Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* SCTP kernel implementation
3 * (C) Copyright IBM Corp. 2001, 2004
4 * Copyright (c) 1999-2000 Cisco, Inc.
5 * Copyright (c) 1999-2001 Motorola, Inc.
6 * Copyright (c) 2001-2003 Intel Corp.
7 *
8 * This file is part of the SCTP kernel implementation
9 *
10 * These functions implement the sctp_outq class. The outqueue handles
11 * bundling and queueing of outgoing SCTP chunks.
12 *
13 * Please send any bug reports or fixes you make to the
14 * email address(es):
15 * lksctp developers <linux-sctp@vger.kernel.org>
16 *
17 * Written or modified by:
18 * La Monte H.P. Yarroll <piggy@acm.org>
19 * Karl Knutson <karl@athena.chicago.il.us>
20 * Perry Melange <pmelange@null.cc.uic.edu>
21 * Xingang Guo <xingang.guo@intel.com>
22 * Hui Huang <hui.huang@nokia.com>
23 * Sridhar Samudrala <sri@us.ibm.com>
24 * Jon Grimm <jgrimm@us.ibm.com>
25 */
26
27#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29#include <linux/types.h>
30#include <linux/list.h> /* For struct list_head */
31#include <linux/socket.h>
32#include <linux/ip.h>
33#include <linux/slab.h>
34#include <net/sock.h> /* For skb_set_owner_w */
35
36#include <net/sctp/sctp.h>
37#include <net/sctp/sm.h>
38#include <net/sctp/stream_sched.h>
39#include <trace/events/sctp.h>
40
41/* Declare internal functions here. */
42static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
43static void sctp_check_transmitted(struct sctp_outq *q,
44 struct list_head *transmitted_queue,
45 struct sctp_transport *transport,
46 union sctp_addr *saddr,
47 struct sctp_sackhdr *sack,
48 __u32 *highest_new_tsn);
49
50static void sctp_mark_missing(struct sctp_outq *q,
51 struct list_head *transmitted_queue,
52 struct sctp_transport *transport,
53 __u32 highest_new_tsn,
54 int count_of_newacks);
55
56static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp);
57
58/* Add data to the front of the queue. */
59static inline void sctp_outq_head_data(struct sctp_outq *q,
60 struct sctp_chunk *ch)
61{
62 struct sctp_stream_out_ext *oute;
63 __u16 stream;
64
65 list_add(&ch->list, &q->out_chunk_list);
66 q->out_qlen += ch->skb->len;
67
68 stream = sctp_chunk_stream_no(ch);
69 oute = SCTP_SO(&q->asoc->stream, stream)->ext;
70 list_add(&ch->stream_list, &oute->outq);
71}
72
73/* Take data from the front of the queue. */
74static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
75{
76 return q->sched->dequeue(q);
77}
78
79/* Add data chunk to the end of the queue. */
80static inline void sctp_outq_tail_data(struct sctp_outq *q,
81 struct sctp_chunk *ch)
82{
83 struct sctp_stream_out_ext *oute;
84 __u16 stream;
85
86 list_add_tail(&ch->list, &q->out_chunk_list);
87 q->out_qlen += ch->skb->len;
88
89 stream = sctp_chunk_stream_no(ch);
90 oute = SCTP_SO(&q->asoc->stream, stream)->ext;
91 list_add_tail(&ch->stream_list, &oute->outq);
92}
93
94/*
95 * SFR-CACC algorithm:
96 * D) If count_of_newacks is greater than or equal to 2
97 * and t was not sent to the current primary then the
98 * sender MUST NOT increment missing report count for t.
99 */
100static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
101 struct sctp_transport *transport,
102 int count_of_newacks)
103{
104 if (count_of_newacks >= 2 && transport != primary)
105 return 1;
106 return 0;
107}
108
109/*
110 * SFR-CACC algorithm:
111 * F) If count_of_newacks is less than 2, let d be the
112 * destination to which t was sent. If cacc_saw_newack
113 * is 0 for destination d, then the sender MUST NOT
114 * increment missing report count for t.
115 */
116static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
117 int count_of_newacks)
118{
119 if (count_of_newacks < 2 &&
120 (transport && !transport->cacc.cacc_saw_newack))
121 return 1;
122 return 0;
123}
124
125/*
126 * SFR-CACC algorithm:
127 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
128 * execute steps C, D, F.
129 *
130 * C has been implemented in sctp_outq_sack
131 */
132static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
133 struct sctp_transport *transport,
134 int count_of_newacks)
135{
136 if (!primary->cacc.cycling_changeover) {
137 if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
138 return 1;
139 if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
140 return 1;
141 return 0;
142 }
143 return 0;
144}
145
146/*
147 * SFR-CACC algorithm:
148 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
149 * than next_tsn_at_change of the current primary, then
150 * the sender MUST NOT increment missing report count
151 * for t.
152 */
153static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
154{
155 if (primary->cacc.cycling_changeover &&
156 TSN_lt(tsn, primary->cacc.next_tsn_at_change))
157 return 1;
158 return 0;
159}
160
161/*
162 * SFR-CACC algorithm:
163 * 3) If the missing report count for TSN t is to be
164 * incremented according to [RFC2960] and
165 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
166 * then the sender MUST further execute steps 3.1 and
167 * 3.2 to determine if the missing report count for
168 * TSN t SHOULD NOT be incremented.
169 *
170 * 3.3) If 3.1 and 3.2 do not dictate that the missing
171 * report count for t should not be incremented, then
172 * the sender SHOULD increment missing report count for
173 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
174 */
175static inline int sctp_cacc_skip(struct sctp_transport *primary,
176 struct sctp_transport *transport,
177 int count_of_newacks,
178 __u32 tsn)
179{
180 if (primary->cacc.changeover_active &&
181 (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
182 sctp_cacc_skip_3_2(primary, tsn)))
183 return 1;
184 return 0;
185}
186
187/* Initialize an existing sctp_outq. This does the boring stuff.
188 * You still need to define handlers if you really want to DO
189 * something with this structure...
190 */
191void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
192{
193 memset(q, 0, sizeof(struct sctp_outq));
194
195 q->asoc = asoc;
196 INIT_LIST_HEAD(&q->out_chunk_list);
197 INIT_LIST_HEAD(&q->control_chunk_list);
198 INIT_LIST_HEAD(&q->retransmit);
199 INIT_LIST_HEAD(&q->sacked);
200 INIT_LIST_HEAD(&q->abandoned);
201 sctp_sched_set_sched(asoc, sctp_sk(asoc->base.sk)->default_ss);
202}
203
204/* Free the outqueue structure and any related pending chunks.
205 */
206static void __sctp_outq_teardown(struct sctp_outq *q)
207{
208 struct sctp_transport *transport;
209 struct list_head *lchunk, *temp;
210 struct sctp_chunk *chunk, *tmp;
211
212 /* Throw away unacknowledged chunks. */
213 list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
214 transports) {
215 while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
216 chunk = list_entry(lchunk, struct sctp_chunk,
217 transmitted_list);
218 /* Mark as part of a failed message. */
219 sctp_chunk_fail(chunk, q->error);
220 sctp_chunk_free(chunk);
221 }
222 }
223
224 /* Throw away chunks that have been gap ACKed. */
225 list_for_each_safe(lchunk, temp, &q->sacked) {
226 list_del_init(lchunk);
227 chunk = list_entry(lchunk, struct sctp_chunk,
228 transmitted_list);
229 sctp_chunk_fail(chunk, q->error);
230 sctp_chunk_free(chunk);
231 }
232
233 /* Throw away any chunks in the retransmit queue. */
234 list_for_each_safe(lchunk, temp, &q->retransmit) {
235 list_del_init(lchunk);
236 chunk = list_entry(lchunk, struct sctp_chunk,
237 transmitted_list);
238 sctp_chunk_fail(chunk, q->error);
239 sctp_chunk_free(chunk);
240 }
241
242 /* Throw away any chunks that are in the abandoned queue. */
243 list_for_each_safe(lchunk, temp, &q->abandoned) {
244 list_del_init(lchunk);
245 chunk = list_entry(lchunk, struct sctp_chunk,
246 transmitted_list);
247 sctp_chunk_fail(chunk, q->error);
248 sctp_chunk_free(chunk);
249 }
250
251 /* Throw away any leftover data chunks. */
252 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
253 sctp_sched_dequeue_done(q, chunk);
254
255 /* Mark as send failure. */
256 sctp_chunk_fail(chunk, q->error);
257 sctp_chunk_free(chunk);
258 }
259
260 /* Throw away any leftover control chunks. */
261 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
262 list_del_init(&chunk->list);
263 sctp_chunk_free(chunk);
264 }
265}
266
267void sctp_outq_teardown(struct sctp_outq *q)
268{
269 __sctp_outq_teardown(q);
270 sctp_outq_init(q->asoc, q);
271}
272
273/* Free the outqueue structure and any related pending chunks. */
274void sctp_outq_free(struct sctp_outq *q)
275{
276 /* Throw away leftover chunks. */
277 __sctp_outq_teardown(q);
278}
279
280/* Put a new chunk in an sctp_outq. */
281void sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk, gfp_t gfp)
282{
283 struct net *net = q->asoc->base.net;
284
285 pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__, q, chunk,
286 chunk && chunk->chunk_hdr ?
287 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
288 "illegal chunk");
289
290 /* If it is data, queue it up, otherwise, send it
291 * immediately.
292 */
293 if (sctp_chunk_is_data(chunk)) {
294 pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n",
295 __func__, q, chunk, chunk && chunk->chunk_hdr ?
296 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
297 "illegal chunk");
298
299 sctp_outq_tail_data(q, chunk);
300 if (chunk->asoc->peer.prsctp_capable &&
301 SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
302 chunk->asoc->sent_cnt_removable++;
303 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
304 SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS);
305 else
306 SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS);
307 } else {
308 list_add_tail(&chunk->list, &q->control_chunk_list);
309 SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
310 }
311
312 if (!q->cork)
313 sctp_outq_flush(q, 0, gfp);
314}
315
316/* Insert a chunk into the sorted list based on the TSNs. The retransmit list
317 * and the abandoned list are in ascending order.
318 */
319static void sctp_insert_list(struct list_head *head, struct list_head *new)
320{
321 struct list_head *pos;
322 struct sctp_chunk *nchunk, *lchunk;
323 __u32 ntsn, ltsn;
324 int done = 0;
325
326 nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
327 ntsn = ntohl(nchunk->subh.data_hdr->tsn);
328
329 list_for_each(pos, head) {
330 lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
331 ltsn = ntohl(lchunk->subh.data_hdr->tsn);
332 if (TSN_lt(ntsn, ltsn)) {
333 list_add(new, pos->prev);
334 done = 1;
335 break;
336 }
337 }
338 if (!done)
339 list_add_tail(new, head);
340}
341
342static int sctp_prsctp_prune_sent(struct sctp_association *asoc,
343 struct sctp_sndrcvinfo *sinfo,
344 struct list_head *queue, int msg_len)
345{
346 struct sctp_chunk *chk, *temp;
347
348 list_for_each_entry_safe(chk, temp, queue, transmitted_list) {
349 struct sctp_stream_out *streamout;
350
351 if (!chk->msg->abandoned &&
352 (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
353 chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive))
354 continue;
355
356 chk->msg->abandoned = 1;
357 list_del_init(&chk->transmitted_list);
358 sctp_insert_list(&asoc->outqueue.abandoned,
359 &chk->transmitted_list);
360
361 streamout = SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream);
362 asoc->sent_cnt_removable--;
363 asoc->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
364 streamout->ext->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
365
366 if (queue != &asoc->outqueue.retransmit &&
367 !chk->tsn_gap_acked) {
368 if (chk->transport)
369 chk->transport->flight_size -=
370 sctp_data_size(chk);
371 asoc->outqueue.outstanding_bytes -= sctp_data_size(chk);
372 }
373
374 msg_len -= chk->skb->truesize + sizeof(struct sctp_chunk);
375 if (msg_len <= 0)
376 break;
377 }
378
379 return msg_len;
380}
381
382static int sctp_prsctp_prune_unsent(struct sctp_association *asoc,
383 struct sctp_sndrcvinfo *sinfo, int msg_len)
384{
385 struct sctp_outq *q = &asoc->outqueue;
386 struct sctp_chunk *chk, *temp;
387
388 q->sched->unsched_all(&asoc->stream);
389
390 list_for_each_entry_safe(chk, temp, &q->out_chunk_list, list) {
391 if (!chk->msg->abandoned &&
392 (!(chk->chunk_hdr->flags & SCTP_DATA_FIRST_FRAG) ||
393 !SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
394 chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive))
395 continue;
396
397 chk->msg->abandoned = 1;
398 sctp_sched_dequeue_common(q, chk);
399 asoc->sent_cnt_removable--;
400 asoc->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
401 if (chk->sinfo.sinfo_stream < asoc->stream.outcnt) {
402 struct sctp_stream_out *streamout =
403 SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream);
404
405 streamout->ext->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
406 }
407
408 msg_len -= chk->skb->truesize + sizeof(struct sctp_chunk);
409 sctp_chunk_free(chk);
410 if (msg_len <= 0)
411 break;
412 }
413
414 q->sched->sched_all(&asoc->stream);
415
416 return msg_len;
417}
418
419/* Abandon the chunks according their priorities */
420void sctp_prsctp_prune(struct sctp_association *asoc,
421 struct sctp_sndrcvinfo *sinfo, int msg_len)
422{
423 struct sctp_transport *transport;
424
425 if (!asoc->peer.prsctp_capable || !asoc->sent_cnt_removable)
426 return;
427
428 msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
429 &asoc->outqueue.retransmit,
430 msg_len);
431 if (msg_len <= 0)
432 return;
433
434 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
435 transports) {
436 msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
437 &transport->transmitted,
438 msg_len);
439 if (msg_len <= 0)
440 return;
441 }
442
443 sctp_prsctp_prune_unsent(asoc, sinfo, msg_len);
444}
445
446/* Mark all the eligible packets on a transport for retransmission. */
447void sctp_retransmit_mark(struct sctp_outq *q,
448 struct sctp_transport *transport,
449 __u8 reason)
450{
451 struct list_head *lchunk, *ltemp;
452 struct sctp_chunk *chunk;
453
454 /* Walk through the specified transmitted queue. */
455 list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
456 chunk = list_entry(lchunk, struct sctp_chunk,
457 transmitted_list);
458
459 /* If the chunk is abandoned, move it to abandoned list. */
460 if (sctp_chunk_abandoned(chunk)) {
461 list_del_init(lchunk);
462 sctp_insert_list(&q->abandoned, lchunk);
463
464 /* If this chunk has not been previousely acked,
465 * stop considering it 'outstanding'. Our peer
466 * will most likely never see it since it will
467 * not be retransmitted
468 */
469 if (!chunk->tsn_gap_acked) {
470 if (chunk->transport)
471 chunk->transport->flight_size -=
472 sctp_data_size(chunk);
473 q->outstanding_bytes -= sctp_data_size(chunk);
474 q->asoc->peer.rwnd += sctp_data_size(chunk);
475 }
476 continue;
477 }
478
479 /* If we are doing retransmission due to a timeout or pmtu
480 * discovery, only the chunks that are not yet acked should
481 * be added to the retransmit queue.
482 */
483 if ((reason == SCTP_RTXR_FAST_RTX &&
484 (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
485 (reason != SCTP_RTXR_FAST_RTX && !chunk->tsn_gap_acked)) {
486 /* RFC 2960 6.2.1 Processing a Received SACK
487 *
488 * C) Any time a DATA chunk is marked for
489 * retransmission (via either T3-rtx timer expiration
490 * (Section 6.3.3) or via fast retransmit
491 * (Section 7.2.4)), add the data size of those
492 * chunks to the rwnd.
493 */
494 q->asoc->peer.rwnd += sctp_data_size(chunk);
495 q->outstanding_bytes -= sctp_data_size(chunk);
496 if (chunk->transport)
497 transport->flight_size -= sctp_data_size(chunk);
498
499 /* sctpimpguide-05 Section 2.8.2
500 * M5) If a T3-rtx timer expires, the
501 * 'TSN.Missing.Report' of all affected TSNs is set
502 * to 0.
503 */
504 chunk->tsn_missing_report = 0;
505
506 /* If a chunk that is being used for RTT measurement
507 * has to be retransmitted, we cannot use this chunk
508 * anymore for RTT measurements. Reset rto_pending so
509 * that a new RTT measurement is started when a new
510 * data chunk is sent.
511 */
512 if (chunk->rtt_in_progress) {
513 chunk->rtt_in_progress = 0;
514 transport->rto_pending = 0;
515 }
516
517 /* Move the chunk to the retransmit queue. The chunks
518 * on the retransmit queue are always kept in order.
519 */
520 list_del_init(lchunk);
521 sctp_insert_list(&q->retransmit, lchunk);
522 }
523 }
524
525 pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, "
526 "flight_size:%d, pba:%d\n", __func__, transport, reason,
527 transport->cwnd, transport->ssthresh, transport->flight_size,
528 transport->partial_bytes_acked);
529}
530
531/* Mark all the eligible packets on a transport for retransmission and force
532 * one packet out.
533 */
534void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
535 enum sctp_retransmit_reason reason)
536{
537 struct net *net = q->asoc->base.net;
538
539 switch (reason) {
540 case SCTP_RTXR_T3_RTX:
541 SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS);
542 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
543 /* Update the retran path if the T3-rtx timer has expired for
544 * the current retran path.
545 */
546 if (transport == transport->asoc->peer.retran_path)
547 sctp_assoc_update_retran_path(transport->asoc);
548 transport->asoc->rtx_data_chunks +=
549 transport->asoc->unack_data;
550 if (transport->pl.state == SCTP_PL_COMPLETE &&
551 transport->asoc->unack_data)
552 sctp_transport_reset_probe_timer(transport);
553 break;
554 case SCTP_RTXR_FAST_RTX:
555 SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS);
556 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
557 q->fast_rtx = 1;
558 break;
559 case SCTP_RTXR_PMTUD:
560 SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS);
561 break;
562 case SCTP_RTXR_T1_RTX:
563 SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS);
564 transport->asoc->init_retries++;
565 break;
566 default:
567 BUG();
568 }
569
570 sctp_retransmit_mark(q, transport, reason);
571
572 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
573 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
574 * following the procedures outlined in C1 - C5.
575 */
576 if (reason == SCTP_RTXR_T3_RTX)
577 q->asoc->stream.si->generate_ftsn(q, q->asoc->ctsn_ack_point);
578
579 /* Flush the queues only on timeout, since fast_rtx is only
580 * triggered during sack processing and the queue
581 * will be flushed at the end.
582 */
583 if (reason != SCTP_RTXR_FAST_RTX)
584 sctp_outq_flush(q, /* rtx_timeout */ 1, GFP_ATOMIC);
585}
586
587/*
588 * Transmit DATA chunks on the retransmit queue. Upon return from
589 * __sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
590 * need to be transmitted by the caller.
591 * We assume that pkt->transport has already been set.
592 *
593 * The return value is a normal kernel error return value.
594 */
595static int __sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
596 int rtx_timeout, int *start_timer, gfp_t gfp)
597{
598 struct sctp_transport *transport = pkt->transport;
599 struct sctp_chunk *chunk, *chunk1;
600 struct list_head *lqueue;
601 enum sctp_xmit status;
602 int error = 0;
603 int timer = 0;
604 int done = 0;
605 int fast_rtx;
606
607 lqueue = &q->retransmit;
608 fast_rtx = q->fast_rtx;
609
610 /* This loop handles time-out retransmissions, fast retransmissions,
611 * and retransmissions due to opening of whindow.
612 *
613 * RFC 2960 6.3.3 Handle T3-rtx Expiration
614 *
615 * E3) Determine how many of the earliest (i.e., lowest TSN)
616 * outstanding DATA chunks for the address for which the
617 * T3-rtx has expired will fit into a single packet, subject
618 * to the MTU constraint for the path corresponding to the
619 * destination transport address to which the retransmission
620 * is being sent (this may be different from the address for
621 * which the timer expires [see Section 6.4]). Call this value
622 * K. Bundle and retransmit those K DATA chunks in a single
623 * packet to the destination endpoint.
624 *
625 * [Just to be painfully clear, if we are retransmitting
626 * because a timeout just happened, we should send only ONE
627 * packet of retransmitted data.]
628 *
629 * For fast retransmissions we also send only ONE packet. However,
630 * if we are just flushing the queue due to open window, we'll
631 * try to send as much as possible.
632 */
633 list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
634 /* If the chunk is abandoned, move it to abandoned list. */
635 if (sctp_chunk_abandoned(chunk)) {
636 list_del_init(&chunk->transmitted_list);
637 sctp_insert_list(&q->abandoned,
638 &chunk->transmitted_list);
639 continue;
640 }
641
642 /* Make sure that Gap Acked TSNs are not retransmitted. A
643 * simple approach is just to move such TSNs out of the
644 * way and into a 'transmitted' queue and skip to the
645 * next chunk.
646 */
647 if (chunk->tsn_gap_acked) {
648 list_move_tail(&chunk->transmitted_list,
649 &transport->transmitted);
650 continue;
651 }
652
653 /* If we are doing fast retransmit, ignore non-fast_rtransmit
654 * chunks
655 */
656 if (fast_rtx && !chunk->fast_retransmit)
657 continue;
658
659redo:
660 /* Attempt to append this chunk to the packet. */
661 status = sctp_packet_append_chunk(pkt, chunk);
662
663 switch (status) {
664 case SCTP_XMIT_PMTU_FULL:
665 if (!pkt->has_data && !pkt->has_cookie_echo) {
666 /* If this packet did not contain DATA then
667 * retransmission did not happen, so do it
668 * again. We'll ignore the error here since
669 * control chunks are already freed so there
670 * is nothing we can do.
671 */
672 sctp_packet_transmit(pkt, gfp);
673 goto redo;
674 }
675
676 /* Send this packet. */
677 error = sctp_packet_transmit(pkt, gfp);
678
679 /* If we are retransmitting, we should only
680 * send a single packet.
681 * Otherwise, try appending this chunk again.
682 */
683 if (rtx_timeout || fast_rtx)
684 done = 1;
685 else
686 goto redo;
687
688 /* Bundle next chunk in the next round. */
689 break;
690
691 case SCTP_XMIT_RWND_FULL:
692 /* Send this packet. */
693 error = sctp_packet_transmit(pkt, gfp);
694
695 /* Stop sending DATA as there is no more room
696 * at the receiver.
697 */
698 done = 1;
699 break;
700
701 case SCTP_XMIT_DELAY:
702 /* Send this packet. */
703 error = sctp_packet_transmit(pkt, gfp);
704
705 /* Stop sending DATA because of nagle delay. */
706 done = 1;
707 break;
708
709 default:
710 /* The append was successful, so add this chunk to
711 * the transmitted list.
712 */
713 list_move_tail(&chunk->transmitted_list,
714 &transport->transmitted);
715
716 /* Mark the chunk as ineligible for fast retransmit
717 * after it is retransmitted.
718 */
719 if (chunk->fast_retransmit == SCTP_NEED_FRTX)
720 chunk->fast_retransmit = SCTP_DONT_FRTX;
721
722 q->asoc->stats.rtxchunks++;
723 break;
724 }
725
726 /* Set the timer if there were no errors */
727 if (!error && !timer)
728 timer = 1;
729
730 if (done)
731 break;
732 }
733
734 /* If we are here due to a retransmit timeout or a fast
735 * retransmit and if there are any chunks left in the retransmit
736 * queue that could not fit in the PMTU sized packet, they need
737 * to be marked as ineligible for a subsequent fast retransmit.
738 */
739 if (rtx_timeout || fast_rtx) {
740 list_for_each_entry(chunk1, lqueue, transmitted_list) {
741 if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
742 chunk1->fast_retransmit = SCTP_DONT_FRTX;
743 }
744 }
745
746 *start_timer = timer;
747
748 /* Clear fast retransmit hint */
749 if (fast_rtx)
750 q->fast_rtx = 0;
751
752 return error;
753}
754
755/* Cork the outqueue so queued chunks are really queued. */
756void sctp_outq_uncork(struct sctp_outq *q, gfp_t gfp)
757{
758 if (q->cork)
759 q->cork = 0;
760
761 sctp_outq_flush(q, 0, gfp);
762}
763
764static int sctp_packet_singleton(struct sctp_transport *transport,
765 struct sctp_chunk *chunk, gfp_t gfp)
766{
767 const struct sctp_association *asoc = transport->asoc;
768 const __u16 sport = asoc->base.bind_addr.port;
769 const __u16 dport = asoc->peer.port;
770 const __u32 vtag = asoc->peer.i.init_tag;
771 struct sctp_packet singleton;
772
773 sctp_packet_init(&singleton, transport, sport, dport);
774 sctp_packet_config(&singleton, vtag, 0);
775 if (sctp_packet_append_chunk(&singleton, chunk) != SCTP_XMIT_OK) {
776 list_del_init(&chunk->list);
777 sctp_chunk_free(chunk);
778 return -ENOMEM;
779 }
780 return sctp_packet_transmit(&singleton, gfp);
781}
782
783/* Struct to hold the context during sctp outq flush */
784struct sctp_flush_ctx {
785 struct sctp_outq *q;
786 /* Current transport being used. It's NOT the same as curr active one */
787 struct sctp_transport *transport;
788 /* These transports have chunks to send. */
789 struct list_head transport_list;
790 struct sctp_association *asoc;
791 /* Packet on the current transport above */
792 struct sctp_packet *packet;
793 gfp_t gfp;
794};
795
796/* transport: current transport */
797static void sctp_outq_select_transport(struct sctp_flush_ctx *ctx,
798 struct sctp_chunk *chunk)
799{
800 struct sctp_transport *new_transport = chunk->transport;
801
802 if (!new_transport) {
803 if (!sctp_chunk_is_data(chunk)) {
804 /* If we have a prior transport pointer, see if
805 * the destination address of the chunk
806 * matches the destination address of the
807 * current transport. If not a match, then
808 * try to look up the transport with a given
809 * destination address. We do this because
810 * after processing ASCONFs, we may have new
811 * transports created.
812 */
813 if (ctx->transport && sctp_cmp_addr_exact(&chunk->dest,
814 &ctx->transport->ipaddr))
815 new_transport = ctx->transport;
816 else
817 new_transport = sctp_assoc_lookup_paddr(ctx->asoc,
818 &chunk->dest);
819 }
820
821 /* if we still don't have a new transport, then
822 * use the current active path.
823 */
824 if (!new_transport)
825 new_transport = ctx->asoc->peer.active_path;
826 } else {
827 __u8 type;
828
829 switch (new_transport->state) {
830 case SCTP_INACTIVE:
831 case SCTP_UNCONFIRMED:
832 case SCTP_PF:
833 /* If the chunk is Heartbeat or Heartbeat Ack,
834 * send it to chunk->transport, even if it's
835 * inactive.
836 *
837 * 3.3.6 Heartbeat Acknowledgement:
838 * ...
839 * A HEARTBEAT ACK is always sent to the source IP
840 * address of the IP datagram containing the
841 * HEARTBEAT chunk to which this ack is responding.
842 * ...
843 *
844 * ASCONF_ACKs also must be sent to the source.
845 */
846 type = chunk->chunk_hdr->type;
847 if (type != SCTP_CID_HEARTBEAT &&
848 type != SCTP_CID_HEARTBEAT_ACK &&
849 type != SCTP_CID_ASCONF_ACK)
850 new_transport = ctx->asoc->peer.active_path;
851 break;
852 default:
853 break;
854 }
855 }
856
857 /* Are we switching transports? Take care of transport locks. */
858 if (new_transport != ctx->transport) {
859 ctx->transport = new_transport;
860 ctx->packet = &ctx->transport->packet;
861
862 if (list_empty(&ctx->transport->send_ready))
863 list_add_tail(&ctx->transport->send_ready,
864 &ctx->transport_list);
865
866 sctp_packet_config(ctx->packet,
867 ctx->asoc->peer.i.init_tag,
868 ctx->asoc->peer.ecn_capable);
869 /* We've switched transports, so apply the
870 * Burst limit to the new transport.
871 */
872 sctp_transport_burst_limited(ctx->transport);
873 }
874}
875
876static void sctp_outq_flush_ctrl(struct sctp_flush_ctx *ctx)
877{
878 struct sctp_chunk *chunk, *tmp;
879 enum sctp_xmit status;
880 int one_packet, error;
881
882 list_for_each_entry_safe(chunk, tmp, &ctx->q->control_chunk_list, list) {
883 one_packet = 0;
884
885 /* RFC 5061, 5.3
886 * F1) This means that until such time as the ASCONF
887 * containing the add is acknowledged, the sender MUST
888 * NOT use the new IP address as a source for ANY SCTP
889 * packet except on carrying an ASCONF Chunk.
890 */
891 if (ctx->asoc->src_out_of_asoc_ok &&
892 chunk->chunk_hdr->type != SCTP_CID_ASCONF)
893 continue;
894
895 list_del_init(&chunk->list);
896
897 /* Pick the right transport to use. Should always be true for
898 * the first chunk as we don't have a transport by then.
899 */
900 sctp_outq_select_transport(ctx, chunk);
901
902 switch (chunk->chunk_hdr->type) {
903 /* 6.10 Bundling
904 * ...
905 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
906 * COMPLETE with any other chunks. [Send them immediately.]
907 */
908 case SCTP_CID_INIT:
909 case SCTP_CID_INIT_ACK:
910 case SCTP_CID_SHUTDOWN_COMPLETE:
911 error = sctp_packet_singleton(ctx->transport, chunk,
912 ctx->gfp);
913 if (error < 0) {
914 ctx->asoc->base.sk->sk_err = -error;
915 return;
916 }
917 break;
918
919 case SCTP_CID_ABORT:
920 if (sctp_test_T_bit(chunk))
921 ctx->packet->vtag = ctx->asoc->c.my_vtag;
922 fallthrough;
923
924 /* The following chunks are "response" chunks, i.e.
925 * they are generated in response to something we
926 * received. If we are sending these, then we can
927 * send only 1 packet containing these chunks.
928 */
929 case SCTP_CID_HEARTBEAT_ACK:
930 case SCTP_CID_SHUTDOWN_ACK:
931 case SCTP_CID_COOKIE_ACK:
932 case SCTP_CID_COOKIE_ECHO:
933 case SCTP_CID_ERROR:
934 case SCTP_CID_ECN_CWR:
935 case SCTP_CID_ASCONF_ACK:
936 one_packet = 1;
937 fallthrough;
938
939 case SCTP_CID_HEARTBEAT:
940 if (chunk->pmtu_probe) {
941 sctp_packet_singleton(ctx->transport, chunk, ctx->gfp);
942 break;
943 }
944 fallthrough;
945 case SCTP_CID_SACK:
946 case SCTP_CID_SHUTDOWN:
947 case SCTP_CID_ECN_ECNE:
948 case SCTP_CID_ASCONF:
949 case SCTP_CID_FWD_TSN:
950 case SCTP_CID_I_FWD_TSN:
951 case SCTP_CID_RECONF:
952 status = sctp_packet_transmit_chunk(ctx->packet, chunk,
953 one_packet, ctx->gfp);
954 if (status != SCTP_XMIT_OK) {
955 /* put the chunk back */
956 list_add(&chunk->list, &ctx->q->control_chunk_list);
957 break;
958 }
959
960 ctx->asoc->stats.octrlchunks++;
961 /* PR-SCTP C5) If a FORWARD TSN is sent, the
962 * sender MUST assure that at least one T3-rtx
963 * timer is running.
964 */
965 if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN ||
966 chunk->chunk_hdr->type == SCTP_CID_I_FWD_TSN) {
967 sctp_transport_reset_t3_rtx(ctx->transport);
968 ctx->transport->last_time_sent = jiffies;
969 }
970
971 if (chunk == ctx->asoc->strreset_chunk)
972 sctp_transport_reset_reconf_timer(ctx->transport);
973
974 break;
975
976 default:
977 /* We built a chunk with an illegal type! */
978 BUG();
979 }
980 }
981}
982
983/* Returns false if new data shouldn't be sent */
984static bool sctp_outq_flush_rtx(struct sctp_flush_ctx *ctx,
985 int rtx_timeout)
986{
987 int error, start_timer = 0;
988
989 if (ctx->asoc->peer.retran_path->state == SCTP_UNCONFIRMED)
990 return false;
991
992 if (ctx->transport != ctx->asoc->peer.retran_path) {
993 /* Switch transports & prepare the packet. */
994 ctx->transport = ctx->asoc->peer.retran_path;
995 ctx->packet = &ctx->transport->packet;
996
997 if (list_empty(&ctx->transport->send_ready))
998 list_add_tail(&ctx->transport->send_ready,
999 &ctx->transport_list);
1000
1001 sctp_packet_config(ctx->packet, ctx->asoc->peer.i.init_tag,
1002 ctx->asoc->peer.ecn_capable);
1003 }
1004
1005 error = __sctp_outq_flush_rtx(ctx->q, ctx->packet, rtx_timeout,
1006 &start_timer, ctx->gfp);
1007 if (error < 0)
1008 ctx->asoc->base.sk->sk_err = -error;
1009
1010 if (start_timer) {
1011 sctp_transport_reset_t3_rtx(ctx->transport);
1012 ctx->transport->last_time_sent = jiffies;
1013 }
1014
1015 /* This can happen on COOKIE-ECHO resend. Only
1016 * one chunk can get bundled with a COOKIE-ECHO.
1017 */
1018 if (ctx->packet->has_cookie_echo)
1019 return false;
1020
1021 /* Don't send new data if there is still data
1022 * waiting to retransmit.
1023 */
1024 if (!list_empty(&ctx->q->retransmit))
1025 return false;
1026
1027 return true;
1028}
1029
1030static void sctp_outq_flush_data(struct sctp_flush_ctx *ctx,
1031 int rtx_timeout)
1032{
1033 struct sctp_chunk *chunk;
1034 enum sctp_xmit status;
1035
1036 /* Is it OK to send data chunks? */
1037 switch (ctx->asoc->state) {
1038 case SCTP_STATE_COOKIE_ECHOED:
1039 /* Only allow bundling when this packet has a COOKIE-ECHO
1040 * chunk.
1041 */
1042 if (!ctx->packet || !ctx->packet->has_cookie_echo)
1043 return;
1044
1045 fallthrough;
1046 case SCTP_STATE_ESTABLISHED:
1047 case SCTP_STATE_SHUTDOWN_PENDING:
1048 case SCTP_STATE_SHUTDOWN_RECEIVED:
1049 break;
1050
1051 default:
1052 /* Do nothing. */
1053 return;
1054 }
1055
1056 /* RFC 2960 6.1 Transmission of DATA Chunks
1057 *
1058 * C) When the time comes for the sender to transmit,
1059 * before sending new DATA chunks, the sender MUST
1060 * first transmit any outstanding DATA chunks which
1061 * are marked for retransmission (limited by the
1062 * current cwnd).
1063 */
1064 if (!list_empty(&ctx->q->retransmit) &&
1065 !sctp_outq_flush_rtx(ctx, rtx_timeout))
1066 return;
1067
1068 /* Apply Max.Burst limitation to the current transport in
1069 * case it will be used for new data. We are going to
1070 * rest it before we return, but we want to apply the limit
1071 * to the currently queued data.
1072 */
1073 if (ctx->transport)
1074 sctp_transport_burst_limited(ctx->transport);
1075
1076 /* Finally, transmit new packets. */
1077 while ((chunk = sctp_outq_dequeue_data(ctx->q)) != NULL) {
1078 __u32 sid = ntohs(chunk->subh.data_hdr->stream);
1079 __u8 stream_state = SCTP_SO(&ctx->asoc->stream, sid)->state;
1080
1081 /* Has this chunk expired? */
1082 if (sctp_chunk_abandoned(chunk)) {
1083 sctp_sched_dequeue_done(ctx->q, chunk);
1084 sctp_chunk_fail(chunk, 0);
1085 sctp_chunk_free(chunk);
1086 continue;
1087 }
1088
1089 if (stream_state == SCTP_STREAM_CLOSED) {
1090 sctp_outq_head_data(ctx->q, chunk);
1091 break;
1092 }
1093
1094 sctp_outq_select_transport(ctx, chunk);
1095
1096 pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p skb->users:%d\n",
1097 __func__, ctx->q, chunk, chunk && chunk->chunk_hdr ?
1098 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
1099 "illegal chunk", ntohl(chunk->subh.data_hdr->tsn),
1100 chunk->skb ? chunk->skb->head : NULL, chunk->skb ?
1101 refcount_read(&chunk->skb->users) : -1);
1102
1103 /* Add the chunk to the packet. */
1104 status = sctp_packet_transmit_chunk(ctx->packet, chunk, 0,
1105 ctx->gfp);
1106 if (status != SCTP_XMIT_OK) {
1107 /* We could not append this chunk, so put
1108 * the chunk back on the output queue.
1109 */
1110 pr_debug("%s: could not transmit tsn:0x%x, status:%d\n",
1111 __func__, ntohl(chunk->subh.data_hdr->tsn),
1112 status);
1113
1114 sctp_outq_head_data(ctx->q, chunk);
1115 break;
1116 }
1117
1118 /* The sender is in the SHUTDOWN-PENDING state,
1119 * The sender MAY set the I-bit in the DATA
1120 * chunk header.
1121 */
1122 if (ctx->asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1123 chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1124 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
1125 ctx->asoc->stats.ouodchunks++;
1126 else
1127 ctx->asoc->stats.oodchunks++;
1128
1129 /* Only now it's safe to consider this
1130 * chunk as sent, sched-wise.
1131 */
1132 sctp_sched_dequeue_done(ctx->q, chunk);
1133
1134 list_add_tail(&chunk->transmitted_list,
1135 &ctx->transport->transmitted);
1136
1137 sctp_transport_reset_t3_rtx(ctx->transport);
1138 ctx->transport->last_time_sent = jiffies;
1139
1140 /* Only let one DATA chunk get bundled with a
1141 * COOKIE-ECHO chunk.
1142 */
1143 if (ctx->packet->has_cookie_echo)
1144 break;
1145 }
1146}
1147
1148static void sctp_outq_flush_transports(struct sctp_flush_ctx *ctx)
1149{
1150 struct sock *sk = ctx->asoc->base.sk;
1151 struct list_head *ltransport;
1152 struct sctp_packet *packet;
1153 struct sctp_transport *t;
1154 int error = 0;
1155
1156 while ((ltransport = sctp_list_dequeue(&ctx->transport_list)) != NULL) {
1157 t = list_entry(ltransport, struct sctp_transport, send_ready);
1158 packet = &t->packet;
1159 if (!sctp_packet_empty(packet)) {
1160 rcu_read_lock();
1161 if (t->dst && __sk_dst_get(sk) != t->dst) {
1162 dst_hold(t->dst);
1163 sk_setup_caps(sk, t->dst);
1164 }
1165 rcu_read_unlock();
1166 error = sctp_packet_transmit(packet, ctx->gfp);
1167 if (error < 0)
1168 ctx->q->asoc->base.sk->sk_err = -error;
1169 }
1170
1171 /* Clear the burst limited state, if any */
1172 sctp_transport_burst_reset(t);
1173 }
1174}
1175
1176/* Try to flush an outqueue.
1177 *
1178 * Description: Send everything in q which we legally can, subject to
1179 * congestion limitations.
1180 * * Note: This function can be called from multiple contexts so appropriate
1181 * locking concerns must be made. Today we use the sock lock to protect
1182 * this function.
1183 */
1184
1185static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp)
1186{
1187 struct sctp_flush_ctx ctx = {
1188 .q = q,
1189 .transport = NULL,
1190 .transport_list = LIST_HEAD_INIT(ctx.transport_list),
1191 .asoc = q->asoc,
1192 .packet = NULL,
1193 .gfp = gfp,
1194 };
1195
1196 /* 6.10 Bundling
1197 * ...
1198 * When bundling control chunks with DATA chunks, an
1199 * endpoint MUST place control chunks first in the outbound
1200 * SCTP packet. The transmitter MUST transmit DATA chunks
1201 * within a SCTP packet in increasing order of TSN.
1202 * ...
1203 */
1204
1205 sctp_outq_flush_ctrl(&ctx);
1206
1207 if (q->asoc->src_out_of_asoc_ok)
1208 goto sctp_flush_out;
1209
1210 sctp_outq_flush_data(&ctx, rtx_timeout);
1211
1212sctp_flush_out:
1213
1214 sctp_outq_flush_transports(&ctx);
1215}
1216
1217/* Update unack_data based on the incoming SACK chunk */
1218static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1219 struct sctp_sackhdr *sack)
1220{
1221 union sctp_sack_variable *frags;
1222 __u16 unack_data;
1223 int i;
1224
1225 unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1226
1227 frags = sack->variable;
1228 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1229 unack_data -= ((ntohs(frags[i].gab.end) -
1230 ntohs(frags[i].gab.start) + 1));
1231 }
1232
1233 assoc->unack_data = unack_data;
1234}
1235
1236/* This is where we REALLY process a SACK.
1237 *
1238 * Process the SACK against the outqueue. Mostly, this just frees
1239 * things off the transmitted queue.
1240 */
1241int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk)
1242{
1243 struct sctp_association *asoc = q->asoc;
1244 struct sctp_sackhdr *sack = chunk->subh.sack_hdr;
1245 struct sctp_transport *transport;
1246 struct sctp_chunk *tchunk = NULL;
1247 struct list_head *lchunk, *transport_list, *temp;
1248 union sctp_sack_variable *frags = sack->variable;
1249 __u32 sack_ctsn, ctsn, tsn;
1250 __u32 highest_tsn, highest_new_tsn;
1251 __u32 sack_a_rwnd;
1252 unsigned int outstanding;
1253 struct sctp_transport *primary = asoc->peer.primary_path;
1254 int count_of_newacks = 0;
1255 int gap_ack_blocks;
1256 u8 accum_moved = 0;
1257
1258 /* Grab the association's destination address list. */
1259 transport_list = &asoc->peer.transport_addr_list;
1260
1261 /* SCTP path tracepoint for congestion control debugging. */
1262 if (trace_sctp_probe_path_enabled()) {
1263 list_for_each_entry(transport, transport_list, transports)
1264 trace_sctp_probe_path(transport, asoc);
1265 }
1266
1267 sack_ctsn = ntohl(sack->cum_tsn_ack);
1268 gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1269 asoc->stats.gapcnt += gap_ack_blocks;
1270 /*
1271 * SFR-CACC algorithm:
1272 * On receipt of a SACK the sender SHOULD execute the
1273 * following statements.
1274 *
1275 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1276 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1277 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1278 * all destinations.
1279 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1280 * is set the receiver of the SACK MUST take the following actions:
1281 *
1282 * A) Initialize the cacc_saw_newack to 0 for all destination
1283 * addresses.
1284 *
1285 * Only bother if changeover_active is set. Otherwise, this is
1286 * totally suboptimal to do on every SACK.
1287 */
1288 if (primary->cacc.changeover_active) {
1289 u8 clear_cycling = 0;
1290
1291 if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1292 primary->cacc.changeover_active = 0;
1293 clear_cycling = 1;
1294 }
1295
1296 if (clear_cycling || gap_ack_blocks) {
1297 list_for_each_entry(transport, transport_list,
1298 transports) {
1299 if (clear_cycling)
1300 transport->cacc.cycling_changeover = 0;
1301 if (gap_ack_blocks)
1302 transport->cacc.cacc_saw_newack = 0;
1303 }
1304 }
1305 }
1306
1307 /* Get the highest TSN in the sack. */
1308 highest_tsn = sack_ctsn;
1309 if (gap_ack_blocks)
1310 highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1311
1312 if (TSN_lt(asoc->highest_sacked, highest_tsn))
1313 asoc->highest_sacked = highest_tsn;
1314
1315 highest_new_tsn = sack_ctsn;
1316
1317 /* Run through the retransmit queue. Credit bytes received
1318 * and free those chunks that we can.
1319 */
1320 sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn);
1321
1322 /* Run through the transmitted queue.
1323 * Credit bytes received and free those chunks which we can.
1324 *
1325 * This is a MASSIVE candidate for optimization.
1326 */
1327 list_for_each_entry(transport, transport_list, transports) {
1328 sctp_check_transmitted(q, &transport->transmitted,
1329 transport, &chunk->source, sack,
1330 &highest_new_tsn);
1331 /*
1332 * SFR-CACC algorithm:
1333 * C) Let count_of_newacks be the number of
1334 * destinations for which cacc_saw_newack is set.
1335 */
1336 if (transport->cacc.cacc_saw_newack)
1337 count_of_newacks++;
1338 }
1339
1340 /* Move the Cumulative TSN Ack Point if appropriate. */
1341 if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) {
1342 asoc->ctsn_ack_point = sack_ctsn;
1343 accum_moved = 1;
1344 }
1345
1346 if (gap_ack_blocks) {
1347
1348 if (asoc->fast_recovery && accum_moved)
1349 highest_new_tsn = highest_tsn;
1350
1351 list_for_each_entry(transport, transport_list, transports)
1352 sctp_mark_missing(q, &transport->transmitted, transport,
1353 highest_new_tsn, count_of_newacks);
1354 }
1355
1356 /* Update unack_data field in the assoc. */
1357 sctp_sack_update_unack_data(asoc, sack);
1358
1359 ctsn = asoc->ctsn_ack_point;
1360
1361 /* Throw away stuff rotting on the sack queue. */
1362 list_for_each_safe(lchunk, temp, &q->sacked) {
1363 tchunk = list_entry(lchunk, struct sctp_chunk,
1364 transmitted_list);
1365 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1366 if (TSN_lte(tsn, ctsn)) {
1367 list_del_init(&tchunk->transmitted_list);
1368 if (asoc->peer.prsctp_capable &&
1369 SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
1370 asoc->sent_cnt_removable--;
1371 sctp_chunk_free(tchunk);
1372 }
1373 }
1374
1375 /* ii) Set rwnd equal to the newly received a_rwnd minus the
1376 * number of bytes still outstanding after processing the
1377 * Cumulative TSN Ack and the Gap Ack Blocks.
1378 */
1379
1380 sack_a_rwnd = ntohl(sack->a_rwnd);
1381 asoc->peer.zero_window_announced = !sack_a_rwnd;
1382 outstanding = q->outstanding_bytes;
1383
1384 if (outstanding < sack_a_rwnd)
1385 sack_a_rwnd -= outstanding;
1386 else
1387 sack_a_rwnd = 0;
1388
1389 asoc->peer.rwnd = sack_a_rwnd;
1390
1391 asoc->stream.si->generate_ftsn(q, sack_ctsn);
1392
1393 pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__, sack_ctsn);
1394 pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, "
1395 "advertised peer ack point:0x%x\n", __func__, asoc, ctsn,
1396 asoc->adv_peer_ack_point);
1397
1398 return sctp_outq_is_empty(q);
1399}
1400
1401/* Is the outqueue empty?
1402 * The queue is empty when we have not pending data, no in-flight data
1403 * and nothing pending retransmissions.
1404 */
1405int sctp_outq_is_empty(const struct sctp_outq *q)
1406{
1407 return q->out_qlen == 0 && q->outstanding_bytes == 0 &&
1408 list_empty(&q->retransmit);
1409}
1410
1411/********************************************************************
1412 * 2nd Level Abstractions
1413 ********************************************************************/
1414
1415/* Go through a transport's transmitted list or the association's retransmit
1416 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1417 * The retransmit list will not have an associated transport.
1418 *
1419 * I added coherent debug information output. --xguo
1420 *
1421 * Instead of printing 'sacked' or 'kept' for each TSN on the
1422 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1423 * KEPT TSN6-TSN7, etc.
1424 */
1425static void sctp_check_transmitted(struct sctp_outq *q,
1426 struct list_head *transmitted_queue,
1427 struct sctp_transport *transport,
1428 union sctp_addr *saddr,
1429 struct sctp_sackhdr *sack,
1430 __u32 *highest_new_tsn_in_sack)
1431{
1432 struct list_head *lchunk;
1433 struct sctp_chunk *tchunk;
1434 struct list_head tlist;
1435 __u32 tsn;
1436 __u32 sack_ctsn;
1437 __u32 rtt;
1438 __u8 restart_timer = 0;
1439 int bytes_acked = 0;
1440 int migrate_bytes = 0;
1441 bool forward_progress = false;
1442
1443 sack_ctsn = ntohl(sack->cum_tsn_ack);
1444
1445 INIT_LIST_HEAD(&tlist);
1446
1447 /* The while loop will skip empty transmitted queues. */
1448 while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1449 tchunk = list_entry(lchunk, struct sctp_chunk,
1450 transmitted_list);
1451
1452 if (sctp_chunk_abandoned(tchunk)) {
1453 /* Move the chunk to abandoned list. */
1454 sctp_insert_list(&q->abandoned, lchunk);
1455
1456 /* If this chunk has not been acked, stop
1457 * considering it as 'outstanding'.
1458 */
1459 if (transmitted_queue != &q->retransmit &&
1460 !tchunk->tsn_gap_acked) {
1461 if (tchunk->transport)
1462 tchunk->transport->flight_size -=
1463 sctp_data_size(tchunk);
1464 q->outstanding_bytes -= sctp_data_size(tchunk);
1465 }
1466 continue;
1467 }
1468
1469 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1470 if (sctp_acked(sack, tsn)) {
1471 /* If this queue is the retransmit queue, the
1472 * retransmit timer has already reclaimed
1473 * the outstanding bytes for this chunk, so only
1474 * count bytes associated with a transport.
1475 */
1476 if (transport && !tchunk->tsn_gap_acked) {
1477 /* If this chunk is being used for RTT
1478 * measurement, calculate the RTT and update
1479 * the RTO using this value.
1480 *
1481 * 6.3.1 C5) Karn's algorithm: RTT measurements
1482 * MUST NOT be made using packets that were
1483 * retransmitted (and thus for which it is
1484 * ambiguous whether the reply was for the
1485 * first instance of the packet or a later
1486 * instance).
1487 */
1488 if (!sctp_chunk_retransmitted(tchunk) &&
1489 tchunk->rtt_in_progress) {
1490 tchunk->rtt_in_progress = 0;
1491 rtt = jiffies - tchunk->sent_at;
1492 sctp_transport_update_rto(transport,
1493 rtt);
1494 }
1495
1496 if (TSN_lte(tsn, sack_ctsn)) {
1497 /*
1498 * SFR-CACC algorithm:
1499 * 2) If the SACK contains gap acks
1500 * and the flag CHANGEOVER_ACTIVE is
1501 * set the receiver of the SACK MUST
1502 * take the following action:
1503 *
1504 * B) For each TSN t being acked that
1505 * has not been acked in any SACK so
1506 * far, set cacc_saw_newack to 1 for
1507 * the destination that the TSN was
1508 * sent to.
1509 */
1510 if (sack->num_gap_ack_blocks &&
1511 q->asoc->peer.primary_path->cacc.
1512 changeover_active)
1513 transport->cacc.cacc_saw_newack
1514 = 1;
1515 }
1516 }
1517
1518 /* If the chunk hasn't been marked as ACKED,
1519 * mark it and account bytes_acked if the
1520 * chunk had a valid transport (it will not
1521 * have a transport if ASCONF had deleted it
1522 * while DATA was outstanding).
1523 */
1524 if (!tchunk->tsn_gap_acked) {
1525 tchunk->tsn_gap_acked = 1;
1526 if (TSN_lt(*highest_new_tsn_in_sack, tsn))
1527 *highest_new_tsn_in_sack = tsn;
1528 bytes_acked += sctp_data_size(tchunk);
1529 if (!tchunk->transport)
1530 migrate_bytes += sctp_data_size(tchunk);
1531 forward_progress = true;
1532 }
1533
1534 if (TSN_lte(tsn, sack_ctsn)) {
1535 /* RFC 2960 6.3.2 Retransmission Timer Rules
1536 *
1537 * R3) Whenever a SACK is received
1538 * that acknowledges the DATA chunk
1539 * with the earliest outstanding TSN
1540 * for that address, restart T3-rtx
1541 * timer for that address with its
1542 * current RTO.
1543 */
1544 restart_timer = 1;
1545 forward_progress = true;
1546
1547 list_add_tail(&tchunk->transmitted_list,
1548 &q->sacked);
1549 } else {
1550 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1551 * M2) Each time a SACK arrives reporting
1552 * 'Stray DATA chunk(s)' record the highest TSN
1553 * reported as newly acknowledged, call this
1554 * value 'HighestTSNinSack'. A newly
1555 * acknowledged DATA chunk is one not
1556 * previously acknowledged in a SACK.
1557 *
1558 * When the SCTP sender of data receives a SACK
1559 * chunk that acknowledges, for the first time,
1560 * the receipt of a DATA chunk, all the still
1561 * unacknowledged DATA chunks whose TSN is
1562 * older than that newly acknowledged DATA
1563 * chunk, are qualified as 'Stray DATA chunks'.
1564 */
1565 list_add_tail(lchunk, &tlist);
1566 }
1567 } else {
1568 if (tchunk->tsn_gap_acked) {
1569 pr_debug("%s: receiver reneged on data TSN:0x%x\n",
1570 __func__, tsn);
1571
1572 tchunk->tsn_gap_acked = 0;
1573
1574 if (tchunk->transport)
1575 bytes_acked -= sctp_data_size(tchunk);
1576
1577 /* RFC 2960 6.3.2 Retransmission Timer Rules
1578 *
1579 * R4) Whenever a SACK is received missing a
1580 * TSN that was previously acknowledged via a
1581 * Gap Ack Block, start T3-rtx for the
1582 * destination address to which the DATA
1583 * chunk was originally
1584 * transmitted if it is not already running.
1585 */
1586 restart_timer = 1;
1587 }
1588
1589 list_add_tail(lchunk, &tlist);
1590 }
1591 }
1592
1593 if (transport) {
1594 if (bytes_acked) {
1595 struct sctp_association *asoc = transport->asoc;
1596
1597 /* We may have counted DATA that was migrated
1598 * to this transport due to DEL-IP operation.
1599 * Subtract those bytes, since the were never
1600 * send on this transport and shouldn't be
1601 * credited to this transport.
1602 */
1603 bytes_acked -= migrate_bytes;
1604
1605 /* 8.2. When an outstanding TSN is acknowledged,
1606 * the endpoint shall clear the error counter of
1607 * the destination transport address to which the
1608 * DATA chunk was last sent.
1609 * The association's overall error counter is
1610 * also cleared.
1611 */
1612 transport->error_count = 0;
1613 transport->asoc->overall_error_count = 0;
1614 forward_progress = true;
1615
1616 /*
1617 * While in SHUTDOWN PENDING, we may have started
1618 * the T5 shutdown guard timer after reaching the
1619 * retransmission limit. Stop that timer as soon
1620 * as the receiver acknowledged any data.
1621 */
1622 if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING &&
1623 del_timer(&asoc->timers
1624 [SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]))
1625 sctp_association_put(asoc);
1626
1627 /* Mark the destination transport address as
1628 * active if it is not so marked.
1629 */
1630 if ((transport->state == SCTP_INACTIVE ||
1631 transport->state == SCTP_UNCONFIRMED) &&
1632 sctp_cmp_addr_exact(&transport->ipaddr, saddr)) {
1633 sctp_assoc_control_transport(
1634 transport->asoc,
1635 transport,
1636 SCTP_TRANSPORT_UP,
1637 SCTP_RECEIVED_SACK);
1638 }
1639
1640 sctp_transport_raise_cwnd(transport, sack_ctsn,
1641 bytes_acked);
1642
1643 transport->flight_size -= bytes_acked;
1644 if (transport->flight_size == 0)
1645 transport->partial_bytes_acked = 0;
1646 q->outstanding_bytes -= bytes_acked + migrate_bytes;
1647 } else {
1648 /* RFC 2960 6.1, sctpimpguide-06 2.15.2
1649 * When a sender is doing zero window probing, it
1650 * should not timeout the association if it continues
1651 * to receive new packets from the receiver. The
1652 * reason is that the receiver MAY keep its window
1653 * closed for an indefinite time.
1654 * A sender is doing zero window probing when the
1655 * receiver's advertised window is zero, and there is
1656 * only one data chunk in flight to the receiver.
1657 *
1658 * Allow the association to timeout while in SHUTDOWN
1659 * PENDING or SHUTDOWN RECEIVED in case the receiver
1660 * stays in zero window mode forever.
1661 */
1662 if (!q->asoc->peer.rwnd &&
1663 !list_empty(&tlist) &&
1664 (sack_ctsn+2 == q->asoc->next_tsn) &&
1665 q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) {
1666 pr_debug("%s: sack received for zero window "
1667 "probe:%u\n", __func__, sack_ctsn);
1668
1669 q->asoc->overall_error_count = 0;
1670 transport->error_count = 0;
1671 }
1672 }
1673
1674 /* RFC 2960 6.3.2 Retransmission Timer Rules
1675 *
1676 * R2) Whenever all outstanding data sent to an address have
1677 * been acknowledged, turn off the T3-rtx timer of that
1678 * address.
1679 */
1680 if (!transport->flight_size) {
1681 if (del_timer(&transport->T3_rtx_timer))
1682 sctp_transport_put(transport);
1683 } else if (restart_timer) {
1684 if (!mod_timer(&transport->T3_rtx_timer,
1685 jiffies + transport->rto))
1686 sctp_transport_hold(transport);
1687 }
1688
1689 if (forward_progress) {
1690 if (transport->dst)
1691 sctp_transport_dst_confirm(transport);
1692 }
1693 }
1694
1695 list_splice(&tlist, transmitted_queue);
1696}
1697
1698/* Mark chunks as missing and consequently may get retransmitted. */
1699static void sctp_mark_missing(struct sctp_outq *q,
1700 struct list_head *transmitted_queue,
1701 struct sctp_transport *transport,
1702 __u32 highest_new_tsn_in_sack,
1703 int count_of_newacks)
1704{
1705 struct sctp_chunk *chunk;
1706 __u32 tsn;
1707 char do_fast_retransmit = 0;
1708 struct sctp_association *asoc = q->asoc;
1709 struct sctp_transport *primary = asoc->peer.primary_path;
1710
1711 list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1712
1713 tsn = ntohl(chunk->subh.data_hdr->tsn);
1714
1715 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1716 * 'Unacknowledged TSN's', if the TSN number of an
1717 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1718 * value, increment the 'TSN.Missing.Report' count on that
1719 * chunk if it has NOT been fast retransmitted or marked for
1720 * fast retransmit already.
1721 */
1722 if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1723 !chunk->tsn_gap_acked &&
1724 TSN_lt(tsn, highest_new_tsn_in_sack)) {
1725
1726 /* SFR-CACC may require us to skip marking
1727 * this chunk as missing.
1728 */
1729 if (!transport || !sctp_cacc_skip(primary,
1730 chunk->transport,
1731 count_of_newacks, tsn)) {
1732 chunk->tsn_missing_report++;
1733
1734 pr_debug("%s: tsn:0x%x missing counter:%d\n",
1735 __func__, tsn, chunk->tsn_missing_report);
1736 }
1737 }
1738 /*
1739 * M4) If any DATA chunk is found to have a
1740 * 'TSN.Missing.Report'
1741 * value larger than or equal to 3, mark that chunk for
1742 * retransmission and start the fast retransmit procedure.
1743 */
1744
1745 if (chunk->tsn_missing_report >= 3) {
1746 chunk->fast_retransmit = SCTP_NEED_FRTX;
1747 do_fast_retransmit = 1;
1748 }
1749 }
1750
1751 if (transport) {
1752 if (do_fast_retransmit)
1753 sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1754
1755 pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, "
1756 "flight_size:%d, pba:%d\n", __func__, transport,
1757 transport->cwnd, transport->ssthresh,
1758 transport->flight_size, transport->partial_bytes_acked);
1759 }
1760}
1761
1762/* Is the given TSN acked by this packet? */
1763static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1764{
1765 __u32 ctsn = ntohl(sack->cum_tsn_ack);
1766 union sctp_sack_variable *frags;
1767 __u16 tsn_offset, blocks;
1768 int i;
1769
1770 if (TSN_lte(tsn, ctsn))
1771 goto pass;
1772
1773 /* 3.3.4 Selective Acknowledgment (SACK) (3):
1774 *
1775 * Gap Ack Blocks:
1776 * These fields contain the Gap Ack Blocks. They are repeated
1777 * for each Gap Ack Block up to the number of Gap Ack Blocks
1778 * defined in the Number of Gap Ack Blocks field. All DATA
1779 * chunks with TSNs greater than or equal to (Cumulative TSN
1780 * Ack + Gap Ack Block Start) and less than or equal to
1781 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1782 * Block are assumed to have been received correctly.
1783 */
1784
1785 frags = sack->variable;
1786 blocks = ntohs(sack->num_gap_ack_blocks);
1787 tsn_offset = tsn - ctsn;
1788 for (i = 0; i < blocks; ++i) {
1789 if (tsn_offset >= ntohs(frags[i].gab.start) &&
1790 tsn_offset <= ntohs(frags[i].gab.end))
1791 goto pass;
1792 }
1793
1794 return 0;
1795pass:
1796 return 1;
1797}
1798
1799static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1800 int nskips, __be16 stream)
1801{
1802 int i;
1803
1804 for (i = 0; i < nskips; i++) {
1805 if (skiplist[i].stream == stream)
1806 return i;
1807 }
1808 return i;
1809}
1810
1811/* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1812void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1813{
1814 struct sctp_association *asoc = q->asoc;
1815 struct sctp_chunk *ftsn_chunk = NULL;
1816 struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1817 int nskips = 0;
1818 int skip_pos = 0;
1819 __u32 tsn;
1820 struct sctp_chunk *chunk;
1821 struct list_head *lchunk, *temp;
1822
1823 if (!asoc->peer.prsctp_capable)
1824 return;
1825
1826 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1827 * received SACK.
1828 *
1829 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1830 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1831 */
1832 if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1833 asoc->adv_peer_ack_point = ctsn;
1834
1835 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1836 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1837 * the chunk next in the out-queue space is marked as "abandoned" as
1838 * shown in the following example:
1839 *
1840 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1841 * and the Advanced.Peer.Ack.Point is updated to this value:
1842 *
1843 * out-queue at the end of ==> out-queue after Adv.Ack.Point
1844 * normal SACK processing local advancement
1845 * ... ...
1846 * Adv.Ack.Pt-> 102 acked 102 acked
1847 * 103 abandoned 103 abandoned
1848 * 104 abandoned Adv.Ack.P-> 104 abandoned
1849 * 105 105
1850 * 106 acked 106 acked
1851 * ... ...
1852 *
1853 * In this example, the data sender successfully advanced the
1854 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1855 */
1856 list_for_each_safe(lchunk, temp, &q->abandoned) {
1857 chunk = list_entry(lchunk, struct sctp_chunk,
1858 transmitted_list);
1859 tsn = ntohl(chunk->subh.data_hdr->tsn);
1860
1861 /* Remove any chunks in the abandoned queue that are acked by
1862 * the ctsn.
1863 */
1864 if (TSN_lte(tsn, ctsn)) {
1865 list_del_init(lchunk);
1866 sctp_chunk_free(chunk);
1867 } else {
1868 if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1869 asoc->adv_peer_ack_point = tsn;
1870 if (chunk->chunk_hdr->flags &
1871 SCTP_DATA_UNORDERED)
1872 continue;
1873 skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1874 nskips,
1875 chunk->subh.data_hdr->stream);
1876 ftsn_skip_arr[skip_pos].stream =
1877 chunk->subh.data_hdr->stream;
1878 ftsn_skip_arr[skip_pos].ssn =
1879 chunk->subh.data_hdr->ssn;
1880 if (skip_pos == nskips)
1881 nskips++;
1882 if (nskips == 10)
1883 break;
1884 } else
1885 break;
1886 }
1887 }
1888
1889 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1890 * is greater than the Cumulative TSN ACK carried in the received
1891 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1892 * chunk containing the latest value of the
1893 * "Advanced.Peer.Ack.Point".
1894 *
1895 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1896 * list each stream and sequence number in the forwarded TSN. This
1897 * information will enable the receiver to easily find any
1898 * stranded TSN's waiting on stream reorder queues. Each stream
1899 * SHOULD only be reported once; this means that if multiple
1900 * abandoned messages occur in the same stream then only the
1901 * highest abandoned stream sequence number is reported. If the
1902 * total size of the FORWARD TSN does NOT fit in a single MTU then
1903 * the sender of the FORWARD TSN SHOULD lower the
1904 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1905 * single MTU.
1906 */
1907 if (asoc->adv_peer_ack_point > ctsn)
1908 ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1909 nskips, &ftsn_skip_arr[0]);
1910
1911 if (ftsn_chunk) {
1912 list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1913 SCTP_INC_STATS(asoc->base.net, SCTP_MIB_OUTCTRLCHUNKS);
1914 }
1915}