at v5.17 68 kB view raw
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 */ 10 11#define pr_fmt(fmt) "LSM: " fmt 12 13#include <linux/bpf.h> 14#include <linux/capability.h> 15#include <linux/dcache.h> 16#include <linux/export.h> 17#include <linux/init.h> 18#include <linux/kernel.h> 19#include <linux/kernel_read_file.h> 20#include <linux/lsm_hooks.h> 21#include <linux/integrity.h> 22#include <linux/ima.h> 23#include <linux/evm.h> 24#include <linux/fsnotify.h> 25#include <linux/mman.h> 26#include <linux/mount.h> 27#include <linux/personality.h> 28#include <linux/backing-dev.h> 29#include <linux/string.h> 30#include <linux/msg.h> 31#include <net/flow.h> 32 33#define MAX_LSM_EVM_XATTR 2 34 35/* How many LSMs were built into the kernel? */ 36#define LSM_COUNT (__end_lsm_info - __start_lsm_info) 37 38/* 39 * These are descriptions of the reasons that can be passed to the 40 * security_locked_down() LSM hook. Placing this array here allows 41 * all security modules to use the same descriptions for auditing 42 * purposes. 43 */ 44const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = { 45 [LOCKDOWN_NONE] = "none", 46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 49 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 50 [LOCKDOWN_HIBERNATION] = "hibernation", 51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 52 [LOCKDOWN_IOPORT] = "raw io port access", 53 [LOCKDOWN_MSR] = "raw MSR access", 54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 55 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 56 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 57 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 58 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 59 [LOCKDOWN_DEBUGFS] = "debugfs access", 60 [LOCKDOWN_XMON_WR] = "xmon write access", 61 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 62 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 63 [LOCKDOWN_KCORE] = "/proc/kcore access", 64 [LOCKDOWN_KPROBES] = "use of kprobes", 65 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 66 [LOCKDOWN_PERF] = "unsafe use of perf", 67 [LOCKDOWN_TRACEFS] = "use of tracefs", 68 [LOCKDOWN_XMON_RW] = "xmon read and write access", 69 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 70 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 71}; 72 73struct security_hook_heads security_hook_heads __lsm_ro_after_init; 74static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 75 76static struct kmem_cache *lsm_file_cache; 77static struct kmem_cache *lsm_inode_cache; 78 79char *lsm_names; 80static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 81 82/* Boot-time LSM user choice */ 83static __initdata const char *chosen_lsm_order; 84static __initdata const char *chosen_major_lsm; 85 86static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 87 88/* Ordered list of LSMs to initialize. */ 89static __initdata struct lsm_info **ordered_lsms; 90static __initdata struct lsm_info *exclusive; 91 92static __initdata bool debug; 93#define init_debug(...) \ 94 do { \ 95 if (debug) \ 96 pr_info(__VA_ARGS__); \ 97 } while (0) 98 99static bool __init is_enabled(struct lsm_info *lsm) 100{ 101 if (!lsm->enabled) 102 return false; 103 104 return *lsm->enabled; 105} 106 107/* Mark an LSM's enabled flag. */ 108static int lsm_enabled_true __initdata = 1; 109static int lsm_enabled_false __initdata = 0; 110static void __init set_enabled(struct lsm_info *lsm, bool enabled) 111{ 112 /* 113 * When an LSM hasn't configured an enable variable, we can use 114 * a hard-coded location for storing the default enabled state. 115 */ 116 if (!lsm->enabled) { 117 if (enabled) 118 lsm->enabled = &lsm_enabled_true; 119 else 120 lsm->enabled = &lsm_enabled_false; 121 } else if (lsm->enabled == &lsm_enabled_true) { 122 if (!enabled) 123 lsm->enabled = &lsm_enabled_false; 124 } else if (lsm->enabled == &lsm_enabled_false) { 125 if (enabled) 126 lsm->enabled = &lsm_enabled_true; 127 } else { 128 *lsm->enabled = enabled; 129 } 130} 131 132/* Is an LSM already listed in the ordered LSMs list? */ 133static bool __init exists_ordered_lsm(struct lsm_info *lsm) 134{ 135 struct lsm_info **check; 136 137 for (check = ordered_lsms; *check; check++) 138 if (*check == lsm) 139 return true; 140 141 return false; 142} 143 144/* Append an LSM to the list of ordered LSMs to initialize. */ 145static int last_lsm __initdata; 146static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 147{ 148 /* Ignore duplicate selections. */ 149 if (exists_ordered_lsm(lsm)) 150 return; 151 152 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 153 return; 154 155 /* Enable this LSM, if it is not already set. */ 156 if (!lsm->enabled) 157 lsm->enabled = &lsm_enabled_true; 158 ordered_lsms[last_lsm++] = lsm; 159 160 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 161 is_enabled(lsm) ? "en" : "dis"); 162} 163 164/* Is an LSM allowed to be initialized? */ 165static bool __init lsm_allowed(struct lsm_info *lsm) 166{ 167 /* Skip if the LSM is disabled. */ 168 if (!is_enabled(lsm)) 169 return false; 170 171 /* Not allowed if another exclusive LSM already initialized. */ 172 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 173 init_debug("exclusive disabled: %s\n", lsm->name); 174 return false; 175 } 176 177 return true; 178} 179 180static void __init lsm_set_blob_size(int *need, int *lbs) 181{ 182 int offset; 183 184 if (*need > 0) { 185 offset = *lbs; 186 *lbs += *need; 187 *need = offset; 188 } 189} 190 191static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 192{ 193 if (!needed) 194 return; 195 196 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 197 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 198 /* 199 * The inode blob gets an rcu_head in addition to 200 * what the modules might need. 201 */ 202 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 203 blob_sizes.lbs_inode = sizeof(struct rcu_head); 204 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 205 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 206 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 207 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 208 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 209} 210 211/* Prepare LSM for initialization. */ 212static void __init prepare_lsm(struct lsm_info *lsm) 213{ 214 int enabled = lsm_allowed(lsm); 215 216 /* Record enablement (to handle any following exclusive LSMs). */ 217 set_enabled(lsm, enabled); 218 219 /* If enabled, do pre-initialization work. */ 220 if (enabled) { 221 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 222 exclusive = lsm; 223 init_debug("exclusive chosen: %s\n", lsm->name); 224 } 225 226 lsm_set_blob_sizes(lsm->blobs); 227 } 228} 229 230/* Initialize a given LSM, if it is enabled. */ 231static void __init initialize_lsm(struct lsm_info *lsm) 232{ 233 if (is_enabled(lsm)) { 234 int ret; 235 236 init_debug("initializing %s\n", lsm->name); 237 ret = lsm->init(); 238 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 239 } 240} 241 242/* Populate ordered LSMs list from comma-separated LSM name list. */ 243static void __init ordered_lsm_parse(const char *order, const char *origin) 244{ 245 struct lsm_info *lsm; 246 char *sep, *name, *next; 247 248 /* LSM_ORDER_FIRST is always first. */ 249 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 250 if (lsm->order == LSM_ORDER_FIRST) 251 append_ordered_lsm(lsm, "first"); 252 } 253 254 /* Process "security=", if given. */ 255 if (chosen_major_lsm) { 256 struct lsm_info *major; 257 258 /* 259 * To match the original "security=" behavior, this 260 * explicitly does NOT fallback to another Legacy Major 261 * if the selected one was separately disabled: disable 262 * all non-matching Legacy Major LSMs. 263 */ 264 for (major = __start_lsm_info; major < __end_lsm_info; 265 major++) { 266 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 267 strcmp(major->name, chosen_major_lsm) != 0) { 268 set_enabled(major, false); 269 init_debug("security=%s disabled: %s\n", 270 chosen_major_lsm, major->name); 271 } 272 } 273 } 274 275 sep = kstrdup(order, GFP_KERNEL); 276 next = sep; 277 /* Walk the list, looking for matching LSMs. */ 278 while ((name = strsep(&next, ",")) != NULL) { 279 bool found = false; 280 281 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 282 if (lsm->order == LSM_ORDER_MUTABLE && 283 strcmp(lsm->name, name) == 0) { 284 append_ordered_lsm(lsm, origin); 285 found = true; 286 } 287 } 288 289 if (!found) 290 init_debug("%s ignored: %s\n", origin, name); 291 } 292 293 /* Process "security=", if given. */ 294 if (chosen_major_lsm) { 295 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 296 if (exists_ordered_lsm(lsm)) 297 continue; 298 if (strcmp(lsm->name, chosen_major_lsm) == 0) 299 append_ordered_lsm(lsm, "security="); 300 } 301 } 302 303 /* Disable all LSMs not in the ordered list. */ 304 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 305 if (exists_ordered_lsm(lsm)) 306 continue; 307 set_enabled(lsm, false); 308 init_debug("%s disabled: %s\n", origin, lsm->name); 309 } 310 311 kfree(sep); 312} 313 314static void __init lsm_early_cred(struct cred *cred); 315static void __init lsm_early_task(struct task_struct *task); 316 317static int lsm_append(const char *new, char **result); 318 319static void __init ordered_lsm_init(void) 320{ 321 struct lsm_info **lsm; 322 323 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 324 GFP_KERNEL); 325 326 if (chosen_lsm_order) { 327 if (chosen_major_lsm) { 328 pr_info("security= is ignored because it is superseded by lsm=\n"); 329 chosen_major_lsm = NULL; 330 } 331 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 332 } else 333 ordered_lsm_parse(builtin_lsm_order, "builtin"); 334 335 for (lsm = ordered_lsms; *lsm; lsm++) 336 prepare_lsm(*lsm); 337 338 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 339 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 340 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 341 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 342 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 343 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 344 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 345 346 /* 347 * Create any kmem_caches needed for blobs 348 */ 349 if (blob_sizes.lbs_file) 350 lsm_file_cache = kmem_cache_create("lsm_file_cache", 351 blob_sizes.lbs_file, 0, 352 SLAB_PANIC, NULL); 353 if (blob_sizes.lbs_inode) 354 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 355 blob_sizes.lbs_inode, 0, 356 SLAB_PANIC, NULL); 357 358 lsm_early_cred((struct cred *) current->cred); 359 lsm_early_task(current); 360 for (lsm = ordered_lsms; *lsm; lsm++) 361 initialize_lsm(*lsm); 362 363 kfree(ordered_lsms); 364} 365 366int __init early_security_init(void) 367{ 368 int i; 369 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 370 struct lsm_info *lsm; 371 372 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 373 i++) 374 INIT_HLIST_HEAD(&list[i]); 375 376 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 377 if (!lsm->enabled) 378 lsm->enabled = &lsm_enabled_true; 379 prepare_lsm(lsm); 380 initialize_lsm(lsm); 381 } 382 383 return 0; 384} 385 386/** 387 * security_init - initializes the security framework 388 * 389 * This should be called early in the kernel initialization sequence. 390 */ 391int __init security_init(void) 392{ 393 struct lsm_info *lsm; 394 395 pr_info("Security Framework initializing\n"); 396 397 /* 398 * Append the names of the early LSM modules now that kmalloc() is 399 * available 400 */ 401 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 402 if (lsm->enabled) 403 lsm_append(lsm->name, &lsm_names); 404 } 405 406 /* Load LSMs in specified order. */ 407 ordered_lsm_init(); 408 409 return 0; 410} 411 412/* Save user chosen LSM */ 413static int __init choose_major_lsm(char *str) 414{ 415 chosen_major_lsm = str; 416 return 1; 417} 418__setup("security=", choose_major_lsm); 419 420/* Explicitly choose LSM initialization order. */ 421static int __init choose_lsm_order(char *str) 422{ 423 chosen_lsm_order = str; 424 return 1; 425} 426__setup("lsm=", choose_lsm_order); 427 428/* Enable LSM order debugging. */ 429static int __init enable_debug(char *str) 430{ 431 debug = true; 432 return 1; 433} 434__setup("lsm.debug", enable_debug); 435 436static bool match_last_lsm(const char *list, const char *lsm) 437{ 438 const char *last; 439 440 if (WARN_ON(!list || !lsm)) 441 return false; 442 last = strrchr(list, ','); 443 if (last) 444 /* Pass the comma, strcmp() will check for '\0' */ 445 last++; 446 else 447 last = list; 448 return !strcmp(last, lsm); 449} 450 451static int lsm_append(const char *new, char **result) 452{ 453 char *cp; 454 455 if (*result == NULL) { 456 *result = kstrdup(new, GFP_KERNEL); 457 if (*result == NULL) 458 return -ENOMEM; 459 } else { 460 /* Check if it is the last registered name */ 461 if (match_last_lsm(*result, new)) 462 return 0; 463 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 464 if (cp == NULL) 465 return -ENOMEM; 466 kfree(*result); 467 *result = cp; 468 } 469 return 0; 470} 471 472/** 473 * security_add_hooks - Add a modules hooks to the hook lists. 474 * @hooks: the hooks to add 475 * @count: the number of hooks to add 476 * @lsm: the name of the security module 477 * 478 * Each LSM has to register its hooks with the infrastructure. 479 */ 480void __init security_add_hooks(struct security_hook_list *hooks, int count, 481 char *lsm) 482{ 483 int i; 484 485 for (i = 0; i < count; i++) { 486 hooks[i].lsm = lsm; 487 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 488 } 489 490 /* 491 * Don't try to append during early_security_init(), we'll come back 492 * and fix this up afterwards. 493 */ 494 if (slab_is_available()) { 495 if (lsm_append(lsm, &lsm_names) < 0) 496 panic("%s - Cannot get early memory.\n", __func__); 497 } 498} 499 500int call_blocking_lsm_notifier(enum lsm_event event, void *data) 501{ 502 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 503 event, data); 504} 505EXPORT_SYMBOL(call_blocking_lsm_notifier); 506 507int register_blocking_lsm_notifier(struct notifier_block *nb) 508{ 509 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 510 nb); 511} 512EXPORT_SYMBOL(register_blocking_lsm_notifier); 513 514int unregister_blocking_lsm_notifier(struct notifier_block *nb) 515{ 516 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 517 nb); 518} 519EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 520 521/** 522 * lsm_cred_alloc - allocate a composite cred blob 523 * @cred: the cred that needs a blob 524 * @gfp: allocation type 525 * 526 * Allocate the cred blob for all the modules 527 * 528 * Returns 0, or -ENOMEM if memory can't be allocated. 529 */ 530static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 531{ 532 if (blob_sizes.lbs_cred == 0) { 533 cred->security = NULL; 534 return 0; 535 } 536 537 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 538 if (cred->security == NULL) 539 return -ENOMEM; 540 return 0; 541} 542 543/** 544 * lsm_early_cred - during initialization allocate a composite cred blob 545 * @cred: the cred that needs a blob 546 * 547 * Allocate the cred blob for all the modules 548 */ 549static void __init lsm_early_cred(struct cred *cred) 550{ 551 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 552 553 if (rc) 554 panic("%s: Early cred alloc failed.\n", __func__); 555} 556 557/** 558 * lsm_file_alloc - allocate a composite file blob 559 * @file: the file that needs a blob 560 * 561 * Allocate the file blob for all the modules 562 * 563 * Returns 0, or -ENOMEM if memory can't be allocated. 564 */ 565static int lsm_file_alloc(struct file *file) 566{ 567 if (!lsm_file_cache) { 568 file->f_security = NULL; 569 return 0; 570 } 571 572 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 573 if (file->f_security == NULL) 574 return -ENOMEM; 575 return 0; 576} 577 578/** 579 * lsm_inode_alloc - allocate a composite inode blob 580 * @inode: the inode that needs a blob 581 * 582 * Allocate the inode blob for all the modules 583 * 584 * Returns 0, or -ENOMEM if memory can't be allocated. 585 */ 586int lsm_inode_alloc(struct inode *inode) 587{ 588 if (!lsm_inode_cache) { 589 inode->i_security = NULL; 590 return 0; 591 } 592 593 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 594 if (inode->i_security == NULL) 595 return -ENOMEM; 596 return 0; 597} 598 599/** 600 * lsm_task_alloc - allocate a composite task blob 601 * @task: the task that needs a blob 602 * 603 * Allocate the task blob for all the modules 604 * 605 * Returns 0, or -ENOMEM if memory can't be allocated. 606 */ 607static int lsm_task_alloc(struct task_struct *task) 608{ 609 if (blob_sizes.lbs_task == 0) { 610 task->security = NULL; 611 return 0; 612 } 613 614 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 615 if (task->security == NULL) 616 return -ENOMEM; 617 return 0; 618} 619 620/** 621 * lsm_ipc_alloc - allocate a composite ipc blob 622 * @kip: the ipc that needs a blob 623 * 624 * Allocate the ipc blob for all the modules 625 * 626 * Returns 0, or -ENOMEM if memory can't be allocated. 627 */ 628static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 629{ 630 if (blob_sizes.lbs_ipc == 0) { 631 kip->security = NULL; 632 return 0; 633 } 634 635 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 636 if (kip->security == NULL) 637 return -ENOMEM; 638 return 0; 639} 640 641/** 642 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 643 * @mp: the msg_msg that needs a blob 644 * 645 * Allocate the ipc blob for all the modules 646 * 647 * Returns 0, or -ENOMEM if memory can't be allocated. 648 */ 649static int lsm_msg_msg_alloc(struct msg_msg *mp) 650{ 651 if (blob_sizes.lbs_msg_msg == 0) { 652 mp->security = NULL; 653 return 0; 654 } 655 656 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 657 if (mp->security == NULL) 658 return -ENOMEM; 659 return 0; 660} 661 662/** 663 * lsm_early_task - during initialization allocate a composite task blob 664 * @task: the task that needs a blob 665 * 666 * Allocate the task blob for all the modules 667 */ 668static void __init lsm_early_task(struct task_struct *task) 669{ 670 int rc = lsm_task_alloc(task); 671 672 if (rc) 673 panic("%s: Early task alloc failed.\n", __func__); 674} 675 676/** 677 * lsm_superblock_alloc - allocate a composite superblock blob 678 * @sb: the superblock that needs a blob 679 * 680 * Allocate the superblock blob for all the modules 681 * 682 * Returns 0, or -ENOMEM if memory can't be allocated. 683 */ 684static int lsm_superblock_alloc(struct super_block *sb) 685{ 686 if (blob_sizes.lbs_superblock == 0) { 687 sb->s_security = NULL; 688 return 0; 689 } 690 691 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 692 if (sb->s_security == NULL) 693 return -ENOMEM; 694 return 0; 695} 696 697/* 698 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 699 * can be accessed with: 700 * 701 * LSM_RET_DEFAULT(<hook_name>) 702 * 703 * The macros below define static constants for the default value of each 704 * LSM hook. 705 */ 706#define LSM_RET_DEFAULT(NAME) (NAME##_default) 707#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 708#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 709 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 710#define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 711 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 712 713#include <linux/lsm_hook_defs.h> 714#undef LSM_HOOK 715 716/* 717 * Hook list operation macros. 718 * 719 * call_void_hook: 720 * This is a hook that does not return a value. 721 * 722 * call_int_hook: 723 * This is a hook that returns a value. 724 */ 725 726#define call_void_hook(FUNC, ...) \ 727 do { \ 728 struct security_hook_list *P; \ 729 \ 730 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 731 P->hook.FUNC(__VA_ARGS__); \ 732 } while (0) 733 734#define call_int_hook(FUNC, IRC, ...) ({ \ 735 int RC = IRC; \ 736 do { \ 737 struct security_hook_list *P; \ 738 \ 739 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 740 RC = P->hook.FUNC(__VA_ARGS__); \ 741 if (RC != 0) \ 742 break; \ 743 } \ 744 } while (0); \ 745 RC; \ 746}) 747 748/* Security operations */ 749 750int security_binder_set_context_mgr(const struct cred *mgr) 751{ 752 return call_int_hook(binder_set_context_mgr, 0, mgr); 753} 754 755int security_binder_transaction(const struct cred *from, 756 const struct cred *to) 757{ 758 return call_int_hook(binder_transaction, 0, from, to); 759} 760 761int security_binder_transfer_binder(const struct cred *from, 762 const struct cred *to) 763{ 764 return call_int_hook(binder_transfer_binder, 0, from, to); 765} 766 767int security_binder_transfer_file(const struct cred *from, 768 const struct cred *to, struct file *file) 769{ 770 return call_int_hook(binder_transfer_file, 0, from, to, file); 771} 772 773int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 774{ 775 return call_int_hook(ptrace_access_check, 0, child, mode); 776} 777 778int security_ptrace_traceme(struct task_struct *parent) 779{ 780 return call_int_hook(ptrace_traceme, 0, parent); 781} 782 783int security_capget(struct task_struct *target, 784 kernel_cap_t *effective, 785 kernel_cap_t *inheritable, 786 kernel_cap_t *permitted) 787{ 788 return call_int_hook(capget, 0, target, 789 effective, inheritable, permitted); 790} 791 792int security_capset(struct cred *new, const struct cred *old, 793 const kernel_cap_t *effective, 794 const kernel_cap_t *inheritable, 795 const kernel_cap_t *permitted) 796{ 797 return call_int_hook(capset, 0, new, old, 798 effective, inheritable, permitted); 799} 800 801int security_capable(const struct cred *cred, 802 struct user_namespace *ns, 803 int cap, 804 unsigned int opts) 805{ 806 return call_int_hook(capable, 0, cred, ns, cap, opts); 807} 808 809int security_quotactl(int cmds, int type, int id, struct super_block *sb) 810{ 811 return call_int_hook(quotactl, 0, cmds, type, id, sb); 812} 813 814int security_quota_on(struct dentry *dentry) 815{ 816 return call_int_hook(quota_on, 0, dentry); 817} 818 819int security_syslog(int type) 820{ 821 return call_int_hook(syslog, 0, type); 822} 823 824int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 825{ 826 return call_int_hook(settime, 0, ts, tz); 827} 828 829int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 830{ 831 struct security_hook_list *hp; 832 int cap_sys_admin = 1; 833 int rc; 834 835 /* 836 * The module will respond with a positive value if 837 * it thinks the __vm_enough_memory() call should be 838 * made with the cap_sys_admin set. If all of the modules 839 * agree that it should be set it will. If any module 840 * thinks it should not be set it won't. 841 */ 842 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 843 rc = hp->hook.vm_enough_memory(mm, pages); 844 if (rc <= 0) { 845 cap_sys_admin = 0; 846 break; 847 } 848 } 849 return __vm_enough_memory(mm, pages, cap_sys_admin); 850} 851 852int security_bprm_creds_for_exec(struct linux_binprm *bprm) 853{ 854 return call_int_hook(bprm_creds_for_exec, 0, bprm); 855} 856 857int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file) 858{ 859 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 860} 861 862int security_bprm_check(struct linux_binprm *bprm) 863{ 864 int ret; 865 866 ret = call_int_hook(bprm_check_security, 0, bprm); 867 if (ret) 868 return ret; 869 return ima_bprm_check(bprm); 870} 871 872void security_bprm_committing_creds(struct linux_binprm *bprm) 873{ 874 call_void_hook(bprm_committing_creds, bprm); 875} 876 877void security_bprm_committed_creds(struct linux_binprm *bprm) 878{ 879 call_void_hook(bprm_committed_creds, bprm); 880} 881 882int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 883{ 884 return call_int_hook(fs_context_dup, 0, fc, src_fc); 885} 886 887int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param) 888{ 889 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param); 890} 891 892int security_sb_alloc(struct super_block *sb) 893{ 894 int rc = lsm_superblock_alloc(sb); 895 896 if (unlikely(rc)) 897 return rc; 898 rc = call_int_hook(sb_alloc_security, 0, sb); 899 if (unlikely(rc)) 900 security_sb_free(sb); 901 return rc; 902} 903 904void security_sb_delete(struct super_block *sb) 905{ 906 call_void_hook(sb_delete, sb); 907} 908 909void security_sb_free(struct super_block *sb) 910{ 911 call_void_hook(sb_free_security, sb); 912 kfree(sb->s_security); 913 sb->s_security = NULL; 914} 915 916void security_free_mnt_opts(void **mnt_opts) 917{ 918 if (!*mnt_opts) 919 return; 920 call_void_hook(sb_free_mnt_opts, *mnt_opts); 921 *mnt_opts = NULL; 922} 923EXPORT_SYMBOL(security_free_mnt_opts); 924 925int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 926{ 927 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 928} 929EXPORT_SYMBOL(security_sb_eat_lsm_opts); 930 931int security_sb_mnt_opts_compat(struct super_block *sb, 932 void *mnt_opts) 933{ 934 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts); 935} 936EXPORT_SYMBOL(security_sb_mnt_opts_compat); 937 938int security_sb_remount(struct super_block *sb, 939 void *mnt_opts) 940{ 941 return call_int_hook(sb_remount, 0, sb, mnt_opts); 942} 943EXPORT_SYMBOL(security_sb_remount); 944 945int security_sb_kern_mount(struct super_block *sb) 946{ 947 return call_int_hook(sb_kern_mount, 0, sb); 948} 949 950int security_sb_show_options(struct seq_file *m, struct super_block *sb) 951{ 952 return call_int_hook(sb_show_options, 0, m, sb); 953} 954 955int security_sb_statfs(struct dentry *dentry) 956{ 957 return call_int_hook(sb_statfs, 0, dentry); 958} 959 960int security_sb_mount(const char *dev_name, const struct path *path, 961 const char *type, unsigned long flags, void *data) 962{ 963 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 964} 965 966int security_sb_umount(struct vfsmount *mnt, int flags) 967{ 968 return call_int_hook(sb_umount, 0, mnt, flags); 969} 970 971int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 972{ 973 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 974} 975 976int security_sb_set_mnt_opts(struct super_block *sb, 977 void *mnt_opts, 978 unsigned long kern_flags, 979 unsigned long *set_kern_flags) 980{ 981 return call_int_hook(sb_set_mnt_opts, 982 mnt_opts ? -EOPNOTSUPP : 0, sb, 983 mnt_opts, kern_flags, set_kern_flags); 984} 985EXPORT_SYMBOL(security_sb_set_mnt_opts); 986 987int security_sb_clone_mnt_opts(const struct super_block *oldsb, 988 struct super_block *newsb, 989 unsigned long kern_flags, 990 unsigned long *set_kern_flags) 991{ 992 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 993 kern_flags, set_kern_flags); 994} 995EXPORT_SYMBOL(security_sb_clone_mnt_opts); 996 997int security_move_mount(const struct path *from_path, const struct path *to_path) 998{ 999 return call_int_hook(move_mount, 0, from_path, to_path); 1000} 1001 1002int security_path_notify(const struct path *path, u64 mask, 1003 unsigned int obj_type) 1004{ 1005 return call_int_hook(path_notify, 0, path, mask, obj_type); 1006} 1007 1008int security_inode_alloc(struct inode *inode) 1009{ 1010 int rc = lsm_inode_alloc(inode); 1011 1012 if (unlikely(rc)) 1013 return rc; 1014 rc = call_int_hook(inode_alloc_security, 0, inode); 1015 if (unlikely(rc)) 1016 security_inode_free(inode); 1017 return rc; 1018} 1019 1020static void inode_free_by_rcu(struct rcu_head *head) 1021{ 1022 /* 1023 * The rcu head is at the start of the inode blob 1024 */ 1025 kmem_cache_free(lsm_inode_cache, head); 1026} 1027 1028void security_inode_free(struct inode *inode) 1029{ 1030 integrity_inode_free(inode); 1031 call_void_hook(inode_free_security, inode); 1032 /* 1033 * The inode may still be referenced in a path walk and 1034 * a call to security_inode_permission() can be made 1035 * after inode_free_security() is called. Ideally, the VFS 1036 * wouldn't do this, but fixing that is a much harder 1037 * job. For now, simply free the i_security via RCU, and 1038 * leave the current inode->i_security pointer intact. 1039 * The inode will be freed after the RCU grace period too. 1040 */ 1041 if (inode->i_security) 1042 call_rcu((struct rcu_head *)inode->i_security, 1043 inode_free_by_rcu); 1044} 1045 1046int security_dentry_init_security(struct dentry *dentry, int mode, 1047 const struct qstr *name, 1048 const char **xattr_name, void **ctx, 1049 u32 *ctxlen) 1050{ 1051 struct security_hook_list *hp; 1052 int rc; 1053 1054 /* 1055 * Only one module will provide a security context. 1056 */ 1057 hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) { 1058 rc = hp->hook.dentry_init_security(dentry, mode, name, 1059 xattr_name, ctx, ctxlen); 1060 if (rc != LSM_RET_DEFAULT(dentry_init_security)) 1061 return rc; 1062 } 1063 return LSM_RET_DEFAULT(dentry_init_security); 1064} 1065EXPORT_SYMBOL(security_dentry_init_security); 1066 1067int security_dentry_create_files_as(struct dentry *dentry, int mode, 1068 struct qstr *name, 1069 const struct cred *old, struct cred *new) 1070{ 1071 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1072 name, old, new); 1073} 1074EXPORT_SYMBOL(security_dentry_create_files_as); 1075 1076int security_inode_init_security(struct inode *inode, struct inode *dir, 1077 const struct qstr *qstr, 1078 const initxattrs initxattrs, void *fs_data) 1079{ 1080 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 1081 struct xattr *lsm_xattr, *evm_xattr, *xattr; 1082 int ret; 1083 1084 if (unlikely(IS_PRIVATE(inode))) 1085 return 0; 1086 1087 if (!initxattrs) 1088 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 1089 dir, qstr, NULL, NULL, NULL); 1090 memset(new_xattrs, 0, sizeof(new_xattrs)); 1091 lsm_xattr = new_xattrs; 1092 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 1093 &lsm_xattr->name, 1094 &lsm_xattr->value, 1095 &lsm_xattr->value_len); 1096 if (ret) 1097 goto out; 1098 1099 evm_xattr = lsm_xattr + 1; 1100 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 1101 if (ret) 1102 goto out; 1103 ret = initxattrs(inode, new_xattrs, fs_data); 1104out: 1105 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 1106 kfree(xattr->value); 1107 return (ret == -EOPNOTSUPP) ? 0 : ret; 1108} 1109EXPORT_SYMBOL(security_inode_init_security); 1110 1111int security_inode_init_security_anon(struct inode *inode, 1112 const struct qstr *name, 1113 const struct inode *context_inode) 1114{ 1115 return call_int_hook(inode_init_security_anon, 0, inode, name, 1116 context_inode); 1117} 1118 1119int security_old_inode_init_security(struct inode *inode, struct inode *dir, 1120 const struct qstr *qstr, const char **name, 1121 void **value, size_t *len) 1122{ 1123 if (unlikely(IS_PRIVATE(inode))) 1124 return -EOPNOTSUPP; 1125 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 1126 qstr, name, value, len); 1127} 1128EXPORT_SYMBOL(security_old_inode_init_security); 1129 1130#ifdef CONFIG_SECURITY_PATH 1131int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 1132 unsigned int dev) 1133{ 1134 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1135 return 0; 1136 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1137} 1138EXPORT_SYMBOL(security_path_mknod); 1139 1140int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 1141{ 1142 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1143 return 0; 1144 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1145} 1146EXPORT_SYMBOL(security_path_mkdir); 1147 1148int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1149{ 1150 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1151 return 0; 1152 return call_int_hook(path_rmdir, 0, dir, dentry); 1153} 1154 1155int security_path_unlink(const struct path *dir, struct dentry *dentry) 1156{ 1157 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1158 return 0; 1159 return call_int_hook(path_unlink, 0, dir, dentry); 1160} 1161EXPORT_SYMBOL(security_path_unlink); 1162 1163int security_path_symlink(const struct path *dir, struct dentry *dentry, 1164 const char *old_name) 1165{ 1166 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1167 return 0; 1168 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1169} 1170 1171int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1172 struct dentry *new_dentry) 1173{ 1174 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1175 return 0; 1176 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1177} 1178 1179int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1180 const struct path *new_dir, struct dentry *new_dentry, 1181 unsigned int flags) 1182{ 1183 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1184 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1185 return 0; 1186 1187 if (flags & RENAME_EXCHANGE) { 1188 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 1189 old_dir, old_dentry); 1190 if (err) 1191 return err; 1192 } 1193 1194 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1195 new_dentry); 1196} 1197EXPORT_SYMBOL(security_path_rename); 1198 1199int security_path_truncate(const struct path *path) 1200{ 1201 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1202 return 0; 1203 return call_int_hook(path_truncate, 0, path); 1204} 1205 1206int security_path_chmod(const struct path *path, umode_t mode) 1207{ 1208 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1209 return 0; 1210 return call_int_hook(path_chmod, 0, path, mode); 1211} 1212 1213int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1214{ 1215 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1216 return 0; 1217 return call_int_hook(path_chown, 0, path, uid, gid); 1218} 1219 1220int security_path_chroot(const struct path *path) 1221{ 1222 return call_int_hook(path_chroot, 0, path); 1223} 1224#endif 1225 1226int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1227{ 1228 if (unlikely(IS_PRIVATE(dir))) 1229 return 0; 1230 return call_int_hook(inode_create, 0, dir, dentry, mode); 1231} 1232EXPORT_SYMBOL_GPL(security_inode_create); 1233 1234int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1235 struct dentry *new_dentry) 1236{ 1237 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1238 return 0; 1239 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1240} 1241 1242int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1243{ 1244 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1245 return 0; 1246 return call_int_hook(inode_unlink, 0, dir, dentry); 1247} 1248 1249int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1250 const char *old_name) 1251{ 1252 if (unlikely(IS_PRIVATE(dir))) 1253 return 0; 1254 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1255} 1256 1257int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1258{ 1259 if (unlikely(IS_PRIVATE(dir))) 1260 return 0; 1261 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1262} 1263EXPORT_SYMBOL_GPL(security_inode_mkdir); 1264 1265int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1266{ 1267 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1268 return 0; 1269 return call_int_hook(inode_rmdir, 0, dir, dentry); 1270} 1271 1272int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1273{ 1274 if (unlikely(IS_PRIVATE(dir))) 1275 return 0; 1276 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1277} 1278 1279int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1280 struct inode *new_dir, struct dentry *new_dentry, 1281 unsigned int flags) 1282{ 1283 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1284 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1285 return 0; 1286 1287 if (flags & RENAME_EXCHANGE) { 1288 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1289 old_dir, old_dentry); 1290 if (err) 1291 return err; 1292 } 1293 1294 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1295 new_dir, new_dentry); 1296} 1297 1298int security_inode_readlink(struct dentry *dentry) 1299{ 1300 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1301 return 0; 1302 return call_int_hook(inode_readlink, 0, dentry); 1303} 1304 1305int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1306 bool rcu) 1307{ 1308 if (unlikely(IS_PRIVATE(inode))) 1309 return 0; 1310 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1311} 1312 1313int security_inode_permission(struct inode *inode, int mask) 1314{ 1315 if (unlikely(IS_PRIVATE(inode))) 1316 return 0; 1317 return call_int_hook(inode_permission, 0, inode, mask); 1318} 1319 1320int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 1321{ 1322 int ret; 1323 1324 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1325 return 0; 1326 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1327 if (ret) 1328 return ret; 1329 return evm_inode_setattr(dentry, attr); 1330} 1331EXPORT_SYMBOL_GPL(security_inode_setattr); 1332 1333int security_inode_getattr(const struct path *path) 1334{ 1335 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1336 return 0; 1337 return call_int_hook(inode_getattr, 0, path); 1338} 1339 1340int security_inode_setxattr(struct user_namespace *mnt_userns, 1341 struct dentry *dentry, const char *name, 1342 const void *value, size_t size, int flags) 1343{ 1344 int ret; 1345 1346 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1347 return 0; 1348 /* 1349 * SELinux and Smack integrate the cap call, 1350 * so assume that all LSMs supplying this call do so. 1351 */ 1352 ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value, 1353 size, flags); 1354 1355 if (ret == 1) 1356 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1357 if (ret) 1358 return ret; 1359 ret = ima_inode_setxattr(dentry, name, value, size); 1360 if (ret) 1361 return ret; 1362 return evm_inode_setxattr(mnt_userns, dentry, name, value, size); 1363} 1364 1365void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1366 const void *value, size_t size, int flags) 1367{ 1368 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1369 return; 1370 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1371 evm_inode_post_setxattr(dentry, name, value, size); 1372} 1373 1374int security_inode_getxattr(struct dentry *dentry, const char *name) 1375{ 1376 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1377 return 0; 1378 return call_int_hook(inode_getxattr, 0, dentry, name); 1379} 1380 1381int security_inode_listxattr(struct dentry *dentry) 1382{ 1383 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1384 return 0; 1385 return call_int_hook(inode_listxattr, 0, dentry); 1386} 1387 1388int security_inode_removexattr(struct user_namespace *mnt_userns, 1389 struct dentry *dentry, const char *name) 1390{ 1391 int ret; 1392 1393 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1394 return 0; 1395 /* 1396 * SELinux and Smack integrate the cap call, 1397 * so assume that all LSMs supplying this call do so. 1398 */ 1399 ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name); 1400 if (ret == 1) 1401 ret = cap_inode_removexattr(mnt_userns, dentry, name); 1402 if (ret) 1403 return ret; 1404 ret = ima_inode_removexattr(dentry, name); 1405 if (ret) 1406 return ret; 1407 return evm_inode_removexattr(mnt_userns, dentry, name); 1408} 1409 1410int security_inode_need_killpriv(struct dentry *dentry) 1411{ 1412 return call_int_hook(inode_need_killpriv, 0, dentry); 1413} 1414 1415int security_inode_killpriv(struct user_namespace *mnt_userns, 1416 struct dentry *dentry) 1417{ 1418 return call_int_hook(inode_killpriv, 0, mnt_userns, dentry); 1419} 1420 1421int security_inode_getsecurity(struct user_namespace *mnt_userns, 1422 struct inode *inode, const char *name, 1423 void **buffer, bool alloc) 1424{ 1425 struct security_hook_list *hp; 1426 int rc; 1427 1428 if (unlikely(IS_PRIVATE(inode))) 1429 return LSM_RET_DEFAULT(inode_getsecurity); 1430 /* 1431 * Only one module will provide an attribute with a given name. 1432 */ 1433 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1434 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc); 1435 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 1436 return rc; 1437 } 1438 return LSM_RET_DEFAULT(inode_getsecurity); 1439} 1440 1441int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1442{ 1443 struct security_hook_list *hp; 1444 int rc; 1445 1446 if (unlikely(IS_PRIVATE(inode))) 1447 return LSM_RET_DEFAULT(inode_setsecurity); 1448 /* 1449 * Only one module will provide an attribute with a given name. 1450 */ 1451 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1452 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1453 flags); 1454 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 1455 return rc; 1456 } 1457 return LSM_RET_DEFAULT(inode_setsecurity); 1458} 1459 1460int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1461{ 1462 if (unlikely(IS_PRIVATE(inode))) 1463 return 0; 1464 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1465} 1466EXPORT_SYMBOL(security_inode_listsecurity); 1467 1468void security_inode_getsecid(struct inode *inode, u32 *secid) 1469{ 1470 call_void_hook(inode_getsecid, inode, secid); 1471} 1472 1473int security_inode_copy_up(struct dentry *src, struct cred **new) 1474{ 1475 return call_int_hook(inode_copy_up, 0, src, new); 1476} 1477EXPORT_SYMBOL(security_inode_copy_up); 1478 1479int security_inode_copy_up_xattr(const char *name) 1480{ 1481 struct security_hook_list *hp; 1482 int rc; 1483 1484 /* 1485 * The implementation can return 0 (accept the xattr), 1 (discard the 1486 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 1487 * any other error code incase of an error. 1488 */ 1489 hlist_for_each_entry(hp, 1490 &security_hook_heads.inode_copy_up_xattr, list) { 1491 rc = hp->hook.inode_copy_up_xattr(name); 1492 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 1493 return rc; 1494 } 1495 1496 return LSM_RET_DEFAULT(inode_copy_up_xattr); 1497} 1498EXPORT_SYMBOL(security_inode_copy_up_xattr); 1499 1500int security_kernfs_init_security(struct kernfs_node *kn_dir, 1501 struct kernfs_node *kn) 1502{ 1503 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 1504} 1505 1506int security_file_permission(struct file *file, int mask) 1507{ 1508 int ret; 1509 1510 ret = call_int_hook(file_permission, 0, file, mask); 1511 if (ret) 1512 return ret; 1513 1514 return fsnotify_perm(file, mask); 1515} 1516 1517int security_file_alloc(struct file *file) 1518{ 1519 int rc = lsm_file_alloc(file); 1520 1521 if (rc) 1522 return rc; 1523 rc = call_int_hook(file_alloc_security, 0, file); 1524 if (unlikely(rc)) 1525 security_file_free(file); 1526 return rc; 1527} 1528 1529void security_file_free(struct file *file) 1530{ 1531 void *blob; 1532 1533 call_void_hook(file_free_security, file); 1534 1535 blob = file->f_security; 1536 if (blob) { 1537 file->f_security = NULL; 1538 kmem_cache_free(lsm_file_cache, blob); 1539 } 1540} 1541 1542int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1543{ 1544 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1545} 1546EXPORT_SYMBOL_GPL(security_file_ioctl); 1547 1548static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1549{ 1550 /* 1551 * Does we have PROT_READ and does the application expect 1552 * it to imply PROT_EXEC? If not, nothing to talk about... 1553 */ 1554 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1555 return prot; 1556 if (!(current->personality & READ_IMPLIES_EXEC)) 1557 return prot; 1558 /* 1559 * if that's an anonymous mapping, let it. 1560 */ 1561 if (!file) 1562 return prot | PROT_EXEC; 1563 /* 1564 * ditto if it's not on noexec mount, except that on !MMU we need 1565 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1566 */ 1567 if (!path_noexec(&file->f_path)) { 1568#ifndef CONFIG_MMU 1569 if (file->f_op->mmap_capabilities) { 1570 unsigned caps = file->f_op->mmap_capabilities(file); 1571 if (!(caps & NOMMU_MAP_EXEC)) 1572 return prot; 1573 } 1574#endif 1575 return prot | PROT_EXEC; 1576 } 1577 /* anything on noexec mount won't get PROT_EXEC */ 1578 return prot; 1579} 1580 1581int security_mmap_file(struct file *file, unsigned long prot, 1582 unsigned long flags) 1583{ 1584 int ret; 1585 ret = call_int_hook(mmap_file, 0, file, prot, 1586 mmap_prot(file, prot), flags); 1587 if (ret) 1588 return ret; 1589 return ima_file_mmap(file, prot); 1590} 1591 1592int security_mmap_addr(unsigned long addr) 1593{ 1594 return call_int_hook(mmap_addr, 0, addr); 1595} 1596 1597int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1598 unsigned long prot) 1599{ 1600 int ret; 1601 1602 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1603 if (ret) 1604 return ret; 1605 return ima_file_mprotect(vma, prot); 1606} 1607 1608int security_file_lock(struct file *file, unsigned int cmd) 1609{ 1610 return call_int_hook(file_lock, 0, file, cmd); 1611} 1612 1613int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1614{ 1615 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1616} 1617 1618void security_file_set_fowner(struct file *file) 1619{ 1620 call_void_hook(file_set_fowner, file); 1621} 1622 1623int security_file_send_sigiotask(struct task_struct *tsk, 1624 struct fown_struct *fown, int sig) 1625{ 1626 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1627} 1628 1629int security_file_receive(struct file *file) 1630{ 1631 return call_int_hook(file_receive, 0, file); 1632} 1633 1634int security_file_open(struct file *file) 1635{ 1636 int ret; 1637 1638 ret = call_int_hook(file_open, 0, file); 1639 if (ret) 1640 return ret; 1641 1642 return fsnotify_perm(file, MAY_OPEN); 1643} 1644 1645int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1646{ 1647 int rc = lsm_task_alloc(task); 1648 1649 if (rc) 1650 return rc; 1651 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1652 if (unlikely(rc)) 1653 security_task_free(task); 1654 return rc; 1655} 1656 1657void security_task_free(struct task_struct *task) 1658{ 1659 call_void_hook(task_free, task); 1660 1661 kfree(task->security); 1662 task->security = NULL; 1663} 1664 1665int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1666{ 1667 int rc = lsm_cred_alloc(cred, gfp); 1668 1669 if (rc) 1670 return rc; 1671 1672 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1673 if (unlikely(rc)) 1674 security_cred_free(cred); 1675 return rc; 1676} 1677 1678void security_cred_free(struct cred *cred) 1679{ 1680 /* 1681 * There is a failure case in prepare_creds() that 1682 * may result in a call here with ->security being NULL. 1683 */ 1684 if (unlikely(cred->security == NULL)) 1685 return; 1686 1687 call_void_hook(cred_free, cred); 1688 1689 kfree(cred->security); 1690 cred->security = NULL; 1691} 1692 1693int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1694{ 1695 int rc = lsm_cred_alloc(new, gfp); 1696 1697 if (rc) 1698 return rc; 1699 1700 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1701 if (unlikely(rc)) 1702 security_cred_free(new); 1703 return rc; 1704} 1705 1706void security_transfer_creds(struct cred *new, const struct cred *old) 1707{ 1708 call_void_hook(cred_transfer, new, old); 1709} 1710 1711void security_cred_getsecid(const struct cred *c, u32 *secid) 1712{ 1713 *secid = 0; 1714 call_void_hook(cred_getsecid, c, secid); 1715} 1716EXPORT_SYMBOL(security_cred_getsecid); 1717 1718int security_kernel_act_as(struct cred *new, u32 secid) 1719{ 1720 return call_int_hook(kernel_act_as, 0, new, secid); 1721} 1722 1723int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1724{ 1725 return call_int_hook(kernel_create_files_as, 0, new, inode); 1726} 1727 1728int security_kernel_module_request(char *kmod_name) 1729{ 1730 int ret; 1731 1732 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1733 if (ret) 1734 return ret; 1735 return integrity_kernel_module_request(kmod_name); 1736} 1737 1738int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 1739 bool contents) 1740{ 1741 int ret; 1742 1743 ret = call_int_hook(kernel_read_file, 0, file, id, contents); 1744 if (ret) 1745 return ret; 1746 return ima_read_file(file, id, contents); 1747} 1748EXPORT_SYMBOL_GPL(security_kernel_read_file); 1749 1750int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1751 enum kernel_read_file_id id) 1752{ 1753 int ret; 1754 1755 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1756 if (ret) 1757 return ret; 1758 return ima_post_read_file(file, buf, size, id); 1759} 1760EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1761 1762int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 1763{ 1764 int ret; 1765 1766 ret = call_int_hook(kernel_load_data, 0, id, contents); 1767 if (ret) 1768 return ret; 1769 return ima_load_data(id, contents); 1770} 1771EXPORT_SYMBOL_GPL(security_kernel_load_data); 1772 1773int security_kernel_post_load_data(char *buf, loff_t size, 1774 enum kernel_load_data_id id, 1775 char *description) 1776{ 1777 int ret; 1778 1779 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id, 1780 description); 1781 if (ret) 1782 return ret; 1783 return ima_post_load_data(buf, size, id, description); 1784} 1785EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 1786 1787int security_task_fix_setuid(struct cred *new, const struct cred *old, 1788 int flags) 1789{ 1790 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1791} 1792 1793int security_task_fix_setgid(struct cred *new, const struct cred *old, 1794 int flags) 1795{ 1796 return call_int_hook(task_fix_setgid, 0, new, old, flags); 1797} 1798 1799int security_task_setpgid(struct task_struct *p, pid_t pgid) 1800{ 1801 return call_int_hook(task_setpgid, 0, p, pgid); 1802} 1803 1804int security_task_getpgid(struct task_struct *p) 1805{ 1806 return call_int_hook(task_getpgid, 0, p); 1807} 1808 1809int security_task_getsid(struct task_struct *p) 1810{ 1811 return call_int_hook(task_getsid, 0, p); 1812} 1813 1814void security_current_getsecid_subj(u32 *secid) 1815{ 1816 *secid = 0; 1817 call_void_hook(current_getsecid_subj, secid); 1818} 1819EXPORT_SYMBOL(security_current_getsecid_subj); 1820 1821void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 1822{ 1823 *secid = 0; 1824 call_void_hook(task_getsecid_obj, p, secid); 1825} 1826EXPORT_SYMBOL(security_task_getsecid_obj); 1827 1828int security_task_setnice(struct task_struct *p, int nice) 1829{ 1830 return call_int_hook(task_setnice, 0, p, nice); 1831} 1832 1833int security_task_setioprio(struct task_struct *p, int ioprio) 1834{ 1835 return call_int_hook(task_setioprio, 0, p, ioprio); 1836} 1837 1838int security_task_getioprio(struct task_struct *p) 1839{ 1840 return call_int_hook(task_getioprio, 0, p); 1841} 1842 1843int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1844 unsigned int flags) 1845{ 1846 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1847} 1848 1849int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1850 struct rlimit *new_rlim) 1851{ 1852 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1853} 1854 1855int security_task_setscheduler(struct task_struct *p) 1856{ 1857 return call_int_hook(task_setscheduler, 0, p); 1858} 1859 1860int security_task_getscheduler(struct task_struct *p) 1861{ 1862 return call_int_hook(task_getscheduler, 0, p); 1863} 1864 1865int security_task_movememory(struct task_struct *p) 1866{ 1867 return call_int_hook(task_movememory, 0, p); 1868} 1869 1870int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1871 int sig, const struct cred *cred) 1872{ 1873 return call_int_hook(task_kill, 0, p, info, sig, cred); 1874} 1875 1876int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1877 unsigned long arg4, unsigned long arg5) 1878{ 1879 int thisrc; 1880 int rc = LSM_RET_DEFAULT(task_prctl); 1881 struct security_hook_list *hp; 1882 1883 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1884 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1885 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 1886 rc = thisrc; 1887 if (thisrc != 0) 1888 break; 1889 } 1890 } 1891 return rc; 1892} 1893 1894void security_task_to_inode(struct task_struct *p, struct inode *inode) 1895{ 1896 call_void_hook(task_to_inode, p, inode); 1897} 1898 1899int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1900{ 1901 return call_int_hook(ipc_permission, 0, ipcp, flag); 1902} 1903 1904void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1905{ 1906 *secid = 0; 1907 call_void_hook(ipc_getsecid, ipcp, secid); 1908} 1909 1910int security_msg_msg_alloc(struct msg_msg *msg) 1911{ 1912 int rc = lsm_msg_msg_alloc(msg); 1913 1914 if (unlikely(rc)) 1915 return rc; 1916 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1917 if (unlikely(rc)) 1918 security_msg_msg_free(msg); 1919 return rc; 1920} 1921 1922void security_msg_msg_free(struct msg_msg *msg) 1923{ 1924 call_void_hook(msg_msg_free_security, msg); 1925 kfree(msg->security); 1926 msg->security = NULL; 1927} 1928 1929int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1930{ 1931 int rc = lsm_ipc_alloc(msq); 1932 1933 if (unlikely(rc)) 1934 return rc; 1935 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1936 if (unlikely(rc)) 1937 security_msg_queue_free(msq); 1938 return rc; 1939} 1940 1941void security_msg_queue_free(struct kern_ipc_perm *msq) 1942{ 1943 call_void_hook(msg_queue_free_security, msq); 1944 kfree(msq->security); 1945 msq->security = NULL; 1946} 1947 1948int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1949{ 1950 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1951} 1952 1953int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1954{ 1955 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1956} 1957 1958int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1959 struct msg_msg *msg, int msqflg) 1960{ 1961 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1962} 1963 1964int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1965 struct task_struct *target, long type, int mode) 1966{ 1967 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1968} 1969 1970int security_shm_alloc(struct kern_ipc_perm *shp) 1971{ 1972 int rc = lsm_ipc_alloc(shp); 1973 1974 if (unlikely(rc)) 1975 return rc; 1976 rc = call_int_hook(shm_alloc_security, 0, shp); 1977 if (unlikely(rc)) 1978 security_shm_free(shp); 1979 return rc; 1980} 1981 1982void security_shm_free(struct kern_ipc_perm *shp) 1983{ 1984 call_void_hook(shm_free_security, shp); 1985 kfree(shp->security); 1986 shp->security = NULL; 1987} 1988 1989int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1990{ 1991 return call_int_hook(shm_associate, 0, shp, shmflg); 1992} 1993 1994int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1995{ 1996 return call_int_hook(shm_shmctl, 0, shp, cmd); 1997} 1998 1999int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 2000{ 2001 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 2002} 2003 2004int security_sem_alloc(struct kern_ipc_perm *sma) 2005{ 2006 int rc = lsm_ipc_alloc(sma); 2007 2008 if (unlikely(rc)) 2009 return rc; 2010 rc = call_int_hook(sem_alloc_security, 0, sma); 2011 if (unlikely(rc)) 2012 security_sem_free(sma); 2013 return rc; 2014} 2015 2016void security_sem_free(struct kern_ipc_perm *sma) 2017{ 2018 call_void_hook(sem_free_security, sma); 2019 kfree(sma->security); 2020 sma->security = NULL; 2021} 2022 2023int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 2024{ 2025 return call_int_hook(sem_associate, 0, sma, semflg); 2026} 2027 2028int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 2029{ 2030 return call_int_hook(sem_semctl, 0, sma, cmd); 2031} 2032 2033int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 2034 unsigned nsops, int alter) 2035{ 2036 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 2037} 2038 2039void security_d_instantiate(struct dentry *dentry, struct inode *inode) 2040{ 2041 if (unlikely(inode && IS_PRIVATE(inode))) 2042 return; 2043 call_void_hook(d_instantiate, dentry, inode); 2044} 2045EXPORT_SYMBOL(security_d_instantiate); 2046 2047int security_getprocattr(struct task_struct *p, const char *lsm, char *name, 2048 char **value) 2049{ 2050 struct security_hook_list *hp; 2051 2052 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 2053 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2054 continue; 2055 return hp->hook.getprocattr(p, name, value); 2056 } 2057 return LSM_RET_DEFAULT(getprocattr); 2058} 2059 2060int security_setprocattr(const char *lsm, const char *name, void *value, 2061 size_t size) 2062{ 2063 struct security_hook_list *hp; 2064 2065 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 2066 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2067 continue; 2068 return hp->hook.setprocattr(name, value, size); 2069 } 2070 return LSM_RET_DEFAULT(setprocattr); 2071} 2072 2073int security_netlink_send(struct sock *sk, struct sk_buff *skb) 2074{ 2075 return call_int_hook(netlink_send, 0, sk, skb); 2076} 2077 2078int security_ismaclabel(const char *name) 2079{ 2080 return call_int_hook(ismaclabel, 0, name); 2081} 2082EXPORT_SYMBOL(security_ismaclabel); 2083 2084int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2085{ 2086 struct security_hook_list *hp; 2087 int rc; 2088 2089 /* 2090 * Currently, only one LSM can implement secid_to_secctx (i.e this 2091 * LSM hook is not "stackable"). 2092 */ 2093 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 2094 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 2095 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 2096 return rc; 2097 } 2098 2099 return LSM_RET_DEFAULT(secid_to_secctx); 2100} 2101EXPORT_SYMBOL(security_secid_to_secctx); 2102 2103int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 2104{ 2105 *secid = 0; 2106 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 2107} 2108EXPORT_SYMBOL(security_secctx_to_secid); 2109 2110void security_release_secctx(char *secdata, u32 seclen) 2111{ 2112 call_void_hook(release_secctx, secdata, seclen); 2113} 2114EXPORT_SYMBOL(security_release_secctx); 2115 2116void security_inode_invalidate_secctx(struct inode *inode) 2117{ 2118 call_void_hook(inode_invalidate_secctx, inode); 2119} 2120EXPORT_SYMBOL(security_inode_invalidate_secctx); 2121 2122int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 2123{ 2124 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 2125} 2126EXPORT_SYMBOL(security_inode_notifysecctx); 2127 2128int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 2129{ 2130 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 2131} 2132EXPORT_SYMBOL(security_inode_setsecctx); 2133 2134int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 2135{ 2136 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 2137} 2138EXPORT_SYMBOL(security_inode_getsecctx); 2139 2140#ifdef CONFIG_WATCH_QUEUE 2141int security_post_notification(const struct cred *w_cred, 2142 const struct cred *cred, 2143 struct watch_notification *n) 2144{ 2145 return call_int_hook(post_notification, 0, w_cred, cred, n); 2146} 2147#endif /* CONFIG_WATCH_QUEUE */ 2148 2149#ifdef CONFIG_KEY_NOTIFICATIONS 2150int security_watch_key(struct key *key) 2151{ 2152 return call_int_hook(watch_key, 0, key); 2153} 2154#endif 2155 2156#ifdef CONFIG_SECURITY_NETWORK 2157 2158int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 2159{ 2160 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 2161} 2162EXPORT_SYMBOL(security_unix_stream_connect); 2163 2164int security_unix_may_send(struct socket *sock, struct socket *other) 2165{ 2166 return call_int_hook(unix_may_send, 0, sock, other); 2167} 2168EXPORT_SYMBOL(security_unix_may_send); 2169 2170int security_socket_create(int family, int type, int protocol, int kern) 2171{ 2172 return call_int_hook(socket_create, 0, family, type, protocol, kern); 2173} 2174 2175int security_socket_post_create(struct socket *sock, int family, 2176 int type, int protocol, int kern) 2177{ 2178 return call_int_hook(socket_post_create, 0, sock, family, type, 2179 protocol, kern); 2180} 2181 2182int security_socket_socketpair(struct socket *socka, struct socket *sockb) 2183{ 2184 return call_int_hook(socket_socketpair, 0, socka, sockb); 2185} 2186EXPORT_SYMBOL(security_socket_socketpair); 2187 2188int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 2189{ 2190 return call_int_hook(socket_bind, 0, sock, address, addrlen); 2191} 2192 2193int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 2194{ 2195 return call_int_hook(socket_connect, 0, sock, address, addrlen); 2196} 2197 2198int security_socket_listen(struct socket *sock, int backlog) 2199{ 2200 return call_int_hook(socket_listen, 0, sock, backlog); 2201} 2202 2203int security_socket_accept(struct socket *sock, struct socket *newsock) 2204{ 2205 return call_int_hook(socket_accept, 0, sock, newsock); 2206} 2207 2208int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 2209{ 2210 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 2211} 2212 2213int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2214 int size, int flags) 2215{ 2216 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 2217} 2218 2219int security_socket_getsockname(struct socket *sock) 2220{ 2221 return call_int_hook(socket_getsockname, 0, sock); 2222} 2223 2224int security_socket_getpeername(struct socket *sock) 2225{ 2226 return call_int_hook(socket_getpeername, 0, sock); 2227} 2228 2229int security_socket_getsockopt(struct socket *sock, int level, int optname) 2230{ 2231 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 2232} 2233 2234int security_socket_setsockopt(struct socket *sock, int level, int optname) 2235{ 2236 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 2237} 2238 2239int security_socket_shutdown(struct socket *sock, int how) 2240{ 2241 return call_int_hook(socket_shutdown, 0, sock, how); 2242} 2243 2244int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2245{ 2246 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2247} 2248EXPORT_SYMBOL(security_sock_rcv_skb); 2249 2250int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2251 int __user *optlen, unsigned len) 2252{ 2253 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2254 optval, optlen, len); 2255} 2256 2257int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2258{ 2259 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2260 skb, secid); 2261} 2262EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2263 2264int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2265{ 2266 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2267} 2268 2269void security_sk_free(struct sock *sk) 2270{ 2271 call_void_hook(sk_free_security, sk); 2272} 2273 2274void security_sk_clone(const struct sock *sk, struct sock *newsk) 2275{ 2276 call_void_hook(sk_clone_security, sk, newsk); 2277} 2278EXPORT_SYMBOL(security_sk_clone); 2279 2280void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic) 2281{ 2282 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 2283} 2284EXPORT_SYMBOL(security_sk_classify_flow); 2285 2286void security_req_classify_flow(const struct request_sock *req, 2287 struct flowi_common *flic) 2288{ 2289 call_void_hook(req_classify_flow, req, flic); 2290} 2291EXPORT_SYMBOL(security_req_classify_flow); 2292 2293void security_sock_graft(struct sock *sk, struct socket *parent) 2294{ 2295 call_void_hook(sock_graft, sk, parent); 2296} 2297EXPORT_SYMBOL(security_sock_graft); 2298 2299int security_inet_conn_request(const struct sock *sk, 2300 struct sk_buff *skb, struct request_sock *req) 2301{ 2302 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2303} 2304EXPORT_SYMBOL(security_inet_conn_request); 2305 2306void security_inet_csk_clone(struct sock *newsk, 2307 const struct request_sock *req) 2308{ 2309 call_void_hook(inet_csk_clone, newsk, req); 2310} 2311 2312void security_inet_conn_established(struct sock *sk, 2313 struct sk_buff *skb) 2314{ 2315 call_void_hook(inet_conn_established, sk, skb); 2316} 2317EXPORT_SYMBOL(security_inet_conn_established); 2318 2319int security_secmark_relabel_packet(u32 secid) 2320{ 2321 return call_int_hook(secmark_relabel_packet, 0, secid); 2322} 2323EXPORT_SYMBOL(security_secmark_relabel_packet); 2324 2325void security_secmark_refcount_inc(void) 2326{ 2327 call_void_hook(secmark_refcount_inc); 2328} 2329EXPORT_SYMBOL(security_secmark_refcount_inc); 2330 2331void security_secmark_refcount_dec(void) 2332{ 2333 call_void_hook(secmark_refcount_dec); 2334} 2335EXPORT_SYMBOL(security_secmark_refcount_dec); 2336 2337int security_tun_dev_alloc_security(void **security) 2338{ 2339 return call_int_hook(tun_dev_alloc_security, 0, security); 2340} 2341EXPORT_SYMBOL(security_tun_dev_alloc_security); 2342 2343void security_tun_dev_free_security(void *security) 2344{ 2345 call_void_hook(tun_dev_free_security, security); 2346} 2347EXPORT_SYMBOL(security_tun_dev_free_security); 2348 2349int security_tun_dev_create(void) 2350{ 2351 return call_int_hook(tun_dev_create, 0); 2352} 2353EXPORT_SYMBOL(security_tun_dev_create); 2354 2355int security_tun_dev_attach_queue(void *security) 2356{ 2357 return call_int_hook(tun_dev_attach_queue, 0, security); 2358} 2359EXPORT_SYMBOL(security_tun_dev_attach_queue); 2360 2361int security_tun_dev_attach(struct sock *sk, void *security) 2362{ 2363 return call_int_hook(tun_dev_attach, 0, sk, security); 2364} 2365EXPORT_SYMBOL(security_tun_dev_attach); 2366 2367int security_tun_dev_open(void *security) 2368{ 2369 return call_int_hook(tun_dev_open, 0, security); 2370} 2371EXPORT_SYMBOL(security_tun_dev_open); 2372 2373int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb) 2374{ 2375 return call_int_hook(sctp_assoc_request, 0, asoc, skb); 2376} 2377EXPORT_SYMBOL(security_sctp_assoc_request); 2378 2379int security_sctp_bind_connect(struct sock *sk, int optname, 2380 struct sockaddr *address, int addrlen) 2381{ 2382 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2383 address, addrlen); 2384} 2385EXPORT_SYMBOL(security_sctp_bind_connect); 2386 2387void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 2388 struct sock *newsk) 2389{ 2390 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 2391} 2392EXPORT_SYMBOL(security_sctp_sk_clone); 2393 2394#endif /* CONFIG_SECURITY_NETWORK */ 2395 2396#ifdef CONFIG_SECURITY_INFINIBAND 2397 2398int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2399{ 2400 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2401} 2402EXPORT_SYMBOL(security_ib_pkey_access); 2403 2404int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2405{ 2406 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2407} 2408EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2409 2410int security_ib_alloc_security(void **sec) 2411{ 2412 return call_int_hook(ib_alloc_security, 0, sec); 2413} 2414EXPORT_SYMBOL(security_ib_alloc_security); 2415 2416void security_ib_free_security(void *sec) 2417{ 2418 call_void_hook(ib_free_security, sec); 2419} 2420EXPORT_SYMBOL(security_ib_free_security); 2421#endif /* CONFIG_SECURITY_INFINIBAND */ 2422 2423#ifdef CONFIG_SECURITY_NETWORK_XFRM 2424 2425int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2426 struct xfrm_user_sec_ctx *sec_ctx, 2427 gfp_t gfp) 2428{ 2429 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2430} 2431EXPORT_SYMBOL(security_xfrm_policy_alloc); 2432 2433int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2434 struct xfrm_sec_ctx **new_ctxp) 2435{ 2436 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2437} 2438 2439void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2440{ 2441 call_void_hook(xfrm_policy_free_security, ctx); 2442} 2443EXPORT_SYMBOL(security_xfrm_policy_free); 2444 2445int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2446{ 2447 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2448} 2449 2450int security_xfrm_state_alloc(struct xfrm_state *x, 2451 struct xfrm_user_sec_ctx *sec_ctx) 2452{ 2453 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2454} 2455EXPORT_SYMBOL(security_xfrm_state_alloc); 2456 2457int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2458 struct xfrm_sec_ctx *polsec, u32 secid) 2459{ 2460 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2461} 2462 2463int security_xfrm_state_delete(struct xfrm_state *x) 2464{ 2465 return call_int_hook(xfrm_state_delete_security, 0, x); 2466} 2467EXPORT_SYMBOL(security_xfrm_state_delete); 2468 2469void security_xfrm_state_free(struct xfrm_state *x) 2470{ 2471 call_void_hook(xfrm_state_free_security, x); 2472} 2473 2474int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 2475{ 2476 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid); 2477} 2478 2479int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2480 struct xfrm_policy *xp, 2481 const struct flowi_common *flic) 2482{ 2483 struct security_hook_list *hp; 2484 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 2485 2486 /* 2487 * Since this function is expected to return 0 or 1, the judgment 2488 * becomes difficult if multiple LSMs supply this call. Fortunately, 2489 * we can use the first LSM's judgment because currently only SELinux 2490 * supplies this call. 2491 * 2492 * For speed optimization, we explicitly break the loop rather than 2493 * using the macro 2494 */ 2495 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2496 list) { 2497 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 2498 break; 2499 } 2500 return rc; 2501} 2502 2503int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2504{ 2505 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2506} 2507 2508void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 2509{ 2510 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 2511 0); 2512 2513 BUG_ON(rc); 2514} 2515EXPORT_SYMBOL(security_skb_classify_flow); 2516 2517#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2518 2519#ifdef CONFIG_KEYS 2520 2521int security_key_alloc(struct key *key, const struct cred *cred, 2522 unsigned long flags) 2523{ 2524 return call_int_hook(key_alloc, 0, key, cred, flags); 2525} 2526 2527void security_key_free(struct key *key) 2528{ 2529 call_void_hook(key_free, key); 2530} 2531 2532int security_key_permission(key_ref_t key_ref, const struct cred *cred, 2533 enum key_need_perm need_perm) 2534{ 2535 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 2536} 2537 2538int security_key_getsecurity(struct key *key, char **_buffer) 2539{ 2540 *_buffer = NULL; 2541 return call_int_hook(key_getsecurity, 0, key, _buffer); 2542} 2543 2544#endif /* CONFIG_KEYS */ 2545 2546#ifdef CONFIG_AUDIT 2547 2548int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2549{ 2550 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2551} 2552 2553int security_audit_rule_known(struct audit_krule *krule) 2554{ 2555 return call_int_hook(audit_rule_known, 0, krule); 2556} 2557 2558void security_audit_rule_free(void *lsmrule) 2559{ 2560 call_void_hook(audit_rule_free, lsmrule); 2561} 2562 2563int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2564{ 2565 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2566} 2567#endif /* CONFIG_AUDIT */ 2568 2569#ifdef CONFIG_BPF_SYSCALL 2570int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2571{ 2572 return call_int_hook(bpf, 0, cmd, attr, size); 2573} 2574int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2575{ 2576 return call_int_hook(bpf_map, 0, map, fmode); 2577} 2578int security_bpf_prog(struct bpf_prog *prog) 2579{ 2580 return call_int_hook(bpf_prog, 0, prog); 2581} 2582int security_bpf_map_alloc(struct bpf_map *map) 2583{ 2584 return call_int_hook(bpf_map_alloc_security, 0, map); 2585} 2586int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2587{ 2588 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2589} 2590void security_bpf_map_free(struct bpf_map *map) 2591{ 2592 call_void_hook(bpf_map_free_security, map); 2593} 2594void security_bpf_prog_free(struct bpf_prog_aux *aux) 2595{ 2596 call_void_hook(bpf_prog_free_security, aux); 2597} 2598#endif /* CONFIG_BPF_SYSCALL */ 2599 2600int security_locked_down(enum lockdown_reason what) 2601{ 2602 return call_int_hook(locked_down, 0, what); 2603} 2604EXPORT_SYMBOL(security_locked_down); 2605 2606#ifdef CONFIG_PERF_EVENTS 2607int security_perf_event_open(struct perf_event_attr *attr, int type) 2608{ 2609 return call_int_hook(perf_event_open, 0, attr, type); 2610} 2611 2612int security_perf_event_alloc(struct perf_event *event) 2613{ 2614 return call_int_hook(perf_event_alloc, 0, event); 2615} 2616 2617void security_perf_event_free(struct perf_event *event) 2618{ 2619 call_void_hook(perf_event_free, event); 2620} 2621 2622int security_perf_event_read(struct perf_event *event) 2623{ 2624 return call_int_hook(perf_event_read, 0, event); 2625} 2626 2627int security_perf_event_write(struct perf_event *event) 2628{ 2629 return call_int_hook(perf_event_write, 0, event); 2630} 2631#endif /* CONFIG_PERF_EVENTS */ 2632 2633#ifdef CONFIG_IO_URING 2634int security_uring_override_creds(const struct cred *new) 2635{ 2636 return call_int_hook(uring_override_creds, 0, new); 2637} 2638 2639int security_uring_sqpoll(void) 2640{ 2641 return call_int_hook(uring_sqpoll, 0); 2642} 2643#endif /* CONFIG_IO_URING */