (mddev->pers) {
8296 mddev->pers->status(seq, mddev);
8297 seq_printf(seq, "\n ");
8298 if (mddev->pers->sync_request) {
8299 if (status_resync(seq, mddev))
8300 seq_printf(seq, "\n ");
8301 }
8302 } else
8303 seq_printf(seq, "\n ");
8304
8305 md_bitmap_status(seq, mddev->bitmap);
8306
8307 seq_printf(seq, "\n");
8308 }
8309 spin_unlock(&mddev->lock);
8310
8311 return 0;
8312}
8313
8314static const struct seq_operations md_seq_ops = {
8315 .start = md_seq_start,
8316 .next = md_seq_next,
8317 .stop = md_seq_stop,
8318 .show = md_seq_show,
8319};
8320
8321static int md_seq_open(struct inode *inode, struct file *file)
8322{
8323 struct seq_file *seq;
8324 int error;
8325
8326 error = seq_open(file, &md_seq_ops);
8327 if (error)
8328 return error;
8329
8330 seq = file->private_data;
8331 seq->poll_event = atomic_read(&md_event_count);
8332 return error;
8333}
8334
8335static int md_unloading;
8336static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8337{
8338 struct seq_file *seq = filp->private_data;
8339 __poll_t mask;
8340
8341 if (md_unloading)
8342 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8343 poll_wait(filp, &md_event_waiters, wait);
8344
8345 /* always allow read */
8346 mask = EPOLLIN | EPOLLRDNORM;
8347
8348 if (seq->poll_event != atomic_read(&md_event_count))
8349 mask |= EPOLLERR | EPOLLPRI;
8350 return mask;
8351}
8352
8353static const struct proc_ops mdstat_proc_ops = {
8354 .proc_open = md_seq_open,
8355 .proc_read = seq_read,
8356 .proc_lseek = seq_lseek,
8357 .proc_release = seq_release,
8358 .proc_poll = mdstat_poll,
8359};
8360
8361int register_md_personality(struct md_personality *p)
8362{
8363 pr_debug("md: %s personality registered for level %d\n",
8364 p->name, p->level);
8365 spin_lock(&pers_lock);
8366 list_add_tail(&p->list, &pers_list);
8367 spin_unlock(&pers_lock);
8368 return 0;
8369}
8370EXPORT_SYMBOL(register_md_personality);
8371
8372int unregister_md_personality(struct md_personality *p)
8373{
8374 pr_debug("md: %s personality unregistered\n", p->name);
8375 spin_lock(&pers_lock);
8376 list_del_init(&p->list);
8377 spin_unlock(&pers_lock);
8378 return 0;
8379}
8380EXPORT_SYMBOL(unregister_md_personality);
8381
8382int register_md_cluster_operations(struct md_cluster_operations *ops,
8383 struct module *module)
8384{
8385 int ret = 0;
8386 spin_lock(&pers_lock);
8387 if (md_cluster_ops != NULL)
8388 ret = -EALREADY;
8389 else {
8390 md_cluster_ops = ops;
8391 md_cluster_mod = module;
8392 }
8393 spin_unlock(&pers_lock);
8394 return ret;
8395}
8396EXPORT_SYMBOL(register_md_cluster_operations);
8397
8398int unregister_md_cluster_operations(void)
8399{
8400 spin_lock(&pers_lock);
8401 md_cluster_ops = NULL;
8402 spin_unlock(&pers_lock);
8403 return 0;
8404}
8405EXPORT_SYMBOL(unregister_md_cluster_operations);
8406
8407int md_setup_cluster(struct mddev *mddev, int nodes)
8408{
8409 int ret;
8410 if (!md_cluster_ops)
8411 request_module("md-cluster");
8412 spin_lock(&pers_lock);
8413 /* ensure module won't be unloaded */
8414 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8415 pr_warn("can't find md-cluster module or get its reference.\n");
8416 spin_unlock(&pers_lock);
8417 return -ENOENT;
8418 }
8419 spin_unlock(&pers_lock);
8420
8421 ret = md_cluster_ops->join(mddev, nodes);
8422 if (!ret)
8423 mddev->safemode_delay = 0;
8424 return ret;
8425}
8426
8427void md_cluster_stop(struct mddev *mddev)
8428{
8429 if (!md_cluster_ops)
8430 return;
8431 md_cluster_ops->leave(mddev);
8432 module_put(md_cluster_mod);
8433}
8434
8435static int is_mddev_idle(struct mddev *mddev, int init)
8436{
8437 struct md_rdev *rdev;
8438 int idle;
8439 int curr_events;
8440
8441 idle = 1;
8442 rcu_read_lock();
8443 rdev_for_each_rcu(rdev, mddev) {
8444 struct gendisk *disk = rdev->bdev->bd_disk;
8445 curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
8446 atomic_read(&disk->sync_io);
8447 /* sync IO will cause sync_io to increase before the disk_stats
8448 * as sync_io is counted when a request starts, and
8449 * disk_stats is counted when it completes.
8450 * So resync activity will cause curr_events to be smaller than
8451 * when there was no such activity.
8452 * non-sync IO will cause disk_stat to increase without
8453 * increasing sync_io so curr_events will (eventually)
8454 * be larger than it was before. Once it becomes
8455 * substantially larger, the test below will cause
8456 * the array to appear non-idle, and resync will slow
8457 * down.
8458 * If there is a lot of outstanding resync activity when
8459 * we set last_event to curr_events, then all that activity
8460 * completing might cause the array to appear non-idle
8461 * and resync will be slowed down even though there might
8462 * not have been non-resync activity. This will only
8463 * happen once though. 'last_events' will soon reflect
8464 * the state where there is little or no outstanding
8465 * resync requests, and further resync activity will
8466 * always make curr_events less than last_events.
8467 *
8468 */
8469 if (init || curr_events - rdev->last_events > 64) {
8470 rdev->last_events = curr_events;
8471 idle = 0;
8472 }
8473 }
8474 rcu_read_unlock();
8475 return idle;
8476}
8477
8478void md_done_sync(struct mddev *mddev, int blocks, int ok)
8479{
8480 /* another "blocks" (512byte) blocks have been synced */
8481 atomic_sub(blocks, &mddev->recovery_active);
8482 wake_up(&mddev->recovery_wait);
8483 if (!ok) {
8484 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8485 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8486 md_wakeup_thread(mddev->thread);
8487 // stop recovery, signal do_sync ....
8488 }
8489}
8490EXPORT_SYMBOL(md_done_sync);
8491
8492/* md_write_start(mddev, bi)
8493 * If we need to update some array metadata (e.g. 'active' flag
8494 * in superblock) before writing, schedule a superblock update
8495 * and wait for it to complete.
8496 * A return value of 'false' means that the write wasn't recorded
8497 * and cannot proceed as the array is being suspend.
8498 */
8499bool md_write_start(struct mddev *mddev, struct bio *bi)
8500{
8501 int did_change = 0;
8502
8503 if (bio_data_dir(bi) != WRITE)
8504 return true;
8505
8506 BUG_ON(mddev->ro == 1);
8507 if (mddev->ro == 2) {
8508 /* need to switch to read/write */
8509 mddev->ro = 0;
8510 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8511 md_wakeup_thread(mddev->thread);
8512 md_wakeup_thread(mddev->sync_thread);
8513 did_change = 1;
8514 }
8515 rcu_read_lock();
8516 percpu_ref_get(&mddev->writes_pending);
8517 smp_mb(); /* Match smp_mb in set_in_sync() */
8518 if (mddev->safemode == 1)
8519 mddev->safemode = 0;
8520 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8521 if (mddev->in_sync || mddev->sync_checkers) {
8522 spin_lock(&mddev->lock);
8523 if (mddev->in_sync) {
8524 mddev->in_sync = 0;
8525 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8526 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8527 md_wakeup_thread(mddev->thread);
8528 did_change = 1;
8529 }
8530 spin_unlock(&mddev->lock);
8531 }
8532 rcu_read_unlock();
8533 if (did_change)
8534 sysfs_notify_dirent_safe(mddev->sysfs_state);
8535 if (!mddev->has_superblocks)
8536 return true;
8537 wait_event(mddev->sb_wait,
8538 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8539 mddev->suspended);
8540 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8541 percpu_ref_put(&mddev->writes_pending);
8542 return false;
8543 }
8544 return true;
8545}
8546EXPORT_SYMBOL(md_write_start);
8547
8548/* md_write_inc can only be called when md_write_start() has
8549 * already been called at least once of the current request.
8550 * It increments the counter and is useful when a single request
8551 * is split into several parts. Each part causes an increment and
8552 * so needs a matching md_write_end().
8553 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8554 * a spinlocked region.
8555 */
8556void md_write_inc(struct mddev *mddev, struct bio *bi)
8557{
8558 if (bio_data_dir(bi) != WRITE)
8559 return;
8560 WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8561 percpu_ref_get(&mddev->writes_pending);
8562}
8563EXPORT_SYMBOL(md_write_inc);
8564
8565void md_write_end(struct mddev *mddev)
8566{
8567 percpu_ref_put(&mddev->writes_pending);
8568
8569 if (mddev->safemode == 2)
8570 md_wakeup_thread(mddev->thread);
8571 else if (mddev->safemode_delay)
8572 /* The roundup() ensures this only performs locking once
8573 * every ->safemode_delay jiffies
8574 */
8575 mod_timer(&mddev->safemode_timer,
8576 roundup(jiffies, mddev->safemode_delay) +
8577 mddev->safemode_delay);
8578}
8579
8580EXPORT_SYMBOL(md_write_end);
8581
8582/* This is used by raid0 and raid10 */
8583void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev,
8584 struct bio *bio, sector_t start, sector_t size)
8585{
8586 struct bio *discard_bio = NULL;
8587
8588 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 0,
8589 &discard_bio) || !discard_bio)
8590 return;
8591
8592 bio_chain(discard_bio, bio);
8593 bio_clone_blkg_association(discard_bio, bio);
8594 if (mddev->gendisk)
8595 trace_block_bio_remap(discard_bio,
8596 disk_devt(mddev->gendisk),
8597 bio->bi_iter.bi_sector);
8598 submit_bio_noacct(discard_bio);
8599}
8600EXPORT_SYMBOL_GPL(md_submit_discard_bio);
8601
8602int acct_bioset_init(struct mddev *mddev)
8603{
8604 int err = 0;
8605
8606 if (!bioset_initialized(&mddev->io_acct_set))
8607 err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE,
8608 offsetof(struct md_io_acct, bio_clone), 0);
8609 return err;
8610}
8611EXPORT_SYMBOL_GPL(acct_bioset_init);
8612
8613void acct_bioset_exit(struct mddev *mddev)
8614{
8615 bioset_exit(&mddev->io_acct_set);
8616}
8617EXPORT_SYMBOL_GPL(acct_bioset_exit);
8618
8619static void md_end_io_acct(struct bio *bio)
8620{
8621 struct md_io_acct *md_io_acct = bio->bi_private;
8622 struct bio *orig_bio = md_io_acct->orig_bio;
8623
8624 orig_bio->bi_status = bio->bi_status;
8625
8626 bio_end_io_acct(orig_bio, md_io_acct->start_time);
8627 bio_put(bio);
8628 bio_endio(orig_bio);
8629}
8630
8631/*
8632 * Used by personalities that don't already clone the bio and thus can't
8633 * easily add the timestamp to their extended bio structure.
8634 */
8635void md_account_bio(struct mddev *mddev, struct bio **bio)
8636{
8637 struct block_device *bdev = (*bio)->bi_bdev;
8638 struct md_io_acct *md_io_acct;
8639 struct bio *clone;
8640
8641 if (!blk_queue_io_stat(bdev->bd_disk->queue))
8642 return;
8643
8644 clone = bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_acct_set);
8645 md_io_acct = container_of(clone, struct md_io_acct, bio_clone);
8646 md_io_acct->orig_bio = *bio;
8647 md_io_acct->start_time = bio_start_io_acct(*bio);
8648
8649 clone->bi_end_io = md_end_io_acct;
8650 clone->bi_private = md_io_acct;
8651 *bio = clone;
8652}
8653EXPORT_SYMBOL_GPL(md_account_bio);
8654
8655/* md_allow_write(mddev)
8656 * Calling this ensures that the array is marked 'active' so that writes
8657 * may proceed without blocking. It is important to call this before
8658 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8659 * Must be called with mddev_lock held.
8660 */
8661void md_allow_write(struct mddev *mddev)
8662{
8663 if (!mddev->pers)
8664 return;
8665 if (mddev->ro)
8666 return;
8667 if (!mddev->pers->sync_request)
8668 return;
8669
8670 spin_lock(&mddev->lock);
8671 if (mddev->in_sync) {
8672 mddev->in_sync = 0;
8673 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8674 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8675 if (mddev->safemode_delay &&
8676 mddev->safemode == 0)
8677 mddev->safemode = 1;
8678 spin_unlock(&mddev->lock);
8679 md_update_sb(mddev, 0);
8680 sysfs_notify_dirent_safe(mddev->sysfs_state);
8681 /* wait for the dirty state to be recorded in the metadata */
8682 wait_event(mddev->sb_wait,
8683 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8684 } else
8685 spin_unlock(&mddev->lock);
8686}
8687EXPORT_SYMBOL_GPL(md_allow_write);
8688
8689#define SYNC_MARKS 10
8690#define SYNC_MARK_STEP (3*HZ)
8691#define UPDATE_FREQUENCY (5*60*HZ)
8692void md_do_sync(struct md_thread *thread)
8693{
8694 struct mddev *mddev = thread->mddev;
8695 struct mddev *mddev2;
8696 unsigned int currspeed = 0, window;
8697 sector_t max_sectors,j, io_sectors, recovery_done;
8698 unsigned long mark[SYNC_MARKS];
8699 unsigned long update_time;
8700 sector_t mark_cnt[SYNC_MARKS];
8701 int last_mark,m;
8702 struct list_head *tmp;
8703 sector_t last_check;
8704 int skipped = 0;
8705 struct md_rdev *rdev;
8706 char *desc, *action = NULL;
8707 struct blk_plug plug;
8708 int ret;
8709
8710 /* just incase thread restarts... */
8711 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8712 test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8713 return;
8714 if (mddev->ro) {/* never try to sync a read-only array */
8715 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8716 return;
8717 }
8718
8719 if (mddev_is_clustered(mddev)) {
8720 ret = md_cluster_ops->resync_start(mddev);
8721 if (ret)
8722 goto skip;
8723
8724 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8725 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8726 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8727 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8728 && ((unsigned long long)mddev->curr_resync_completed
8729 < (unsigned long long)mddev->resync_max_sectors))
8730 goto skip;
8731 }
8732
8733 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8734 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8735 desc = "data-check";
8736 action = "check";
8737 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8738 desc = "requested-resync";
8739 action = "repair";
8740 } else
8741 desc = "resync";
8742 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8743 desc = "reshape";
8744 else
8745 desc = "recovery";
8746
8747 mddev->last_sync_action = action ?: desc;
8748
8749 /* we overload curr_resync somewhat here.
8750 * 0 == not engaged in resync at all
8751 * 2 == checking that there is no conflict with another sync
8752 * 1 == like 2, but have yielded to allow conflicting resync to
8753 * commence
8754 * other == active in resync - this many blocks
8755 *
8756 * Before starting a resync we must have set curr_resync to
8757 * 2, and then checked that every "conflicting" array has curr_resync
8758 * less than ours. When we find one that is the same or higher
8759 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8760 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8761 * This will mean we have to start checking from the beginning again.
8762 *
8763 */
8764
8765 do {
8766 int mddev2_minor = -1;
8767 mddev->curr_resync = 2;
8768
8769 try_again:
8770 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8771 goto skip;
8772 for_each_mddev(mddev2, tmp) {
8773 if (mddev2 == mddev)
8774 continue;
8775 if (!mddev->parallel_resync
8776 && mddev2->curr_resync
8777 && match_mddev_units(mddev, mddev2)) {
8778 DEFINE_WAIT(wq);
8779 if (mddev < mddev2 && mddev->curr_resync == 2) {
8780 /* arbitrarily yield */
8781 mddev->curr_resync = 1;
8782 wake_up(&resync_wait);
8783 }
8784 if (mddev > mddev2 && mddev->curr_resync == 1)
8785 /* no need to wait here, we can wait the next
8786 * time 'round when curr_resync == 2
8787 */
8788 continue;
8789 /* We need to wait 'interruptible' so as not to
8790 * contribute to the load average, and not to
8791 * be caught by 'softlockup'
8792 */
8793 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8794 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8795 mddev2->curr_resync >= mddev->curr_resync) {
8796 if (mddev2_minor != mddev2->md_minor) {
8797 mddev2_minor = mddev2->md_minor;
8798 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8799 desc, mdname(mddev),
8800 mdname(mddev2));
8801 }
8802 mddev_put(mddev2);
8803 if (signal_pending(current))
8804 flush_signals(current);
8805 schedule();
8806 finish_wait(&resync_wait, &wq);
8807 goto try_again;
8808 }
8809 finish_wait(&resync_wait, &wq);
8810 }
8811 }
8812 } while (mddev->curr_resync < 2);
8813
8814 j = 0;
8815 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8816 /* resync follows the size requested by the personality,
8817 * which defaults to physical size, but can be virtual size
8818 */
8819 max_sectors = mddev->resync_max_sectors;
8820 atomic64_set(&mddev->resync_mismatches, 0);
8821 /* we don't use the checkpoint if there's a bitmap */
8822 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8823 j = mddev->resync_min;
8824 else if (!mddev->bitmap)
8825 j = mddev->recovery_cp;
8826
8827 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8828 max_sectors = mddev->resync_max_sectors;
8829 /*
8830 * If the original node aborts reshaping then we continue the
8831 * reshaping, so set j again to avoid restart reshape from the
8832 * first beginning
8833 */
8834 if (mddev_is_clustered(mddev) &&
8835 mddev->reshape_position != MaxSector)
8836 j = mddev->reshape_position;
8837 } else {
8838 /* recovery follows the physical size of devices */
8839 max_sectors = mddev->dev_sectors;
8840 j = MaxSector;
8841 rcu_read_lock();
8842 rdev_for_each_rcu(rdev, mddev)
8843 if (rdev->raid_disk >= 0 &&
8844 !test_bit(Journal, &rdev->flags) &&
8845 !test_bit(Faulty, &rdev->flags) &&
8846 !test_bit(In_sync, &rdev->flags) &&
8847 rdev->recovery_offset < j)
8848 j = rdev->recovery_offset;
8849 rcu_read_unlock();
8850
8851 /* If there is a bitmap, we need to make sure all
8852 * writes that started before we added a spare
8853 * complete before we start doing a recovery.
8854 * Otherwise the write might complete and (via
8855 * bitmap_endwrite) set a bit in the bitmap after the
8856 * recovery has checked that bit and skipped that
8857 * region.
8858 */
8859 if (mddev->bitmap) {
8860 mddev->pers->quiesce(mddev, 1);
8861 mddev->pers->quiesce(mddev, 0);
8862 }
8863 }
8864
8865 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8866 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8867 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8868 speed_max(mddev), desc);
8869
8870 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8871
8872 io_sectors = 0;
8873 for (m = 0; m < SYNC_MARKS; m++) {
8874 mark[m] = jiffies;
8875 mark_cnt[m] = io_sectors;
8876 }
8877 last_mark = 0;
8878 mddev->resync_mark = mark[last_mark];
8879 mddev->resync_mark_cnt = mark_cnt[last_mark];
8880
8881 /*
8882 * Tune reconstruction:
8883 */
8884 window = 32 * (PAGE_SIZE / 512);
8885 pr_debug("md: using %dk window, over a total of %lluk.\n",
8886 window/2, (unsigned long long)max_sectors/2);
8887
8888 atomic_set(&mddev->recovery_active, 0);
8889 last_check = 0;
8890
8891 if (j>2) {
8892 pr_debug("md: resuming %s of %s from checkpoint.\n",
8893 desc, mdname(mddev));
8894 mddev->curr_resync = j;
8895 } else
8896 mddev->curr_resync = 3; /* no longer delayed */
8897 mddev->curr_resync_completed = j;
8898 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8899 md_new_event();
8900 update_time = jiffies;
8901
8902 blk_start_plug(&plug);
8903 while (j < max_sectors) {
8904 sector_t sectors;
8905
8906 skipped = 0;
8907
8908 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8909 ((mddev->curr_resync > mddev->curr_resync_completed &&
8910 (mddev->curr_resync - mddev->curr_resync_completed)
8911 > (max_sectors >> 4)) ||
8912 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8913 (j - mddev->curr_resync_completed)*2
8914 >= mddev->resync_max - mddev->curr_resync_completed ||
8915 mddev->curr_resync_completed > mddev->resync_max
8916 )) {
8917 /* time to update curr_resync_completed */
8918 wait_event(mddev->recovery_wait,
8919 atomic_read(&mddev->recovery_active) == 0);
8920 mddev->curr_resync_completed = j;
8921 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8922 j > mddev->recovery_cp)
8923 mddev->recovery_cp = j;
8924 update_time = jiffies;
8925 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8926 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8927 }
8928
8929 while (j >= mddev->resync_max &&
8930 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8931 /* As this condition is controlled by user-space,
8932 * we can block indefinitely, so use '_interruptible'
8933 * to avoid triggering warnings.
8934 */
8935 flush_signals(current); /* just in case */
8936 wait_event_interruptible(mddev->recovery_wait,
8937 mddev->resync_max > j
8938 || test_bit(MD_RECOVERY_INTR,
8939 &mddev->recovery));
8940 }
8941
8942 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8943 break;
8944
8945 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8946 if (sectors == 0) {
8947 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8948 break;
8949 }
8950
8951 if (!skipped) { /* actual IO requested */
8952 io_sectors += sectors;
8953 atomic_add(sectors, &mddev->recovery_active);
8954 }
8955
8956 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8957 break;
8958
8959 j += sectors;
8960 if (j > max_sectors)
8961 /* when skipping, extra large numbers can be returned. */
8962 j = max_sectors;
8963 if (j > 2)
8964 mddev->curr_resync = j;
8965 mddev->curr_mark_cnt = io_sectors;
8966 if (last_check == 0)
8967 /* this is the earliest that rebuild will be
8968 * visible in /proc/mdstat
8969 */
8970 md_new_event();
8971
8972 if (last_check + window > io_sectors || j == max_sectors)
8973 continue;
8974
8975 last_check = io_sectors;
8976 repeat:
8977 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8978 /* step marks */
8979 int next = (last_mark+1) % SYNC_MARKS;
8980
8981 mddev->resync_mark = mark[next];
8982 mddev->resync_mark_cnt = mark_cnt[next];
8983 mark[next] = jiffies;
8984 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8985 last_mark = next;
8986 }
8987
8988 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8989 break;
8990
8991 /*
8992 * this loop exits only if either when we are slower than
8993 * the 'hard' speed limit, or the system was IO-idle for
8994 * a jiffy.
8995 * the system might be non-idle CPU-wise, but we only care
8996 * about not overloading the IO subsystem. (things like an
8997 * e2fsck being done on the RAID array should execute fast)
8998 */
8999 cond_resched();
9000
9001 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
9002 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
9003 /((jiffies-mddev->resync_mark)/HZ +1) +1;
9004
9005 if (currspeed > speed_min(mddev)) {
9006 if (currspeed > speed_max(mddev)) {
9007 msleep(500);
9008 goto repeat;
9009 }
9010 if (!is_mddev_idle(mddev, 0)) {
9011 /*
9012 * Give other IO more of a chance.
9013 * The faster the devices, the less we wait.
9014 */
9015 wait_event(mddev->recovery_wait,
9016 !atomic_read(&mddev->recovery_active));
9017 }
9018 }
9019 }
9020 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
9021 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
9022 ? "interrupted" : "done");
9023 /*
9024 * this also signals 'finished resyncing' to md_stop
9025 */
9026 blk_finish_plug(&plug);
9027 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
9028
9029 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9030 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9031 mddev->curr_resync > 3) {
9032 mddev->curr_resync_completed = mddev->curr_resync;
9033 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9034 }
9035 mddev->pers->sync_request(mddev, max_sectors, &skipped);
9036
9037 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
9038 mddev->curr_resync > 3) {
9039 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
9040 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9041 if (mddev->curr_resync >= mddev->recovery_cp) {
9042 pr_debug("md: checkpointing %s of %s.\n",
9043 desc, mdname(mddev));
9044 if (test_bit(MD_RECOVERY_ERROR,
9045 &mddev->recovery))
9046 mddev->recovery_cp =
9047 mddev->curr_resync_completed;
9048 else
9049 mddev->recovery_cp =
9050 mddev->curr_resync;
9051 }
9052 } else
9053 mddev->recovery_cp = MaxSector;
9054 } else {
9055 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9056 mddev->curr_resync = MaxSector;
9057 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9058 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
9059 rcu_read_lock();
9060 rdev_for_each_rcu(rdev, mddev)
9061 if (rdev->raid_disk >= 0 &&
9062 mddev->delta_disks >= 0 &&
9063 !test_bit(Journal, &rdev->flags) &&
9064 !test_bit(Faulty, &rdev->flags) &&
9065 !test_bit(In_sync, &rdev->flags) &&
9066 rdev->recovery_offset < mddev->curr_resync)
9067 rdev->recovery_offset = mddev->curr_resync;
9068 rcu_read_unlock();
9069 }
9070 }
9071 }
9072 skip:
9073 /* set CHANGE_PENDING here since maybe another update is needed,
9074 * so other nodes are informed. It should be harmless for normal
9075 * raid */
9076 set_mask_bits(&mddev->sb_flags, 0,
9077 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9078
9079 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9080 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9081 mddev->delta_disks > 0 &&
9082 mddev->pers->finish_reshape &&
9083 mddev->pers->size &&
9084 mddev->queue) {
9085 mddev_lock_nointr(mddev);
9086 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9087 mddev_unlock(mddev);
9088 if (!mddev_is_clustered(mddev))
9089 set_capacity_and_notify(mddev->gendisk,
9090 mddev->array_sectors);
9091 }
9092
9093 spin_lock(&mddev->lock);
9094 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9095 /* We completed so min/max setting can be forgotten if used. */
9096 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9097 mddev->resync_min = 0;
9098 mddev->resync_max = MaxSector;
9099 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9100 mddev->resync_min = mddev->curr_resync_completed;
9101 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9102 mddev->curr_resync = 0;
9103 spin_unlock(&mddev->lock);
9104
9105 wake_up(&resync_wait);
9106 md_wakeup_thread(mddev->thread);
9107 return;
9108}
9109EXPORT_SYMBOL_GPL(md_do_sync);
9110
9111static int remove_and_add_spares(struct mddev *mddev,
9112 struct md_rdev *this)
9113{
9114 struct md_rdev *rdev;
9115 int spares = 0;
9116 int removed = 0;
9117 bool remove_some = false;
9118
9119 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9120 /* Mustn't remove devices when resync thread is running */
9121 return 0;
9122
9123 rdev_for_each(rdev, mddev) {
9124 if ((this == NULL || rdev == this) &&
9125 rdev->raid_disk >= 0 &&
9126 !test_bit(Blocked, &rdev->flags) &&
9127 test_bit(Faulty, &rdev->flags) &&
9128 atomic_read(&rdev->nr_pending)==0) {
9129 /* Faulty non-Blocked devices with nr_pending == 0
9130 * never get nr_pending incremented,
9131 * never get Faulty cleared, and never get Blocked set.
9132 * So we can synchronize_rcu now rather than once per device
9133 */
9134 remove_some = true;
9135 set_bit(RemoveSynchronized, &rdev->flags);
9136 }
9137 }
9138
9139 if (remove_some)
9140 synchronize_rcu();
9141 rdev_for_each(rdev, mddev) {
9142 if ((this == NULL || rdev == this) &&
9143 rdev->raid_disk >= 0 &&
9144 !test_bit(Blocked, &rdev->flags) &&
9145 ((test_bit(RemoveSynchronized, &rdev->flags) ||
9146 (!test_bit(In_sync, &rdev->flags) &&
9147 !test_bit(Journal, &rdev->flags))) &&
9148 atomic_read(&rdev->nr_pending)==0)) {
9149 if (mddev->pers->hot_remove_disk(
9150 mddev, rdev) == 0) {
9151 sysfs_unlink_rdev(mddev, rdev);
9152 rdev->saved_raid_disk = rdev->raid_disk;
9153 rdev->raid_disk = -1;
9154 removed++;
9155 }
9156 }
9157 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9158 clear_bit(RemoveSynchronized, &rdev->flags);
9159 }
9160
9161 if (removed && mddev->kobj.sd)
9162 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9163
9164 if (this && removed)
9165 goto no_add;
9166
9167 rdev_for_each(rdev, mddev) {
9168 if (this && this != rdev)
9169 continue;
9170 if (test_bit(Candidate, &rdev->flags))
9171 continue;
9172 if (rdev->raid_disk >= 0 &&
9173 !test_bit(In_sync, &rdev->flags) &&
9174 !test_bit(Journal, &rdev->flags) &&
9175 !test_bit(Faulty, &rdev->flags))
9176 spares++;
9177 if (rdev->raid_disk >= 0)
9178 continue;
9179 if (test_bit(Faulty, &rdev->flags))
9180 continue;
9181 if (!test_bit(Journal, &rdev->flags)) {
9182 if (mddev->ro &&
9183 ! (rdev->saved_raid_disk >= 0 &&
9184 !test_bit(Bitmap_sync, &rdev->flags)))
9185 continue;
9186
9187 rdev->recovery_offset = 0;
9188 }
9189 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9190 /* failure here is OK */
9191 sysfs_link_rdev(mddev, rdev);
9192 if (!test_bit(Journal, &rdev->flags))
9193 spares++;
9194 md_new_event();
9195 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9196 }
9197 }
9198no_add:
9199 if (removed)
9200 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9201 return spares;
9202}
9203
9204static void md_start_sync(struct work_struct *ws)
9205{
9206 struct mddev *mddev = container_of(ws, struct mddev, del_work);
9207
9208 mddev->sync_thread = md_register_thread(md_do_sync,
9209 mddev,
9210 "resync");
9211 if (!mddev->sync_thread) {
9212 pr_warn("%s: could not start resync thread...\n",
9213 mdname(mddev));
9214 /* leave the spares where they are, it shouldn't hurt */
9215 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9216 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9217 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9218 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9219 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9220 wake_up(&resync_wait);
9221 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9222 &mddev->recovery))
9223 if (mddev->sysfs_action)
9224 sysfs_notify_dirent_safe(mddev->sysfs_action);
9225 } else
9226 md_wakeup_thread(mddev->sync_thread);
9227 sysfs_notify_dirent_safe(mddev->sysfs_action);
9228 md_new_event();
9229}
9230
9231/*
9232 * This routine is regularly called by all per-raid-array threads to
9233 * deal with generic issues like resync and super-block update.
9234 * Raid personalities that don't have a thread (linear/raid0) do not
9235 * need this as they never do any recovery or update the superblock.
9236 *
9237 * It does not do any resync itself, but rather "forks" off other threads
9238 * to do that as needed.
9239 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9240 * "->recovery" and create a thread at ->sync_thread.
9241 * When the thread finishes it sets MD_RECOVERY_DONE
9242 * and wakeups up this thread which will reap the thread and finish up.
9243 * This thread also removes any faulty devices (with nr_pending == 0).
9244 *
9245 * The overall approach is:
9246 * 1/ if the superblock needs updating, update it.
9247 * 2/ If a recovery thread is running, don't do anything else.
9248 * 3/ If recovery has finished, clean up, possibly marking spares active.
9249 * 4/ If there are any faulty devices, remove them.
9250 * 5/ If array is degraded, try to add spares devices
9251 * 6/ If array has spares or is not in-sync, start a resync thread.
9252 */
9253void md_check_recovery(struct mddev *mddev)
9254{
9255 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9256 /* Write superblock - thread that called mddev_suspend()
9257 * holds reconfig_mutex for us.
9258 */
9259 set_bit(MD_UPDATING_SB, &mddev->flags);
9260 smp_mb__after_atomic();
9261 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9262 md_update_sb(mddev, 0);
9263 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9264 wake_up(&mddev->sb_wait);
9265 }
9266
9267 if (mddev->suspended)
9268 return;
9269
9270 if (mddev->bitmap)
9271 md_bitmap_daemon_work(mddev);
9272
9273 if (signal_pending(current)) {
9274 if (mddev->pers->sync_request && !mddev->external) {
9275 pr_debug("md: %s in immediate safe mode\n",
9276 mdname(mddev));
9277 mddev->safemode = 2;
9278 }
9279 flush_signals(current);
9280 }
9281
9282 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9283 return;
9284 if ( ! (
9285 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9286 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9287 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9288 (mddev->external == 0 && mddev->safemode == 1) ||
9289 (mddev->safemode == 2
9290 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9291 ))
9292 return;
9293
9294 if (mddev_trylock(mddev)) {
9295 int spares = 0;
9296 bool try_set_sync = mddev->safemode != 0;
9297
9298 if (!mddev->external && mddev->safemode == 1)
9299 mddev->safemode = 0;
9300
9301 if (mddev->ro) {
9302 struct md_rdev *rdev;
9303 if (!mddev->external && mddev->in_sync)
9304 /* 'Blocked' flag not needed as failed devices
9305 * will be recorded if array switched to read/write.
9306 * Leaving it set will prevent the device
9307 * from being removed.
9308 */
9309 rdev_for_each(rdev, mddev)
9310 clear_bit(Blocked, &rdev->flags);
9311 /* On a read-only array we can:
9312 * - remove failed devices
9313 * - add already-in_sync devices if the array itself
9314 * is in-sync.
9315 * As we only add devices that are already in-sync,
9316 * we can activate the spares immediately.
9317 */
9318 remove_and_add_spares(mddev, NULL);
9319 /* There is no thread, but we need to call
9320 * ->spare_active and clear saved_raid_disk
9321 */
9322 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9323 md_reap_sync_thread(mddev);
9324 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9325 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9326 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9327 goto unlock;
9328 }
9329
9330 if (mddev_is_clustered(mddev)) {
9331 struct md_rdev *rdev, *tmp;
9332 /* kick the device if another node issued a
9333 * remove disk.
9334 */
9335 rdev_for_each_safe(rdev, tmp, mddev) {
9336 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9337 rdev->raid_disk < 0)
9338 md_kick_rdev_from_array(rdev);
9339 }
9340 }
9341
9342 if (try_set_sync && !mddev->external && !mddev->in_sync) {
9343 spin_lock(&mddev->lock);
9344 set_in_sync(mddev);
9345 spin_unlock(&mddev->lock);
9346 }
9347
9348 if (mddev->sb_flags)
9349 md_update_sb(mddev, 0);
9350
9351 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
9352 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9353 /* resync/recovery still happening */
9354 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9355 goto unlock;
9356 }
9357 if (mddev->sync_thread) {
9358 md_reap_sync_thread(mddev);
9359 goto unlock;
9360 }
9361 /* Set RUNNING before clearing NEEDED to avoid
9362 * any transients in the value of "sync_action".
9363 */
9364 mddev->curr_resync_completed = 0;
9365 spin_lock(&mddev->lock);
9366 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9367 spin_unlock(&mddev->lock);
9368 /* Clear some bits that don't mean anything, but
9369 * might be left set
9370 */
9371 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9372 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9373
9374 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9375 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9376 goto not_running;
9377 /* no recovery is running.
9378 * remove any failed drives, then
9379 * add spares if possible.
9380 * Spares are also removed and re-added, to allow
9381 * the personality to fail the re-add.
9382 */
9383
9384 if (mddev->reshape_position != MaxSector) {
9385 if (mddev->pers->check_reshape == NULL ||
9386 mddev->pers->check_reshape(mddev) != 0)
9387 /* Cannot proceed */
9388 goto not_running;
9389 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9390 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9391 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
9392 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9393 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9394 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9395 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9396 } else if (mddev->recovery_cp < MaxSector) {
9397 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9398 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9399 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9400 /* nothing to be done ... */
9401 goto not_running;
9402
9403 if (mddev->pers->sync_request) {
9404 if (spares) {
9405 /* We are adding a device or devices to an array
9406 * which has the bitmap stored on all devices.
9407 * So make sure all bitmap pages get written
9408 */
9409 md_bitmap_write_all(mddev->bitmap);
9410 }
9411 INIT_WORK(&mddev->del_work, md_start_sync);
9412 queue_work(md_misc_wq, &mddev->del_work);
9413 goto unlock;
9414 }
9415 not_running:
9416 if (!mddev->sync_thread) {
9417 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9418 wake_up(&resync_wait);
9419 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9420 &mddev->recovery))
9421 if (mddev->sysfs_action)
9422 sysfs_notify_dirent_safe(mddev->sysfs_action);
9423 }
9424 unlock:
9425 wake_up(&mddev->sb_wait);
9426 mddev_unlock(mddev);
9427 }
9428}
9429EXPORT_SYMBOL(md_check_recovery);
9430
9431void md_reap_sync_thread(struct mddev *mddev)
9432{
9433 struct md_rdev *rdev;
9434 sector_t old_dev_sectors = mddev->dev_sectors;
9435 bool is_reshaped = false;
9436
9437 /* resync has finished, collect result */
9438 md_unregister_thread(&mddev->sync_thread);
9439 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9440 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9441 mddev->degraded != mddev->raid_disks) {
9442 /* success...*/
9443 /* activate any spares */
9444 if (mddev->pers->spare_active(mddev)) {
9445 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9446 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9447 }
9448 }
9449 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9450 mddev->pers->finish_reshape) {
9451 mddev->pers->finish_reshape(mddev);
9452 if (mddev_is_clustered(mddev))
9453 is_reshaped = true;
9454 }
9455
9456 /* If array is no-longer degraded, then any saved_raid_disk
9457 * information must be scrapped.
9458 */
9459 if (!mddev->degraded)
9460 rdev_for_each(rdev, mddev)
9461 rdev->saved_raid_disk = -1;
9462
9463 md_update_sb(mddev, 1);
9464 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9465 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9466 * clustered raid */
9467 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9468 md_cluster_ops->resync_finish(mddev);
9469 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9470 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9471 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9472 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9473 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9474 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9475 /*
9476 * We call md_cluster_ops->update_size here because sync_size could
9477 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9478 * so it is time to update size across cluster.
9479 */
9480 if (mddev_is_clustered(mddev) && is_reshaped
9481 && !test_bit(MD_CLOSING, &mddev->flags))
9482 md_cluster_ops->update_size(mddev, old_dev_sectors);
9483 wake_up(&resync_wait);
9484 /* flag recovery needed just to double check */
9485 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9486 sysfs_notify_dirent_safe(mddev->sysfs_action);
9487 md_new_event();
9488 if (mddev->event_work.func)
9489 queue_work(md_misc_wq, &mddev->event_work);
9490}
9491EXPORT_SYMBOL(md_reap_sync_thread);
9492
9493void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9494{
9495 sysfs_notify_dirent_safe(rdev->sysfs_state);
9496 wait_event_timeout(rdev->blocked_wait,
9497 !test_bit(Blocked, &rdev->flags) &&
9498 !test_bit(BlockedBadBlocks, &rdev->flags),
9499 msecs_to_jiffies(5000));
9500 rdev_dec_pending(rdev, mddev);
9501}
9502EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9503
9504void md_finish_reshape(struct mddev *mddev)
9505{
9506 /* called be personality module when reshape completes. */
9507 struct md_rdev *rdev;
9508
9509 rdev_for_each(rdev, mddev) {
9510 if (rdev->data_offset > rdev->new_data_offset)
9511 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9512 else
9513 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9514 rdev->data_offset = rdev->new_data_offset;
9515 }
9516}
9517EXPORT_SYMBOL(md_finish_reshape);
9518
9519/* Bad block management */
9520
9521/* Returns 1 on success, 0 on failure */
9522int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9523 int is_new)
9524{
9525 struct mddev *mddev = rdev->mddev;
9526 int rv;
9527 if (is_new)
9528 s += rdev->new_data_offset;
9529 else
9530 s += rdev->data_offset;
9531 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9532 if (rv == 0) {
9533 /* Make sure they get written out promptly */
9534 if (test_bit(ExternalBbl, &rdev->flags))
9535 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9536 sysfs_notify_dirent_safe(rdev->sysfs_state);
9537 set_mask_bits(&mddev->sb_flags, 0,
9538 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9539 md_wakeup_thread(rdev->mddev->thread);
9540 return 1;
9541 } else
9542 return 0;
9543}
9544EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9545
9546int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9547 int is_new)
9548{
9549 int rv;
9550 if (is_new)
9551 s += rdev->new_data_offset;
9552 else
9553 s += rdev->data_offset;
9554 rv = badblocks_clear(&rdev->badblocks, s, sectors);
9555 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9556 sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9557 return rv;
9558}
9559EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9560
9561static int md_notify_reboot(struct notifier_block *this,
9562 unsigned long code, void *x)
9563{
9564 struct list_head *tmp;
9565 struct mddev *mddev;
9566 int need_delay = 0;
9567
9568 for_each_mddev(mddev, tmp) {
9569 if (mddev_trylock(mddev)) {
9570 if (mddev->pers)
9571 __md_stop_writes(mddev);
9572 if (mddev->persistent)
9573 mddev->safemode = 2;
9574 mddev_unlock(mddev);
9575 }
9576 need_delay = 1;
9577 }
9578 /*
9579 * certain more exotic SCSI devices are known to be
9580 * volatile wrt too early system reboots. While the
9581 * right place to handle this issue is the given
9582 * driver, we do want to have a safe RAID driver ...
9583 */
9584 if (need_delay)
9585 msleep(1000);
9586
9587 return NOTIFY_DONE;
9588}
9589
9590static struct notifier_block md_notifier = {
9591 .notifier_call = md_notify_reboot,
9592 .next = NULL,
9593 .priority = INT_MAX, /* before any real devices */
9594};
9595
9596static void md_geninit(void)
9597{
9598 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9599
9600 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9601}
9602
9603static int __init md_init(void)
9604{
9605 int ret = -ENOMEM;
9606
9607 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9608 if (!md_wq)
9609 goto err_wq;
9610
9611 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9612 if (!md_misc_wq)
9613 goto err_misc_wq;
9614
9615 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0);
9616 if (!md_rdev_misc_wq)
9617 goto err_rdev_misc_wq;
9618
9619 ret = __register_blkdev(MD_MAJOR, "md", md_probe);
9620 if (ret < 0)
9621 goto err_md;
9622
9623 ret = __register_blkdev(0, "mdp", md_probe);
9624 if (ret < 0)
9625 goto err_mdp;
9626 mdp_major = ret;
9627
9628 register_reboot_notifier(&md_notifier);
9629 raid_table_header = register_sysctl_table(raid_root_table);
9630
9631 md_geninit();
9632 return 0;
9633
9634err_mdp:
9635 unregister_blkdev(MD_MAJOR, "md");
9636err_md:
9637 destroy_workqueue(md_rdev_misc_wq);
9638err_rdev_misc_wq:
9639 destroy_workqueue(md_misc_wq);
9640err_misc_wq:
9641 destroy_workqueue(md_wq);
9642err_wq:
9643 return ret;
9644}
9645
9646static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9647{
9648 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9649 struct md_rdev *rdev2, *tmp;
9650 int role, ret;
9651 char b[BDEVNAME_SIZE];
9652
9653 /*
9654 * If size is changed in another node then we need to
9655 * do resize as well.
9656 */
9657 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9658 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9659 if (ret)
9660 pr_info("md-cluster: resize failed\n");
9661 else
9662 md_bitmap_update_sb(mddev->bitmap);
9663 }
9664
9665 /* Check for change of roles in the active devices */
9666 rdev_for_each_safe(rdev2, tmp, mddev) {
9667 if (test_bit(Faulty, &rdev2->flags))
9668 continue;
9669
9670 /* Check if the roles changed */
9671 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9672
9673 if (test_bit(Candidate, &rdev2->flags)) {
9674 if (role == 0xfffe) {
9675 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9676 md_kick_rdev_from_array(rdev2);
9677 continue;
9678 }
9679 else
9680 clear_bit(Candidate, &rdev2->flags);
9681 }
9682
9683 if (role != rdev2->raid_disk) {
9684 /*
9685 * got activated except reshape is happening.
9686 */
9687 if (rdev2->raid_disk == -1 && role != 0xffff &&
9688 !(le32_to_cpu(sb->feature_map) &
9689 MD_FEATURE_RESHAPE_ACTIVE)) {
9690 rdev2->saved_raid_disk = role;
9691 ret = remove_and_add_spares(mddev, rdev2);
9692 pr_info("Activated spare: %s\n",
9693 bdevname(rdev2->bdev,b));
9694 /* wakeup mddev->thread here, so array could
9695 * perform resync with the new activated disk */
9696 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9697 md_wakeup_thread(mddev->thread);
9698 }
9699 /* device faulty
9700 * We just want to do the minimum to mark the disk
9701 * as faulty. The recovery is performed by the
9702 * one who initiated the error.
9703 */
9704 if ((role == 0xfffe) || (role == 0xfffd)) {
9705 md_error(mddev, rdev2);
9706 clear_bit(Blocked, &rdev2->flags);
9707 }
9708 }
9709 }
9710
9711 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
9712 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9713 if (ret)
9714 pr_warn("md: updating array disks failed. %d\n", ret);
9715 }
9716
9717 /*
9718 * Since mddev->delta_disks has already updated in update_raid_disks,
9719 * so it is time to check reshape.
9720 */
9721 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9722 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9723 /*
9724 * reshape is happening in the remote node, we need to
9725 * update reshape_position and call start_reshape.
9726 */
9727 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9728 if (mddev->pers->update_reshape_pos)
9729 mddev->pers->update_reshape_pos(mddev);
9730 if (mddev->pers->start_reshape)
9731 mddev->pers->start_reshape(mddev);
9732 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9733 mddev->reshape_position != MaxSector &&
9734 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9735 /* reshape is just done in another node. */
9736 mddev->reshape_position = MaxSector;
9737 if (mddev->pers->update_reshape_pos)
9738 mddev->pers->update_reshape_pos(mddev);
9739 }
9740
9741 /* Finally set the event to be up to date */
9742 mddev->events = le64_to_cpu(sb->events);
9743}
9744
9745static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9746{
9747 int err;
9748 struct page *swapout = rdev->sb_page;
9749 struct mdp_superblock_1 *sb;
9750
9751 /* Store the sb page of the rdev in the swapout temporary
9752 * variable in case we err in the future
9753 */
9754 rdev->sb_page = NULL;
9755 err = alloc_disk_sb(rdev);
9756 if (err == 0) {
9757 ClearPageUptodate(rdev->sb_page);
9758 rdev->sb_loaded = 0;
9759 err = super_types[mddev->major_version].
9760 load_super(rdev, NULL, mddev->minor_version);
9761 }
9762 if (err < 0) {
9763 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9764 __func__, __LINE__, rdev->desc_nr, err);
9765 if (rdev->sb_page)
9766 put_page(rdev->sb_page);
9767 rdev->sb_page = swapout;
9768 rdev->sb_loaded = 1;
9769 return err;
9770 }
9771
9772 sb = page_address(rdev->sb_page);
9773 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9774 * is not set
9775 */
9776
9777 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9778 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9779
9780 /* The other node finished recovery, call spare_active to set
9781 * device In_sync and mddev->degraded
9782 */
9783 if (rdev->recovery_offset == MaxSector &&
9784 !test_bit(In_sync, &rdev->flags) &&
9785 mddev->pers->spare_active(mddev))
9786 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9787
9788 put_page(swapout);
9789 return 0;
9790}
9791
9792void md_reload_sb(struct mddev *mddev, int nr)
9793{
9794 struct md_rdev *rdev;
9795 int err;
9796
9797 /* Find the rdev */
9798 rdev_for_each_rcu(rdev, mddev) {
9799 if (rdev->desc_nr == nr)
9800 break;
9801 }
9802
9803 if (!rdev || rdev->desc_nr != nr) {
9804 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9805 return;
9806 }
9807
9808 err = read_rdev(mddev, rdev);
9809 if (err < 0)
9810 return;
9811
9812 check_sb_changes(mddev, rdev);
9813
9814 /* Read all rdev's to update recovery_offset */
9815 rdev_for_each_rcu(rdev, mddev) {
9816 if (!test_bit(Faulty, &rdev->flags))
9817 read_rdev(mddev, rdev);
9818 }
9819}
9820EXPORT_SYMBOL(md_reload_sb);
9821
9822#ifndef MODULE
9823
9824/*
9825 * Searches all registered partitions for autorun RAID arrays
9826 * at boot time.
9827 */
9828
9829static DEFINE_MUTEX(detected_devices_mutex);
9830static LIST_HEAD(all_detected_devices);
9831struct detected_devices_node {
9832 struct list_head list;
9833 dev_t dev;
9834};
9835
9836void md_autodetect_dev(dev_t dev)
9837{
9838 struct detected_devices_node *node_detected_dev;
9839
9840 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9841 if (node_detected_dev) {
9842 node_detected_dev->dev = dev;
9843 mutex_lock(&detected_devices_mutex);
9844 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9845 mutex_unlock(&detected_devices_mutex);
9846 }
9847}
9848
9849void md_autostart_arrays(int part)
9850{
9851 struct md_rdev *rdev;
9852 struct detected_devices_node *node_detected_dev;
9853 dev_t dev;
9854 int i_scanned, i_passed;
9855
9856 i_scanned = 0;
9857 i_passed = 0;
9858
9859 pr_info("md: Autodetecting RAID arrays.\n");
9860
9861 mutex_lock(&detected_devices_mutex);
9862 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9863 i_scanned++;
9864 node_detected_dev = list_entry(all_detected_devices.next,
9865 struct detected_devices_node, list);
9866 list_del(&node_detected_dev->list);
9867 dev = node_detected_dev->dev;
9868 kfree(node_detected_dev);
9869 mutex_unlock(&detected_devices_mutex);
9870 rdev = md_import_device(dev,0, 90);
9871 mutex_lock(&detected_devices_mutex);
9872 if (IS_ERR(rdev))
9873 continue;
9874
9875 if (test_bit(Faulty, &rdev->flags))
9876 continue;
9877
9878 set_bit(AutoDetected, &rdev->flags);
9879 list_add(&rdev->same_set, &pending_raid_disks);
9880 i_passed++;
9881 }
9882 mutex_unlock(&detected_devices_mutex);
9883
9884 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9885
9886 autorun_devices(part);
9887}
9888
9889#endif /* !MODULE */
9890
9891static __exit void md_exit(void)
9892{
9893 struct mddev *mddev;
9894 struct list_head *tmp;
9895 int delay = 1;
9896
9897 unregister_blkdev(MD_MAJOR,"md");
9898 unregister_blkdev(mdp_major, "mdp");
9899 unregister_reboot_notifier(&md_notifier);
9900 unregister_sysctl_table(raid_table_header);
9901
9902 /* We cannot unload the modules while some process is
9903 * waiting for us in select() or poll() - wake them up
9904 */
9905 md_unloading = 1;
9906 while (waitqueue_active(&md_event_waiters)) {
9907 /* not safe to leave yet */
9908 wake_up(&md_event_waiters);
9909 msleep(delay);
9910 delay += delay;
9911 }
9912 remove_proc_entry("mdstat", NULL);
9913
9914 for_each_mddev(mddev, tmp) {
9915 export_array(mddev);
9916 mddev->ctime = 0;
9917 mddev->hold_active = 0;
9918 /*
9919 * for_each_mddev() will call mddev_put() at the end of each
9920 * iteration. As the mddev is now fully clear, this will
9921 * schedule the mddev for destruction by a workqueue, and the
9922 * destroy_workqueue() below will wait for that to complete.
9923 */
9924 }
9925 destroy_workqueue(md_rdev_misc_wq);
9926 destroy_workqueue(md_misc_wq);
9927 destroy_workqueue(md_wq);
9928}
9929
9930subsys_initcall(md_init);
9931module_exit(md_exit)
9932
9933static int get_ro(char *buffer, const struct kernel_param *kp)
9934{
9935 return sprintf(buffer, "%d\n", start_readonly);
9936}
9937static int set_ro(const char *val, const struct kernel_param *kp)
9938{
9939 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9940}
9941
9942module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9943module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9944module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9945module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9946
9947MODULE_LICENSE("GPL");
9948MODULE_DESCRIPTION("MD RAID framework");
9949MODULE_ALIAS("md");
9950MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);