at v5.17 67 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_SCHED_H 3#define _LINUX_SCHED_H 4 5/* 6 * Define 'struct task_struct' and provide the main scheduler 7 * APIs (schedule(), wakeup variants, etc.) 8 */ 9 10#include <uapi/linux/sched.h> 11 12#include <asm/current.h> 13 14#include <linux/pid.h> 15#include <linux/sem.h> 16#include <linux/shm.h> 17#include <linux/mutex.h> 18#include <linux/plist.h> 19#include <linux/hrtimer.h> 20#include <linux/irqflags.h> 21#include <linux/seccomp.h> 22#include <linux/nodemask.h> 23#include <linux/rcupdate.h> 24#include <linux/refcount.h> 25#include <linux/resource.h> 26#include <linux/latencytop.h> 27#include <linux/sched/prio.h> 28#include <linux/sched/types.h> 29#include <linux/signal_types.h> 30#include <linux/syscall_user_dispatch.h> 31#include <linux/mm_types_task.h> 32#include <linux/task_io_accounting.h> 33#include <linux/posix-timers.h> 34#include <linux/rseq.h> 35#include <linux/seqlock.h> 36#include <linux/kcsan.h> 37#include <asm/kmap_size.h> 38 39/* task_struct member predeclarations (sorted alphabetically): */ 40struct audit_context; 41struct backing_dev_info; 42struct bio_list; 43struct blk_plug; 44struct bpf_local_storage; 45struct bpf_run_ctx; 46struct capture_control; 47struct cfs_rq; 48struct fs_struct; 49struct futex_pi_state; 50struct io_context; 51struct io_uring_task; 52struct mempolicy; 53struct nameidata; 54struct nsproxy; 55struct perf_event_context; 56struct pid_namespace; 57struct pipe_inode_info; 58struct rcu_node; 59struct reclaim_state; 60struct robust_list_head; 61struct root_domain; 62struct rq; 63struct sched_attr; 64struct sched_param; 65struct seq_file; 66struct sighand_struct; 67struct signal_struct; 68struct task_delay_info; 69struct task_group; 70 71/* 72 * Task state bitmask. NOTE! These bits are also 73 * encoded in fs/proc/array.c: get_task_state(). 74 * 75 * We have two separate sets of flags: task->state 76 * is about runnability, while task->exit_state are 77 * about the task exiting. Confusing, but this way 78 * modifying one set can't modify the other one by 79 * mistake. 80 */ 81 82/* Used in tsk->state: */ 83#define TASK_RUNNING 0x0000 84#define TASK_INTERRUPTIBLE 0x0001 85#define TASK_UNINTERRUPTIBLE 0x0002 86#define __TASK_STOPPED 0x0004 87#define __TASK_TRACED 0x0008 88/* Used in tsk->exit_state: */ 89#define EXIT_DEAD 0x0010 90#define EXIT_ZOMBIE 0x0020 91#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 92/* Used in tsk->state again: */ 93#define TASK_PARKED 0x0040 94#define TASK_DEAD 0x0080 95#define TASK_WAKEKILL 0x0100 96#define TASK_WAKING 0x0200 97#define TASK_NOLOAD 0x0400 98#define TASK_NEW 0x0800 99/* RT specific auxilliary flag to mark RT lock waiters */ 100#define TASK_RTLOCK_WAIT 0x1000 101#define TASK_STATE_MAX 0x2000 102 103/* Convenience macros for the sake of set_current_state: */ 104#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 105#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 106#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 107 108#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 109 110/* Convenience macros for the sake of wake_up(): */ 111#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 112 113/* get_task_state(): */ 114#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 115 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 116 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ 117 TASK_PARKED) 118 119#define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING) 120 121#define task_is_traced(task) ((READ_ONCE(task->__state) & __TASK_TRACED) != 0) 122 123#define task_is_stopped(task) ((READ_ONCE(task->__state) & __TASK_STOPPED) != 0) 124 125#define task_is_stopped_or_traced(task) ((READ_ONCE(task->__state) & (__TASK_STOPPED | __TASK_TRACED)) != 0) 126 127/* 128 * Special states are those that do not use the normal wait-loop pattern. See 129 * the comment with set_special_state(). 130 */ 131#define is_special_task_state(state) \ 132 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) 133 134#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 135# define debug_normal_state_change(state_value) \ 136 do { \ 137 WARN_ON_ONCE(is_special_task_state(state_value)); \ 138 current->task_state_change = _THIS_IP_; \ 139 } while (0) 140 141# define debug_special_state_change(state_value) \ 142 do { \ 143 WARN_ON_ONCE(!is_special_task_state(state_value)); \ 144 current->task_state_change = _THIS_IP_; \ 145 } while (0) 146 147# define debug_rtlock_wait_set_state() \ 148 do { \ 149 current->saved_state_change = current->task_state_change;\ 150 current->task_state_change = _THIS_IP_; \ 151 } while (0) 152 153# define debug_rtlock_wait_restore_state() \ 154 do { \ 155 current->task_state_change = current->saved_state_change;\ 156 } while (0) 157 158#else 159# define debug_normal_state_change(cond) do { } while (0) 160# define debug_special_state_change(cond) do { } while (0) 161# define debug_rtlock_wait_set_state() do { } while (0) 162# define debug_rtlock_wait_restore_state() do { } while (0) 163#endif 164 165/* 166 * set_current_state() includes a barrier so that the write of current->state 167 * is correctly serialised wrt the caller's subsequent test of whether to 168 * actually sleep: 169 * 170 * for (;;) { 171 * set_current_state(TASK_UNINTERRUPTIBLE); 172 * if (CONDITION) 173 * break; 174 * 175 * schedule(); 176 * } 177 * __set_current_state(TASK_RUNNING); 178 * 179 * If the caller does not need such serialisation (because, for instance, the 180 * CONDITION test and condition change and wakeup are under the same lock) then 181 * use __set_current_state(). 182 * 183 * The above is typically ordered against the wakeup, which does: 184 * 185 * CONDITION = 1; 186 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 187 * 188 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before 189 * accessing p->state. 190 * 191 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 192 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 193 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 194 * 195 * However, with slightly different timing the wakeup TASK_RUNNING store can 196 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not 197 * a problem either because that will result in one extra go around the loop 198 * and our @cond test will save the day. 199 * 200 * Also see the comments of try_to_wake_up(). 201 */ 202#define __set_current_state(state_value) \ 203 do { \ 204 debug_normal_state_change((state_value)); \ 205 WRITE_ONCE(current->__state, (state_value)); \ 206 } while (0) 207 208#define set_current_state(state_value) \ 209 do { \ 210 debug_normal_state_change((state_value)); \ 211 smp_store_mb(current->__state, (state_value)); \ 212 } while (0) 213 214/* 215 * set_special_state() should be used for those states when the blocking task 216 * can not use the regular condition based wait-loop. In that case we must 217 * serialize against wakeups such that any possible in-flight TASK_RUNNING 218 * stores will not collide with our state change. 219 */ 220#define set_special_state(state_value) \ 221 do { \ 222 unsigned long flags; /* may shadow */ \ 223 \ 224 raw_spin_lock_irqsave(&current->pi_lock, flags); \ 225 debug_special_state_change((state_value)); \ 226 WRITE_ONCE(current->__state, (state_value)); \ 227 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \ 228 } while (0) 229 230/* 231 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks 232 * 233 * RT's spin/rwlock substitutions are state preserving. The state of the 234 * task when blocking on the lock is saved in task_struct::saved_state and 235 * restored after the lock has been acquired. These operations are 236 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT 237 * lock related wakeups while the task is blocked on the lock are 238 * redirected to operate on task_struct::saved_state to ensure that these 239 * are not dropped. On restore task_struct::saved_state is set to 240 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail. 241 * 242 * The lock operation looks like this: 243 * 244 * current_save_and_set_rtlock_wait_state(); 245 * for (;;) { 246 * if (try_lock()) 247 * break; 248 * raw_spin_unlock_irq(&lock->wait_lock); 249 * schedule_rtlock(); 250 * raw_spin_lock_irq(&lock->wait_lock); 251 * set_current_state(TASK_RTLOCK_WAIT); 252 * } 253 * current_restore_rtlock_saved_state(); 254 */ 255#define current_save_and_set_rtlock_wait_state() \ 256 do { \ 257 lockdep_assert_irqs_disabled(); \ 258 raw_spin_lock(&current->pi_lock); \ 259 current->saved_state = current->__state; \ 260 debug_rtlock_wait_set_state(); \ 261 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \ 262 raw_spin_unlock(&current->pi_lock); \ 263 } while (0); 264 265#define current_restore_rtlock_saved_state() \ 266 do { \ 267 lockdep_assert_irqs_disabled(); \ 268 raw_spin_lock(&current->pi_lock); \ 269 debug_rtlock_wait_restore_state(); \ 270 WRITE_ONCE(current->__state, current->saved_state); \ 271 current->saved_state = TASK_RUNNING; \ 272 raw_spin_unlock(&current->pi_lock); \ 273 } while (0); 274 275#define get_current_state() READ_ONCE(current->__state) 276 277/* 278 * Define the task command name length as enum, then it can be visible to 279 * BPF programs. 280 */ 281enum { 282 TASK_COMM_LEN = 16, 283}; 284 285extern void scheduler_tick(void); 286 287#define MAX_SCHEDULE_TIMEOUT LONG_MAX 288 289extern long schedule_timeout(long timeout); 290extern long schedule_timeout_interruptible(long timeout); 291extern long schedule_timeout_killable(long timeout); 292extern long schedule_timeout_uninterruptible(long timeout); 293extern long schedule_timeout_idle(long timeout); 294asmlinkage void schedule(void); 295extern void schedule_preempt_disabled(void); 296asmlinkage void preempt_schedule_irq(void); 297#ifdef CONFIG_PREEMPT_RT 298 extern void schedule_rtlock(void); 299#endif 300 301extern int __must_check io_schedule_prepare(void); 302extern void io_schedule_finish(int token); 303extern long io_schedule_timeout(long timeout); 304extern void io_schedule(void); 305 306/** 307 * struct prev_cputime - snapshot of system and user cputime 308 * @utime: time spent in user mode 309 * @stime: time spent in system mode 310 * @lock: protects the above two fields 311 * 312 * Stores previous user/system time values such that we can guarantee 313 * monotonicity. 314 */ 315struct prev_cputime { 316#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 317 u64 utime; 318 u64 stime; 319 raw_spinlock_t lock; 320#endif 321}; 322 323enum vtime_state { 324 /* Task is sleeping or running in a CPU with VTIME inactive: */ 325 VTIME_INACTIVE = 0, 326 /* Task is idle */ 327 VTIME_IDLE, 328 /* Task runs in kernelspace in a CPU with VTIME active: */ 329 VTIME_SYS, 330 /* Task runs in userspace in a CPU with VTIME active: */ 331 VTIME_USER, 332 /* Task runs as guests in a CPU with VTIME active: */ 333 VTIME_GUEST, 334}; 335 336struct vtime { 337 seqcount_t seqcount; 338 unsigned long long starttime; 339 enum vtime_state state; 340 unsigned int cpu; 341 u64 utime; 342 u64 stime; 343 u64 gtime; 344}; 345 346/* 347 * Utilization clamp constraints. 348 * @UCLAMP_MIN: Minimum utilization 349 * @UCLAMP_MAX: Maximum utilization 350 * @UCLAMP_CNT: Utilization clamp constraints count 351 */ 352enum uclamp_id { 353 UCLAMP_MIN = 0, 354 UCLAMP_MAX, 355 UCLAMP_CNT 356}; 357 358#ifdef CONFIG_SMP 359extern struct root_domain def_root_domain; 360extern struct mutex sched_domains_mutex; 361#endif 362 363struct sched_info { 364#ifdef CONFIG_SCHED_INFO 365 /* Cumulative counters: */ 366 367 /* # of times we have run on this CPU: */ 368 unsigned long pcount; 369 370 /* Time spent waiting on a runqueue: */ 371 unsigned long long run_delay; 372 373 /* Timestamps: */ 374 375 /* When did we last run on a CPU? */ 376 unsigned long long last_arrival; 377 378 /* When were we last queued to run? */ 379 unsigned long long last_queued; 380 381#endif /* CONFIG_SCHED_INFO */ 382}; 383 384/* 385 * Integer metrics need fixed point arithmetic, e.g., sched/fair 386 * has a few: load, load_avg, util_avg, freq, and capacity. 387 * 388 * We define a basic fixed point arithmetic range, and then formalize 389 * all these metrics based on that basic range. 390 */ 391# define SCHED_FIXEDPOINT_SHIFT 10 392# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 393 394/* Increase resolution of cpu_capacity calculations */ 395# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 396# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 397 398struct load_weight { 399 unsigned long weight; 400 u32 inv_weight; 401}; 402 403/** 404 * struct util_est - Estimation utilization of FAIR tasks 405 * @enqueued: instantaneous estimated utilization of a task/cpu 406 * @ewma: the Exponential Weighted Moving Average (EWMA) 407 * utilization of a task 408 * 409 * Support data structure to track an Exponential Weighted Moving Average 410 * (EWMA) of a FAIR task's utilization. New samples are added to the moving 411 * average each time a task completes an activation. Sample's weight is chosen 412 * so that the EWMA will be relatively insensitive to transient changes to the 413 * task's workload. 414 * 415 * The enqueued attribute has a slightly different meaning for tasks and cpus: 416 * - task: the task's util_avg at last task dequeue time 417 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU 418 * Thus, the util_est.enqueued of a task represents the contribution on the 419 * estimated utilization of the CPU where that task is currently enqueued. 420 * 421 * Only for tasks we track a moving average of the past instantaneous 422 * estimated utilization. This allows to absorb sporadic drops in utilization 423 * of an otherwise almost periodic task. 424 * 425 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg 426 * updates. When a task is dequeued, its util_est should not be updated if its 427 * util_avg has not been updated in the meantime. 428 * This information is mapped into the MSB bit of util_est.enqueued at dequeue 429 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg 430 * for a task) it is safe to use MSB. 431 */ 432struct util_est { 433 unsigned int enqueued; 434 unsigned int ewma; 435#define UTIL_EST_WEIGHT_SHIFT 2 436#define UTIL_AVG_UNCHANGED 0x80000000 437} __attribute__((__aligned__(sizeof(u64)))); 438 439/* 440 * The load/runnable/util_avg accumulates an infinite geometric series 441 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c). 442 * 443 * [load_avg definition] 444 * 445 * load_avg = runnable% * scale_load_down(load) 446 * 447 * [runnable_avg definition] 448 * 449 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE 450 * 451 * [util_avg definition] 452 * 453 * util_avg = running% * SCHED_CAPACITY_SCALE 454 * 455 * where runnable% is the time ratio that a sched_entity is runnable and 456 * running% the time ratio that a sched_entity is running. 457 * 458 * For cfs_rq, they are the aggregated values of all runnable and blocked 459 * sched_entities. 460 * 461 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU 462 * capacity scaling. The scaling is done through the rq_clock_pelt that is used 463 * for computing those signals (see update_rq_clock_pelt()) 464 * 465 * N.B., the above ratios (runnable% and running%) themselves are in the 466 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them 467 * to as large a range as necessary. This is for example reflected by 468 * util_avg's SCHED_CAPACITY_SCALE. 469 * 470 * [Overflow issue] 471 * 472 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 473 * with the highest load (=88761), always runnable on a single cfs_rq, 474 * and should not overflow as the number already hits PID_MAX_LIMIT. 475 * 476 * For all other cases (including 32-bit kernels), struct load_weight's 477 * weight will overflow first before we do, because: 478 * 479 * Max(load_avg) <= Max(load.weight) 480 * 481 * Then it is the load_weight's responsibility to consider overflow 482 * issues. 483 */ 484struct sched_avg { 485 u64 last_update_time; 486 u64 load_sum; 487 u64 runnable_sum; 488 u32 util_sum; 489 u32 period_contrib; 490 unsigned long load_avg; 491 unsigned long runnable_avg; 492 unsigned long util_avg; 493 struct util_est util_est; 494} ____cacheline_aligned; 495 496struct sched_statistics { 497#ifdef CONFIG_SCHEDSTATS 498 u64 wait_start; 499 u64 wait_max; 500 u64 wait_count; 501 u64 wait_sum; 502 u64 iowait_count; 503 u64 iowait_sum; 504 505 u64 sleep_start; 506 u64 sleep_max; 507 s64 sum_sleep_runtime; 508 509 u64 block_start; 510 u64 block_max; 511 s64 sum_block_runtime; 512 513 u64 exec_max; 514 u64 slice_max; 515 516 u64 nr_migrations_cold; 517 u64 nr_failed_migrations_affine; 518 u64 nr_failed_migrations_running; 519 u64 nr_failed_migrations_hot; 520 u64 nr_forced_migrations; 521 522 u64 nr_wakeups; 523 u64 nr_wakeups_sync; 524 u64 nr_wakeups_migrate; 525 u64 nr_wakeups_local; 526 u64 nr_wakeups_remote; 527 u64 nr_wakeups_affine; 528 u64 nr_wakeups_affine_attempts; 529 u64 nr_wakeups_passive; 530 u64 nr_wakeups_idle; 531 532#ifdef CONFIG_SCHED_CORE 533 u64 core_forceidle_sum; 534#endif 535#endif /* CONFIG_SCHEDSTATS */ 536} ____cacheline_aligned; 537 538struct sched_entity { 539 /* For load-balancing: */ 540 struct load_weight load; 541 struct rb_node run_node; 542 struct list_head group_node; 543 unsigned int on_rq; 544 545 u64 exec_start; 546 u64 sum_exec_runtime; 547 u64 vruntime; 548 u64 prev_sum_exec_runtime; 549 550 u64 nr_migrations; 551 552#ifdef CONFIG_FAIR_GROUP_SCHED 553 int depth; 554 struct sched_entity *parent; 555 /* rq on which this entity is (to be) queued: */ 556 struct cfs_rq *cfs_rq; 557 /* rq "owned" by this entity/group: */ 558 struct cfs_rq *my_q; 559 /* cached value of my_q->h_nr_running */ 560 unsigned long runnable_weight; 561#endif 562 563#ifdef CONFIG_SMP 564 /* 565 * Per entity load average tracking. 566 * 567 * Put into separate cache line so it does not 568 * collide with read-mostly values above. 569 */ 570 struct sched_avg avg; 571#endif 572}; 573 574struct sched_rt_entity { 575 struct list_head run_list; 576 unsigned long timeout; 577 unsigned long watchdog_stamp; 578 unsigned int time_slice; 579 unsigned short on_rq; 580 unsigned short on_list; 581 582 struct sched_rt_entity *back; 583#ifdef CONFIG_RT_GROUP_SCHED 584 struct sched_rt_entity *parent; 585 /* rq on which this entity is (to be) queued: */ 586 struct rt_rq *rt_rq; 587 /* rq "owned" by this entity/group: */ 588 struct rt_rq *my_q; 589#endif 590} __randomize_layout; 591 592struct sched_dl_entity { 593 struct rb_node rb_node; 594 595 /* 596 * Original scheduling parameters. Copied here from sched_attr 597 * during sched_setattr(), they will remain the same until 598 * the next sched_setattr(). 599 */ 600 u64 dl_runtime; /* Maximum runtime for each instance */ 601 u64 dl_deadline; /* Relative deadline of each instance */ 602 u64 dl_period; /* Separation of two instances (period) */ 603 u64 dl_bw; /* dl_runtime / dl_period */ 604 u64 dl_density; /* dl_runtime / dl_deadline */ 605 606 /* 607 * Actual scheduling parameters. Initialized with the values above, 608 * they are continuously updated during task execution. Note that 609 * the remaining runtime could be < 0 in case we are in overrun. 610 */ 611 s64 runtime; /* Remaining runtime for this instance */ 612 u64 deadline; /* Absolute deadline for this instance */ 613 unsigned int flags; /* Specifying the scheduler behaviour */ 614 615 /* 616 * Some bool flags: 617 * 618 * @dl_throttled tells if we exhausted the runtime. If so, the 619 * task has to wait for a replenishment to be performed at the 620 * next firing of dl_timer. 621 * 622 * @dl_yielded tells if task gave up the CPU before consuming 623 * all its available runtime during the last job. 624 * 625 * @dl_non_contending tells if the task is inactive while still 626 * contributing to the active utilization. In other words, it 627 * indicates if the inactive timer has been armed and its handler 628 * has not been executed yet. This flag is useful to avoid race 629 * conditions between the inactive timer handler and the wakeup 630 * code. 631 * 632 * @dl_overrun tells if the task asked to be informed about runtime 633 * overruns. 634 */ 635 unsigned int dl_throttled : 1; 636 unsigned int dl_yielded : 1; 637 unsigned int dl_non_contending : 1; 638 unsigned int dl_overrun : 1; 639 640 /* 641 * Bandwidth enforcement timer. Each -deadline task has its 642 * own bandwidth to be enforced, thus we need one timer per task. 643 */ 644 struct hrtimer dl_timer; 645 646 /* 647 * Inactive timer, responsible for decreasing the active utilization 648 * at the "0-lag time". When a -deadline task blocks, it contributes 649 * to GRUB's active utilization until the "0-lag time", hence a 650 * timer is needed to decrease the active utilization at the correct 651 * time. 652 */ 653 struct hrtimer inactive_timer; 654 655#ifdef CONFIG_RT_MUTEXES 656 /* 657 * Priority Inheritance. When a DEADLINE scheduling entity is boosted 658 * pi_se points to the donor, otherwise points to the dl_se it belongs 659 * to (the original one/itself). 660 */ 661 struct sched_dl_entity *pi_se; 662#endif 663}; 664 665#ifdef CONFIG_UCLAMP_TASK 666/* Number of utilization clamp buckets (shorter alias) */ 667#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT 668 669/* 670 * Utilization clamp for a scheduling entity 671 * @value: clamp value "assigned" to a se 672 * @bucket_id: bucket index corresponding to the "assigned" value 673 * @active: the se is currently refcounted in a rq's bucket 674 * @user_defined: the requested clamp value comes from user-space 675 * 676 * The bucket_id is the index of the clamp bucket matching the clamp value 677 * which is pre-computed and stored to avoid expensive integer divisions from 678 * the fast path. 679 * 680 * The active bit is set whenever a task has got an "effective" value assigned, 681 * which can be different from the clamp value "requested" from user-space. 682 * This allows to know a task is refcounted in the rq's bucket corresponding 683 * to the "effective" bucket_id. 684 * 685 * The user_defined bit is set whenever a task has got a task-specific clamp 686 * value requested from userspace, i.e. the system defaults apply to this task 687 * just as a restriction. This allows to relax default clamps when a less 688 * restrictive task-specific value has been requested, thus allowing to 689 * implement a "nice" semantic. For example, a task running with a 20% 690 * default boost can still drop its own boosting to 0%. 691 */ 692struct uclamp_se { 693 unsigned int value : bits_per(SCHED_CAPACITY_SCALE); 694 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS); 695 unsigned int active : 1; 696 unsigned int user_defined : 1; 697}; 698#endif /* CONFIG_UCLAMP_TASK */ 699 700union rcu_special { 701 struct { 702 u8 blocked; 703 u8 need_qs; 704 u8 exp_hint; /* Hint for performance. */ 705 u8 need_mb; /* Readers need smp_mb(). */ 706 } b; /* Bits. */ 707 u32 s; /* Set of bits. */ 708}; 709 710enum perf_event_task_context { 711 perf_invalid_context = -1, 712 perf_hw_context = 0, 713 perf_sw_context, 714 perf_nr_task_contexts, 715}; 716 717struct wake_q_node { 718 struct wake_q_node *next; 719}; 720 721struct kmap_ctrl { 722#ifdef CONFIG_KMAP_LOCAL 723 int idx; 724 pte_t pteval[KM_MAX_IDX]; 725#endif 726}; 727 728struct task_struct { 729#ifdef CONFIG_THREAD_INFO_IN_TASK 730 /* 731 * For reasons of header soup (see current_thread_info()), this 732 * must be the first element of task_struct. 733 */ 734 struct thread_info thread_info; 735#endif 736 unsigned int __state; 737 738#ifdef CONFIG_PREEMPT_RT 739 /* saved state for "spinlock sleepers" */ 740 unsigned int saved_state; 741#endif 742 743 /* 744 * This begins the randomizable portion of task_struct. Only 745 * scheduling-critical items should be added above here. 746 */ 747 randomized_struct_fields_start 748 749 void *stack; 750 refcount_t usage; 751 /* Per task flags (PF_*), defined further below: */ 752 unsigned int flags; 753 unsigned int ptrace; 754 755#ifdef CONFIG_SMP 756 int on_cpu; 757 struct __call_single_node wake_entry; 758 unsigned int wakee_flips; 759 unsigned long wakee_flip_decay_ts; 760 struct task_struct *last_wakee; 761 762 /* 763 * recent_used_cpu is initially set as the last CPU used by a task 764 * that wakes affine another task. Waker/wakee relationships can 765 * push tasks around a CPU where each wakeup moves to the next one. 766 * Tracking a recently used CPU allows a quick search for a recently 767 * used CPU that may be idle. 768 */ 769 int recent_used_cpu; 770 int wake_cpu; 771#endif 772 int on_rq; 773 774 int prio; 775 int static_prio; 776 int normal_prio; 777 unsigned int rt_priority; 778 779 struct sched_entity se; 780 struct sched_rt_entity rt; 781 struct sched_dl_entity dl; 782 const struct sched_class *sched_class; 783 784#ifdef CONFIG_SCHED_CORE 785 struct rb_node core_node; 786 unsigned long core_cookie; 787 unsigned int core_occupation; 788#endif 789 790#ifdef CONFIG_CGROUP_SCHED 791 struct task_group *sched_task_group; 792#endif 793 794#ifdef CONFIG_UCLAMP_TASK 795 /* 796 * Clamp values requested for a scheduling entity. 797 * Must be updated with task_rq_lock() held. 798 */ 799 struct uclamp_se uclamp_req[UCLAMP_CNT]; 800 /* 801 * Effective clamp values used for a scheduling entity. 802 * Must be updated with task_rq_lock() held. 803 */ 804 struct uclamp_se uclamp[UCLAMP_CNT]; 805#endif 806 807 struct sched_statistics stats; 808 809#ifdef CONFIG_PREEMPT_NOTIFIERS 810 /* List of struct preempt_notifier: */ 811 struct hlist_head preempt_notifiers; 812#endif 813 814#ifdef CONFIG_BLK_DEV_IO_TRACE 815 unsigned int btrace_seq; 816#endif 817 818 unsigned int policy; 819 int nr_cpus_allowed; 820 const cpumask_t *cpus_ptr; 821 cpumask_t *user_cpus_ptr; 822 cpumask_t cpus_mask; 823 void *migration_pending; 824#ifdef CONFIG_SMP 825 unsigned short migration_disabled; 826#endif 827 unsigned short migration_flags; 828 829#ifdef CONFIG_PREEMPT_RCU 830 int rcu_read_lock_nesting; 831 union rcu_special rcu_read_unlock_special; 832 struct list_head rcu_node_entry; 833 struct rcu_node *rcu_blocked_node; 834#endif /* #ifdef CONFIG_PREEMPT_RCU */ 835 836#ifdef CONFIG_TASKS_RCU 837 unsigned long rcu_tasks_nvcsw; 838 u8 rcu_tasks_holdout; 839 u8 rcu_tasks_idx; 840 int rcu_tasks_idle_cpu; 841 struct list_head rcu_tasks_holdout_list; 842#endif /* #ifdef CONFIG_TASKS_RCU */ 843 844#ifdef CONFIG_TASKS_TRACE_RCU 845 int trc_reader_nesting; 846 int trc_ipi_to_cpu; 847 union rcu_special trc_reader_special; 848 bool trc_reader_checked; 849 struct list_head trc_holdout_list; 850#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 851 852 struct sched_info sched_info; 853 854 struct list_head tasks; 855#ifdef CONFIG_SMP 856 struct plist_node pushable_tasks; 857 struct rb_node pushable_dl_tasks; 858#endif 859 860 struct mm_struct *mm; 861 struct mm_struct *active_mm; 862 863 /* Per-thread vma caching: */ 864 struct vmacache vmacache; 865 866#ifdef SPLIT_RSS_COUNTING 867 struct task_rss_stat rss_stat; 868#endif 869 int exit_state; 870 int exit_code; 871 int exit_signal; 872 /* The signal sent when the parent dies: */ 873 int pdeath_signal; 874 /* JOBCTL_*, siglock protected: */ 875 unsigned long jobctl; 876 877 /* Used for emulating ABI behavior of previous Linux versions: */ 878 unsigned int personality; 879 880 /* Scheduler bits, serialized by scheduler locks: */ 881 unsigned sched_reset_on_fork:1; 882 unsigned sched_contributes_to_load:1; 883 unsigned sched_migrated:1; 884#ifdef CONFIG_PSI 885 unsigned sched_psi_wake_requeue:1; 886#endif 887 888 /* Force alignment to the next boundary: */ 889 unsigned :0; 890 891 /* Unserialized, strictly 'current' */ 892 893 /* 894 * This field must not be in the scheduler word above due to wakelist 895 * queueing no longer being serialized by p->on_cpu. However: 896 * 897 * p->XXX = X; ttwu() 898 * schedule() if (p->on_rq && ..) // false 899 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true 900 * deactivate_task() ttwu_queue_wakelist()) 901 * p->on_rq = 0; p->sched_remote_wakeup = Y; 902 * 903 * guarantees all stores of 'current' are visible before 904 * ->sched_remote_wakeup gets used, so it can be in this word. 905 */ 906 unsigned sched_remote_wakeup:1; 907 908 /* Bit to tell LSMs we're in execve(): */ 909 unsigned in_execve:1; 910 unsigned in_iowait:1; 911#ifndef TIF_RESTORE_SIGMASK 912 unsigned restore_sigmask:1; 913#endif 914#ifdef CONFIG_MEMCG 915 unsigned in_user_fault:1; 916#endif 917#ifdef CONFIG_COMPAT_BRK 918 unsigned brk_randomized:1; 919#endif 920#ifdef CONFIG_CGROUPS 921 /* disallow userland-initiated cgroup migration */ 922 unsigned no_cgroup_migration:1; 923 /* task is frozen/stopped (used by the cgroup freezer) */ 924 unsigned frozen:1; 925#endif 926#ifdef CONFIG_BLK_CGROUP 927 unsigned use_memdelay:1; 928#endif 929#ifdef CONFIG_PSI 930 /* Stalled due to lack of memory */ 931 unsigned in_memstall:1; 932#endif 933#ifdef CONFIG_PAGE_OWNER 934 /* Used by page_owner=on to detect recursion in page tracking. */ 935 unsigned in_page_owner:1; 936#endif 937#ifdef CONFIG_EVENTFD 938 /* Recursion prevention for eventfd_signal() */ 939 unsigned in_eventfd_signal:1; 940#endif 941 942 unsigned long atomic_flags; /* Flags requiring atomic access. */ 943 944 struct restart_block restart_block; 945 946 pid_t pid; 947 pid_t tgid; 948 949#ifdef CONFIG_STACKPROTECTOR 950 /* Canary value for the -fstack-protector GCC feature: */ 951 unsigned long stack_canary; 952#endif 953 /* 954 * Pointers to the (original) parent process, youngest child, younger sibling, 955 * older sibling, respectively. (p->father can be replaced with 956 * p->real_parent->pid) 957 */ 958 959 /* Real parent process: */ 960 struct task_struct __rcu *real_parent; 961 962 /* Recipient of SIGCHLD, wait4() reports: */ 963 struct task_struct __rcu *parent; 964 965 /* 966 * Children/sibling form the list of natural children: 967 */ 968 struct list_head children; 969 struct list_head sibling; 970 struct task_struct *group_leader; 971 972 /* 973 * 'ptraced' is the list of tasks this task is using ptrace() on. 974 * 975 * This includes both natural children and PTRACE_ATTACH targets. 976 * 'ptrace_entry' is this task's link on the p->parent->ptraced list. 977 */ 978 struct list_head ptraced; 979 struct list_head ptrace_entry; 980 981 /* PID/PID hash table linkage. */ 982 struct pid *thread_pid; 983 struct hlist_node pid_links[PIDTYPE_MAX]; 984 struct list_head thread_group; 985 struct list_head thread_node; 986 987 struct completion *vfork_done; 988 989 /* CLONE_CHILD_SETTID: */ 990 int __user *set_child_tid; 991 992 /* CLONE_CHILD_CLEARTID: */ 993 int __user *clear_child_tid; 994 995 /* PF_KTHREAD | PF_IO_WORKER */ 996 void *worker_private; 997 998 u64 utime; 999 u64 stime; 1000#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1001 u64 utimescaled; 1002 u64 stimescaled; 1003#endif 1004 u64 gtime; 1005 struct prev_cputime prev_cputime; 1006#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1007 struct vtime vtime; 1008#endif 1009 1010#ifdef CONFIG_NO_HZ_FULL 1011 atomic_t tick_dep_mask; 1012#endif 1013 /* Context switch counts: */ 1014 unsigned long nvcsw; 1015 unsigned long nivcsw; 1016 1017 /* Monotonic time in nsecs: */ 1018 u64 start_time; 1019 1020 /* Boot based time in nsecs: */ 1021 u64 start_boottime; 1022 1023 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ 1024 unsigned long min_flt; 1025 unsigned long maj_flt; 1026 1027 /* Empty if CONFIG_POSIX_CPUTIMERS=n */ 1028 struct posix_cputimers posix_cputimers; 1029 1030#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK 1031 struct posix_cputimers_work posix_cputimers_work; 1032#endif 1033 1034 /* Process credentials: */ 1035 1036 /* Tracer's credentials at attach: */ 1037 const struct cred __rcu *ptracer_cred; 1038 1039 /* Objective and real subjective task credentials (COW): */ 1040 const struct cred __rcu *real_cred; 1041 1042 /* Effective (overridable) subjective task credentials (COW): */ 1043 const struct cred __rcu *cred; 1044 1045#ifdef CONFIG_KEYS 1046 /* Cached requested key. */ 1047 struct key *cached_requested_key; 1048#endif 1049 1050 /* 1051 * executable name, excluding path. 1052 * 1053 * - normally initialized setup_new_exec() 1054 * - access it with [gs]et_task_comm() 1055 * - lock it with task_lock() 1056 */ 1057 char comm[TASK_COMM_LEN]; 1058 1059 struct nameidata *nameidata; 1060 1061#ifdef CONFIG_SYSVIPC 1062 struct sysv_sem sysvsem; 1063 struct sysv_shm sysvshm; 1064#endif 1065#ifdef CONFIG_DETECT_HUNG_TASK 1066 unsigned long last_switch_count; 1067 unsigned long last_switch_time; 1068#endif 1069 /* Filesystem information: */ 1070 struct fs_struct *fs; 1071 1072 /* Open file information: */ 1073 struct files_struct *files; 1074 1075#ifdef CONFIG_IO_URING 1076 struct io_uring_task *io_uring; 1077#endif 1078 1079 /* Namespaces: */ 1080 struct nsproxy *nsproxy; 1081 1082 /* Signal handlers: */ 1083 struct signal_struct *signal; 1084 struct sighand_struct __rcu *sighand; 1085 sigset_t blocked; 1086 sigset_t real_blocked; 1087 /* Restored if set_restore_sigmask() was used: */ 1088 sigset_t saved_sigmask; 1089 struct sigpending pending; 1090 unsigned long sas_ss_sp; 1091 size_t sas_ss_size; 1092 unsigned int sas_ss_flags; 1093 1094 struct callback_head *task_works; 1095 1096#ifdef CONFIG_AUDIT 1097#ifdef CONFIG_AUDITSYSCALL 1098 struct audit_context *audit_context; 1099#endif 1100 kuid_t loginuid; 1101 unsigned int sessionid; 1102#endif 1103 struct seccomp seccomp; 1104 struct syscall_user_dispatch syscall_dispatch; 1105 1106 /* Thread group tracking: */ 1107 u64 parent_exec_id; 1108 u64 self_exec_id; 1109 1110 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ 1111 spinlock_t alloc_lock; 1112 1113 /* Protection of the PI data structures: */ 1114 raw_spinlock_t pi_lock; 1115 1116 struct wake_q_node wake_q; 1117 1118#ifdef CONFIG_RT_MUTEXES 1119 /* PI waiters blocked on a rt_mutex held by this task: */ 1120 struct rb_root_cached pi_waiters; 1121 /* Updated under owner's pi_lock and rq lock */ 1122 struct task_struct *pi_top_task; 1123 /* Deadlock detection and priority inheritance handling: */ 1124 struct rt_mutex_waiter *pi_blocked_on; 1125#endif 1126 1127#ifdef CONFIG_DEBUG_MUTEXES 1128 /* Mutex deadlock detection: */ 1129 struct mutex_waiter *blocked_on; 1130#endif 1131 1132#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1133 int non_block_count; 1134#endif 1135 1136#ifdef CONFIG_TRACE_IRQFLAGS 1137 struct irqtrace_events irqtrace; 1138 unsigned int hardirq_threaded; 1139 u64 hardirq_chain_key; 1140 int softirqs_enabled; 1141 int softirq_context; 1142 int irq_config; 1143#endif 1144#ifdef CONFIG_PREEMPT_RT 1145 int softirq_disable_cnt; 1146#endif 1147 1148#ifdef CONFIG_LOCKDEP 1149# define MAX_LOCK_DEPTH 48UL 1150 u64 curr_chain_key; 1151 int lockdep_depth; 1152 unsigned int lockdep_recursion; 1153 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1154#endif 1155 1156#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP) 1157 unsigned int in_ubsan; 1158#endif 1159 1160 /* Journalling filesystem info: */ 1161 void *journal_info; 1162 1163 /* Stacked block device info: */ 1164 struct bio_list *bio_list; 1165 1166 /* Stack plugging: */ 1167 struct blk_plug *plug; 1168 1169 /* VM state: */ 1170 struct reclaim_state *reclaim_state; 1171 1172 struct backing_dev_info *backing_dev_info; 1173 1174 struct io_context *io_context; 1175 1176#ifdef CONFIG_COMPACTION 1177 struct capture_control *capture_control; 1178#endif 1179 /* Ptrace state: */ 1180 unsigned long ptrace_message; 1181 kernel_siginfo_t *last_siginfo; 1182 1183 struct task_io_accounting ioac; 1184#ifdef CONFIG_PSI 1185 /* Pressure stall state */ 1186 unsigned int psi_flags; 1187#endif 1188#ifdef CONFIG_TASK_XACCT 1189 /* Accumulated RSS usage: */ 1190 u64 acct_rss_mem1; 1191 /* Accumulated virtual memory usage: */ 1192 u64 acct_vm_mem1; 1193 /* stime + utime since last update: */ 1194 u64 acct_timexpd; 1195#endif 1196#ifdef CONFIG_CPUSETS 1197 /* Protected by ->alloc_lock: */ 1198 nodemask_t mems_allowed; 1199 /* Sequence number to catch updates: */ 1200 seqcount_spinlock_t mems_allowed_seq; 1201 int cpuset_mem_spread_rotor; 1202 int cpuset_slab_spread_rotor; 1203#endif 1204#ifdef CONFIG_CGROUPS 1205 /* Control Group info protected by css_set_lock: */ 1206 struct css_set __rcu *cgroups; 1207 /* cg_list protected by css_set_lock and tsk->alloc_lock: */ 1208 struct list_head cg_list; 1209#endif 1210#ifdef CONFIG_X86_CPU_RESCTRL 1211 u32 closid; 1212 u32 rmid; 1213#endif 1214#ifdef CONFIG_FUTEX 1215 struct robust_list_head __user *robust_list; 1216#ifdef CONFIG_COMPAT 1217 struct compat_robust_list_head __user *compat_robust_list; 1218#endif 1219 struct list_head pi_state_list; 1220 struct futex_pi_state *pi_state_cache; 1221 struct mutex futex_exit_mutex; 1222 unsigned int futex_state; 1223#endif 1224#ifdef CONFIG_PERF_EVENTS 1225 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1226 struct mutex perf_event_mutex; 1227 struct list_head perf_event_list; 1228#endif 1229#ifdef CONFIG_DEBUG_PREEMPT 1230 unsigned long preempt_disable_ip; 1231#endif 1232#ifdef CONFIG_NUMA 1233 /* Protected by alloc_lock: */ 1234 struct mempolicy *mempolicy; 1235 short il_prev; 1236 short pref_node_fork; 1237#endif 1238#ifdef CONFIG_NUMA_BALANCING 1239 int numa_scan_seq; 1240 unsigned int numa_scan_period; 1241 unsigned int numa_scan_period_max; 1242 int numa_preferred_nid; 1243 unsigned long numa_migrate_retry; 1244 /* Migration stamp: */ 1245 u64 node_stamp; 1246 u64 last_task_numa_placement; 1247 u64 last_sum_exec_runtime; 1248 struct callback_head numa_work; 1249 1250 /* 1251 * This pointer is only modified for current in syscall and 1252 * pagefault context (and for tasks being destroyed), so it can be read 1253 * from any of the following contexts: 1254 * - RCU read-side critical section 1255 * - current->numa_group from everywhere 1256 * - task's runqueue locked, task not running 1257 */ 1258 struct numa_group __rcu *numa_group; 1259 1260 /* 1261 * numa_faults is an array split into four regions: 1262 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1263 * in this precise order. 1264 * 1265 * faults_memory: Exponential decaying average of faults on a per-node 1266 * basis. Scheduling placement decisions are made based on these 1267 * counts. The values remain static for the duration of a PTE scan. 1268 * faults_cpu: Track the nodes the process was running on when a NUMA 1269 * hinting fault was incurred. 1270 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1271 * during the current scan window. When the scan completes, the counts 1272 * in faults_memory and faults_cpu decay and these values are copied. 1273 */ 1274 unsigned long *numa_faults; 1275 unsigned long total_numa_faults; 1276 1277 /* 1278 * numa_faults_locality tracks if faults recorded during the last 1279 * scan window were remote/local or failed to migrate. The task scan 1280 * period is adapted based on the locality of the faults with different 1281 * weights depending on whether they were shared or private faults 1282 */ 1283 unsigned long numa_faults_locality[3]; 1284 1285 unsigned long numa_pages_migrated; 1286#endif /* CONFIG_NUMA_BALANCING */ 1287 1288#ifdef CONFIG_RSEQ 1289 struct rseq __user *rseq; 1290 u32 rseq_sig; 1291 /* 1292 * RmW on rseq_event_mask must be performed atomically 1293 * with respect to preemption. 1294 */ 1295 unsigned long rseq_event_mask; 1296#endif 1297 1298 struct tlbflush_unmap_batch tlb_ubc; 1299 1300 union { 1301 refcount_t rcu_users; 1302 struct rcu_head rcu; 1303 }; 1304 1305 /* Cache last used pipe for splice(): */ 1306 struct pipe_inode_info *splice_pipe; 1307 1308 struct page_frag task_frag; 1309 1310#ifdef CONFIG_TASK_DELAY_ACCT 1311 struct task_delay_info *delays; 1312#endif 1313 1314#ifdef CONFIG_FAULT_INJECTION 1315 int make_it_fail; 1316 unsigned int fail_nth; 1317#endif 1318 /* 1319 * When (nr_dirtied >= nr_dirtied_pause), it's time to call 1320 * balance_dirty_pages() for a dirty throttling pause: 1321 */ 1322 int nr_dirtied; 1323 int nr_dirtied_pause; 1324 /* Start of a write-and-pause period: */ 1325 unsigned long dirty_paused_when; 1326 1327#ifdef CONFIG_LATENCYTOP 1328 int latency_record_count; 1329 struct latency_record latency_record[LT_SAVECOUNT]; 1330#endif 1331 /* 1332 * Time slack values; these are used to round up poll() and 1333 * select() etc timeout values. These are in nanoseconds. 1334 */ 1335 u64 timer_slack_ns; 1336 u64 default_timer_slack_ns; 1337 1338#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 1339 unsigned int kasan_depth; 1340#endif 1341 1342#ifdef CONFIG_KCSAN 1343 struct kcsan_ctx kcsan_ctx; 1344#ifdef CONFIG_TRACE_IRQFLAGS 1345 struct irqtrace_events kcsan_save_irqtrace; 1346#endif 1347#ifdef CONFIG_KCSAN_WEAK_MEMORY 1348 int kcsan_stack_depth; 1349#endif 1350#endif 1351 1352#if IS_ENABLED(CONFIG_KUNIT) 1353 struct kunit *kunit_test; 1354#endif 1355 1356#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1357 /* Index of current stored address in ret_stack: */ 1358 int curr_ret_stack; 1359 int curr_ret_depth; 1360 1361 /* Stack of return addresses for return function tracing: */ 1362 struct ftrace_ret_stack *ret_stack; 1363 1364 /* Timestamp for last schedule: */ 1365 unsigned long long ftrace_timestamp; 1366 1367 /* 1368 * Number of functions that haven't been traced 1369 * because of depth overrun: 1370 */ 1371 atomic_t trace_overrun; 1372 1373 /* Pause tracing: */ 1374 atomic_t tracing_graph_pause; 1375#endif 1376 1377#ifdef CONFIG_TRACING 1378 /* State flags for use by tracers: */ 1379 unsigned long trace; 1380 1381 /* Bitmask and counter of trace recursion: */ 1382 unsigned long trace_recursion; 1383#endif /* CONFIG_TRACING */ 1384 1385#ifdef CONFIG_KCOV 1386 /* See kernel/kcov.c for more details. */ 1387 1388 /* Coverage collection mode enabled for this task (0 if disabled): */ 1389 unsigned int kcov_mode; 1390 1391 /* Size of the kcov_area: */ 1392 unsigned int kcov_size; 1393 1394 /* Buffer for coverage collection: */ 1395 void *kcov_area; 1396 1397 /* KCOV descriptor wired with this task or NULL: */ 1398 struct kcov *kcov; 1399 1400 /* KCOV common handle for remote coverage collection: */ 1401 u64 kcov_handle; 1402 1403 /* KCOV sequence number: */ 1404 int kcov_sequence; 1405 1406 /* Collect coverage from softirq context: */ 1407 unsigned int kcov_softirq; 1408#endif 1409 1410#ifdef CONFIG_MEMCG 1411 struct mem_cgroup *memcg_in_oom; 1412 gfp_t memcg_oom_gfp_mask; 1413 int memcg_oom_order; 1414 1415 /* Number of pages to reclaim on returning to userland: */ 1416 unsigned int memcg_nr_pages_over_high; 1417 1418 /* Used by memcontrol for targeted memcg charge: */ 1419 struct mem_cgroup *active_memcg; 1420#endif 1421 1422#ifdef CONFIG_BLK_CGROUP 1423 struct request_queue *throttle_queue; 1424#endif 1425 1426#ifdef CONFIG_UPROBES 1427 struct uprobe_task *utask; 1428#endif 1429#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1430 unsigned int sequential_io; 1431 unsigned int sequential_io_avg; 1432#endif 1433 struct kmap_ctrl kmap_ctrl; 1434#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1435 unsigned long task_state_change; 1436# ifdef CONFIG_PREEMPT_RT 1437 unsigned long saved_state_change; 1438# endif 1439#endif 1440 int pagefault_disabled; 1441#ifdef CONFIG_MMU 1442 struct task_struct *oom_reaper_list; 1443#endif 1444#ifdef CONFIG_VMAP_STACK 1445 struct vm_struct *stack_vm_area; 1446#endif 1447#ifdef CONFIG_THREAD_INFO_IN_TASK 1448 /* A live task holds one reference: */ 1449 refcount_t stack_refcount; 1450#endif 1451#ifdef CONFIG_LIVEPATCH 1452 int patch_state; 1453#endif 1454#ifdef CONFIG_SECURITY 1455 /* Used by LSM modules for access restriction: */ 1456 void *security; 1457#endif 1458#ifdef CONFIG_BPF_SYSCALL 1459 /* Used by BPF task local storage */ 1460 struct bpf_local_storage __rcu *bpf_storage; 1461 /* Used for BPF run context */ 1462 struct bpf_run_ctx *bpf_ctx; 1463#endif 1464 1465#ifdef CONFIG_GCC_PLUGIN_STACKLEAK 1466 unsigned long lowest_stack; 1467 unsigned long prev_lowest_stack; 1468#endif 1469 1470#ifdef CONFIG_X86_MCE 1471 void __user *mce_vaddr; 1472 __u64 mce_kflags; 1473 u64 mce_addr; 1474 __u64 mce_ripv : 1, 1475 mce_whole_page : 1, 1476 __mce_reserved : 62; 1477 struct callback_head mce_kill_me; 1478 int mce_count; 1479#endif 1480 1481#ifdef CONFIG_KRETPROBES 1482 struct llist_head kretprobe_instances; 1483#endif 1484 1485#ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH 1486 /* 1487 * If L1D flush is supported on mm context switch 1488 * then we use this callback head to queue kill work 1489 * to kill tasks that are not running on SMT disabled 1490 * cores 1491 */ 1492 struct callback_head l1d_flush_kill; 1493#endif 1494 1495 /* 1496 * New fields for task_struct should be added above here, so that 1497 * they are included in the randomized portion of task_struct. 1498 */ 1499 randomized_struct_fields_end 1500 1501 /* CPU-specific state of this task: */ 1502 struct thread_struct thread; 1503 1504 /* 1505 * WARNING: on x86, 'thread_struct' contains a variable-sized 1506 * structure. It *MUST* be at the end of 'task_struct'. 1507 * 1508 * Do not put anything below here! 1509 */ 1510}; 1511 1512static inline struct pid *task_pid(struct task_struct *task) 1513{ 1514 return task->thread_pid; 1515} 1516 1517/* 1518 * the helpers to get the task's different pids as they are seen 1519 * from various namespaces 1520 * 1521 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1522 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1523 * current. 1524 * task_xid_nr_ns() : id seen from the ns specified; 1525 * 1526 * see also pid_nr() etc in include/linux/pid.h 1527 */ 1528pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); 1529 1530static inline pid_t task_pid_nr(struct task_struct *tsk) 1531{ 1532 return tsk->pid; 1533} 1534 1535static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1536{ 1537 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1538} 1539 1540static inline pid_t task_pid_vnr(struct task_struct *tsk) 1541{ 1542 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1543} 1544 1545 1546static inline pid_t task_tgid_nr(struct task_struct *tsk) 1547{ 1548 return tsk->tgid; 1549} 1550 1551/** 1552 * pid_alive - check that a task structure is not stale 1553 * @p: Task structure to be checked. 1554 * 1555 * Test if a process is not yet dead (at most zombie state) 1556 * If pid_alive fails, then pointers within the task structure 1557 * can be stale and must not be dereferenced. 1558 * 1559 * Return: 1 if the process is alive. 0 otherwise. 1560 */ 1561static inline int pid_alive(const struct task_struct *p) 1562{ 1563 return p->thread_pid != NULL; 1564} 1565 1566static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1567{ 1568 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1569} 1570 1571static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1572{ 1573 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1574} 1575 1576 1577static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1578{ 1579 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1580} 1581 1582static inline pid_t task_session_vnr(struct task_struct *tsk) 1583{ 1584 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1585} 1586 1587static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1588{ 1589 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); 1590} 1591 1592static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1593{ 1594 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); 1595} 1596 1597static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1598{ 1599 pid_t pid = 0; 1600 1601 rcu_read_lock(); 1602 if (pid_alive(tsk)) 1603 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1604 rcu_read_unlock(); 1605 1606 return pid; 1607} 1608 1609static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1610{ 1611 return task_ppid_nr_ns(tsk, &init_pid_ns); 1612} 1613 1614/* Obsolete, do not use: */ 1615static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1616{ 1617 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1618} 1619 1620#define TASK_REPORT_IDLE (TASK_REPORT + 1) 1621#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) 1622 1623static inline unsigned int task_state_index(struct task_struct *tsk) 1624{ 1625 unsigned int tsk_state = READ_ONCE(tsk->__state); 1626 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT; 1627 1628 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); 1629 1630 if (tsk_state == TASK_IDLE) 1631 state = TASK_REPORT_IDLE; 1632 1633 return fls(state); 1634} 1635 1636static inline char task_index_to_char(unsigned int state) 1637{ 1638 static const char state_char[] = "RSDTtXZPI"; 1639 1640 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); 1641 1642 return state_char[state]; 1643} 1644 1645static inline char task_state_to_char(struct task_struct *tsk) 1646{ 1647 return task_index_to_char(task_state_index(tsk)); 1648} 1649 1650/** 1651 * is_global_init - check if a task structure is init. Since init 1652 * is free to have sub-threads we need to check tgid. 1653 * @tsk: Task structure to be checked. 1654 * 1655 * Check if a task structure is the first user space task the kernel created. 1656 * 1657 * Return: 1 if the task structure is init. 0 otherwise. 1658 */ 1659static inline int is_global_init(struct task_struct *tsk) 1660{ 1661 return task_tgid_nr(tsk) == 1; 1662} 1663 1664extern struct pid *cad_pid; 1665 1666/* 1667 * Per process flags 1668 */ 1669#define PF_VCPU 0x00000001 /* I'm a virtual CPU */ 1670#define PF_IDLE 0x00000002 /* I am an IDLE thread */ 1671#define PF_EXITING 0x00000004 /* Getting shut down */ 1672#define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */ 1673#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */ 1674#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1675#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ 1676#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ 1677#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ 1678#define PF_DUMPCORE 0x00000200 /* Dumped core */ 1679#define PF_SIGNALED 0x00000400 /* Killed by a signal */ 1680#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1681#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ 1682#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ 1683#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ 1684#define PF_FROZEN 0x00010000 /* Frozen for system suspend */ 1685#define PF_KSWAPD 0x00020000 /* I am kswapd */ 1686#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ 1687#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ 1688#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to, 1689 * I am cleaning dirty pages from some other bdi. */ 1690#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1691#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ 1692#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1693#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */ 1694#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1695#define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */ 1696#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1697#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ 1698 1699/* 1700 * Only the _current_ task can read/write to tsk->flags, but other 1701 * tasks can access tsk->flags in readonly mode for example 1702 * with tsk_used_math (like during threaded core dumping). 1703 * There is however an exception to this rule during ptrace 1704 * or during fork: the ptracer task is allowed to write to the 1705 * child->flags of its traced child (same goes for fork, the parent 1706 * can write to the child->flags), because we're guaranteed the 1707 * child is not running and in turn not changing child->flags 1708 * at the same time the parent does it. 1709 */ 1710#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1711#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1712#define clear_used_math() clear_stopped_child_used_math(current) 1713#define set_used_math() set_stopped_child_used_math(current) 1714 1715#define conditional_stopped_child_used_math(condition, child) \ 1716 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1717 1718#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) 1719 1720#define copy_to_stopped_child_used_math(child) \ 1721 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1722 1723/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1724#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1725#define used_math() tsk_used_math(current) 1726 1727static __always_inline bool is_percpu_thread(void) 1728{ 1729#ifdef CONFIG_SMP 1730 return (current->flags & PF_NO_SETAFFINITY) && 1731 (current->nr_cpus_allowed == 1); 1732#else 1733 return true; 1734#endif 1735} 1736 1737/* Per-process atomic flags. */ 1738#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 1739#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 1740#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 1741#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ 1742#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ 1743#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ 1744#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ 1745#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */ 1746 1747#define TASK_PFA_TEST(name, func) \ 1748 static inline bool task_##func(struct task_struct *p) \ 1749 { return test_bit(PFA_##name, &p->atomic_flags); } 1750 1751#define TASK_PFA_SET(name, func) \ 1752 static inline void task_set_##func(struct task_struct *p) \ 1753 { set_bit(PFA_##name, &p->atomic_flags); } 1754 1755#define TASK_PFA_CLEAR(name, func) \ 1756 static inline void task_clear_##func(struct task_struct *p) \ 1757 { clear_bit(PFA_##name, &p->atomic_flags); } 1758 1759TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 1760TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 1761 1762TASK_PFA_TEST(SPREAD_PAGE, spread_page) 1763TASK_PFA_SET(SPREAD_PAGE, spread_page) 1764TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 1765 1766TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 1767TASK_PFA_SET(SPREAD_SLAB, spread_slab) 1768TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 1769 1770TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) 1771TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) 1772TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) 1773 1774TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1775TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1776TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1777 1778TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1779TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1780 1781TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) 1782TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) 1783TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) 1784 1785TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1786TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1787 1788static inline void 1789current_restore_flags(unsigned long orig_flags, unsigned long flags) 1790{ 1791 current->flags &= ~flags; 1792 current->flags |= orig_flags & flags; 1793} 1794 1795extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 1796extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 1797#ifdef CONFIG_SMP 1798extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); 1799extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); 1800extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node); 1801extern void release_user_cpus_ptr(struct task_struct *p); 1802extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask); 1803extern void force_compatible_cpus_allowed_ptr(struct task_struct *p); 1804extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p); 1805#else 1806static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1807{ 1808} 1809static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1810{ 1811 if (!cpumask_test_cpu(0, new_mask)) 1812 return -EINVAL; 1813 return 0; 1814} 1815static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node) 1816{ 1817 if (src->user_cpus_ptr) 1818 return -EINVAL; 1819 return 0; 1820} 1821static inline void release_user_cpus_ptr(struct task_struct *p) 1822{ 1823 WARN_ON(p->user_cpus_ptr); 1824} 1825 1826static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 1827{ 1828 return 0; 1829} 1830#endif 1831 1832extern int yield_to(struct task_struct *p, bool preempt); 1833extern void set_user_nice(struct task_struct *p, long nice); 1834extern int task_prio(const struct task_struct *p); 1835 1836/** 1837 * task_nice - return the nice value of a given task. 1838 * @p: the task in question. 1839 * 1840 * Return: The nice value [ -20 ... 0 ... 19 ]. 1841 */ 1842static inline int task_nice(const struct task_struct *p) 1843{ 1844 return PRIO_TO_NICE((p)->static_prio); 1845} 1846 1847extern int can_nice(const struct task_struct *p, const int nice); 1848extern int task_curr(const struct task_struct *p); 1849extern int idle_cpu(int cpu); 1850extern int available_idle_cpu(int cpu); 1851extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); 1852extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); 1853extern void sched_set_fifo(struct task_struct *p); 1854extern void sched_set_fifo_low(struct task_struct *p); 1855extern void sched_set_normal(struct task_struct *p, int nice); 1856extern int sched_setattr(struct task_struct *, const struct sched_attr *); 1857extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); 1858extern struct task_struct *idle_task(int cpu); 1859 1860/** 1861 * is_idle_task - is the specified task an idle task? 1862 * @p: the task in question. 1863 * 1864 * Return: 1 if @p is an idle task. 0 otherwise. 1865 */ 1866static __always_inline bool is_idle_task(const struct task_struct *p) 1867{ 1868 return !!(p->flags & PF_IDLE); 1869} 1870 1871extern struct task_struct *curr_task(int cpu); 1872extern void ia64_set_curr_task(int cpu, struct task_struct *p); 1873 1874void yield(void); 1875 1876union thread_union { 1877#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK 1878 struct task_struct task; 1879#endif 1880#ifndef CONFIG_THREAD_INFO_IN_TASK 1881 struct thread_info thread_info; 1882#endif 1883 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1884}; 1885 1886#ifndef CONFIG_THREAD_INFO_IN_TASK 1887extern struct thread_info init_thread_info; 1888#endif 1889 1890extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; 1891 1892#ifdef CONFIG_THREAD_INFO_IN_TASK 1893# define task_thread_info(task) (&(task)->thread_info) 1894#elif !defined(__HAVE_THREAD_FUNCTIONS) 1895# define task_thread_info(task) ((struct thread_info *)(task)->stack) 1896#endif 1897 1898/* 1899 * find a task by one of its numerical ids 1900 * 1901 * find_task_by_pid_ns(): 1902 * finds a task by its pid in the specified namespace 1903 * find_task_by_vpid(): 1904 * finds a task by its virtual pid 1905 * 1906 * see also find_vpid() etc in include/linux/pid.h 1907 */ 1908 1909extern struct task_struct *find_task_by_vpid(pid_t nr); 1910extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); 1911 1912/* 1913 * find a task by its virtual pid and get the task struct 1914 */ 1915extern struct task_struct *find_get_task_by_vpid(pid_t nr); 1916 1917extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1918extern int wake_up_process(struct task_struct *tsk); 1919extern void wake_up_new_task(struct task_struct *tsk); 1920 1921#ifdef CONFIG_SMP 1922extern void kick_process(struct task_struct *tsk); 1923#else 1924static inline void kick_process(struct task_struct *tsk) { } 1925#endif 1926 1927extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 1928 1929static inline void set_task_comm(struct task_struct *tsk, const char *from) 1930{ 1931 __set_task_comm(tsk, from, false); 1932} 1933 1934extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); 1935#define get_task_comm(buf, tsk) ({ \ 1936 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ 1937 __get_task_comm(buf, sizeof(buf), tsk); \ 1938}) 1939 1940#ifdef CONFIG_SMP 1941static __always_inline void scheduler_ipi(void) 1942{ 1943 /* 1944 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1945 * TIF_NEED_RESCHED remotely (for the first time) will also send 1946 * this IPI. 1947 */ 1948 preempt_fold_need_resched(); 1949} 1950extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state); 1951#else 1952static inline void scheduler_ipi(void) { } 1953static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 1954{ 1955 return 1; 1956} 1957#endif 1958 1959/* 1960 * Set thread flags in other task's structures. 1961 * See asm/thread_info.h for TIF_xxxx flags available: 1962 */ 1963static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1964{ 1965 set_ti_thread_flag(task_thread_info(tsk), flag); 1966} 1967 1968static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1969{ 1970 clear_ti_thread_flag(task_thread_info(tsk), flag); 1971} 1972 1973static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, 1974 bool value) 1975{ 1976 update_ti_thread_flag(task_thread_info(tsk), flag, value); 1977} 1978 1979static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1980{ 1981 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1982} 1983 1984static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1985{ 1986 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1987} 1988 1989static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1990{ 1991 return test_ti_thread_flag(task_thread_info(tsk), flag); 1992} 1993 1994static inline void set_tsk_need_resched(struct task_struct *tsk) 1995{ 1996 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1997} 1998 1999static inline void clear_tsk_need_resched(struct task_struct *tsk) 2000{ 2001 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2002} 2003 2004static inline int test_tsk_need_resched(struct task_struct *tsk) 2005{ 2006 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2007} 2008 2009/* 2010 * cond_resched() and cond_resched_lock(): latency reduction via 2011 * explicit rescheduling in places that are safe. The return 2012 * value indicates whether a reschedule was done in fact. 2013 * cond_resched_lock() will drop the spinlock before scheduling, 2014 */ 2015#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 2016extern int __cond_resched(void); 2017 2018#ifdef CONFIG_PREEMPT_DYNAMIC 2019 2020DECLARE_STATIC_CALL(cond_resched, __cond_resched); 2021 2022static __always_inline int _cond_resched(void) 2023{ 2024 return static_call_mod(cond_resched)(); 2025} 2026 2027#else 2028 2029static inline int _cond_resched(void) 2030{ 2031 return __cond_resched(); 2032} 2033 2034#endif /* CONFIG_PREEMPT_DYNAMIC */ 2035 2036#else 2037 2038static inline int _cond_resched(void) { return 0; } 2039 2040#endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */ 2041 2042#define cond_resched() ({ \ 2043 __might_resched(__FILE__, __LINE__, 0); \ 2044 _cond_resched(); \ 2045}) 2046 2047extern int __cond_resched_lock(spinlock_t *lock); 2048extern int __cond_resched_rwlock_read(rwlock_t *lock); 2049extern int __cond_resched_rwlock_write(rwlock_t *lock); 2050 2051#define MIGHT_RESCHED_RCU_SHIFT 8 2052#define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1) 2053 2054#ifndef CONFIG_PREEMPT_RT 2055/* 2056 * Non RT kernels have an elevated preempt count due to the held lock, 2057 * but are not allowed to be inside a RCU read side critical section 2058 */ 2059# define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET 2060#else 2061/* 2062 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in 2063 * cond_resched*lock() has to take that into account because it checks for 2064 * preempt_count() and rcu_preempt_depth(). 2065 */ 2066# define PREEMPT_LOCK_RESCHED_OFFSETS \ 2067 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT)) 2068#endif 2069 2070#define cond_resched_lock(lock) ({ \ 2071 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \ 2072 __cond_resched_lock(lock); \ 2073}) 2074 2075#define cond_resched_rwlock_read(lock) ({ \ 2076 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \ 2077 __cond_resched_rwlock_read(lock); \ 2078}) 2079 2080#define cond_resched_rwlock_write(lock) ({ \ 2081 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \ 2082 __cond_resched_rwlock_write(lock); \ 2083}) 2084 2085static inline void cond_resched_rcu(void) 2086{ 2087#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2088 rcu_read_unlock(); 2089 cond_resched(); 2090 rcu_read_lock(); 2091#endif 2092} 2093 2094/* 2095 * Does a critical section need to be broken due to another 2096 * task waiting?: (technically does not depend on CONFIG_PREEMPTION, 2097 * but a general need for low latency) 2098 */ 2099static inline int spin_needbreak(spinlock_t *lock) 2100{ 2101#ifdef CONFIG_PREEMPTION 2102 return spin_is_contended(lock); 2103#else 2104 return 0; 2105#endif 2106} 2107 2108/* 2109 * Check if a rwlock is contended. 2110 * Returns non-zero if there is another task waiting on the rwlock. 2111 * Returns zero if the lock is not contended or the system / underlying 2112 * rwlock implementation does not support contention detection. 2113 * Technically does not depend on CONFIG_PREEMPTION, but a general need 2114 * for low latency. 2115 */ 2116static inline int rwlock_needbreak(rwlock_t *lock) 2117{ 2118#ifdef CONFIG_PREEMPTION 2119 return rwlock_is_contended(lock); 2120#else 2121 return 0; 2122#endif 2123} 2124 2125static __always_inline bool need_resched(void) 2126{ 2127 return unlikely(tif_need_resched()); 2128} 2129 2130/* 2131 * Wrappers for p->thread_info->cpu access. No-op on UP. 2132 */ 2133#ifdef CONFIG_SMP 2134 2135static inline unsigned int task_cpu(const struct task_struct *p) 2136{ 2137 return READ_ONCE(task_thread_info(p)->cpu); 2138} 2139 2140extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2141 2142#else 2143 2144static inline unsigned int task_cpu(const struct task_struct *p) 2145{ 2146 return 0; 2147} 2148 2149static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2150{ 2151} 2152 2153#endif /* CONFIG_SMP */ 2154 2155extern bool sched_task_on_rq(struct task_struct *p); 2156extern unsigned long get_wchan(struct task_struct *p); 2157 2158/* 2159 * In order to reduce various lock holder preemption latencies provide an 2160 * interface to see if a vCPU is currently running or not. 2161 * 2162 * This allows us to terminate optimistic spin loops and block, analogous to 2163 * the native optimistic spin heuristic of testing if the lock owner task is 2164 * running or not. 2165 */ 2166#ifndef vcpu_is_preempted 2167static inline bool vcpu_is_preempted(int cpu) 2168{ 2169 return false; 2170} 2171#endif 2172 2173extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2174extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2175 2176#ifndef TASK_SIZE_OF 2177#define TASK_SIZE_OF(tsk) TASK_SIZE 2178#endif 2179 2180#ifdef CONFIG_SMP 2181static inline bool owner_on_cpu(struct task_struct *owner) 2182{ 2183 /* 2184 * As lock holder preemption issue, we both skip spinning if 2185 * task is not on cpu or its cpu is preempted 2186 */ 2187 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner)); 2188} 2189 2190/* Returns effective CPU energy utilization, as seen by the scheduler */ 2191unsigned long sched_cpu_util(int cpu, unsigned long max); 2192#endif /* CONFIG_SMP */ 2193 2194#ifdef CONFIG_RSEQ 2195 2196/* 2197 * Map the event mask on the user-space ABI enum rseq_cs_flags 2198 * for direct mask checks. 2199 */ 2200enum rseq_event_mask_bits { 2201 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, 2202 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, 2203 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, 2204}; 2205 2206enum rseq_event_mask { 2207 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), 2208 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), 2209 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), 2210}; 2211 2212static inline void rseq_set_notify_resume(struct task_struct *t) 2213{ 2214 if (t->rseq) 2215 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 2216} 2217 2218void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); 2219 2220static inline void rseq_handle_notify_resume(struct ksignal *ksig, 2221 struct pt_regs *regs) 2222{ 2223 if (current->rseq) 2224 __rseq_handle_notify_resume(ksig, regs); 2225} 2226 2227static inline void rseq_signal_deliver(struct ksignal *ksig, 2228 struct pt_regs *regs) 2229{ 2230 preempt_disable(); 2231 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask); 2232 preempt_enable(); 2233 rseq_handle_notify_resume(ksig, regs); 2234} 2235 2236/* rseq_preempt() requires preemption to be disabled. */ 2237static inline void rseq_preempt(struct task_struct *t) 2238{ 2239 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); 2240 rseq_set_notify_resume(t); 2241} 2242 2243/* rseq_migrate() requires preemption to be disabled. */ 2244static inline void rseq_migrate(struct task_struct *t) 2245{ 2246 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); 2247 rseq_set_notify_resume(t); 2248} 2249 2250/* 2251 * If parent process has a registered restartable sequences area, the 2252 * child inherits. Unregister rseq for a clone with CLONE_VM set. 2253 */ 2254static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 2255{ 2256 if (clone_flags & CLONE_VM) { 2257 t->rseq = NULL; 2258 t->rseq_sig = 0; 2259 t->rseq_event_mask = 0; 2260 } else { 2261 t->rseq = current->rseq; 2262 t->rseq_sig = current->rseq_sig; 2263 t->rseq_event_mask = current->rseq_event_mask; 2264 } 2265} 2266 2267static inline void rseq_execve(struct task_struct *t) 2268{ 2269 t->rseq = NULL; 2270 t->rseq_sig = 0; 2271 t->rseq_event_mask = 0; 2272} 2273 2274#else 2275 2276static inline void rseq_set_notify_resume(struct task_struct *t) 2277{ 2278} 2279static inline void rseq_handle_notify_resume(struct ksignal *ksig, 2280 struct pt_regs *regs) 2281{ 2282} 2283static inline void rseq_signal_deliver(struct ksignal *ksig, 2284 struct pt_regs *regs) 2285{ 2286} 2287static inline void rseq_preempt(struct task_struct *t) 2288{ 2289} 2290static inline void rseq_migrate(struct task_struct *t) 2291{ 2292} 2293static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 2294{ 2295} 2296static inline void rseq_execve(struct task_struct *t) 2297{ 2298} 2299 2300#endif 2301 2302#ifdef CONFIG_DEBUG_RSEQ 2303 2304void rseq_syscall(struct pt_regs *regs); 2305 2306#else 2307 2308static inline void rseq_syscall(struct pt_regs *regs) 2309{ 2310} 2311 2312#endif 2313 2314const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq); 2315char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len); 2316int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq); 2317 2318const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq); 2319const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq); 2320const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq); 2321 2322int sched_trace_rq_cpu(struct rq *rq); 2323int sched_trace_rq_cpu_capacity(struct rq *rq); 2324int sched_trace_rq_nr_running(struct rq *rq); 2325 2326const struct cpumask *sched_trace_rd_span(struct root_domain *rd); 2327 2328#ifdef CONFIG_SCHED_CORE 2329extern void sched_core_free(struct task_struct *tsk); 2330extern void sched_core_fork(struct task_struct *p); 2331extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type, 2332 unsigned long uaddr); 2333#else 2334static inline void sched_core_free(struct task_struct *tsk) { } 2335static inline void sched_core_fork(struct task_struct *p) { } 2336#endif 2337 2338#endif