Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55#include <linux/bpf-cgroup.h>
56#include <linux/ethtool.h>
57#include <linux/mm.h>
58#include <linux/socket.h>
59#include <linux/file.h>
60#include <linux/net.h>
61#include <linux/interrupt.h>
62#include <linux/thread_info.h>
63#include <linux/rcupdate.h>
64#include <linux/netdevice.h>
65#include <linux/proc_fs.h>
66#include <linux/seq_file.h>
67#include <linux/mutex.h>
68#include <linux/if_bridge.h>
69#include <linux/if_vlan.h>
70#include <linux/ptp_classify.h>
71#include <linux/init.h>
72#include <linux/poll.h>
73#include <linux/cache.h>
74#include <linux/module.h>
75#include <linux/highmem.h>
76#include <linux/mount.h>
77#include <linux/pseudo_fs.h>
78#include <linux/security.h>
79#include <linux/syscalls.h>
80#include <linux/compat.h>
81#include <linux/kmod.h>
82#include <linux/audit.h>
83#include <linux/wireless.h>
84#include <linux/nsproxy.h>
85#include <linux/magic.h>
86#include <linux/slab.h>
87#include <linux/xattr.h>
88#include <linux/nospec.h>
89#include <linux/indirect_call_wrapper.h>
90
91#include <linux/uaccess.h>
92#include <asm/unistd.h>
93
94#include <net/compat.h>
95#include <net/wext.h>
96#include <net/cls_cgroup.h>
97
98#include <net/sock.h>
99#include <linux/netfilter.h>
100
101#include <linux/if_tun.h>
102#include <linux/ipv6_route.h>
103#include <linux/route.h>
104#include <linux/termios.h>
105#include <linux/sockios.h>
106#include <net/busy_poll.h>
107#include <linux/errqueue.h>
108#include <linux/ptp_clock_kernel.h>
109
110#ifdef CONFIG_NET_RX_BUSY_POLL
111unsigned int sysctl_net_busy_read __read_mostly;
112unsigned int sysctl_net_busy_poll __read_mostly;
113#endif
114
115static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117static int sock_mmap(struct file *file, struct vm_area_struct *vma);
118
119static int sock_close(struct inode *inode, struct file *file);
120static __poll_t sock_poll(struct file *file,
121 struct poll_table_struct *wait);
122static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
123#ifdef CONFIG_COMPAT
124static long compat_sock_ioctl(struct file *file,
125 unsigned int cmd, unsigned long arg);
126#endif
127static int sock_fasync(int fd, struct file *filp, int on);
128static ssize_t sock_sendpage(struct file *file, struct page *page,
129 int offset, size_t size, loff_t *ppos, int more);
130static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
131 struct pipe_inode_info *pipe, size_t len,
132 unsigned int flags);
133
134#ifdef CONFIG_PROC_FS
135static void sock_show_fdinfo(struct seq_file *m, struct file *f)
136{
137 struct socket *sock = f->private_data;
138
139 if (sock->ops->show_fdinfo)
140 sock->ops->show_fdinfo(m, sock);
141}
142#else
143#define sock_show_fdinfo NULL
144#endif
145
146/*
147 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
148 * in the operation structures but are done directly via the socketcall() multiplexor.
149 */
150
151static const struct file_operations socket_file_ops = {
152 .owner = THIS_MODULE,
153 .llseek = no_llseek,
154 .read_iter = sock_read_iter,
155 .write_iter = sock_write_iter,
156 .poll = sock_poll,
157 .unlocked_ioctl = sock_ioctl,
158#ifdef CONFIG_COMPAT
159 .compat_ioctl = compat_sock_ioctl,
160#endif
161 .mmap = sock_mmap,
162 .release = sock_close,
163 .fasync = sock_fasync,
164 .sendpage = sock_sendpage,
165 .splice_write = generic_splice_sendpage,
166 .splice_read = sock_splice_read,
167 .show_fdinfo = sock_show_fdinfo,
168};
169
170static const char * const pf_family_names[] = {
171 [PF_UNSPEC] = "PF_UNSPEC",
172 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
173 [PF_INET] = "PF_INET",
174 [PF_AX25] = "PF_AX25",
175 [PF_IPX] = "PF_IPX",
176 [PF_APPLETALK] = "PF_APPLETALK",
177 [PF_NETROM] = "PF_NETROM",
178 [PF_BRIDGE] = "PF_BRIDGE",
179 [PF_ATMPVC] = "PF_ATMPVC",
180 [PF_X25] = "PF_X25",
181 [PF_INET6] = "PF_INET6",
182 [PF_ROSE] = "PF_ROSE",
183 [PF_DECnet] = "PF_DECnet",
184 [PF_NETBEUI] = "PF_NETBEUI",
185 [PF_SECURITY] = "PF_SECURITY",
186 [PF_KEY] = "PF_KEY",
187 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
188 [PF_PACKET] = "PF_PACKET",
189 [PF_ASH] = "PF_ASH",
190 [PF_ECONET] = "PF_ECONET",
191 [PF_ATMSVC] = "PF_ATMSVC",
192 [PF_RDS] = "PF_RDS",
193 [PF_SNA] = "PF_SNA",
194 [PF_IRDA] = "PF_IRDA",
195 [PF_PPPOX] = "PF_PPPOX",
196 [PF_WANPIPE] = "PF_WANPIPE",
197 [PF_LLC] = "PF_LLC",
198 [PF_IB] = "PF_IB",
199 [PF_MPLS] = "PF_MPLS",
200 [PF_CAN] = "PF_CAN",
201 [PF_TIPC] = "PF_TIPC",
202 [PF_BLUETOOTH] = "PF_BLUETOOTH",
203 [PF_IUCV] = "PF_IUCV",
204 [PF_RXRPC] = "PF_RXRPC",
205 [PF_ISDN] = "PF_ISDN",
206 [PF_PHONET] = "PF_PHONET",
207 [PF_IEEE802154] = "PF_IEEE802154",
208 [PF_CAIF] = "PF_CAIF",
209 [PF_ALG] = "PF_ALG",
210 [PF_NFC] = "PF_NFC",
211 [PF_VSOCK] = "PF_VSOCK",
212 [PF_KCM] = "PF_KCM",
213 [PF_QIPCRTR] = "PF_QIPCRTR",
214 [PF_SMC] = "PF_SMC",
215 [PF_XDP] = "PF_XDP",
216 [PF_MCTP] = "PF_MCTP",
217};
218
219/*
220 * The protocol list. Each protocol is registered in here.
221 */
222
223static DEFINE_SPINLOCK(net_family_lock);
224static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
225
226/*
227 * Support routines.
228 * Move socket addresses back and forth across the kernel/user
229 * divide and look after the messy bits.
230 */
231
232/**
233 * move_addr_to_kernel - copy a socket address into kernel space
234 * @uaddr: Address in user space
235 * @kaddr: Address in kernel space
236 * @ulen: Length in user space
237 *
238 * The address is copied into kernel space. If the provided address is
239 * too long an error code of -EINVAL is returned. If the copy gives
240 * invalid addresses -EFAULT is returned. On a success 0 is returned.
241 */
242
243int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
244{
245 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
246 return -EINVAL;
247 if (ulen == 0)
248 return 0;
249 if (copy_from_user(kaddr, uaddr, ulen))
250 return -EFAULT;
251 return audit_sockaddr(ulen, kaddr);
252}
253
254/**
255 * move_addr_to_user - copy an address to user space
256 * @kaddr: kernel space address
257 * @klen: length of address in kernel
258 * @uaddr: user space address
259 * @ulen: pointer to user length field
260 *
261 * The value pointed to by ulen on entry is the buffer length available.
262 * This is overwritten with the buffer space used. -EINVAL is returned
263 * if an overlong buffer is specified or a negative buffer size. -EFAULT
264 * is returned if either the buffer or the length field are not
265 * accessible.
266 * After copying the data up to the limit the user specifies, the true
267 * length of the data is written over the length limit the user
268 * specified. Zero is returned for a success.
269 */
270
271static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
272 void __user *uaddr, int __user *ulen)
273{
274 int err;
275 int len;
276
277 BUG_ON(klen > sizeof(struct sockaddr_storage));
278 err = get_user(len, ulen);
279 if (err)
280 return err;
281 if (len > klen)
282 len = klen;
283 if (len < 0)
284 return -EINVAL;
285 if (len) {
286 if (audit_sockaddr(klen, kaddr))
287 return -ENOMEM;
288 if (copy_to_user(uaddr, kaddr, len))
289 return -EFAULT;
290 }
291 /*
292 * "fromlen shall refer to the value before truncation.."
293 * 1003.1g
294 */
295 return __put_user(klen, ulen);
296}
297
298static struct kmem_cache *sock_inode_cachep __ro_after_init;
299
300static struct inode *sock_alloc_inode(struct super_block *sb)
301{
302 struct socket_alloc *ei;
303
304 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
305 if (!ei)
306 return NULL;
307 init_waitqueue_head(&ei->socket.wq.wait);
308 ei->socket.wq.fasync_list = NULL;
309 ei->socket.wq.flags = 0;
310
311 ei->socket.state = SS_UNCONNECTED;
312 ei->socket.flags = 0;
313 ei->socket.ops = NULL;
314 ei->socket.sk = NULL;
315 ei->socket.file = NULL;
316
317 return &ei->vfs_inode;
318}
319
320static void sock_free_inode(struct inode *inode)
321{
322 struct socket_alloc *ei;
323
324 ei = container_of(inode, struct socket_alloc, vfs_inode);
325 kmem_cache_free(sock_inode_cachep, ei);
326}
327
328static void init_once(void *foo)
329{
330 struct socket_alloc *ei = (struct socket_alloc *)foo;
331
332 inode_init_once(&ei->vfs_inode);
333}
334
335static void init_inodecache(void)
336{
337 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
338 sizeof(struct socket_alloc),
339 0,
340 (SLAB_HWCACHE_ALIGN |
341 SLAB_RECLAIM_ACCOUNT |
342 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
343 init_once);
344 BUG_ON(sock_inode_cachep == NULL);
345}
346
347static const struct super_operations sockfs_ops = {
348 .alloc_inode = sock_alloc_inode,
349 .free_inode = sock_free_inode,
350 .statfs = simple_statfs,
351};
352
353/*
354 * sockfs_dname() is called from d_path().
355 */
356static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
357{
358 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
359 d_inode(dentry)->i_ino);
360}
361
362static const struct dentry_operations sockfs_dentry_operations = {
363 .d_dname = sockfs_dname,
364};
365
366static int sockfs_xattr_get(const struct xattr_handler *handler,
367 struct dentry *dentry, struct inode *inode,
368 const char *suffix, void *value, size_t size)
369{
370 if (value) {
371 if (dentry->d_name.len + 1 > size)
372 return -ERANGE;
373 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
374 }
375 return dentry->d_name.len + 1;
376}
377
378#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
379#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
380#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
381
382static const struct xattr_handler sockfs_xattr_handler = {
383 .name = XATTR_NAME_SOCKPROTONAME,
384 .get = sockfs_xattr_get,
385};
386
387static int sockfs_security_xattr_set(const struct xattr_handler *handler,
388 struct user_namespace *mnt_userns,
389 struct dentry *dentry, struct inode *inode,
390 const char *suffix, const void *value,
391 size_t size, int flags)
392{
393 /* Handled by LSM. */
394 return -EAGAIN;
395}
396
397static const struct xattr_handler sockfs_security_xattr_handler = {
398 .prefix = XATTR_SECURITY_PREFIX,
399 .set = sockfs_security_xattr_set,
400};
401
402static const struct xattr_handler *sockfs_xattr_handlers[] = {
403 &sockfs_xattr_handler,
404 &sockfs_security_xattr_handler,
405 NULL
406};
407
408static int sockfs_init_fs_context(struct fs_context *fc)
409{
410 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
411 if (!ctx)
412 return -ENOMEM;
413 ctx->ops = &sockfs_ops;
414 ctx->dops = &sockfs_dentry_operations;
415 ctx->xattr = sockfs_xattr_handlers;
416 return 0;
417}
418
419static struct vfsmount *sock_mnt __read_mostly;
420
421static struct file_system_type sock_fs_type = {
422 .name = "sockfs",
423 .init_fs_context = sockfs_init_fs_context,
424 .kill_sb = kill_anon_super,
425};
426
427/*
428 * Obtains the first available file descriptor and sets it up for use.
429 *
430 * These functions create file structures and maps them to fd space
431 * of the current process. On success it returns file descriptor
432 * and file struct implicitly stored in sock->file.
433 * Note that another thread may close file descriptor before we return
434 * from this function. We use the fact that now we do not refer
435 * to socket after mapping. If one day we will need it, this
436 * function will increment ref. count on file by 1.
437 *
438 * In any case returned fd MAY BE not valid!
439 * This race condition is unavoidable
440 * with shared fd spaces, we cannot solve it inside kernel,
441 * but we take care of internal coherence yet.
442 */
443
444/**
445 * sock_alloc_file - Bind a &socket to a &file
446 * @sock: socket
447 * @flags: file status flags
448 * @dname: protocol name
449 *
450 * Returns the &file bound with @sock, implicitly storing it
451 * in sock->file. If dname is %NULL, sets to "".
452 * On failure the return is a ERR pointer (see linux/err.h).
453 * This function uses GFP_KERNEL internally.
454 */
455
456struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
457{
458 struct file *file;
459
460 if (!dname)
461 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
462
463 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
464 O_RDWR | (flags & O_NONBLOCK),
465 &socket_file_ops);
466 if (IS_ERR(file)) {
467 sock_release(sock);
468 return file;
469 }
470
471 sock->file = file;
472 file->private_data = sock;
473 stream_open(SOCK_INODE(sock), file);
474 return file;
475}
476EXPORT_SYMBOL(sock_alloc_file);
477
478static int sock_map_fd(struct socket *sock, int flags)
479{
480 struct file *newfile;
481 int fd = get_unused_fd_flags(flags);
482 if (unlikely(fd < 0)) {
483 sock_release(sock);
484 return fd;
485 }
486
487 newfile = sock_alloc_file(sock, flags, NULL);
488 if (!IS_ERR(newfile)) {
489 fd_install(fd, newfile);
490 return fd;
491 }
492
493 put_unused_fd(fd);
494 return PTR_ERR(newfile);
495}
496
497/**
498 * sock_from_file - Return the &socket bounded to @file.
499 * @file: file
500 *
501 * On failure returns %NULL.
502 */
503
504struct socket *sock_from_file(struct file *file)
505{
506 if (file->f_op == &socket_file_ops)
507 return file->private_data; /* set in sock_map_fd */
508
509 return NULL;
510}
511EXPORT_SYMBOL(sock_from_file);
512
513/**
514 * sockfd_lookup - Go from a file number to its socket slot
515 * @fd: file handle
516 * @err: pointer to an error code return
517 *
518 * The file handle passed in is locked and the socket it is bound
519 * to is returned. If an error occurs the err pointer is overwritten
520 * with a negative errno code and NULL is returned. The function checks
521 * for both invalid handles and passing a handle which is not a socket.
522 *
523 * On a success the socket object pointer is returned.
524 */
525
526struct socket *sockfd_lookup(int fd, int *err)
527{
528 struct file *file;
529 struct socket *sock;
530
531 file = fget(fd);
532 if (!file) {
533 *err = -EBADF;
534 return NULL;
535 }
536
537 sock = sock_from_file(file);
538 if (!sock) {
539 *err = -ENOTSOCK;
540 fput(file);
541 }
542 return sock;
543}
544EXPORT_SYMBOL(sockfd_lookup);
545
546static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
547{
548 struct fd f = fdget(fd);
549 struct socket *sock;
550
551 *err = -EBADF;
552 if (f.file) {
553 sock = sock_from_file(f.file);
554 if (likely(sock)) {
555 *fput_needed = f.flags & FDPUT_FPUT;
556 return sock;
557 }
558 *err = -ENOTSOCK;
559 fdput(f);
560 }
561 return NULL;
562}
563
564static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
565 size_t size)
566{
567 ssize_t len;
568 ssize_t used = 0;
569
570 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
571 if (len < 0)
572 return len;
573 used += len;
574 if (buffer) {
575 if (size < used)
576 return -ERANGE;
577 buffer += len;
578 }
579
580 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
581 used += len;
582 if (buffer) {
583 if (size < used)
584 return -ERANGE;
585 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
586 buffer += len;
587 }
588
589 return used;
590}
591
592static int sockfs_setattr(struct user_namespace *mnt_userns,
593 struct dentry *dentry, struct iattr *iattr)
594{
595 int err = simple_setattr(&init_user_ns, dentry, iattr);
596
597 if (!err && (iattr->ia_valid & ATTR_UID)) {
598 struct socket *sock = SOCKET_I(d_inode(dentry));
599
600 if (sock->sk)
601 sock->sk->sk_uid = iattr->ia_uid;
602 else
603 err = -ENOENT;
604 }
605
606 return err;
607}
608
609static const struct inode_operations sockfs_inode_ops = {
610 .listxattr = sockfs_listxattr,
611 .setattr = sockfs_setattr,
612};
613
614/**
615 * sock_alloc - allocate a socket
616 *
617 * Allocate a new inode and socket object. The two are bound together
618 * and initialised. The socket is then returned. If we are out of inodes
619 * NULL is returned. This functions uses GFP_KERNEL internally.
620 */
621
622struct socket *sock_alloc(void)
623{
624 struct inode *inode;
625 struct socket *sock;
626
627 inode = new_inode_pseudo(sock_mnt->mnt_sb);
628 if (!inode)
629 return NULL;
630
631 sock = SOCKET_I(inode);
632
633 inode->i_ino = get_next_ino();
634 inode->i_mode = S_IFSOCK | S_IRWXUGO;
635 inode->i_uid = current_fsuid();
636 inode->i_gid = current_fsgid();
637 inode->i_op = &sockfs_inode_ops;
638
639 return sock;
640}
641EXPORT_SYMBOL(sock_alloc);
642
643static void __sock_release(struct socket *sock, struct inode *inode)
644{
645 if (sock->ops) {
646 struct module *owner = sock->ops->owner;
647
648 if (inode)
649 inode_lock(inode);
650 sock->ops->release(sock);
651 sock->sk = NULL;
652 if (inode)
653 inode_unlock(inode);
654 sock->ops = NULL;
655 module_put(owner);
656 }
657
658 if (sock->wq.fasync_list)
659 pr_err("%s: fasync list not empty!\n", __func__);
660
661 if (!sock->file) {
662 iput(SOCK_INODE(sock));
663 return;
664 }
665 sock->file = NULL;
666}
667
668/**
669 * sock_release - close a socket
670 * @sock: socket to close
671 *
672 * The socket is released from the protocol stack if it has a release
673 * callback, and the inode is then released if the socket is bound to
674 * an inode not a file.
675 */
676void sock_release(struct socket *sock)
677{
678 __sock_release(sock, NULL);
679}
680EXPORT_SYMBOL(sock_release);
681
682void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
683{
684 u8 flags = *tx_flags;
685
686 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
687 flags |= SKBTX_HW_TSTAMP;
688
689 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
690 flags |= SKBTX_SW_TSTAMP;
691
692 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
693 flags |= SKBTX_SCHED_TSTAMP;
694
695 *tx_flags = flags;
696}
697EXPORT_SYMBOL(__sock_tx_timestamp);
698
699INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
700 size_t));
701INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
702 size_t));
703static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
704{
705 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
706 inet_sendmsg, sock, msg,
707 msg_data_left(msg));
708 BUG_ON(ret == -EIOCBQUEUED);
709 return ret;
710}
711
712/**
713 * sock_sendmsg - send a message through @sock
714 * @sock: socket
715 * @msg: message to send
716 *
717 * Sends @msg through @sock, passing through LSM.
718 * Returns the number of bytes sent, or an error code.
719 */
720int sock_sendmsg(struct socket *sock, struct msghdr *msg)
721{
722 int err = security_socket_sendmsg(sock, msg,
723 msg_data_left(msg));
724
725 return err ?: sock_sendmsg_nosec(sock, msg);
726}
727EXPORT_SYMBOL(sock_sendmsg);
728
729/**
730 * kernel_sendmsg - send a message through @sock (kernel-space)
731 * @sock: socket
732 * @msg: message header
733 * @vec: kernel vec
734 * @num: vec array length
735 * @size: total message data size
736 *
737 * Builds the message data with @vec and sends it through @sock.
738 * Returns the number of bytes sent, or an error code.
739 */
740
741int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
742 struct kvec *vec, size_t num, size_t size)
743{
744 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
745 return sock_sendmsg(sock, msg);
746}
747EXPORT_SYMBOL(kernel_sendmsg);
748
749/**
750 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
751 * @sk: sock
752 * @msg: message header
753 * @vec: output s/g array
754 * @num: output s/g array length
755 * @size: total message data size
756 *
757 * Builds the message data with @vec and sends it through @sock.
758 * Returns the number of bytes sent, or an error code.
759 * Caller must hold @sk.
760 */
761
762int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
763 struct kvec *vec, size_t num, size_t size)
764{
765 struct socket *sock = sk->sk_socket;
766
767 if (!sock->ops->sendmsg_locked)
768 return sock_no_sendmsg_locked(sk, msg, size);
769
770 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
771
772 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
773}
774EXPORT_SYMBOL(kernel_sendmsg_locked);
775
776static bool skb_is_err_queue(const struct sk_buff *skb)
777{
778 /* pkt_type of skbs enqueued on the error queue are set to
779 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
780 * in recvmsg, since skbs received on a local socket will never
781 * have a pkt_type of PACKET_OUTGOING.
782 */
783 return skb->pkt_type == PACKET_OUTGOING;
784}
785
786/* On transmit, software and hardware timestamps are returned independently.
787 * As the two skb clones share the hardware timestamp, which may be updated
788 * before the software timestamp is received, a hardware TX timestamp may be
789 * returned only if there is no software TX timestamp. Ignore false software
790 * timestamps, which may be made in the __sock_recv_timestamp() call when the
791 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
792 * hardware timestamp.
793 */
794static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
795{
796 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
797}
798
799static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
800{
801 struct scm_ts_pktinfo ts_pktinfo;
802 struct net_device *orig_dev;
803
804 if (!skb_mac_header_was_set(skb))
805 return;
806
807 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
808
809 rcu_read_lock();
810 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
811 if (orig_dev)
812 ts_pktinfo.if_index = orig_dev->ifindex;
813 rcu_read_unlock();
814
815 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
816 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
817 sizeof(ts_pktinfo), &ts_pktinfo);
818}
819
820/*
821 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
822 */
823void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
824 struct sk_buff *skb)
825{
826 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
827 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
828 struct scm_timestamping_internal tss;
829
830 int empty = 1, false_tstamp = 0;
831 struct skb_shared_hwtstamps *shhwtstamps =
832 skb_hwtstamps(skb);
833 ktime_t hwtstamp;
834
835 /* Race occurred between timestamp enabling and packet
836 receiving. Fill in the current time for now. */
837 if (need_software_tstamp && skb->tstamp == 0) {
838 __net_timestamp(skb);
839 false_tstamp = 1;
840 }
841
842 if (need_software_tstamp) {
843 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
844 if (new_tstamp) {
845 struct __kernel_sock_timeval tv;
846
847 skb_get_new_timestamp(skb, &tv);
848 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
849 sizeof(tv), &tv);
850 } else {
851 struct __kernel_old_timeval tv;
852
853 skb_get_timestamp(skb, &tv);
854 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
855 sizeof(tv), &tv);
856 }
857 } else {
858 if (new_tstamp) {
859 struct __kernel_timespec ts;
860
861 skb_get_new_timestampns(skb, &ts);
862 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
863 sizeof(ts), &ts);
864 } else {
865 struct __kernel_old_timespec ts;
866
867 skb_get_timestampns(skb, &ts);
868 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
869 sizeof(ts), &ts);
870 }
871 }
872 }
873
874 memset(&tss, 0, sizeof(tss));
875 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
876 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
877 empty = 0;
878 if (shhwtstamps &&
879 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
880 !skb_is_swtx_tstamp(skb, false_tstamp)) {
881 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
882 hwtstamp = ptp_convert_timestamp(shhwtstamps,
883 sk->sk_bind_phc);
884 else
885 hwtstamp = shhwtstamps->hwtstamp;
886
887 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
888 empty = 0;
889
890 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
891 !skb_is_err_queue(skb))
892 put_ts_pktinfo(msg, skb);
893 }
894 }
895 if (!empty) {
896 if (sock_flag(sk, SOCK_TSTAMP_NEW))
897 put_cmsg_scm_timestamping64(msg, &tss);
898 else
899 put_cmsg_scm_timestamping(msg, &tss);
900
901 if (skb_is_err_queue(skb) && skb->len &&
902 SKB_EXT_ERR(skb)->opt_stats)
903 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
904 skb->len, skb->data);
905 }
906}
907EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
908
909void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
910 struct sk_buff *skb)
911{
912 int ack;
913
914 if (!sock_flag(sk, SOCK_WIFI_STATUS))
915 return;
916 if (!skb->wifi_acked_valid)
917 return;
918
919 ack = skb->wifi_acked;
920
921 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
922}
923EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
924
925static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
926 struct sk_buff *skb)
927{
928 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
929 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
930 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
931}
932
933void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
934 struct sk_buff *skb)
935{
936 sock_recv_timestamp(msg, sk, skb);
937 sock_recv_drops(msg, sk, skb);
938}
939EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
940
941INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
942 size_t, int));
943INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
944 size_t, int));
945static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
946 int flags)
947{
948 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
949 inet_recvmsg, sock, msg, msg_data_left(msg),
950 flags);
951}
952
953/**
954 * sock_recvmsg - receive a message from @sock
955 * @sock: socket
956 * @msg: message to receive
957 * @flags: message flags
958 *
959 * Receives @msg from @sock, passing through LSM. Returns the total number
960 * of bytes received, or an error.
961 */
962int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
963{
964 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
965
966 return err ?: sock_recvmsg_nosec(sock, msg, flags);
967}
968EXPORT_SYMBOL(sock_recvmsg);
969
970/**
971 * kernel_recvmsg - Receive a message from a socket (kernel space)
972 * @sock: The socket to receive the message from
973 * @msg: Received message
974 * @vec: Input s/g array for message data
975 * @num: Size of input s/g array
976 * @size: Number of bytes to read
977 * @flags: Message flags (MSG_DONTWAIT, etc...)
978 *
979 * On return the msg structure contains the scatter/gather array passed in the
980 * vec argument. The array is modified so that it consists of the unfilled
981 * portion of the original array.
982 *
983 * The returned value is the total number of bytes received, or an error.
984 */
985
986int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
987 struct kvec *vec, size_t num, size_t size, int flags)
988{
989 msg->msg_control_is_user = false;
990 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
991 return sock_recvmsg(sock, msg, flags);
992}
993EXPORT_SYMBOL(kernel_recvmsg);
994
995static ssize_t sock_sendpage(struct file *file, struct page *page,
996 int offset, size_t size, loff_t *ppos, int more)
997{
998 struct socket *sock;
999 int flags;
1000
1001 sock = file->private_data;
1002
1003 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1004 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1005 flags |= more;
1006
1007 return kernel_sendpage(sock, page, offset, size, flags);
1008}
1009
1010static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1011 struct pipe_inode_info *pipe, size_t len,
1012 unsigned int flags)
1013{
1014 struct socket *sock = file->private_data;
1015
1016 if (unlikely(!sock->ops->splice_read))
1017 return generic_file_splice_read(file, ppos, pipe, len, flags);
1018
1019 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1020}
1021
1022static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1023{
1024 struct file *file = iocb->ki_filp;
1025 struct socket *sock = file->private_data;
1026 struct msghdr msg = {.msg_iter = *to,
1027 .msg_iocb = iocb};
1028 ssize_t res;
1029
1030 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1031 msg.msg_flags = MSG_DONTWAIT;
1032
1033 if (iocb->ki_pos != 0)
1034 return -ESPIPE;
1035
1036 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1037 return 0;
1038
1039 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1040 *to = msg.msg_iter;
1041 return res;
1042}
1043
1044static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1045{
1046 struct file *file = iocb->ki_filp;
1047 struct socket *sock = file->private_data;
1048 struct msghdr msg = {.msg_iter = *from,
1049 .msg_iocb = iocb};
1050 ssize_t res;
1051
1052 if (iocb->ki_pos != 0)
1053 return -ESPIPE;
1054
1055 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1056 msg.msg_flags = MSG_DONTWAIT;
1057
1058 if (sock->type == SOCK_SEQPACKET)
1059 msg.msg_flags |= MSG_EOR;
1060
1061 res = sock_sendmsg(sock, &msg);
1062 *from = msg.msg_iter;
1063 return res;
1064}
1065
1066/*
1067 * Atomic setting of ioctl hooks to avoid race
1068 * with module unload.
1069 */
1070
1071static DEFINE_MUTEX(br_ioctl_mutex);
1072static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1073 unsigned int cmd, struct ifreq *ifr,
1074 void __user *uarg);
1075
1076void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1077 unsigned int cmd, struct ifreq *ifr,
1078 void __user *uarg))
1079{
1080 mutex_lock(&br_ioctl_mutex);
1081 br_ioctl_hook = hook;
1082 mutex_unlock(&br_ioctl_mutex);
1083}
1084EXPORT_SYMBOL(brioctl_set);
1085
1086int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1087 struct ifreq *ifr, void __user *uarg)
1088{
1089 int err = -ENOPKG;
1090
1091 if (!br_ioctl_hook)
1092 request_module("bridge");
1093
1094 mutex_lock(&br_ioctl_mutex);
1095 if (br_ioctl_hook)
1096 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1097 mutex_unlock(&br_ioctl_mutex);
1098
1099 return err;
1100}
1101
1102static DEFINE_MUTEX(vlan_ioctl_mutex);
1103static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1104
1105void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1106{
1107 mutex_lock(&vlan_ioctl_mutex);
1108 vlan_ioctl_hook = hook;
1109 mutex_unlock(&vlan_ioctl_mutex);
1110}
1111EXPORT_SYMBOL(vlan_ioctl_set);
1112
1113static long sock_do_ioctl(struct net *net, struct socket *sock,
1114 unsigned int cmd, unsigned long arg)
1115{
1116 struct ifreq ifr;
1117 bool need_copyout;
1118 int err;
1119 void __user *argp = (void __user *)arg;
1120 void __user *data;
1121
1122 err = sock->ops->ioctl(sock, cmd, arg);
1123
1124 /*
1125 * If this ioctl is unknown try to hand it down
1126 * to the NIC driver.
1127 */
1128 if (err != -ENOIOCTLCMD)
1129 return err;
1130
1131 if (!is_socket_ioctl_cmd(cmd))
1132 return -ENOTTY;
1133
1134 if (get_user_ifreq(&ifr, &data, argp))
1135 return -EFAULT;
1136 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1137 if (!err && need_copyout)
1138 if (put_user_ifreq(&ifr, argp))
1139 return -EFAULT;
1140
1141 return err;
1142}
1143
1144/*
1145 * With an ioctl, arg may well be a user mode pointer, but we don't know
1146 * what to do with it - that's up to the protocol still.
1147 */
1148
1149static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1150{
1151 struct socket *sock;
1152 struct sock *sk;
1153 void __user *argp = (void __user *)arg;
1154 int pid, err;
1155 struct net *net;
1156
1157 sock = file->private_data;
1158 sk = sock->sk;
1159 net = sock_net(sk);
1160 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1161 struct ifreq ifr;
1162 void __user *data;
1163 bool need_copyout;
1164 if (get_user_ifreq(&ifr, &data, argp))
1165 return -EFAULT;
1166 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1167 if (!err && need_copyout)
1168 if (put_user_ifreq(&ifr, argp))
1169 return -EFAULT;
1170 } else
1171#ifdef CONFIG_WEXT_CORE
1172 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1173 err = wext_handle_ioctl(net, cmd, argp);
1174 } else
1175#endif
1176 switch (cmd) {
1177 case FIOSETOWN:
1178 case SIOCSPGRP:
1179 err = -EFAULT;
1180 if (get_user(pid, (int __user *)argp))
1181 break;
1182 err = f_setown(sock->file, pid, 1);
1183 break;
1184 case FIOGETOWN:
1185 case SIOCGPGRP:
1186 err = put_user(f_getown(sock->file),
1187 (int __user *)argp);
1188 break;
1189 case SIOCGIFBR:
1190 case SIOCSIFBR:
1191 case SIOCBRADDBR:
1192 case SIOCBRDELBR:
1193 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1194 break;
1195 case SIOCGIFVLAN:
1196 case SIOCSIFVLAN:
1197 err = -ENOPKG;
1198 if (!vlan_ioctl_hook)
1199 request_module("8021q");
1200
1201 mutex_lock(&vlan_ioctl_mutex);
1202 if (vlan_ioctl_hook)
1203 err = vlan_ioctl_hook(net, argp);
1204 mutex_unlock(&vlan_ioctl_mutex);
1205 break;
1206 case SIOCGSKNS:
1207 err = -EPERM;
1208 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1209 break;
1210
1211 err = open_related_ns(&net->ns, get_net_ns);
1212 break;
1213 case SIOCGSTAMP_OLD:
1214 case SIOCGSTAMPNS_OLD:
1215 if (!sock->ops->gettstamp) {
1216 err = -ENOIOCTLCMD;
1217 break;
1218 }
1219 err = sock->ops->gettstamp(sock, argp,
1220 cmd == SIOCGSTAMP_OLD,
1221 !IS_ENABLED(CONFIG_64BIT));
1222 break;
1223 case SIOCGSTAMP_NEW:
1224 case SIOCGSTAMPNS_NEW:
1225 if (!sock->ops->gettstamp) {
1226 err = -ENOIOCTLCMD;
1227 break;
1228 }
1229 err = sock->ops->gettstamp(sock, argp,
1230 cmd == SIOCGSTAMP_NEW,
1231 false);
1232 break;
1233
1234 case SIOCGIFCONF:
1235 err = dev_ifconf(net, argp);
1236 break;
1237
1238 default:
1239 err = sock_do_ioctl(net, sock, cmd, arg);
1240 break;
1241 }
1242 return err;
1243}
1244
1245/**
1246 * sock_create_lite - creates a socket
1247 * @family: protocol family (AF_INET, ...)
1248 * @type: communication type (SOCK_STREAM, ...)
1249 * @protocol: protocol (0, ...)
1250 * @res: new socket
1251 *
1252 * Creates a new socket and assigns it to @res, passing through LSM.
1253 * The new socket initialization is not complete, see kernel_accept().
1254 * Returns 0 or an error. On failure @res is set to %NULL.
1255 * This function internally uses GFP_KERNEL.
1256 */
1257
1258int sock_create_lite(int family, int type, int protocol, struct socket **res)
1259{
1260 int err;
1261 struct socket *sock = NULL;
1262
1263 err = security_socket_create(family, type, protocol, 1);
1264 if (err)
1265 goto out;
1266
1267 sock = sock_alloc();
1268 if (!sock) {
1269 err = -ENOMEM;
1270 goto out;
1271 }
1272
1273 sock->type = type;
1274 err = security_socket_post_create(sock, family, type, protocol, 1);
1275 if (err)
1276 goto out_release;
1277
1278out:
1279 *res = sock;
1280 return err;
1281out_release:
1282 sock_release(sock);
1283 sock = NULL;
1284 goto out;
1285}
1286EXPORT_SYMBOL(sock_create_lite);
1287
1288/* No kernel lock held - perfect */
1289static __poll_t sock_poll(struct file *file, poll_table *wait)
1290{
1291 struct socket *sock = file->private_data;
1292 __poll_t events = poll_requested_events(wait), flag = 0;
1293
1294 if (!sock->ops->poll)
1295 return 0;
1296
1297 if (sk_can_busy_loop(sock->sk)) {
1298 /* poll once if requested by the syscall */
1299 if (events & POLL_BUSY_LOOP)
1300 sk_busy_loop(sock->sk, 1);
1301
1302 /* if this socket can poll_ll, tell the system call */
1303 flag = POLL_BUSY_LOOP;
1304 }
1305
1306 return sock->ops->poll(file, sock, wait) | flag;
1307}
1308
1309static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1310{
1311 struct socket *sock = file->private_data;
1312
1313 return sock->ops->mmap(file, sock, vma);
1314}
1315
1316static int sock_close(struct inode *inode, struct file *filp)
1317{
1318 __sock_release(SOCKET_I(inode), inode);
1319 return 0;
1320}
1321
1322/*
1323 * Update the socket async list
1324 *
1325 * Fasync_list locking strategy.
1326 *
1327 * 1. fasync_list is modified only under process context socket lock
1328 * i.e. under semaphore.
1329 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1330 * or under socket lock
1331 */
1332
1333static int sock_fasync(int fd, struct file *filp, int on)
1334{
1335 struct socket *sock = filp->private_data;
1336 struct sock *sk = sock->sk;
1337 struct socket_wq *wq = &sock->wq;
1338
1339 if (sk == NULL)
1340 return -EINVAL;
1341
1342 lock_sock(sk);
1343 fasync_helper(fd, filp, on, &wq->fasync_list);
1344
1345 if (!wq->fasync_list)
1346 sock_reset_flag(sk, SOCK_FASYNC);
1347 else
1348 sock_set_flag(sk, SOCK_FASYNC);
1349
1350 release_sock(sk);
1351 return 0;
1352}
1353
1354/* This function may be called only under rcu_lock */
1355
1356int sock_wake_async(struct socket_wq *wq, int how, int band)
1357{
1358 if (!wq || !wq->fasync_list)
1359 return -1;
1360
1361 switch (how) {
1362 case SOCK_WAKE_WAITD:
1363 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1364 break;
1365 goto call_kill;
1366 case SOCK_WAKE_SPACE:
1367 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1368 break;
1369 fallthrough;
1370 case SOCK_WAKE_IO:
1371call_kill:
1372 kill_fasync(&wq->fasync_list, SIGIO, band);
1373 break;
1374 case SOCK_WAKE_URG:
1375 kill_fasync(&wq->fasync_list, SIGURG, band);
1376 }
1377
1378 return 0;
1379}
1380EXPORT_SYMBOL(sock_wake_async);
1381
1382/**
1383 * __sock_create - creates a socket
1384 * @net: net namespace
1385 * @family: protocol family (AF_INET, ...)
1386 * @type: communication type (SOCK_STREAM, ...)
1387 * @protocol: protocol (0, ...)
1388 * @res: new socket
1389 * @kern: boolean for kernel space sockets
1390 *
1391 * Creates a new socket and assigns it to @res, passing through LSM.
1392 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1393 * be set to true if the socket resides in kernel space.
1394 * This function internally uses GFP_KERNEL.
1395 */
1396
1397int __sock_create(struct net *net, int family, int type, int protocol,
1398 struct socket **res, int kern)
1399{
1400 int err;
1401 struct socket *sock;
1402 const struct net_proto_family *pf;
1403
1404 /*
1405 * Check protocol is in range
1406 */
1407 if (family < 0 || family >= NPROTO)
1408 return -EAFNOSUPPORT;
1409 if (type < 0 || type >= SOCK_MAX)
1410 return -EINVAL;
1411
1412 /* Compatibility.
1413
1414 This uglymoron is moved from INET layer to here to avoid
1415 deadlock in module load.
1416 */
1417 if (family == PF_INET && type == SOCK_PACKET) {
1418 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1419 current->comm);
1420 family = PF_PACKET;
1421 }
1422
1423 err = security_socket_create(family, type, protocol, kern);
1424 if (err)
1425 return err;
1426
1427 /*
1428 * Allocate the socket and allow the family to set things up. if
1429 * the protocol is 0, the family is instructed to select an appropriate
1430 * default.
1431 */
1432 sock = sock_alloc();
1433 if (!sock) {
1434 net_warn_ratelimited("socket: no more sockets\n");
1435 return -ENFILE; /* Not exactly a match, but its the
1436 closest posix thing */
1437 }
1438
1439 sock->type = type;
1440
1441#ifdef CONFIG_MODULES
1442 /* Attempt to load a protocol module if the find failed.
1443 *
1444 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1445 * requested real, full-featured networking support upon configuration.
1446 * Otherwise module support will break!
1447 */
1448 if (rcu_access_pointer(net_families[family]) == NULL)
1449 request_module("net-pf-%d", family);
1450#endif
1451
1452 rcu_read_lock();
1453 pf = rcu_dereference(net_families[family]);
1454 err = -EAFNOSUPPORT;
1455 if (!pf)
1456 goto out_release;
1457
1458 /*
1459 * We will call the ->create function, that possibly is in a loadable
1460 * module, so we have to bump that loadable module refcnt first.
1461 */
1462 if (!try_module_get(pf->owner))
1463 goto out_release;
1464
1465 /* Now protected by module ref count */
1466 rcu_read_unlock();
1467
1468 err = pf->create(net, sock, protocol, kern);
1469 if (err < 0)
1470 goto out_module_put;
1471
1472 /*
1473 * Now to bump the refcnt of the [loadable] module that owns this
1474 * socket at sock_release time we decrement its refcnt.
1475 */
1476 if (!try_module_get(sock->ops->owner))
1477 goto out_module_busy;
1478
1479 /*
1480 * Now that we're done with the ->create function, the [loadable]
1481 * module can have its refcnt decremented
1482 */
1483 module_put(pf->owner);
1484 err = security_socket_post_create(sock, family, type, protocol, kern);
1485 if (err)
1486 goto out_sock_release;
1487 *res = sock;
1488
1489 return 0;
1490
1491out_module_busy:
1492 err = -EAFNOSUPPORT;
1493out_module_put:
1494 sock->ops = NULL;
1495 module_put(pf->owner);
1496out_sock_release:
1497 sock_release(sock);
1498 return err;
1499
1500out_release:
1501 rcu_read_unlock();
1502 goto out_sock_release;
1503}
1504EXPORT_SYMBOL(__sock_create);
1505
1506/**
1507 * sock_create - creates a socket
1508 * @family: protocol family (AF_INET, ...)
1509 * @type: communication type (SOCK_STREAM, ...)
1510 * @protocol: protocol (0, ...)
1511 * @res: new socket
1512 *
1513 * A wrapper around __sock_create().
1514 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1515 */
1516
1517int sock_create(int family, int type, int protocol, struct socket **res)
1518{
1519 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1520}
1521EXPORT_SYMBOL(sock_create);
1522
1523/**
1524 * sock_create_kern - creates a socket (kernel space)
1525 * @net: net namespace
1526 * @family: protocol family (AF_INET, ...)
1527 * @type: communication type (SOCK_STREAM, ...)
1528 * @protocol: protocol (0, ...)
1529 * @res: new socket
1530 *
1531 * A wrapper around __sock_create().
1532 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1533 */
1534
1535int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1536{
1537 return __sock_create(net, family, type, protocol, res, 1);
1538}
1539EXPORT_SYMBOL(sock_create_kern);
1540
1541int __sys_socket(int family, int type, int protocol)
1542{
1543 int retval;
1544 struct socket *sock;
1545 int flags;
1546
1547 /* Check the SOCK_* constants for consistency. */
1548 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1549 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1550 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1551 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1552
1553 flags = type & ~SOCK_TYPE_MASK;
1554 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1555 return -EINVAL;
1556 type &= SOCK_TYPE_MASK;
1557
1558 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1559 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1560
1561 retval = sock_create(family, type, protocol, &sock);
1562 if (retval < 0)
1563 return retval;
1564
1565 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1566}
1567
1568SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1569{
1570 return __sys_socket(family, type, protocol);
1571}
1572
1573/*
1574 * Create a pair of connected sockets.
1575 */
1576
1577int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1578{
1579 struct socket *sock1, *sock2;
1580 int fd1, fd2, err;
1581 struct file *newfile1, *newfile2;
1582 int flags;
1583
1584 flags = type & ~SOCK_TYPE_MASK;
1585 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1586 return -EINVAL;
1587 type &= SOCK_TYPE_MASK;
1588
1589 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1590 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1591
1592 /*
1593 * reserve descriptors and make sure we won't fail
1594 * to return them to userland.
1595 */
1596 fd1 = get_unused_fd_flags(flags);
1597 if (unlikely(fd1 < 0))
1598 return fd1;
1599
1600 fd2 = get_unused_fd_flags(flags);
1601 if (unlikely(fd2 < 0)) {
1602 put_unused_fd(fd1);
1603 return fd2;
1604 }
1605
1606 err = put_user(fd1, &usockvec[0]);
1607 if (err)
1608 goto out;
1609
1610 err = put_user(fd2, &usockvec[1]);
1611 if (err)
1612 goto out;
1613
1614 /*
1615 * Obtain the first socket and check if the underlying protocol
1616 * supports the socketpair call.
1617 */
1618
1619 err = sock_create(family, type, protocol, &sock1);
1620 if (unlikely(err < 0))
1621 goto out;
1622
1623 err = sock_create(family, type, protocol, &sock2);
1624 if (unlikely(err < 0)) {
1625 sock_release(sock1);
1626 goto out;
1627 }
1628
1629 err = security_socket_socketpair(sock1, sock2);
1630 if (unlikely(err)) {
1631 sock_release(sock2);
1632 sock_release(sock1);
1633 goto out;
1634 }
1635
1636 err = sock1->ops->socketpair(sock1, sock2);
1637 if (unlikely(err < 0)) {
1638 sock_release(sock2);
1639 sock_release(sock1);
1640 goto out;
1641 }
1642
1643 newfile1 = sock_alloc_file(sock1, flags, NULL);
1644 if (IS_ERR(newfile1)) {
1645 err = PTR_ERR(newfile1);
1646 sock_release(sock2);
1647 goto out;
1648 }
1649
1650 newfile2 = sock_alloc_file(sock2, flags, NULL);
1651 if (IS_ERR(newfile2)) {
1652 err = PTR_ERR(newfile2);
1653 fput(newfile1);
1654 goto out;
1655 }
1656
1657 audit_fd_pair(fd1, fd2);
1658
1659 fd_install(fd1, newfile1);
1660 fd_install(fd2, newfile2);
1661 return 0;
1662
1663out:
1664 put_unused_fd(fd2);
1665 put_unused_fd(fd1);
1666 return err;
1667}
1668
1669SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1670 int __user *, usockvec)
1671{
1672 return __sys_socketpair(family, type, protocol, usockvec);
1673}
1674
1675/*
1676 * Bind a name to a socket. Nothing much to do here since it's
1677 * the protocol's responsibility to handle the local address.
1678 *
1679 * We move the socket address to kernel space before we call
1680 * the protocol layer (having also checked the address is ok).
1681 */
1682
1683int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1684{
1685 struct socket *sock;
1686 struct sockaddr_storage address;
1687 int err, fput_needed;
1688
1689 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1690 if (sock) {
1691 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1692 if (!err) {
1693 err = security_socket_bind(sock,
1694 (struct sockaddr *)&address,
1695 addrlen);
1696 if (!err)
1697 err = sock->ops->bind(sock,
1698 (struct sockaddr *)
1699 &address, addrlen);
1700 }
1701 fput_light(sock->file, fput_needed);
1702 }
1703 return err;
1704}
1705
1706SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1707{
1708 return __sys_bind(fd, umyaddr, addrlen);
1709}
1710
1711/*
1712 * Perform a listen. Basically, we allow the protocol to do anything
1713 * necessary for a listen, and if that works, we mark the socket as
1714 * ready for listening.
1715 */
1716
1717int __sys_listen(int fd, int backlog)
1718{
1719 struct socket *sock;
1720 int err, fput_needed;
1721 int somaxconn;
1722
1723 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1724 if (sock) {
1725 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1726 if ((unsigned int)backlog > somaxconn)
1727 backlog = somaxconn;
1728
1729 err = security_socket_listen(sock, backlog);
1730 if (!err)
1731 err = sock->ops->listen(sock, backlog);
1732
1733 fput_light(sock->file, fput_needed);
1734 }
1735 return err;
1736}
1737
1738SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1739{
1740 return __sys_listen(fd, backlog);
1741}
1742
1743struct file *do_accept(struct file *file, unsigned file_flags,
1744 struct sockaddr __user *upeer_sockaddr,
1745 int __user *upeer_addrlen, int flags)
1746{
1747 struct socket *sock, *newsock;
1748 struct file *newfile;
1749 int err, len;
1750 struct sockaddr_storage address;
1751
1752 sock = sock_from_file(file);
1753 if (!sock)
1754 return ERR_PTR(-ENOTSOCK);
1755
1756 newsock = sock_alloc();
1757 if (!newsock)
1758 return ERR_PTR(-ENFILE);
1759
1760 newsock->type = sock->type;
1761 newsock->ops = sock->ops;
1762
1763 /*
1764 * We don't need try_module_get here, as the listening socket (sock)
1765 * has the protocol module (sock->ops->owner) held.
1766 */
1767 __module_get(newsock->ops->owner);
1768
1769 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1770 if (IS_ERR(newfile))
1771 return newfile;
1772
1773 err = security_socket_accept(sock, newsock);
1774 if (err)
1775 goto out_fd;
1776
1777 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1778 false);
1779 if (err < 0)
1780 goto out_fd;
1781
1782 if (upeer_sockaddr) {
1783 len = newsock->ops->getname(newsock,
1784 (struct sockaddr *)&address, 2);
1785 if (len < 0) {
1786 err = -ECONNABORTED;
1787 goto out_fd;
1788 }
1789 err = move_addr_to_user(&address,
1790 len, upeer_sockaddr, upeer_addrlen);
1791 if (err < 0)
1792 goto out_fd;
1793 }
1794
1795 /* File flags are not inherited via accept() unlike another OSes. */
1796 return newfile;
1797out_fd:
1798 fput(newfile);
1799 return ERR_PTR(err);
1800}
1801
1802int __sys_accept4_file(struct file *file, unsigned file_flags,
1803 struct sockaddr __user *upeer_sockaddr,
1804 int __user *upeer_addrlen, int flags,
1805 unsigned long nofile)
1806{
1807 struct file *newfile;
1808 int newfd;
1809
1810 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1811 return -EINVAL;
1812
1813 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1814 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1815
1816 newfd = __get_unused_fd_flags(flags, nofile);
1817 if (unlikely(newfd < 0))
1818 return newfd;
1819
1820 newfile = do_accept(file, file_flags, upeer_sockaddr, upeer_addrlen,
1821 flags);
1822 if (IS_ERR(newfile)) {
1823 put_unused_fd(newfd);
1824 return PTR_ERR(newfile);
1825 }
1826 fd_install(newfd, newfile);
1827 return newfd;
1828}
1829
1830/*
1831 * For accept, we attempt to create a new socket, set up the link
1832 * with the client, wake up the client, then return the new
1833 * connected fd. We collect the address of the connector in kernel
1834 * space and move it to user at the very end. This is unclean because
1835 * we open the socket then return an error.
1836 *
1837 * 1003.1g adds the ability to recvmsg() to query connection pending
1838 * status to recvmsg. We need to add that support in a way thats
1839 * clean when we restructure accept also.
1840 */
1841
1842int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1843 int __user *upeer_addrlen, int flags)
1844{
1845 int ret = -EBADF;
1846 struct fd f;
1847
1848 f = fdget(fd);
1849 if (f.file) {
1850 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1851 upeer_addrlen, flags,
1852 rlimit(RLIMIT_NOFILE));
1853 fdput(f);
1854 }
1855
1856 return ret;
1857}
1858
1859SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1860 int __user *, upeer_addrlen, int, flags)
1861{
1862 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1863}
1864
1865SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1866 int __user *, upeer_addrlen)
1867{
1868 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1869}
1870
1871/*
1872 * Attempt to connect to a socket with the server address. The address
1873 * is in user space so we verify it is OK and move it to kernel space.
1874 *
1875 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1876 * break bindings
1877 *
1878 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1879 * other SEQPACKET protocols that take time to connect() as it doesn't
1880 * include the -EINPROGRESS status for such sockets.
1881 */
1882
1883int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1884 int addrlen, int file_flags)
1885{
1886 struct socket *sock;
1887 int err;
1888
1889 sock = sock_from_file(file);
1890 if (!sock) {
1891 err = -ENOTSOCK;
1892 goto out;
1893 }
1894
1895 err =
1896 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1897 if (err)
1898 goto out;
1899
1900 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1901 sock->file->f_flags | file_flags);
1902out:
1903 return err;
1904}
1905
1906int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1907{
1908 int ret = -EBADF;
1909 struct fd f;
1910
1911 f = fdget(fd);
1912 if (f.file) {
1913 struct sockaddr_storage address;
1914
1915 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1916 if (!ret)
1917 ret = __sys_connect_file(f.file, &address, addrlen, 0);
1918 fdput(f);
1919 }
1920
1921 return ret;
1922}
1923
1924SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1925 int, addrlen)
1926{
1927 return __sys_connect(fd, uservaddr, addrlen);
1928}
1929
1930/*
1931 * Get the local address ('name') of a socket object. Move the obtained
1932 * name to user space.
1933 */
1934
1935int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1936 int __user *usockaddr_len)
1937{
1938 struct socket *sock;
1939 struct sockaddr_storage address;
1940 int err, fput_needed;
1941
1942 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1943 if (!sock)
1944 goto out;
1945
1946 err = security_socket_getsockname(sock);
1947 if (err)
1948 goto out_put;
1949
1950 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1951 if (err < 0)
1952 goto out_put;
1953 /* "err" is actually length in this case */
1954 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1955
1956out_put:
1957 fput_light(sock->file, fput_needed);
1958out:
1959 return err;
1960}
1961
1962SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1963 int __user *, usockaddr_len)
1964{
1965 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1966}
1967
1968/*
1969 * Get the remote address ('name') of a socket object. Move the obtained
1970 * name to user space.
1971 */
1972
1973int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1974 int __user *usockaddr_len)
1975{
1976 struct socket *sock;
1977 struct sockaddr_storage address;
1978 int err, fput_needed;
1979
1980 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1981 if (sock != NULL) {
1982 err = security_socket_getpeername(sock);
1983 if (err) {
1984 fput_light(sock->file, fput_needed);
1985 return err;
1986 }
1987
1988 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1989 if (err >= 0)
1990 /* "err" is actually length in this case */
1991 err = move_addr_to_user(&address, err, usockaddr,
1992 usockaddr_len);
1993 fput_light(sock->file, fput_needed);
1994 }
1995 return err;
1996}
1997
1998SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1999 int __user *, usockaddr_len)
2000{
2001 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2002}
2003
2004/*
2005 * Send a datagram to a given address. We move the address into kernel
2006 * space and check the user space data area is readable before invoking
2007 * the protocol.
2008 */
2009int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2010 struct sockaddr __user *addr, int addr_len)
2011{
2012 struct socket *sock;
2013 struct sockaddr_storage address;
2014 int err;
2015 struct msghdr msg;
2016 struct iovec iov;
2017 int fput_needed;
2018
2019 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2020 if (unlikely(err))
2021 return err;
2022 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2023 if (!sock)
2024 goto out;
2025
2026 msg.msg_name = NULL;
2027 msg.msg_control = NULL;
2028 msg.msg_controllen = 0;
2029 msg.msg_namelen = 0;
2030 if (addr) {
2031 err = move_addr_to_kernel(addr, addr_len, &address);
2032 if (err < 0)
2033 goto out_put;
2034 msg.msg_name = (struct sockaddr *)&address;
2035 msg.msg_namelen = addr_len;
2036 }
2037 if (sock->file->f_flags & O_NONBLOCK)
2038 flags |= MSG_DONTWAIT;
2039 msg.msg_flags = flags;
2040 err = sock_sendmsg(sock, &msg);
2041
2042out_put:
2043 fput_light(sock->file, fput_needed);
2044out:
2045 return err;
2046}
2047
2048SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2049 unsigned int, flags, struct sockaddr __user *, addr,
2050 int, addr_len)
2051{
2052 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2053}
2054
2055/*
2056 * Send a datagram down a socket.
2057 */
2058
2059SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2060 unsigned int, flags)
2061{
2062 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2063}
2064
2065/*
2066 * Receive a frame from the socket and optionally record the address of the
2067 * sender. We verify the buffers are writable and if needed move the
2068 * sender address from kernel to user space.
2069 */
2070int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2071 struct sockaddr __user *addr, int __user *addr_len)
2072{
2073 struct socket *sock;
2074 struct iovec iov;
2075 struct msghdr msg;
2076 struct sockaddr_storage address;
2077 int err, err2;
2078 int fput_needed;
2079
2080 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2081 if (unlikely(err))
2082 return err;
2083 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2084 if (!sock)
2085 goto out;
2086
2087 msg.msg_control = NULL;
2088 msg.msg_controllen = 0;
2089 /* Save some cycles and don't copy the address if not needed */
2090 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2091 /* We assume all kernel code knows the size of sockaddr_storage */
2092 msg.msg_namelen = 0;
2093 msg.msg_iocb = NULL;
2094 msg.msg_flags = 0;
2095 if (sock->file->f_flags & O_NONBLOCK)
2096 flags |= MSG_DONTWAIT;
2097 err = sock_recvmsg(sock, &msg, flags);
2098
2099 if (err >= 0 && addr != NULL) {
2100 err2 = move_addr_to_user(&address,
2101 msg.msg_namelen, addr, addr_len);
2102 if (err2 < 0)
2103 err = err2;
2104 }
2105
2106 fput_light(sock->file, fput_needed);
2107out:
2108 return err;
2109}
2110
2111SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2112 unsigned int, flags, struct sockaddr __user *, addr,
2113 int __user *, addr_len)
2114{
2115 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2116}
2117
2118/*
2119 * Receive a datagram from a socket.
2120 */
2121
2122SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2123 unsigned int, flags)
2124{
2125 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2126}
2127
2128static bool sock_use_custom_sol_socket(const struct socket *sock)
2129{
2130 const struct sock *sk = sock->sk;
2131
2132 /* Use sock->ops->setsockopt() for MPTCP */
2133 return IS_ENABLED(CONFIG_MPTCP) &&
2134 sk->sk_protocol == IPPROTO_MPTCP &&
2135 sk->sk_type == SOCK_STREAM &&
2136 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2137}
2138
2139/*
2140 * Set a socket option. Because we don't know the option lengths we have
2141 * to pass the user mode parameter for the protocols to sort out.
2142 */
2143int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2144 int optlen)
2145{
2146 sockptr_t optval = USER_SOCKPTR(user_optval);
2147 char *kernel_optval = NULL;
2148 int err, fput_needed;
2149 struct socket *sock;
2150
2151 if (optlen < 0)
2152 return -EINVAL;
2153
2154 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2155 if (!sock)
2156 return err;
2157
2158 err = security_socket_setsockopt(sock, level, optname);
2159 if (err)
2160 goto out_put;
2161
2162 if (!in_compat_syscall())
2163 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2164 user_optval, &optlen,
2165 &kernel_optval);
2166 if (err < 0)
2167 goto out_put;
2168 if (err > 0) {
2169 err = 0;
2170 goto out_put;
2171 }
2172
2173 if (kernel_optval)
2174 optval = KERNEL_SOCKPTR(kernel_optval);
2175 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2176 err = sock_setsockopt(sock, level, optname, optval, optlen);
2177 else if (unlikely(!sock->ops->setsockopt))
2178 err = -EOPNOTSUPP;
2179 else
2180 err = sock->ops->setsockopt(sock, level, optname, optval,
2181 optlen);
2182 kfree(kernel_optval);
2183out_put:
2184 fput_light(sock->file, fput_needed);
2185 return err;
2186}
2187
2188SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2189 char __user *, optval, int, optlen)
2190{
2191 return __sys_setsockopt(fd, level, optname, optval, optlen);
2192}
2193
2194INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2195 int optname));
2196
2197/*
2198 * Get a socket option. Because we don't know the option lengths we have
2199 * to pass a user mode parameter for the protocols to sort out.
2200 */
2201int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2202 int __user *optlen)
2203{
2204 int err, fput_needed;
2205 struct socket *sock;
2206 int max_optlen;
2207
2208 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2209 if (!sock)
2210 return err;
2211
2212 err = security_socket_getsockopt(sock, level, optname);
2213 if (err)
2214 goto out_put;
2215
2216 if (!in_compat_syscall())
2217 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2218
2219 if (level == SOL_SOCKET)
2220 err = sock_getsockopt(sock, level, optname, optval, optlen);
2221 else if (unlikely(!sock->ops->getsockopt))
2222 err = -EOPNOTSUPP;
2223 else
2224 err = sock->ops->getsockopt(sock, level, optname, optval,
2225 optlen);
2226
2227 if (!in_compat_syscall())
2228 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2229 optval, optlen, max_optlen,
2230 err);
2231out_put:
2232 fput_light(sock->file, fput_needed);
2233 return err;
2234}
2235
2236SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2237 char __user *, optval, int __user *, optlen)
2238{
2239 return __sys_getsockopt(fd, level, optname, optval, optlen);
2240}
2241
2242/*
2243 * Shutdown a socket.
2244 */
2245
2246int __sys_shutdown_sock(struct socket *sock, int how)
2247{
2248 int err;
2249
2250 err = security_socket_shutdown(sock, how);
2251 if (!err)
2252 err = sock->ops->shutdown(sock, how);
2253
2254 return err;
2255}
2256
2257int __sys_shutdown(int fd, int how)
2258{
2259 int err, fput_needed;
2260 struct socket *sock;
2261
2262 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2263 if (sock != NULL) {
2264 err = __sys_shutdown_sock(sock, how);
2265 fput_light(sock->file, fput_needed);
2266 }
2267 return err;
2268}
2269
2270SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2271{
2272 return __sys_shutdown(fd, how);
2273}
2274
2275/* A couple of helpful macros for getting the address of the 32/64 bit
2276 * fields which are the same type (int / unsigned) on our platforms.
2277 */
2278#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2279#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2280#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2281
2282struct used_address {
2283 struct sockaddr_storage name;
2284 unsigned int name_len;
2285};
2286
2287int __copy_msghdr_from_user(struct msghdr *kmsg,
2288 struct user_msghdr __user *umsg,
2289 struct sockaddr __user **save_addr,
2290 struct iovec __user **uiov, size_t *nsegs)
2291{
2292 struct user_msghdr msg;
2293 ssize_t err;
2294
2295 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2296 return -EFAULT;
2297
2298 kmsg->msg_control_is_user = true;
2299 kmsg->msg_control_user = msg.msg_control;
2300 kmsg->msg_controllen = msg.msg_controllen;
2301 kmsg->msg_flags = msg.msg_flags;
2302
2303 kmsg->msg_namelen = msg.msg_namelen;
2304 if (!msg.msg_name)
2305 kmsg->msg_namelen = 0;
2306
2307 if (kmsg->msg_namelen < 0)
2308 return -EINVAL;
2309
2310 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2311 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2312
2313 if (save_addr)
2314 *save_addr = msg.msg_name;
2315
2316 if (msg.msg_name && kmsg->msg_namelen) {
2317 if (!save_addr) {
2318 err = move_addr_to_kernel(msg.msg_name,
2319 kmsg->msg_namelen,
2320 kmsg->msg_name);
2321 if (err < 0)
2322 return err;
2323 }
2324 } else {
2325 kmsg->msg_name = NULL;
2326 kmsg->msg_namelen = 0;
2327 }
2328
2329 if (msg.msg_iovlen > UIO_MAXIOV)
2330 return -EMSGSIZE;
2331
2332 kmsg->msg_iocb = NULL;
2333 *uiov = msg.msg_iov;
2334 *nsegs = msg.msg_iovlen;
2335 return 0;
2336}
2337
2338static int copy_msghdr_from_user(struct msghdr *kmsg,
2339 struct user_msghdr __user *umsg,
2340 struct sockaddr __user **save_addr,
2341 struct iovec **iov)
2342{
2343 struct user_msghdr msg;
2344 ssize_t err;
2345
2346 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2347 &msg.msg_iovlen);
2348 if (err)
2349 return err;
2350
2351 err = import_iovec(save_addr ? READ : WRITE,
2352 msg.msg_iov, msg.msg_iovlen,
2353 UIO_FASTIOV, iov, &kmsg->msg_iter);
2354 return err < 0 ? err : 0;
2355}
2356
2357static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2358 unsigned int flags, struct used_address *used_address,
2359 unsigned int allowed_msghdr_flags)
2360{
2361 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2362 __aligned(sizeof(__kernel_size_t));
2363 /* 20 is size of ipv6_pktinfo */
2364 unsigned char *ctl_buf = ctl;
2365 int ctl_len;
2366 ssize_t err;
2367
2368 err = -ENOBUFS;
2369
2370 if (msg_sys->msg_controllen > INT_MAX)
2371 goto out;
2372 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2373 ctl_len = msg_sys->msg_controllen;
2374 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2375 err =
2376 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2377 sizeof(ctl));
2378 if (err)
2379 goto out;
2380 ctl_buf = msg_sys->msg_control;
2381 ctl_len = msg_sys->msg_controllen;
2382 } else if (ctl_len) {
2383 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2384 CMSG_ALIGN(sizeof(struct cmsghdr)));
2385 if (ctl_len > sizeof(ctl)) {
2386 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2387 if (ctl_buf == NULL)
2388 goto out;
2389 }
2390 err = -EFAULT;
2391 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2392 goto out_freectl;
2393 msg_sys->msg_control = ctl_buf;
2394 msg_sys->msg_control_is_user = false;
2395 }
2396 msg_sys->msg_flags = flags;
2397
2398 if (sock->file->f_flags & O_NONBLOCK)
2399 msg_sys->msg_flags |= MSG_DONTWAIT;
2400 /*
2401 * If this is sendmmsg() and current destination address is same as
2402 * previously succeeded address, omit asking LSM's decision.
2403 * used_address->name_len is initialized to UINT_MAX so that the first
2404 * destination address never matches.
2405 */
2406 if (used_address && msg_sys->msg_name &&
2407 used_address->name_len == msg_sys->msg_namelen &&
2408 !memcmp(&used_address->name, msg_sys->msg_name,
2409 used_address->name_len)) {
2410 err = sock_sendmsg_nosec(sock, msg_sys);
2411 goto out_freectl;
2412 }
2413 err = sock_sendmsg(sock, msg_sys);
2414 /*
2415 * If this is sendmmsg() and sending to current destination address was
2416 * successful, remember it.
2417 */
2418 if (used_address && err >= 0) {
2419 used_address->name_len = msg_sys->msg_namelen;
2420 if (msg_sys->msg_name)
2421 memcpy(&used_address->name, msg_sys->msg_name,
2422 used_address->name_len);
2423 }
2424
2425out_freectl:
2426 if (ctl_buf != ctl)
2427 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2428out:
2429 return err;
2430}
2431
2432int sendmsg_copy_msghdr(struct msghdr *msg,
2433 struct user_msghdr __user *umsg, unsigned flags,
2434 struct iovec **iov)
2435{
2436 int err;
2437
2438 if (flags & MSG_CMSG_COMPAT) {
2439 struct compat_msghdr __user *msg_compat;
2440
2441 msg_compat = (struct compat_msghdr __user *) umsg;
2442 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2443 } else {
2444 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2445 }
2446 if (err < 0)
2447 return err;
2448
2449 return 0;
2450}
2451
2452static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2453 struct msghdr *msg_sys, unsigned int flags,
2454 struct used_address *used_address,
2455 unsigned int allowed_msghdr_flags)
2456{
2457 struct sockaddr_storage address;
2458 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2459 ssize_t err;
2460
2461 msg_sys->msg_name = &address;
2462
2463 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2464 if (err < 0)
2465 return err;
2466
2467 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2468 allowed_msghdr_flags);
2469 kfree(iov);
2470 return err;
2471}
2472
2473/*
2474 * BSD sendmsg interface
2475 */
2476long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2477 unsigned int flags)
2478{
2479 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2480}
2481
2482long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2483 bool forbid_cmsg_compat)
2484{
2485 int fput_needed, err;
2486 struct msghdr msg_sys;
2487 struct socket *sock;
2488
2489 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2490 return -EINVAL;
2491
2492 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2493 if (!sock)
2494 goto out;
2495
2496 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2497
2498 fput_light(sock->file, fput_needed);
2499out:
2500 return err;
2501}
2502
2503SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2504{
2505 return __sys_sendmsg(fd, msg, flags, true);
2506}
2507
2508/*
2509 * Linux sendmmsg interface
2510 */
2511
2512int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2513 unsigned int flags, bool forbid_cmsg_compat)
2514{
2515 int fput_needed, err, datagrams;
2516 struct socket *sock;
2517 struct mmsghdr __user *entry;
2518 struct compat_mmsghdr __user *compat_entry;
2519 struct msghdr msg_sys;
2520 struct used_address used_address;
2521 unsigned int oflags = flags;
2522
2523 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2524 return -EINVAL;
2525
2526 if (vlen > UIO_MAXIOV)
2527 vlen = UIO_MAXIOV;
2528
2529 datagrams = 0;
2530
2531 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2532 if (!sock)
2533 return err;
2534
2535 used_address.name_len = UINT_MAX;
2536 entry = mmsg;
2537 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2538 err = 0;
2539 flags |= MSG_BATCH;
2540
2541 while (datagrams < vlen) {
2542 if (datagrams == vlen - 1)
2543 flags = oflags;
2544
2545 if (MSG_CMSG_COMPAT & flags) {
2546 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2547 &msg_sys, flags, &used_address, MSG_EOR);
2548 if (err < 0)
2549 break;
2550 err = __put_user(err, &compat_entry->msg_len);
2551 ++compat_entry;
2552 } else {
2553 err = ___sys_sendmsg(sock,
2554 (struct user_msghdr __user *)entry,
2555 &msg_sys, flags, &used_address, MSG_EOR);
2556 if (err < 0)
2557 break;
2558 err = put_user(err, &entry->msg_len);
2559 ++entry;
2560 }
2561
2562 if (err)
2563 break;
2564 ++datagrams;
2565 if (msg_data_left(&msg_sys))
2566 break;
2567 cond_resched();
2568 }
2569
2570 fput_light(sock->file, fput_needed);
2571
2572 /* We only return an error if no datagrams were able to be sent */
2573 if (datagrams != 0)
2574 return datagrams;
2575
2576 return err;
2577}
2578
2579SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2580 unsigned int, vlen, unsigned int, flags)
2581{
2582 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2583}
2584
2585int recvmsg_copy_msghdr(struct msghdr *msg,
2586 struct user_msghdr __user *umsg, unsigned flags,
2587 struct sockaddr __user **uaddr,
2588 struct iovec **iov)
2589{
2590 ssize_t err;
2591
2592 if (MSG_CMSG_COMPAT & flags) {
2593 struct compat_msghdr __user *msg_compat;
2594
2595 msg_compat = (struct compat_msghdr __user *) umsg;
2596 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2597 } else {
2598 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2599 }
2600 if (err < 0)
2601 return err;
2602
2603 return 0;
2604}
2605
2606static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2607 struct user_msghdr __user *msg,
2608 struct sockaddr __user *uaddr,
2609 unsigned int flags, int nosec)
2610{
2611 struct compat_msghdr __user *msg_compat =
2612 (struct compat_msghdr __user *) msg;
2613 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2614 struct sockaddr_storage addr;
2615 unsigned long cmsg_ptr;
2616 int len;
2617 ssize_t err;
2618
2619 msg_sys->msg_name = &addr;
2620 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2621 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2622
2623 /* We assume all kernel code knows the size of sockaddr_storage */
2624 msg_sys->msg_namelen = 0;
2625
2626 if (sock->file->f_flags & O_NONBLOCK)
2627 flags |= MSG_DONTWAIT;
2628
2629 if (unlikely(nosec))
2630 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2631 else
2632 err = sock_recvmsg(sock, msg_sys, flags);
2633
2634 if (err < 0)
2635 goto out;
2636 len = err;
2637
2638 if (uaddr != NULL) {
2639 err = move_addr_to_user(&addr,
2640 msg_sys->msg_namelen, uaddr,
2641 uaddr_len);
2642 if (err < 0)
2643 goto out;
2644 }
2645 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2646 COMPAT_FLAGS(msg));
2647 if (err)
2648 goto out;
2649 if (MSG_CMSG_COMPAT & flags)
2650 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2651 &msg_compat->msg_controllen);
2652 else
2653 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2654 &msg->msg_controllen);
2655 if (err)
2656 goto out;
2657 err = len;
2658out:
2659 return err;
2660}
2661
2662static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2663 struct msghdr *msg_sys, unsigned int flags, int nosec)
2664{
2665 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2666 /* user mode address pointers */
2667 struct sockaddr __user *uaddr;
2668 ssize_t err;
2669
2670 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2671 if (err < 0)
2672 return err;
2673
2674 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2675 kfree(iov);
2676 return err;
2677}
2678
2679/*
2680 * BSD recvmsg interface
2681 */
2682
2683long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2684 struct user_msghdr __user *umsg,
2685 struct sockaddr __user *uaddr, unsigned int flags)
2686{
2687 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2688}
2689
2690long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2691 bool forbid_cmsg_compat)
2692{
2693 int fput_needed, err;
2694 struct msghdr msg_sys;
2695 struct socket *sock;
2696
2697 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2698 return -EINVAL;
2699
2700 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2701 if (!sock)
2702 goto out;
2703
2704 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2705
2706 fput_light(sock->file, fput_needed);
2707out:
2708 return err;
2709}
2710
2711SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2712 unsigned int, flags)
2713{
2714 return __sys_recvmsg(fd, msg, flags, true);
2715}
2716
2717/*
2718 * Linux recvmmsg interface
2719 */
2720
2721static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2722 unsigned int vlen, unsigned int flags,
2723 struct timespec64 *timeout)
2724{
2725 int fput_needed, err, datagrams;
2726 struct socket *sock;
2727 struct mmsghdr __user *entry;
2728 struct compat_mmsghdr __user *compat_entry;
2729 struct msghdr msg_sys;
2730 struct timespec64 end_time;
2731 struct timespec64 timeout64;
2732
2733 if (timeout &&
2734 poll_select_set_timeout(&end_time, timeout->tv_sec,
2735 timeout->tv_nsec))
2736 return -EINVAL;
2737
2738 datagrams = 0;
2739
2740 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2741 if (!sock)
2742 return err;
2743
2744 if (likely(!(flags & MSG_ERRQUEUE))) {
2745 err = sock_error(sock->sk);
2746 if (err) {
2747 datagrams = err;
2748 goto out_put;
2749 }
2750 }
2751
2752 entry = mmsg;
2753 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2754
2755 while (datagrams < vlen) {
2756 /*
2757 * No need to ask LSM for more than the first datagram.
2758 */
2759 if (MSG_CMSG_COMPAT & flags) {
2760 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2761 &msg_sys, flags & ~MSG_WAITFORONE,
2762 datagrams);
2763 if (err < 0)
2764 break;
2765 err = __put_user(err, &compat_entry->msg_len);
2766 ++compat_entry;
2767 } else {
2768 err = ___sys_recvmsg(sock,
2769 (struct user_msghdr __user *)entry,
2770 &msg_sys, flags & ~MSG_WAITFORONE,
2771 datagrams);
2772 if (err < 0)
2773 break;
2774 err = put_user(err, &entry->msg_len);
2775 ++entry;
2776 }
2777
2778 if (err)
2779 break;
2780 ++datagrams;
2781
2782 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2783 if (flags & MSG_WAITFORONE)
2784 flags |= MSG_DONTWAIT;
2785
2786 if (timeout) {
2787 ktime_get_ts64(&timeout64);
2788 *timeout = timespec64_sub(end_time, timeout64);
2789 if (timeout->tv_sec < 0) {
2790 timeout->tv_sec = timeout->tv_nsec = 0;
2791 break;
2792 }
2793
2794 /* Timeout, return less than vlen datagrams */
2795 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2796 break;
2797 }
2798
2799 /* Out of band data, return right away */
2800 if (msg_sys.msg_flags & MSG_OOB)
2801 break;
2802 cond_resched();
2803 }
2804
2805 if (err == 0)
2806 goto out_put;
2807
2808 if (datagrams == 0) {
2809 datagrams = err;
2810 goto out_put;
2811 }
2812
2813 /*
2814 * We may return less entries than requested (vlen) if the
2815 * sock is non block and there aren't enough datagrams...
2816 */
2817 if (err != -EAGAIN) {
2818 /*
2819 * ... or if recvmsg returns an error after we
2820 * received some datagrams, where we record the
2821 * error to return on the next call or if the
2822 * app asks about it using getsockopt(SO_ERROR).
2823 */
2824 sock->sk->sk_err = -err;
2825 }
2826out_put:
2827 fput_light(sock->file, fput_needed);
2828
2829 return datagrams;
2830}
2831
2832int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2833 unsigned int vlen, unsigned int flags,
2834 struct __kernel_timespec __user *timeout,
2835 struct old_timespec32 __user *timeout32)
2836{
2837 int datagrams;
2838 struct timespec64 timeout_sys;
2839
2840 if (timeout && get_timespec64(&timeout_sys, timeout))
2841 return -EFAULT;
2842
2843 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2844 return -EFAULT;
2845
2846 if (!timeout && !timeout32)
2847 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2848
2849 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2850
2851 if (datagrams <= 0)
2852 return datagrams;
2853
2854 if (timeout && put_timespec64(&timeout_sys, timeout))
2855 datagrams = -EFAULT;
2856
2857 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2858 datagrams = -EFAULT;
2859
2860 return datagrams;
2861}
2862
2863SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2864 unsigned int, vlen, unsigned int, flags,
2865 struct __kernel_timespec __user *, timeout)
2866{
2867 if (flags & MSG_CMSG_COMPAT)
2868 return -EINVAL;
2869
2870 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2871}
2872
2873#ifdef CONFIG_COMPAT_32BIT_TIME
2874SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2875 unsigned int, vlen, unsigned int, flags,
2876 struct old_timespec32 __user *, timeout)
2877{
2878 if (flags & MSG_CMSG_COMPAT)
2879 return -EINVAL;
2880
2881 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2882}
2883#endif
2884
2885#ifdef __ARCH_WANT_SYS_SOCKETCALL
2886/* Argument list sizes for sys_socketcall */
2887#define AL(x) ((x) * sizeof(unsigned long))
2888static const unsigned char nargs[21] = {
2889 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2890 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2891 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2892 AL(4), AL(5), AL(4)
2893};
2894
2895#undef AL
2896
2897/*
2898 * System call vectors.
2899 *
2900 * Argument checking cleaned up. Saved 20% in size.
2901 * This function doesn't need to set the kernel lock because
2902 * it is set by the callees.
2903 */
2904
2905SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2906{
2907 unsigned long a[AUDITSC_ARGS];
2908 unsigned long a0, a1;
2909 int err;
2910 unsigned int len;
2911
2912 if (call < 1 || call > SYS_SENDMMSG)
2913 return -EINVAL;
2914 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2915
2916 len = nargs[call];
2917 if (len > sizeof(a))
2918 return -EINVAL;
2919
2920 /* copy_from_user should be SMP safe. */
2921 if (copy_from_user(a, args, len))
2922 return -EFAULT;
2923
2924 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2925 if (err)
2926 return err;
2927
2928 a0 = a[0];
2929 a1 = a[1];
2930
2931 switch (call) {
2932 case SYS_SOCKET:
2933 err = __sys_socket(a0, a1, a[2]);
2934 break;
2935 case SYS_BIND:
2936 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2937 break;
2938 case SYS_CONNECT:
2939 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2940 break;
2941 case SYS_LISTEN:
2942 err = __sys_listen(a0, a1);
2943 break;
2944 case SYS_ACCEPT:
2945 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2946 (int __user *)a[2], 0);
2947 break;
2948 case SYS_GETSOCKNAME:
2949 err =
2950 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2951 (int __user *)a[2]);
2952 break;
2953 case SYS_GETPEERNAME:
2954 err =
2955 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2956 (int __user *)a[2]);
2957 break;
2958 case SYS_SOCKETPAIR:
2959 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2960 break;
2961 case SYS_SEND:
2962 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2963 NULL, 0);
2964 break;
2965 case SYS_SENDTO:
2966 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2967 (struct sockaddr __user *)a[4], a[5]);
2968 break;
2969 case SYS_RECV:
2970 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2971 NULL, NULL);
2972 break;
2973 case SYS_RECVFROM:
2974 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2975 (struct sockaddr __user *)a[4],
2976 (int __user *)a[5]);
2977 break;
2978 case SYS_SHUTDOWN:
2979 err = __sys_shutdown(a0, a1);
2980 break;
2981 case SYS_SETSOCKOPT:
2982 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2983 a[4]);
2984 break;
2985 case SYS_GETSOCKOPT:
2986 err =
2987 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2988 (int __user *)a[4]);
2989 break;
2990 case SYS_SENDMSG:
2991 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2992 a[2], true);
2993 break;
2994 case SYS_SENDMMSG:
2995 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2996 a[3], true);
2997 break;
2998 case SYS_RECVMSG:
2999 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3000 a[2], true);
3001 break;
3002 case SYS_RECVMMSG:
3003 if (IS_ENABLED(CONFIG_64BIT))
3004 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3005 a[2], a[3],
3006 (struct __kernel_timespec __user *)a[4],
3007 NULL);
3008 else
3009 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3010 a[2], a[3], NULL,
3011 (struct old_timespec32 __user *)a[4]);
3012 break;
3013 case SYS_ACCEPT4:
3014 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3015 (int __user *)a[2], a[3]);
3016 break;
3017 default:
3018 err = -EINVAL;
3019 break;
3020 }
3021 return err;
3022}
3023
3024#endif /* __ARCH_WANT_SYS_SOCKETCALL */
3025
3026/**
3027 * sock_register - add a socket protocol handler
3028 * @ops: description of protocol
3029 *
3030 * This function is called by a protocol handler that wants to
3031 * advertise its address family, and have it linked into the
3032 * socket interface. The value ops->family corresponds to the
3033 * socket system call protocol family.
3034 */
3035int sock_register(const struct net_proto_family *ops)
3036{
3037 int err;
3038
3039 if (ops->family >= NPROTO) {
3040 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3041 return -ENOBUFS;
3042 }
3043
3044 spin_lock(&net_family_lock);
3045 if (rcu_dereference_protected(net_families[ops->family],
3046 lockdep_is_held(&net_family_lock)))
3047 err = -EEXIST;
3048 else {
3049 rcu_assign_pointer(net_families[ops->family], ops);
3050 err = 0;
3051 }
3052 spin_unlock(&net_family_lock);
3053
3054 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3055 return err;
3056}
3057EXPORT_SYMBOL(sock_register);
3058
3059/**
3060 * sock_unregister - remove a protocol handler
3061 * @family: protocol family to remove
3062 *
3063 * This function is called by a protocol handler that wants to
3064 * remove its address family, and have it unlinked from the
3065 * new socket creation.
3066 *
3067 * If protocol handler is a module, then it can use module reference
3068 * counts to protect against new references. If protocol handler is not
3069 * a module then it needs to provide its own protection in
3070 * the ops->create routine.
3071 */
3072void sock_unregister(int family)
3073{
3074 BUG_ON(family < 0 || family >= NPROTO);
3075
3076 spin_lock(&net_family_lock);
3077 RCU_INIT_POINTER(net_families[family], NULL);
3078 spin_unlock(&net_family_lock);
3079
3080 synchronize_rcu();
3081
3082 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3083}
3084EXPORT_SYMBOL(sock_unregister);
3085
3086bool sock_is_registered(int family)
3087{
3088 return family < NPROTO && rcu_access_pointer(net_families[family]);
3089}
3090
3091static int __init sock_init(void)
3092{
3093 int err;
3094 /*
3095 * Initialize the network sysctl infrastructure.
3096 */
3097 err = net_sysctl_init();
3098 if (err)
3099 goto out;
3100
3101 /*
3102 * Initialize skbuff SLAB cache
3103 */
3104 skb_init();
3105
3106 /*
3107 * Initialize the protocols module.
3108 */
3109
3110 init_inodecache();
3111
3112 err = register_filesystem(&sock_fs_type);
3113 if (err)
3114 goto out;
3115 sock_mnt = kern_mount(&sock_fs_type);
3116 if (IS_ERR(sock_mnt)) {
3117 err = PTR_ERR(sock_mnt);
3118 goto out_mount;
3119 }
3120
3121 /* The real protocol initialization is performed in later initcalls.
3122 */
3123
3124#ifdef CONFIG_NETFILTER
3125 err = netfilter_init();
3126 if (err)
3127 goto out;
3128#endif
3129
3130 ptp_classifier_init();
3131
3132out:
3133 return err;
3134
3135out_mount:
3136 unregister_filesystem(&sock_fs_type);
3137 goto out;
3138}
3139
3140core_initcall(sock_init); /* early initcall */
3141
3142#ifdef CONFIG_PROC_FS
3143void socket_seq_show(struct seq_file *seq)
3144{
3145 seq_printf(seq, "sockets: used %d\n",
3146 sock_inuse_get(seq->private));
3147}
3148#endif /* CONFIG_PROC_FS */
3149
3150/* Handle the fact that while struct ifreq has the same *layout* on
3151 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3152 * which are handled elsewhere, it still has different *size* due to
3153 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3154 * resulting in struct ifreq being 32 and 40 bytes respectively).
3155 * As a result, if the struct happens to be at the end of a page and
3156 * the next page isn't readable/writable, we get a fault. To prevent
3157 * that, copy back and forth to the full size.
3158 */
3159int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3160{
3161 if (in_compat_syscall()) {
3162 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3163
3164 memset(ifr, 0, sizeof(*ifr));
3165 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3166 return -EFAULT;
3167
3168 if (ifrdata)
3169 *ifrdata = compat_ptr(ifr32->ifr_data);
3170
3171 return 0;
3172 }
3173
3174 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3175 return -EFAULT;
3176
3177 if (ifrdata)
3178 *ifrdata = ifr->ifr_data;
3179
3180 return 0;
3181}
3182EXPORT_SYMBOL(get_user_ifreq);
3183
3184int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3185{
3186 size_t size = sizeof(*ifr);
3187
3188 if (in_compat_syscall())
3189 size = sizeof(struct compat_ifreq);
3190
3191 if (copy_to_user(arg, ifr, size))
3192 return -EFAULT;
3193
3194 return 0;
3195}
3196EXPORT_SYMBOL(put_user_ifreq);
3197
3198#ifdef CONFIG_COMPAT
3199static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3200{
3201 compat_uptr_t uptr32;
3202 struct ifreq ifr;
3203 void __user *saved;
3204 int err;
3205
3206 if (get_user_ifreq(&ifr, NULL, uifr32))
3207 return -EFAULT;
3208
3209 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3210 return -EFAULT;
3211
3212 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3213 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3214
3215 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3216 if (!err) {
3217 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3218 if (put_user_ifreq(&ifr, uifr32))
3219 err = -EFAULT;
3220 }
3221 return err;
3222}
3223
3224/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3225static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3226 struct compat_ifreq __user *u_ifreq32)
3227{
3228 struct ifreq ifreq;
3229 void __user *data;
3230
3231 if (!is_socket_ioctl_cmd(cmd))
3232 return -ENOTTY;
3233 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3234 return -EFAULT;
3235 ifreq.ifr_data = data;
3236
3237 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3238}
3239
3240static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3241 unsigned int cmd, unsigned long arg)
3242{
3243 void __user *argp = compat_ptr(arg);
3244 struct sock *sk = sock->sk;
3245 struct net *net = sock_net(sk);
3246
3247 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3248 return sock_ioctl(file, cmd, (unsigned long)argp);
3249
3250 switch (cmd) {
3251 case SIOCWANDEV:
3252 return compat_siocwandev(net, argp);
3253 case SIOCGSTAMP_OLD:
3254 case SIOCGSTAMPNS_OLD:
3255 if (!sock->ops->gettstamp)
3256 return -ENOIOCTLCMD;
3257 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3258 !COMPAT_USE_64BIT_TIME);
3259
3260 case SIOCETHTOOL:
3261 case SIOCBONDSLAVEINFOQUERY:
3262 case SIOCBONDINFOQUERY:
3263 case SIOCSHWTSTAMP:
3264 case SIOCGHWTSTAMP:
3265 return compat_ifr_data_ioctl(net, cmd, argp);
3266
3267 case FIOSETOWN:
3268 case SIOCSPGRP:
3269 case FIOGETOWN:
3270 case SIOCGPGRP:
3271 case SIOCBRADDBR:
3272 case SIOCBRDELBR:
3273 case SIOCGIFVLAN:
3274 case SIOCSIFVLAN:
3275 case SIOCGSKNS:
3276 case SIOCGSTAMP_NEW:
3277 case SIOCGSTAMPNS_NEW:
3278 case SIOCGIFCONF:
3279 case SIOCSIFBR:
3280 case SIOCGIFBR:
3281 return sock_ioctl(file, cmd, arg);
3282
3283 case SIOCGIFFLAGS:
3284 case SIOCSIFFLAGS:
3285 case SIOCGIFMAP:
3286 case SIOCSIFMAP:
3287 case SIOCGIFMETRIC:
3288 case SIOCSIFMETRIC:
3289 case SIOCGIFMTU:
3290 case SIOCSIFMTU:
3291 case SIOCGIFMEM:
3292 case SIOCSIFMEM:
3293 case SIOCGIFHWADDR:
3294 case SIOCSIFHWADDR:
3295 case SIOCADDMULTI:
3296 case SIOCDELMULTI:
3297 case SIOCGIFINDEX:
3298 case SIOCGIFADDR:
3299 case SIOCSIFADDR:
3300 case SIOCSIFHWBROADCAST:
3301 case SIOCDIFADDR:
3302 case SIOCGIFBRDADDR:
3303 case SIOCSIFBRDADDR:
3304 case SIOCGIFDSTADDR:
3305 case SIOCSIFDSTADDR:
3306 case SIOCGIFNETMASK:
3307 case SIOCSIFNETMASK:
3308 case SIOCSIFPFLAGS:
3309 case SIOCGIFPFLAGS:
3310 case SIOCGIFTXQLEN:
3311 case SIOCSIFTXQLEN:
3312 case SIOCBRADDIF:
3313 case SIOCBRDELIF:
3314 case SIOCGIFNAME:
3315 case SIOCSIFNAME:
3316 case SIOCGMIIPHY:
3317 case SIOCGMIIREG:
3318 case SIOCSMIIREG:
3319 case SIOCBONDENSLAVE:
3320 case SIOCBONDRELEASE:
3321 case SIOCBONDSETHWADDR:
3322 case SIOCBONDCHANGEACTIVE:
3323 case SIOCSARP:
3324 case SIOCGARP:
3325 case SIOCDARP:
3326 case SIOCOUTQ:
3327 case SIOCOUTQNSD:
3328 case SIOCATMARK:
3329 return sock_do_ioctl(net, sock, cmd, arg);
3330 }
3331
3332 return -ENOIOCTLCMD;
3333}
3334
3335static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3336 unsigned long arg)
3337{
3338 struct socket *sock = file->private_data;
3339 int ret = -ENOIOCTLCMD;
3340 struct sock *sk;
3341 struct net *net;
3342
3343 sk = sock->sk;
3344 net = sock_net(sk);
3345
3346 if (sock->ops->compat_ioctl)
3347 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3348
3349 if (ret == -ENOIOCTLCMD &&
3350 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3351 ret = compat_wext_handle_ioctl(net, cmd, arg);
3352
3353 if (ret == -ENOIOCTLCMD)
3354 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3355
3356 return ret;
3357}
3358#endif
3359
3360/**
3361 * kernel_bind - bind an address to a socket (kernel space)
3362 * @sock: socket
3363 * @addr: address
3364 * @addrlen: length of address
3365 *
3366 * Returns 0 or an error.
3367 */
3368
3369int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3370{
3371 return sock->ops->bind(sock, addr, addrlen);
3372}
3373EXPORT_SYMBOL(kernel_bind);
3374
3375/**
3376 * kernel_listen - move socket to listening state (kernel space)
3377 * @sock: socket
3378 * @backlog: pending connections queue size
3379 *
3380 * Returns 0 or an error.
3381 */
3382
3383int kernel_listen(struct socket *sock, int backlog)
3384{
3385 return sock->ops->listen(sock, backlog);
3386}
3387EXPORT_SYMBOL(kernel_listen);
3388
3389/**
3390 * kernel_accept - accept a connection (kernel space)
3391 * @sock: listening socket
3392 * @newsock: new connected socket
3393 * @flags: flags
3394 *
3395 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3396 * If it fails, @newsock is guaranteed to be %NULL.
3397 * Returns 0 or an error.
3398 */
3399
3400int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3401{
3402 struct sock *sk = sock->sk;
3403 int err;
3404
3405 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3406 newsock);
3407 if (err < 0)
3408 goto done;
3409
3410 err = sock->ops->accept(sock, *newsock, flags, true);
3411 if (err < 0) {
3412 sock_release(*newsock);
3413 *newsock = NULL;
3414 goto done;
3415 }
3416
3417 (*newsock)->ops = sock->ops;
3418 __module_get((*newsock)->ops->owner);
3419
3420done:
3421 return err;
3422}
3423EXPORT_SYMBOL(kernel_accept);
3424
3425/**
3426 * kernel_connect - connect a socket (kernel space)
3427 * @sock: socket
3428 * @addr: address
3429 * @addrlen: address length
3430 * @flags: flags (O_NONBLOCK, ...)
3431 *
3432 * For datagram sockets, @addr is the address to which datagrams are sent
3433 * by default, and the only address from which datagrams are received.
3434 * For stream sockets, attempts to connect to @addr.
3435 * Returns 0 or an error code.
3436 */
3437
3438int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3439 int flags)
3440{
3441 return sock->ops->connect(sock, addr, addrlen, flags);
3442}
3443EXPORT_SYMBOL(kernel_connect);
3444
3445/**
3446 * kernel_getsockname - get the address which the socket is bound (kernel space)
3447 * @sock: socket
3448 * @addr: address holder
3449 *
3450 * Fills the @addr pointer with the address which the socket is bound.
3451 * Returns the length of the address in bytes or an error code.
3452 */
3453
3454int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3455{
3456 return sock->ops->getname(sock, addr, 0);
3457}
3458EXPORT_SYMBOL(kernel_getsockname);
3459
3460/**
3461 * kernel_getpeername - get the address which the socket is connected (kernel space)
3462 * @sock: socket
3463 * @addr: address holder
3464 *
3465 * Fills the @addr pointer with the address which the socket is connected.
3466 * Returns the length of the address in bytes or an error code.
3467 */
3468
3469int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3470{
3471 return sock->ops->getname(sock, addr, 1);
3472}
3473EXPORT_SYMBOL(kernel_getpeername);
3474
3475/**
3476 * kernel_sendpage - send a &page through a socket (kernel space)
3477 * @sock: socket
3478 * @page: page
3479 * @offset: page offset
3480 * @size: total size in bytes
3481 * @flags: flags (MSG_DONTWAIT, ...)
3482 *
3483 * Returns the total amount sent in bytes or an error.
3484 */
3485
3486int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3487 size_t size, int flags)
3488{
3489 if (sock->ops->sendpage) {
3490 /* Warn in case the improper page to zero-copy send */
3491 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3492 return sock->ops->sendpage(sock, page, offset, size, flags);
3493 }
3494 return sock_no_sendpage(sock, page, offset, size, flags);
3495}
3496EXPORT_SYMBOL(kernel_sendpage);
3497
3498/**
3499 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3500 * @sk: sock
3501 * @page: page
3502 * @offset: page offset
3503 * @size: total size in bytes
3504 * @flags: flags (MSG_DONTWAIT, ...)
3505 *
3506 * Returns the total amount sent in bytes or an error.
3507 * Caller must hold @sk.
3508 */
3509
3510int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3511 size_t size, int flags)
3512{
3513 struct socket *sock = sk->sk_socket;
3514
3515 if (sock->ops->sendpage_locked)
3516 return sock->ops->sendpage_locked(sk, page, offset, size,
3517 flags);
3518
3519 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3520}
3521EXPORT_SYMBOL(kernel_sendpage_locked);
3522
3523/**
3524 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3525 * @sock: socket
3526 * @how: connection part
3527 *
3528 * Returns 0 or an error.
3529 */
3530
3531int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3532{
3533 return sock->ops->shutdown(sock, how);
3534}
3535EXPORT_SYMBOL(kernel_sock_shutdown);
3536
3537/**
3538 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3539 * @sk: socket
3540 *
3541 * This routine returns the IP overhead imposed by a socket i.e.
3542 * the length of the underlying IP header, depending on whether
3543 * this is an IPv4 or IPv6 socket and the length from IP options turned
3544 * on at the socket. Assumes that the caller has a lock on the socket.
3545 */
3546
3547u32 kernel_sock_ip_overhead(struct sock *sk)
3548{
3549 struct inet_sock *inet;
3550 struct ip_options_rcu *opt;
3551 u32 overhead = 0;
3552#if IS_ENABLED(CONFIG_IPV6)
3553 struct ipv6_pinfo *np;
3554 struct ipv6_txoptions *optv6 = NULL;
3555#endif /* IS_ENABLED(CONFIG_IPV6) */
3556
3557 if (!sk)
3558 return overhead;
3559
3560 switch (sk->sk_family) {
3561 case AF_INET:
3562 inet = inet_sk(sk);
3563 overhead += sizeof(struct iphdr);
3564 opt = rcu_dereference_protected(inet->inet_opt,
3565 sock_owned_by_user(sk));
3566 if (opt)
3567 overhead += opt->opt.optlen;
3568 return overhead;
3569#if IS_ENABLED(CONFIG_IPV6)
3570 case AF_INET6:
3571 np = inet6_sk(sk);
3572 overhead += sizeof(struct ipv6hdr);
3573 if (np)
3574 optv6 = rcu_dereference_protected(np->opt,
3575 sock_owned_by_user(sk));
3576 if (optv6)
3577 overhead += (optv6->opt_flen + optv6->opt_nflen);
3578 return overhead;
3579#endif /* IS_ENABLED(CONFIG_IPV6) */
3580 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3581 return overhead;
3582 }
3583}
3584EXPORT_SYMBOL(kernel_sock_ip_overhead);