at v5.17 139 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <gw4pts@gw4pts.ampr.org> 7 * Florian La Roche, <rzsfl@rz.uni-sb.de> 8 */ 9 10#ifndef _LINUX_SKBUFF_H 11#define _LINUX_SKBUFF_H 12 13#include <linux/kernel.h> 14#include <linux/compiler.h> 15#include <linux/time.h> 16#include <linux/bug.h> 17#include <linux/bvec.h> 18#include <linux/cache.h> 19#include <linux/rbtree.h> 20#include <linux/socket.h> 21#include <linux/refcount.h> 22 23#include <linux/atomic.h> 24#include <asm/types.h> 25#include <linux/spinlock.h> 26#include <linux/net.h> 27#include <linux/textsearch.h> 28#include <net/checksum.h> 29#include <linux/rcupdate.h> 30#include <linux/hrtimer.h> 31#include <linux/dma-mapping.h> 32#include <linux/netdev_features.h> 33#include <linux/sched.h> 34#include <linux/sched/clock.h> 35#include <net/flow_dissector.h> 36#include <linux/splice.h> 37#include <linux/in6.h> 38#include <linux/if_packet.h> 39#include <linux/llist.h> 40#include <net/flow.h> 41#include <net/page_pool.h> 42#if IS_ENABLED(CONFIG_NF_CONNTRACK) 43#include <linux/netfilter/nf_conntrack_common.h> 44#endif 45 46/* The interface for checksum offload between the stack and networking drivers 47 * is as follows... 48 * 49 * A. IP checksum related features 50 * 51 * Drivers advertise checksum offload capabilities in the features of a device. 52 * From the stack's point of view these are capabilities offered by the driver. 53 * A driver typically only advertises features that it is capable of offloading 54 * to its device. 55 * 56 * The checksum related features are: 57 * 58 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 59 * IP (one's complement) checksum for any combination 60 * of protocols or protocol layering. The checksum is 61 * computed and set in a packet per the CHECKSUM_PARTIAL 62 * interface (see below). 63 * 64 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 65 * TCP or UDP packets over IPv4. These are specifically 66 * unencapsulated packets of the form IPv4|TCP or 67 * IPv4|UDP where the Protocol field in the IPv4 header 68 * is TCP or UDP. The IPv4 header may contain IP options. 69 * This feature cannot be set in features for a device 70 * with NETIF_F_HW_CSUM also set. This feature is being 71 * DEPRECATED (see below). 72 * 73 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 74 * TCP or UDP packets over IPv6. These are specifically 75 * unencapsulated packets of the form IPv6|TCP or 76 * IPv6|UDP where the Next Header field in the IPv6 77 * header is either TCP or UDP. IPv6 extension headers 78 * are not supported with this feature. This feature 79 * cannot be set in features for a device with 80 * NETIF_F_HW_CSUM also set. This feature is being 81 * DEPRECATED (see below). 82 * 83 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 84 * This flag is only used to disable the RX checksum 85 * feature for a device. The stack will accept receive 86 * checksum indication in packets received on a device 87 * regardless of whether NETIF_F_RXCSUM is set. 88 * 89 * B. Checksumming of received packets by device. Indication of checksum 90 * verification is set in skb->ip_summed. Possible values are: 91 * 92 * CHECKSUM_NONE: 93 * 94 * Device did not checksum this packet e.g. due to lack of capabilities. 95 * The packet contains full (though not verified) checksum in packet but 96 * not in skb->csum. Thus, skb->csum is undefined in this case. 97 * 98 * CHECKSUM_UNNECESSARY: 99 * 100 * The hardware you're dealing with doesn't calculate the full checksum 101 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 102 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 103 * if their checksums are okay. skb->csum is still undefined in this case 104 * though. A driver or device must never modify the checksum field in the 105 * packet even if checksum is verified. 106 * 107 * CHECKSUM_UNNECESSARY is applicable to following protocols: 108 * TCP: IPv6 and IPv4. 109 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 110 * zero UDP checksum for either IPv4 or IPv6, the networking stack 111 * may perform further validation in this case. 112 * GRE: only if the checksum is present in the header. 113 * SCTP: indicates the CRC in SCTP header has been validated. 114 * FCOE: indicates the CRC in FC frame has been validated. 115 * 116 * skb->csum_level indicates the number of consecutive checksums found in 117 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 118 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 119 * and a device is able to verify the checksums for UDP (possibly zero), 120 * GRE (checksum flag is set) and TCP, skb->csum_level would be set to 121 * two. If the device were only able to verify the UDP checksum and not 122 * GRE, either because it doesn't support GRE checksum or because GRE 123 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 124 * not considered in this case). 125 * 126 * CHECKSUM_COMPLETE: 127 * 128 * This is the most generic way. The device supplied checksum of the _whole_ 129 * packet as seen by netif_rx() and fills in skb->csum. This means the 130 * hardware doesn't need to parse L3/L4 headers to implement this. 131 * 132 * Notes: 133 * - Even if device supports only some protocols, but is able to produce 134 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 135 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 136 * 137 * CHECKSUM_PARTIAL: 138 * 139 * A checksum is set up to be offloaded to a device as described in the 140 * output description for CHECKSUM_PARTIAL. This may occur on a packet 141 * received directly from another Linux OS, e.g., a virtualized Linux kernel 142 * on the same host, or it may be set in the input path in GRO or remote 143 * checksum offload. For the purposes of checksum verification, the checksum 144 * referred to by skb->csum_start + skb->csum_offset and any preceding 145 * checksums in the packet are considered verified. Any checksums in the 146 * packet that are after the checksum being offloaded are not considered to 147 * be verified. 148 * 149 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 150 * in the skb->ip_summed for a packet. Values are: 151 * 152 * CHECKSUM_PARTIAL: 153 * 154 * The driver is required to checksum the packet as seen by hard_start_xmit() 155 * from skb->csum_start up to the end, and to record/write the checksum at 156 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 157 * csum_start and csum_offset values are valid values given the length and 158 * offset of the packet, but it should not attempt to validate that the 159 * checksum refers to a legitimate transport layer checksum -- it is the 160 * purview of the stack to validate that csum_start and csum_offset are set 161 * correctly. 162 * 163 * When the stack requests checksum offload for a packet, the driver MUST 164 * ensure that the checksum is set correctly. A driver can either offload the 165 * checksum calculation to the device, or call skb_checksum_help (in the case 166 * that the device does not support offload for a particular checksum). 167 * 168 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 169 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 170 * checksum offload capability. 171 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 172 * on network device checksumming capabilities: if a packet does not match 173 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 174 * csum_not_inet, see item D.) is called to resolve the checksum. 175 * 176 * CHECKSUM_NONE: 177 * 178 * The skb was already checksummed by the protocol, or a checksum is not 179 * required. 180 * 181 * CHECKSUM_UNNECESSARY: 182 * 183 * This has the same meaning as CHECKSUM_NONE for checksum offload on 184 * output. 185 * 186 * CHECKSUM_COMPLETE: 187 * Not used in checksum output. If a driver observes a packet with this value 188 * set in skbuff, it should treat the packet as if CHECKSUM_NONE were set. 189 * 190 * D. Non-IP checksum (CRC) offloads 191 * 192 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 193 * offloading the SCTP CRC in a packet. To perform this offload the stack 194 * will set csum_start and csum_offset accordingly, set ip_summed to 195 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 196 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 197 * A driver that supports both IP checksum offload and SCTP CRC32c offload 198 * must verify which offload is configured for a packet by testing the 199 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 200 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 201 * 202 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 203 * offloading the FCOE CRC in a packet. To perform this offload the stack 204 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 205 * accordingly. Note that there is no indication in the skbuff that the 206 * CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 207 * both IP checksum offload and FCOE CRC offload must verify which offload 208 * is configured for a packet, presumably by inspecting packet headers. 209 * 210 * E. Checksumming on output with GSO. 211 * 212 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 213 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 214 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 215 * part of the GSO operation is implied. If a checksum is being offloaded 216 * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and 217 * csum_offset are set to refer to the outermost checksum being offloaded 218 * (two offloaded checksums are possible with UDP encapsulation). 219 */ 220 221/* Don't change this without changing skb_csum_unnecessary! */ 222#define CHECKSUM_NONE 0 223#define CHECKSUM_UNNECESSARY 1 224#define CHECKSUM_COMPLETE 2 225#define CHECKSUM_PARTIAL 3 226 227/* Maximum value in skb->csum_level */ 228#define SKB_MAX_CSUM_LEVEL 3 229 230#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 231#define SKB_WITH_OVERHEAD(X) \ 232 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 233#define SKB_MAX_ORDER(X, ORDER) \ 234 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 235#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 236#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 237 238/* return minimum truesize of one skb containing X bytes of data */ 239#define SKB_TRUESIZE(X) ((X) + \ 240 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 241 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 242 243struct ahash_request; 244struct net_device; 245struct scatterlist; 246struct pipe_inode_info; 247struct iov_iter; 248struct napi_struct; 249struct bpf_prog; 250union bpf_attr; 251struct skb_ext; 252 253#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 254struct nf_bridge_info { 255 enum { 256 BRNF_PROTO_UNCHANGED, 257 BRNF_PROTO_8021Q, 258 BRNF_PROTO_PPPOE 259 } orig_proto:8; 260 u8 pkt_otherhost:1; 261 u8 in_prerouting:1; 262 u8 bridged_dnat:1; 263 __u16 frag_max_size; 264 struct net_device *physindev; 265 266 /* always valid & non-NULL from FORWARD on, for physdev match */ 267 struct net_device *physoutdev; 268 union { 269 /* prerouting: detect dnat in orig/reply direction */ 270 __be32 ipv4_daddr; 271 struct in6_addr ipv6_daddr; 272 273 /* after prerouting + nat detected: store original source 274 * mac since neigh resolution overwrites it, only used while 275 * skb is out in neigh layer. 276 */ 277 char neigh_header[8]; 278 }; 279}; 280#endif 281 282#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 283/* Chain in tc_skb_ext will be used to share the tc chain with 284 * ovs recirc_id. It will be set to the current chain by tc 285 * and read by ovs to recirc_id. 286 */ 287struct tc_skb_ext { 288 __u32 chain; 289 __u16 mru; 290 __u16 zone; 291 u8 post_ct:1; 292 u8 post_ct_snat:1; 293 u8 post_ct_dnat:1; 294}; 295#endif 296 297struct sk_buff_head { 298 /* These two members must be first to match sk_buff. */ 299 struct_group_tagged(sk_buff_list, list, 300 struct sk_buff *next; 301 struct sk_buff *prev; 302 ); 303 304 __u32 qlen; 305 spinlock_t lock; 306}; 307 308struct sk_buff; 309 310/* The reason of skb drop, which is used in kfree_skb_reason(). 311 * en...maybe they should be splited by group? 312 * 313 * Each item here should also be in 'TRACE_SKB_DROP_REASON', which is 314 * used to translate the reason to string. 315 */ 316enum skb_drop_reason { 317 SKB_DROP_REASON_NOT_SPECIFIED, 318 SKB_DROP_REASON_NO_SOCKET, 319 SKB_DROP_REASON_PKT_TOO_SMALL, 320 SKB_DROP_REASON_TCP_CSUM, 321 SKB_DROP_REASON_SOCKET_FILTER, 322 SKB_DROP_REASON_UDP_CSUM, 323 SKB_DROP_REASON_MAX, 324}; 325 326/* To allow 64K frame to be packed as single skb without frag_list we 327 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 328 * buffers which do not start on a page boundary. 329 * 330 * Since GRO uses frags we allocate at least 16 regardless of page 331 * size. 332 */ 333#if (65536/PAGE_SIZE + 1) < 16 334#define MAX_SKB_FRAGS 16UL 335#else 336#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 337#endif 338extern int sysctl_max_skb_frags; 339 340/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 341 * segment using its current segmentation instead. 342 */ 343#define GSO_BY_FRAGS 0xFFFF 344 345typedef struct bio_vec skb_frag_t; 346 347/** 348 * skb_frag_size() - Returns the size of a skb fragment 349 * @frag: skb fragment 350 */ 351static inline unsigned int skb_frag_size(const skb_frag_t *frag) 352{ 353 return frag->bv_len; 354} 355 356/** 357 * skb_frag_size_set() - Sets the size of a skb fragment 358 * @frag: skb fragment 359 * @size: size of fragment 360 */ 361static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 362{ 363 frag->bv_len = size; 364} 365 366/** 367 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 368 * @frag: skb fragment 369 * @delta: value to add 370 */ 371static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 372{ 373 frag->bv_len += delta; 374} 375 376/** 377 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 378 * @frag: skb fragment 379 * @delta: value to subtract 380 */ 381static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 382{ 383 frag->bv_len -= delta; 384} 385 386/** 387 * skb_frag_must_loop - Test if %p is a high memory page 388 * @p: fragment's page 389 */ 390static inline bool skb_frag_must_loop(struct page *p) 391{ 392#if defined(CONFIG_HIGHMEM) 393 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 394 return true; 395#endif 396 return false; 397} 398 399/** 400 * skb_frag_foreach_page - loop over pages in a fragment 401 * 402 * @f: skb frag to operate on 403 * @f_off: offset from start of f->bv_page 404 * @f_len: length from f_off to loop over 405 * @p: (temp var) current page 406 * @p_off: (temp var) offset from start of current page, 407 * non-zero only on first page. 408 * @p_len: (temp var) length in current page, 409 * < PAGE_SIZE only on first and last page. 410 * @copied: (temp var) length so far, excluding current p_len. 411 * 412 * A fragment can hold a compound page, in which case per-page 413 * operations, notably kmap_atomic, must be called for each 414 * regular page. 415 */ 416#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 417 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 418 p_off = (f_off) & (PAGE_SIZE - 1), \ 419 p_len = skb_frag_must_loop(p) ? \ 420 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 421 copied = 0; \ 422 copied < f_len; \ 423 copied += p_len, p++, p_off = 0, \ 424 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 425 426#define HAVE_HW_TIME_STAMP 427 428/** 429 * struct skb_shared_hwtstamps - hardware time stamps 430 * @hwtstamp: hardware time stamp transformed into duration 431 * since arbitrary point in time 432 * 433 * Software time stamps generated by ktime_get_real() are stored in 434 * skb->tstamp. 435 * 436 * hwtstamps can only be compared against other hwtstamps from 437 * the same device. 438 * 439 * This structure is attached to packets as part of the 440 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 441 */ 442struct skb_shared_hwtstamps { 443 ktime_t hwtstamp; 444}; 445 446/* Definitions for tx_flags in struct skb_shared_info */ 447enum { 448 /* generate hardware time stamp */ 449 SKBTX_HW_TSTAMP = 1 << 0, 450 451 /* generate software time stamp when queueing packet to NIC */ 452 SKBTX_SW_TSTAMP = 1 << 1, 453 454 /* device driver is going to provide hardware time stamp */ 455 SKBTX_IN_PROGRESS = 1 << 2, 456 457 /* generate wifi status information (where possible) */ 458 SKBTX_WIFI_STATUS = 1 << 4, 459 460 /* generate software time stamp when entering packet scheduling */ 461 SKBTX_SCHED_TSTAMP = 1 << 6, 462}; 463 464#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 465 SKBTX_SCHED_TSTAMP) 466#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 467 468/* Definitions for flags in struct skb_shared_info */ 469enum { 470 /* use zcopy routines */ 471 SKBFL_ZEROCOPY_ENABLE = BIT(0), 472 473 /* This indicates at least one fragment might be overwritten 474 * (as in vmsplice(), sendfile() ...) 475 * If we need to compute a TX checksum, we'll need to copy 476 * all frags to avoid possible bad checksum 477 */ 478 SKBFL_SHARED_FRAG = BIT(1), 479 480 /* segment contains only zerocopy data and should not be 481 * charged to the kernel memory. 482 */ 483 SKBFL_PURE_ZEROCOPY = BIT(2), 484}; 485 486#define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 487#define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY) 488 489/* 490 * The callback notifies userspace to release buffers when skb DMA is done in 491 * lower device, the skb last reference should be 0 when calling this. 492 * The zerocopy_success argument is true if zero copy transmit occurred, 493 * false on data copy or out of memory error caused by data copy attempt. 494 * The ctx field is used to track device context. 495 * The desc field is used to track userspace buffer index. 496 */ 497struct ubuf_info { 498 void (*callback)(struct sk_buff *, struct ubuf_info *, 499 bool zerocopy_success); 500 union { 501 struct { 502 unsigned long desc; 503 void *ctx; 504 }; 505 struct { 506 u32 id; 507 u16 len; 508 u16 zerocopy:1; 509 u32 bytelen; 510 }; 511 }; 512 refcount_t refcnt; 513 u8 flags; 514 515 struct mmpin { 516 struct user_struct *user; 517 unsigned int num_pg; 518 } mmp; 519}; 520 521#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 522 523int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 524void mm_unaccount_pinned_pages(struct mmpin *mmp); 525 526struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size); 527struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 528 struct ubuf_info *uarg); 529 530void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 531 532void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 533 bool success); 534 535int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len); 536int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 537 struct msghdr *msg, int len, 538 struct ubuf_info *uarg); 539 540/* This data is invariant across clones and lives at 541 * the end of the header data, ie. at skb->end. 542 */ 543struct skb_shared_info { 544 __u8 flags; 545 __u8 meta_len; 546 __u8 nr_frags; 547 __u8 tx_flags; 548 unsigned short gso_size; 549 /* Warning: this field is not always filled in (UFO)! */ 550 unsigned short gso_segs; 551 struct sk_buff *frag_list; 552 struct skb_shared_hwtstamps hwtstamps; 553 unsigned int gso_type; 554 u32 tskey; 555 556 /* 557 * Warning : all fields before dataref are cleared in __alloc_skb() 558 */ 559 atomic_t dataref; 560 561 /* Intermediate layers must ensure that destructor_arg 562 * remains valid until skb destructor */ 563 void * destructor_arg; 564 565 /* must be last field, see pskb_expand_head() */ 566 skb_frag_t frags[MAX_SKB_FRAGS]; 567}; 568 569/* We divide dataref into two halves. The higher 16 bits hold references 570 * to the payload part of skb->data. The lower 16 bits hold references to 571 * the entire skb->data. A clone of a headerless skb holds the length of 572 * the header in skb->hdr_len. 573 * 574 * All users must obey the rule that the skb->data reference count must be 575 * greater than or equal to the payload reference count. 576 * 577 * Holding a reference to the payload part means that the user does not 578 * care about modifications to the header part of skb->data. 579 */ 580#define SKB_DATAREF_SHIFT 16 581#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 582 583 584enum { 585 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 586 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 587 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 588}; 589 590enum { 591 SKB_GSO_TCPV4 = 1 << 0, 592 593 /* This indicates the skb is from an untrusted source. */ 594 SKB_GSO_DODGY = 1 << 1, 595 596 /* This indicates the tcp segment has CWR set. */ 597 SKB_GSO_TCP_ECN = 1 << 2, 598 599 SKB_GSO_TCP_FIXEDID = 1 << 3, 600 601 SKB_GSO_TCPV6 = 1 << 4, 602 603 SKB_GSO_FCOE = 1 << 5, 604 605 SKB_GSO_GRE = 1 << 6, 606 607 SKB_GSO_GRE_CSUM = 1 << 7, 608 609 SKB_GSO_IPXIP4 = 1 << 8, 610 611 SKB_GSO_IPXIP6 = 1 << 9, 612 613 SKB_GSO_UDP_TUNNEL = 1 << 10, 614 615 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 616 617 SKB_GSO_PARTIAL = 1 << 12, 618 619 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 620 621 SKB_GSO_SCTP = 1 << 14, 622 623 SKB_GSO_ESP = 1 << 15, 624 625 SKB_GSO_UDP = 1 << 16, 626 627 SKB_GSO_UDP_L4 = 1 << 17, 628 629 SKB_GSO_FRAGLIST = 1 << 18, 630}; 631 632#if BITS_PER_LONG > 32 633#define NET_SKBUFF_DATA_USES_OFFSET 1 634#endif 635 636#ifdef NET_SKBUFF_DATA_USES_OFFSET 637typedef unsigned int sk_buff_data_t; 638#else 639typedef unsigned char *sk_buff_data_t; 640#endif 641 642/** 643 * struct sk_buff - socket buffer 644 * @next: Next buffer in list 645 * @prev: Previous buffer in list 646 * @tstamp: Time we arrived/left 647 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 648 * for retransmit timer 649 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 650 * @list: queue head 651 * @ll_node: anchor in an llist (eg socket defer_list) 652 * @sk: Socket we are owned by 653 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in 654 * fragmentation management 655 * @dev: Device we arrived on/are leaving by 656 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 657 * @cb: Control buffer. Free for use by every layer. Put private vars here 658 * @_skb_refdst: destination entry (with norefcount bit) 659 * @sp: the security path, used for xfrm 660 * @len: Length of actual data 661 * @data_len: Data length 662 * @mac_len: Length of link layer header 663 * @hdr_len: writable header length of cloned skb 664 * @csum: Checksum (must include start/offset pair) 665 * @csum_start: Offset from skb->head where checksumming should start 666 * @csum_offset: Offset from csum_start where checksum should be stored 667 * @priority: Packet queueing priority 668 * @ignore_df: allow local fragmentation 669 * @cloned: Head may be cloned (check refcnt to be sure) 670 * @ip_summed: Driver fed us an IP checksum 671 * @nohdr: Payload reference only, must not modify header 672 * @pkt_type: Packet class 673 * @fclone: skbuff clone status 674 * @ipvs_property: skbuff is owned by ipvs 675 * @inner_protocol_type: whether the inner protocol is 676 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 677 * @remcsum_offload: remote checksum offload is enabled 678 * @offload_fwd_mark: Packet was L2-forwarded in hardware 679 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 680 * @tc_skip_classify: do not classify packet. set by IFB device 681 * @tc_at_ingress: used within tc_classify to distinguish in/egress 682 * @redirected: packet was redirected by packet classifier 683 * @from_ingress: packet was redirected from the ingress path 684 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 685 * @peeked: this packet has been seen already, so stats have been 686 * done for it, don't do them again 687 * @nf_trace: netfilter packet trace flag 688 * @protocol: Packet protocol from driver 689 * @destructor: Destruct function 690 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 691 * @_sk_redir: socket redirection information for skmsg 692 * @_nfct: Associated connection, if any (with nfctinfo bits) 693 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 694 * @skb_iif: ifindex of device we arrived on 695 * @tc_index: Traffic control index 696 * @hash: the packet hash 697 * @queue_mapping: Queue mapping for multiqueue devices 698 * @head_frag: skb was allocated from page fragments, 699 * not allocated by kmalloc() or vmalloc(). 700 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 701 * @pp_recycle: mark the packet for recycling instead of freeing (implies 702 * page_pool support on driver) 703 * @active_extensions: active extensions (skb_ext_id types) 704 * @ndisc_nodetype: router type (from link layer) 705 * @ooo_okay: allow the mapping of a socket to a queue to be changed 706 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 707 * ports. 708 * @sw_hash: indicates hash was computed in software stack 709 * @wifi_acked_valid: wifi_acked was set 710 * @wifi_acked: whether frame was acked on wifi or not 711 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 712 * @encapsulation: indicates the inner headers in the skbuff are valid 713 * @encap_hdr_csum: software checksum is needed 714 * @csum_valid: checksum is already valid 715 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 716 * @csum_complete_sw: checksum was completed by software 717 * @csum_level: indicates the number of consecutive checksums found in 718 * the packet minus one that have been verified as 719 * CHECKSUM_UNNECESSARY (max 3) 720 * @dst_pending_confirm: need to confirm neighbour 721 * @decrypted: Decrypted SKB 722 * @slow_gro: state present at GRO time, slower prepare step required 723 * @napi_id: id of the NAPI struct this skb came from 724 * @sender_cpu: (aka @napi_id) source CPU in XPS 725 * @secmark: security marking 726 * @mark: Generic packet mark 727 * @reserved_tailroom: (aka @mark) number of bytes of free space available 728 * at the tail of an sk_buff 729 * @vlan_present: VLAN tag is present 730 * @vlan_proto: vlan encapsulation protocol 731 * @vlan_tci: vlan tag control information 732 * @inner_protocol: Protocol (encapsulation) 733 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 734 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 735 * @inner_transport_header: Inner transport layer header (encapsulation) 736 * @inner_network_header: Network layer header (encapsulation) 737 * @inner_mac_header: Link layer header (encapsulation) 738 * @transport_header: Transport layer header 739 * @network_header: Network layer header 740 * @mac_header: Link layer header 741 * @kcov_handle: KCOV remote handle for remote coverage collection 742 * @tail: Tail pointer 743 * @end: End pointer 744 * @head: Head of buffer 745 * @data: Data head pointer 746 * @truesize: Buffer size 747 * @users: User count - see {datagram,tcp}.c 748 * @extensions: allocated extensions, valid if active_extensions is nonzero 749 */ 750 751struct sk_buff { 752 union { 753 struct { 754 /* These two members must be first to match sk_buff_head. */ 755 struct sk_buff *next; 756 struct sk_buff *prev; 757 758 union { 759 struct net_device *dev; 760 /* Some protocols might use this space to store information, 761 * while device pointer would be NULL. 762 * UDP receive path is one user. 763 */ 764 unsigned long dev_scratch; 765 }; 766 }; 767 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 768 struct list_head list; 769 struct llist_node ll_node; 770 }; 771 772 union { 773 struct sock *sk; 774 int ip_defrag_offset; 775 }; 776 777 union { 778 ktime_t tstamp; 779 u64 skb_mstamp_ns; /* earliest departure time */ 780 }; 781 /* 782 * This is the control buffer. It is free to use for every 783 * layer. Please put your private variables there. If you 784 * want to keep them across layers you have to do a skb_clone() 785 * first. This is owned by whoever has the skb queued ATM. 786 */ 787 char cb[48] __aligned(8); 788 789 union { 790 struct { 791 unsigned long _skb_refdst; 792 void (*destructor)(struct sk_buff *skb); 793 }; 794 struct list_head tcp_tsorted_anchor; 795#ifdef CONFIG_NET_SOCK_MSG 796 unsigned long _sk_redir; 797#endif 798 }; 799 800#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 801 unsigned long _nfct; 802#endif 803 unsigned int len, 804 data_len; 805 __u16 mac_len, 806 hdr_len; 807 808 /* Following fields are _not_ copied in __copy_skb_header() 809 * Note that queue_mapping is here mostly to fill a hole. 810 */ 811 __u16 queue_mapping; 812 813/* if you move cloned around you also must adapt those constants */ 814#ifdef __BIG_ENDIAN_BITFIELD 815#define CLONED_MASK (1 << 7) 816#else 817#define CLONED_MASK 1 818#endif 819#define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 820 821 /* private: */ 822 __u8 __cloned_offset[0]; 823 /* public: */ 824 __u8 cloned:1, 825 nohdr:1, 826 fclone:2, 827 peeked:1, 828 head_frag:1, 829 pfmemalloc:1, 830 pp_recycle:1; /* page_pool recycle indicator */ 831#ifdef CONFIG_SKB_EXTENSIONS 832 __u8 active_extensions; 833#endif 834 835 /* Fields enclosed in headers group are copied 836 * using a single memcpy() in __copy_skb_header() 837 */ 838 struct_group(headers, 839 840 /* private: */ 841 __u8 __pkt_type_offset[0]; 842 /* public: */ 843 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 844 __u8 ignore_df:1; 845 __u8 nf_trace:1; 846 __u8 ip_summed:2; 847 __u8 ooo_okay:1; 848 849 __u8 l4_hash:1; 850 __u8 sw_hash:1; 851 __u8 wifi_acked_valid:1; 852 __u8 wifi_acked:1; 853 __u8 no_fcs:1; 854 /* Indicates the inner headers are valid in the skbuff. */ 855 __u8 encapsulation:1; 856 __u8 encap_hdr_csum:1; 857 __u8 csum_valid:1; 858 859 /* private: */ 860 __u8 __pkt_vlan_present_offset[0]; 861 /* public: */ 862 __u8 vlan_present:1; /* See PKT_VLAN_PRESENT_BIT */ 863 __u8 csum_complete_sw:1; 864 __u8 csum_level:2; 865 __u8 csum_not_inet:1; 866 __u8 dst_pending_confirm:1; 867#ifdef CONFIG_IPV6_NDISC_NODETYPE 868 __u8 ndisc_nodetype:2; 869#endif 870 871 __u8 ipvs_property:1; 872 __u8 inner_protocol_type:1; 873 __u8 remcsum_offload:1; 874#ifdef CONFIG_NET_SWITCHDEV 875 __u8 offload_fwd_mark:1; 876 __u8 offload_l3_fwd_mark:1; 877#endif 878#ifdef CONFIG_NET_CLS_ACT 879 __u8 tc_skip_classify:1; 880 __u8 tc_at_ingress:1; 881#endif 882 __u8 redirected:1; 883#ifdef CONFIG_NET_REDIRECT 884 __u8 from_ingress:1; 885#endif 886#ifdef CONFIG_NETFILTER_SKIP_EGRESS 887 __u8 nf_skip_egress:1; 888#endif 889#ifdef CONFIG_TLS_DEVICE 890 __u8 decrypted:1; 891#endif 892 __u8 slow_gro:1; 893 894#ifdef CONFIG_NET_SCHED 895 __u16 tc_index; /* traffic control index */ 896#endif 897 898 union { 899 __wsum csum; 900 struct { 901 __u16 csum_start; 902 __u16 csum_offset; 903 }; 904 }; 905 __u32 priority; 906 int skb_iif; 907 __u32 hash; 908 __be16 vlan_proto; 909 __u16 vlan_tci; 910#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 911 union { 912 unsigned int napi_id; 913 unsigned int sender_cpu; 914 }; 915#endif 916#ifdef CONFIG_NETWORK_SECMARK 917 __u32 secmark; 918#endif 919 920 union { 921 __u32 mark; 922 __u32 reserved_tailroom; 923 }; 924 925 union { 926 __be16 inner_protocol; 927 __u8 inner_ipproto; 928 }; 929 930 __u16 inner_transport_header; 931 __u16 inner_network_header; 932 __u16 inner_mac_header; 933 934 __be16 protocol; 935 __u16 transport_header; 936 __u16 network_header; 937 __u16 mac_header; 938 939#ifdef CONFIG_KCOV 940 u64 kcov_handle; 941#endif 942 943 ); /* end headers group */ 944 945 /* These elements must be at the end, see alloc_skb() for details. */ 946 sk_buff_data_t tail; 947 sk_buff_data_t end; 948 unsigned char *head, 949 *data; 950 unsigned int truesize; 951 refcount_t users; 952 953#ifdef CONFIG_SKB_EXTENSIONS 954 /* only useable after checking ->active_extensions != 0 */ 955 struct skb_ext *extensions; 956#endif 957}; 958 959/* if you move pkt_type around you also must adapt those constants */ 960#ifdef __BIG_ENDIAN_BITFIELD 961#define PKT_TYPE_MAX (7 << 5) 962#else 963#define PKT_TYPE_MAX 7 964#endif 965#define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 966 967/* if you move pkt_vlan_present around you also must adapt these constants */ 968#ifdef __BIG_ENDIAN_BITFIELD 969#define PKT_VLAN_PRESENT_BIT 7 970#else 971#define PKT_VLAN_PRESENT_BIT 0 972#endif 973#define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset) 974 975#ifdef __KERNEL__ 976/* 977 * Handling routines are only of interest to the kernel 978 */ 979 980#define SKB_ALLOC_FCLONE 0x01 981#define SKB_ALLOC_RX 0x02 982#define SKB_ALLOC_NAPI 0x04 983 984/** 985 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 986 * @skb: buffer 987 */ 988static inline bool skb_pfmemalloc(const struct sk_buff *skb) 989{ 990 return unlikely(skb->pfmemalloc); 991} 992 993/* 994 * skb might have a dst pointer attached, refcounted or not. 995 * _skb_refdst low order bit is set if refcount was _not_ taken 996 */ 997#define SKB_DST_NOREF 1UL 998#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 999 1000/** 1001 * skb_dst - returns skb dst_entry 1002 * @skb: buffer 1003 * 1004 * Returns skb dst_entry, regardless of reference taken or not. 1005 */ 1006static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1007{ 1008 /* If refdst was not refcounted, check we still are in a 1009 * rcu_read_lock section 1010 */ 1011 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1012 !rcu_read_lock_held() && 1013 !rcu_read_lock_bh_held()); 1014 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1015} 1016 1017/** 1018 * skb_dst_set - sets skb dst 1019 * @skb: buffer 1020 * @dst: dst entry 1021 * 1022 * Sets skb dst, assuming a reference was taken on dst and should 1023 * be released by skb_dst_drop() 1024 */ 1025static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1026{ 1027 skb->slow_gro |= !!dst; 1028 skb->_skb_refdst = (unsigned long)dst; 1029} 1030 1031/** 1032 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1033 * @skb: buffer 1034 * @dst: dst entry 1035 * 1036 * Sets skb dst, assuming a reference was not taken on dst. 1037 * If dst entry is cached, we do not take reference and dst_release 1038 * will be avoided by refdst_drop. If dst entry is not cached, we take 1039 * reference, so that last dst_release can destroy the dst immediately. 1040 */ 1041static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1042{ 1043 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1044 skb->slow_gro |= !!dst; 1045 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1046} 1047 1048/** 1049 * skb_dst_is_noref - Test if skb dst isn't refcounted 1050 * @skb: buffer 1051 */ 1052static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1053{ 1054 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1055} 1056 1057/** 1058 * skb_rtable - Returns the skb &rtable 1059 * @skb: buffer 1060 */ 1061static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1062{ 1063 return (struct rtable *)skb_dst(skb); 1064} 1065 1066/* For mangling skb->pkt_type from user space side from applications 1067 * such as nft, tc, etc, we only allow a conservative subset of 1068 * possible pkt_types to be set. 1069*/ 1070static inline bool skb_pkt_type_ok(u32 ptype) 1071{ 1072 return ptype <= PACKET_OTHERHOST; 1073} 1074 1075/** 1076 * skb_napi_id - Returns the skb's NAPI id 1077 * @skb: buffer 1078 */ 1079static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1080{ 1081#ifdef CONFIG_NET_RX_BUSY_POLL 1082 return skb->napi_id; 1083#else 1084 return 0; 1085#endif 1086} 1087 1088/** 1089 * skb_unref - decrement the skb's reference count 1090 * @skb: buffer 1091 * 1092 * Returns true if we can free the skb. 1093 */ 1094static inline bool skb_unref(struct sk_buff *skb) 1095{ 1096 if (unlikely(!skb)) 1097 return false; 1098 if (likely(refcount_read(&skb->users) == 1)) 1099 smp_rmb(); 1100 else if (likely(!refcount_dec_and_test(&skb->users))) 1101 return false; 1102 1103 return true; 1104} 1105 1106void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason); 1107 1108/** 1109 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1110 * @skb: buffer to free 1111 */ 1112static inline void kfree_skb(struct sk_buff *skb) 1113{ 1114 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1115} 1116 1117void skb_release_head_state(struct sk_buff *skb); 1118void kfree_skb_list(struct sk_buff *segs); 1119void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1120void skb_tx_error(struct sk_buff *skb); 1121 1122#ifdef CONFIG_TRACEPOINTS 1123void consume_skb(struct sk_buff *skb); 1124#else 1125static inline void consume_skb(struct sk_buff *skb) 1126{ 1127 return kfree_skb(skb); 1128} 1129#endif 1130 1131void __consume_stateless_skb(struct sk_buff *skb); 1132void __kfree_skb(struct sk_buff *skb); 1133extern struct kmem_cache *skbuff_head_cache; 1134 1135void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1136bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1137 bool *fragstolen, int *delta_truesize); 1138 1139struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1140 int node); 1141struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1142struct sk_buff *build_skb(void *data, unsigned int frag_size); 1143struct sk_buff *build_skb_around(struct sk_buff *skb, 1144 void *data, unsigned int frag_size); 1145 1146struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1147 1148/** 1149 * alloc_skb - allocate a network buffer 1150 * @size: size to allocate 1151 * @priority: allocation mask 1152 * 1153 * This function is a convenient wrapper around __alloc_skb(). 1154 */ 1155static inline struct sk_buff *alloc_skb(unsigned int size, 1156 gfp_t priority) 1157{ 1158 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1159} 1160 1161struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1162 unsigned long data_len, 1163 int max_page_order, 1164 int *errcode, 1165 gfp_t gfp_mask); 1166struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1167 1168/* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1169struct sk_buff_fclones { 1170 struct sk_buff skb1; 1171 1172 struct sk_buff skb2; 1173 1174 refcount_t fclone_ref; 1175}; 1176 1177/** 1178 * skb_fclone_busy - check if fclone is busy 1179 * @sk: socket 1180 * @skb: buffer 1181 * 1182 * Returns true if skb is a fast clone, and its clone is not freed. 1183 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1184 * so we also check that this didnt happen. 1185 */ 1186static inline bool skb_fclone_busy(const struct sock *sk, 1187 const struct sk_buff *skb) 1188{ 1189 const struct sk_buff_fclones *fclones; 1190 1191 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1192 1193 return skb->fclone == SKB_FCLONE_ORIG && 1194 refcount_read(&fclones->fclone_ref) > 1 && 1195 READ_ONCE(fclones->skb2.sk) == sk; 1196} 1197 1198/** 1199 * alloc_skb_fclone - allocate a network buffer from fclone cache 1200 * @size: size to allocate 1201 * @priority: allocation mask 1202 * 1203 * This function is a convenient wrapper around __alloc_skb(). 1204 */ 1205static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1206 gfp_t priority) 1207{ 1208 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1209} 1210 1211struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1212void skb_headers_offset_update(struct sk_buff *skb, int off); 1213int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1214struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1215void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1216struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1217struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1218 gfp_t gfp_mask, bool fclone); 1219static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1220 gfp_t gfp_mask) 1221{ 1222 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1223} 1224 1225int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1226struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1227 unsigned int headroom); 1228struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1229struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1230 int newtailroom, gfp_t priority); 1231int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1232 int offset, int len); 1233int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1234 int offset, int len); 1235int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1236int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1237 1238/** 1239 * skb_pad - zero pad the tail of an skb 1240 * @skb: buffer to pad 1241 * @pad: space to pad 1242 * 1243 * Ensure that a buffer is followed by a padding area that is zero 1244 * filled. Used by network drivers which may DMA or transfer data 1245 * beyond the buffer end onto the wire. 1246 * 1247 * May return error in out of memory cases. The skb is freed on error. 1248 */ 1249static inline int skb_pad(struct sk_buff *skb, int pad) 1250{ 1251 return __skb_pad(skb, pad, true); 1252} 1253#define dev_kfree_skb(a) consume_skb(a) 1254 1255int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1256 int offset, size_t size); 1257 1258struct skb_seq_state { 1259 __u32 lower_offset; 1260 __u32 upper_offset; 1261 __u32 frag_idx; 1262 __u32 stepped_offset; 1263 struct sk_buff *root_skb; 1264 struct sk_buff *cur_skb; 1265 __u8 *frag_data; 1266 __u32 frag_off; 1267}; 1268 1269void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1270 unsigned int to, struct skb_seq_state *st); 1271unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1272 struct skb_seq_state *st); 1273void skb_abort_seq_read(struct skb_seq_state *st); 1274 1275unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1276 unsigned int to, struct ts_config *config); 1277 1278/* 1279 * Packet hash types specify the type of hash in skb_set_hash. 1280 * 1281 * Hash types refer to the protocol layer addresses which are used to 1282 * construct a packet's hash. The hashes are used to differentiate or identify 1283 * flows of the protocol layer for the hash type. Hash types are either 1284 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1285 * 1286 * Properties of hashes: 1287 * 1288 * 1) Two packets in different flows have different hash values 1289 * 2) Two packets in the same flow should have the same hash value 1290 * 1291 * A hash at a higher layer is considered to be more specific. A driver should 1292 * set the most specific hash possible. 1293 * 1294 * A driver cannot indicate a more specific hash than the layer at which a hash 1295 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1296 * 1297 * A driver may indicate a hash level which is less specific than the 1298 * actual layer the hash was computed on. For instance, a hash computed 1299 * at L4 may be considered an L3 hash. This should only be done if the 1300 * driver can't unambiguously determine that the HW computed the hash at 1301 * the higher layer. Note that the "should" in the second property above 1302 * permits this. 1303 */ 1304enum pkt_hash_types { 1305 PKT_HASH_TYPE_NONE, /* Undefined type */ 1306 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1307 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1308 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1309}; 1310 1311static inline void skb_clear_hash(struct sk_buff *skb) 1312{ 1313 skb->hash = 0; 1314 skb->sw_hash = 0; 1315 skb->l4_hash = 0; 1316} 1317 1318static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1319{ 1320 if (!skb->l4_hash) 1321 skb_clear_hash(skb); 1322} 1323 1324static inline void 1325__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1326{ 1327 skb->l4_hash = is_l4; 1328 skb->sw_hash = is_sw; 1329 skb->hash = hash; 1330} 1331 1332static inline void 1333skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1334{ 1335 /* Used by drivers to set hash from HW */ 1336 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1337} 1338 1339static inline void 1340__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1341{ 1342 __skb_set_hash(skb, hash, true, is_l4); 1343} 1344 1345void __skb_get_hash(struct sk_buff *skb); 1346u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1347u32 skb_get_poff(const struct sk_buff *skb); 1348u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1349 const struct flow_keys_basic *keys, int hlen); 1350__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1351 const void *data, int hlen_proto); 1352 1353static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1354 int thoff, u8 ip_proto) 1355{ 1356 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1357} 1358 1359void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1360 const struct flow_dissector_key *key, 1361 unsigned int key_count); 1362 1363struct bpf_flow_dissector; 1364bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1365 __be16 proto, int nhoff, int hlen, unsigned int flags); 1366 1367bool __skb_flow_dissect(const struct net *net, 1368 const struct sk_buff *skb, 1369 struct flow_dissector *flow_dissector, 1370 void *target_container, const void *data, 1371 __be16 proto, int nhoff, int hlen, unsigned int flags); 1372 1373static inline bool skb_flow_dissect(const struct sk_buff *skb, 1374 struct flow_dissector *flow_dissector, 1375 void *target_container, unsigned int flags) 1376{ 1377 return __skb_flow_dissect(NULL, skb, flow_dissector, 1378 target_container, NULL, 0, 0, 0, flags); 1379} 1380 1381static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1382 struct flow_keys *flow, 1383 unsigned int flags) 1384{ 1385 memset(flow, 0, sizeof(*flow)); 1386 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1387 flow, NULL, 0, 0, 0, flags); 1388} 1389 1390static inline bool 1391skb_flow_dissect_flow_keys_basic(const struct net *net, 1392 const struct sk_buff *skb, 1393 struct flow_keys_basic *flow, 1394 const void *data, __be16 proto, 1395 int nhoff, int hlen, unsigned int flags) 1396{ 1397 memset(flow, 0, sizeof(*flow)); 1398 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1399 data, proto, nhoff, hlen, flags); 1400} 1401 1402void skb_flow_dissect_meta(const struct sk_buff *skb, 1403 struct flow_dissector *flow_dissector, 1404 void *target_container); 1405 1406/* Gets a skb connection tracking info, ctinfo map should be a 1407 * map of mapsize to translate enum ip_conntrack_info states 1408 * to user states. 1409 */ 1410void 1411skb_flow_dissect_ct(const struct sk_buff *skb, 1412 struct flow_dissector *flow_dissector, 1413 void *target_container, 1414 u16 *ctinfo_map, size_t mapsize, 1415 bool post_ct, u16 zone); 1416void 1417skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1418 struct flow_dissector *flow_dissector, 1419 void *target_container); 1420 1421void skb_flow_dissect_hash(const struct sk_buff *skb, 1422 struct flow_dissector *flow_dissector, 1423 void *target_container); 1424 1425static inline __u32 skb_get_hash(struct sk_buff *skb) 1426{ 1427 if (!skb->l4_hash && !skb->sw_hash) 1428 __skb_get_hash(skb); 1429 1430 return skb->hash; 1431} 1432 1433static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1434{ 1435 if (!skb->l4_hash && !skb->sw_hash) { 1436 struct flow_keys keys; 1437 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1438 1439 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1440 } 1441 1442 return skb->hash; 1443} 1444 1445__u32 skb_get_hash_perturb(const struct sk_buff *skb, 1446 const siphash_key_t *perturb); 1447 1448static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1449{ 1450 return skb->hash; 1451} 1452 1453static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1454{ 1455 to->hash = from->hash; 1456 to->sw_hash = from->sw_hash; 1457 to->l4_hash = from->l4_hash; 1458}; 1459 1460static inline void skb_copy_decrypted(struct sk_buff *to, 1461 const struct sk_buff *from) 1462{ 1463#ifdef CONFIG_TLS_DEVICE 1464 to->decrypted = from->decrypted; 1465#endif 1466} 1467 1468#ifdef NET_SKBUFF_DATA_USES_OFFSET 1469static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1470{ 1471 return skb->head + skb->end; 1472} 1473 1474static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1475{ 1476 return skb->end; 1477} 1478#else 1479static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1480{ 1481 return skb->end; 1482} 1483 1484static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1485{ 1486 return skb->end - skb->head; 1487} 1488#endif 1489 1490/* Internal */ 1491#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1492 1493static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1494{ 1495 return &skb_shinfo(skb)->hwtstamps; 1496} 1497 1498static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1499{ 1500 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1501 1502 return is_zcopy ? skb_uarg(skb) : NULL; 1503} 1504 1505static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1506{ 1507 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1508} 1509 1510static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1511 const struct sk_buff *skb2) 1512{ 1513 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1514} 1515 1516static inline void net_zcopy_get(struct ubuf_info *uarg) 1517{ 1518 refcount_inc(&uarg->refcnt); 1519} 1520 1521static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1522{ 1523 skb_shinfo(skb)->destructor_arg = uarg; 1524 skb_shinfo(skb)->flags |= uarg->flags; 1525} 1526 1527static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1528 bool *have_ref) 1529{ 1530 if (skb && uarg && !skb_zcopy(skb)) { 1531 if (unlikely(have_ref && *have_ref)) 1532 *have_ref = false; 1533 else 1534 net_zcopy_get(uarg); 1535 skb_zcopy_init(skb, uarg); 1536 } 1537} 1538 1539static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1540{ 1541 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1542 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1543} 1544 1545static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1546{ 1547 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1548} 1549 1550static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1551{ 1552 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1553} 1554 1555static inline void net_zcopy_put(struct ubuf_info *uarg) 1556{ 1557 if (uarg) 1558 uarg->callback(NULL, uarg, true); 1559} 1560 1561static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1562{ 1563 if (uarg) { 1564 if (uarg->callback == msg_zerocopy_callback) 1565 msg_zerocopy_put_abort(uarg, have_uref); 1566 else if (have_uref) 1567 net_zcopy_put(uarg); 1568 } 1569} 1570 1571/* Release a reference on a zerocopy structure */ 1572static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1573{ 1574 struct ubuf_info *uarg = skb_zcopy(skb); 1575 1576 if (uarg) { 1577 if (!skb_zcopy_is_nouarg(skb)) 1578 uarg->callback(skb, uarg, zerocopy_success); 1579 1580 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1581 } 1582} 1583 1584static inline void skb_mark_not_on_list(struct sk_buff *skb) 1585{ 1586 skb->next = NULL; 1587} 1588 1589/* Iterate through singly-linked GSO fragments of an skb. */ 1590#define skb_list_walk_safe(first, skb, next_skb) \ 1591 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1592 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1593 1594static inline void skb_list_del_init(struct sk_buff *skb) 1595{ 1596 __list_del_entry(&skb->list); 1597 skb_mark_not_on_list(skb); 1598} 1599 1600/** 1601 * skb_queue_empty - check if a queue is empty 1602 * @list: queue head 1603 * 1604 * Returns true if the queue is empty, false otherwise. 1605 */ 1606static inline int skb_queue_empty(const struct sk_buff_head *list) 1607{ 1608 return list->next == (const struct sk_buff *) list; 1609} 1610 1611/** 1612 * skb_queue_empty_lockless - check if a queue is empty 1613 * @list: queue head 1614 * 1615 * Returns true if the queue is empty, false otherwise. 1616 * This variant can be used in lockless contexts. 1617 */ 1618static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1619{ 1620 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1621} 1622 1623 1624/** 1625 * skb_queue_is_last - check if skb is the last entry in the queue 1626 * @list: queue head 1627 * @skb: buffer 1628 * 1629 * Returns true if @skb is the last buffer on the list. 1630 */ 1631static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1632 const struct sk_buff *skb) 1633{ 1634 return skb->next == (const struct sk_buff *) list; 1635} 1636 1637/** 1638 * skb_queue_is_first - check if skb is the first entry in the queue 1639 * @list: queue head 1640 * @skb: buffer 1641 * 1642 * Returns true if @skb is the first buffer on the list. 1643 */ 1644static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1645 const struct sk_buff *skb) 1646{ 1647 return skb->prev == (const struct sk_buff *) list; 1648} 1649 1650/** 1651 * skb_queue_next - return the next packet in the queue 1652 * @list: queue head 1653 * @skb: current buffer 1654 * 1655 * Return the next packet in @list after @skb. It is only valid to 1656 * call this if skb_queue_is_last() evaluates to false. 1657 */ 1658static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1659 const struct sk_buff *skb) 1660{ 1661 /* This BUG_ON may seem severe, but if we just return then we 1662 * are going to dereference garbage. 1663 */ 1664 BUG_ON(skb_queue_is_last(list, skb)); 1665 return skb->next; 1666} 1667 1668/** 1669 * skb_queue_prev - return the prev packet in the queue 1670 * @list: queue head 1671 * @skb: current buffer 1672 * 1673 * Return the prev packet in @list before @skb. It is only valid to 1674 * call this if skb_queue_is_first() evaluates to false. 1675 */ 1676static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1677 const struct sk_buff *skb) 1678{ 1679 /* This BUG_ON may seem severe, but if we just return then we 1680 * are going to dereference garbage. 1681 */ 1682 BUG_ON(skb_queue_is_first(list, skb)); 1683 return skb->prev; 1684} 1685 1686/** 1687 * skb_get - reference buffer 1688 * @skb: buffer to reference 1689 * 1690 * Makes another reference to a socket buffer and returns a pointer 1691 * to the buffer. 1692 */ 1693static inline struct sk_buff *skb_get(struct sk_buff *skb) 1694{ 1695 refcount_inc(&skb->users); 1696 return skb; 1697} 1698 1699/* 1700 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1701 */ 1702 1703/** 1704 * skb_cloned - is the buffer a clone 1705 * @skb: buffer to check 1706 * 1707 * Returns true if the buffer was generated with skb_clone() and is 1708 * one of multiple shared copies of the buffer. Cloned buffers are 1709 * shared data so must not be written to under normal circumstances. 1710 */ 1711static inline int skb_cloned(const struct sk_buff *skb) 1712{ 1713 return skb->cloned && 1714 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1715} 1716 1717static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1718{ 1719 might_sleep_if(gfpflags_allow_blocking(pri)); 1720 1721 if (skb_cloned(skb)) 1722 return pskb_expand_head(skb, 0, 0, pri); 1723 1724 return 0; 1725} 1726 1727/* This variant of skb_unclone() makes sure skb->truesize is not changed */ 1728static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1729{ 1730 might_sleep_if(gfpflags_allow_blocking(pri)); 1731 1732 if (skb_cloned(skb)) { 1733 unsigned int save = skb->truesize; 1734 int res; 1735 1736 res = pskb_expand_head(skb, 0, 0, pri); 1737 skb->truesize = save; 1738 return res; 1739 } 1740 return 0; 1741} 1742 1743/** 1744 * skb_header_cloned - is the header a clone 1745 * @skb: buffer to check 1746 * 1747 * Returns true if modifying the header part of the buffer requires 1748 * the data to be copied. 1749 */ 1750static inline int skb_header_cloned(const struct sk_buff *skb) 1751{ 1752 int dataref; 1753 1754 if (!skb->cloned) 1755 return 0; 1756 1757 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1758 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1759 return dataref != 1; 1760} 1761 1762static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1763{ 1764 might_sleep_if(gfpflags_allow_blocking(pri)); 1765 1766 if (skb_header_cloned(skb)) 1767 return pskb_expand_head(skb, 0, 0, pri); 1768 1769 return 0; 1770} 1771 1772/** 1773 * __skb_header_release - release reference to header 1774 * @skb: buffer to operate on 1775 */ 1776static inline void __skb_header_release(struct sk_buff *skb) 1777{ 1778 skb->nohdr = 1; 1779 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1780} 1781 1782 1783/** 1784 * skb_shared - is the buffer shared 1785 * @skb: buffer to check 1786 * 1787 * Returns true if more than one person has a reference to this 1788 * buffer. 1789 */ 1790static inline int skb_shared(const struct sk_buff *skb) 1791{ 1792 return refcount_read(&skb->users) != 1; 1793} 1794 1795/** 1796 * skb_share_check - check if buffer is shared and if so clone it 1797 * @skb: buffer to check 1798 * @pri: priority for memory allocation 1799 * 1800 * If the buffer is shared the buffer is cloned and the old copy 1801 * drops a reference. A new clone with a single reference is returned. 1802 * If the buffer is not shared the original buffer is returned. When 1803 * being called from interrupt status or with spinlocks held pri must 1804 * be GFP_ATOMIC. 1805 * 1806 * NULL is returned on a memory allocation failure. 1807 */ 1808static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1809{ 1810 might_sleep_if(gfpflags_allow_blocking(pri)); 1811 if (skb_shared(skb)) { 1812 struct sk_buff *nskb = skb_clone(skb, pri); 1813 1814 if (likely(nskb)) 1815 consume_skb(skb); 1816 else 1817 kfree_skb(skb); 1818 skb = nskb; 1819 } 1820 return skb; 1821} 1822 1823/* 1824 * Copy shared buffers into a new sk_buff. We effectively do COW on 1825 * packets to handle cases where we have a local reader and forward 1826 * and a couple of other messy ones. The normal one is tcpdumping 1827 * a packet thats being forwarded. 1828 */ 1829 1830/** 1831 * skb_unshare - make a copy of a shared buffer 1832 * @skb: buffer to check 1833 * @pri: priority for memory allocation 1834 * 1835 * If the socket buffer is a clone then this function creates a new 1836 * copy of the data, drops a reference count on the old copy and returns 1837 * the new copy with the reference count at 1. If the buffer is not a clone 1838 * the original buffer is returned. When called with a spinlock held or 1839 * from interrupt state @pri must be %GFP_ATOMIC 1840 * 1841 * %NULL is returned on a memory allocation failure. 1842 */ 1843static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1844 gfp_t pri) 1845{ 1846 might_sleep_if(gfpflags_allow_blocking(pri)); 1847 if (skb_cloned(skb)) { 1848 struct sk_buff *nskb = skb_copy(skb, pri); 1849 1850 /* Free our shared copy */ 1851 if (likely(nskb)) 1852 consume_skb(skb); 1853 else 1854 kfree_skb(skb); 1855 skb = nskb; 1856 } 1857 return skb; 1858} 1859 1860/** 1861 * skb_peek - peek at the head of an &sk_buff_head 1862 * @list_: list to peek at 1863 * 1864 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1865 * be careful with this one. A peek leaves the buffer on the 1866 * list and someone else may run off with it. You must hold 1867 * the appropriate locks or have a private queue to do this. 1868 * 1869 * Returns %NULL for an empty list or a pointer to the head element. 1870 * The reference count is not incremented and the reference is therefore 1871 * volatile. Use with caution. 1872 */ 1873static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1874{ 1875 struct sk_buff *skb = list_->next; 1876 1877 if (skb == (struct sk_buff *)list_) 1878 skb = NULL; 1879 return skb; 1880} 1881 1882/** 1883 * __skb_peek - peek at the head of a non-empty &sk_buff_head 1884 * @list_: list to peek at 1885 * 1886 * Like skb_peek(), but the caller knows that the list is not empty. 1887 */ 1888static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 1889{ 1890 return list_->next; 1891} 1892 1893/** 1894 * skb_peek_next - peek skb following the given one from a queue 1895 * @skb: skb to start from 1896 * @list_: list to peek at 1897 * 1898 * Returns %NULL when the end of the list is met or a pointer to the 1899 * next element. The reference count is not incremented and the 1900 * reference is therefore volatile. Use with caution. 1901 */ 1902static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1903 const struct sk_buff_head *list_) 1904{ 1905 struct sk_buff *next = skb->next; 1906 1907 if (next == (struct sk_buff *)list_) 1908 next = NULL; 1909 return next; 1910} 1911 1912/** 1913 * skb_peek_tail - peek at the tail of an &sk_buff_head 1914 * @list_: list to peek at 1915 * 1916 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1917 * be careful with this one. A peek leaves the buffer on the 1918 * list and someone else may run off with it. You must hold 1919 * the appropriate locks or have a private queue to do this. 1920 * 1921 * Returns %NULL for an empty list or a pointer to the tail element. 1922 * The reference count is not incremented and the reference is therefore 1923 * volatile. Use with caution. 1924 */ 1925static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1926{ 1927 struct sk_buff *skb = READ_ONCE(list_->prev); 1928 1929 if (skb == (struct sk_buff *)list_) 1930 skb = NULL; 1931 return skb; 1932 1933} 1934 1935/** 1936 * skb_queue_len - get queue length 1937 * @list_: list to measure 1938 * 1939 * Return the length of an &sk_buff queue. 1940 */ 1941static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1942{ 1943 return list_->qlen; 1944} 1945 1946/** 1947 * skb_queue_len_lockless - get queue length 1948 * @list_: list to measure 1949 * 1950 * Return the length of an &sk_buff queue. 1951 * This variant can be used in lockless contexts. 1952 */ 1953static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 1954{ 1955 return READ_ONCE(list_->qlen); 1956} 1957 1958/** 1959 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1960 * @list: queue to initialize 1961 * 1962 * This initializes only the list and queue length aspects of 1963 * an sk_buff_head object. This allows to initialize the list 1964 * aspects of an sk_buff_head without reinitializing things like 1965 * the spinlock. It can also be used for on-stack sk_buff_head 1966 * objects where the spinlock is known to not be used. 1967 */ 1968static inline void __skb_queue_head_init(struct sk_buff_head *list) 1969{ 1970 list->prev = list->next = (struct sk_buff *)list; 1971 list->qlen = 0; 1972} 1973 1974/* 1975 * This function creates a split out lock class for each invocation; 1976 * this is needed for now since a whole lot of users of the skb-queue 1977 * infrastructure in drivers have different locking usage (in hardirq) 1978 * than the networking core (in softirq only). In the long run either the 1979 * network layer or drivers should need annotation to consolidate the 1980 * main types of usage into 3 classes. 1981 */ 1982static inline void skb_queue_head_init(struct sk_buff_head *list) 1983{ 1984 spin_lock_init(&list->lock); 1985 __skb_queue_head_init(list); 1986} 1987 1988static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1989 struct lock_class_key *class) 1990{ 1991 skb_queue_head_init(list); 1992 lockdep_set_class(&list->lock, class); 1993} 1994 1995/* 1996 * Insert an sk_buff on a list. 1997 * 1998 * The "__skb_xxxx()" functions are the non-atomic ones that 1999 * can only be called with interrupts disabled. 2000 */ 2001static inline void __skb_insert(struct sk_buff *newsk, 2002 struct sk_buff *prev, struct sk_buff *next, 2003 struct sk_buff_head *list) 2004{ 2005 /* See skb_queue_empty_lockless() and skb_peek_tail() 2006 * for the opposite READ_ONCE() 2007 */ 2008 WRITE_ONCE(newsk->next, next); 2009 WRITE_ONCE(newsk->prev, prev); 2010 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2011 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2012 WRITE_ONCE(list->qlen, list->qlen + 1); 2013} 2014 2015static inline void __skb_queue_splice(const struct sk_buff_head *list, 2016 struct sk_buff *prev, 2017 struct sk_buff *next) 2018{ 2019 struct sk_buff *first = list->next; 2020 struct sk_buff *last = list->prev; 2021 2022 WRITE_ONCE(first->prev, prev); 2023 WRITE_ONCE(prev->next, first); 2024 2025 WRITE_ONCE(last->next, next); 2026 WRITE_ONCE(next->prev, last); 2027} 2028 2029/** 2030 * skb_queue_splice - join two skb lists, this is designed for stacks 2031 * @list: the new list to add 2032 * @head: the place to add it in the first list 2033 */ 2034static inline void skb_queue_splice(const struct sk_buff_head *list, 2035 struct sk_buff_head *head) 2036{ 2037 if (!skb_queue_empty(list)) { 2038 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2039 head->qlen += list->qlen; 2040 } 2041} 2042 2043/** 2044 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2045 * @list: the new list to add 2046 * @head: the place to add it in the first list 2047 * 2048 * The list at @list is reinitialised 2049 */ 2050static inline void skb_queue_splice_init(struct sk_buff_head *list, 2051 struct sk_buff_head *head) 2052{ 2053 if (!skb_queue_empty(list)) { 2054 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2055 head->qlen += list->qlen; 2056 __skb_queue_head_init(list); 2057 } 2058} 2059 2060/** 2061 * skb_queue_splice_tail - join two skb lists, each list being a queue 2062 * @list: the new list to add 2063 * @head: the place to add it in the first list 2064 */ 2065static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2066 struct sk_buff_head *head) 2067{ 2068 if (!skb_queue_empty(list)) { 2069 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2070 head->qlen += list->qlen; 2071 } 2072} 2073 2074/** 2075 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2076 * @list: the new list to add 2077 * @head: the place to add it in the first list 2078 * 2079 * Each of the lists is a queue. 2080 * The list at @list is reinitialised 2081 */ 2082static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2083 struct sk_buff_head *head) 2084{ 2085 if (!skb_queue_empty(list)) { 2086 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2087 head->qlen += list->qlen; 2088 __skb_queue_head_init(list); 2089 } 2090} 2091 2092/** 2093 * __skb_queue_after - queue a buffer at the list head 2094 * @list: list to use 2095 * @prev: place after this buffer 2096 * @newsk: buffer to queue 2097 * 2098 * Queue a buffer int the middle of a list. This function takes no locks 2099 * and you must therefore hold required locks before calling it. 2100 * 2101 * A buffer cannot be placed on two lists at the same time. 2102 */ 2103static inline void __skb_queue_after(struct sk_buff_head *list, 2104 struct sk_buff *prev, 2105 struct sk_buff *newsk) 2106{ 2107 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2108} 2109 2110void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2111 struct sk_buff_head *list); 2112 2113static inline void __skb_queue_before(struct sk_buff_head *list, 2114 struct sk_buff *next, 2115 struct sk_buff *newsk) 2116{ 2117 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2118} 2119 2120/** 2121 * __skb_queue_head - queue a buffer at the list head 2122 * @list: list to use 2123 * @newsk: buffer to queue 2124 * 2125 * Queue a buffer at the start of a list. This function takes no locks 2126 * and you must therefore hold required locks before calling it. 2127 * 2128 * A buffer cannot be placed on two lists at the same time. 2129 */ 2130static inline void __skb_queue_head(struct sk_buff_head *list, 2131 struct sk_buff *newsk) 2132{ 2133 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2134} 2135void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2136 2137/** 2138 * __skb_queue_tail - queue a buffer at the list tail 2139 * @list: list to use 2140 * @newsk: buffer to queue 2141 * 2142 * Queue a buffer at the end of a list. This function takes no locks 2143 * and you must therefore hold required locks before calling it. 2144 * 2145 * A buffer cannot be placed on two lists at the same time. 2146 */ 2147static inline void __skb_queue_tail(struct sk_buff_head *list, 2148 struct sk_buff *newsk) 2149{ 2150 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2151} 2152void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2153 2154/* 2155 * remove sk_buff from list. _Must_ be called atomically, and with 2156 * the list known.. 2157 */ 2158void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2159static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2160{ 2161 struct sk_buff *next, *prev; 2162 2163 WRITE_ONCE(list->qlen, list->qlen - 1); 2164 next = skb->next; 2165 prev = skb->prev; 2166 skb->next = skb->prev = NULL; 2167 WRITE_ONCE(next->prev, prev); 2168 WRITE_ONCE(prev->next, next); 2169} 2170 2171/** 2172 * __skb_dequeue - remove from the head of the queue 2173 * @list: list to dequeue from 2174 * 2175 * Remove the head of the list. This function does not take any locks 2176 * so must be used with appropriate locks held only. The head item is 2177 * returned or %NULL if the list is empty. 2178 */ 2179static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2180{ 2181 struct sk_buff *skb = skb_peek(list); 2182 if (skb) 2183 __skb_unlink(skb, list); 2184 return skb; 2185} 2186struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2187 2188/** 2189 * __skb_dequeue_tail - remove from the tail of the queue 2190 * @list: list to dequeue from 2191 * 2192 * Remove the tail of the list. This function does not take any locks 2193 * so must be used with appropriate locks held only. The tail item is 2194 * returned or %NULL if the list is empty. 2195 */ 2196static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2197{ 2198 struct sk_buff *skb = skb_peek_tail(list); 2199 if (skb) 2200 __skb_unlink(skb, list); 2201 return skb; 2202} 2203struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2204 2205 2206static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2207{ 2208 return skb->data_len; 2209} 2210 2211static inline unsigned int skb_headlen(const struct sk_buff *skb) 2212{ 2213 return skb->len - skb->data_len; 2214} 2215 2216static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2217{ 2218 unsigned int i, len = 0; 2219 2220 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2221 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2222 return len; 2223} 2224 2225static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2226{ 2227 return skb_headlen(skb) + __skb_pagelen(skb); 2228} 2229 2230/** 2231 * __skb_fill_page_desc - initialise a paged fragment in an skb 2232 * @skb: buffer containing fragment to be initialised 2233 * @i: paged fragment index to initialise 2234 * @page: the page to use for this fragment 2235 * @off: the offset to the data with @page 2236 * @size: the length of the data 2237 * 2238 * Initialises the @i'th fragment of @skb to point to &size bytes at 2239 * offset @off within @page. 2240 * 2241 * Does not take any additional reference on the fragment. 2242 */ 2243static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2244 struct page *page, int off, int size) 2245{ 2246 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2247 2248 /* 2249 * Propagate page pfmemalloc to the skb if we can. The problem is 2250 * that not all callers have unique ownership of the page but rely 2251 * on page_is_pfmemalloc doing the right thing(tm). 2252 */ 2253 frag->bv_page = page; 2254 frag->bv_offset = off; 2255 skb_frag_size_set(frag, size); 2256 2257 page = compound_head(page); 2258 if (page_is_pfmemalloc(page)) 2259 skb->pfmemalloc = true; 2260} 2261 2262/** 2263 * skb_fill_page_desc - initialise a paged fragment in an skb 2264 * @skb: buffer containing fragment to be initialised 2265 * @i: paged fragment index to initialise 2266 * @page: the page to use for this fragment 2267 * @off: the offset to the data with @page 2268 * @size: the length of the data 2269 * 2270 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2271 * @skb to point to @size bytes at offset @off within @page. In 2272 * addition updates @skb such that @i is the last fragment. 2273 * 2274 * Does not take any additional reference on the fragment. 2275 */ 2276static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2277 struct page *page, int off, int size) 2278{ 2279 __skb_fill_page_desc(skb, i, page, off, size); 2280 skb_shinfo(skb)->nr_frags = i + 1; 2281} 2282 2283void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2284 int size, unsigned int truesize); 2285 2286void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2287 unsigned int truesize); 2288 2289#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2290 2291#ifdef NET_SKBUFF_DATA_USES_OFFSET 2292static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2293{ 2294 return skb->head + skb->tail; 2295} 2296 2297static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2298{ 2299 skb->tail = skb->data - skb->head; 2300} 2301 2302static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2303{ 2304 skb_reset_tail_pointer(skb); 2305 skb->tail += offset; 2306} 2307 2308#else /* NET_SKBUFF_DATA_USES_OFFSET */ 2309static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2310{ 2311 return skb->tail; 2312} 2313 2314static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2315{ 2316 skb->tail = skb->data; 2317} 2318 2319static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2320{ 2321 skb->tail = skb->data + offset; 2322} 2323 2324#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2325 2326/* 2327 * Add data to an sk_buff 2328 */ 2329void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2330void *skb_put(struct sk_buff *skb, unsigned int len); 2331static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2332{ 2333 void *tmp = skb_tail_pointer(skb); 2334 SKB_LINEAR_ASSERT(skb); 2335 skb->tail += len; 2336 skb->len += len; 2337 return tmp; 2338} 2339 2340static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2341{ 2342 void *tmp = __skb_put(skb, len); 2343 2344 memset(tmp, 0, len); 2345 return tmp; 2346} 2347 2348static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2349 unsigned int len) 2350{ 2351 void *tmp = __skb_put(skb, len); 2352 2353 memcpy(tmp, data, len); 2354 return tmp; 2355} 2356 2357static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2358{ 2359 *(u8 *)__skb_put(skb, 1) = val; 2360} 2361 2362static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2363{ 2364 void *tmp = skb_put(skb, len); 2365 2366 memset(tmp, 0, len); 2367 2368 return tmp; 2369} 2370 2371static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2372 unsigned int len) 2373{ 2374 void *tmp = skb_put(skb, len); 2375 2376 memcpy(tmp, data, len); 2377 2378 return tmp; 2379} 2380 2381static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2382{ 2383 *(u8 *)skb_put(skb, 1) = val; 2384} 2385 2386void *skb_push(struct sk_buff *skb, unsigned int len); 2387static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2388{ 2389 skb->data -= len; 2390 skb->len += len; 2391 return skb->data; 2392} 2393 2394void *skb_pull(struct sk_buff *skb, unsigned int len); 2395static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2396{ 2397 skb->len -= len; 2398 BUG_ON(skb->len < skb->data_len); 2399 return skb->data += len; 2400} 2401 2402static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2403{ 2404 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2405} 2406 2407void *skb_pull_data(struct sk_buff *skb, size_t len); 2408 2409void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2410 2411static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2412{ 2413 if (len > skb_headlen(skb) && 2414 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2415 return NULL; 2416 skb->len -= len; 2417 return skb->data += len; 2418} 2419 2420static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2421{ 2422 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2423} 2424 2425static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2426{ 2427 if (likely(len <= skb_headlen(skb))) 2428 return true; 2429 if (unlikely(len > skb->len)) 2430 return false; 2431 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2432} 2433 2434void skb_condense(struct sk_buff *skb); 2435 2436/** 2437 * skb_headroom - bytes at buffer head 2438 * @skb: buffer to check 2439 * 2440 * Return the number of bytes of free space at the head of an &sk_buff. 2441 */ 2442static inline unsigned int skb_headroom(const struct sk_buff *skb) 2443{ 2444 return skb->data - skb->head; 2445} 2446 2447/** 2448 * skb_tailroom - bytes at buffer end 2449 * @skb: buffer to check 2450 * 2451 * Return the number of bytes of free space at the tail of an sk_buff 2452 */ 2453static inline int skb_tailroom(const struct sk_buff *skb) 2454{ 2455 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2456} 2457 2458/** 2459 * skb_availroom - bytes at buffer end 2460 * @skb: buffer to check 2461 * 2462 * Return the number of bytes of free space at the tail of an sk_buff 2463 * allocated by sk_stream_alloc() 2464 */ 2465static inline int skb_availroom(const struct sk_buff *skb) 2466{ 2467 if (skb_is_nonlinear(skb)) 2468 return 0; 2469 2470 return skb->end - skb->tail - skb->reserved_tailroom; 2471} 2472 2473/** 2474 * skb_reserve - adjust headroom 2475 * @skb: buffer to alter 2476 * @len: bytes to move 2477 * 2478 * Increase the headroom of an empty &sk_buff by reducing the tail 2479 * room. This is only allowed for an empty buffer. 2480 */ 2481static inline void skb_reserve(struct sk_buff *skb, int len) 2482{ 2483 skb->data += len; 2484 skb->tail += len; 2485} 2486 2487/** 2488 * skb_tailroom_reserve - adjust reserved_tailroom 2489 * @skb: buffer to alter 2490 * @mtu: maximum amount of headlen permitted 2491 * @needed_tailroom: minimum amount of reserved_tailroom 2492 * 2493 * Set reserved_tailroom so that headlen can be as large as possible but 2494 * not larger than mtu and tailroom cannot be smaller than 2495 * needed_tailroom. 2496 * The required headroom should already have been reserved before using 2497 * this function. 2498 */ 2499static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2500 unsigned int needed_tailroom) 2501{ 2502 SKB_LINEAR_ASSERT(skb); 2503 if (mtu < skb_tailroom(skb) - needed_tailroom) 2504 /* use at most mtu */ 2505 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2506 else 2507 /* use up to all available space */ 2508 skb->reserved_tailroom = needed_tailroom; 2509} 2510 2511#define ENCAP_TYPE_ETHER 0 2512#define ENCAP_TYPE_IPPROTO 1 2513 2514static inline void skb_set_inner_protocol(struct sk_buff *skb, 2515 __be16 protocol) 2516{ 2517 skb->inner_protocol = protocol; 2518 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2519} 2520 2521static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2522 __u8 ipproto) 2523{ 2524 skb->inner_ipproto = ipproto; 2525 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2526} 2527 2528static inline void skb_reset_inner_headers(struct sk_buff *skb) 2529{ 2530 skb->inner_mac_header = skb->mac_header; 2531 skb->inner_network_header = skb->network_header; 2532 skb->inner_transport_header = skb->transport_header; 2533} 2534 2535static inline void skb_reset_mac_len(struct sk_buff *skb) 2536{ 2537 skb->mac_len = skb->network_header - skb->mac_header; 2538} 2539 2540static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2541 *skb) 2542{ 2543 return skb->head + skb->inner_transport_header; 2544} 2545 2546static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2547{ 2548 return skb_inner_transport_header(skb) - skb->data; 2549} 2550 2551static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2552{ 2553 skb->inner_transport_header = skb->data - skb->head; 2554} 2555 2556static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2557 const int offset) 2558{ 2559 skb_reset_inner_transport_header(skb); 2560 skb->inner_transport_header += offset; 2561} 2562 2563static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2564{ 2565 return skb->head + skb->inner_network_header; 2566} 2567 2568static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2569{ 2570 skb->inner_network_header = skb->data - skb->head; 2571} 2572 2573static inline void skb_set_inner_network_header(struct sk_buff *skb, 2574 const int offset) 2575{ 2576 skb_reset_inner_network_header(skb); 2577 skb->inner_network_header += offset; 2578} 2579 2580static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2581{ 2582 return skb->head + skb->inner_mac_header; 2583} 2584 2585static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2586{ 2587 skb->inner_mac_header = skb->data - skb->head; 2588} 2589 2590static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2591 const int offset) 2592{ 2593 skb_reset_inner_mac_header(skb); 2594 skb->inner_mac_header += offset; 2595} 2596static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2597{ 2598 return skb->transport_header != (typeof(skb->transport_header))~0U; 2599} 2600 2601static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2602{ 2603 return skb->head + skb->transport_header; 2604} 2605 2606static inline void skb_reset_transport_header(struct sk_buff *skb) 2607{ 2608 skb->transport_header = skb->data - skb->head; 2609} 2610 2611static inline void skb_set_transport_header(struct sk_buff *skb, 2612 const int offset) 2613{ 2614 skb_reset_transport_header(skb); 2615 skb->transport_header += offset; 2616} 2617 2618static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2619{ 2620 return skb->head + skb->network_header; 2621} 2622 2623static inline void skb_reset_network_header(struct sk_buff *skb) 2624{ 2625 skb->network_header = skb->data - skb->head; 2626} 2627 2628static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2629{ 2630 skb_reset_network_header(skb); 2631 skb->network_header += offset; 2632} 2633 2634static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2635{ 2636 return skb->head + skb->mac_header; 2637} 2638 2639static inline int skb_mac_offset(const struct sk_buff *skb) 2640{ 2641 return skb_mac_header(skb) - skb->data; 2642} 2643 2644static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2645{ 2646 return skb->network_header - skb->mac_header; 2647} 2648 2649static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2650{ 2651 return skb->mac_header != (typeof(skb->mac_header))~0U; 2652} 2653 2654static inline void skb_unset_mac_header(struct sk_buff *skb) 2655{ 2656 skb->mac_header = (typeof(skb->mac_header))~0U; 2657} 2658 2659static inline void skb_reset_mac_header(struct sk_buff *skb) 2660{ 2661 skb->mac_header = skb->data - skb->head; 2662} 2663 2664static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2665{ 2666 skb_reset_mac_header(skb); 2667 skb->mac_header += offset; 2668} 2669 2670static inline void skb_pop_mac_header(struct sk_buff *skb) 2671{ 2672 skb->mac_header = skb->network_header; 2673} 2674 2675static inline void skb_probe_transport_header(struct sk_buff *skb) 2676{ 2677 struct flow_keys_basic keys; 2678 2679 if (skb_transport_header_was_set(skb)) 2680 return; 2681 2682 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 2683 NULL, 0, 0, 0, 0)) 2684 skb_set_transport_header(skb, keys.control.thoff); 2685} 2686 2687static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2688{ 2689 if (skb_mac_header_was_set(skb)) { 2690 const unsigned char *old_mac = skb_mac_header(skb); 2691 2692 skb_set_mac_header(skb, -skb->mac_len); 2693 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2694 } 2695} 2696 2697static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2698{ 2699 return skb->csum_start - skb_headroom(skb); 2700} 2701 2702static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2703{ 2704 return skb->head + skb->csum_start; 2705} 2706 2707static inline int skb_transport_offset(const struct sk_buff *skb) 2708{ 2709 return skb_transport_header(skb) - skb->data; 2710} 2711 2712static inline u32 skb_network_header_len(const struct sk_buff *skb) 2713{ 2714 return skb->transport_header - skb->network_header; 2715} 2716 2717static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2718{ 2719 return skb->inner_transport_header - skb->inner_network_header; 2720} 2721 2722static inline int skb_network_offset(const struct sk_buff *skb) 2723{ 2724 return skb_network_header(skb) - skb->data; 2725} 2726 2727static inline int skb_inner_network_offset(const struct sk_buff *skb) 2728{ 2729 return skb_inner_network_header(skb) - skb->data; 2730} 2731 2732static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2733{ 2734 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2735} 2736 2737/* 2738 * CPUs often take a performance hit when accessing unaligned memory 2739 * locations. The actual performance hit varies, it can be small if the 2740 * hardware handles it or large if we have to take an exception and fix it 2741 * in software. 2742 * 2743 * Since an ethernet header is 14 bytes network drivers often end up with 2744 * the IP header at an unaligned offset. The IP header can be aligned by 2745 * shifting the start of the packet by 2 bytes. Drivers should do this 2746 * with: 2747 * 2748 * skb_reserve(skb, NET_IP_ALIGN); 2749 * 2750 * The downside to this alignment of the IP header is that the DMA is now 2751 * unaligned. On some architectures the cost of an unaligned DMA is high 2752 * and this cost outweighs the gains made by aligning the IP header. 2753 * 2754 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2755 * to be overridden. 2756 */ 2757#ifndef NET_IP_ALIGN 2758#define NET_IP_ALIGN 2 2759#endif 2760 2761/* 2762 * The networking layer reserves some headroom in skb data (via 2763 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2764 * the header has to grow. In the default case, if the header has to grow 2765 * 32 bytes or less we avoid the reallocation. 2766 * 2767 * Unfortunately this headroom changes the DMA alignment of the resulting 2768 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2769 * on some architectures. An architecture can override this value, 2770 * perhaps setting it to a cacheline in size (since that will maintain 2771 * cacheline alignment of the DMA). It must be a power of 2. 2772 * 2773 * Various parts of the networking layer expect at least 32 bytes of 2774 * headroom, you should not reduce this. 2775 * 2776 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2777 * to reduce average number of cache lines per packet. 2778 * get_rps_cpu() for example only access one 64 bytes aligned block : 2779 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2780 */ 2781#ifndef NET_SKB_PAD 2782#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2783#endif 2784 2785int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2786 2787static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2788{ 2789 if (WARN_ON(skb_is_nonlinear(skb))) 2790 return; 2791 skb->len = len; 2792 skb_set_tail_pointer(skb, len); 2793} 2794 2795static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2796{ 2797 __skb_set_length(skb, len); 2798} 2799 2800void skb_trim(struct sk_buff *skb, unsigned int len); 2801 2802static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2803{ 2804 if (skb->data_len) 2805 return ___pskb_trim(skb, len); 2806 __skb_trim(skb, len); 2807 return 0; 2808} 2809 2810static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2811{ 2812 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2813} 2814 2815/** 2816 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2817 * @skb: buffer to alter 2818 * @len: new length 2819 * 2820 * This is identical to pskb_trim except that the caller knows that 2821 * the skb is not cloned so we should never get an error due to out- 2822 * of-memory. 2823 */ 2824static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2825{ 2826 int err = pskb_trim(skb, len); 2827 BUG_ON(err); 2828} 2829 2830static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2831{ 2832 unsigned int diff = len - skb->len; 2833 2834 if (skb_tailroom(skb) < diff) { 2835 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2836 GFP_ATOMIC); 2837 if (ret) 2838 return ret; 2839 } 2840 __skb_set_length(skb, len); 2841 return 0; 2842} 2843 2844/** 2845 * skb_orphan - orphan a buffer 2846 * @skb: buffer to orphan 2847 * 2848 * If a buffer currently has an owner then we call the owner's 2849 * destructor function and make the @skb unowned. The buffer continues 2850 * to exist but is no longer charged to its former owner. 2851 */ 2852static inline void skb_orphan(struct sk_buff *skb) 2853{ 2854 if (skb->destructor) { 2855 skb->destructor(skb); 2856 skb->destructor = NULL; 2857 skb->sk = NULL; 2858 } else { 2859 BUG_ON(skb->sk); 2860 } 2861} 2862 2863/** 2864 * skb_orphan_frags - orphan the frags contained in a buffer 2865 * @skb: buffer to orphan frags from 2866 * @gfp_mask: allocation mask for replacement pages 2867 * 2868 * For each frag in the SKB which needs a destructor (i.e. has an 2869 * owner) create a copy of that frag and release the original 2870 * page by calling the destructor. 2871 */ 2872static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2873{ 2874 if (likely(!skb_zcopy(skb))) 2875 return 0; 2876 if (!skb_zcopy_is_nouarg(skb) && 2877 skb_uarg(skb)->callback == msg_zerocopy_callback) 2878 return 0; 2879 return skb_copy_ubufs(skb, gfp_mask); 2880} 2881 2882/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 2883static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 2884{ 2885 if (likely(!skb_zcopy(skb))) 2886 return 0; 2887 return skb_copy_ubufs(skb, gfp_mask); 2888} 2889 2890/** 2891 * __skb_queue_purge - empty a list 2892 * @list: list to empty 2893 * 2894 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2895 * the list and one reference dropped. This function does not take the 2896 * list lock and the caller must hold the relevant locks to use it. 2897 */ 2898static inline void __skb_queue_purge(struct sk_buff_head *list) 2899{ 2900 struct sk_buff *skb; 2901 while ((skb = __skb_dequeue(list)) != NULL) 2902 kfree_skb(skb); 2903} 2904void skb_queue_purge(struct sk_buff_head *list); 2905 2906unsigned int skb_rbtree_purge(struct rb_root *root); 2907 2908void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 2909 2910/** 2911 * netdev_alloc_frag - allocate a page fragment 2912 * @fragsz: fragment size 2913 * 2914 * Allocates a frag from a page for receive buffer. 2915 * Uses GFP_ATOMIC allocations. 2916 */ 2917static inline void *netdev_alloc_frag(unsigned int fragsz) 2918{ 2919 return __netdev_alloc_frag_align(fragsz, ~0u); 2920} 2921 2922static inline void *netdev_alloc_frag_align(unsigned int fragsz, 2923 unsigned int align) 2924{ 2925 WARN_ON_ONCE(!is_power_of_2(align)); 2926 return __netdev_alloc_frag_align(fragsz, -align); 2927} 2928 2929struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2930 gfp_t gfp_mask); 2931 2932/** 2933 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2934 * @dev: network device to receive on 2935 * @length: length to allocate 2936 * 2937 * Allocate a new &sk_buff and assign it a usage count of one. The 2938 * buffer has unspecified headroom built in. Users should allocate 2939 * the headroom they think they need without accounting for the 2940 * built in space. The built in space is used for optimisations. 2941 * 2942 * %NULL is returned if there is no free memory. Although this function 2943 * allocates memory it can be called from an interrupt. 2944 */ 2945static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2946 unsigned int length) 2947{ 2948 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2949} 2950 2951/* legacy helper around __netdev_alloc_skb() */ 2952static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2953 gfp_t gfp_mask) 2954{ 2955 return __netdev_alloc_skb(NULL, length, gfp_mask); 2956} 2957 2958/* legacy helper around netdev_alloc_skb() */ 2959static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2960{ 2961 return netdev_alloc_skb(NULL, length); 2962} 2963 2964 2965static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2966 unsigned int length, gfp_t gfp) 2967{ 2968 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2969 2970 if (NET_IP_ALIGN && skb) 2971 skb_reserve(skb, NET_IP_ALIGN); 2972 return skb; 2973} 2974 2975static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2976 unsigned int length) 2977{ 2978 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2979} 2980 2981static inline void skb_free_frag(void *addr) 2982{ 2983 page_frag_free(addr); 2984} 2985 2986void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 2987 2988static inline void *napi_alloc_frag(unsigned int fragsz) 2989{ 2990 return __napi_alloc_frag_align(fragsz, ~0u); 2991} 2992 2993static inline void *napi_alloc_frag_align(unsigned int fragsz, 2994 unsigned int align) 2995{ 2996 WARN_ON_ONCE(!is_power_of_2(align)); 2997 return __napi_alloc_frag_align(fragsz, -align); 2998} 2999 3000struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 3001 unsigned int length, gfp_t gfp_mask); 3002static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 3003 unsigned int length) 3004{ 3005 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 3006} 3007void napi_consume_skb(struct sk_buff *skb, int budget); 3008 3009void napi_skb_free_stolen_head(struct sk_buff *skb); 3010void __kfree_skb_defer(struct sk_buff *skb); 3011 3012/** 3013 * __dev_alloc_pages - allocate page for network Rx 3014 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3015 * @order: size of the allocation 3016 * 3017 * Allocate a new page. 3018 * 3019 * %NULL is returned if there is no free memory. 3020*/ 3021static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 3022 unsigned int order) 3023{ 3024 /* This piece of code contains several assumptions. 3025 * 1. This is for device Rx, therefor a cold page is preferred. 3026 * 2. The expectation is the user wants a compound page. 3027 * 3. If requesting a order 0 page it will not be compound 3028 * due to the check to see if order has a value in prep_new_page 3029 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3030 * code in gfp_to_alloc_flags that should be enforcing this. 3031 */ 3032 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3033 3034 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 3035} 3036 3037static inline struct page *dev_alloc_pages(unsigned int order) 3038{ 3039 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 3040} 3041 3042/** 3043 * __dev_alloc_page - allocate a page for network Rx 3044 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3045 * 3046 * Allocate a new page. 3047 * 3048 * %NULL is returned if there is no free memory. 3049 */ 3050static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 3051{ 3052 return __dev_alloc_pages(gfp_mask, 0); 3053} 3054 3055static inline struct page *dev_alloc_page(void) 3056{ 3057 return dev_alloc_pages(0); 3058} 3059 3060/** 3061 * dev_page_is_reusable - check whether a page can be reused for network Rx 3062 * @page: the page to test 3063 * 3064 * A page shouldn't be considered for reusing/recycling if it was allocated 3065 * under memory pressure or at a distant memory node. 3066 * 3067 * Returns false if this page should be returned to page allocator, true 3068 * otherwise. 3069 */ 3070static inline bool dev_page_is_reusable(const struct page *page) 3071{ 3072 return likely(page_to_nid(page) == numa_mem_id() && 3073 !page_is_pfmemalloc(page)); 3074} 3075 3076/** 3077 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3078 * @page: The page that was allocated from skb_alloc_page 3079 * @skb: The skb that may need pfmemalloc set 3080 */ 3081static inline void skb_propagate_pfmemalloc(const struct page *page, 3082 struct sk_buff *skb) 3083{ 3084 if (page_is_pfmemalloc(page)) 3085 skb->pfmemalloc = true; 3086} 3087 3088/** 3089 * skb_frag_off() - Returns the offset of a skb fragment 3090 * @frag: the paged fragment 3091 */ 3092static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3093{ 3094 return frag->bv_offset; 3095} 3096 3097/** 3098 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3099 * @frag: skb fragment 3100 * @delta: value to add 3101 */ 3102static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3103{ 3104 frag->bv_offset += delta; 3105} 3106 3107/** 3108 * skb_frag_off_set() - Sets the offset of a skb fragment 3109 * @frag: skb fragment 3110 * @offset: offset of fragment 3111 */ 3112static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3113{ 3114 frag->bv_offset = offset; 3115} 3116 3117/** 3118 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3119 * @fragto: skb fragment where offset is set 3120 * @fragfrom: skb fragment offset is copied from 3121 */ 3122static inline void skb_frag_off_copy(skb_frag_t *fragto, 3123 const skb_frag_t *fragfrom) 3124{ 3125 fragto->bv_offset = fragfrom->bv_offset; 3126} 3127 3128/** 3129 * skb_frag_page - retrieve the page referred to by a paged fragment 3130 * @frag: the paged fragment 3131 * 3132 * Returns the &struct page associated with @frag. 3133 */ 3134static inline struct page *skb_frag_page(const skb_frag_t *frag) 3135{ 3136 return frag->bv_page; 3137} 3138 3139/** 3140 * __skb_frag_ref - take an addition reference on a paged fragment. 3141 * @frag: the paged fragment 3142 * 3143 * Takes an additional reference on the paged fragment @frag. 3144 */ 3145static inline void __skb_frag_ref(skb_frag_t *frag) 3146{ 3147 get_page(skb_frag_page(frag)); 3148} 3149 3150/** 3151 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 3152 * @skb: the buffer 3153 * @f: the fragment offset. 3154 * 3155 * Takes an additional reference on the @f'th paged fragment of @skb. 3156 */ 3157static inline void skb_frag_ref(struct sk_buff *skb, int f) 3158{ 3159 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 3160} 3161 3162/** 3163 * __skb_frag_unref - release a reference on a paged fragment. 3164 * @frag: the paged fragment 3165 * @recycle: recycle the page if allocated via page_pool 3166 * 3167 * Releases a reference on the paged fragment @frag 3168 * or recycles the page via the page_pool API. 3169 */ 3170static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle) 3171{ 3172 struct page *page = skb_frag_page(frag); 3173 3174#ifdef CONFIG_PAGE_POOL 3175 if (recycle && page_pool_return_skb_page(page)) 3176 return; 3177#endif 3178 put_page(page); 3179} 3180 3181/** 3182 * skb_frag_unref - release a reference on a paged fragment of an skb. 3183 * @skb: the buffer 3184 * @f: the fragment offset 3185 * 3186 * Releases a reference on the @f'th paged fragment of @skb. 3187 */ 3188static inline void skb_frag_unref(struct sk_buff *skb, int f) 3189{ 3190 __skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle); 3191} 3192 3193/** 3194 * skb_frag_address - gets the address of the data contained in a paged fragment 3195 * @frag: the paged fragment buffer 3196 * 3197 * Returns the address of the data within @frag. The page must already 3198 * be mapped. 3199 */ 3200static inline void *skb_frag_address(const skb_frag_t *frag) 3201{ 3202 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3203} 3204 3205/** 3206 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3207 * @frag: the paged fragment buffer 3208 * 3209 * Returns the address of the data within @frag. Checks that the page 3210 * is mapped and returns %NULL otherwise. 3211 */ 3212static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3213{ 3214 void *ptr = page_address(skb_frag_page(frag)); 3215 if (unlikely(!ptr)) 3216 return NULL; 3217 3218 return ptr + skb_frag_off(frag); 3219} 3220 3221/** 3222 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3223 * @fragto: skb fragment where page is set 3224 * @fragfrom: skb fragment page is copied from 3225 */ 3226static inline void skb_frag_page_copy(skb_frag_t *fragto, 3227 const skb_frag_t *fragfrom) 3228{ 3229 fragto->bv_page = fragfrom->bv_page; 3230} 3231 3232/** 3233 * __skb_frag_set_page - sets the page contained in a paged fragment 3234 * @frag: the paged fragment 3235 * @page: the page to set 3236 * 3237 * Sets the fragment @frag to contain @page. 3238 */ 3239static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 3240{ 3241 frag->bv_page = page; 3242} 3243 3244/** 3245 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 3246 * @skb: the buffer 3247 * @f: the fragment offset 3248 * @page: the page to set 3249 * 3250 * Sets the @f'th fragment of @skb to contain @page. 3251 */ 3252static inline void skb_frag_set_page(struct sk_buff *skb, int f, 3253 struct page *page) 3254{ 3255 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 3256} 3257 3258bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3259 3260/** 3261 * skb_frag_dma_map - maps a paged fragment via the DMA API 3262 * @dev: the device to map the fragment to 3263 * @frag: the paged fragment to map 3264 * @offset: the offset within the fragment (starting at the 3265 * fragment's own offset) 3266 * @size: the number of bytes to map 3267 * @dir: the direction of the mapping (``PCI_DMA_*``) 3268 * 3269 * Maps the page associated with @frag to @device. 3270 */ 3271static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3272 const skb_frag_t *frag, 3273 size_t offset, size_t size, 3274 enum dma_data_direction dir) 3275{ 3276 return dma_map_page(dev, skb_frag_page(frag), 3277 skb_frag_off(frag) + offset, size, dir); 3278} 3279 3280static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3281 gfp_t gfp_mask) 3282{ 3283 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3284} 3285 3286 3287static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3288 gfp_t gfp_mask) 3289{ 3290 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3291} 3292 3293 3294/** 3295 * skb_clone_writable - is the header of a clone writable 3296 * @skb: buffer to check 3297 * @len: length up to which to write 3298 * 3299 * Returns true if modifying the header part of the cloned buffer 3300 * does not requires the data to be copied. 3301 */ 3302static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3303{ 3304 return !skb_header_cloned(skb) && 3305 skb_headroom(skb) + len <= skb->hdr_len; 3306} 3307 3308static inline int skb_try_make_writable(struct sk_buff *skb, 3309 unsigned int write_len) 3310{ 3311 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3312 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3313} 3314 3315static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3316 int cloned) 3317{ 3318 int delta = 0; 3319 3320 if (headroom > skb_headroom(skb)) 3321 delta = headroom - skb_headroom(skb); 3322 3323 if (delta || cloned) 3324 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3325 GFP_ATOMIC); 3326 return 0; 3327} 3328 3329/** 3330 * skb_cow - copy header of skb when it is required 3331 * @skb: buffer to cow 3332 * @headroom: needed headroom 3333 * 3334 * If the skb passed lacks sufficient headroom or its data part 3335 * is shared, data is reallocated. If reallocation fails, an error 3336 * is returned and original skb is not changed. 3337 * 3338 * The result is skb with writable area skb->head...skb->tail 3339 * and at least @headroom of space at head. 3340 */ 3341static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3342{ 3343 return __skb_cow(skb, headroom, skb_cloned(skb)); 3344} 3345 3346/** 3347 * skb_cow_head - skb_cow but only making the head writable 3348 * @skb: buffer to cow 3349 * @headroom: needed headroom 3350 * 3351 * This function is identical to skb_cow except that we replace the 3352 * skb_cloned check by skb_header_cloned. It should be used when 3353 * you only need to push on some header and do not need to modify 3354 * the data. 3355 */ 3356static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3357{ 3358 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3359} 3360 3361/** 3362 * skb_padto - pad an skbuff up to a minimal size 3363 * @skb: buffer to pad 3364 * @len: minimal length 3365 * 3366 * Pads up a buffer to ensure the trailing bytes exist and are 3367 * blanked. If the buffer already contains sufficient data it 3368 * is untouched. Otherwise it is extended. Returns zero on 3369 * success. The skb is freed on error. 3370 */ 3371static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3372{ 3373 unsigned int size = skb->len; 3374 if (likely(size >= len)) 3375 return 0; 3376 return skb_pad(skb, len - size); 3377} 3378 3379/** 3380 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3381 * @skb: buffer to pad 3382 * @len: minimal length 3383 * @free_on_error: free buffer on error 3384 * 3385 * Pads up a buffer to ensure the trailing bytes exist and are 3386 * blanked. If the buffer already contains sufficient data it 3387 * is untouched. Otherwise it is extended. Returns zero on 3388 * success. The skb is freed on error if @free_on_error is true. 3389 */ 3390static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3391 unsigned int len, 3392 bool free_on_error) 3393{ 3394 unsigned int size = skb->len; 3395 3396 if (unlikely(size < len)) { 3397 len -= size; 3398 if (__skb_pad(skb, len, free_on_error)) 3399 return -ENOMEM; 3400 __skb_put(skb, len); 3401 } 3402 return 0; 3403} 3404 3405/** 3406 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3407 * @skb: buffer to pad 3408 * @len: minimal length 3409 * 3410 * Pads up a buffer to ensure the trailing bytes exist and are 3411 * blanked. If the buffer already contains sufficient data it 3412 * is untouched. Otherwise it is extended. Returns zero on 3413 * success. The skb is freed on error. 3414 */ 3415static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3416{ 3417 return __skb_put_padto(skb, len, true); 3418} 3419 3420static inline int skb_add_data(struct sk_buff *skb, 3421 struct iov_iter *from, int copy) 3422{ 3423 const int off = skb->len; 3424 3425 if (skb->ip_summed == CHECKSUM_NONE) { 3426 __wsum csum = 0; 3427 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3428 &csum, from)) { 3429 skb->csum = csum_block_add(skb->csum, csum, off); 3430 return 0; 3431 } 3432 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3433 return 0; 3434 3435 __skb_trim(skb, off); 3436 return -EFAULT; 3437} 3438 3439static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3440 const struct page *page, int off) 3441{ 3442 if (skb_zcopy(skb)) 3443 return false; 3444 if (i) { 3445 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3446 3447 return page == skb_frag_page(frag) && 3448 off == skb_frag_off(frag) + skb_frag_size(frag); 3449 } 3450 return false; 3451} 3452 3453static inline int __skb_linearize(struct sk_buff *skb) 3454{ 3455 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3456} 3457 3458/** 3459 * skb_linearize - convert paged skb to linear one 3460 * @skb: buffer to linarize 3461 * 3462 * If there is no free memory -ENOMEM is returned, otherwise zero 3463 * is returned and the old skb data released. 3464 */ 3465static inline int skb_linearize(struct sk_buff *skb) 3466{ 3467 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3468} 3469 3470/** 3471 * skb_has_shared_frag - can any frag be overwritten 3472 * @skb: buffer to test 3473 * 3474 * Return true if the skb has at least one frag that might be modified 3475 * by an external entity (as in vmsplice()/sendfile()) 3476 */ 3477static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3478{ 3479 return skb_is_nonlinear(skb) && 3480 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3481} 3482 3483/** 3484 * skb_linearize_cow - make sure skb is linear and writable 3485 * @skb: buffer to process 3486 * 3487 * If there is no free memory -ENOMEM is returned, otherwise zero 3488 * is returned and the old skb data released. 3489 */ 3490static inline int skb_linearize_cow(struct sk_buff *skb) 3491{ 3492 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3493 __skb_linearize(skb) : 0; 3494} 3495 3496static __always_inline void 3497__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3498 unsigned int off) 3499{ 3500 if (skb->ip_summed == CHECKSUM_COMPLETE) 3501 skb->csum = csum_block_sub(skb->csum, 3502 csum_partial(start, len, 0), off); 3503 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3504 skb_checksum_start_offset(skb) < 0) 3505 skb->ip_summed = CHECKSUM_NONE; 3506} 3507 3508/** 3509 * skb_postpull_rcsum - update checksum for received skb after pull 3510 * @skb: buffer to update 3511 * @start: start of data before pull 3512 * @len: length of data pulled 3513 * 3514 * After doing a pull on a received packet, you need to call this to 3515 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3516 * CHECKSUM_NONE so that it can be recomputed from scratch. 3517 */ 3518static inline void skb_postpull_rcsum(struct sk_buff *skb, 3519 const void *start, unsigned int len) 3520{ 3521 if (skb->ip_summed == CHECKSUM_COMPLETE) 3522 skb->csum = wsum_negate(csum_partial(start, len, 3523 wsum_negate(skb->csum))); 3524 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3525 skb_checksum_start_offset(skb) < 0) 3526 skb->ip_summed = CHECKSUM_NONE; 3527} 3528 3529static __always_inline void 3530__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3531 unsigned int off) 3532{ 3533 if (skb->ip_summed == CHECKSUM_COMPLETE) 3534 skb->csum = csum_block_add(skb->csum, 3535 csum_partial(start, len, 0), off); 3536} 3537 3538/** 3539 * skb_postpush_rcsum - update checksum for received skb after push 3540 * @skb: buffer to update 3541 * @start: start of data after push 3542 * @len: length of data pushed 3543 * 3544 * After doing a push on a received packet, you need to call this to 3545 * update the CHECKSUM_COMPLETE checksum. 3546 */ 3547static inline void skb_postpush_rcsum(struct sk_buff *skb, 3548 const void *start, unsigned int len) 3549{ 3550 __skb_postpush_rcsum(skb, start, len, 0); 3551} 3552 3553void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3554 3555/** 3556 * skb_push_rcsum - push skb and update receive checksum 3557 * @skb: buffer to update 3558 * @len: length of data pulled 3559 * 3560 * This function performs an skb_push on the packet and updates 3561 * the CHECKSUM_COMPLETE checksum. It should be used on 3562 * receive path processing instead of skb_push unless you know 3563 * that the checksum difference is zero (e.g., a valid IP header) 3564 * or you are setting ip_summed to CHECKSUM_NONE. 3565 */ 3566static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3567{ 3568 skb_push(skb, len); 3569 skb_postpush_rcsum(skb, skb->data, len); 3570 return skb->data; 3571} 3572 3573int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3574/** 3575 * pskb_trim_rcsum - trim received skb and update checksum 3576 * @skb: buffer to trim 3577 * @len: new length 3578 * 3579 * This is exactly the same as pskb_trim except that it ensures the 3580 * checksum of received packets are still valid after the operation. 3581 * It can change skb pointers. 3582 */ 3583 3584static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3585{ 3586 if (likely(len >= skb->len)) 3587 return 0; 3588 return pskb_trim_rcsum_slow(skb, len); 3589} 3590 3591static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3592{ 3593 if (skb->ip_summed == CHECKSUM_COMPLETE) 3594 skb->ip_summed = CHECKSUM_NONE; 3595 __skb_trim(skb, len); 3596 return 0; 3597} 3598 3599static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3600{ 3601 if (skb->ip_summed == CHECKSUM_COMPLETE) 3602 skb->ip_summed = CHECKSUM_NONE; 3603 return __skb_grow(skb, len); 3604} 3605 3606#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3607#define skb_rb_first(root) rb_to_skb(rb_first(root)) 3608#define skb_rb_last(root) rb_to_skb(rb_last(root)) 3609#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3610#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3611 3612#define skb_queue_walk(queue, skb) \ 3613 for (skb = (queue)->next; \ 3614 skb != (struct sk_buff *)(queue); \ 3615 skb = skb->next) 3616 3617#define skb_queue_walk_safe(queue, skb, tmp) \ 3618 for (skb = (queue)->next, tmp = skb->next; \ 3619 skb != (struct sk_buff *)(queue); \ 3620 skb = tmp, tmp = skb->next) 3621 3622#define skb_queue_walk_from(queue, skb) \ 3623 for (; skb != (struct sk_buff *)(queue); \ 3624 skb = skb->next) 3625 3626#define skb_rbtree_walk(skb, root) \ 3627 for (skb = skb_rb_first(root); skb != NULL; \ 3628 skb = skb_rb_next(skb)) 3629 3630#define skb_rbtree_walk_from(skb) \ 3631 for (; skb != NULL; \ 3632 skb = skb_rb_next(skb)) 3633 3634#define skb_rbtree_walk_from_safe(skb, tmp) \ 3635 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3636 skb = tmp) 3637 3638#define skb_queue_walk_from_safe(queue, skb, tmp) \ 3639 for (tmp = skb->next; \ 3640 skb != (struct sk_buff *)(queue); \ 3641 skb = tmp, tmp = skb->next) 3642 3643#define skb_queue_reverse_walk(queue, skb) \ 3644 for (skb = (queue)->prev; \ 3645 skb != (struct sk_buff *)(queue); \ 3646 skb = skb->prev) 3647 3648#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3649 for (skb = (queue)->prev, tmp = skb->prev; \ 3650 skb != (struct sk_buff *)(queue); \ 3651 skb = tmp, tmp = skb->prev) 3652 3653#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3654 for (tmp = skb->prev; \ 3655 skb != (struct sk_buff *)(queue); \ 3656 skb = tmp, tmp = skb->prev) 3657 3658static inline bool skb_has_frag_list(const struct sk_buff *skb) 3659{ 3660 return skb_shinfo(skb)->frag_list != NULL; 3661} 3662 3663static inline void skb_frag_list_init(struct sk_buff *skb) 3664{ 3665 skb_shinfo(skb)->frag_list = NULL; 3666} 3667 3668#define skb_walk_frags(skb, iter) \ 3669 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3670 3671 3672int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3673 int *err, long *timeo_p, 3674 const struct sk_buff *skb); 3675struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3676 struct sk_buff_head *queue, 3677 unsigned int flags, 3678 int *off, int *err, 3679 struct sk_buff **last); 3680struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3681 struct sk_buff_head *queue, 3682 unsigned int flags, int *off, int *err, 3683 struct sk_buff **last); 3684struct sk_buff *__skb_recv_datagram(struct sock *sk, 3685 struct sk_buff_head *sk_queue, 3686 unsigned int flags, int *off, int *err); 3687struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3688 int *err); 3689__poll_t datagram_poll(struct file *file, struct socket *sock, 3690 struct poll_table_struct *wait); 3691int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3692 struct iov_iter *to, int size); 3693static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3694 struct msghdr *msg, int size) 3695{ 3696 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3697} 3698int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3699 struct msghdr *msg); 3700int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3701 struct iov_iter *to, int len, 3702 struct ahash_request *hash); 3703int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3704 struct iov_iter *from, int len); 3705int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3706void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3707void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3708static inline void skb_free_datagram_locked(struct sock *sk, 3709 struct sk_buff *skb) 3710{ 3711 __skb_free_datagram_locked(sk, skb, 0); 3712} 3713int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3714int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3715int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3716__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3717 int len); 3718int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3719 struct pipe_inode_info *pipe, unsigned int len, 3720 unsigned int flags); 3721int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3722 int len); 3723int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 3724void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3725unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3726int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3727 int len, int hlen); 3728void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3729int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3730void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3731bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3732bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3733struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3734struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 3735 unsigned int offset); 3736struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3737int skb_ensure_writable(struct sk_buff *skb, int write_len); 3738int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3739int skb_vlan_pop(struct sk_buff *skb); 3740int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3741int skb_eth_pop(struct sk_buff *skb); 3742int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 3743 const unsigned char *src); 3744int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 3745 int mac_len, bool ethernet); 3746int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 3747 bool ethernet); 3748int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 3749int skb_mpls_dec_ttl(struct sk_buff *skb); 3750struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3751 gfp_t gfp); 3752 3753static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3754{ 3755 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3756} 3757 3758static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3759{ 3760 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3761} 3762 3763struct skb_checksum_ops { 3764 __wsum (*update)(const void *mem, int len, __wsum wsum); 3765 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3766}; 3767 3768extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3769 3770__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3771 __wsum csum, const struct skb_checksum_ops *ops); 3772__wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3773 __wsum csum); 3774 3775static inline void * __must_check 3776__skb_header_pointer(const struct sk_buff *skb, int offset, int len, 3777 const void *data, int hlen, void *buffer) 3778{ 3779 if (likely(hlen - offset >= len)) 3780 return (void *)data + offset; 3781 3782 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 3783 return NULL; 3784 3785 return buffer; 3786} 3787 3788static inline void * __must_check 3789skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3790{ 3791 return __skb_header_pointer(skb, offset, len, skb->data, 3792 skb_headlen(skb), buffer); 3793} 3794 3795/** 3796 * skb_needs_linearize - check if we need to linearize a given skb 3797 * depending on the given device features. 3798 * @skb: socket buffer to check 3799 * @features: net device features 3800 * 3801 * Returns true if either: 3802 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3803 * 2. skb is fragmented and the device does not support SG. 3804 */ 3805static inline bool skb_needs_linearize(struct sk_buff *skb, 3806 netdev_features_t features) 3807{ 3808 return skb_is_nonlinear(skb) && 3809 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3810 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3811} 3812 3813static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3814 void *to, 3815 const unsigned int len) 3816{ 3817 memcpy(to, skb->data, len); 3818} 3819 3820static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3821 const int offset, void *to, 3822 const unsigned int len) 3823{ 3824 memcpy(to, skb->data + offset, len); 3825} 3826 3827static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3828 const void *from, 3829 const unsigned int len) 3830{ 3831 memcpy(skb->data, from, len); 3832} 3833 3834static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3835 const int offset, 3836 const void *from, 3837 const unsigned int len) 3838{ 3839 memcpy(skb->data + offset, from, len); 3840} 3841 3842void skb_init(void); 3843 3844static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3845{ 3846 return skb->tstamp; 3847} 3848 3849/** 3850 * skb_get_timestamp - get timestamp from a skb 3851 * @skb: skb to get stamp from 3852 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 3853 * 3854 * Timestamps are stored in the skb as offsets to a base timestamp. 3855 * This function converts the offset back to a struct timeval and stores 3856 * it in stamp. 3857 */ 3858static inline void skb_get_timestamp(const struct sk_buff *skb, 3859 struct __kernel_old_timeval *stamp) 3860{ 3861 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 3862} 3863 3864static inline void skb_get_new_timestamp(const struct sk_buff *skb, 3865 struct __kernel_sock_timeval *stamp) 3866{ 3867 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3868 3869 stamp->tv_sec = ts.tv_sec; 3870 stamp->tv_usec = ts.tv_nsec / 1000; 3871} 3872 3873static inline void skb_get_timestampns(const struct sk_buff *skb, 3874 struct __kernel_old_timespec *stamp) 3875{ 3876 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3877 3878 stamp->tv_sec = ts.tv_sec; 3879 stamp->tv_nsec = ts.tv_nsec; 3880} 3881 3882static inline void skb_get_new_timestampns(const struct sk_buff *skb, 3883 struct __kernel_timespec *stamp) 3884{ 3885 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3886 3887 stamp->tv_sec = ts.tv_sec; 3888 stamp->tv_nsec = ts.tv_nsec; 3889} 3890 3891static inline void __net_timestamp(struct sk_buff *skb) 3892{ 3893 skb->tstamp = ktime_get_real(); 3894} 3895 3896static inline ktime_t net_timedelta(ktime_t t) 3897{ 3898 return ktime_sub(ktime_get_real(), t); 3899} 3900 3901static inline ktime_t net_invalid_timestamp(void) 3902{ 3903 return 0; 3904} 3905 3906static inline u8 skb_metadata_len(const struct sk_buff *skb) 3907{ 3908 return skb_shinfo(skb)->meta_len; 3909} 3910 3911static inline void *skb_metadata_end(const struct sk_buff *skb) 3912{ 3913 return skb_mac_header(skb); 3914} 3915 3916static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 3917 const struct sk_buff *skb_b, 3918 u8 meta_len) 3919{ 3920 const void *a = skb_metadata_end(skb_a); 3921 const void *b = skb_metadata_end(skb_b); 3922 /* Using more efficient varaiant than plain call to memcmp(). */ 3923#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 3924 u64 diffs = 0; 3925 3926 switch (meta_len) { 3927#define __it(x, op) (x -= sizeof(u##op)) 3928#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 3929 case 32: diffs |= __it_diff(a, b, 64); 3930 fallthrough; 3931 case 24: diffs |= __it_diff(a, b, 64); 3932 fallthrough; 3933 case 16: diffs |= __it_diff(a, b, 64); 3934 fallthrough; 3935 case 8: diffs |= __it_diff(a, b, 64); 3936 break; 3937 case 28: diffs |= __it_diff(a, b, 64); 3938 fallthrough; 3939 case 20: diffs |= __it_diff(a, b, 64); 3940 fallthrough; 3941 case 12: diffs |= __it_diff(a, b, 64); 3942 fallthrough; 3943 case 4: diffs |= __it_diff(a, b, 32); 3944 break; 3945 } 3946 return diffs; 3947#else 3948 return memcmp(a - meta_len, b - meta_len, meta_len); 3949#endif 3950} 3951 3952static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 3953 const struct sk_buff *skb_b) 3954{ 3955 u8 len_a = skb_metadata_len(skb_a); 3956 u8 len_b = skb_metadata_len(skb_b); 3957 3958 if (!(len_a | len_b)) 3959 return false; 3960 3961 return len_a != len_b ? 3962 true : __skb_metadata_differs(skb_a, skb_b, len_a); 3963} 3964 3965static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 3966{ 3967 skb_shinfo(skb)->meta_len = meta_len; 3968} 3969 3970static inline void skb_metadata_clear(struct sk_buff *skb) 3971{ 3972 skb_metadata_set(skb, 0); 3973} 3974 3975struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3976 3977#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3978 3979void skb_clone_tx_timestamp(struct sk_buff *skb); 3980bool skb_defer_rx_timestamp(struct sk_buff *skb); 3981 3982#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3983 3984static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3985{ 3986} 3987 3988static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3989{ 3990 return false; 3991} 3992 3993#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3994 3995/** 3996 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3997 * 3998 * PHY drivers may accept clones of transmitted packets for 3999 * timestamping via their phy_driver.txtstamp method. These drivers 4000 * must call this function to return the skb back to the stack with a 4001 * timestamp. 4002 * 4003 * @skb: clone of the original outgoing packet 4004 * @hwtstamps: hardware time stamps 4005 * 4006 */ 4007void skb_complete_tx_timestamp(struct sk_buff *skb, 4008 struct skb_shared_hwtstamps *hwtstamps); 4009 4010void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4011 struct skb_shared_hwtstamps *hwtstamps, 4012 struct sock *sk, int tstype); 4013 4014/** 4015 * skb_tstamp_tx - queue clone of skb with send time stamps 4016 * @orig_skb: the original outgoing packet 4017 * @hwtstamps: hardware time stamps, may be NULL if not available 4018 * 4019 * If the skb has a socket associated, then this function clones the 4020 * skb (thus sharing the actual data and optional structures), stores 4021 * the optional hardware time stamping information (if non NULL) or 4022 * generates a software time stamp (otherwise), then queues the clone 4023 * to the error queue of the socket. Errors are silently ignored. 4024 */ 4025void skb_tstamp_tx(struct sk_buff *orig_skb, 4026 struct skb_shared_hwtstamps *hwtstamps); 4027 4028/** 4029 * skb_tx_timestamp() - Driver hook for transmit timestamping 4030 * 4031 * Ethernet MAC Drivers should call this function in their hard_xmit() 4032 * function immediately before giving the sk_buff to the MAC hardware. 4033 * 4034 * Specifically, one should make absolutely sure that this function is 4035 * called before TX completion of this packet can trigger. Otherwise 4036 * the packet could potentially already be freed. 4037 * 4038 * @skb: A socket buffer. 4039 */ 4040static inline void skb_tx_timestamp(struct sk_buff *skb) 4041{ 4042 skb_clone_tx_timestamp(skb); 4043 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4044 skb_tstamp_tx(skb, NULL); 4045} 4046 4047/** 4048 * skb_complete_wifi_ack - deliver skb with wifi status 4049 * 4050 * @skb: the original outgoing packet 4051 * @acked: ack status 4052 * 4053 */ 4054void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4055 4056__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4057__sum16 __skb_checksum_complete(struct sk_buff *skb); 4058 4059static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4060{ 4061 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4062 skb->csum_valid || 4063 (skb->ip_summed == CHECKSUM_PARTIAL && 4064 skb_checksum_start_offset(skb) >= 0)); 4065} 4066 4067/** 4068 * skb_checksum_complete - Calculate checksum of an entire packet 4069 * @skb: packet to process 4070 * 4071 * This function calculates the checksum over the entire packet plus 4072 * the value of skb->csum. The latter can be used to supply the 4073 * checksum of a pseudo header as used by TCP/UDP. It returns the 4074 * checksum. 4075 * 4076 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4077 * this function can be used to verify that checksum on received 4078 * packets. In that case the function should return zero if the 4079 * checksum is correct. In particular, this function will return zero 4080 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4081 * hardware has already verified the correctness of the checksum. 4082 */ 4083static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4084{ 4085 return skb_csum_unnecessary(skb) ? 4086 0 : __skb_checksum_complete(skb); 4087} 4088 4089static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4090{ 4091 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4092 if (skb->csum_level == 0) 4093 skb->ip_summed = CHECKSUM_NONE; 4094 else 4095 skb->csum_level--; 4096 } 4097} 4098 4099static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4100{ 4101 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4102 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4103 skb->csum_level++; 4104 } else if (skb->ip_summed == CHECKSUM_NONE) { 4105 skb->ip_summed = CHECKSUM_UNNECESSARY; 4106 skb->csum_level = 0; 4107 } 4108} 4109 4110static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4111{ 4112 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4113 skb->ip_summed = CHECKSUM_NONE; 4114 skb->csum_level = 0; 4115 } 4116} 4117 4118/* Check if we need to perform checksum complete validation. 4119 * 4120 * Returns true if checksum complete is needed, false otherwise 4121 * (either checksum is unnecessary or zero checksum is allowed). 4122 */ 4123static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4124 bool zero_okay, 4125 __sum16 check) 4126{ 4127 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4128 skb->csum_valid = 1; 4129 __skb_decr_checksum_unnecessary(skb); 4130 return false; 4131 } 4132 4133 return true; 4134} 4135 4136/* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4137 * in checksum_init. 4138 */ 4139#define CHECKSUM_BREAK 76 4140 4141/* Unset checksum-complete 4142 * 4143 * Unset checksum complete can be done when packet is being modified 4144 * (uncompressed for instance) and checksum-complete value is 4145 * invalidated. 4146 */ 4147static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4148{ 4149 if (skb->ip_summed == CHECKSUM_COMPLETE) 4150 skb->ip_summed = CHECKSUM_NONE; 4151} 4152 4153/* Validate (init) checksum based on checksum complete. 4154 * 4155 * Return values: 4156 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4157 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4158 * checksum is stored in skb->csum for use in __skb_checksum_complete 4159 * non-zero: value of invalid checksum 4160 * 4161 */ 4162static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4163 bool complete, 4164 __wsum psum) 4165{ 4166 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4167 if (!csum_fold(csum_add(psum, skb->csum))) { 4168 skb->csum_valid = 1; 4169 return 0; 4170 } 4171 } 4172 4173 skb->csum = psum; 4174 4175 if (complete || skb->len <= CHECKSUM_BREAK) { 4176 __sum16 csum; 4177 4178 csum = __skb_checksum_complete(skb); 4179 skb->csum_valid = !csum; 4180 return csum; 4181 } 4182 4183 return 0; 4184} 4185 4186static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4187{ 4188 return 0; 4189} 4190 4191/* Perform checksum validate (init). Note that this is a macro since we only 4192 * want to calculate the pseudo header which is an input function if necessary. 4193 * First we try to validate without any computation (checksum unnecessary) and 4194 * then calculate based on checksum complete calling the function to compute 4195 * pseudo header. 4196 * 4197 * Return values: 4198 * 0: checksum is validated or try to in skb_checksum_complete 4199 * non-zero: value of invalid checksum 4200 */ 4201#define __skb_checksum_validate(skb, proto, complete, \ 4202 zero_okay, check, compute_pseudo) \ 4203({ \ 4204 __sum16 __ret = 0; \ 4205 skb->csum_valid = 0; \ 4206 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4207 __ret = __skb_checksum_validate_complete(skb, \ 4208 complete, compute_pseudo(skb, proto)); \ 4209 __ret; \ 4210}) 4211 4212#define skb_checksum_init(skb, proto, compute_pseudo) \ 4213 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4214 4215#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4216 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4217 4218#define skb_checksum_validate(skb, proto, compute_pseudo) \ 4219 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4220 4221#define skb_checksum_validate_zero_check(skb, proto, check, \ 4222 compute_pseudo) \ 4223 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4224 4225#define skb_checksum_simple_validate(skb) \ 4226 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4227 4228static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4229{ 4230 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4231} 4232 4233static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4234{ 4235 skb->csum = ~pseudo; 4236 skb->ip_summed = CHECKSUM_COMPLETE; 4237} 4238 4239#define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4240do { \ 4241 if (__skb_checksum_convert_check(skb)) \ 4242 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4243} while (0) 4244 4245static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4246 u16 start, u16 offset) 4247{ 4248 skb->ip_summed = CHECKSUM_PARTIAL; 4249 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4250 skb->csum_offset = offset - start; 4251} 4252 4253/* Update skbuf and packet to reflect the remote checksum offload operation. 4254 * When called, ptr indicates the starting point for skb->csum when 4255 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4256 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4257 */ 4258static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4259 int start, int offset, bool nopartial) 4260{ 4261 __wsum delta; 4262 4263 if (!nopartial) { 4264 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4265 return; 4266 } 4267 4268 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4269 __skb_checksum_complete(skb); 4270 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4271 } 4272 4273 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4274 4275 /* Adjust skb->csum since we changed the packet */ 4276 skb->csum = csum_add(skb->csum, delta); 4277} 4278 4279static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4280{ 4281#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4282 return (void *)(skb->_nfct & NFCT_PTRMASK); 4283#else 4284 return NULL; 4285#endif 4286} 4287 4288static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4289{ 4290#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4291 return skb->_nfct; 4292#else 4293 return 0UL; 4294#endif 4295} 4296 4297static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4298{ 4299#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4300 skb->slow_gro |= !!nfct; 4301 skb->_nfct = nfct; 4302#endif 4303} 4304 4305#ifdef CONFIG_SKB_EXTENSIONS 4306enum skb_ext_id { 4307#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4308 SKB_EXT_BRIDGE_NF, 4309#endif 4310#ifdef CONFIG_XFRM 4311 SKB_EXT_SEC_PATH, 4312#endif 4313#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4314 TC_SKB_EXT, 4315#endif 4316#if IS_ENABLED(CONFIG_MPTCP) 4317 SKB_EXT_MPTCP, 4318#endif 4319#if IS_ENABLED(CONFIG_MCTP_FLOWS) 4320 SKB_EXT_MCTP, 4321#endif 4322 SKB_EXT_NUM, /* must be last */ 4323}; 4324 4325/** 4326 * struct skb_ext - sk_buff extensions 4327 * @refcnt: 1 on allocation, deallocated on 0 4328 * @offset: offset to add to @data to obtain extension address 4329 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4330 * @data: start of extension data, variable sized 4331 * 4332 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4333 * to use 'u8' types while allowing up to 2kb worth of extension data. 4334 */ 4335struct skb_ext { 4336 refcount_t refcnt; 4337 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4338 u8 chunks; /* same */ 4339 char data[] __aligned(8); 4340}; 4341 4342struct skb_ext *__skb_ext_alloc(gfp_t flags); 4343void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4344 struct skb_ext *ext); 4345void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4346void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4347void __skb_ext_put(struct skb_ext *ext); 4348 4349static inline void skb_ext_put(struct sk_buff *skb) 4350{ 4351 if (skb->active_extensions) 4352 __skb_ext_put(skb->extensions); 4353} 4354 4355static inline void __skb_ext_copy(struct sk_buff *dst, 4356 const struct sk_buff *src) 4357{ 4358 dst->active_extensions = src->active_extensions; 4359 4360 if (src->active_extensions) { 4361 struct skb_ext *ext = src->extensions; 4362 4363 refcount_inc(&ext->refcnt); 4364 dst->extensions = ext; 4365 } 4366} 4367 4368static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4369{ 4370 skb_ext_put(dst); 4371 __skb_ext_copy(dst, src); 4372} 4373 4374static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4375{ 4376 return !!ext->offset[i]; 4377} 4378 4379static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4380{ 4381 return skb->active_extensions & (1 << id); 4382} 4383 4384static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4385{ 4386 if (skb_ext_exist(skb, id)) 4387 __skb_ext_del(skb, id); 4388} 4389 4390static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4391{ 4392 if (skb_ext_exist(skb, id)) { 4393 struct skb_ext *ext = skb->extensions; 4394 4395 return (void *)ext + (ext->offset[id] << 3); 4396 } 4397 4398 return NULL; 4399} 4400 4401static inline void skb_ext_reset(struct sk_buff *skb) 4402{ 4403 if (unlikely(skb->active_extensions)) { 4404 __skb_ext_put(skb->extensions); 4405 skb->active_extensions = 0; 4406 } 4407} 4408 4409static inline bool skb_has_extensions(struct sk_buff *skb) 4410{ 4411 return unlikely(skb->active_extensions); 4412} 4413#else 4414static inline void skb_ext_put(struct sk_buff *skb) {} 4415static inline void skb_ext_reset(struct sk_buff *skb) {} 4416static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4417static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4418static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4419static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4420#endif /* CONFIG_SKB_EXTENSIONS */ 4421 4422static inline void nf_reset_ct(struct sk_buff *skb) 4423{ 4424#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4425 nf_conntrack_put(skb_nfct(skb)); 4426 skb->_nfct = 0; 4427#endif 4428} 4429 4430static inline void nf_reset_trace(struct sk_buff *skb) 4431{ 4432#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4433 skb->nf_trace = 0; 4434#endif 4435} 4436 4437static inline void ipvs_reset(struct sk_buff *skb) 4438{ 4439#if IS_ENABLED(CONFIG_IP_VS) 4440 skb->ipvs_property = 0; 4441#endif 4442} 4443 4444/* Note: This doesn't put any conntrack info in dst. */ 4445static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4446 bool copy) 4447{ 4448#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4449 dst->_nfct = src->_nfct; 4450 nf_conntrack_get(skb_nfct(src)); 4451#endif 4452#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4453 if (copy) 4454 dst->nf_trace = src->nf_trace; 4455#endif 4456} 4457 4458static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4459{ 4460#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4461 nf_conntrack_put(skb_nfct(dst)); 4462#endif 4463 dst->slow_gro = src->slow_gro; 4464 __nf_copy(dst, src, true); 4465} 4466 4467#ifdef CONFIG_NETWORK_SECMARK 4468static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4469{ 4470 to->secmark = from->secmark; 4471} 4472 4473static inline void skb_init_secmark(struct sk_buff *skb) 4474{ 4475 skb->secmark = 0; 4476} 4477#else 4478static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4479{ } 4480 4481static inline void skb_init_secmark(struct sk_buff *skb) 4482{ } 4483#endif 4484 4485static inline int secpath_exists(const struct sk_buff *skb) 4486{ 4487#ifdef CONFIG_XFRM 4488 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4489#else 4490 return 0; 4491#endif 4492} 4493 4494static inline bool skb_irq_freeable(const struct sk_buff *skb) 4495{ 4496 return !skb->destructor && 4497 !secpath_exists(skb) && 4498 !skb_nfct(skb) && 4499 !skb->_skb_refdst && 4500 !skb_has_frag_list(skb); 4501} 4502 4503static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4504{ 4505 skb->queue_mapping = queue_mapping; 4506} 4507 4508static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4509{ 4510 return skb->queue_mapping; 4511} 4512 4513static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4514{ 4515 to->queue_mapping = from->queue_mapping; 4516} 4517 4518static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4519{ 4520 skb->queue_mapping = rx_queue + 1; 4521} 4522 4523static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4524{ 4525 return skb->queue_mapping - 1; 4526} 4527 4528static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4529{ 4530 return skb->queue_mapping != 0; 4531} 4532 4533static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4534{ 4535 skb->dst_pending_confirm = val; 4536} 4537 4538static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4539{ 4540 return skb->dst_pending_confirm != 0; 4541} 4542 4543static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4544{ 4545#ifdef CONFIG_XFRM 4546 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4547#else 4548 return NULL; 4549#endif 4550} 4551 4552/* Keeps track of mac header offset relative to skb->head. 4553 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4554 * For non-tunnel skb it points to skb_mac_header() and for 4555 * tunnel skb it points to outer mac header. 4556 * Keeps track of level of encapsulation of network headers. 4557 */ 4558struct skb_gso_cb { 4559 union { 4560 int mac_offset; 4561 int data_offset; 4562 }; 4563 int encap_level; 4564 __wsum csum; 4565 __u16 csum_start; 4566}; 4567#define SKB_GSO_CB_OFFSET 32 4568#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET)) 4569 4570static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4571{ 4572 return (skb_mac_header(inner_skb) - inner_skb->head) - 4573 SKB_GSO_CB(inner_skb)->mac_offset; 4574} 4575 4576static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4577{ 4578 int new_headroom, headroom; 4579 int ret; 4580 4581 headroom = skb_headroom(skb); 4582 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4583 if (ret) 4584 return ret; 4585 4586 new_headroom = skb_headroom(skb); 4587 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4588 return 0; 4589} 4590 4591static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4592{ 4593 /* Do not update partial checksums if remote checksum is enabled. */ 4594 if (skb->remcsum_offload) 4595 return; 4596 4597 SKB_GSO_CB(skb)->csum = res; 4598 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4599} 4600 4601/* Compute the checksum for a gso segment. First compute the checksum value 4602 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4603 * then add in skb->csum (checksum from csum_start to end of packet). 4604 * skb->csum and csum_start are then updated to reflect the checksum of the 4605 * resultant packet starting from the transport header-- the resultant checksum 4606 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4607 * header. 4608 */ 4609static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4610{ 4611 unsigned char *csum_start = skb_transport_header(skb); 4612 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4613 __wsum partial = SKB_GSO_CB(skb)->csum; 4614 4615 SKB_GSO_CB(skb)->csum = res; 4616 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4617 4618 return csum_fold(csum_partial(csum_start, plen, partial)); 4619} 4620 4621static inline bool skb_is_gso(const struct sk_buff *skb) 4622{ 4623 return skb_shinfo(skb)->gso_size; 4624} 4625 4626/* Note: Should be called only if skb_is_gso(skb) is true */ 4627static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4628{ 4629 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4630} 4631 4632/* Note: Should be called only if skb_is_gso(skb) is true */ 4633static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4634{ 4635 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4636} 4637 4638/* Note: Should be called only if skb_is_gso(skb) is true */ 4639static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4640{ 4641 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4642} 4643 4644static inline void skb_gso_reset(struct sk_buff *skb) 4645{ 4646 skb_shinfo(skb)->gso_size = 0; 4647 skb_shinfo(skb)->gso_segs = 0; 4648 skb_shinfo(skb)->gso_type = 0; 4649} 4650 4651static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4652 u16 increment) 4653{ 4654 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4655 return; 4656 shinfo->gso_size += increment; 4657} 4658 4659static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4660 u16 decrement) 4661{ 4662 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4663 return; 4664 shinfo->gso_size -= decrement; 4665} 4666 4667void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4668 4669static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4670{ 4671 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4672 * wanted then gso_type will be set. */ 4673 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4674 4675 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4676 unlikely(shinfo->gso_type == 0)) { 4677 __skb_warn_lro_forwarding(skb); 4678 return true; 4679 } 4680 return false; 4681} 4682 4683static inline void skb_forward_csum(struct sk_buff *skb) 4684{ 4685 /* Unfortunately we don't support this one. Any brave souls? */ 4686 if (skb->ip_summed == CHECKSUM_COMPLETE) 4687 skb->ip_summed = CHECKSUM_NONE; 4688} 4689 4690/** 4691 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4692 * @skb: skb to check 4693 * 4694 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4695 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4696 * use this helper, to document places where we make this assertion. 4697 */ 4698static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4699{ 4700#ifdef DEBUG 4701 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 4702#endif 4703} 4704 4705bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4706 4707int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4708struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4709 unsigned int transport_len, 4710 __sum16(*skb_chkf)(struct sk_buff *skb)); 4711 4712/** 4713 * skb_head_is_locked - Determine if the skb->head is locked down 4714 * @skb: skb to check 4715 * 4716 * The head on skbs build around a head frag can be removed if they are 4717 * not cloned. This function returns true if the skb head is locked down 4718 * due to either being allocated via kmalloc, or by being a clone with 4719 * multiple references to the head. 4720 */ 4721static inline bool skb_head_is_locked(const struct sk_buff *skb) 4722{ 4723 return !skb->head_frag || skb_cloned(skb); 4724} 4725 4726/* Local Checksum Offload. 4727 * Compute outer checksum based on the assumption that the 4728 * inner checksum will be offloaded later. 4729 * See Documentation/networking/checksum-offloads.rst for 4730 * explanation of how this works. 4731 * Fill in outer checksum adjustment (e.g. with sum of outer 4732 * pseudo-header) before calling. 4733 * Also ensure that inner checksum is in linear data area. 4734 */ 4735static inline __wsum lco_csum(struct sk_buff *skb) 4736{ 4737 unsigned char *csum_start = skb_checksum_start(skb); 4738 unsigned char *l4_hdr = skb_transport_header(skb); 4739 __wsum partial; 4740 4741 /* Start with complement of inner checksum adjustment */ 4742 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4743 skb->csum_offset)); 4744 4745 /* Add in checksum of our headers (incl. outer checksum 4746 * adjustment filled in by caller) and return result. 4747 */ 4748 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4749} 4750 4751static inline bool skb_is_redirected(const struct sk_buff *skb) 4752{ 4753 return skb->redirected; 4754} 4755 4756static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 4757{ 4758 skb->redirected = 1; 4759#ifdef CONFIG_NET_REDIRECT 4760 skb->from_ingress = from_ingress; 4761 if (skb->from_ingress) 4762 skb->tstamp = 0; 4763#endif 4764} 4765 4766static inline void skb_reset_redirect(struct sk_buff *skb) 4767{ 4768 skb->redirected = 0; 4769} 4770 4771static inline bool skb_csum_is_sctp(struct sk_buff *skb) 4772{ 4773 return skb->csum_not_inet; 4774} 4775 4776static inline void skb_set_kcov_handle(struct sk_buff *skb, 4777 const u64 kcov_handle) 4778{ 4779#ifdef CONFIG_KCOV 4780 skb->kcov_handle = kcov_handle; 4781#endif 4782} 4783 4784static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 4785{ 4786#ifdef CONFIG_KCOV 4787 return skb->kcov_handle; 4788#else 4789 return 0; 4790#endif 4791} 4792 4793#ifdef CONFIG_PAGE_POOL 4794static inline void skb_mark_for_recycle(struct sk_buff *skb) 4795{ 4796 skb->pp_recycle = 1; 4797} 4798#endif 4799 4800static inline bool skb_pp_recycle(struct sk_buff *skb, void *data) 4801{ 4802 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 4803 return false; 4804 return page_pool_return_skb_page(virt_to_page(data)); 4805} 4806 4807#endif /* __KERNEL__ */ 4808#endif /* _LINUX_SKBUFF_H */