Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2/*
3 * Performance events:
4 *
5 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
8 *
9 * Data type definitions, declarations, prototypes.
10 *
11 * Started by: Thomas Gleixner and Ingo Molnar
12 *
13 * For licencing details see kernel-base/COPYING
14 */
15#ifndef _UAPI_LINUX_PERF_EVENT_H
16#define _UAPI_LINUX_PERF_EVENT_H
17
18#include <linux/types.h>
19#include <linux/ioctl.h>
20#include <asm/byteorder.h>
21
22/*
23 * User-space ABI bits:
24 */
25
26/*
27 * attr.type
28 */
29enum perf_type_id {
30 PERF_TYPE_HARDWARE = 0,
31 PERF_TYPE_SOFTWARE = 1,
32 PERF_TYPE_TRACEPOINT = 2,
33 PERF_TYPE_HW_CACHE = 3,
34 PERF_TYPE_RAW = 4,
35 PERF_TYPE_BREAKPOINT = 5,
36
37 PERF_TYPE_MAX, /* non-ABI */
38};
39
40/*
41 * attr.config layout for type PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
42 * PERF_TYPE_HARDWARE: 0xEEEEEEEE000000AA
43 * AA: hardware event ID
44 * EEEEEEEE: PMU type ID
45 * PERF_TYPE_HW_CACHE: 0xEEEEEEEE00DDCCBB
46 * BB: hardware cache ID
47 * CC: hardware cache op ID
48 * DD: hardware cache op result ID
49 * EEEEEEEE: PMU type ID
50 * If the PMU type ID is 0, the PERF_TYPE_RAW will be applied.
51 */
52#define PERF_PMU_TYPE_SHIFT 32
53#define PERF_HW_EVENT_MASK 0xffffffff
54
55/*
56 * Generalized performance event event_id types, used by the
57 * attr.event_id parameter of the sys_perf_event_open()
58 * syscall:
59 */
60enum perf_hw_id {
61 /*
62 * Common hardware events, generalized by the kernel:
63 */
64 PERF_COUNT_HW_CPU_CYCLES = 0,
65 PERF_COUNT_HW_INSTRUCTIONS = 1,
66 PERF_COUNT_HW_CACHE_REFERENCES = 2,
67 PERF_COUNT_HW_CACHE_MISSES = 3,
68 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
69 PERF_COUNT_HW_BRANCH_MISSES = 5,
70 PERF_COUNT_HW_BUS_CYCLES = 6,
71 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
72 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
73 PERF_COUNT_HW_REF_CPU_CYCLES = 9,
74
75 PERF_COUNT_HW_MAX, /* non-ABI */
76};
77
78/*
79 * Generalized hardware cache events:
80 *
81 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
82 * { read, write, prefetch } x
83 * { accesses, misses }
84 */
85enum perf_hw_cache_id {
86 PERF_COUNT_HW_CACHE_L1D = 0,
87 PERF_COUNT_HW_CACHE_L1I = 1,
88 PERF_COUNT_HW_CACHE_LL = 2,
89 PERF_COUNT_HW_CACHE_DTLB = 3,
90 PERF_COUNT_HW_CACHE_ITLB = 4,
91 PERF_COUNT_HW_CACHE_BPU = 5,
92 PERF_COUNT_HW_CACHE_NODE = 6,
93
94 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
95};
96
97enum perf_hw_cache_op_id {
98 PERF_COUNT_HW_CACHE_OP_READ = 0,
99 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
100 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
101
102 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
103};
104
105enum perf_hw_cache_op_result_id {
106 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
107 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
108
109 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
110};
111
112/*
113 * Special "software" events provided by the kernel, even if the hardware
114 * does not support performance events. These events measure various
115 * physical and sw events of the kernel (and allow the profiling of them as
116 * well):
117 */
118enum perf_sw_ids {
119 PERF_COUNT_SW_CPU_CLOCK = 0,
120 PERF_COUNT_SW_TASK_CLOCK = 1,
121 PERF_COUNT_SW_PAGE_FAULTS = 2,
122 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
123 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
124 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
125 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
126 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
127 PERF_COUNT_SW_EMULATION_FAULTS = 8,
128 PERF_COUNT_SW_DUMMY = 9,
129 PERF_COUNT_SW_BPF_OUTPUT = 10,
130 PERF_COUNT_SW_CGROUP_SWITCHES = 11,
131
132 PERF_COUNT_SW_MAX, /* non-ABI */
133};
134
135/*
136 * Bits that can be set in attr.sample_type to request information
137 * in the overflow packets.
138 */
139enum perf_event_sample_format {
140 PERF_SAMPLE_IP = 1U << 0,
141 PERF_SAMPLE_TID = 1U << 1,
142 PERF_SAMPLE_TIME = 1U << 2,
143 PERF_SAMPLE_ADDR = 1U << 3,
144 PERF_SAMPLE_READ = 1U << 4,
145 PERF_SAMPLE_CALLCHAIN = 1U << 5,
146 PERF_SAMPLE_ID = 1U << 6,
147 PERF_SAMPLE_CPU = 1U << 7,
148 PERF_SAMPLE_PERIOD = 1U << 8,
149 PERF_SAMPLE_STREAM_ID = 1U << 9,
150 PERF_SAMPLE_RAW = 1U << 10,
151 PERF_SAMPLE_BRANCH_STACK = 1U << 11,
152 PERF_SAMPLE_REGS_USER = 1U << 12,
153 PERF_SAMPLE_STACK_USER = 1U << 13,
154 PERF_SAMPLE_WEIGHT = 1U << 14,
155 PERF_SAMPLE_DATA_SRC = 1U << 15,
156 PERF_SAMPLE_IDENTIFIER = 1U << 16,
157 PERF_SAMPLE_TRANSACTION = 1U << 17,
158 PERF_SAMPLE_REGS_INTR = 1U << 18,
159 PERF_SAMPLE_PHYS_ADDR = 1U << 19,
160 PERF_SAMPLE_AUX = 1U << 20,
161 PERF_SAMPLE_CGROUP = 1U << 21,
162 PERF_SAMPLE_DATA_PAGE_SIZE = 1U << 22,
163 PERF_SAMPLE_CODE_PAGE_SIZE = 1U << 23,
164 PERF_SAMPLE_WEIGHT_STRUCT = 1U << 24,
165
166 PERF_SAMPLE_MAX = 1U << 25, /* non-ABI */
167
168 __PERF_SAMPLE_CALLCHAIN_EARLY = 1ULL << 63, /* non-ABI; internal use */
169};
170
171#define PERF_SAMPLE_WEIGHT_TYPE (PERF_SAMPLE_WEIGHT | PERF_SAMPLE_WEIGHT_STRUCT)
172/*
173 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
174 *
175 * If the user does not pass priv level information via branch_sample_type,
176 * the kernel uses the event's priv level. Branch and event priv levels do
177 * not have to match. Branch priv level is checked for permissions.
178 *
179 * The branch types can be combined, however BRANCH_ANY covers all types
180 * of branches and therefore it supersedes all the other types.
181 */
182enum perf_branch_sample_type_shift {
183 PERF_SAMPLE_BRANCH_USER_SHIFT = 0, /* user branches */
184 PERF_SAMPLE_BRANCH_KERNEL_SHIFT = 1, /* kernel branches */
185 PERF_SAMPLE_BRANCH_HV_SHIFT = 2, /* hypervisor branches */
186
187 PERF_SAMPLE_BRANCH_ANY_SHIFT = 3, /* any branch types */
188 PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT = 4, /* any call branch */
189 PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT = 5, /* any return branch */
190 PERF_SAMPLE_BRANCH_IND_CALL_SHIFT = 6, /* indirect calls */
191 PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT = 7, /* transaction aborts */
192 PERF_SAMPLE_BRANCH_IN_TX_SHIFT = 8, /* in transaction */
193 PERF_SAMPLE_BRANCH_NO_TX_SHIFT = 9, /* not in transaction */
194 PERF_SAMPLE_BRANCH_COND_SHIFT = 10, /* conditional branches */
195
196 PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT = 11, /* call/ret stack */
197 PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT = 12, /* indirect jumps */
198 PERF_SAMPLE_BRANCH_CALL_SHIFT = 13, /* direct call */
199
200 PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT = 14, /* no flags */
201 PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT = 15, /* no cycles */
202
203 PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT = 16, /* save branch type */
204
205 PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT = 17, /* save low level index of raw branch records */
206
207 PERF_SAMPLE_BRANCH_MAX_SHIFT /* non-ABI */
208};
209
210enum perf_branch_sample_type {
211 PERF_SAMPLE_BRANCH_USER = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
212 PERF_SAMPLE_BRANCH_KERNEL = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
213 PERF_SAMPLE_BRANCH_HV = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
214
215 PERF_SAMPLE_BRANCH_ANY = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
216 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
217 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
218 PERF_SAMPLE_BRANCH_IND_CALL = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
219 PERF_SAMPLE_BRANCH_ABORT_TX = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
220 PERF_SAMPLE_BRANCH_IN_TX = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
221 PERF_SAMPLE_BRANCH_NO_TX = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
222 PERF_SAMPLE_BRANCH_COND = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
223
224 PERF_SAMPLE_BRANCH_CALL_STACK = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
225 PERF_SAMPLE_BRANCH_IND_JUMP = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
226 PERF_SAMPLE_BRANCH_CALL = 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
227
228 PERF_SAMPLE_BRANCH_NO_FLAGS = 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
229 PERF_SAMPLE_BRANCH_NO_CYCLES = 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
230
231 PERF_SAMPLE_BRANCH_TYPE_SAVE =
232 1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT,
233
234 PERF_SAMPLE_BRANCH_HW_INDEX = 1U << PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT,
235
236 PERF_SAMPLE_BRANCH_MAX = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
237};
238
239/*
240 * Common flow change classification
241 */
242enum {
243 PERF_BR_UNKNOWN = 0, /* unknown */
244 PERF_BR_COND = 1, /* conditional */
245 PERF_BR_UNCOND = 2, /* unconditional */
246 PERF_BR_IND = 3, /* indirect */
247 PERF_BR_CALL = 4, /* function call */
248 PERF_BR_IND_CALL = 5, /* indirect function call */
249 PERF_BR_RET = 6, /* function return */
250 PERF_BR_SYSCALL = 7, /* syscall */
251 PERF_BR_SYSRET = 8, /* syscall return */
252 PERF_BR_COND_CALL = 9, /* conditional function call */
253 PERF_BR_COND_RET = 10, /* conditional function return */
254 PERF_BR_MAX,
255};
256
257#define PERF_SAMPLE_BRANCH_PLM_ALL \
258 (PERF_SAMPLE_BRANCH_USER|\
259 PERF_SAMPLE_BRANCH_KERNEL|\
260 PERF_SAMPLE_BRANCH_HV)
261
262/*
263 * Values to determine ABI of the registers dump.
264 */
265enum perf_sample_regs_abi {
266 PERF_SAMPLE_REGS_ABI_NONE = 0,
267 PERF_SAMPLE_REGS_ABI_32 = 1,
268 PERF_SAMPLE_REGS_ABI_64 = 2,
269};
270
271/*
272 * Values for the memory transaction event qualifier, mostly for
273 * abort events. Multiple bits can be set.
274 */
275enum {
276 PERF_TXN_ELISION = (1 << 0), /* From elision */
277 PERF_TXN_TRANSACTION = (1 << 1), /* From transaction */
278 PERF_TXN_SYNC = (1 << 2), /* Instruction is related */
279 PERF_TXN_ASYNC = (1 << 3), /* Instruction not related */
280 PERF_TXN_RETRY = (1 << 4), /* Retry possible */
281 PERF_TXN_CONFLICT = (1 << 5), /* Conflict abort */
282 PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
283 PERF_TXN_CAPACITY_READ = (1 << 7), /* Capacity read abort */
284
285 PERF_TXN_MAX = (1 << 8), /* non-ABI */
286
287 /* bits 32..63 are reserved for the abort code */
288
289 PERF_TXN_ABORT_MASK = (0xffffffffULL << 32),
290 PERF_TXN_ABORT_SHIFT = 32,
291};
292
293/*
294 * The format of the data returned by read() on a perf event fd,
295 * as specified by attr.read_format:
296 *
297 * struct read_format {
298 * { u64 value;
299 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
300 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
301 * { u64 id; } && PERF_FORMAT_ID
302 * } && !PERF_FORMAT_GROUP
303 *
304 * { u64 nr;
305 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
306 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
307 * { u64 value;
308 * { u64 id; } && PERF_FORMAT_ID
309 * } cntr[nr];
310 * } && PERF_FORMAT_GROUP
311 * };
312 */
313enum perf_event_read_format {
314 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
315 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
316 PERF_FORMAT_ID = 1U << 2,
317 PERF_FORMAT_GROUP = 1U << 3,
318
319 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
320};
321
322#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
323#define PERF_ATTR_SIZE_VER1 72 /* add: config2 */
324#define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */
325#define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */
326 /* add: sample_stack_user */
327#define PERF_ATTR_SIZE_VER4 104 /* add: sample_regs_intr */
328#define PERF_ATTR_SIZE_VER5 112 /* add: aux_watermark */
329#define PERF_ATTR_SIZE_VER6 120 /* add: aux_sample_size */
330#define PERF_ATTR_SIZE_VER7 128 /* add: sig_data */
331
332/*
333 * Hardware event_id to monitor via a performance monitoring event:
334 *
335 * @sample_max_stack: Max number of frame pointers in a callchain,
336 * should be < /proc/sys/kernel/perf_event_max_stack
337 */
338struct perf_event_attr {
339
340 /*
341 * Major type: hardware/software/tracepoint/etc.
342 */
343 __u32 type;
344
345 /*
346 * Size of the attr structure, for fwd/bwd compat.
347 */
348 __u32 size;
349
350 /*
351 * Type specific configuration information.
352 */
353 __u64 config;
354
355 union {
356 __u64 sample_period;
357 __u64 sample_freq;
358 };
359
360 __u64 sample_type;
361 __u64 read_format;
362
363 __u64 disabled : 1, /* off by default */
364 inherit : 1, /* children inherit it */
365 pinned : 1, /* must always be on PMU */
366 exclusive : 1, /* only group on PMU */
367 exclude_user : 1, /* don't count user */
368 exclude_kernel : 1, /* ditto kernel */
369 exclude_hv : 1, /* ditto hypervisor */
370 exclude_idle : 1, /* don't count when idle */
371 mmap : 1, /* include mmap data */
372 comm : 1, /* include comm data */
373 freq : 1, /* use freq, not period */
374 inherit_stat : 1, /* per task counts */
375 enable_on_exec : 1, /* next exec enables */
376 task : 1, /* trace fork/exit */
377 watermark : 1, /* wakeup_watermark */
378 /*
379 * precise_ip:
380 *
381 * 0 - SAMPLE_IP can have arbitrary skid
382 * 1 - SAMPLE_IP must have constant skid
383 * 2 - SAMPLE_IP requested to have 0 skid
384 * 3 - SAMPLE_IP must have 0 skid
385 *
386 * See also PERF_RECORD_MISC_EXACT_IP
387 */
388 precise_ip : 2, /* skid constraint */
389 mmap_data : 1, /* non-exec mmap data */
390 sample_id_all : 1, /* sample_type all events */
391
392 exclude_host : 1, /* don't count in host */
393 exclude_guest : 1, /* don't count in guest */
394
395 exclude_callchain_kernel : 1, /* exclude kernel callchains */
396 exclude_callchain_user : 1, /* exclude user callchains */
397 mmap2 : 1, /* include mmap with inode data */
398 comm_exec : 1, /* flag comm events that are due to an exec */
399 use_clockid : 1, /* use @clockid for time fields */
400 context_switch : 1, /* context switch data */
401 write_backward : 1, /* Write ring buffer from end to beginning */
402 namespaces : 1, /* include namespaces data */
403 ksymbol : 1, /* include ksymbol events */
404 bpf_event : 1, /* include bpf events */
405 aux_output : 1, /* generate AUX records instead of events */
406 cgroup : 1, /* include cgroup events */
407 text_poke : 1, /* include text poke events */
408 build_id : 1, /* use build id in mmap2 events */
409 inherit_thread : 1, /* children only inherit if cloned with CLONE_THREAD */
410 remove_on_exec : 1, /* event is removed from task on exec */
411 sigtrap : 1, /* send synchronous SIGTRAP on event */
412 __reserved_1 : 26;
413
414 union {
415 __u32 wakeup_events; /* wakeup every n events */
416 __u32 wakeup_watermark; /* bytes before wakeup */
417 };
418
419 __u32 bp_type;
420 union {
421 __u64 bp_addr;
422 __u64 kprobe_func; /* for perf_kprobe */
423 __u64 uprobe_path; /* for perf_uprobe */
424 __u64 config1; /* extension of config */
425 };
426 union {
427 __u64 bp_len;
428 __u64 kprobe_addr; /* when kprobe_func == NULL */
429 __u64 probe_offset; /* for perf_[k,u]probe */
430 __u64 config2; /* extension of config1 */
431 };
432 __u64 branch_sample_type; /* enum perf_branch_sample_type */
433
434 /*
435 * Defines set of user regs to dump on samples.
436 * See asm/perf_regs.h for details.
437 */
438 __u64 sample_regs_user;
439
440 /*
441 * Defines size of the user stack to dump on samples.
442 */
443 __u32 sample_stack_user;
444
445 __s32 clockid;
446 /*
447 * Defines set of regs to dump for each sample
448 * state captured on:
449 * - precise = 0: PMU interrupt
450 * - precise > 0: sampled instruction
451 *
452 * See asm/perf_regs.h for details.
453 */
454 __u64 sample_regs_intr;
455
456 /*
457 * Wakeup watermark for AUX area
458 */
459 __u32 aux_watermark;
460 __u16 sample_max_stack;
461 __u16 __reserved_2;
462 __u32 aux_sample_size;
463 __u32 __reserved_3;
464
465 /*
466 * User provided data if sigtrap=1, passed back to user via
467 * siginfo_t::si_perf_data, e.g. to permit user to identify the event.
468 * Note, siginfo_t::si_perf_data is long-sized, and sig_data will be
469 * truncated accordingly on 32 bit architectures.
470 */
471 __u64 sig_data;
472};
473
474/*
475 * Structure used by below PERF_EVENT_IOC_QUERY_BPF command
476 * to query bpf programs attached to the same perf tracepoint
477 * as the given perf event.
478 */
479struct perf_event_query_bpf {
480 /*
481 * The below ids array length
482 */
483 __u32 ids_len;
484 /*
485 * Set by the kernel to indicate the number of
486 * available programs
487 */
488 __u32 prog_cnt;
489 /*
490 * User provided buffer to store program ids
491 */
492 __u32 ids[0];
493};
494
495/*
496 * Ioctls that can be done on a perf event fd:
497 */
498#define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
499#define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
500#define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
501#define PERF_EVENT_IOC_RESET _IO ('$', 3)
502#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
503#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
504#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
505#define PERF_EVENT_IOC_ID _IOR('$', 7, __u64 *)
506#define PERF_EVENT_IOC_SET_BPF _IOW('$', 8, __u32)
507#define PERF_EVENT_IOC_PAUSE_OUTPUT _IOW('$', 9, __u32)
508#define PERF_EVENT_IOC_QUERY_BPF _IOWR('$', 10, struct perf_event_query_bpf *)
509#define PERF_EVENT_IOC_MODIFY_ATTRIBUTES _IOW('$', 11, struct perf_event_attr *)
510
511enum perf_event_ioc_flags {
512 PERF_IOC_FLAG_GROUP = 1U << 0,
513};
514
515/*
516 * Structure of the page that can be mapped via mmap
517 */
518struct perf_event_mmap_page {
519 __u32 version; /* version number of this structure */
520 __u32 compat_version; /* lowest version this is compat with */
521
522 /*
523 * Bits needed to read the hw events in user-space.
524 *
525 * u32 seq, time_mult, time_shift, index, width;
526 * u64 count, enabled, running;
527 * u64 cyc, time_offset;
528 * s64 pmc = 0;
529 *
530 * do {
531 * seq = pc->lock;
532 * barrier()
533 *
534 * enabled = pc->time_enabled;
535 * running = pc->time_running;
536 *
537 * if (pc->cap_usr_time && enabled != running) {
538 * cyc = rdtsc();
539 * time_offset = pc->time_offset;
540 * time_mult = pc->time_mult;
541 * time_shift = pc->time_shift;
542 * }
543 *
544 * index = pc->index;
545 * count = pc->offset;
546 * if (pc->cap_user_rdpmc && index) {
547 * width = pc->pmc_width;
548 * pmc = rdpmc(index - 1);
549 * }
550 *
551 * barrier();
552 * } while (pc->lock != seq);
553 *
554 * NOTE: for obvious reason this only works on self-monitoring
555 * processes.
556 */
557 __u32 lock; /* seqlock for synchronization */
558 __u32 index; /* hardware event identifier */
559 __s64 offset; /* add to hardware event value */
560 __u64 time_enabled; /* time event active */
561 __u64 time_running; /* time event on cpu */
562 union {
563 __u64 capabilities;
564 struct {
565 __u64 cap_bit0 : 1, /* Always 0, deprecated, see commit 860f085b74e9 */
566 cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */
567
568 cap_user_rdpmc : 1, /* The RDPMC instruction can be used to read counts */
569 cap_user_time : 1, /* The time_{shift,mult,offset} fields are used */
570 cap_user_time_zero : 1, /* The time_zero field is used */
571 cap_user_time_short : 1, /* the time_{cycle,mask} fields are used */
572 cap_____res : 58;
573 };
574 };
575
576 /*
577 * If cap_user_rdpmc this field provides the bit-width of the value
578 * read using the rdpmc() or equivalent instruction. This can be used
579 * to sign extend the result like:
580 *
581 * pmc <<= 64 - width;
582 * pmc >>= 64 - width; // signed shift right
583 * count += pmc;
584 */
585 __u16 pmc_width;
586
587 /*
588 * If cap_usr_time the below fields can be used to compute the time
589 * delta since time_enabled (in ns) using rdtsc or similar.
590 *
591 * u64 quot, rem;
592 * u64 delta;
593 *
594 * quot = (cyc >> time_shift);
595 * rem = cyc & (((u64)1 << time_shift) - 1);
596 * delta = time_offset + quot * time_mult +
597 * ((rem * time_mult) >> time_shift);
598 *
599 * Where time_offset,time_mult,time_shift and cyc are read in the
600 * seqcount loop described above. This delta can then be added to
601 * enabled and possible running (if index), improving the scaling:
602 *
603 * enabled += delta;
604 * if (index)
605 * running += delta;
606 *
607 * quot = count / running;
608 * rem = count % running;
609 * count = quot * enabled + (rem * enabled) / running;
610 */
611 __u16 time_shift;
612 __u32 time_mult;
613 __u64 time_offset;
614 /*
615 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
616 * from sample timestamps.
617 *
618 * time = timestamp - time_zero;
619 * quot = time / time_mult;
620 * rem = time % time_mult;
621 * cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
622 *
623 * And vice versa:
624 *
625 * quot = cyc >> time_shift;
626 * rem = cyc & (((u64)1 << time_shift) - 1);
627 * timestamp = time_zero + quot * time_mult +
628 * ((rem * time_mult) >> time_shift);
629 */
630 __u64 time_zero;
631
632 __u32 size; /* Header size up to __reserved[] fields. */
633 __u32 __reserved_1;
634
635 /*
636 * If cap_usr_time_short, the hardware clock is less than 64bit wide
637 * and we must compute the 'cyc' value, as used by cap_usr_time, as:
638 *
639 * cyc = time_cycles + ((cyc - time_cycles) & time_mask)
640 *
641 * NOTE: this form is explicitly chosen such that cap_usr_time_short
642 * is a correction on top of cap_usr_time, and code that doesn't
643 * know about cap_usr_time_short still works under the assumption
644 * the counter doesn't wrap.
645 */
646 __u64 time_cycles;
647 __u64 time_mask;
648
649 /*
650 * Hole for extension of the self monitor capabilities
651 */
652
653 __u8 __reserved[116*8]; /* align to 1k. */
654
655 /*
656 * Control data for the mmap() data buffer.
657 *
658 * User-space reading the @data_head value should issue an smp_rmb(),
659 * after reading this value.
660 *
661 * When the mapping is PROT_WRITE the @data_tail value should be
662 * written by userspace to reflect the last read data, after issueing
663 * an smp_mb() to separate the data read from the ->data_tail store.
664 * In this case the kernel will not over-write unread data.
665 *
666 * See perf_output_put_handle() for the data ordering.
667 *
668 * data_{offset,size} indicate the location and size of the perf record
669 * buffer within the mmapped area.
670 */
671 __u64 data_head; /* head in the data section */
672 __u64 data_tail; /* user-space written tail */
673 __u64 data_offset; /* where the buffer starts */
674 __u64 data_size; /* data buffer size */
675
676 /*
677 * AUX area is defined by aux_{offset,size} fields that should be set
678 * by the userspace, so that
679 *
680 * aux_offset >= data_offset + data_size
681 *
682 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
683 *
684 * Ring buffer pointers aux_{head,tail} have the same semantics as
685 * data_{head,tail} and same ordering rules apply.
686 */
687 __u64 aux_head;
688 __u64 aux_tail;
689 __u64 aux_offset;
690 __u64 aux_size;
691};
692
693/*
694 * The current state of perf_event_header::misc bits usage:
695 * ('|' used bit, '-' unused bit)
696 *
697 * 012 CDEF
698 * |||---------||||
699 *
700 * Where:
701 * 0-2 CPUMODE_MASK
702 *
703 * C PROC_MAP_PARSE_TIMEOUT
704 * D MMAP_DATA / COMM_EXEC / FORK_EXEC / SWITCH_OUT
705 * E MMAP_BUILD_ID / EXACT_IP / SCHED_OUT_PREEMPT
706 * F (reserved)
707 */
708
709#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
710#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
711#define PERF_RECORD_MISC_KERNEL (1 << 0)
712#define PERF_RECORD_MISC_USER (2 << 0)
713#define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
714#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
715#define PERF_RECORD_MISC_GUEST_USER (5 << 0)
716
717/*
718 * Indicates that /proc/PID/maps parsing are truncated by time out.
719 */
720#define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12)
721/*
722 * Following PERF_RECORD_MISC_* are used on different
723 * events, so can reuse the same bit position:
724 *
725 * PERF_RECORD_MISC_MMAP_DATA - PERF_RECORD_MMAP* events
726 * PERF_RECORD_MISC_COMM_EXEC - PERF_RECORD_COMM event
727 * PERF_RECORD_MISC_FORK_EXEC - PERF_RECORD_FORK event (perf internal)
728 * PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events
729 */
730#define PERF_RECORD_MISC_MMAP_DATA (1 << 13)
731#define PERF_RECORD_MISC_COMM_EXEC (1 << 13)
732#define PERF_RECORD_MISC_FORK_EXEC (1 << 13)
733#define PERF_RECORD_MISC_SWITCH_OUT (1 << 13)
734/*
735 * These PERF_RECORD_MISC_* flags below are safely reused
736 * for the following events:
737 *
738 * PERF_RECORD_MISC_EXACT_IP - PERF_RECORD_SAMPLE of precise events
739 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT - PERF_RECORD_SWITCH* events
740 * PERF_RECORD_MISC_MMAP_BUILD_ID - PERF_RECORD_MMAP2 event
741 *
742 *
743 * PERF_RECORD_MISC_EXACT_IP:
744 * Indicates that the content of PERF_SAMPLE_IP points to
745 * the actual instruction that triggered the event. See also
746 * perf_event_attr::precise_ip.
747 *
748 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT:
749 * Indicates that thread was preempted in TASK_RUNNING state.
750 *
751 * PERF_RECORD_MISC_MMAP_BUILD_ID:
752 * Indicates that mmap2 event carries build id data.
753 */
754#define PERF_RECORD_MISC_EXACT_IP (1 << 14)
755#define PERF_RECORD_MISC_SWITCH_OUT_PREEMPT (1 << 14)
756#define PERF_RECORD_MISC_MMAP_BUILD_ID (1 << 14)
757/*
758 * Reserve the last bit to indicate some extended misc field
759 */
760#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
761
762struct perf_event_header {
763 __u32 type;
764 __u16 misc;
765 __u16 size;
766};
767
768struct perf_ns_link_info {
769 __u64 dev;
770 __u64 ino;
771};
772
773enum {
774 NET_NS_INDEX = 0,
775 UTS_NS_INDEX = 1,
776 IPC_NS_INDEX = 2,
777 PID_NS_INDEX = 3,
778 USER_NS_INDEX = 4,
779 MNT_NS_INDEX = 5,
780 CGROUP_NS_INDEX = 6,
781
782 NR_NAMESPACES, /* number of available namespaces */
783};
784
785enum perf_event_type {
786
787 /*
788 * If perf_event_attr.sample_id_all is set then all event types will
789 * have the sample_type selected fields related to where/when
790 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
791 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
792 * just after the perf_event_header and the fields already present for
793 * the existing fields, i.e. at the end of the payload. That way a newer
794 * perf.data file will be supported by older perf tools, with these new
795 * optional fields being ignored.
796 *
797 * struct sample_id {
798 * { u32 pid, tid; } && PERF_SAMPLE_TID
799 * { u64 time; } && PERF_SAMPLE_TIME
800 * { u64 id; } && PERF_SAMPLE_ID
801 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
802 * { u32 cpu, res; } && PERF_SAMPLE_CPU
803 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
804 * } && perf_event_attr::sample_id_all
805 *
806 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. The
807 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
808 * relative to header.size.
809 */
810
811 /*
812 * The MMAP events record the PROT_EXEC mappings so that we can
813 * correlate userspace IPs to code. They have the following structure:
814 *
815 * struct {
816 * struct perf_event_header header;
817 *
818 * u32 pid, tid;
819 * u64 addr;
820 * u64 len;
821 * u64 pgoff;
822 * char filename[];
823 * struct sample_id sample_id;
824 * };
825 */
826 PERF_RECORD_MMAP = 1,
827
828 /*
829 * struct {
830 * struct perf_event_header header;
831 * u64 id;
832 * u64 lost;
833 * struct sample_id sample_id;
834 * };
835 */
836 PERF_RECORD_LOST = 2,
837
838 /*
839 * struct {
840 * struct perf_event_header header;
841 *
842 * u32 pid, tid;
843 * char comm[];
844 * struct sample_id sample_id;
845 * };
846 */
847 PERF_RECORD_COMM = 3,
848
849 /*
850 * struct {
851 * struct perf_event_header header;
852 * u32 pid, ppid;
853 * u32 tid, ptid;
854 * u64 time;
855 * struct sample_id sample_id;
856 * };
857 */
858 PERF_RECORD_EXIT = 4,
859
860 /*
861 * struct {
862 * struct perf_event_header header;
863 * u64 time;
864 * u64 id;
865 * u64 stream_id;
866 * struct sample_id sample_id;
867 * };
868 */
869 PERF_RECORD_THROTTLE = 5,
870 PERF_RECORD_UNTHROTTLE = 6,
871
872 /*
873 * struct {
874 * struct perf_event_header header;
875 * u32 pid, ppid;
876 * u32 tid, ptid;
877 * u64 time;
878 * struct sample_id sample_id;
879 * };
880 */
881 PERF_RECORD_FORK = 7,
882
883 /*
884 * struct {
885 * struct perf_event_header header;
886 * u32 pid, tid;
887 *
888 * struct read_format values;
889 * struct sample_id sample_id;
890 * };
891 */
892 PERF_RECORD_READ = 8,
893
894 /*
895 * struct {
896 * struct perf_event_header header;
897 *
898 * #
899 * # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
900 * # The advantage of PERF_SAMPLE_IDENTIFIER is that its position
901 * # is fixed relative to header.
902 * #
903 *
904 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
905 * { u64 ip; } && PERF_SAMPLE_IP
906 * { u32 pid, tid; } && PERF_SAMPLE_TID
907 * { u64 time; } && PERF_SAMPLE_TIME
908 * { u64 addr; } && PERF_SAMPLE_ADDR
909 * { u64 id; } && PERF_SAMPLE_ID
910 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
911 * { u32 cpu, res; } && PERF_SAMPLE_CPU
912 * { u64 period; } && PERF_SAMPLE_PERIOD
913 *
914 * { struct read_format values; } && PERF_SAMPLE_READ
915 *
916 * { u64 nr,
917 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
918 *
919 * #
920 * # The RAW record below is opaque data wrt the ABI
921 * #
922 * # That is, the ABI doesn't make any promises wrt to
923 * # the stability of its content, it may vary depending
924 * # on event, hardware, kernel version and phase of
925 * # the moon.
926 * #
927 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
928 * #
929 *
930 * { u32 size;
931 * char data[size];}&& PERF_SAMPLE_RAW
932 *
933 * { u64 nr;
934 * { u64 hw_idx; } && PERF_SAMPLE_BRANCH_HW_INDEX
935 * { u64 from, to, flags } lbr[nr];
936 * } && PERF_SAMPLE_BRANCH_STACK
937 *
938 * { u64 abi; # enum perf_sample_regs_abi
939 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
940 *
941 * { u64 size;
942 * char data[size];
943 * u64 dyn_size; } && PERF_SAMPLE_STACK_USER
944 *
945 * { union perf_sample_weight
946 * {
947 * u64 full; && PERF_SAMPLE_WEIGHT
948 * #if defined(__LITTLE_ENDIAN_BITFIELD)
949 * struct {
950 * u32 var1_dw;
951 * u16 var2_w;
952 * u16 var3_w;
953 * } && PERF_SAMPLE_WEIGHT_STRUCT
954 * #elif defined(__BIG_ENDIAN_BITFIELD)
955 * struct {
956 * u16 var3_w;
957 * u16 var2_w;
958 * u32 var1_dw;
959 * } && PERF_SAMPLE_WEIGHT_STRUCT
960 * #endif
961 * }
962 * }
963 * { u64 data_src; } && PERF_SAMPLE_DATA_SRC
964 * { u64 transaction; } && PERF_SAMPLE_TRANSACTION
965 * { u64 abi; # enum perf_sample_regs_abi
966 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
967 * { u64 phys_addr;} && PERF_SAMPLE_PHYS_ADDR
968 * { u64 size;
969 * char data[size]; } && PERF_SAMPLE_AUX
970 * { u64 data_page_size;} && PERF_SAMPLE_DATA_PAGE_SIZE
971 * { u64 code_page_size;} && PERF_SAMPLE_CODE_PAGE_SIZE
972 * };
973 */
974 PERF_RECORD_SAMPLE = 9,
975
976 /*
977 * The MMAP2 records are an augmented version of MMAP, they add
978 * maj, min, ino numbers to be used to uniquely identify each mapping
979 *
980 * struct {
981 * struct perf_event_header header;
982 *
983 * u32 pid, tid;
984 * u64 addr;
985 * u64 len;
986 * u64 pgoff;
987 * union {
988 * struct {
989 * u32 maj;
990 * u32 min;
991 * u64 ino;
992 * u64 ino_generation;
993 * };
994 * struct {
995 * u8 build_id_size;
996 * u8 __reserved_1;
997 * u16 __reserved_2;
998 * u8 build_id[20];
999 * };
1000 * };
1001 * u32 prot, flags;
1002 * char filename[];
1003 * struct sample_id sample_id;
1004 * };
1005 */
1006 PERF_RECORD_MMAP2 = 10,
1007
1008 /*
1009 * Records that new data landed in the AUX buffer part.
1010 *
1011 * struct {
1012 * struct perf_event_header header;
1013 *
1014 * u64 aux_offset;
1015 * u64 aux_size;
1016 * u64 flags;
1017 * struct sample_id sample_id;
1018 * };
1019 */
1020 PERF_RECORD_AUX = 11,
1021
1022 /*
1023 * Indicates that instruction trace has started
1024 *
1025 * struct {
1026 * struct perf_event_header header;
1027 * u32 pid;
1028 * u32 tid;
1029 * struct sample_id sample_id;
1030 * };
1031 */
1032 PERF_RECORD_ITRACE_START = 12,
1033
1034 /*
1035 * Records the dropped/lost sample number.
1036 *
1037 * struct {
1038 * struct perf_event_header header;
1039 *
1040 * u64 lost;
1041 * struct sample_id sample_id;
1042 * };
1043 */
1044 PERF_RECORD_LOST_SAMPLES = 13,
1045
1046 /*
1047 * Records a context switch in or out (flagged by
1048 * PERF_RECORD_MISC_SWITCH_OUT). See also
1049 * PERF_RECORD_SWITCH_CPU_WIDE.
1050 *
1051 * struct {
1052 * struct perf_event_header header;
1053 * struct sample_id sample_id;
1054 * };
1055 */
1056 PERF_RECORD_SWITCH = 14,
1057
1058 /*
1059 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
1060 * next_prev_tid that are the next (switching out) or previous
1061 * (switching in) pid/tid.
1062 *
1063 * struct {
1064 * struct perf_event_header header;
1065 * u32 next_prev_pid;
1066 * u32 next_prev_tid;
1067 * struct sample_id sample_id;
1068 * };
1069 */
1070 PERF_RECORD_SWITCH_CPU_WIDE = 15,
1071
1072 /*
1073 * struct {
1074 * struct perf_event_header header;
1075 * u32 pid;
1076 * u32 tid;
1077 * u64 nr_namespaces;
1078 * { u64 dev, inode; } [nr_namespaces];
1079 * struct sample_id sample_id;
1080 * };
1081 */
1082 PERF_RECORD_NAMESPACES = 16,
1083
1084 /*
1085 * Record ksymbol register/unregister events:
1086 *
1087 * struct {
1088 * struct perf_event_header header;
1089 * u64 addr;
1090 * u32 len;
1091 * u16 ksym_type;
1092 * u16 flags;
1093 * char name[];
1094 * struct sample_id sample_id;
1095 * };
1096 */
1097 PERF_RECORD_KSYMBOL = 17,
1098
1099 /*
1100 * Record bpf events:
1101 * enum perf_bpf_event_type {
1102 * PERF_BPF_EVENT_UNKNOWN = 0,
1103 * PERF_BPF_EVENT_PROG_LOAD = 1,
1104 * PERF_BPF_EVENT_PROG_UNLOAD = 2,
1105 * };
1106 *
1107 * struct {
1108 * struct perf_event_header header;
1109 * u16 type;
1110 * u16 flags;
1111 * u32 id;
1112 * u8 tag[BPF_TAG_SIZE];
1113 * struct sample_id sample_id;
1114 * };
1115 */
1116 PERF_RECORD_BPF_EVENT = 18,
1117
1118 /*
1119 * struct {
1120 * struct perf_event_header header;
1121 * u64 id;
1122 * char path[];
1123 * struct sample_id sample_id;
1124 * };
1125 */
1126 PERF_RECORD_CGROUP = 19,
1127
1128 /*
1129 * Records changes to kernel text i.e. self-modified code. 'old_len' is
1130 * the number of old bytes, 'new_len' is the number of new bytes. Either
1131 * 'old_len' or 'new_len' may be zero to indicate, for example, the
1132 * addition or removal of a trampoline. 'bytes' contains the old bytes
1133 * followed immediately by the new bytes.
1134 *
1135 * struct {
1136 * struct perf_event_header header;
1137 * u64 addr;
1138 * u16 old_len;
1139 * u16 new_len;
1140 * u8 bytes[];
1141 * struct sample_id sample_id;
1142 * };
1143 */
1144 PERF_RECORD_TEXT_POKE = 20,
1145
1146 /*
1147 * Data written to the AUX area by hardware due to aux_output, may need
1148 * to be matched to the event by an architecture-specific hardware ID.
1149 * This records the hardware ID, but requires sample_id to provide the
1150 * event ID. e.g. Intel PT uses this record to disambiguate PEBS-via-PT
1151 * records from multiple events.
1152 *
1153 * struct {
1154 * struct perf_event_header header;
1155 * u64 hw_id;
1156 * struct sample_id sample_id;
1157 * };
1158 */
1159 PERF_RECORD_AUX_OUTPUT_HW_ID = 21,
1160
1161 PERF_RECORD_MAX, /* non-ABI */
1162};
1163
1164enum perf_record_ksymbol_type {
1165 PERF_RECORD_KSYMBOL_TYPE_UNKNOWN = 0,
1166 PERF_RECORD_KSYMBOL_TYPE_BPF = 1,
1167 /*
1168 * Out of line code such as kprobe-replaced instructions or optimized
1169 * kprobes or ftrace trampolines.
1170 */
1171 PERF_RECORD_KSYMBOL_TYPE_OOL = 2,
1172 PERF_RECORD_KSYMBOL_TYPE_MAX /* non-ABI */
1173};
1174
1175#define PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER (1 << 0)
1176
1177enum perf_bpf_event_type {
1178 PERF_BPF_EVENT_UNKNOWN = 0,
1179 PERF_BPF_EVENT_PROG_LOAD = 1,
1180 PERF_BPF_EVENT_PROG_UNLOAD = 2,
1181 PERF_BPF_EVENT_MAX, /* non-ABI */
1182};
1183
1184#define PERF_MAX_STACK_DEPTH 127
1185#define PERF_MAX_CONTEXTS_PER_STACK 8
1186
1187enum perf_callchain_context {
1188 PERF_CONTEXT_HV = (__u64)-32,
1189 PERF_CONTEXT_KERNEL = (__u64)-128,
1190 PERF_CONTEXT_USER = (__u64)-512,
1191
1192 PERF_CONTEXT_GUEST = (__u64)-2048,
1193 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
1194 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
1195
1196 PERF_CONTEXT_MAX = (__u64)-4095,
1197};
1198
1199/**
1200 * PERF_RECORD_AUX::flags bits
1201 */
1202#define PERF_AUX_FLAG_TRUNCATED 0x01 /* record was truncated to fit */
1203#define PERF_AUX_FLAG_OVERWRITE 0x02 /* snapshot from overwrite mode */
1204#define PERF_AUX_FLAG_PARTIAL 0x04 /* record contains gaps */
1205#define PERF_AUX_FLAG_COLLISION 0x08 /* sample collided with another */
1206#define PERF_AUX_FLAG_PMU_FORMAT_TYPE_MASK 0xff00 /* PMU specific trace format type */
1207
1208/* CoreSight PMU AUX buffer formats */
1209#define PERF_AUX_FLAG_CORESIGHT_FORMAT_CORESIGHT 0x0000 /* Default for backward compatibility */
1210#define PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW 0x0100 /* Raw format of the source */
1211
1212#define PERF_FLAG_FD_NO_GROUP (1UL << 0)
1213#define PERF_FLAG_FD_OUTPUT (1UL << 1)
1214#define PERF_FLAG_PID_CGROUP (1UL << 2) /* pid=cgroup id, per-cpu mode only */
1215#define PERF_FLAG_FD_CLOEXEC (1UL << 3) /* O_CLOEXEC */
1216
1217#if defined(__LITTLE_ENDIAN_BITFIELD)
1218union perf_mem_data_src {
1219 __u64 val;
1220 struct {
1221 __u64 mem_op:5, /* type of opcode */
1222 mem_lvl:14, /* memory hierarchy level */
1223 mem_snoop:5, /* snoop mode */
1224 mem_lock:2, /* lock instr */
1225 mem_dtlb:7, /* tlb access */
1226 mem_lvl_num:4, /* memory hierarchy level number */
1227 mem_remote:1, /* remote */
1228 mem_snoopx:2, /* snoop mode, ext */
1229 mem_blk:3, /* access blocked */
1230 mem_hops:3, /* hop level */
1231 mem_rsvd:18;
1232 };
1233};
1234#elif defined(__BIG_ENDIAN_BITFIELD)
1235union perf_mem_data_src {
1236 __u64 val;
1237 struct {
1238 __u64 mem_rsvd:18,
1239 mem_hops:3, /* hop level */
1240 mem_blk:3, /* access blocked */
1241 mem_snoopx:2, /* snoop mode, ext */
1242 mem_remote:1, /* remote */
1243 mem_lvl_num:4, /* memory hierarchy level number */
1244 mem_dtlb:7, /* tlb access */
1245 mem_lock:2, /* lock instr */
1246 mem_snoop:5, /* snoop mode */
1247 mem_lvl:14, /* memory hierarchy level */
1248 mem_op:5; /* type of opcode */
1249 };
1250};
1251#else
1252#error "Unknown endianness"
1253#endif
1254
1255/* type of opcode (load/store/prefetch,code) */
1256#define PERF_MEM_OP_NA 0x01 /* not available */
1257#define PERF_MEM_OP_LOAD 0x02 /* load instruction */
1258#define PERF_MEM_OP_STORE 0x04 /* store instruction */
1259#define PERF_MEM_OP_PFETCH 0x08 /* prefetch */
1260#define PERF_MEM_OP_EXEC 0x10 /* code (execution) */
1261#define PERF_MEM_OP_SHIFT 0
1262
1263/*
1264 * PERF_MEM_LVL_* namespace being depricated to some extent in the
1265 * favour of newer composite PERF_MEM_{LVLNUM_,REMOTE_,SNOOPX_} fields.
1266 * Supporting this namespace inorder to not break defined ABIs.
1267 *
1268 * memory hierarchy (memory level, hit or miss)
1269 */
1270#define PERF_MEM_LVL_NA 0x01 /* not available */
1271#define PERF_MEM_LVL_HIT 0x02 /* hit level */
1272#define PERF_MEM_LVL_MISS 0x04 /* miss level */
1273#define PERF_MEM_LVL_L1 0x08 /* L1 */
1274#define PERF_MEM_LVL_LFB 0x10 /* Line Fill Buffer */
1275#define PERF_MEM_LVL_L2 0x20 /* L2 */
1276#define PERF_MEM_LVL_L3 0x40 /* L3 */
1277#define PERF_MEM_LVL_LOC_RAM 0x80 /* Local DRAM */
1278#define PERF_MEM_LVL_REM_RAM1 0x100 /* Remote DRAM (1 hop) */
1279#define PERF_MEM_LVL_REM_RAM2 0x200 /* Remote DRAM (2 hops) */
1280#define PERF_MEM_LVL_REM_CCE1 0x400 /* Remote Cache (1 hop) */
1281#define PERF_MEM_LVL_REM_CCE2 0x800 /* Remote Cache (2 hops) */
1282#define PERF_MEM_LVL_IO 0x1000 /* I/O memory */
1283#define PERF_MEM_LVL_UNC 0x2000 /* Uncached memory */
1284#define PERF_MEM_LVL_SHIFT 5
1285
1286#define PERF_MEM_REMOTE_REMOTE 0x01 /* Remote */
1287#define PERF_MEM_REMOTE_SHIFT 37
1288
1289#define PERF_MEM_LVLNUM_L1 0x01 /* L1 */
1290#define PERF_MEM_LVLNUM_L2 0x02 /* L2 */
1291#define PERF_MEM_LVLNUM_L3 0x03 /* L3 */
1292#define PERF_MEM_LVLNUM_L4 0x04 /* L4 */
1293/* 5-0xa available */
1294#define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */
1295#define PERF_MEM_LVLNUM_LFB 0x0c /* LFB */
1296#define PERF_MEM_LVLNUM_RAM 0x0d /* RAM */
1297#define PERF_MEM_LVLNUM_PMEM 0x0e /* PMEM */
1298#define PERF_MEM_LVLNUM_NA 0x0f /* N/A */
1299
1300#define PERF_MEM_LVLNUM_SHIFT 33
1301
1302/* snoop mode */
1303#define PERF_MEM_SNOOP_NA 0x01 /* not available */
1304#define PERF_MEM_SNOOP_NONE 0x02 /* no snoop */
1305#define PERF_MEM_SNOOP_HIT 0x04 /* snoop hit */
1306#define PERF_MEM_SNOOP_MISS 0x08 /* snoop miss */
1307#define PERF_MEM_SNOOP_HITM 0x10 /* snoop hit modified */
1308#define PERF_MEM_SNOOP_SHIFT 19
1309
1310#define PERF_MEM_SNOOPX_FWD 0x01 /* forward */
1311/* 1 free */
1312#define PERF_MEM_SNOOPX_SHIFT 38
1313
1314/* locked instruction */
1315#define PERF_MEM_LOCK_NA 0x01 /* not available */
1316#define PERF_MEM_LOCK_LOCKED 0x02 /* locked transaction */
1317#define PERF_MEM_LOCK_SHIFT 24
1318
1319/* TLB access */
1320#define PERF_MEM_TLB_NA 0x01 /* not available */
1321#define PERF_MEM_TLB_HIT 0x02 /* hit level */
1322#define PERF_MEM_TLB_MISS 0x04 /* miss level */
1323#define PERF_MEM_TLB_L1 0x08 /* L1 */
1324#define PERF_MEM_TLB_L2 0x10 /* L2 */
1325#define PERF_MEM_TLB_WK 0x20 /* Hardware Walker*/
1326#define PERF_MEM_TLB_OS 0x40 /* OS fault handler */
1327#define PERF_MEM_TLB_SHIFT 26
1328
1329/* Access blocked */
1330#define PERF_MEM_BLK_NA 0x01 /* not available */
1331#define PERF_MEM_BLK_DATA 0x02 /* data could not be forwarded */
1332#define PERF_MEM_BLK_ADDR 0x04 /* address conflict */
1333#define PERF_MEM_BLK_SHIFT 40
1334
1335/* hop level */
1336#define PERF_MEM_HOPS_0 0x01 /* remote core, same node */
1337#define PERF_MEM_HOPS_1 0x02 /* remote node, same socket */
1338#define PERF_MEM_HOPS_2 0x03 /* remote socket, same board */
1339#define PERF_MEM_HOPS_3 0x04 /* remote board */
1340/* 5-7 available */
1341#define PERF_MEM_HOPS_SHIFT 43
1342
1343#define PERF_MEM_S(a, s) \
1344 (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
1345
1346/*
1347 * single taken branch record layout:
1348 *
1349 * from: source instruction (may not always be a branch insn)
1350 * to: branch target
1351 * mispred: branch target was mispredicted
1352 * predicted: branch target was predicted
1353 *
1354 * support for mispred, predicted is optional. In case it
1355 * is not supported mispred = predicted = 0.
1356 *
1357 * in_tx: running in a hardware transaction
1358 * abort: aborting a hardware transaction
1359 * cycles: cycles from last branch (or 0 if not supported)
1360 * type: branch type
1361 */
1362struct perf_branch_entry {
1363 __u64 from;
1364 __u64 to;
1365 __u64 mispred:1, /* target mispredicted */
1366 predicted:1,/* target predicted */
1367 in_tx:1, /* in transaction */
1368 abort:1, /* transaction abort */
1369 cycles:16, /* cycle count to last branch */
1370 type:4, /* branch type */
1371 reserved:40;
1372};
1373
1374union perf_sample_weight {
1375 __u64 full;
1376#if defined(__LITTLE_ENDIAN_BITFIELD)
1377 struct {
1378 __u32 var1_dw;
1379 __u16 var2_w;
1380 __u16 var3_w;
1381 };
1382#elif defined(__BIG_ENDIAN_BITFIELD)
1383 struct {
1384 __u16 var3_w;
1385 __u16 var2_w;
1386 __u32 var1_dw;
1387 };
1388#else
1389#error "Unknown endianness"
1390#endif
1391};
1392
1393#endif /* _UAPI_LINUX_PERF_EVENT_H */