Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2#ifndef _BTRFS_CTREE_H_
3#define _BTRFS_CTREE_H_
4
5#include <linux/btrfs.h>
6#include <linux/types.h>
7#ifdef __KERNEL__
8#include <linux/stddef.h>
9#else
10#include <stddef.h>
11#endif
12
13/*
14 * This header contains the structure definitions and constants used
15 * by file system objects that can be retrieved using
16 * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that
17 * is needed to describe a leaf node's key or item contents.
18 */
19
20/* holds pointers to all of the tree roots */
21#define BTRFS_ROOT_TREE_OBJECTID 1ULL
22
23/* stores information about which extents are in use, and reference counts */
24#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
25
26/*
27 * chunk tree stores translations from logical -> physical block numbering
28 * the super block points to the chunk tree
29 */
30#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
31
32/*
33 * stores information about which areas of a given device are in use.
34 * one per device. The tree of tree roots points to the device tree
35 */
36#define BTRFS_DEV_TREE_OBJECTID 4ULL
37
38/* one per subvolume, storing files and directories */
39#define BTRFS_FS_TREE_OBJECTID 5ULL
40
41/* directory objectid inside the root tree */
42#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
43
44/* holds checksums of all the data extents */
45#define BTRFS_CSUM_TREE_OBJECTID 7ULL
46
47/* holds quota configuration and tracking */
48#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
49
50/* for storing items that use the BTRFS_UUID_KEY* types */
51#define BTRFS_UUID_TREE_OBJECTID 9ULL
52
53/* tracks free space in block groups. */
54#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
55
56/* device stats in the device tree */
57#define BTRFS_DEV_STATS_OBJECTID 0ULL
58
59/* for storing balance parameters in the root tree */
60#define BTRFS_BALANCE_OBJECTID -4ULL
61
62/* orphan objectid for tracking unlinked/truncated files */
63#define BTRFS_ORPHAN_OBJECTID -5ULL
64
65/* does write ahead logging to speed up fsyncs */
66#define BTRFS_TREE_LOG_OBJECTID -6ULL
67#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
68
69/* for space balancing */
70#define BTRFS_TREE_RELOC_OBJECTID -8ULL
71#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
72
73/*
74 * extent checksums all have this objectid
75 * this allows them to share the logging tree
76 * for fsyncs
77 */
78#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
79
80/* For storing free space cache */
81#define BTRFS_FREE_SPACE_OBJECTID -11ULL
82
83/*
84 * The inode number assigned to the special inode for storing
85 * free ino cache
86 */
87#define BTRFS_FREE_INO_OBJECTID -12ULL
88
89/* dummy objectid represents multiple objectids */
90#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
91
92/*
93 * All files have objectids in this range.
94 */
95#define BTRFS_FIRST_FREE_OBJECTID 256ULL
96#define BTRFS_LAST_FREE_OBJECTID -256ULL
97#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
98
99
100/*
101 * the device items go into the chunk tree. The key is in the form
102 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
103 */
104#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
105
106#define BTRFS_BTREE_INODE_OBJECTID 1
107
108#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
109
110#define BTRFS_DEV_REPLACE_DEVID 0ULL
111
112/*
113 * inode items have the data typically returned from stat and store other
114 * info about object characteristics. There is one for every file and dir in
115 * the FS
116 */
117#define BTRFS_INODE_ITEM_KEY 1
118#define BTRFS_INODE_REF_KEY 12
119#define BTRFS_INODE_EXTREF_KEY 13
120#define BTRFS_XATTR_ITEM_KEY 24
121
122/*
123 * fs verity items are stored under two different key types on disk.
124 * The descriptor items:
125 * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ]
126 *
127 * At offset 0, we store a btrfs_verity_descriptor_item which tracks the size
128 * of the descriptor item and some extra data for encryption.
129 * Starting at offset 1, these hold the generic fs verity descriptor. The
130 * latter are opaque to btrfs, we just read and write them as a blob for the
131 * higher level verity code. The most common descriptor size is 256 bytes.
132 *
133 * The merkle tree items:
134 * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ]
135 *
136 * These also start at offset 0, and correspond to the merkle tree bytes. When
137 * fsverity asks for page 0 of the merkle tree, we pull up one page starting at
138 * offset 0 for this key type. These are also opaque to btrfs, we're blindly
139 * storing whatever fsverity sends down.
140 */
141#define BTRFS_VERITY_DESC_ITEM_KEY 36
142#define BTRFS_VERITY_MERKLE_ITEM_KEY 37
143
144#define BTRFS_ORPHAN_ITEM_KEY 48
145/* reserve 2-15 close to the inode for later flexibility */
146
147/*
148 * dir items are the name -> inode pointers in a directory. There is one
149 * for every name in a directory. BTRFS_DIR_LOG_ITEM_KEY is no longer used
150 * but it's still defined here for documentation purposes and to help avoid
151 * having its numerical value reused in the future.
152 */
153#define BTRFS_DIR_LOG_ITEM_KEY 60
154#define BTRFS_DIR_LOG_INDEX_KEY 72
155#define BTRFS_DIR_ITEM_KEY 84
156#define BTRFS_DIR_INDEX_KEY 96
157/*
158 * extent data is for file data
159 */
160#define BTRFS_EXTENT_DATA_KEY 108
161
162/*
163 * extent csums are stored in a separate tree and hold csums for
164 * an entire extent on disk.
165 */
166#define BTRFS_EXTENT_CSUM_KEY 128
167
168/*
169 * root items point to tree roots. They are typically in the root
170 * tree used by the super block to find all the other trees
171 */
172#define BTRFS_ROOT_ITEM_KEY 132
173
174/*
175 * root backrefs tie subvols and snapshots to the directory entries that
176 * reference them
177 */
178#define BTRFS_ROOT_BACKREF_KEY 144
179
180/*
181 * root refs make a fast index for listing all of the snapshots and
182 * subvolumes referenced by a given root. They point directly to the
183 * directory item in the root that references the subvol
184 */
185#define BTRFS_ROOT_REF_KEY 156
186
187/*
188 * extent items are in the extent map tree. These record which blocks
189 * are used, and how many references there are to each block
190 */
191#define BTRFS_EXTENT_ITEM_KEY 168
192
193/*
194 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
195 * the length, so we save the level in key->offset instead of the length.
196 */
197#define BTRFS_METADATA_ITEM_KEY 169
198
199#define BTRFS_TREE_BLOCK_REF_KEY 176
200
201#define BTRFS_EXTENT_DATA_REF_KEY 178
202
203#define BTRFS_EXTENT_REF_V0_KEY 180
204
205#define BTRFS_SHARED_BLOCK_REF_KEY 182
206
207#define BTRFS_SHARED_DATA_REF_KEY 184
208
209/*
210 * block groups give us hints into the extent allocation trees. Which
211 * blocks are free etc etc
212 */
213#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
214
215/*
216 * Every block group is represented in the free space tree by a free space info
217 * item, which stores some accounting information. It is keyed on
218 * (block_group_start, FREE_SPACE_INFO, block_group_length).
219 */
220#define BTRFS_FREE_SPACE_INFO_KEY 198
221
222/*
223 * A free space extent tracks an extent of space that is free in a block group.
224 * It is keyed on (start, FREE_SPACE_EXTENT, length).
225 */
226#define BTRFS_FREE_SPACE_EXTENT_KEY 199
227
228/*
229 * When a block group becomes very fragmented, we convert it to use bitmaps
230 * instead of extents. A free space bitmap is keyed on
231 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
232 * (length / sectorsize) bits.
233 */
234#define BTRFS_FREE_SPACE_BITMAP_KEY 200
235
236#define BTRFS_DEV_EXTENT_KEY 204
237#define BTRFS_DEV_ITEM_KEY 216
238#define BTRFS_CHUNK_ITEM_KEY 228
239
240/*
241 * Records the overall state of the qgroups.
242 * There's only one instance of this key present,
243 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
244 */
245#define BTRFS_QGROUP_STATUS_KEY 240
246/*
247 * Records the currently used space of the qgroup.
248 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
249 */
250#define BTRFS_QGROUP_INFO_KEY 242
251/*
252 * Contains the user configured limits for the qgroup.
253 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
254 */
255#define BTRFS_QGROUP_LIMIT_KEY 244
256/*
257 * Records the child-parent relationship of qgroups. For
258 * each relation, 2 keys are present:
259 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
260 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
261 */
262#define BTRFS_QGROUP_RELATION_KEY 246
263
264/*
265 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
266 */
267#define BTRFS_BALANCE_ITEM_KEY 248
268
269/*
270 * The key type for tree items that are stored persistently, but do not need to
271 * exist for extended period of time. The items can exist in any tree.
272 *
273 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
274 *
275 * Existing items:
276 *
277 * - balance status item
278 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
279 */
280#define BTRFS_TEMPORARY_ITEM_KEY 248
281
282/*
283 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
284 */
285#define BTRFS_DEV_STATS_KEY 249
286
287/*
288 * The key type for tree items that are stored persistently and usually exist
289 * for a long period, eg. filesystem lifetime. The item kinds can be status
290 * information, stats or preference values. The item can exist in any tree.
291 *
292 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
293 *
294 * Existing items:
295 *
296 * - device statistics, store IO stats in the device tree, one key for all
297 * stats
298 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
299 */
300#define BTRFS_PERSISTENT_ITEM_KEY 249
301
302/*
303 * Persistently stores the device replace state in the device tree.
304 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
305 */
306#define BTRFS_DEV_REPLACE_KEY 250
307
308/*
309 * Stores items that allow to quickly map UUIDs to something else.
310 * These items are part of the filesystem UUID tree.
311 * The key is built like this:
312 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
313 */
314#if BTRFS_UUID_SIZE != 16
315#error "UUID items require BTRFS_UUID_SIZE == 16!"
316#endif
317#define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
318#define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
319 * received subvols */
320
321/*
322 * string items are for debugging. They just store a short string of
323 * data in the FS
324 */
325#define BTRFS_STRING_ITEM_KEY 253
326
327/* Maximum metadata block size (nodesize) */
328#define BTRFS_MAX_METADATA_BLOCKSIZE 65536
329
330/* 32 bytes in various csum fields */
331#define BTRFS_CSUM_SIZE 32
332
333/* csum types */
334enum btrfs_csum_type {
335 BTRFS_CSUM_TYPE_CRC32 = 0,
336 BTRFS_CSUM_TYPE_XXHASH = 1,
337 BTRFS_CSUM_TYPE_SHA256 = 2,
338 BTRFS_CSUM_TYPE_BLAKE2 = 3,
339};
340
341/*
342 * flags definitions for directory entry item type
343 *
344 * Used by:
345 * struct btrfs_dir_item.type
346 *
347 * Values 0..7 must match common file type values in fs_types.h.
348 */
349#define BTRFS_FT_UNKNOWN 0
350#define BTRFS_FT_REG_FILE 1
351#define BTRFS_FT_DIR 2
352#define BTRFS_FT_CHRDEV 3
353#define BTRFS_FT_BLKDEV 4
354#define BTRFS_FT_FIFO 5
355#define BTRFS_FT_SOCK 6
356#define BTRFS_FT_SYMLINK 7
357#define BTRFS_FT_XATTR 8
358#define BTRFS_FT_MAX 9
359
360/*
361 * The key defines the order in the tree, and so it also defines (optimal)
362 * block layout.
363 *
364 * objectid corresponds to the inode number.
365 *
366 * type tells us things about the object, and is a kind of stream selector.
367 * so for a given inode, keys with type of 1 might refer to the inode data,
368 * type of 2 may point to file data in the btree and type == 3 may point to
369 * extents.
370 *
371 * offset is the starting byte offset for this key in the stream.
372 *
373 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
374 * in cpu native order. Otherwise they are identical and their sizes
375 * should be the same (ie both packed)
376 */
377struct btrfs_disk_key {
378 __le64 objectid;
379 __u8 type;
380 __le64 offset;
381} __attribute__ ((__packed__));
382
383struct btrfs_key {
384 __u64 objectid;
385 __u8 type;
386 __u64 offset;
387} __attribute__ ((__packed__));
388
389struct btrfs_dev_item {
390 /* the internal btrfs device id */
391 __le64 devid;
392
393 /* size of the device */
394 __le64 total_bytes;
395
396 /* bytes used */
397 __le64 bytes_used;
398
399 /* optimal io alignment for this device */
400 __le32 io_align;
401
402 /* optimal io width for this device */
403 __le32 io_width;
404
405 /* minimal io size for this device */
406 __le32 sector_size;
407
408 /* type and info about this device */
409 __le64 type;
410
411 /* expected generation for this device */
412 __le64 generation;
413
414 /*
415 * starting byte of this partition on the device,
416 * to allow for stripe alignment in the future
417 */
418 __le64 start_offset;
419
420 /* grouping information for allocation decisions */
421 __le32 dev_group;
422
423 /* seek speed 0-100 where 100 is fastest */
424 __u8 seek_speed;
425
426 /* bandwidth 0-100 where 100 is fastest */
427 __u8 bandwidth;
428
429 /* btrfs generated uuid for this device */
430 __u8 uuid[BTRFS_UUID_SIZE];
431
432 /* uuid of FS who owns this device */
433 __u8 fsid[BTRFS_UUID_SIZE];
434} __attribute__ ((__packed__));
435
436struct btrfs_stripe {
437 __le64 devid;
438 __le64 offset;
439 __u8 dev_uuid[BTRFS_UUID_SIZE];
440} __attribute__ ((__packed__));
441
442struct btrfs_chunk {
443 /* size of this chunk in bytes */
444 __le64 length;
445
446 /* objectid of the root referencing this chunk */
447 __le64 owner;
448
449 __le64 stripe_len;
450 __le64 type;
451
452 /* optimal io alignment for this chunk */
453 __le32 io_align;
454
455 /* optimal io width for this chunk */
456 __le32 io_width;
457
458 /* minimal io size for this chunk */
459 __le32 sector_size;
460
461 /* 2^16 stripes is quite a lot, a second limit is the size of a single
462 * item in the btree
463 */
464 __le16 num_stripes;
465
466 /* sub stripes only matter for raid10 */
467 __le16 sub_stripes;
468 struct btrfs_stripe stripe;
469 /* additional stripes go here */
470} __attribute__ ((__packed__));
471
472#define BTRFS_FREE_SPACE_EXTENT 1
473#define BTRFS_FREE_SPACE_BITMAP 2
474
475struct btrfs_free_space_entry {
476 __le64 offset;
477 __le64 bytes;
478 __u8 type;
479} __attribute__ ((__packed__));
480
481struct btrfs_free_space_header {
482 struct btrfs_disk_key location;
483 __le64 generation;
484 __le64 num_entries;
485 __le64 num_bitmaps;
486} __attribute__ ((__packed__));
487
488#define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
489#define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
490
491/* Super block flags */
492/* Errors detected */
493#define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
494
495#define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
496#define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
497#define BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34)
498#define BTRFS_SUPER_FLAG_CHANGING_FSID (1ULL << 35)
499#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
500
501
502/*
503 * items in the extent btree are used to record the objectid of the
504 * owner of the block and the number of references
505 */
506
507struct btrfs_extent_item {
508 __le64 refs;
509 __le64 generation;
510 __le64 flags;
511} __attribute__ ((__packed__));
512
513struct btrfs_extent_item_v0 {
514 __le32 refs;
515} __attribute__ ((__packed__));
516
517
518#define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
519#define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
520
521/* following flags only apply to tree blocks */
522
523/* use full backrefs for extent pointers in the block */
524#define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
525
526/*
527 * this flag is only used internally by scrub and may be changed at any time
528 * it is only declared here to avoid collisions
529 */
530#define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
531
532struct btrfs_tree_block_info {
533 struct btrfs_disk_key key;
534 __u8 level;
535} __attribute__ ((__packed__));
536
537struct btrfs_extent_data_ref {
538 __le64 root;
539 __le64 objectid;
540 __le64 offset;
541 __le32 count;
542} __attribute__ ((__packed__));
543
544struct btrfs_shared_data_ref {
545 __le32 count;
546} __attribute__ ((__packed__));
547
548struct btrfs_extent_inline_ref {
549 __u8 type;
550 __le64 offset;
551} __attribute__ ((__packed__));
552
553/* dev extents record free space on individual devices. The owner
554 * field points back to the chunk allocation mapping tree that allocated
555 * the extent. The chunk tree uuid field is a way to double check the owner
556 */
557struct btrfs_dev_extent {
558 __le64 chunk_tree;
559 __le64 chunk_objectid;
560 __le64 chunk_offset;
561 __le64 length;
562 __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
563} __attribute__ ((__packed__));
564
565struct btrfs_inode_ref {
566 __le64 index;
567 __le16 name_len;
568 /* name goes here */
569} __attribute__ ((__packed__));
570
571struct btrfs_inode_extref {
572 __le64 parent_objectid;
573 __le64 index;
574 __le16 name_len;
575 __u8 name[0];
576 /* name goes here */
577} __attribute__ ((__packed__));
578
579struct btrfs_timespec {
580 __le64 sec;
581 __le32 nsec;
582} __attribute__ ((__packed__));
583
584struct btrfs_inode_item {
585 /* nfs style generation number */
586 __le64 generation;
587 /* transid that last touched this inode */
588 __le64 transid;
589 __le64 size;
590 __le64 nbytes;
591 __le64 block_group;
592 __le32 nlink;
593 __le32 uid;
594 __le32 gid;
595 __le32 mode;
596 __le64 rdev;
597 __le64 flags;
598
599 /* modification sequence number for NFS */
600 __le64 sequence;
601
602 /*
603 * a little future expansion, for more than this we can
604 * just grow the inode item and version it
605 */
606 __le64 reserved[4];
607 struct btrfs_timespec atime;
608 struct btrfs_timespec ctime;
609 struct btrfs_timespec mtime;
610 struct btrfs_timespec otime;
611} __attribute__ ((__packed__));
612
613struct btrfs_dir_log_item {
614 __le64 end;
615} __attribute__ ((__packed__));
616
617struct btrfs_dir_item {
618 struct btrfs_disk_key location;
619 __le64 transid;
620 __le16 data_len;
621 __le16 name_len;
622 __u8 type;
623} __attribute__ ((__packed__));
624
625#define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
626
627/*
628 * Internal in-memory flag that a subvolume has been marked for deletion but
629 * still visible as a directory
630 */
631#define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
632
633struct btrfs_root_item {
634 struct btrfs_inode_item inode;
635 __le64 generation;
636 __le64 root_dirid;
637 __le64 bytenr;
638 __le64 byte_limit;
639 __le64 bytes_used;
640 __le64 last_snapshot;
641 __le64 flags;
642 __le32 refs;
643 struct btrfs_disk_key drop_progress;
644 __u8 drop_level;
645 __u8 level;
646
647 /*
648 * The following fields appear after subvol_uuids+subvol_times
649 * were introduced.
650 */
651
652 /*
653 * This generation number is used to test if the new fields are valid
654 * and up to date while reading the root item. Every time the root item
655 * is written out, the "generation" field is copied into this field. If
656 * anyone ever mounted the fs with an older kernel, we will have
657 * mismatching generation values here and thus must invalidate the
658 * new fields. See btrfs_update_root and btrfs_find_last_root for
659 * details.
660 * the offset of generation_v2 is also used as the start for the memset
661 * when invalidating the fields.
662 */
663 __le64 generation_v2;
664 __u8 uuid[BTRFS_UUID_SIZE];
665 __u8 parent_uuid[BTRFS_UUID_SIZE];
666 __u8 received_uuid[BTRFS_UUID_SIZE];
667 __le64 ctransid; /* updated when an inode changes */
668 __le64 otransid; /* trans when created */
669 __le64 stransid; /* trans when sent. non-zero for received subvol */
670 __le64 rtransid; /* trans when received. non-zero for received subvol */
671 struct btrfs_timespec ctime;
672 struct btrfs_timespec otime;
673 struct btrfs_timespec stime;
674 struct btrfs_timespec rtime;
675 __le64 reserved[8]; /* for future */
676} __attribute__ ((__packed__));
677
678/*
679 * Btrfs root item used to be smaller than current size. The old format ends
680 * at where member generation_v2 is.
681 */
682static inline __u32 btrfs_legacy_root_item_size(void)
683{
684 return offsetof(struct btrfs_root_item, generation_v2);
685}
686
687/*
688 * this is used for both forward and backward root refs
689 */
690struct btrfs_root_ref {
691 __le64 dirid;
692 __le64 sequence;
693 __le16 name_len;
694} __attribute__ ((__packed__));
695
696struct btrfs_disk_balance_args {
697 /*
698 * profiles to operate on, single is denoted by
699 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
700 */
701 __le64 profiles;
702
703 /*
704 * usage filter
705 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
706 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
707 */
708 union {
709 __le64 usage;
710 struct {
711 __le32 usage_min;
712 __le32 usage_max;
713 };
714 };
715
716 /* devid filter */
717 __le64 devid;
718
719 /* devid subset filter [pstart..pend) */
720 __le64 pstart;
721 __le64 pend;
722
723 /* btrfs virtual address space subset filter [vstart..vend) */
724 __le64 vstart;
725 __le64 vend;
726
727 /*
728 * profile to convert to, single is denoted by
729 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
730 */
731 __le64 target;
732
733 /* BTRFS_BALANCE_ARGS_* */
734 __le64 flags;
735
736 /*
737 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
738 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
739 * and maximum
740 */
741 union {
742 __le64 limit;
743 struct {
744 __le32 limit_min;
745 __le32 limit_max;
746 };
747 };
748
749 /*
750 * Process chunks that cross stripes_min..stripes_max devices,
751 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
752 */
753 __le32 stripes_min;
754 __le32 stripes_max;
755
756 __le64 unused[6];
757} __attribute__ ((__packed__));
758
759/*
760 * store balance parameters to disk so that balance can be properly
761 * resumed after crash or unmount
762 */
763struct btrfs_balance_item {
764 /* BTRFS_BALANCE_* */
765 __le64 flags;
766
767 struct btrfs_disk_balance_args data;
768 struct btrfs_disk_balance_args meta;
769 struct btrfs_disk_balance_args sys;
770
771 __le64 unused[4];
772} __attribute__ ((__packed__));
773
774enum {
775 BTRFS_FILE_EXTENT_INLINE = 0,
776 BTRFS_FILE_EXTENT_REG = 1,
777 BTRFS_FILE_EXTENT_PREALLOC = 2,
778 BTRFS_NR_FILE_EXTENT_TYPES = 3,
779};
780
781struct btrfs_file_extent_item {
782 /*
783 * transaction id that created this extent
784 */
785 __le64 generation;
786 /*
787 * max number of bytes to hold this extent in ram
788 * when we split a compressed extent we can't know how big
789 * each of the resulting pieces will be. So, this is
790 * an upper limit on the size of the extent in ram instead of
791 * an exact limit.
792 */
793 __le64 ram_bytes;
794
795 /*
796 * 32 bits for the various ways we might encode the data,
797 * including compression and encryption. If any of these
798 * are set to something a given disk format doesn't understand
799 * it is treated like an incompat flag for reading and writing,
800 * but not for stat.
801 */
802 __u8 compression;
803 __u8 encryption;
804 __le16 other_encoding; /* spare for later use */
805
806 /* are we inline data or a real extent? */
807 __u8 type;
808
809 /*
810 * disk space consumed by the extent, checksum blocks are included
811 * in these numbers
812 *
813 * At this offset in the structure, the inline extent data start.
814 */
815 __le64 disk_bytenr;
816 __le64 disk_num_bytes;
817 /*
818 * the logical offset in file blocks (no csums)
819 * this extent record is for. This allows a file extent to point
820 * into the middle of an existing extent on disk, sharing it
821 * between two snapshots (useful if some bytes in the middle of the
822 * extent have changed
823 */
824 __le64 offset;
825 /*
826 * the logical number of file blocks (no csums included). This
827 * always reflects the size uncompressed and without encoding.
828 */
829 __le64 num_bytes;
830
831} __attribute__ ((__packed__));
832
833struct btrfs_csum_item {
834 __u8 csum;
835} __attribute__ ((__packed__));
836
837struct btrfs_dev_stats_item {
838 /*
839 * grow this item struct at the end for future enhancements and keep
840 * the existing values unchanged
841 */
842 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
843} __attribute__ ((__packed__));
844
845#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
846#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
847
848struct btrfs_dev_replace_item {
849 /*
850 * grow this item struct at the end for future enhancements and keep
851 * the existing values unchanged
852 */
853 __le64 src_devid;
854 __le64 cursor_left;
855 __le64 cursor_right;
856 __le64 cont_reading_from_srcdev_mode;
857
858 __le64 replace_state;
859 __le64 time_started;
860 __le64 time_stopped;
861 __le64 num_write_errors;
862 __le64 num_uncorrectable_read_errors;
863} __attribute__ ((__packed__));
864
865/* different types of block groups (and chunks) */
866#define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
867#define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
868#define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
869#define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
870#define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
871#define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
872#define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
873#define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
874#define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
875#define BTRFS_BLOCK_GROUP_RAID1C3 (1ULL << 9)
876#define BTRFS_BLOCK_GROUP_RAID1C4 (1ULL << 10)
877#define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
878 BTRFS_SPACE_INFO_GLOBAL_RSV)
879
880enum btrfs_raid_types {
881 BTRFS_RAID_RAID10,
882 BTRFS_RAID_RAID1,
883 BTRFS_RAID_DUP,
884 BTRFS_RAID_RAID0,
885 BTRFS_RAID_SINGLE,
886 BTRFS_RAID_RAID5,
887 BTRFS_RAID_RAID6,
888 BTRFS_RAID_RAID1C3,
889 BTRFS_RAID_RAID1C4,
890 BTRFS_NR_RAID_TYPES
891};
892
893#define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
894 BTRFS_BLOCK_GROUP_SYSTEM | \
895 BTRFS_BLOCK_GROUP_METADATA)
896
897#define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
898 BTRFS_BLOCK_GROUP_RAID1 | \
899 BTRFS_BLOCK_GROUP_RAID1C3 | \
900 BTRFS_BLOCK_GROUP_RAID1C4 | \
901 BTRFS_BLOCK_GROUP_RAID5 | \
902 BTRFS_BLOCK_GROUP_RAID6 | \
903 BTRFS_BLOCK_GROUP_DUP | \
904 BTRFS_BLOCK_GROUP_RAID10)
905#define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \
906 BTRFS_BLOCK_GROUP_RAID6)
907
908#define BTRFS_BLOCK_GROUP_RAID1_MASK (BTRFS_BLOCK_GROUP_RAID1 | \
909 BTRFS_BLOCK_GROUP_RAID1C3 | \
910 BTRFS_BLOCK_GROUP_RAID1C4)
911
912/*
913 * We need a bit for restriper to be able to tell when chunks of type
914 * SINGLE are available. This "extended" profile format is used in
915 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
916 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
917 * to avoid remappings between two formats in future.
918 */
919#define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
920
921/*
922 * A fake block group type that is used to communicate global block reserve
923 * size to userspace via the SPACE_INFO ioctl.
924 */
925#define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
926
927#define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
928 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
929
930static inline __u64 chunk_to_extended(__u64 flags)
931{
932 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
933 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
934
935 return flags;
936}
937static inline __u64 extended_to_chunk(__u64 flags)
938{
939 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
940}
941
942struct btrfs_block_group_item {
943 __le64 used;
944 __le64 chunk_objectid;
945 __le64 flags;
946} __attribute__ ((__packed__));
947
948struct btrfs_free_space_info {
949 __le32 extent_count;
950 __le32 flags;
951} __attribute__ ((__packed__));
952
953#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
954
955#define BTRFS_QGROUP_LEVEL_SHIFT 48
956static inline __u16 btrfs_qgroup_level(__u64 qgroupid)
957{
958 return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT);
959}
960
961/*
962 * is subvolume quota turned on?
963 */
964#define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
965/*
966 * RESCAN is set during the initialization phase
967 */
968#define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
969/*
970 * Some qgroup entries are known to be out of date,
971 * either because the configuration has changed in a way that
972 * makes a rescan necessary, or because the fs has been mounted
973 * with a non-qgroup-aware version.
974 * Turning qouta off and on again makes it inconsistent, too.
975 */
976#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
977
978#define BTRFS_QGROUP_STATUS_VERSION 1
979
980struct btrfs_qgroup_status_item {
981 __le64 version;
982 /*
983 * the generation is updated during every commit. As older
984 * versions of btrfs are not aware of qgroups, it will be
985 * possible to detect inconsistencies by checking the
986 * generation on mount time
987 */
988 __le64 generation;
989
990 /* flag definitions see above */
991 __le64 flags;
992
993 /*
994 * only used during scanning to record the progress
995 * of the scan. It contains a logical address
996 */
997 __le64 rescan;
998} __attribute__ ((__packed__));
999
1000struct btrfs_qgroup_info_item {
1001 __le64 generation;
1002 __le64 rfer;
1003 __le64 rfer_cmpr;
1004 __le64 excl;
1005 __le64 excl_cmpr;
1006} __attribute__ ((__packed__));
1007
1008struct btrfs_qgroup_limit_item {
1009 /*
1010 * only updated when any of the other values change
1011 */
1012 __le64 flags;
1013 __le64 max_rfer;
1014 __le64 max_excl;
1015 __le64 rsv_rfer;
1016 __le64 rsv_excl;
1017} __attribute__ ((__packed__));
1018
1019struct btrfs_verity_descriptor_item {
1020 /* Size of the verity descriptor in bytes */
1021 __le64 size;
1022 /*
1023 * When we implement support for fscrypt, we will need to encrypt the
1024 * Merkle tree for encrypted verity files. These 128 bits are for the
1025 * eventual storage of an fscrypt initialization vector.
1026 */
1027 __le64 reserved[2];
1028 __u8 encryption;
1029} __attribute__ ((__packed__));
1030
1031#endif /* _BTRFS_CTREE_H_ */