Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10#include <uapi/linux/sched.h>
11
12#include <asm/current.h>
13
14#include <linux/pid.h>
15#include <linux/sem.h>
16#include <linux/shm.h>
17#include <linux/mutex.h>
18#include <linux/plist.h>
19#include <linux/hrtimer.h>
20#include <linux/irqflags.h>
21#include <linux/seccomp.h>
22#include <linux/nodemask.h>
23#include <linux/rcupdate.h>
24#include <linux/refcount.h>
25#include <linux/resource.h>
26#include <linux/latencytop.h>
27#include <linux/sched/prio.h>
28#include <linux/sched/types.h>
29#include <linux/signal_types.h>
30#include <linux/syscall_user_dispatch.h>
31#include <linux/mm_types_task.h>
32#include <linux/task_io_accounting.h>
33#include <linux/posix-timers.h>
34#include <linux/rseq.h>
35#include <linux/seqlock.h>
36#include <linux/kcsan.h>
37#include <asm/kmap_size.h>
38
39/* task_struct member predeclarations (sorted alphabetically): */
40struct audit_context;
41struct backing_dev_info;
42struct bio_list;
43struct blk_plug;
44struct bpf_local_storage;
45struct bpf_run_ctx;
46struct capture_control;
47struct cfs_rq;
48struct fs_struct;
49struct futex_pi_state;
50struct io_context;
51struct io_uring_task;
52struct mempolicy;
53struct nameidata;
54struct nsproxy;
55struct perf_event_context;
56struct pid_namespace;
57struct pipe_inode_info;
58struct rcu_node;
59struct reclaim_state;
60struct robust_list_head;
61struct root_domain;
62struct rq;
63struct sched_attr;
64struct sched_param;
65struct seq_file;
66struct sighand_struct;
67struct signal_struct;
68struct task_delay_info;
69struct task_group;
70
71/*
72 * Task state bitmask. NOTE! These bits are also
73 * encoded in fs/proc/array.c: get_task_state().
74 *
75 * We have two separate sets of flags: task->state
76 * is about runnability, while task->exit_state are
77 * about the task exiting. Confusing, but this way
78 * modifying one set can't modify the other one by
79 * mistake.
80 */
81
82/* Used in tsk->state: */
83#define TASK_RUNNING 0x0000
84#define TASK_INTERRUPTIBLE 0x0001
85#define TASK_UNINTERRUPTIBLE 0x0002
86#define __TASK_STOPPED 0x0004
87#define __TASK_TRACED 0x0008
88/* Used in tsk->exit_state: */
89#define EXIT_DEAD 0x0010
90#define EXIT_ZOMBIE 0x0020
91#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
92/* Used in tsk->state again: */
93#define TASK_PARKED 0x0040
94#define TASK_DEAD 0x0080
95#define TASK_WAKEKILL 0x0100
96#define TASK_WAKING 0x0200
97#define TASK_NOLOAD 0x0400
98#define TASK_NEW 0x0800
99/* RT specific auxilliary flag to mark RT lock waiters */
100#define TASK_RTLOCK_WAIT 0x1000
101#define TASK_STATE_MAX 0x2000
102
103/* Convenience macros for the sake of set_current_state: */
104#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
105#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
106#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
107
108#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
109
110/* Convenience macros for the sake of wake_up(): */
111#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
112
113/* get_task_state(): */
114#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
115 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
116 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
117 TASK_PARKED)
118
119#define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
120
121#define task_is_traced(task) ((READ_ONCE(task->__state) & __TASK_TRACED) != 0)
122
123#define task_is_stopped(task) ((READ_ONCE(task->__state) & __TASK_STOPPED) != 0)
124
125#define task_is_stopped_or_traced(task) ((READ_ONCE(task->__state) & (__TASK_STOPPED | __TASK_TRACED)) != 0)
126
127/*
128 * Special states are those that do not use the normal wait-loop pattern. See
129 * the comment with set_special_state().
130 */
131#define is_special_task_state(state) \
132 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
133
134#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
135# define debug_normal_state_change(state_value) \
136 do { \
137 WARN_ON_ONCE(is_special_task_state(state_value)); \
138 current->task_state_change = _THIS_IP_; \
139 } while (0)
140
141# define debug_special_state_change(state_value) \
142 do { \
143 WARN_ON_ONCE(!is_special_task_state(state_value)); \
144 current->task_state_change = _THIS_IP_; \
145 } while (0)
146
147# define debug_rtlock_wait_set_state() \
148 do { \
149 current->saved_state_change = current->task_state_change;\
150 current->task_state_change = _THIS_IP_; \
151 } while (0)
152
153# define debug_rtlock_wait_restore_state() \
154 do { \
155 current->task_state_change = current->saved_state_change;\
156 } while (0)
157
158#else
159# define debug_normal_state_change(cond) do { } while (0)
160# define debug_special_state_change(cond) do { } while (0)
161# define debug_rtlock_wait_set_state() do { } while (0)
162# define debug_rtlock_wait_restore_state() do { } while (0)
163#endif
164
165/*
166 * set_current_state() includes a barrier so that the write of current->state
167 * is correctly serialised wrt the caller's subsequent test of whether to
168 * actually sleep:
169 *
170 * for (;;) {
171 * set_current_state(TASK_UNINTERRUPTIBLE);
172 * if (CONDITION)
173 * break;
174 *
175 * schedule();
176 * }
177 * __set_current_state(TASK_RUNNING);
178 *
179 * If the caller does not need such serialisation (because, for instance, the
180 * CONDITION test and condition change and wakeup are under the same lock) then
181 * use __set_current_state().
182 *
183 * The above is typically ordered against the wakeup, which does:
184 *
185 * CONDITION = 1;
186 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
187 *
188 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
189 * accessing p->state.
190 *
191 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
192 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
193 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
194 *
195 * However, with slightly different timing the wakeup TASK_RUNNING store can
196 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
197 * a problem either because that will result in one extra go around the loop
198 * and our @cond test will save the day.
199 *
200 * Also see the comments of try_to_wake_up().
201 */
202#define __set_current_state(state_value) \
203 do { \
204 debug_normal_state_change((state_value)); \
205 WRITE_ONCE(current->__state, (state_value)); \
206 } while (0)
207
208#define set_current_state(state_value) \
209 do { \
210 debug_normal_state_change((state_value)); \
211 smp_store_mb(current->__state, (state_value)); \
212 } while (0)
213
214/*
215 * set_special_state() should be used for those states when the blocking task
216 * can not use the regular condition based wait-loop. In that case we must
217 * serialize against wakeups such that any possible in-flight TASK_RUNNING
218 * stores will not collide with our state change.
219 */
220#define set_special_state(state_value) \
221 do { \
222 unsigned long flags; /* may shadow */ \
223 \
224 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
225 debug_special_state_change((state_value)); \
226 WRITE_ONCE(current->__state, (state_value)); \
227 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
228 } while (0)
229
230/*
231 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
232 *
233 * RT's spin/rwlock substitutions are state preserving. The state of the
234 * task when blocking on the lock is saved in task_struct::saved_state and
235 * restored after the lock has been acquired. These operations are
236 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
237 * lock related wakeups while the task is blocked on the lock are
238 * redirected to operate on task_struct::saved_state to ensure that these
239 * are not dropped. On restore task_struct::saved_state is set to
240 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
241 *
242 * The lock operation looks like this:
243 *
244 * current_save_and_set_rtlock_wait_state();
245 * for (;;) {
246 * if (try_lock())
247 * break;
248 * raw_spin_unlock_irq(&lock->wait_lock);
249 * schedule_rtlock();
250 * raw_spin_lock_irq(&lock->wait_lock);
251 * set_current_state(TASK_RTLOCK_WAIT);
252 * }
253 * current_restore_rtlock_saved_state();
254 */
255#define current_save_and_set_rtlock_wait_state() \
256 do { \
257 lockdep_assert_irqs_disabled(); \
258 raw_spin_lock(¤t->pi_lock); \
259 current->saved_state = current->__state; \
260 debug_rtlock_wait_set_state(); \
261 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
262 raw_spin_unlock(¤t->pi_lock); \
263 } while (0);
264
265#define current_restore_rtlock_saved_state() \
266 do { \
267 lockdep_assert_irqs_disabled(); \
268 raw_spin_lock(¤t->pi_lock); \
269 debug_rtlock_wait_restore_state(); \
270 WRITE_ONCE(current->__state, current->saved_state); \
271 current->saved_state = TASK_RUNNING; \
272 raw_spin_unlock(¤t->pi_lock); \
273 } while (0);
274
275#define get_current_state() READ_ONCE(current->__state)
276
277/*
278 * Define the task command name length as enum, then it can be visible to
279 * BPF programs.
280 */
281enum {
282 TASK_COMM_LEN = 16,
283};
284
285extern void scheduler_tick(void);
286
287#define MAX_SCHEDULE_TIMEOUT LONG_MAX
288
289extern long schedule_timeout(long timeout);
290extern long schedule_timeout_interruptible(long timeout);
291extern long schedule_timeout_killable(long timeout);
292extern long schedule_timeout_uninterruptible(long timeout);
293extern long schedule_timeout_idle(long timeout);
294asmlinkage void schedule(void);
295extern void schedule_preempt_disabled(void);
296asmlinkage void preempt_schedule_irq(void);
297#ifdef CONFIG_PREEMPT_RT
298 extern void schedule_rtlock(void);
299#endif
300
301extern int __must_check io_schedule_prepare(void);
302extern void io_schedule_finish(int token);
303extern long io_schedule_timeout(long timeout);
304extern void io_schedule(void);
305
306/**
307 * struct prev_cputime - snapshot of system and user cputime
308 * @utime: time spent in user mode
309 * @stime: time spent in system mode
310 * @lock: protects the above two fields
311 *
312 * Stores previous user/system time values such that we can guarantee
313 * monotonicity.
314 */
315struct prev_cputime {
316#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
317 u64 utime;
318 u64 stime;
319 raw_spinlock_t lock;
320#endif
321};
322
323enum vtime_state {
324 /* Task is sleeping or running in a CPU with VTIME inactive: */
325 VTIME_INACTIVE = 0,
326 /* Task is idle */
327 VTIME_IDLE,
328 /* Task runs in kernelspace in a CPU with VTIME active: */
329 VTIME_SYS,
330 /* Task runs in userspace in a CPU with VTIME active: */
331 VTIME_USER,
332 /* Task runs as guests in a CPU with VTIME active: */
333 VTIME_GUEST,
334};
335
336struct vtime {
337 seqcount_t seqcount;
338 unsigned long long starttime;
339 enum vtime_state state;
340 unsigned int cpu;
341 u64 utime;
342 u64 stime;
343 u64 gtime;
344};
345
346/*
347 * Utilization clamp constraints.
348 * @UCLAMP_MIN: Minimum utilization
349 * @UCLAMP_MAX: Maximum utilization
350 * @UCLAMP_CNT: Utilization clamp constraints count
351 */
352enum uclamp_id {
353 UCLAMP_MIN = 0,
354 UCLAMP_MAX,
355 UCLAMP_CNT
356};
357
358#ifdef CONFIG_SMP
359extern struct root_domain def_root_domain;
360extern struct mutex sched_domains_mutex;
361#endif
362
363struct sched_info {
364#ifdef CONFIG_SCHED_INFO
365 /* Cumulative counters: */
366
367 /* # of times we have run on this CPU: */
368 unsigned long pcount;
369
370 /* Time spent waiting on a runqueue: */
371 unsigned long long run_delay;
372
373 /* Timestamps: */
374
375 /* When did we last run on a CPU? */
376 unsigned long long last_arrival;
377
378 /* When were we last queued to run? */
379 unsigned long long last_queued;
380
381#endif /* CONFIG_SCHED_INFO */
382};
383
384/*
385 * Integer metrics need fixed point arithmetic, e.g., sched/fair
386 * has a few: load, load_avg, util_avg, freq, and capacity.
387 *
388 * We define a basic fixed point arithmetic range, and then formalize
389 * all these metrics based on that basic range.
390 */
391# define SCHED_FIXEDPOINT_SHIFT 10
392# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
393
394/* Increase resolution of cpu_capacity calculations */
395# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
396# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
397
398struct load_weight {
399 unsigned long weight;
400 u32 inv_weight;
401};
402
403/**
404 * struct util_est - Estimation utilization of FAIR tasks
405 * @enqueued: instantaneous estimated utilization of a task/cpu
406 * @ewma: the Exponential Weighted Moving Average (EWMA)
407 * utilization of a task
408 *
409 * Support data structure to track an Exponential Weighted Moving Average
410 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
411 * average each time a task completes an activation. Sample's weight is chosen
412 * so that the EWMA will be relatively insensitive to transient changes to the
413 * task's workload.
414 *
415 * The enqueued attribute has a slightly different meaning for tasks and cpus:
416 * - task: the task's util_avg at last task dequeue time
417 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
418 * Thus, the util_est.enqueued of a task represents the contribution on the
419 * estimated utilization of the CPU where that task is currently enqueued.
420 *
421 * Only for tasks we track a moving average of the past instantaneous
422 * estimated utilization. This allows to absorb sporadic drops in utilization
423 * of an otherwise almost periodic task.
424 *
425 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
426 * updates. When a task is dequeued, its util_est should not be updated if its
427 * util_avg has not been updated in the meantime.
428 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
429 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
430 * for a task) it is safe to use MSB.
431 */
432struct util_est {
433 unsigned int enqueued;
434 unsigned int ewma;
435#define UTIL_EST_WEIGHT_SHIFT 2
436#define UTIL_AVG_UNCHANGED 0x80000000
437} __attribute__((__aligned__(sizeof(u64))));
438
439/*
440 * The load/runnable/util_avg accumulates an infinite geometric series
441 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
442 *
443 * [load_avg definition]
444 *
445 * load_avg = runnable% * scale_load_down(load)
446 *
447 * [runnable_avg definition]
448 *
449 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
450 *
451 * [util_avg definition]
452 *
453 * util_avg = running% * SCHED_CAPACITY_SCALE
454 *
455 * where runnable% is the time ratio that a sched_entity is runnable and
456 * running% the time ratio that a sched_entity is running.
457 *
458 * For cfs_rq, they are the aggregated values of all runnable and blocked
459 * sched_entities.
460 *
461 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
462 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
463 * for computing those signals (see update_rq_clock_pelt())
464 *
465 * N.B., the above ratios (runnable% and running%) themselves are in the
466 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
467 * to as large a range as necessary. This is for example reflected by
468 * util_avg's SCHED_CAPACITY_SCALE.
469 *
470 * [Overflow issue]
471 *
472 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
473 * with the highest load (=88761), always runnable on a single cfs_rq,
474 * and should not overflow as the number already hits PID_MAX_LIMIT.
475 *
476 * For all other cases (including 32-bit kernels), struct load_weight's
477 * weight will overflow first before we do, because:
478 *
479 * Max(load_avg) <= Max(load.weight)
480 *
481 * Then it is the load_weight's responsibility to consider overflow
482 * issues.
483 */
484struct sched_avg {
485 u64 last_update_time;
486 u64 load_sum;
487 u64 runnable_sum;
488 u32 util_sum;
489 u32 period_contrib;
490 unsigned long load_avg;
491 unsigned long runnable_avg;
492 unsigned long util_avg;
493 struct util_est util_est;
494} ____cacheline_aligned;
495
496struct sched_statistics {
497#ifdef CONFIG_SCHEDSTATS
498 u64 wait_start;
499 u64 wait_max;
500 u64 wait_count;
501 u64 wait_sum;
502 u64 iowait_count;
503 u64 iowait_sum;
504
505 u64 sleep_start;
506 u64 sleep_max;
507 s64 sum_sleep_runtime;
508
509 u64 block_start;
510 u64 block_max;
511 s64 sum_block_runtime;
512
513 u64 exec_max;
514 u64 slice_max;
515
516 u64 nr_migrations_cold;
517 u64 nr_failed_migrations_affine;
518 u64 nr_failed_migrations_running;
519 u64 nr_failed_migrations_hot;
520 u64 nr_forced_migrations;
521
522 u64 nr_wakeups;
523 u64 nr_wakeups_sync;
524 u64 nr_wakeups_migrate;
525 u64 nr_wakeups_local;
526 u64 nr_wakeups_remote;
527 u64 nr_wakeups_affine;
528 u64 nr_wakeups_affine_attempts;
529 u64 nr_wakeups_passive;
530 u64 nr_wakeups_idle;
531
532#ifdef CONFIG_SCHED_CORE
533 u64 core_forceidle_sum;
534#endif
535#endif /* CONFIG_SCHEDSTATS */
536} ____cacheline_aligned;
537
538struct sched_entity {
539 /* For load-balancing: */
540 struct load_weight load;
541 struct rb_node run_node;
542 struct list_head group_node;
543 unsigned int on_rq;
544
545 u64 exec_start;
546 u64 sum_exec_runtime;
547 u64 vruntime;
548 u64 prev_sum_exec_runtime;
549
550 u64 nr_migrations;
551
552#ifdef CONFIG_FAIR_GROUP_SCHED
553 int depth;
554 struct sched_entity *parent;
555 /* rq on which this entity is (to be) queued: */
556 struct cfs_rq *cfs_rq;
557 /* rq "owned" by this entity/group: */
558 struct cfs_rq *my_q;
559 /* cached value of my_q->h_nr_running */
560 unsigned long runnable_weight;
561#endif
562
563#ifdef CONFIG_SMP
564 /*
565 * Per entity load average tracking.
566 *
567 * Put into separate cache line so it does not
568 * collide with read-mostly values above.
569 */
570 struct sched_avg avg;
571#endif
572};
573
574struct sched_rt_entity {
575 struct list_head run_list;
576 unsigned long timeout;
577 unsigned long watchdog_stamp;
578 unsigned int time_slice;
579 unsigned short on_rq;
580 unsigned short on_list;
581
582 struct sched_rt_entity *back;
583#ifdef CONFIG_RT_GROUP_SCHED
584 struct sched_rt_entity *parent;
585 /* rq on which this entity is (to be) queued: */
586 struct rt_rq *rt_rq;
587 /* rq "owned" by this entity/group: */
588 struct rt_rq *my_q;
589#endif
590} __randomize_layout;
591
592struct sched_dl_entity {
593 struct rb_node rb_node;
594
595 /*
596 * Original scheduling parameters. Copied here from sched_attr
597 * during sched_setattr(), they will remain the same until
598 * the next sched_setattr().
599 */
600 u64 dl_runtime; /* Maximum runtime for each instance */
601 u64 dl_deadline; /* Relative deadline of each instance */
602 u64 dl_period; /* Separation of two instances (period) */
603 u64 dl_bw; /* dl_runtime / dl_period */
604 u64 dl_density; /* dl_runtime / dl_deadline */
605
606 /*
607 * Actual scheduling parameters. Initialized with the values above,
608 * they are continuously updated during task execution. Note that
609 * the remaining runtime could be < 0 in case we are in overrun.
610 */
611 s64 runtime; /* Remaining runtime for this instance */
612 u64 deadline; /* Absolute deadline for this instance */
613 unsigned int flags; /* Specifying the scheduler behaviour */
614
615 /*
616 * Some bool flags:
617 *
618 * @dl_throttled tells if we exhausted the runtime. If so, the
619 * task has to wait for a replenishment to be performed at the
620 * next firing of dl_timer.
621 *
622 * @dl_yielded tells if task gave up the CPU before consuming
623 * all its available runtime during the last job.
624 *
625 * @dl_non_contending tells if the task is inactive while still
626 * contributing to the active utilization. In other words, it
627 * indicates if the inactive timer has been armed and its handler
628 * has not been executed yet. This flag is useful to avoid race
629 * conditions between the inactive timer handler and the wakeup
630 * code.
631 *
632 * @dl_overrun tells if the task asked to be informed about runtime
633 * overruns.
634 */
635 unsigned int dl_throttled : 1;
636 unsigned int dl_yielded : 1;
637 unsigned int dl_non_contending : 1;
638 unsigned int dl_overrun : 1;
639
640 /*
641 * Bandwidth enforcement timer. Each -deadline task has its
642 * own bandwidth to be enforced, thus we need one timer per task.
643 */
644 struct hrtimer dl_timer;
645
646 /*
647 * Inactive timer, responsible for decreasing the active utilization
648 * at the "0-lag time". When a -deadline task blocks, it contributes
649 * to GRUB's active utilization until the "0-lag time", hence a
650 * timer is needed to decrease the active utilization at the correct
651 * time.
652 */
653 struct hrtimer inactive_timer;
654
655#ifdef CONFIG_RT_MUTEXES
656 /*
657 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
658 * pi_se points to the donor, otherwise points to the dl_se it belongs
659 * to (the original one/itself).
660 */
661 struct sched_dl_entity *pi_se;
662#endif
663};
664
665#ifdef CONFIG_UCLAMP_TASK
666/* Number of utilization clamp buckets (shorter alias) */
667#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
668
669/*
670 * Utilization clamp for a scheduling entity
671 * @value: clamp value "assigned" to a se
672 * @bucket_id: bucket index corresponding to the "assigned" value
673 * @active: the se is currently refcounted in a rq's bucket
674 * @user_defined: the requested clamp value comes from user-space
675 *
676 * The bucket_id is the index of the clamp bucket matching the clamp value
677 * which is pre-computed and stored to avoid expensive integer divisions from
678 * the fast path.
679 *
680 * The active bit is set whenever a task has got an "effective" value assigned,
681 * which can be different from the clamp value "requested" from user-space.
682 * This allows to know a task is refcounted in the rq's bucket corresponding
683 * to the "effective" bucket_id.
684 *
685 * The user_defined bit is set whenever a task has got a task-specific clamp
686 * value requested from userspace, i.e. the system defaults apply to this task
687 * just as a restriction. This allows to relax default clamps when a less
688 * restrictive task-specific value has been requested, thus allowing to
689 * implement a "nice" semantic. For example, a task running with a 20%
690 * default boost can still drop its own boosting to 0%.
691 */
692struct uclamp_se {
693 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
694 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
695 unsigned int active : 1;
696 unsigned int user_defined : 1;
697};
698#endif /* CONFIG_UCLAMP_TASK */
699
700union rcu_special {
701 struct {
702 u8 blocked;
703 u8 need_qs;
704 u8 exp_hint; /* Hint for performance. */
705 u8 need_mb; /* Readers need smp_mb(). */
706 } b; /* Bits. */
707 u32 s; /* Set of bits. */
708};
709
710enum perf_event_task_context {
711 perf_invalid_context = -1,
712 perf_hw_context = 0,
713 perf_sw_context,
714 perf_nr_task_contexts,
715};
716
717struct wake_q_node {
718 struct wake_q_node *next;
719};
720
721struct kmap_ctrl {
722#ifdef CONFIG_KMAP_LOCAL
723 int idx;
724 pte_t pteval[KM_MAX_IDX];
725#endif
726};
727
728struct task_struct {
729#ifdef CONFIG_THREAD_INFO_IN_TASK
730 /*
731 * For reasons of header soup (see current_thread_info()), this
732 * must be the first element of task_struct.
733 */
734 struct thread_info thread_info;
735#endif
736 unsigned int __state;
737
738#ifdef CONFIG_PREEMPT_RT
739 /* saved state for "spinlock sleepers" */
740 unsigned int saved_state;
741#endif
742
743 /*
744 * This begins the randomizable portion of task_struct. Only
745 * scheduling-critical items should be added above here.
746 */
747 randomized_struct_fields_start
748
749 void *stack;
750 refcount_t usage;
751 /* Per task flags (PF_*), defined further below: */
752 unsigned int flags;
753 unsigned int ptrace;
754
755#ifdef CONFIG_SMP
756 int on_cpu;
757 struct __call_single_node wake_entry;
758 unsigned int wakee_flips;
759 unsigned long wakee_flip_decay_ts;
760 struct task_struct *last_wakee;
761
762 /*
763 * recent_used_cpu is initially set as the last CPU used by a task
764 * that wakes affine another task. Waker/wakee relationships can
765 * push tasks around a CPU where each wakeup moves to the next one.
766 * Tracking a recently used CPU allows a quick search for a recently
767 * used CPU that may be idle.
768 */
769 int recent_used_cpu;
770 int wake_cpu;
771#endif
772 int on_rq;
773
774 int prio;
775 int static_prio;
776 int normal_prio;
777 unsigned int rt_priority;
778
779 struct sched_entity se;
780 struct sched_rt_entity rt;
781 struct sched_dl_entity dl;
782 const struct sched_class *sched_class;
783
784#ifdef CONFIG_SCHED_CORE
785 struct rb_node core_node;
786 unsigned long core_cookie;
787 unsigned int core_occupation;
788#endif
789
790#ifdef CONFIG_CGROUP_SCHED
791 struct task_group *sched_task_group;
792#endif
793
794#ifdef CONFIG_UCLAMP_TASK
795 /*
796 * Clamp values requested for a scheduling entity.
797 * Must be updated with task_rq_lock() held.
798 */
799 struct uclamp_se uclamp_req[UCLAMP_CNT];
800 /*
801 * Effective clamp values used for a scheduling entity.
802 * Must be updated with task_rq_lock() held.
803 */
804 struct uclamp_se uclamp[UCLAMP_CNT];
805#endif
806
807 struct sched_statistics stats;
808
809#ifdef CONFIG_PREEMPT_NOTIFIERS
810 /* List of struct preempt_notifier: */
811 struct hlist_head preempt_notifiers;
812#endif
813
814#ifdef CONFIG_BLK_DEV_IO_TRACE
815 unsigned int btrace_seq;
816#endif
817
818 unsigned int policy;
819 int nr_cpus_allowed;
820 const cpumask_t *cpus_ptr;
821 cpumask_t *user_cpus_ptr;
822 cpumask_t cpus_mask;
823 void *migration_pending;
824#ifdef CONFIG_SMP
825 unsigned short migration_disabled;
826#endif
827 unsigned short migration_flags;
828
829#ifdef CONFIG_PREEMPT_RCU
830 int rcu_read_lock_nesting;
831 union rcu_special rcu_read_unlock_special;
832 struct list_head rcu_node_entry;
833 struct rcu_node *rcu_blocked_node;
834#endif /* #ifdef CONFIG_PREEMPT_RCU */
835
836#ifdef CONFIG_TASKS_RCU
837 unsigned long rcu_tasks_nvcsw;
838 u8 rcu_tasks_holdout;
839 u8 rcu_tasks_idx;
840 int rcu_tasks_idle_cpu;
841 struct list_head rcu_tasks_holdout_list;
842#endif /* #ifdef CONFIG_TASKS_RCU */
843
844#ifdef CONFIG_TASKS_TRACE_RCU
845 int trc_reader_nesting;
846 int trc_ipi_to_cpu;
847 union rcu_special trc_reader_special;
848 bool trc_reader_checked;
849 struct list_head trc_holdout_list;
850#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
851
852 struct sched_info sched_info;
853
854 struct list_head tasks;
855#ifdef CONFIG_SMP
856 struct plist_node pushable_tasks;
857 struct rb_node pushable_dl_tasks;
858#endif
859
860 struct mm_struct *mm;
861 struct mm_struct *active_mm;
862
863 /* Per-thread vma caching: */
864 struct vmacache vmacache;
865
866#ifdef SPLIT_RSS_COUNTING
867 struct task_rss_stat rss_stat;
868#endif
869 int exit_state;
870 int exit_code;
871 int exit_signal;
872 /* The signal sent when the parent dies: */
873 int pdeath_signal;
874 /* JOBCTL_*, siglock protected: */
875 unsigned long jobctl;
876
877 /* Used for emulating ABI behavior of previous Linux versions: */
878 unsigned int personality;
879
880 /* Scheduler bits, serialized by scheduler locks: */
881 unsigned sched_reset_on_fork:1;
882 unsigned sched_contributes_to_load:1;
883 unsigned sched_migrated:1;
884#ifdef CONFIG_PSI
885 unsigned sched_psi_wake_requeue:1;
886#endif
887
888 /* Force alignment to the next boundary: */
889 unsigned :0;
890
891 /* Unserialized, strictly 'current' */
892
893 /*
894 * This field must not be in the scheduler word above due to wakelist
895 * queueing no longer being serialized by p->on_cpu. However:
896 *
897 * p->XXX = X; ttwu()
898 * schedule() if (p->on_rq && ..) // false
899 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
900 * deactivate_task() ttwu_queue_wakelist())
901 * p->on_rq = 0; p->sched_remote_wakeup = Y;
902 *
903 * guarantees all stores of 'current' are visible before
904 * ->sched_remote_wakeup gets used, so it can be in this word.
905 */
906 unsigned sched_remote_wakeup:1;
907
908 /* Bit to tell LSMs we're in execve(): */
909 unsigned in_execve:1;
910 unsigned in_iowait:1;
911#ifndef TIF_RESTORE_SIGMASK
912 unsigned restore_sigmask:1;
913#endif
914#ifdef CONFIG_MEMCG
915 unsigned in_user_fault:1;
916#endif
917#ifdef CONFIG_COMPAT_BRK
918 unsigned brk_randomized:1;
919#endif
920#ifdef CONFIG_CGROUPS
921 /* disallow userland-initiated cgroup migration */
922 unsigned no_cgroup_migration:1;
923 /* task is frozen/stopped (used by the cgroup freezer) */
924 unsigned frozen:1;
925#endif
926#ifdef CONFIG_BLK_CGROUP
927 unsigned use_memdelay:1;
928#endif
929#ifdef CONFIG_PSI
930 /* Stalled due to lack of memory */
931 unsigned in_memstall:1;
932#endif
933#ifdef CONFIG_PAGE_OWNER
934 /* Used by page_owner=on to detect recursion in page tracking. */
935 unsigned in_page_owner:1;
936#endif
937#ifdef CONFIG_EVENTFD
938 /* Recursion prevention for eventfd_signal() */
939 unsigned in_eventfd_signal:1;
940#endif
941
942 unsigned long atomic_flags; /* Flags requiring atomic access. */
943
944 struct restart_block restart_block;
945
946 pid_t pid;
947 pid_t tgid;
948
949#ifdef CONFIG_STACKPROTECTOR
950 /* Canary value for the -fstack-protector GCC feature: */
951 unsigned long stack_canary;
952#endif
953 /*
954 * Pointers to the (original) parent process, youngest child, younger sibling,
955 * older sibling, respectively. (p->father can be replaced with
956 * p->real_parent->pid)
957 */
958
959 /* Real parent process: */
960 struct task_struct __rcu *real_parent;
961
962 /* Recipient of SIGCHLD, wait4() reports: */
963 struct task_struct __rcu *parent;
964
965 /*
966 * Children/sibling form the list of natural children:
967 */
968 struct list_head children;
969 struct list_head sibling;
970 struct task_struct *group_leader;
971
972 /*
973 * 'ptraced' is the list of tasks this task is using ptrace() on.
974 *
975 * This includes both natural children and PTRACE_ATTACH targets.
976 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
977 */
978 struct list_head ptraced;
979 struct list_head ptrace_entry;
980
981 /* PID/PID hash table linkage. */
982 struct pid *thread_pid;
983 struct hlist_node pid_links[PIDTYPE_MAX];
984 struct list_head thread_group;
985 struct list_head thread_node;
986
987 struct completion *vfork_done;
988
989 /* CLONE_CHILD_SETTID: */
990 int __user *set_child_tid;
991
992 /* CLONE_CHILD_CLEARTID: */
993 int __user *clear_child_tid;
994
995 /* PF_KTHREAD | PF_IO_WORKER */
996 void *worker_private;
997
998 u64 utime;
999 u64 stime;
1000#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1001 u64 utimescaled;
1002 u64 stimescaled;
1003#endif
1004 u64 gtime;
1005 struct prev_cputime prev_cputime;
1006#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1007 struct vtime vtime;
1008#endif
1009
1010#ifdef CONFIG_NO_HZ_FULL
1011 atomic_t tick_dep_mask;
1012#endif
1013 /* Context switch counts: */
1014 unsigned long nvcsw;
1015 unsigned long nivcsw;
1016
1017 /* Monotonic time in nsecs: */
1018 u64 start_time;
1019
1020 /* Boot based time in nsecs: */
1021 u64 start_boottime;
1022
1023 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1024 unsigned long min_flt;
1025 unsigned long maj_flt;
1026
1027 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1028 struct posix_cputimers posix_cputimers;
1029
1030#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1031 struct posix_cputimers_work posix_cputimers_work;
1032#endif
1033
1034 /* Process credentials: */
1035
1036 /* Tracer's credentials at attach: */
1037 const struct cred __rcu *ptracer_cred;
1038
1039 /* Objective and real subjective task credentials (COW): */
1040 const struct cred __rcu *real_cred;
1041
1042 /* Effective (overridable) subjective task credentials (COW): */
1043 const struct cred __rcu *cred;
1044
1045#ifdef CONFIG_KEYS
1046 /* Cached requested key. */
1047 struct key *cached_requested_key;
1048#endif
1049
1050 /*
1051 * executable name, excluding path.
1052 *
1053 * - normally initialized setup_new_exec()
1054 * - access it with [gs]et_task_comm()
1055 * - lock it with task_lock()
1056 */
1057 char comm[TASK_COMM_LEN];
1058
1059 struct nameidata *nameidata;
1060
1061#ifdef CONFIG_SYSVIPC
1062 struct sysv_sem sysvsem;
1063 struct sysv_shm sysvshm;
1064#endif
1065#ifdef CONFIG_DETECT_HUNG_TASK
1066 unsigned long last_switch_count;
1067 unsigned long last_switch_time;
1068#endif
1069 /* Filesystem information: */
1070 struct fs_struct *fs;
1071
1072 /* Open file information: */
1073 struct files_struct *files;
1074
1075#ifdef CONFIG_IO_URING
1076 struct io_uring_task *io_uring;
1077#endif
1078
1079 /* Namespaces: */
1080 struct nsproxy *nsproxy;
1081
1082 /* Signal handlers: */
1083 struct signal_struct *signal;
1084 struct sighand_struct __rcu *sighand;
1085 sigset_t blocked;
1086 sigset_t real_blocked;
1087 /* Restored if set_restore_sigmask() was used: */
1088 sigset_t saved_sigmask;
1089 struct sigpending pending;
1090 unsigned long sas_ss_sp;
1091 size_t sas_ss_size;
1092 unsigned int sas_ss_flags;
1093
1094 struct callback_head *task_works;
1095
1096#ifdef CONFIG_AUDIT
1097#ifdef CONFIG_AUDITSYSCALL
1098 struct audit_context *audit_context;
1099#endif
1100 kuid_t loginuid;
1101 unsigned int sessionid;
1102#endif
1103 struct seccomp seccomp;
1104 struct syscall_user_dispatch syscall_dispatch;
1105
1106 /* Thread group tracking: */
1107 u64 parent_exec_id;
1108 u64 self_exec_id;
1109
1110 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1111 spinlock_t alloc_lock;
1112
1113 /* Protection of the PI data structures: */
1114 raw_spinlock_t pi_lock;
1115
1116 struct wake_q_node wake_q;
1117
1118#ifdef CONFIG_RT_MUTEXES
1119 /* PI waiters blocked on a rt_mutex held by this task: */
1120 struct rb_root_cached pi_waiters;
1121 /* Updated under owner's pi_lock and rq lock */
1122 struct task_struct *pi_top_task;
1123 /* Deadlock detection and priority inheritance handling: */
1124 struct rt_mutex_waiter *pi_blocked_on;
1125#endif
1126
1127#ifdef CONFIG_DEBUG_MUTEXES
1128 /* Mutex deadlock detection: */
1129 struct mutex_waiter *blocked_on;
1130#endif
1131
1132#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1133 int non_block_count;
1134#endif
1135
1136#ifdef CONFIG_TRACE_IRQFLAGS
1137 struct irqtrace_events irqtrace;
1138 unsigned int hardirq_threaded;
1139 u64 hardirq_chain_key;
1140 int softirqs_enabled;
1141 int softirq_context;
1142 int irq_config;
1143#endif
1144#ifdef CONFIG_PREEMPT_RT
1145 int softirq_disable_cnt;
1146#endif
1147
1148#ifdef CONFIG_LOCKDEP
1149# define MAX_LOCK_DEPTH 48UL
1150 u64 curr_chain_key;
1151 int lockdep_depth;
1152 unsigned int lockdep_recursion;
1153 struct held_lock held_locks[MAX_LOCK_DEPTH];
1154#endif
1155
1156#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1157 unsigned int in_ubsan;
1158#endif
1159
1160 /* Journalling filesystem info: */
1161 void *journal_info;
1162
1163 /* Stacked block device info: */
1164 struct bio_list *bio_list;
1165
1166 /* Stack plugging: */
1167 struct blk_plug *plug;
1168
1169 /* VM state: */
1170 struct reclaim_state *reclaim_state;
1171
1172 struct backing_dev_info *backing_dev_info;
1173
1174 struct io_context *io_context;
1175
1176#ifdef CONFIG_COMPACTION
1177 struct capture_control *capture_control;
1178#endif
1179 /* Ptrace state: */
1180 unsigned long ptrace_message;
1181 kernel_siginfo_t *last_siginfo;
1182
1183 struct task_io_accounting ioac;
1184#ifdef CONFIG_PSI
1185 /* Pressure stall state */
1186 unsigned int psi_flags;
1187#endif
1188#ifdef CONFIG_TASK_XACCT
1189 /* Accumulated RSS usage: */
1190 u64 acct_rss_mem1;
1191 /* Accumulated virtual memory usage: */
1192 u64 acct_vm_mem1;
1193 /* stime + utime since last update: */
1194 u64 acct_timexpd;
1195#endif
1196#ifdef CONFIG_CPUSETS
1197 /* Protected by ->alloc_lock: */
1198 nodemask_t mems_allowed;
1199 /* Sequence number to catch updates: */
1200 seqcount_spinlock_t mems_allowed_seq;
1201 int cpuset_mem_spread_rotor;
1202 int cpuset_slab_spread_rotor;
1203#endif
1204#ifdef CONFIG_CGROUPS
1205 /* Control Group info protected by css_set_lock: */
1206 struct css_set __rcu *cgroups;
1207 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1208 struct list_head cg_list;
1209#endif
1210#ifdef CONFIG_X86_CPU_RESCTRL
1211 u32 closid;
1212 u32 rmid;
1213#endif
1214#ifdef CONFIG_FUTEX
1215 struct robust_list_head __user *robust_list;
1216#ifdef CONFIG_COMPAT
1217 struct compat_robust_list_head __user *compat_robust_list;
1218#endif
1219 struct list_head pi_state_list;
1220 struct futex_pi_state *pi_state_cache;
1221 struct mutex futex_exit_mutex;
1222 unsigned int futex_state;
1223#endif
1224#ifdef CONFIG_PERF_EVENTS
1225 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1226 struct mutex perf_event_mutex;
1227 struct list_head perf_event_list;
1228#endif
1229#ifdef CONFIG_DEBUG_PREEMPT
1230 unsigned long preempt_disable_ip;
1231#endif
1232#ifdef CONFIG_NUMA
1233 /* Protected by alloc_lock: */
1234 struct mempolicy *mempolicy;
1235 short il_prev;
1236 short pref_node_fork;
1237#endif
1238#ifdef CONFIG_NUMA_BALANCING
1239 int numa_scan_seq;
1240 unsigned int numa_scan_period;
1241 unsigned int numa_scan_period_max;
1242 int numa_preferred_nid;
1243 unsigned long numa_migrate_retry;
1244 /* Migration stamp: */
1245 u64 node_stamp;
1246 u64 last_task_numa_placement;
1247 u64 last_sum_exec_runtime;
1248 struct callback_head numa_work;
1249
1250 /*
1251 * This pointer is only modified for current in syscall and
1252 * pagefault context (and for tasks being destroyed), so it can be read
1253 * from any of the following contexts:
1254 * - RCU read-side critical section
1255 * - current->numa_group from everywhere
1256 * - task's runqueue locked, task not running
1257 */
1258 struct numa_group __rcu *numa_group;
1259
1260 /*
1261 * numa_faults is an array split into four regions:
1262 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1263 * in this precise order.
1264 *
1265 * faults_memory: Exponential decaying average of faults on a per-node
1266 * basis. Scheduling placement decisions are made based on these
1267 * counts. The values remain static for the duration of a PTE scan.
1268 * faults_cpu: Track the nodes the process was running on when a NUMA
1269 * hinting fault was incurred.
1270 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1271 * during the current scan window. When the scan completes, the counts
1272 * in faults_memory and faults_cpu decay and these values are copied.
1273 */
1274 unsigned long *numa_faults;
1275 unsigned long total_numa_faults;
1276
1277 /*
1278 * numa_faults_locality tracks if faults recorded during the last
1279 * scan window were remote/local or failed to migrate. The task scan
1280 * period is adapted based on the locality of the faults with different
1281 * weights depending on whether they were shared or private faults
1282 */
1283 unsigned long numa_faults_locality[3];
1284
1285 unsigned long numa_pages_migrated;
1286#endif /* CONFIG_NUMA_BALANCING */
1287
1288#ifdef CONFIG_RSEQ
1289 struct rseq __user *rseq;
1290 u32 rseq_sig;
1291 /*
1292 * RmW on rseq_event_mask must be performed atomically
1293 * with respect to preemption.
1294 */
1295 unsigned long rseq_event_mask;
1296#endif
1297
1298 struct tlbflush_unmap_batch tlb_ubc;
1299
1300 union {
1301 refcount_t rcu_users;
1302 struct rcu_head rcu;
1303 };
1304
1305 /* Cache last used pipe for splice(): */
1306 struct pipe_inode_info *splice_pipe;
1307
1308 struct page_frag task_frag;
1309
1310#ifdef CONFIG_TASK_DELAY_ACCT
1311 struct task_delay_info *delays;
1312#endif
1313
1314#ifdef CONFIG_FAULT_INJECTION
1315 int make_it_fail;
1316 unsigned int fail_nth;
1317#endif
1318 /*
1319 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1320 * balance_dirty_pages() for a dirty throttling pause:
1321 */
1322 int nr_dirtied;
1323 int nr_dirtied_pause;
1324 /* Start of a write-and-pause period: */
1325 unsigned long dirty_paused_when;
1326
1327#ifdef CONFIG_LATENCYTOP
1328 int latency_record_count;
1329 struct latency_record latency_record[LT_SAVECOUNT];
1330#endif
1331 /*
1332 * Time slack values; these are used to round up poll() and
1333 * select() etc timeout values. These are in nanoseconds.
1334 */
1335 u64 timer_slack_ns;
1336 u64 default_timer_slack_ns;
1337
1338#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1339 unsigned int kasan_depth;
1340#endif
1341
1342#ifdef CONFIG_KCSAN
1343 struct kcsan_ctx kcsan_ctx;
1344#ifdef CONFIG_TRACE_IRQFLAGS
1345 struct irqtrace_events kcsan_save_irqtrace;
1346#endif
1347#ifdef CONFIG_KCSAN_WEAK_MEMORY
1348 int kcsan_stack_depth;
1349#endif
1350#endif
1351
1352#if IS_ENABLED(CONFIG_KUNIT)
1353 struct kunit *kunit_test;
1354#endif
1355
1356#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1357 /* Index of current stored address in ret_stack: */
1358 int curr_ret_stack;
1359 int curr_ret_depth;
1360
1361 /* Stack of return addresses for return function tracing: */
1362 struct ftrace_ret_stack *ret_stack;
1363
1364 /* Timestamp for last schedule: */
1365 unsigned long long ftrace_timestamp;
1366
1367 /*
1368 * Number of functions that haven't been traced
1369 * because of depth overrun:
1370 */
1371 atomic_t trace_overrun;
1372
1373 /* Pause tracing: */
1374 atomic_t tracing_graph_pause;
1375#endif
1376
1377#ifdef CONFIG_TRACING
1378 /* State flags for use by tracers: */
1379 unsigned long trace;
1380
1381 /* Bitmask and counter of trace recursion: */
1382 unsigned long trace_recursion;
1383#endif /* CONFIG_TRACING */
1384
1385#ifdef CONFIG_KCOV
1386 /* See kernel/kcov.c for more details. */
1387
1388 /* Coverage collection mode enabled for this task (0 if disabled): */
1389 unsigned int kcov_mode;
1390
1391 /* Size of the kcov_area: */
1392 unsigned int kcov_size;
1393
1394 /* Buffer for coverage collection: */
1395 void *kcov_area;
1396
1397 /* KCOV descriptor wired with this task or NULL: */
1398 struct kcov *kcov;
1399
1400 /* KCOV common handle for remote coverage collection: */
1401 u64 kcov_handle;
1402
1403 /* KCOV sequence number: */
1404 int kcov_sequence;
1405
1406 /* Collect coverage from softirq context: */
1407 unsigned int kcov_softirq;
1408#endif
1409
1410#ifdef CONFIG_MEMCG
1411 struct mem_cgroup *memcg_in_oom;
1412 gfp_t memcg_oom_gfp_mask;
1413 int memcg_oom_order;
1414
1415 /* Number of pages to reclaim on returning to userland: */
1416 unsigned int memcg_nr_pages_over_high;
1417
1418 /* Used by memcontrol for targeted memcg charge: */
1419 struct mem_cgroup *active_memcg;
1420#endif
1421
1422#ifdef CONFIG_BLK_CGROUP
1423 struct request_queue *throttle_queue;
1424#endif
1425
1426#ifdef CONFIG_UPROBES
1427 struct uprobe_task *utask;
1428#endif
1429#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1430 unsigned int sequential_io;
1431 unsigned int sequential_io_avg;
1432#endif
1433 struct kmap_ctrl kmap_ctrl;
1434#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1435 unsigned long task_state_change;
1436# ifdef CONFIG_PREEMPT_RT
1437 unsigned long saved_state_change;
1438# endif
1439#endif
1440 int pagefault_disabled;
1441#ifdef CONFIG_MMU
1442 struct task_struct *oom_reaper_list;
1443#endif
1444#ifdef CONFIG_VMAP_STACK
1445 struct vm_struct *stack_vm_area;
1446#endif
1447#ifdef CONFIG_THREAD_INFO_IN_TASK
1448 /* A live task holds one reference: */
1449 refcount_t stack_refcount;
1450#endif
1451#ifdef CONFIG_LIVEPATCH
1452 int patch_state;
1453#endif
1454#ifdef CONFIG_SECURITY
1455 /* Used by LSM modules for access restriction: */
1456 void *security;
1457#endif
1458#ifdef CONFIG_BPF_SYSCALL
1459 /* Used by BPF task local storage */
1460 struct bpf_local_storage __rcu *bpf_storage;
1461 /* Used for BPF run context */
1462 struct bpf_run_ctx *bpf_ctx;
1463#endif
1464
1465#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1466 unsigned long lowest_stack;
1467 unsigned long prev_lowest_stack;
1468#endif
1469
1470#ifdef CONFIG_X86_MCE
1471 void __user *mce_vaddr;
1472 __u64 mce_kflags;
1473 u64 mce_addr;
1474 __u64 mce_ripv : 1,
1475 mce_whole_page : 1,
1476 __mce_reserved : 62;
1477 struct callback_head mce_kill_me;
1478 int mce_count;
1479#endif
1480
1481#ifdef CONFIG_KRETPROBES
1482 struct llist_head kretprobe_instances;
1483#endif
1484
1485#ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1486 /*
1487 * If L1D flush is supported on mm context switch
1488 * then we use this callback head to queue kill work
1489 * to kill tasks that are not running on SMT disabled
1490 * cores
1491 */
1492 struct callback_head l1d_flush_kill;
1493#endif
1494
1495 /*
1496 * New fields for task_struct should be added above here, so that
1497 * they are included in the randomized portion of task_struct.
1498 */
1499 randomized_struct_fields_end
1500
1501 /* CPU-specific state of this task: */
1502 struct thread_struct thread;
1503
1504 /*
1505 * WARNING: on x86, 'thread_struct' contains a variable-sized
1506 * structure. It *MUST* be at the end of 'task_struct'.
1507 *
1508 * Do not put anything below here!
1509 */
1510};
1511
1512static inline struct pid *task_pid(struct task_struct *task)
1513{
1514 return task->thread_pid;
1515}
1516
1517/*
1518 * the helpers to get the task's different pids as they are seen
1519 * from various namespaces
1520 *
1521 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1522 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1523 * current.
1524 * task_xid_nr_ns() : id seen from the ns specified;
1525 *
1526 * see also pid_nr() etc in include/linux/pid.h
1527 */
1528pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1529
1530static inline pid_t task_pid_nr(struct task_struct *tsk)
1531{
1532 return tsk->pid;
1533}
1534
1535static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1536{
1537 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1538}
1539
1540static inline pid_t task_pid_vnr(struct task_struct *tsk)
1541{
1542 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1543}
1544
1545
1546static inline pid_t task_tgid_nr(struct task_struct *tsk)
1547{
1548 return tsk->tgid;
1549}
1550
1551/**
1552 * pid_alive - check that a task structure is not stale
1553 * @p: Task structure to be checked.
1554 *
1555 * Test if a process is not yet dead (at most zombie state)
1556 * If pid_alive fails, then pointers within the task structure
1557 * can be stale and must not be dereferenced.
1558 *
1559 * Return: 1 if the process is alive. 0 otherwise.
1560 */
1561static inline int pid_alive(const struct task_struct *p)
1562{
1563 return p->thread_pid != NULL;
1564}
1565
1566static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1567{
1568 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1569}
1570
1571static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1572{
1573 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1574}
1575
1576
1577static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1578{
1579 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1580}
1581
1582static inline pid_t task_session_vnr(struct task_struct *tsk)
1583{
1584 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1585}
1586
1587static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1588{
1589 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1590}
1591
1592static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1593{
1594 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1595}
1596
1597static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1598{
1599 pid_t pid = 0;
1600
1601 rcu_read_lock();
1602 if (pid_alive(tsk))
1603 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1604 rcu_read_unlock();
1605
1606 return pid;
1607}
1608
1609static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1610{
1611 return task_ppid_nr_ns(tsk, &init_pid_ns);
1612}
1613
1614/* Obsolete, do not use: */
1615static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1616{
1617 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1618}
1619
1620#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1621#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1622
1623static inline unsigned int task_state_index(struct task_struct *tsk)
1624{
1625 unsigned int tsk_state = READ_ONCE(tsk->__state);
1626 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1627
1628 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1629
1630 if (tsk_state == TASK_IDLE)
1631 state = TASK_REPORT_IDLE;
1632
1633 return fls(state);
1634}
1635
1636static inline char task_index_to_char(unsigned int state)
1637{
1638 static const char state_char[] = "RSDTtXZPI";
1639
1640 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1641
1642 return state_char[state];
1643}
1644
1645static inline char task_state_to_char(struct task_struct *tsk)
1646{
1647 return task_index_to_char(task_state_index(tsk));
1648}
1649
1650/**
1651 * is_global_init - check if a task structure is init. Since init
1652 * is free to have sub-threads we need to check tgid.
1653 * @tsk: Task structure to be checked.
1654 *
1655 * Check if a task structure is the first user space task the kernel created.
1656 *
1657 * Return: 1 if the task structure is init. 0 otherwise.
1658 */
1659static inline int is_global_init(struct task_struct *tsk)
1660{
1661 return task_tgid_nr(tsk) == 1;
1662}
1663
1664extern struct pid *cad_pid;
1665
1666/*
1667 * Per process flags
1668 */
1669#define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1670#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1671#define PF_EXITING 0x00000004 /* Getting shut down */
1672#define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
1673#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1674#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1675#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1676#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1677#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1678#define PF_DUMPCORE 0x00000200 /* Dumped core */
1679#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1680#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1681#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1682#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1683#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1684#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1685#define PF_KSWAPD 0x00020000 /* I am kswapd */
1686#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1687#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1688#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1689 * I am cleaning dirty pages from some other bdi. */
1690#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1691#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1692#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1693#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1694#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1695#define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
1696#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1697#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1698
1699/*
1700 * Only the _current_ task can read/write to tsk->flags, but other
1701 * tasks can access tsk->flags in readonly mode for example
1702 * with tsk_used_math (like during threaded core dumping).
1703 * There is however an exception to this rule during ptrace
1704 * or during fork: the ptracer task is allowed to write to the
1705 * child->flags of its traced child (same goes for fork, the parent
1706 * can write to the child->flags), because we're guaranteed the
1707 * child is not running and in turn not changing child->flags
1708 * at the same time the parent does it.
1709 */
1710#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1711#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1712#define clear_used_math() clear_stopped_child_used_math(current)
1713#define set_used_math() set_stopped_child_used_math(current)
1714
1715#define conditional_stopped_child_used_math(condition, child) \
1716 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1717
1718#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1719
1720#define copy_to_stopped_child_used_math(child) \
1721 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1722
1723/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1724#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1725#define used_math() tsk_used_math(current)
1726
1727static __always_inline bool is_percpu_thread(void)
1728{
1729#ifdef CONFIG_SMP
1730 return (current->flags & PF_NO_SETAFFINITY) &&
1731 (current->nr_cpus_allowed == 1);
1732#else
1733 return true;
1734#endif
1735}
1736
1737/* Per-process atomic flags. */
1738#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1739#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1740#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1741#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1742#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1743#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1744#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1745#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1746
1747#define TASK_PFA_TEST(name, func) \
1748 static inline bool task_##func(struct task_struct *p) \
1749 { return test_bit(PFA_##name, &p->atomic_flags); }
1750
1751#define TASK_PFA_SET(name, func) \
1752 static inline void task_set_##func(struct task_struct *p) \
1753 { set_bit(PFA_##name, &p->atomic_flags); }
1754
1755#define TASK_PFA_CLEAR(name, func) \
1756 static inline void task_clear_##func(struct task_struct *p) \
1757 { clear_bit(PFA_##name, &p->atomic_flags); }
1758
1759TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1760TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1761
1762TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1763TASK_PFA_SET(SPREAD_PAGE, spread_page)
1764TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1765
1766TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1767TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1768TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1769
1770TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1771TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1772TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1773
1774TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1775TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1776TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1777
1778TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1779TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1780
1781TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1782TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1783TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1784
1785TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1786TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1787
1788static inline void
1789current_restore_flags(unsigned long orig_flags, unsigned long flags)
1790{
1791 current->flags &= ~flags;
1792 current->flags |= orig_flags & flags;
1793}
1794
1795extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1796extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1797#ifdef CONFIG_SMP
1798extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1799extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1800extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1801extern void release_user_cpus_ptr(struct task_struct *p);
1802extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1803extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1804extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1805#else
1806static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1807{
1808}
1809static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1810{
1811 if (!cpumask_test_cpu(0, new_mask))
1812 return -EINVAL;
1813 return 0;
1814}
1815static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1816{
1817 if (src->user_cpus_ptr)
1818 return -EINVAL;
1819 return 0;
1820}
1821static inline void release_user_cpus_ptr(struct task_struct *p)
1822{
1823 WARN_ON(p->user_cpus_ptr);
1824}
1825
1826static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1827{
1828 return 0;
1829}
1830#endif
1831
1832extern int yield_to(struct task_struct *p, bool preempt);
1833extern void set_user_nice(struct task_struct *p, long nice);
1834extern int task_prio(const struct task_struct *p);
1835
1836/**
1837 * task_nice - return the nice value of a given task.
1838 * @p: the task in question.
1839 *
1840 * Return: The nice value [ -20 ... 0 ... 19 ].
1841 */
1842static inline int task_nice(const struct task_struct *p)
1843{
1844 return PRIO_TO_NICE((p)->static_prio);
1845}
1846
1847extern int can_nice(const struct task_struct *p, const int nice);
1848extern int task_curr(const struct task_struct *p);
1849extern int idle_cpu(int cpu);
1850extern int available_idle_cpu(int cpu);
1851extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1852extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1853extern void sched_set_fifo(struct task_struct *p);
1854extern void sched_set_fifo_low(struct task_struct *p);
1855extern void sched_set_normal(struct task_struct *p, int nice);
1856extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1857extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1858extern struct task_struct *idle_task(int cpu);
1859
1860/**
1861 * is_idle_task - is the specified task an idle task?
1862 * @p: the task in question.
1863 *
1864 * Return: 1 if @p is an idle task. 0 otherwise.
1865 */
1866static __always_inline bool is_idle_task(const struct task_struct *p)
1867{
1868 return !!(p->flags & PF_IDLE);
1869}
1870
1871extern struct task_struct *curr_task(int cpu);
1872extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1873
1874void yield(void);
1875
1876union thread_union {
1877#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1878 struct task_struct task;
1879#endif
1880#ifndef CONFIG_THREAD_INFO_IN_TASK
1881 struct thread_info thread_info;
1882#endif
1883 unsigned long stack[THREAD_SIZE/sizeof(long)];
1884};
1885
1886#ifndef CONFIG_THREAD_INFO_IN_TASK
1887extern struct thread_info init_thread_info;
1888#endif
1889
1890extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1891
1892#ifdef CONFIG_THREAD_INFO_IN_TASK
1893# define task_thread_info(task) (&(task)->thread_info)
1894#elif !defined(__HAVE_THREAD_FUNCTIONS)
1895# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1896#endif
1897
1898/*
1899 * find a task by one of its numerical ids
1900 *
1901 * find_task_by_pid_ns():
1902 * finds a task by its pid in the specified namespace
1903 * find_task_by_vpid():
1904 * finds a task by its virtual pid
1905 *
1906 * see also find_vpid() etc in include/linux/pid.h
1907 */
1908
1909extern struct task_struct *find_task_by_vpid(pid_t nr);
1910extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1911
1912/*
1913 * find a task by its virtual pid and get the task struct
1914 */
1915extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1916
1917extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1918extern int wake_up_process(struct task_struct *tsk);
1919extern void wake_up_new_task(struct task_struct *tsk);
1920
1921#ifdef CONFIG_SMP
1922extern void kick_process(struct task_struct *tsk);
1923#else
1924static inline void kick_process(struct task_struct *tsk) { }
1925#endif
1926
1927extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1928
1929static inline void set_task_comm(struct task_struct *tsk, const char *from)
1930{
1931 __set_task_comm(tsk, from, false);
1932}
1933
1934extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1935#define get_task_comm(buf, tsk) ({ \
1936 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1937 __get_task_comm(buf, sizeof(buf), tsk); \
1938})
1939
1940#ifdef CONFIG_SMP
1941static __always_inline void scheduler_ipi(void)
1942{
1943 /*
1944 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1945 * TIF_NEED_RESCHED remotely (for the first time) will also send
1946 * this IPI.
1947 */
1948 preempt_fold_need_resched();
1949}
1950extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1951#else
1952static inline void scheduler_ipi(void) { }
1953static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1954{
1955 return 1;
1956}
1957#endif
1958
1959/*
1960 * Set thread flags in other task's structures.
1961 * See asm/thread_info.h for TIF_xxxx flags available:
1962 */
1963static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1964{
1965 set_ti_thread_flag(task_thread_info(tsk), flag);
1966}
1967
1968static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1969{
1970 clear_ti_thread_flag(task_thread_info(tsk), flag);
1971}
1972
1973static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1974 bool value)
1975{
1976 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1977}
1978
1979static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1980{
1981 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1982}
1983
1984static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1985{
1986 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1987}
1988
1989static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1990{
1991 return test_ti_thread_flag(task_thread_info(tsk), flag);
1992}
1993
1994static inline void set_tsk_need_resched(struct task_struct *tsk)
1995{
1996 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1997}
1998
1999static inline void clear_tsk_need_resched(struct task_struct *tsk)
2000{
2001 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2002}
2003
2004static inline int test_tsk_need_resched(struct task_struct *tsk)
2005{
2006 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2007}
2008
2009/*
2010 * cond_resched() and cond_resched_lock(): latency reduction via
2011 * explicit rescheduling in places that are safe. The return
2012 * value indicates whether a reschedule was done in fact.
2013 * cond_resched_lock() will drop the spinlock before scheduling,
2014 */
2015#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2016extern int __cond_resched(void);
2017
2018#ifdef CONFIG_PREEMPT_DYNAMIC
2019
2020DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2021
2022static __always_inline int _cond_resched(void)
2023{
2024 return static_call_mod(cond_resched)();
2025}
2026
2027#else
2028
2029static inline int _cond_resched(void)
2030{
2031 return __cond_resched();
2032}
2033
2034#endif /* CONFIG_PREEMPT_DYNAMIC */
2035
2036#else
2037
2038static inline int _cond_resched(void) { return 0; }
2039
2040#endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2041
2042#define cond_resched() ({ \
2043 __might_resched(__FILE__, __LINE__, 0); \
2044 _cond_resched(); \
2045})
2046
2047extern int __cond_resched_lock(spinlock_t *lock);
2048extern int __cond_resched_rwlock_read(rwlock_t *lock);
2049extern int __cond_resched_rwlock_write(rwlock_t *lock);
2050
2051#define MIGHT_RESCHED_RCU_SHIFT 8
2052#define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2053
2054#ifndef CONFIG_PREEMPT_RT
2055/*
2056 * Non RT kernels have an elevated preempt count due to the held lock,
2057 * but are not allowed to be inside a RCU read side critical section
2058 */
2059# define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2060#else
2061/*
2062 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2063 * cond_resched*lock() has to take that into account because it checks for
2064 * preempt_count() and rcu_preempt_depth().
2065 */
2066# define PREEMPT_LOCK_RESCHED_OFFSETS \
2067 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2068#endif
2069
2070#define cond_resched_lock(lock) ({ \
2071 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2072 __cond_resched_lock(lock); \
2073})
2074
2075#define cond_resched_rwlock_read(lock) ({ \
2076 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2077 __cond_resched_rwlock_read(lock); \
2078})
2079
2080#define cond_resched_rwlock_write(lock) ({ \
2081 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2082 __cond_resched_rwlock_write(lock); \
2083})
2084
2085static inline void cond_resched_rcu(void)
2086{
2087#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2088 rcu_read_unlock();
2089 cond_resched();
2090 rcu_read_lock();
2091#endif
2092}
2093
2094/*
2095 * Does a critical section need to be broken due to another
2096 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2097 * but a general need for low latency)
2098 */
2099static inline int spin_needbreak(spinlock_t *lock)
2100{
2101#ifdef CONFIG_PREEMPTION
2102 return spin_is_contended(lock);
2103#else
2104 return 0;
2105#endif
2106}
2107
2108/*
2109 * Check if a rwlock is contended.
2110 * Returns non-zero if there is another task waiting on the rwlock.
2111 * Returns zero if the lock is not contended or the system / underlying
2112 * rwlock implementation does not support contention detection.
2113 * Technically does not depend on CONFIG_PREEMPTION, but a general need
2114 * for low latency.
2115 */
2116static inline int rwlock_needbreak(rwlock_t *lock)
2117{
2118#ifdef CONFIG_PREEMPTION
2119 return rwlock_is_contended(lock);
2120#else
2121 return 0;
2122#endif
2123}
2124
2125static __always_inline bool need_resched(void)
2126{
2127 return unlikely(tif_need_resched());
2128}
2129
2130/*
2131 * Wrappers for p->thread_info->cpu access. No-op on UP.
2132 */
2133#ifdef CONFIG_SMP
2134
2135static inline unsigned int task_cpu(const struct task_struct *p)
2136{
2137 return READ_ONCE(task_thread_info(p)->cpu);
2138}
2139
2140extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2141
2142#else
2143
2144static inline unsigned int task_cpu(const struct task_struct *p)
2145{
2146 return 0;
2147}
2148
2149static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2150{
2151}
2152
2153#endif /* CONFIG_SMP */
2154
2155extern bool sched_task_on_rq(struct task_struct *p);
2156extern unsigned long get_wchan(struct task_struct *p);
2157
2158/*
2159 * In order to reduce various lock holder preemption latencies provide an
2160 * interface to see if a vCPU is currently running or not.
2161 *
2162 * This allows us to terminate optimistic spin loops and block, analogous to
2163 * the native optimistic spin heuristic of testing if the lock owner task is
2164 * running or not.
2165 */
2166#ifndef vcpu_is_preempted
2167static inline bool vcpu_is_preempted(int cpu)
2168{
2169 return false;
2170}
2171#endif
2172
2173extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2174extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2175
2176#ifndef TASK_SIZE_OF
2177#define TASK_SIZE_OF(tsk) TASK_SIZE
2178#endif
2179
2180#ifdef CONFIG_SMP
2181static inline bool owner_on_cpu(struct task_struct *owner)
2182{
2183 /*
2184 * As lock holder preemption issue, we both skip spinning if
2185 * task is not on cpu or its cpu is preempted
2186 */
2187 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2188}
2189
2190/* Returns effective CPU energy utilization, as seen by the scheduler */
2191unsigned long sched_cpu_util(int cpu, unsigned long max);
2192#endif /* CONFIG_SMP */
2193
2194#ifdef CONFIG_RSEQ
2195
2196/*
2197 * Map the event mask on the user-space ABI enum rseq_cs_flags
2198 * for direct mask checks.
2199 */
2200enum rseq_event_mask_bits {
2201 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2202 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2203 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2204};
2205
2206enum rseq_event_mask {
2207 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2208 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2209 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2210};
2211
2212static inline void rseq_set_notify_resume(struct task_struct *t)
2213{
2214 if (t->rseq)
2215 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2216}
2217
2218void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2219
2220static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2221 struct pt_regs *regs)
2222{
2223 if (current->rseq)
2224 __rseq_handle_notify_resume(ksig, regs);
2225}
2226
2227static inline void rseq_signal_deliver(struct ksignal *ksig,
2228 struct pt_regs *regs)
2229{
2230 preempt_disable();
2231 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
2232 preempt_enable();
2233 rseq_handle_notify_resume(ksig, regs);
2234}
2235
2236/* rseq_preempt() requires preemption to be disabled. */
2237static inline void rseq_preempt(struct task_struct *t)
2238{
2239 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2240 rseq_set_notify_resume(t);
2241}
2242
2243/* rseq_migrate() requires preemption to be disabled. */
2244static inline void rseq_migrate(struct task_struct *t)
2245{
2246 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2247 rseq_set_notify_resume(t);
2248}
2249
2250/*
2251 * If parent process has a registered restartable sequences area, the
2252 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2253 */
2254static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2255{
2256 if (clone_flags & CLONE_VM) {
2257 t->rseq = NULL;
2258 t->rseq_sig = 0;
2259 t->rseq_event_mask = 0;
2260 } else {
2261 t->rseq = current->rseq;
2262 t->rseq_sig = current->rseq_sig;
2263 t->rseq_event_mask = current->rseq_event_mask;
2264 }
2265}
2266
2267static inline void rseq_execve(struct task_struct *t)
2268{
2269 t->rseq = NULL;
2270 t->rseq_sig = 0;
2271 t->rseq_event_mask = 0;
2272}
2273
2274#else
2275
2276static inline void rseq_set_notify_resume(struct task_struct *t)
2277{
2278}
2279static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2280 struct pt_regs *regs)
2281{
2282}
2283static inline void rseq_signal_deliver(struct ksignal *ksig,
2284 struct pt_regs *regs)
2285{
2286}
2287static inline void rseq_preempt(struct task_struct *t)
2288{
2289}
2290static inline void rseq_migrate(struct task_struct *t)
2291{
2292}
2293static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2294{
2295}
2296static inline void rseq_execve(struct task_struct *t)
2297{
2298}
2299
2300#endif
2301
2302#ifdef CONFIG_DEBUG_RSEQ
2303
2304void rseq_syscall(struct pt_regs *regs);
2305
2306#else
2307
2308static inline void rseq_syscall(struct pt_regs *regs)
2309{
2310}
2311
2312#endif
2313
2314const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2315char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2316int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2317
2318const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2319const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2320const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2321
2322int sched_trace_rq_cpu(struct rq *rq);
2323int sched_trace_rq_cpu_capacity(struct rq *rq);
2324int sched_trace_rq_nr_running(struct rq *rq);
2325
2326const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2327
2328#ifdef CONFIG_SCHED_CORE
2329extern void sched_core_free(struct task_struct *tsk);
2330extern void sched_core_fork(struct task_struct *p);
2331extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2332 unsigned long uaddr);
2333#else
2334static inline void sched_core_free(struct task_struct *tsk) { }
2335static inline void sched_core_fork(struct task_struct *p) { }
2336#endif
2337
2338#endif