Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * The input core
4 *
5 * Copyright (c) 1999-2002 Vojtech Pavlik
6 */
7
8
9#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10
11#include <linux/init.h>
12#include <linux/types.h>
13#include <linux/idr.h>
14#include <linux/input/mt.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/random.h>
18#include <linux/major.h>
19#include <linux/proc_fs.h>
20#include <linux/sched.h>
21#include <linux/seq_file.h>
22#include <linux/poll.h>
23#include <linux/device.h>
24#include <linux/mutex.h>
25#include <linux/rcupdate.h>
26#include "input-compat.h"
27#include "input-poller.h"
28
29MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30MODULE_DESCRIPTION("Input core");
31MODULE_LICENSE("GPL");
32
33#define INPUT_MAX_CHAR_DEVICES 1024
34#define INPUT_FIRST_DYNAMIC_DEV 256
35static DEFINE_IDA(input_ida);
36
37static LIST_HEAD(input_dev_list);
38static LIST_HEAD(input_handler_list);
39
40/*
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
44 * input handlers.
45 */
46static DEFINE_MUTEX(input_mutex);
47
48static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
49
50static const unsigned int input_max_code[EV_CNT] = {
51 [EV_KEY] = KEY_MAX,
52 [EV_REL] = REL_MAX,
53 [EV_ABS] = ABS_MAX,
54 [EV_MSC] = MSC_MAX,
55 [EV_SW] = SW_MAX,
56 [EV_LED] = LED_MAX,
57 [EV_SND] = SND_MAX,
58 [EV_FF] = FF_MAX,
59};
60
61static inline int is_event_supported(unsigned int code,
62 unsigned long *bm, unsigned int max)
63{
64 return code <= max && test_bit(code, bm);
65}
66
67static int input_defuzz_abs_event(int value, int old_val, int fuzz)
68{
69 if (fuzz) {
70 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
71 return old_val;
72
73 if (value > old_val - fuzz && value < old_val + fuzz)
74 return (old_val * 3 + value) / 4;
75
76 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
77 return (old_val + value) / 2;
78 }
79
80 return value;
81}
82
83static void input_start_autorepeat(struct input_dev *dev, int code)
84{
85 if (test_bit(EV_REP, dev->evbit) &&
86 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
87 dev->timer.function) {
88 dev->repeat_key = code;
89 mod_timer(&dev->timer,
90 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
91 }
92}
93
94static void input_stop_autorepeat(struct input_dev *dev)
95{
96 del_timer(&dev->timer);
97}
98
99/*
100 * Pass event first through all filters and then, if event has not been
101 * filtered out, through all open handles. This function is called with
102 * dev->event_lock held and interrupts disabled.
103 */
104static unsigned int input_to_handler(struct input_handle *handle,
105 struct input_value *vals, unsigned int count)
106{
107 struct input_handler *handler = handle->handler;
108 struct input_value *end = vals;
109 struct input_value *v;
110
111 if (handler->filter) {
112 for (v = vals; v != vals + count; v++) {
113 if (handler->filter(handle, v->type, v->code, v->value))
114 continue;
115 if (end != v)
116 *end = *v;
117 end++;
118 }
119 count = end - vals;
120 }
121
122 if (!count)
123 return 0;
124
125 if (handler->events)
126 handler->events(handle, vals, count);
127 else if (handler->event)
128 for (v = vals; v != vals + count; v++)
129 handler->event(handle, v->type, v->code, v->value);
130
131 return count;
132}
133
134/*
135 * Pass values first through all filters and then, if event has not been
136 * filtered out, through all open handles. This function is called with
137 * dev->event_lock held and interrupts disabled.
138 */
139static void input_pass_values(struct input_dev *dev,
140 struct input_value *vals, unsigned int count)
141{
142 struct input_handle *handle;
143 struct input_value *v;
144
145 if (!count)
146 return;
147
148 rcu_read_lock();
149
150 handle = rcu_dereference(dev->grab);
151 if (handle) {
152 count = input_to_handler(handle, vals, count);
153 } else {
154 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
155 if (handle->open) {
156 count = input_to_handler(handle, vals, count);
157 if (!count)
158 break;
159 }
160 }
161
162 rcu_read_unlock();
163
164 /* trigger auto repeat for key events */
165 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
166 for (v = vals; v != vals + count; v++) {
167 if (v->type == EV_KEY && v->value != 2) {
168 if (v->value)
169 input_start_autorepeat(dev, v->code);
170 else
171 input_stop_autorepeat(dev);
172 }
173 }
174 }
175}
176
177static void input_pass_event(struct input_dev *dev,
178 unsigned int type, unsigned int code, int value)
179{
180 struct input_value vals[] = { { type, code, value } };
181
182 input_pass_values(dev, vals, ARRAY_SIZE(vals));
183}
184
185/*
186 * Generate software autorepeat event. Note that we take
187 * dev->event_lock here to avoid racing with input_event
188 * which may cause keys get "stuck".
189 */
190static void input_repeat_key(struct timer_list *t)
191{
192 struct input_dev *dev = from_timer(dev, t, timer);
193 unsigned long flags;
194
195 spin_lock_irqsave(&dev->event_lock, flags);
196
197 if (test_bit(dev->repeat_key, dev->key) &&
198 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
199 struct input_value vals[] = {
200 { EV_KEY, dev->repeat_key, 2 },
201 input_value_sync
202 };
203
204 input_set_timestamp(dev, ktime_get());
205 input_pass_values(dev, vals, ARRAY_SIZE(vals));
206
207 if (dev->rep[REP_PERIOD])
208 mod_timer(&dev->timer, jiffies +
209 msecs_to_jiffies(dev->rep[REP_PERIOD]));
210 }
211
212 spin_unlock_irqrestore(&dev->event_lock, flags);
213}
214
215#define INPUT_IGNORE_EVENT 0
216#define INPUT_PASS_TO_HANDLERS 1
217#define INPUT_PASS_TO_DEVICE 2
218#define INPUT_SLOT 4
219#define INPUT_FLUSH 8
220#define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
221
222static int input_handle_abs_event(struct input_dev *dev,
223 unsigned int code, int *pval)
224{
225 struct input_mt *mt = dev->mt;
226 bool is_mt_event;
227 int *pold;
228
229 if (code == ABS_MT_SLOT) {
230 /*
231 * "Stage" the event; we'll flush it later, when we
232 * get actual touch data.
233 */
234 if (mt && *pval >= 0 && *pval < mt->num_slots)
235 mt->slot = *pval;
236
237 return INPUT_IGNORE_EVENT;
238 }
239
240 is_mt_event = input_is_mt_value(code);
241
242 if (!is_mt_event) {
243 pold = &dev->absinfo[code].value;
244 } else if (mt) {
245 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
246 } else {
247 /*
248 * Bypass filtering for multi-touch events when
249 * not employing slots.
250 */
251 pold = NULL;
252 }
253
254 if (pold) {
255 *pval = input_defuzz_abs_event(*pval, *pold,
256 dev->absinfo[code].fuzz);
257 if (*pold == *pval)
258 return INPUT_IGNORE_EVENT;
259
260 *pold = *pval;
261 }
262
263 /* Flush pending "slot" event */
264 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
265 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
266 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
267 }
268
269 return INPUT_PASS_TO_HANDLERS;
270}
271
272static int input_get_disposition(struct input_dev *dev,
273 unsigned int type, unsigned int code, int *pval)
274{
275 int disposition = INPUT_IGNORE_EVENT;
276 int value = *pval;
277
278 switch (type) {
279
280 case EV_SYN:
281 switch (code) {
282 case SYN_CONFIG:
283 disposition = INPUT_PASS_TO_ALL;
284 break;
285
286 case SYN_REPORT:
287 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
288 break;
289 case SYN_MT_REPORT:
290 disposition = INPUT_PASS_TO_HANDLERS;
291 break;
292 }
293 break;
294
295 case EV_KEY:
296 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
297
298 /* auto-repeat bypasses state updates */
299 if (value == 2) {
300 disposition = INPUT_PASS_TO_HANDLERS;
301 break;
302 }
303
304 if (!!test_bit(code, dev->key) != !!value) {
305
306 __change_bit(code, dev->key);
307 disposition = INPUT_PASS_TO_HANDLERS;
308 }
309 }
310 break;
311
312 case EV_SW:
313 if (is_event_supported(code, dev->swbit, SW_MAX) &&
314 !!test_bit(code, dev->sw) != !!value) {
315
316 __change_bit(code, dev->sw);
317 disposition = INPUT_PASS_TO_HANDLERS;
318 }
319 break;
320
321 case EV_ABS:
322 if (is_event_supported(code, dev->absbit, ABS_MAX))
323 disposition = input_handle_abs_event(dev, code, &value);
324
325 break;
326
327 case EV_REL:
328 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
329 disposition = INPUT_PASS_TO_HANDLERS;
330
331 break;
332
333 case EV_MSC:
334 if (is_event_supported(code, dev->mscbit, MSC_MAX))
335 disposition = INPUT_PASS_TO_ALL;
336
337 break;
338
339 case EV_LED:
340 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
341 !!test_bit(code, dev->led) != !!value) {
342
343 __change_bit(code, dev->led);
344 disposition = INPUT_PASS_TO_ALL;
345 }
346 break;
347
348 case EV_SND:
349 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
350
351 if (!!test_bit(code, dev->snd) != !!value)
352 __change_bit(code, dev->snd);
353 disposition = INPUT_PASS_TO_ALL;
354 }
355 break;
356
357 case EV_REP:
358 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
359 dev->rep[code] = value;
360 disposition = INPUT_PASS_TO_ALL;
361 }
362 break;
363
364 case EV_FF:
365 if (value >= 0)
366 disposition = INPUT_PASS_TO_ALL;
367 break;
368
369 case EV_PWR:
370 disposition = INPUT_PASS_TO_ALL;
371 break;
372 }
373
374 *pval = value;
375 return disposition;
376}
377
378static void input_handle_event(struct input_dev *dev,
379 unsigned int type, unsigned int code, int value)
380{
381 int disposition;
382
383 /* filter-out events from inhibited devices */
384 if (dev->inhibited)
385 return;
386
387 disposition = input_get_disposition(dev, type, code, &value);
388 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
389 add_input_randomness(type, code, value);
390
391 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
392 dev->event(dev, type, code, value);
393
394 if (!dev->vals)
395 return;
396
397 if (disposition & INPUT_PASS_TO_HANDLERS) {
398 struct input_value *v;
399
400 if (disposition & INPUT_SLOT) {
401 v = &dev->vals[dev->num_vals++];
402 v->type = EV_ABS;
403 v->code = ABS_MT_SLOT;
404 v->value = dev->mt->slot;
405 }
406
407 v = &dev->vals[dev->num_vals++];
408 v->type = type;
409 v->code = code;
410 v->value = value;
411 }
412
413 if (disposition & INPUT_FLUSH) {
414 if (dev->num_vals >= 2)
415 input_pass_values(dev, dev->vals, dev->num_vals);
416 dev->num_vals = 0;
417 /*
418 * Reset the timestamp on flush so we won't end up
419 * with a stale one. Note we only need to reset the
420 * monolithic one as we use its presence when deciding
421 * whether to generate a synthetic timestamp.
422 */
423 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
424 } else if (dev->num_vals >= dev->max_vals - 2) {
425 dev->vals[dev->num_vals++] = input_value_sync;
426 input_pass_values(dev, dev->vals, dev->num_vals);
427 dev->num_vals = 0;
428 }
429
430}
431
432/**
433 * input_event() - report new input event
434 * @dev: device that generated the event
435 * @type: type of the event
436 * @code: event code
437 * @value: value of the event
438 *
439 * This function should be used by drivers implementing various input
440 * devices to report input events. See also input_inject_event().
441 *
442 * NOTE: input_event() may be safely used right after input device was
443 * allocated with input_allocate_device(), even before it is registered
444 * with input_register_device(), but the event will not reach any of the
445 * input handlers. Such early invocation of input_event() may be used
446 * to 'seed' initial state of a switch or initial position of absolute
447 * axis, etc.
448 */
449void input_event(struct input_dev *dev,
450 unsigned int type, unsigned int code, int value)
451{
452 unsigned long flags;
453
454 if (is_event_supported(type, dev->evbit, EV_MAX)) {
455
456 spin_lock_irqsave(&dev->event_lock, flags);
457 input_handle_event(dev, type, code, value);
458 spin_unlock_irqrestore(&dev->event_lock, flags);
459 }
460}
461EXPORT_SYMBOL(input_event);
462
463/**
464 * input_inject_event() - send input event from input handler
465 * @handle: input handle to send event through
466 * @type: type of the event
467 * @code: event code
468 * @value: value of the event
469 *
470 * Similar to input_event() but will ignore event if device is
471 * "grabbed" and handle injecting event is not the one that owns
472 * the device.
473 */
474void input_inject_event(struct input_handle *handle,
475 unsigned int type, unsigned int code, int value)
476{
477 struct input_dev *dev = handle->dev;
478 struct input_handle *grab;
479 unsigned long flags;
480
481 if (is_event_supported(type, dev->evbit, EV_MAX)) {
482 spin_lock_irqsave(&dev->event_lock, flags);
483
484 rcu_read_lock();
485 grab = rcu_dereference(dev->grab);
486 if (!grab || grab == handle)
487 input_handle_event(dev, type, code, value);
488 rcu_read_unlock();
489
490 spin_unlock_irqrestore(&dev->event_lock, flags);
491 }
492}
493EXPORT_SYMBOL(input_inject_event);
494
495/**
496 * input_alloc_absinfo - allocates array of input_absinfo structs
497 * @dev: the input device emitting absolute events
498 *
499 * If the absinfo struct the caller asked for is already allocated, this
500 * functions will not do anything.
501 */
502void input_alloc_absinfo(struct input_dev *dev)
503{
504 if (dev->absinfo)
505 return;
506
507 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
508 if (!dev->absinfo) {
509 dev_err(dev->dev.parent ?: &dev->dev,
510 "%s: unable to allocate memory\n", __func__);
511 /*
512 * We will handle this allocation failure in
513 * input_register_device() when we refuse to register input
514 * device with ABS bits but without absinfo.
515 */
516 }
517}
518EXPORT_SYMBOL(input_alloc_absinfo);
519
520void input_set_abs_params(struct input_dev *dev, unsigned int axis,
521 int min, int max, int fuzz, int flat)
522{
523 struct input_absinfo *absinfo;
524
525 __set_bit(EV_ABS, dev->evbit);
526 __set_bit(axis, dev->absbit);
527
528 input_alloc_absinfo(dev);
529 if (!dev->absinfo)
530 return;
531
532 absinfo = &dev->absinfo[axis];
533 absinfo->minimum = min;
534 absinfo->maximum = max;
535 absinfo->fuzz = fuzz;
536 absinfo->flat = flat;
537}
538EXPORT_SYMBOL(input_set_abs_params);
539
540/**
541 * input_copy_abs - Copy absinfo from one input_dev to another
542 * @dst: Destination input device to copy the abs settings to
543 * @dst_axis: ABS_* value selecting the destination axis
544 * @src: Source input device to copy the abs settings from
545 * @src_axis: ABS_* value selecting the source axis
546 *
547 * Set absinfo for the selected destination axis by copying it from
548 * the specified source input device's source axis.
549 * This is useful to e.g. setup a pen/stylus input-device for combined
550 * touchscreen/pen hardware where the pen uses the same coordinates as
551 * the touchscreen.
552 */
553void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
554 const struct input_dev *src, unsigned int src_axis)
555{
556 /* src must have EV_ABS and src_axis set */
557 if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
558 test_bit(src_axis, src->absbit))))
559 return;
560
561 /*
562 * input_alloc_absinfo() may have failed for the source. Our caller is
563 * expected to catch this when registering the input devices, which may
564 * happen after the input_copy_abs() call.
565 */
566 if (!src->absinfo)
567 return;
568
569 input_set_capability(dst, EV_ABS, dst_axis);
570 if (!dst->absinfo)
571 return;
572
573 dst->absinfo[dst_axis] = src->absinfo[src_axis];
574}
575EXPORT_SYMBOL(input_copy_abs);
576
577/**
578 * input_grab_device - grabs device for exclusive use
579 * @handle: input handle that wants to own the device
580 *
581 * When a device is grabbed by an input handle all events generated by
582 * the device are delivered only to this handle. Also events injected
583 * by other input handles are ignored while device is grabbed.
584 */
585int input_grab_device(struct input_handle *handle)
586{
587 struct input_dev *dev = handle->dev;
588 int retval;
589
590 retval = mutex_lock_interruptible(&dev->mutex);
591 if (retval)
592 return retval;
593
594 if (dev->grab) {
595 retval = -EBUSY;
596 goto out;
597 }
598
599 rcu_assign_pointer(dev->grab, handle);
600
601 out:
602 mutex_unlock(&dev->mutex);
603 return retval;
604}
605EXPORT_SYMBOL(input_grab_device);
606
607static void __input_release_device(struct input_handle *handle)
608{
609 struct input_dev *dev = handle->dev;
610 struct input_handle *grabber;
611
612 grabber = rcu_dereference_protected(dev->grab,
613 lockdep_is_held(&dev->mutex));
614 if (grabber == handle) {
615 rcu_assign_pointer(dev->grab, NULL);
616 /* Make sure input_pass_event() notices that grab is gone */
617 synchronize_rcu();
618
619 list_for_each_entry(handle, &dev->h_list, d_node)
620 if (handle->open && handle->handler->start)
621 handle->handler->start(handle);
622 }
623}
624
625/**
626 * input_release_device - release previously grabbed device
627 * @handle: input handle that owns the device
628 *
629 * Releases previously grabbed device so that other input handles can
630 * start receiving input events. Upon release all handlers attached
631 * to the device have their start() method called so they have a change
632 * to synchronize device state with the rest of the system.
633 */
634void input_release_device(struct input_handle *handle)
635{
636 struct input_dev *dev = handle->dev;
637
638 mutex_lock(&dev->mutex);
639 __input_release_device(handle);
640 mutex_unlock(&dev->mutex);
641}
642EXPORT_SYMBOL(input_release_device);
643
644/**
645 * input_open_device - open input device
646 * @handle: handle through which device is being accessed
647 *
648 * This function should be called by input handlers when they
649 * want to start receive events from given input device.
650 */
651int input_open_device(struct input_handle *handle)
652{
653 struct input_dev *dev = handle->dev;
654 int retval;
655
656 retval = mutex_lock_interruptible(&dev->mutex);
657 if (retval)
658 return retval;
659
660 if (dev->going_away) {
661 retval = -ENODEV;
662 goto out;
663 }
664
665 handle->open++;
666
667 if (dev->users++ || dev->inhibited) {
668 /*
669 * Device is already opened and/or inhibited,
670 * so we can exit immediately and report success.
671 */
672 goto out;
673 }
674
675 if (dev->open) {
676 retval = dev->open(dev);
677 if (retval) {
678 dev->users--;
679 handle->open--;
680 /*
681 * Make sure we are not delivering any more events
682 * through this handle
683 */
684 synchronize_rcu();
685 goto out;
686 }
687 }
688
689 if (dev->poller)
690 input_dev_poller_start(dev->poller);
691
692 out:
693 mutex_unlock(&dev->mutex);
694 return retval;
695}
696EXPORT_SYMBOL(input_open_device);
697
698int input_flush_device(struct input_handle *handle, struct file *file)
699{
700 struct input_dev *dev = handle->dev;
701 int retval;
702
703 retval = mutex_lock_interruptible(&dev->mutex);
704 if (retval)
705 return retval;
706
707 if (dev->flush)
708 retval = dev->flush(dev, file);
709
710 mutex_unlock(&dev->mutex);
711 return retval;
712}
713EXPORT_SYMBOL(input_flush_device);
714
715/**
716 * input_close_device - close input device
717 * @handle: handle through which device is being accessed
718 *
719 * This function should be called by input handlers when they
720 * want to stop receive events from given input device.
721 */
722void input_close_device(struct input_handle *handle)
723{
724 struct input_dev *dev = handle->dev;
725
726 mutex_lock(&dev->mutex);
727
728 __input_release_device(handle);
729
730 if (!dev->inhibited && !--dev->users) {
731 if (dev->poller)
732 input_dev_poller_stop(dev->poller);
733 if (dev->close)
734 dev->close(dev);
735 }
736
737 if (!--handle->open) {
738 /*
739 * synchronize_rcu() makes sure that input_pass_event()
740 * completed and that no more input events are delivered
741 * through this handle
742 */
743 synchronize_rcu();
744 }
745
746 mutex_unlock(&dev->mutex);
747}
748EXPORT_SYMBOL(input_close_device);
749
750/*
751 * Simulate keyup events for all keys that are marked as pressed.
752 * The function must be called with dev->event_lock held.
753 */
754static void input_dev_release_keys(struct input_dev *dev)
755{
756 bool need_sync = false;
757 int code;
758
759 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
760 for_each_set_bit(code, dev->key, KEY_CNT) {
761 input_pass_event(dev, EV_KEY, code, 0);
762 need_sync = true;
763 }
764
765 if (need_sync)
766 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
767
768 memset(dev->key, 0, sizeof(dev->key));
769 }
770}
771
772/*
773 * Prepare device for unregistering
774 */
775static void input_disconnect_device(struct input_dev *dev)
776{
777 struct input_handle *handle;
778
779 /*
780 * Mark device as going away. Note that we take dev->mutex here
781 * not to protect access to dev->going_away but rather to ensure
782 * that there are no threads in the middle of input_open_device()
783 */
784 mutex_lock(&dev->mutex);
785 dev->going_away = true;
786 mutex_unlock(&dev->mutex);
787
788 spin_lock_irq(&dev->event_lock);
789
790 /*
791 * Simulate keyup events for all pressed keys so that handlers
792 * are not left with "stuck" keys. The driver may continue
793 * generate events even after we done here but they will not
794 * reach any handlers.
795 */
796 input_dev_release_keys(dev);
797
798 list_for_each_entry(handle, &dev->h_list, d_node)
799 handle->open = 0;
800
801 spin_unlock_irq(&dev->event_lock);
802}
803
804/**
805 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
806 * @ke: keymap entry containing scancode to be converted.
807 * @scancode: pointer to the location where converted scancode should
808 * be stored.
809 *
810 * This function is used to convert scancode stored in &struct keymap_entry
811 * into scalar form understood by legacy keymap handling methods. These
812 * methods expect scancodes to be represented as 'unsigned int'.
813 */
814int input_scancode_to_scalar(const struct input_keymap_entry *ke,
815 unsigned int *scancode)
816{
817 switch (ke->len) {
818 case 1:
819 *scancode = *((u8 *)ke->scancode);
820 break;
821
822 case 2:
823 *scancode = *((u16 *)ke->scancode);
824 break;
825
826 case 4:
827 *scancode = *((u32 *)ke->scancode);
828 break;
829
830 default:
831 return -EINVAL;
832 }
833
834 return 0;
835}
836EXPORT_SYMBOL(input_scancode_to_scalar);
837
838/*
839 * Those routines handle the default case where no [gs]etkeycode() is
840 * defined. In this case, an array indexed by the scancode is used.
841 */
842
843static unsigned int input_fetch_keycode(struct input_dev *dev,
844 unsigned int index)
845{
846 switch (dev->keycodesize) {
847 case 1:
848 return ((u8 *)dev->keycode)[index];
849
850 case 2:
851 return ((u16 *)dev->keycode)[index];
852
853 default:
854 return ((u32 *)dev->keycode)[index];
855 }
856}
857
858static int input_default_getkeycode(struct input_dev *dev,
859 struct input_keymap_entry *ke)
860{
861 unsigned int index;
862 int error;
863
864 if (!dev->keycodesize)
865 return -EINVAL;
866
867 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
868 index = ke->index;
869 else {
870 error = input_scancode_to_scalar(ke, &index);
871 if (error)
872 return error;
873 }
874
875 if (index >= dev->keycodemax)
876 return -EINVAL;
877
878 ke->keycode = input_fetch_keycode(dev, index);
879 ke->index = index;
880 ke->len = sizeof(index);
881 memcpy(ke->scancode, &index, sizeof(index));
882
883 return 0;
884}
885
886static int input_default_setkeycode(struct input_dev *dev,
887 const struct input_keymap_entry *ke,
888 unsigned int *old_keycode)
889{
890 unsigned int index;
891 int error;
892 int i;
893
894 if (!dev->keycodesize)
895 return -EINVAL;
896
897 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
898 index = ke->index;
899 } else {
900 error = input_scancode_to_scalar(ke, &index);
901 if (error)
902 return error;
903 }
904
905 if (index >= dev->keycodemax)
906 return -EINVAL;
907
908 if (dev->keycodesize < sizeof(ke->keycode) &&
909 (ke->keycode >> (dev->keycodesize * 8)))
910 return -EINVAL;
911
912 switch (dev->keycodesize) {
913 case 1: {
914 u8 *k = (u8 *)dev->keycode;
915 *old_keycode = k[index];
916 k[index] = ke->keycode;
917 break;
918 }
919 case 2: {
920 u16 *k = (u16 *)dev->keycode;
921 *old_keycode = k[index];
922 k[index] = ke->keycode;
923 break;
924 }
925 default: {
926 u32 *k = (u32 *)dev->keycode;
927 *old_keycode = k[index];
928 k[index] = ke->keycode;
929 break;
930 }
931 }
932
933 if (*old_keycode <= KEY_MAX) {
934 __clear_bit(*old_keycode, dev->keybit);
935 for (i = 0; i < dev->keycodemax; i++) {
936 if (input_fetch_keycode(dev, i) == *old_keycode) {
937 __set_bit(*old_keycode, dev->keybit);
938 /* Setting the bit twice is useless, so break */
939 break;
940 }
941 }
942 }
943
944 __set_bit(ke->keycode, dev->keybit);
945 return 0;
946}
947
948/**
949 * input_get_keycode - retrieve keycode currently mapped to a given scancode
950 * @dev: input device which keymap is being queried
951 * @ke: keymap entry
952 *
953 * This function should be called by anyone interested in retrieving current
954 * keymap. Presently evdev handlers use it.
955 */
956int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
957{
958 unsigned long flags;
959 int retval;
960
961 spin_lock_irqsave(&dev->event_lock, flags);
962 retval = dev->getkeycode(dev, ke);
963 spin_unlock_irqrestore(&dev->event_lock, flags);
964
965 return retval;
966}
967EXPORT_SYMBOL(input_get_keycode);
968
969/**
970 * input_set_keycode - attribute a keycode to a given scancode
971 * @dev: input device which keymap is being updated
972 * @ke: new keymap entry
973 *
974 * This function should be called by anyone needing to update current
975 * keymap. Presently keyboard and evdev handlers use it.
976 */
977int input_set_keycode(struct input_dev *dev,
978 const struct input_keymap_entry *ke)
979{
980 unsigned long flags;
981 unsigned int old_keycode;
982 int retval;
983
984 if (ke->keycode > KEY_MAX)
985 return -EINVAL;
986
987 spin_lock_irqsave(&dev->event_lock, flags);
988
989 retval = dev->setkeycode(dev, ke, &old_keycode);
990 if (retval)
991 goto out;
992
993 /* Make sure KEY_RESERVED did not get enabled. */
994 __clear_bit(KEY_RESERVED, dev->keybit);
995
996 /*
997 * Simulate keyup event if keycode is not present
998 * in the keymap anymore
999 */
1000 if (old_keycode > KEY_MAX) {
1001 dev_warn(dev->dev.parent ?: &dev->dev,
1002 "%s: got too big old keycode %#x\n",
1003 __func__, old_keycode);
1004 } else if (test_bit(EV_KEY, dev->evbit) &&
1005 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
1006 __test_and_clear_bit(old_keycode, dev->key)) {
1007 struct input_value vals[] = {
1008 { EV_KEY, old_keycode, 0 },
1009 input_value_sync
1010 };
1011
1012 input_pass_values(dev, vals, ARRAY_SIZE(vals));
1013 }
1014
1015 out:
1016 spin_unlock_irqrestore(&dev->event_lock, flags);
1017
1018 return retval;
1019}
1020EXPORT_SYMBOL(input_set_keycode);
1021
1022bool input_match_device_id(const struct input_dev *dev,
1023 const struct input_device_id *id)
1024{
1025 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
1026 if (id->bustype != dev->id.bustype)
1027 return false;
1028
1029 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
1030 if (id->vendor != dev->id.vendor)
1031 return false;
1032
1033 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
1034 if (id->product != dev->id.product)
1035 return false;
1036
1037 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
1038 if (id->version != dev->id.version)
1039 return false;
1040
1041 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
1042 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
1043 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
1044 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
1045 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
1046 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1047 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1048 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1049 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1050 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1051 return false;
1052 }
1053
1054 return true;
1055}
1056EXPORT_SYMBOL(input_match_device_id);
1057
1058static const struct input_device_id *input_match_device(struct input_handler *handler,
1059 struct input_dev *dev)
1060{
1061 const struct input_device_id *id;
1062
1063 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1064 if (input_match_device_id(dev, id) &&
1065 (!handler->match || handler->match(handler, dev))) {
1066 return id;
1067 }
1068 }
1069
1070 return NULL;
1071}
1072
1073static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1074{
1075 const struct input_device_id *id;
1076 int error;
1077
1078 id = input_match_device(handler, dev);
1079 if (!id)
1080 return -ENODEV;
1081
1082 error = handler->connect(handler, dev, id);
1083 if (error && error != -ENODEV)
1084 pr_err("failed to attach handler %s to device %s, error: %d\n",
1085 handler->name, kobject_name(&dev->dev.kobj), error);
1086
1087 return error;
1088}
1089
1090#ifdef CONFIG_COMPAT
1091
1092static int input_bits_to_string(char *buf, int buf_size,
1093 unsigned long bits, bool skip_empty)
1094{
1095 int len = 0;
1096
1097 if (in_compat_syscall()) {
1098 u32 dword = bits >> 32;
1099 if (dword || !skip_empty)
1100 len += snprintf(buf, buf_size, "%x ", dword);
1101
1102 dword = bits & 0xffffffffUL;
1103 if (dword || !skip_empty || len)
1104 len += snprintf(buf + len, max(buf_size - len, 0),
1105 "%x", dword);
1106 } else {
1107 if (bits || !skip_empty)
1108 len += snprintf(buf, buf_size, "%lx", bits);
1109 }
1110
1111 return len;
1112}
1113
1114#else /* !CONFIG_COMPAT */
1115
1116static int input_bits_to_string(char *buf, int buf_size,
1117 unsigned long bits, bool skip_empty)
1118{
1119 return bits || !skip_empty ?
1120 snprintf(buf, buf_size, "%lx", bits) : 0;
1121}
1122
1123#endif
1124
1125#ifdef CONFIG_PROC_FS
1126
1127static struct proc_dir_entry *proc_bus_input_dir;
1128static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1129static int input_devices_state;
1130
1131static inline void input_wakeup_procfs_readers(void)
1132{
1133 input_devices_state++;
1134 wake_up(&input_devices_poll_wait);
1135}
1136
1137static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1138{
1139 poll_wait(file, &input_devices_poll_wait, wait);
1140 if (file->f_version != input_devices_state) {
1141 file->f_version = input_devices_state;
1142 return EPOLLIN | EPOLLRDNORM;
1143 }
1144
1145 return 0;
1146}
1147
1148union input_seq_state {
1149 struct {
1150 unsigned short pos;
1151 bool mutex_acquired;
1152 };
1153 void *p;
1154};
1155
1156static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1157{
1158 union input_seq_state *state = (union input_seq_state *)&seq->private;
1159 int error;
1160
1161 /* We need to fit into seq->private pointer */
1162 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1163
1164 error = mutex_lock_interruptible(&input_mutex);
1165 if (error) {
1166 state->mutex_acquired = false;
1167 return ERR_PTR(error);
1168 }
1169
1170 state->mutex_acquired = true;
1171
1172 return seq_list_start(&input_dev_list, *pos);
1173}
1174
1175static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1176{
1177 return seq_list_next(v, &input_dev_list, pos);
1178}
1179
1180static void input_seq_stop(struct seq_file *seq, void *v)
1181{
1182 union input_seq_state *state = (union input_seq_state *)&seq->private;
1183
1184 if (state->mutex_acquired)
1185 mutex_unlock(&input_mutex);
1186}
1187
1188static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1189 unsigned long *bitmap, int max)
1190{
1191 int i;
1192 bool skip_empty = true;
1193 char buf[18];
1194
1195 seq_printf(seq, "B: %s=", name);
1196
1197 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1198 if (input_bits_to_string(buf, sizeof(buf),
1199 bitmap[i], skip_empty)) {
1200 skip_empty = false;
1201 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1202 }
1203 }
1204
1205 /*
1206 * If no output was produced print a single 0.
1207 */
1208 if (skip_empty)
1209 seq_putc(seq, '0');
1210
1211 seq_putc(seq, '\n');
1212}
1213
1214static int input_devices_seq_show(struct seq_file *seq, void *v)
1215{
1216 struct input_dev *dev = container_of(v, struct input_dev, node);
1217 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1218 struct input_handle *handle;
1219
1220 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1221 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1222
1223 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1224 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1225 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1226 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1227 seq_puts(seq, "H: Handlers=");
1228
1229 list_for_each_entry(handle, &dev->h_list, d_node)
1230 seq_printf(seq, "%s ", handle->name);
1231 seq_putc(seq, '\n');
1232
1233 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1234
1235 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1236 if (test_bit(EV_KEY, dev->evbit))
1237 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1238 if (test_bit(EV_REL, dev->evbit))
1239 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1240 if (test_bit(EV_ABS, dev->evbit))
1241 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1242 if (test_bit(EV_MSC, dev->evbit))
1243 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1244 if (test_bit(EV_LED, dev->evbit))
1245 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1246 if (test_bit(EV_SND, dev->evbit))
1247 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1248 if (test_bit(EV_FF, dev->evbit))
1249 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1250 if (test_bit(EV_SW, dev->evbit))
1251 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1252
1253 seq_putc(seq, '\n');
1254
1255 kfree(path);
1256 return 0;
1257}
1258
1259static const struct seq_operations input_devices_seq_ops = {
1260 .start = input_devices_seq_start,
1261 .next = input_devices_seq_next,
1262 .stop = input_seq_stop,
1263 .show = input_devices_seq_show,
1264};
1265
1266static int input_proc_devices_open(struct inode *inode, struct file *file)
1267{
1268 return seq_open(file, &input_devices_seq_ops);
1269}
1270
1271static const struct proc_ops input_devices_proc_ops = {
1272 .proc_open = input_proc_devices_open,
1273 .proc_poll = input_proc_devices_poll,
1274 .proc_read = seq_read,
1275 .proc_lseek = seq_lseek,
1276 .proc_release = seq_release,
1277};
1278
1279static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1280{
1281 union input_seq_state *state = (union input_seq_state *)&seq->private;
1282 int error;
1283
1284 /* We need to fit into seq->private pointer */
1285 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1286
1287 error = mutex_lock_interruptible(&input_mutex);
1288 if (error) {
1289 state->mutex_acquired = false;
1290 return ERR_PTR(error);
1291 }
1292
1293 state->mutex_acquired = true;
1294 state->pos = *pos;
1295
1296 return seq_list_start(&input_handler_list, *pos);
1297}
1298
1299static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1300{
1301 union input_seq_state *state = (union input_seq_state *)&seq->private;
1302
1303 state->pos = *pos + 1;
1304 return seq_list_next(v, &input_handler_list, pos);
1305}
1306
1307static int input_handlers_seq_show(struct seq_file *seq, void *v)
1308{
1309 struct input_handler *handler = container_of(v, struct input_handler, node);
1310 union input_seq_state *state = (union input_seq_state *)&seq->private;
1311
1312 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1313 if (handler->filter)
1314 seq_puts(seq, " (filter)");
1315 if (handler->legacy_minors)
1316 seq_printf(seq, " Minor=%d", handler->minor);
1317 seq_putc(seq, '\n');
1318
1319 return 0;
1320}
1321
1322static const struct seq_operations input_handlers_seq_ops = {
1323 .start = input_handlers_seq_start,
1324 .next = input_handlers_seq_next,
1325 .stop = input_seq_stop,
1326 .show = input_handlers_seq_show,
1327};
1328
1329static int input_proc_handlers_open(struct inode *inode, struct file *file)
1330{
1331 return seq_open(file, &input_handlers_seq_ops);
1332}
1333
1334static const struct proc_ops input_handlers_proc_ops = {
1335 .proc_open = input_proc_handlers_open,
1336 .proc_read = seq_read,
1337 .proc_lseek = seq_lseek,
1338 .proc_release = seq_release,
1339};
1340
1341static int __init input_proc_init(void)
1342{
1343 struct proc_dir_entry *entry;
1344
1345 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1346 if (!proc_bus_input_dir)
1347 return -ENOMEM;
1348
1349 entry = proc_create("devices", 0, proc_bus_input_dir,
1350 &input_devices_proc_ops);
1351 if (!entry)
1352 goto fail1;
1353
1354 entry = proc_create("handlers", 0, proc_bus_input_dir,
1355 &input_handlers_proc_ops);
1356 if (!entry)
1357 goto fail2;
1358
1359 return 0;
1360
1361 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1362 fail1: remove_proc_entry("bus/input", NULL);
1363 return -ENOMEM;
1364}
1365
1366static void input_proc_exit(void)
1367{
1368 remove_proc_entry("devices", proc_bus_input_dir);
1369 remove_proc_entry("handlers", proc_bus_input_dir);
1370 remove_proc_entry("bus/input", NULL);
1371}
1372
1373#else /* !CONFIG_PROC_FS */
1374static inline void input_wakeup_procfs_readers(void) { }
1375static inline int input_proc_init(void) { return 0; }
1376static inline void input_proc_exit(void) { }
1377#endif
1378
1379#define INPUT_DEV_STRING_ATTR_SHOW(name) \
1380static ssize_t input_dev_show_##name(struct device *dev, \
1381 struct device_attribute *attr, \
1382 char *buf) \
1383{ \
1384 struct input_dev *input_dev = to_input_dev(dev); \
1385 \
1386 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1387 input_dev->name ? input_dev->name : ""); \
1388} \
1389static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1390
1391INPUT_DEV_STRING_ATTR_SHOW(name);
1392INPUT_DEV_STRING_ATTR_SHOW(phys);
1393INPUT_DEV_STRING_ATTR_SHOW(uniq);
1394
1395static int input_print_modalias_bits(char *buf, int size,
1396 char name, unsigned long *bm,
1397 unsigned int min_bit, unsigned int max_bit)
1398{
1399 int len = 0, i;
1400
1401 len += snprintf(buf, max(size, 0), "%c", name);
1402 for (i = min_bit; i < max_bit; i++)
1403 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1404 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1405 return len;
1406}
1407
1408static int input_print_modalias(char *buf, int size, struct input_dev *id,
1409 int add_cr)
1410{
1411 int len;
1412
1413 len = snprintf(buf, max(size, 0),
1414 "input:b%04Xv%04Xp%04Xe%04X-",
1415 id->id.bustype, id->id.vendor,
1416 id->id.product, id->id.version);
1417
1418 len += input_print_modalias_bits(buf + len, size - len,
1419 'e', id->evbit, 0, EV_MAX);
1420 len += input_print_modalias_bits(buf + len, size - len,
1421 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1422 len += input_print_modalias_bits(buf + len, size - len,
1423 'r', id->relbit, 0, REL_MAX);
1424 len += input_print_modalias_bits(buf + len, size - len,
1425 'a', id->absbit, 0, ABS_MAX);
1426 len += input_print_modalias_bits(buf + len, size - len,
1427 'm', id->mscbit, 0, MSC_MAX);
1428 len += input_print_modalias_bits(buf + len, size - len,
1429 'l', id->ledbit, 0, LED_MAX);
1430 len += input_print_modalias_bits(buf + len, size - len,
1431 's', id->sndbit, 0, SND_MAX);
1432 len += input_print_modalias_bits(buf + len, size - len,
1433 'f', id->ffbit, 0, FF_MAX);
1434 len += input_print_modalias_bits(buf + len, size - len,
1435 'w', id->swbit, 0, SW_MAX);
1436
1437 if (add_cr)
1438 len += snprintf(buf + len, max(size - len, 0), "\n");
1439
1440 return len;
1441}
1442
1443static ssize_t input_dev_show_modalias(struct device *dev,
1444 struct device_attribute *attr,
1445 char *buf)
1446{
1447 struct input_dev *id = to_input_dev(dev);
1448 ssize_t len;
1449
1450 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1451
1452 return min_t(int, len, PAGE_SIZE);
1453}
1454static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1455
1456static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1457 int max, int add_cr);
1458
1459static ssize_t input_dev_show_properties(struct device *dev,
1460 struct device_attribute *attr,
1461 char *buf)
1462{
1463 struct input_dev *input_dev = to_input_dev(dev);
1464 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1465 INPUT_PROP_MAX, true);
1466 return min_t(int, len, PAGE_SIZE);
1467}
1468static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1469
1470static int input_inhibit_device(struct input_dev *dev);
1471static int input_uninhibit_device(struct input_dev *dev);
1472
1473static ssize_t inhibited_show(struct device *dev,
1474 struct device_attribute *attr,
1475 char *buf)
1476{
1477 struct input_dev *input_dev = to_input_dev(dev);
1478
1479 return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited);
1480}
1481
1482static ssize_t inhibited_store(struct device *dev,
1483 struct device_attribute *attr, const char *buf,
1484 size_t len)
1485{
1486 struct input_dev *input_dev = to_input_dev(dev);
1487 ssize_t rv;
1488 bool inhibited;
1489
1490 if (strtobool(buf, &inhibited))
1491 return -EINVAL;
1492
1493 if (inhibited)
1494 rv = input_inhibit_device(input_dev);
1495 else
1496 rv = input_uninhibit_device(input_dev);
1497
1498 if (rv != 0)
1499 return rv;
1500
1501 return len;
1502}
1503
1504static DEVICE_ATTR_RW(inhibited);
1505
1506static struct attribute *input_dev_attrs[] = {
1507 &dev_attr_name.attr,
1508 &dev_attr_phys.attr,
1509 &dev_attr_uniq.attr,
1510 &dev_attr_modalias.attr,
1511 &dev_attr_properties.attr,
1512 &dev_attr_inhibited.attr,
1513 NULL
1514};
1515
1516static const struct attribute_group input_dev_attr_group = {
1517 .attrs = input_dev_attrs,
1518};
1519
1520#define INPUT_DEV_ID_ATTR(name) \
1521static ssize_t input_dev_show_id_##name(struct device *dev, \
1522 struct device_attribute *attr, \
1523 char *buf) \
1524{ \
1525 struct input_dev *input_dev = to_input_dev(dev); \
1526 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1527} \
1528static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1529
1530INPUT_DEV_ID_ATTR(bustype);
1531INPUT_DEV_ID_ATTR(vendor);
1532INPUT_DEV_ID_ATTR(product);
1533INPUT_DEV_ID_ATTR(version);
1534
1535static struct attribute *input_dev_id_attrs[] = {
1536 &dev_attr_bustype.attr,
1537 &dev_attr_vendor.attr,
1538 &dev_attr_product.attr,
1539 &dev_attr_version.attr,
1540 NULL
1541};
1542
1543static const struct attribute_group input_dev_id_attr_group = {
1544 .name = "id",
1545 .attrs = input_dev_id_attrs,
1546};
1547
1548static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1549 int max, int add_cr)
1550{
1551 int i;
1552 int len = 0;
1553 bool skip_empty = true;
1554
1555 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1556 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1557 bitmap[i], skip_empty);
1558 if (len) {
1559 skip_empty = false;
1560 if (i > 0)
1561 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1562 }
1563 }
1564
1565 /*
1566 * If no output was produced print a single 0.
1567 */
1568 if (len == 0)
1569 len = snprintf(buf, buf_size, "%d", 0);
1570
1571 if (add_cr)
1572 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1573
1574 return len;
1575}
1576
1577#define INPUT_DEV_CAP_ATTR(ev, bm) \
1578static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1579 struct device_attribute *attr, \
1580 char *buf) \
1581{ \
1582 struct input_dev *input_dev = to_input_dev(dev); \
1583 int len = input_print_bitmap(buf, PAGE_SIZE, \
1584 input_dev->bm##bit, ev##_MAX, \
1585 true); \
1586 return min_t(int, len, PAGE_SIZE); \
1587} \
1588static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1589
1590INPUT_DEV_CAP_ATTR(EV, ev);
1591INPUT_DEV_CAP_ATTR(KEY, key);
1592INPUT_DEV_CAP_ATTR(REL, rel);
1593INPUT_DEV_CAP_ATTR(ABS, abs);
1594INPUT_DEV_CAP_ATTR(MSC, msc);
1595INPUT_DEV_CAP_ATTR(LED, led);
1596INPUT_DEV_CAP_ATTR(SND, snd);
1597INPUT_DEV_CAP_ATTR(FF, ff);
1598INPUT_DEV_CAP_ATTR(SW, sw);
1599
1600static struct attribute *input_dev_caps_attrs[] = {
1601 &dev_attr_ev.attr,
1602 &dev_attr_key.attr,
1603 &dev_attr_rel.attr,
1604 &dev_attr_abs.attr,
1605 &dev_attr_msc.attr,
1606 &dev_attr_led.attr,
1607 &dev_attr_snd.attr,
1608 &dev_attr_ff.attr,
1609 &dev_attr_sw.attr,
1610 NULL
1611};
1612
1613static const struct attribute_group input_dev_caps_attr_group = {
1614 .name = "capabilities",
1615 .attrs = input_dev_caps_attrs,
1616};
1617
1618static const struct attribute_group *input_dev_attr_groups[] = {
1619 &input_dev_attr_group,
1620 &input_dev_id_attr_group,
1621 &input_dev_caps_attr_group,
1622 &input_poller_attribute_group,
1623 NULL
1624};
1625
1626static void input_dev_release(struct device *device)
1627{
1628 struct input_dev *dev = to_input_dev(device);
1629
1630 input_ff_destroy(dev);
1631 input_mt_destroy_slots(dev);
1632 kfree(dev->poller);
1633 kfree(dev->absinfo);
1634 kfree(dev->vals);
1635 kfree(dev);
1636
1637 module_put(THIS_MODULE);
1638}
1639
1640/*
1641 * Input uevent interface - loading event handlers based on
1642 * device bitfields.
1643 */
1644static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1645 const char *name, unsigned long *bitmap, int max)
1646{
1647 int len;
1648
1649 if (add_uevent_var(env, "%s", name))
1650 return -ENOMEM;
1651
1652 len = input_print_bitmap(&env->buf[env->buflen - 1],
1653 sizeof(env->buf) - env->buflen,
1654 bitmap, max, false);
1655 if (len >= (sizeof(env->buf) - env->buflen))
1656 return -ENOMEM;
1657
1658 env->buflen += len;
1659 return 0;
1660}
1661
1662static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1663 struct input_dev *dev)
1664{
1665 int len;
1666
1667 if (add_uevent_var(env, "MODALIAS="))
1668 return -ENOMEM;
1669
1670 len = input_print_modalias(&env->buf[env->buflen - 1],
1671 sizeof(env->buf) - env->buflen,
1672 dev, 0);
1673 if (len >= (sizeof(env->buf) - env->buflen))
1674 return -ENOMEM;
1675
1676 env->buflen += len;
1677 return 0;
1678}
1679
1680#define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1681 do { \
1682 int err = add_uevent_var(env, fmt, val); \
1683 if (err) \
1684 return err; \
1685 } while (0)
1686
1687#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1688 do { \
1689 int err = input_add_uevent_bm_var(env, name, bm, max); \
1690 if (err) \
1691 return err; \
1692 } while (0)
1693
1694#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1695 do { \
1696 int err = input_add_uevent_modalias_var(env, dev); \
1697 if (err) \
1698 return err; \
1699 } while (0)
1700
1701static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1702{
1703 struct input_dev *dev = to_input_dev(device);
1704
1705 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1706 dev->id.bustype, dev->id.vendor,
1707 dev->id.product, dev->id.version);
1708 if (dev->name)
1709 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1710 if (dev->phys)
1711 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1712 if (dev->uniq)
1713 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1714
1715 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1716
1717 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1718 if (test_bit(EV_KEY, dev->evbit))
1719 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1720 if (test_bit(EV_REL, dev->evbit))
1721 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1722 if (test_bit(EV_ABS, dev->evbit))
1723 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1724 if (test_bit(EV_MSC, dev->evbit))
1725 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1726 if (test_bit(EV_LED, dev->evbit))
1727 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1728 if (test_bit(EV_SND, dev->evbit))
1729 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1730 if (test_bit(EV_FF, dev->evbit))
1731 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1732 if (test_bit(EV_SW, dev->evbit))
1733 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1734
1735 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1736
1737 return 0;
1738}
1739
1740#define INPUT_DO_TOGGLE(dev, type, bits, on) \
1741 do { \
1742 int i; \
1743 bool active; \
1744 \
1745 if (!test_bit(EV_##type, dev->evbit)) \
1746 break; \
1747 \
1748 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1749 active = test_bit(i, dev->bits); \
1750 if (!active && !on) \
1751 continue; \
1752 \
1753 dev->event(dev, EV_##type, i, on ? active : 0); \
1754 } \
1755 } while (0)
1756
1757static void input_dev_toggle(struct input_dev *dev, bool activate)
1758{
1759 if (!dev->event)
1760 return;
1761
1762 INPUT_DO_TOGGLE(dev, LED, led, activate);
1763 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1764
1765 if (activate && test_bit(EV_REP, dev->evbit)) {
1766 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1767 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1768 }
1769}
1770
1771/**
1772 * input_reset_device() - reset/restore the state of input device
1773 * @dev: input device whose state needs to be reset
1774 *
1775 * This function tries to reset the state of an opened input device and
1776 * bring internal state and state if the hardware in sync with each other.
1777 * We mark all keys as released, restore LED state, repeat rate, etc.
1778 */
1779void input_reset_device(struct input_dev *dev)
1780{
1781 unsigned long flags;
1782
1783 mutex_lock(&dev->mutex);
1784 spin_lock_irqsave(&dev->event_lock, flags);
1785
1786 input_dev_toggle(dev, true);
1787 input_dev_release_keys(dev);
1788
1789 spin_unlock_irqrestore(&dev->event_lock, flags);
1790 mutex_unlock(&dev->mutex);
1791}
1792EXPORT_SYMBOL(input_reset_device);
1793
1794static int input_inhibit_device(struct input_dev *dev)
1795{
1796 int ret = 0;
1797
1798 mutex_lock(&dev->mutex);
1799
1800 if (dev->inhibited)
1801 goto out;
1802
1803 if (dev->users) {
1804 if (dev->close)
1805 dev->close(dev);
1806 if (dev->poller)
1807 input_dev_poller_stop(dev->poller);
1808 }
1809
1810 spin_lock_irq(&dev->event_lock);
1811 input_dev_release_keys(dev);
1812 input_dev_toggle(dev, false);
1813 spin_unlock_irq(&dev->event_lock);
1814
1815 dev->inhibited = true;
1816
1817out:
1818 mutex_unlock(&dev->mutex);
1819 return ret;
1820}
1821
1822static int input_uninhibit_device(struct input_dev *dev)
1823{
1824 int ret = 0;
1825
1826 mutex_lock(&dev->mutex);
1827
1828 if (!dev->inhibited)
1829 goto out;
1830
1831 if (dev->users) {
1832 if (dev->open) {
1833 ret = dev->open(dev);
1834 if (ret)
1835 goto out;
1836 }
1837 if (dev->poller)
1838 input_dev_poller_start(dev->poller);
1839 }
1840
1841 dev->inhibited = false;
1842 spin_lock_irq(&dev->event_lock);
1843 input_dev_toggle(dev, true);
1844 spin_unlock_irq(&dev->event_lock);
1845
1846out:
1847 mutex_unlock(&dev->mutex);
1848 return ret;
1849}
1850
1851#ifdef CONFIG_PM_SLEEP
1852static int input_dev_suspend(struct device *dev)
1853{
1854 struct input_dev *input_dev = to_input_dev(dev);
1855
1856 spin_lock_irq(&input_dev->event_lock);
1857
1858 /*
1859 * Keys that are pressed now are unlikely to be
1860 * still pressed when we resume.
1861 */
1862 input_dev_release_keys(input_dev);
1863
1864 /* Turn off LEDs and sounds, if any are active. */
1865 input_dev_toggle(input_dev, false);
1866
1867 spin_unlock_irq(&input_dev->event_lock);
1868
1869 return 0;
1870}
1871
1872static int input_dev_resume(struct device *dev)
1873{
1874 struct input_dev *input_dev = to_input_dev(dev);
1875
1876 spin_lock_irq(&input_dev->event_lock);
1877
1878 /* Restore state of LEDs and sounds, if any were active. */
1879 input_dev_toggle(input_dev, true);
1880
1881 spin_unlock_irq(&input_dev->event_lock);
1882
1883 return 0;
1884}
1885
1886static int input_dev_freeze(struct device *dev)
1887{
1888 struct input_dev *input_dev = to_input_dev(dev);
1889
1890 spin_lock_irq(&input_dev->event_lock);
1891
1892 /*
1893 * Keys that are pressed now are unlikely to be
1894 * still pressed when we resume.
1895 */
1896 input_dev_release_keys(input_dev);
1897
1898 spin_unlock_irq(&input_dev->event_lock);
1899
1900 return 0;
1901}
1902
1903static int input_dev_poweroff(struct device *dev)
1904{
1905 struct input_dev *input_dev = to_input_dev(dev);
1906
1907 spin_lock_irq(&input_dev->event_lock);
1908
1909 /* Turn off LEDs and sounds, if any are active. */
1910 input_dev_toggle(input_dev, false);
1911
1912 spin_unlock_irq(&input_dev->event_lock);
1913
1914 return 0;
1915}
1916
1917static const struct dev_pm_ops input_dev_pm_ops = {
1918 .suspend = input_dev_suspend,
1919 .resume = input_dev_resume,
1920 .freeze = input_dev_freeze,
1921 .poweroff = input_dev_poweroff,
1922 .restore = input_dev_resume,
1923};
1924#endif /* CONFIG_PM */
1925
1926static const struct device_type input_dev_type = {
1927 .groups = input_dev_attr_groups,
1928 .release = input_dev_release,
1929 .uevent = input_dev_uevent,
1930#ifdef CONFIG_PM_SLEEP
1931 .pm = &input_dev_pm_ops,
1932#endif
1933};
1934
1935static char *input_devnode(struct device *dev, umode_t *mode)
1936{
1937 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1938}
1939
1940struct class input_class = {
1941 .name = "input",
1942 .devnode = input_devnode,
1943};
1944EXPORT_SYMBOL_GPL(input_class);
1945
1946/**
1947 * input_allocate_device - allocate memory for new input device
1948 *
1949 * Returns prepared struct input_dev or %NULL.
1950 *
1951 * NOTE: Use input_free_device() to free devices that have not been
1952 * registered; input_unregister_device() should be used for already
1953 * registered devices.
1954 */
1955struct input_dev *input_allocate_device(void)
1956{
1957 static atomic_t input_no = ATOMIC_INIT(-1);
1958 struct input_dev *dev;
1959
1960 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1961 if (dev) {
1962 dev->dev.type = &input_dev_type;
1963 dev->dev.class = &input_class;
1964 device_initialize(&dev->dev);
1965 mutex_init(&dev->mutex);
1966 spin_lock_init(&dev->event_lock);
1967 timer_setup(&dev->timer, NULL, 0);
1968 INIT_LIST_HEAD(&dev->h_list);
1969 INIT_LIST_HEAD(&dev->node);
1970
1971 dev_set_name(&dev->dev, "input%lu",
1972 (unsigned long)atomic_inc_return(&input_no));
1973
1974 __module_get(THIS_MODULE);
1975 }
1976
1977 return dev;
1978}
1979EXPORT_SYMBOL(input_allocate_device);
1980
1981struct input_devres {
1982 struct input_dev *input;
1983};
1984
1985static int devm_input_device_match(struct device *dev, void *res, void *data)
1986{
1987 struct input_devres *devres = res;
1988
1989 return devres->input == data;
1990}
1991
1992static void devm_input_device_release(struct device *dev, void *res)
1993{
1994 struct input_devres *devres = res;
1995 struct input_dev *input = devres->input;
1996
1997 dev_dbg(dev, "%s: dropping reference to %s\n",
1998 __func__, dev_name(&input->dev));
1999 input_put_device(input);
2000}
2001
2002/**
2003 * devm_input_allocate_device - allocate managed input device
2004 * @dev: device owning the input device being created
2005 *
2006 * Returns prepared struct input_dev or %NULL.
2007 *
2008 * Managed input devices do not need to be explicitly unregistered or
2009 * freed as it will be done automatically when owner device unbinds from
2010 * its driver (or binding fails). Once managed input device is allocated,
2011 * it is ready to be set up and registered in the same fashion as regular
2012 * input device. There are no special devm_input_device_[un]register()
2013 * variants, regular ones work with both managed and unmanaged devices,
2014 * should you need them. In most cases however, managed input device need
2015 * not be explicitly unregistered or freed.
2016 *
2017 * NOTE: the owner device is set up as parent of input device and users
2018 * should not override it.
2019 */
2020struct input_dev *devm_input_allocate_device(struct device *dev)
2021{
2022 struct input_dev *input;
2023 struct input_devres *devres;
2024
2025 devres = devres_alloc(devm_input_device_release,
2026 sizeof(*devres), GFP_KERNEL);
2027 if (!devres)
2028 return NULL;
2029
2030 input = input_allocate_device();
2031 if (!input) {
2032 devres_free(devres);
2033 return NULL;
2034 }
2035
2036 input->dev.parent = dev;
2037 input->devres_managed = true;
2038
2039 devres->input = input;
2040 devres_add(dev, devres);
2041
2042 return input;
2043}
2044EXPORT_SYMBOL(devm_input_allocate_device);
2045
2046/**
2047 * input_free_device - free memory occupied by input_dev structure
2048 * @dev: input device to free
2049 *
2050 * This function should only be used if input_register_device()
2051 * was not called yet or if it failed. Once device was registered
2052 * use input_unregister_device() and memory will be freed once last
2053 * reference to the device is dropped.
2054 *
2055 * Device should be allocated by input_allocate_device().
2056 *
2057 * NOTE: If there are references to the input device then memory
2058 * will not be freed until last reference is dropped.
2059 */
2060void input_free_device(struct input_dev *dev)
2061{
2062 if (dev) {
2063 if (dev->devres_managed)
2064 WARN_ON(devres_destroy(dev->dev.parent,
2065 devm_input_device_release,
2066 devm_input_device_match,
2067 dev));
2068 input_put_device(dev);
2069 }
2070}
2071EXPORT_SYMBOL(input_free_device);
2072
2073/**
2074 * input_set_timestamp - set timestamp for input events
2075 * @dev: input device to set timestamp for
2076 * @timestamp: the time at which the event has occurred
2077 * in CLOCK_MONOTONIC
2078 *
2079 * This function is intended to provide to the input system a more
2080 * accurate time of when an event actually occurred. The driver should
2081 * call this function as soon as a timestamp is acquired ensuring
2082 * clock conversions in input_set_timestamp are done correctly.
2083 *
2084 * The system entering suspend state between timestamp acquisition and
2085 * calling input_set_timestamp can result in inaccurate conversions.
2086 */
2087void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2088{
2089 dev->timestamp[INPUT_CLK_MONO] = timestamp;
2090 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2091 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2092 TK_OFFS_BOOT);
2093}
2094EXPORT_SYMBOL(input_set_timestamp);
2095
2096/**
2097 * input_get_timestamp - get timestamp for input events
2098 * @dev: input device to get timestamp from
2099 *
2100 * A valid timestamp is a timestamp of non-zero value.
2101 */
2102ktime_t *input_get_timestamp(struct input_dev *dev)
2103{
2104 const ktime_t invalid_timestamp = ktime_set(0, 0);
2105
2106 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2107 input_set_timestamp(dev, ktime_get());
2108
2109 return dev->timestamp;
2110}
2111EXPORT_SYMBOL(input_get_timestamp);
2112
2113/**
2114 * input_set_capability - mark device as capable of a certain event
2115 * @dev: device that is capable of emitting or accepting event
2116 * @type: type of the event (EV_KEY, EV_REL, etc...)
2117 * @code: event code
2118 *
2119 * In addition to setting up corresponding bit in appropriate capability
2120 * bitmap the function also adjusts dev->evbit.
2121 */
2122void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2123{
2124 if (type < EV_CNT && input_max_code[type] &&
2125 code > input_max_code[type]) {
2126 pr_err("%s: invalid code %u for type %u\n", __func__, code,
2127 type);
2128 dump_stack();
2129 return;
2130 }
2131
2132 switch (type) {
2133 case EV_KEY:
2134 __set_bit(code, dev->keybit);
2135 break;
2136
2137 case EV_REL:
2138 __set_bit(code, dev->relbit);
2139 break;
2140
2141 case EV_ABS:
2142 input_alloc_absinfo(dev);
2143 __set_bit(code, dev->absbit);
2144 break;
2145
2146 case EV_MSC:
2147 __set_bit(code, dev->mscbit);
2148 break;
2149
2150 case EV_SW:
2151 __set_bit(code, dev->swbit);
2152 break;
2153
2154 case EV_LED:
2155 __set_bit(code, dev->ledbit);
2156 break;
2157
2158 case EV_SND:
2159 __set_bit(code, dev->sndbit);
2160 break;
2161
2162 case EV_FF:
2163 __set_bit(code, dev->ffbit);
2164 break;
2165
2166 case EV_PWR:
2167 /* do nothing */
2168 break;
2169
2170 default:
2171 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2172 dump_stack();
2173 return;
2174 }
2175
2176 __set_bit(type, dev->evbit);
2177}
2178EXPORT_SYMBOL(input_set_capability);
2179
2180static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2181{
2182 int mt_slots;
2183 int i;
2184 unsigned int events;
2185
2186 if (dev->mt) {
2187 mt_slots = dev->mt->num_slots;
2188 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2189 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2190 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2191 mt_slots = clamp(mt_slots, 2, 32);
2192 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2193 mt_slots = 2;
2194 } else {
2195 mt_slots = 0;
2196 }
2197
2198 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2199
2200 if (test_bit(EV_ABS, dev->evbit))
2201 for_each_set_bit(i, dev->absbit, ABS_CNT)
2202 events += input_is_mt_axis(i) ? mt_slots : 1;
2203
2204 if (test_bit(EV_REL, dev->evbit))
2205 events += bitmap_weight(dev->relbit, REL_CNT);
2206
2207 /* Make room for KEY and MSC events */
2208 events += 7;
2209
2210 return events;
2211}
2212
2213#define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2214 do { \
2215 if (!test_bit(EV_##type, dev->evbit)) \
2216 memset(dev->bits##bit, 0, \
2217 sizeof(dev->bits##bit)); \
2218 } while (0)
2219
2220static void input_cleanse_bitmasks(struct input_dev *dev)
2221{
2222 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2223 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2224 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2225 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2226 INPUT_CLEANSE_BITMASK(dev, LED, led);
2227 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2228 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2229 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2230}
2231
2232static void __input_unregister_device(struct input_dev *dev)
2233{
2234 struct input_handle *handle, *next;
2235
2236 input_disconnect_device(dev);
2237
2238 mutex_lock(&input_mutex);
2239
2240 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2241 handle->handler->disconnect(handle);
2242 WARN_ON(!list_empty(&dev->h_list));
2243
2244 del_timer_sync(&dev->timer);
2245 list_del_init(&dev->node);
2246
2247 input_wakeup_procfs_readers();
2248
2249 mutex_unlock(&input_mutex);
2250
2251 device_del(&dev->dev);
2252}
2253
2254static void devm_input_device_unregister(struct device *dev, void *res)
2255{
2256 struct input_devres *devres = res;
2257 struct input_dev *input = devres->input;
2258
2259 dev_dbg(dev, "%s: unregistering device %s\n",
2260 __func__, dev_name(&input->dev));
2261 __input_unregister_device(input);
2262}
2263
2264/**
2265 * input_enable_softrepeat - enable software autorepeat
2266 * @dev: input device
2267 * @delay: repeat delay
2268 * @period: repeat period
2269 *
2270 * Enable software autorepeat on the input device.
2271 */
2272void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2273{
2274 dev->timer.function = input_repeat_key;
2275 dev->rep[REP_DELAY] = delay;
2276 dev->rep[REP_PERIOD] = period;
2277}
2278EXPORT_SYMBOL(input_enable_softrepeat);
2279
2280bool input_device_enabled(struct input_dev *dev)
2281{
2282 lockdep_assert_held(&dev->mutex);
2283
2284 return !dev->inhibited && dev->users > 0;
2285}
2286EXPORT_SYMBOL_GPL(input_device_enabled);
2287
2288/**
2289 * input_register_device - register device with input core
2290 * @dev: device to be registered
2291 *
2292 * This function registers device with input core. The device must be
2293 * allocated with input_allocate_device() and all it's capabilities
2294 * set up before registering.
2295 * If function fails the device must be freed with input_free_device().
2296 * Once device has been successfully registered it can be unregistered
2297 * with input_unregister_device(); input_free_device() should not be
2298 * called in this case.
2299 *
2300 * Note that this function is also used to register managed input devices
2301 * (ones allocated with devm_input_allocate_device()). Such managed input
2302 * devices need not be explicitly unregistered or freed, their tear down
2303 * is controlled by the devres infrastructure. It is also worth noting
2304 * that tear down of managed input devices is internally a 2-step process:
2305 * registered managed input device is first unregistered, but stays in
2306 * memory and can still handle input_event() calls (although events will
2307 * not be delivered anywhere). The freeing of managed input device will
2308 * happen later, when devres stack is unwound to the point where device
2309 * allocation was made.
2310 */
2311int input_register_device(struct input_dev *dev)
2312{
2313 struct input_devres *devres = NULL;
2314 struct input_handler *handler;
2315 unsigned int packet_size;
2316 const char *path;
2317 int error;
2318
2319 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2320 dev_err(&dev->dev,
2321 "Absolute device without dev->absinfo, refusing to register\n");
2322 return -EINVAL;
2323 }
2324
2325 if (dev->devres_managed) {
2326 devres = devres_alloc(devm_input_device_unregister,
2327 sizeof(*devres), GFP_KERNEL);
2328 if (!devres)
2329 return -ENOMEM;
2330
2331 devres->input = dev;
2332 }
2333
2334 /* Every input device generates EV_SYN/SYN_REPORT events. */
2335 __set_bit(EV_SYN, dev->evbit);
2336
2337 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2338 __clear_bit(KEY_RESERVED, dev->keybit);
2339
2340 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2341 input_cleanse_bitmasks(dev);
2342
2343 packet_size = input_estimate_events_per_packet(dev);
2344 if (dev->hint_events_per_packet < packet_size)
2345 dev->hint_events_per_packet = packet_size;
2346
2347 dev->max_vals = dev->hint_events_per_packet + 2;
2348 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2349 if (!dev->vals) {
2350 error = -ENOMEM;
2351 goto err_devres_free;
2352 }
2353
2354 /*
2355 * If delay and period are pre-set by the driver, then autorepeating
2356 * is handled by the driver itself and we don't do it in input.c.
2357 */
2358 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2359 input_enable_softrepeat(dev, 250, 33);
2360
2361 if (!dev->getkeycode)
2362 dev->getkeycode = input_default_getkeycode;
2363
2364 if (!dev->setkeycode)
2365 dev->setkeycode = input_default_setkeycode;
2366
2367 if (dev->poller)
2368 input_dev_poller_finalize(dev->poller);
2369
2370 error = device_add(&dev->dev);
2371 if (error)
2372 goto err_free_vals;
2373
2374 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2375 pr_info("%s as %s\n",
2376 dev->name ? dev->name : "Unspecified device",
2377 path ? path : "N/A");
2378 kfree(path);
2379
2380 error = mutex_lock_interruptible(&input_mutex);
2381 if (error)
2382 goto err_device_del;
2383
2384 list_add_tail(&dev->node, &input_dev_list);
2385
2386 list_for_each_entry(handler, &input_handler_list, node)
2387 input_attach_handler(dev, handler);
2388
2389 input_wakeup_procfs_readers();
2390
2391 mutex_unlock(&input_mutex);
2392
2393 if (dev->devres_managed) {
2394 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2395 __func__, dev_name(&dev->dev));
2396 devres_add(dev->dev.parent, devres);
2397 }
2398 return 0;
2399
2400err_device_del:
2401 device_del(&dev->dev);
2402err_free_vals:
2403 kfree(dev->vals);
2404 dev->vals = NULL;
2405err_devres_free:
2406 devres_free(devres);
2407 return error;
2408}
2409EXPORT_SYMBOL(input_register_device);
2410
2411/**
2412 * input_unregister_device - unregister previously registered device
2413 * @dev: device to be unregistered
2414 *
2415 * This function unregisters an input device. Once device is unregistered
2416 * the caller should not try to access it as it may get freed at any moment.
2417 */
2418void input_unregister_device(struct input_dev *dev)
2419{
2420 if (dev->devres_managed) {
2421 WARN_ON(devres_destroy(dev->dev.parent,
2422 devm_input_device_unregister,
2423 devm_input_device_match,
2424 dev));
2425 __input_unregister_device(dev);
2426 /*
2427 * We do not do input_put_device() here because it will be done
2428 * when 2nd devres fires up.
2429 */
2430 } else {
2431 __input_unregister_device(dev);
2432 input_put_device(dev);
2433 }
2434}
2435EXPORT_SYMBOL(input_unregister_device);
2436
2437/**
2438 * input_register_handler - register a new input handler
2439 * @handler: handler to be registered
2440 *
2441 * This function registers a new input handler (interface) for input
2442 * devices in the system and attaches it to all input devices that
2443 * are compatible with the handler.
2444 */
2445int input_register_handler(struct input_handler *handler)
2446{
2447 struct input_dev *dev;
2448 int error;
2449
2450 error = mutex_lock_interruptible(&input_mutex);
2451 if (error)
2452 return error;
2453
2454 INIT_LIST_HEAD(&handler->h_list);
2455
2456 list_add_tail(&handler->node, &input_handler_list);
2457
2458 list_for_each_entry(dev, &input_dev_list, node)
2459 input_attach_handler(dev, handler);
2460
2461 input_wakeup_procfs_readers();
2462
2463 mutex_unlock(&input_mutex);
2464 return 0;
2465}
2466EXPORT_SYMBOL(input_register_handler);
2467
2468/**
2469 * input_unregister_handler - unregisters an input handler
2470 * @handler: handler to be unregistered
2471 *
2472 * This function disconnects a handler from its input devices and
2473 * removes it from lists of known handlers.
2474 */
2475void input_unregister_handler(struct input_handler *handler)
2476{
2477 struct input_handle *handle, *next;
2478
2479 mutex_lock(&input_mutex);
2480
2481 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2482 handler->disconnect(handle);
2483 WARN_ON(!list_empty(&handler->h_list));
2484
2485 list_del_init(&handler->node);
2486
2487 input_wakeup_procfs_readers();
2488
2489 mutex_unlock(&input_mutex);
2490}
2491EXPORT_SYMBOL(input_unregister_handler);
2492
2493/**
2494 * input_handler_for_each_handle - handle iterator
2495 * @handler: input handler to iterate
2496 * @data: data for the callback
2497 * @fn: function to be called for each handle
2498 *
2499 * Iterate over @bus's list of devices, and call @fn for each, passing
2500 * it @data and stop when @fn returns a non-zero value. The function is
2501 * using RCU to traverse the list and therefore may be using in atomic
2502 * contexts. The @fn callback is invoked from RCU critical section and
2503 * thus must not sleep.
2504 */
2505int input_handler_for_each_handle(struct input_handler *handler, void *data,
2506 int (*fn)(struct input_handle *, void *))
2507{
2508 struct input_handle *handle;
2509 int retval = 0;
2510
2511 rcu_read_lock();
2512
2513 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2514 retval = fn(handle, data);
2515 if (retval)
2516 break;
2517 }
2518
2519 rcu_read_unlock();
2520
2521 return retval;
2522}
2523EXPORT_SYMBOL(input_handler_for_each_handle);
2524
2525/**
2526 * input_register_handle - register a new input handle
2527 * @handle: handle to register
2528 *
2529 * This function puts a new input handle onto device's
2530 * and handler's lists so that events can flow through
2531 * it once it is opened using input_open_device().
2532 *
2533 * This function is supposed to be called from handler's
2534 * connect() method.
2535 */
2536int input_register_handle(struct input_handle *handle)
2537{
2538 struct input_handler *handler = handle->handler;
2539 struct input_dev *dev = handle->dev;
2540 int error;
2541
2542 /*
2543 * We take dev->mutex here to prevent race with
2544 * input_release_device().
2545 */
2546 error = mutex_lock_interruptible(&dev->mutex);
2547 if (error)
2548 return error;
2549
2550 /*
2551 * Filters go to the head of the list, normal handlers
2552 * to the tail.
2553 */
2554 if (handler->filter)
2555 list_add_rcu(&handle->d_node, &dev->h_list);
2556 else
2557 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2558
2559 mutex_unlock(&dev->mutex);
2560
2561 /*
2562 * Since we are supposed to be called from ->connect()
2563 * which is mutually exclusive with ->disconnect()
2564 * we can't be racing with input_unregister_handle()
2565 * and so separate lock is not needed here.
2566 */
2567 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2568
2569 if (handler->start)
2570 handler->start(handle);
2571
2572 return 0;
2573}
2574EXPORT_SYMBOL(input_register_handle);
2575
2576/**
2577 * input_unregister_handle - unregister an input handle
2578 * @handle: handle to unregister
2579 *
2580 * This function removes input handle from device's
2581 * and handler's lists.
2582 *
2583 * This function is supposed to be called from handler's
2584 * disconnect() method.
2585 */
2586void input_unregister_handle(struct input_handle *handle)
2587{
2588 struct input_dev *dev = handle->dev;
2589
2590 list_del_rcu(&handle->h_node);
2591
2592 /*
2593 * Take dev->mutex to prevent race with input_release_device().
2594 */
2595 mutex_lock(&dev->mutex);
2596 list_del_rcu(&handle->d_node);
2597 mutex_unlock(&dev->mutex);
2598
2599 synchronize_rcu();
2600}
2601EXPORT_SYMBOL(input_unregister_handle);
2602
2603/**
2604 * input_get_new_minor - allocates a new input minor number
2605 * @legacy_base: beginning or the legacy range to be searched
2606 * @legacy_num: size of legacy range
2607 * @allow_dynamic: whether we can also take ID from the dynamic range
2608 *
2609 * This function allocates a new device minor for from input major namespace.
2610 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2611 * parameters and whether ID can be allocated from dynamic range if there are
2612 * no free IDs in legacy range.
2613 */
2614int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2615 bool allow_dynamic)
2616{
2617 /*
2618 * This function should be called from input handler's ->connect()
2619 * methods, which are serialized with input_mutex, so no additional
2620 * locking is needed here.
2621 */
2622 if (legacy_base >= 0) {
2623 int minor = ida_simple_get(&input_ida,
2624 legacy_base,
2625 legacy_base + legacy_num,
2626 GFP_KERNEL);
2627 if (minor >= 0 || !allow_dynamic)
2628 return minor;
2629 }
2630
2631 return ida_simple_get(&input_ida,
2632 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2633 GFP_KERNEL);
2634}
2635EXPORT_SYMBOL(input_get_new_minor);
2636
2637/**
2638 * input_free_minor - release previously allocated minor
2639 * @minor: minor to be released
2640 *
2641 * This function releases previously allocated input minor so that it can be
2642 * reused later.
2643 */
2644void input_free_minor(unsigned int minor)
2645{
2646 ida_simple_remove(&input_ida, minor);
2647}
2648EXPORT_SYMBOL(input_free_minor);
2649
2650static int __init input_init(void)
2651{
2652 int err;
2653
2654 err = class_register(&input_class);
2655 if (err) {
2656 pr_err("unable to register input_dev class\n");
2657 return err;
2658 }
2659
2660 err = input_proc_init();
2661 if (err)
2662 goto fail1;
2663
2664 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2665 INPUT_MAX_CHAR_DEVICES, "input");
2666 if (err) {
2667 pr_err("unable to register char major %d", INPUT_MAJOR);
2668 goto fail2;
2669 }
2670
2671 return 0;
2672
2673 fail2: input_proc_exit();
2674 fail1: class_unregister(&input_class);
2675 return err;
2676}
2677
2678static void __exit input_exit(void)
2679{
2680 input_proc_exit();
2681 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2682 INPUT_MAX_CHAR_DEVICES);
2683 class_unregister(&input_class);
2684}
2685
2686subsys_initcall(input_init);
2687module_exit(input_exit);